1
|
Reka D, Girish C. Plant-based vaccines against viral hepatitis: A panoptic review. World J Virol 2024; 13:97162. [PMID: 39323445 PMCID: PMC11401004 DOI: 10.5501/wjv.v13.i3.97162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
The traditional vaccines against hepatitis have been instrumental in reducing the incidence of some types of viral hepatitis; however, the need for cost-effective, easily distributable, and needle-free vaccine alternatives has led to the exploration of plant-based vaccines. Plant-based techniques offer a promising avenue for producing viral hepatitis vaccines due to their low-cost cultivation, scalability, and the potential for oral administration. This review highlights the successful expression of hepatitis B surface antigens in plants and the subsequent formation of virus-like particles, which have shown immunogenicity in preclinical and clinical trials. The challenges such as achieving sufficient antigen expression levels, ensuring consistent dosing, and navigating regulatory frameworks, are addressed. The review considers the potential of plant-based vaccines to meet the demands of rapid vaccine deployment in response to outbreaks and their role in global immunization strategies, particularly in resource-limited settings. This review underscores the significant strides made in plant molecular farming and the potential of plant-based vaccines to complement existing immunization methods against viral hepatitis.
Collapse
Affiliation(s)
- Devanathan Reka
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Chandrashekaran Girish
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| |
Collapse
|
2
|
Liu Y, Lam DMK, Luan M, Zheng W, Ai H. Recent development of oral vaccines (Review). Exp Ther Med 2024; 27:223. [PMID: 38590568 PMCID: PMC11000446 DOI: 10.3892/etm.2024.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/08/2024] [Indexed: 04/10/2024] Open
Abstract
Oral immunization can elicit an effective immune response and immune tolerance to specific antigens. When compared with the traditional injection route, delivering antigens via the gastrointestinal mucosa offers superior immune effects and compliance, as well as simplicity and convenience, making it a more optimal route for immunization. At present, various oral vaccine delivery systems exist. Certain modified bacteria, such as Salmonella, Escherichia coli and particularly Lactobacillus, are considered promising carriers for oral vaccines. These carriers can significantly enhance immunization efficiency by actively replicating in the intestinal tract following oral administration. The present review provided a discussion of the main mechanisms of oral immunity and the research progress made in the field of oral vaccines. Additionally, it introduced the advantages and disadvantages of the currently more commonly administered injectable COVID-19 vaccines, alongside the latest advancements in this area. Furthermore, recent developments in oral vaccines are summarized, and their potential benefits and side effects are discussed.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | | | - Mei Luan
- Department of Geriatric Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Wenfu Zheng
- Chinese Academy of Sciences Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
3
|
Chauhan S, Khasa YP. Challenges and Opportunities in the Process Development of Chimeric Vaccines. Vaccines (Basel) 2023; 11:1828. [PMID: 38140232 PMCID: PMC10747103 DOI: 10.3390/vaccines11121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/22/2023] [Accepted: 08/04/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccines are integral to human life to protect them from life-threatening diseases. However, conventional vaccines often suffer limitations like inefficiency, safety concerns, unavailability for non-culturable microbes, and genetic variability among pathogens. Chimeric vaccines combine multiple antigen-encoding genes of similar or different microbial strains to protect against hyper-evolving drug-resistant pathogens. The outbreaks of dreadful diseases have led researchers to develop economical chimeric vaccines that can cater to a large population in a shorter time. The process development begins with computationally aided omics-based approaches to design chimeric vaccines. Furthermore, developing these vaccines requires optimizing upstream and downstream processes for mass production at an industrial scale. Owing to the complex structures and complicated bioprocessing of evolving pathogens, various high-throughput process technologies have come up with added advantages. Recent advancements in high-throughput tools, process analytical technology (PAT), quality-by-design (QbD), design of experiments (DoE), modeling and simulations, single-use technology, and integrated continuous bioprocessing have made scalable production more convenient and economical. The paradigm shift to innovative strategies requires significant attention to deal with major health threats at the global scale. This review outlines the challenges and emerging avenues in the bioprocess development of chimeric vaccines.
Collapse
Affiliation(s)
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India;
| |
Collapse
|
4
|
Akram M, Khan MA, Ahmed N, Bhatti R, Pervaiz R, Malik K, Tahir S, Abbas R, Ashraf F, Ali Q. Cloning and expression of an anti-cancerous cytokine: human IL-29 gene in Chlamydomonas reinhardtii. AMB Express 2023; 13:23. [PMID: 36840830 PMCID: PMC9968364 DOI: 10.1186/s13568-023-01530-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
Green algae, Chlamydomonas reinhardtii, with low cultivation cost, absence of endotoxins and insusceptibility to human pathogens is emerging as a potential system for the future production of recombinant proteins. The recent development of molecular tools enabling recombinant protein expression in algae chloroplast has provided new research and advance opportunities for developing low-cost therapeutic proteins. In the present study, algae chloroplast expression system was evaluated for the recombinant production of an anti-cancerous therapeutic protein, Interleukin 29 (IL29). The IL29 gene was cloned into algae chloroplast expression vector (pSRSapI). After the transformation, the positive clones were screened for homoplasmy and the presence of the IL29 gene by spot test and PCR analysis, respectively. The expressed SDS-PAGE and western blotting assay characterized IL-29. The algae expressed IL-29 was biologically active in an anti-proliferating bioassay using HepG2 cells. The results suggest that the Chlamydomonas reinhardtii expression system is convenient, low-cost, eco-friendly, and safe to express IL29.
Collapse
Affiliation(s)
- Maham Akram
- grid.11173.350000 0001 0670 519XCentre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Mohsin Ahmad Khan
- Centre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan.
| | - Nadeem Ahmed
- grid.11173.350000 0001 0670 519XCentre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Rashid Bhatti
- Centre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan.
| | - Rabbia Pervaiz
- grid.11173.350000 0001 0670 519XCentre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Kausar Malik
- grid.11173.350000 0001 0670 519XCentre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Saad Tahir
- grid.11173.350000 0001 0670 519XCentre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Rabia Abbas
- grid.11173.350000 0001 0670 519XCentre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Fareeha Ashraf
- grid.11173.350000 0001 0670 519XCentre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
5
|
Gupta P, Andankar I, Gunasekaran B, Easwaran N, Kodiveri Muthukaliannan G. Genetically modified potato and rice based edible vaccines – An overview. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Can Virus-like Particles Be Used as Synergistic Agent in Pest Management? Viruses 2022; 14:v14050943. [PMID: 35632685 PMCID: PMC9144638 DOI: 10.3390/v14050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Among novel strategies proposed in pest management, synergistic agents are used to improve insecticide efficacy through an elevation of intracellular calcium concentration that activates the calcium-dependent intracellular pathway. This leads to a changed target site conformation and to increased sensitivity to insecticides while reducing their concentrations. Because virus-like particles (VLPs) increase the intracellular calcium concentration, they can be used as a synergistic agent to synergize the effect of insecticides. VLPs are self-assembled viral protein complexes, and by contrast to entomopathogen viruses, they are devoid of genetic material, which makes them non-infectious and safer than viruses. Although VLPs are well-known to be used in human health, we propose in this study the development of a promising strategy based on the use of VLPs as synergistic agents in pest management. This will lead to increased insecticides efficacy while reducing their concentrations.
Collapse
|
7
|
Sánchez-López EF, Corigliano MG, Oliferuk S, Ramos-Duarte VA, Rivera M, Mendoza-Morales LF, Angel SO, Sander VA, Clemente M. Oral Immunization With a Plant HSP90-SAG1 Fusion Protein Produced in Tobacco Elicits Strong Immune Responses and Reduces Cyst Number and Clinical Signs of Toxoplasmosis in Mice. FRONTIERS IN PLANT SCIENCE 2021; 12:726910. [PMID: 34675949 PMCID: PMC8525317 DOI: 10.3389/fpls.2021.726910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 05/17/2023]
Abstract
Plant 90kDa heat shock protein (HSP90) is a potent adjuvant that increases both humoral and cellular immune responses to diverse proteins and peptides. In this study, we explored whether Arabidopsis thaliana HSP90 (AtHsp81.2) can improve the immune effects of a Toxoplasma gondii surface antigen 1 (SAG1). We designed two constructs containing the sequence of mature antigen (SAG1m), from aa77 to aa322, and B- and T-cell antigenic epitope-containing SAG1HC, from aa221 to aa319 fused to AtHsp81.2 sequence. When comparing the transient expression in Nicotiana tabacum X-27-8 leaves, which overexpress the suppressor helper component protease HC-Pro-tobacco etch virus (TEV), to that in N. benthamiana leaves, co-agroinfiltrated with the suppressor p19, optimal conditions included 6-week-old N. benthamiana plants, 7-day time to harvest, Agrobacterium tumefaciens cultures with an OD600nm of 0.6 for binary vectors and LED lights. While AtHsp81.2-SAG1m fusion protein was undetectable by Western blot in any of the evaluated conditions, AtHsp81.2-SAG1HC was expressed as intact fusion protein, yielding up to 90μg/g of fresh weight. Besides, the AtHsp81.2-SAG1HC mRNA was strongly expressed compared to the endogenous Nicotiana tabacum elongation factor-alpha (NtEFα) gene, whereas the AtHsp81.2-SAG1m mRNA was almost undetectable. Finally, mice were orally immunized with AtHsp81.2-SAG1HC-infiltrated fresh leaves (plAtHsp81.2-SAG1HC group), recombinant AtHsp81.2-SAG1HC purified from infiltrated leaves (rAtHsp81.2-SAG1HC group), non-infiltrated fresh leaves (control group), or phosphate-buffered saline (PBS group). Serum samples from plAtHsp81.2-SAG1HC-immunized mice had significantly higher levels of IgGt, IgG2a, and IgG2b anti-SAG1HC antibodies than serum from rAtHsp81.2-SAG1HC, control, and PBS groups. The number of cysts per brain in the plAtHsp81.2-SAG1HC-immunized mice was significantly reduced, and the parasite load in brain tissue was also lower in this group compared with the remaining groups. In an immunoblot assay, plant-expressed AtHsp81.2-SAG1HC was shown to react with antibodies present in sera from T. gondii-infected people. Therefore, the plant expression of a T. gondii antigen fused to the non-pathogenic adjuvant and carrier plant HSP90 as formulations against T. gondii can improve the vaccine efficacy, and plant extract can be directly used for vaccination without the need to purify the protein, making this platform a suitable and powerful biotechnological system for immunogenic antigen expression against toxoplasmosis.
Collapse
Affiliation(s)
- Edwin F. Sánchez-López
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Mariana G. Corigliano
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Sonia Oliferuk
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Victor A. Ramos-Duarte
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Maximiliano Rivera
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Luisa F. Mendoza-Morales
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Sergio O. Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Valeria A. Sander
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Marina Clemente
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| |
Collapse
|
8
|
Challenges and Prospects of Plant-Derived Oral Vaccines against Hepatitis B and C Viruses. PLANTS 2021; 10:plants10102037. [PMID: 34685844 PMCID: PMC8537828 DOI: 10.3390/plants10102037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Hepatitis B and C viruses chronically affect approximately 3.5% of the global population, causing more than 800,000 deaths yearly due to severe liver pathogenesis. Current HBV vaccines have significantly contributed to the reduction of chronic HBV infections, supporting the notion that virus eradication is a feasible public health objective in the near future. In contrast to HBV, a prophylactic vaccine against HCV infection is not available yet; however, intense research efforts within the last decade have significantly advanced the field and several vaccine candidates are shortlisted for clinical trials. A successful vaccine against an infectious disease of global importance must not only be efficient and safe, but also easy to produce, distribute, administer, and economically affordable to ensure appropriate coverage. Some of these requirements could be fulfilled by oral vaccines that could complement traditional immunization strategies. In this review, we discuss the potential of edible plant-based oral vaccines in assisting the worldwide fight against hepatitis B and C infections. We highlight the latest research efforts to reveal the potential of oral vaccines, discuss novel antigen designs and delivery strategies, as well as the limitations and controversies of oral administration that remain to be addressed to make this approach successful.
Collapse
|
9
|
Producing Vaccines against Enveloped Viruses in Plants: Making the Impossible, Difficult. Vaccines (Basel) 2021; 9:vaccines9070780. [PMID: 34358196 PMCID: PMC8310165 DOI: 10.3390/vaccines9070780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
The past 30 years have seen the growth of plant molecular farming as an approach to the production of recombinant proteins for pharmaceutical and biotechnological uses. Much of this effort has focused on producing vaccine candidates against viral diseases, including those caused by enveloped viruses. These represent a particular challenge given the difficulties associated with expressing and purifying membrane-bound proteins and achieving correct assembly. Despite this, there have been notable successes both from a biochemical and a clinical perspective, with a number of clinical trials showing great promise. This review will explore the history and current status of plant-produced vaccine candidates against enveloped viruses to date, with a particular focus on virus-like particles (VLPs), which mimic authentic virus structures but do not contain infectious genetic material.
Collapse
|
10
|
Rahimian N, Miraei HR, Amiri A, Ebrahimi MS, Nahand JS, Tarrahimofrad H, Hamblin MR, Khan H, Mirzaei H. Plant-based vaccines and cancer therapy: Where are we now and where are we going? Pharmacol Res 2021; 169:105655. [PMID: 34004270 DOI: 10.1016/j.phrs.2021.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Therapeutic vaccines are an effective approach in cancer therapy for treating the disease at later stages. The Food and Drug Administration (FDA) recently approved the first therapeutic cancer vaccine, and further studies are ongoing in clinical trials. These are expected to result in the future development of vaccines with relatively improved efficacy. Several vaccination approaches are being studied in pre-clinical and clinical trials, including the generation of anti-cancer vaccines by plant expression systems.This approach has advantages, such as high safety and low costs, especially for the synthesis of recombinant proteins. Nevertheless, the development of anti-cancer vaccines in plants is faced with some technical obstacles.Herein, we summarize some vaccines that have been used in cancer therapy, with an emphasis on plant-based vaccines.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hamid Reza Miraei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashahd, Iran
| | | | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 20282028, South Africa
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Teh AYH, Cavacini L, Hu Y, Kumru OS, Xiong J, Bolick DT, Joshi SB, Grünwald-Gruber C, Altmann F, Klempner M, Guerrant RL, Volkin DB, Wang Y, Ma JKC. Investigation of a monoclonal antibody against enterotoxigenic Escherichia coli, expressed as secretory IgA1 and IgA2 in plants. Gut Microbes 2021; 13:1-14. [PMID: 33439092 PMCID: PMC7833773 DOI: 10.1080/19490976.2020.1859813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 02/04/2023] Open
Abstract
Passive immunization with antibodies is a promising approach against enterotoxigenic Escherichia coli diarrhea, a prevalent disease in LMICs. The objective of this study was to investigate expression of a monoclonal anti-ETEC CfaE secretory IgA antibody in N. benthamiana plants, with a view to facilitating access to ETEC passive immunotherapy. SIgA1 and SIgA2 forms of mAb 68-81 were produced by co-expressing the light and engineered heavy chains with J chain and secretory component in N. benthamiana. Antibody expression and assembly were compared with CHO-derived antibodies by SDS-PAGE, western blotting, size-exclusion chromatography and LC-MS peptide mapping. N-linked glycosylation was assessed by rapid fluorescence/mass spectrometry and LC-ESI-MS. Susceptibility to gastric digestion was assessed in an in vitro model. Antibody function was compared for antigen binding, a Caco-2 cell-based ETEC adhesion assay, an ETEC hemagglutination inhibition assay and a murine in vivo challenge study. SIgA1 assembly appeared superior to SIgA2 in plants. Both sub-classes exhibited resistance to degradation by simulated gastric fluid, comparable to CHO-produced 68-61 SIgA1. The plant expressed SIgAs had more homogeneous N-glycosylation than CHO-derived SIgAs, but no alteration of in vitro functional activity was observed, including antibodies expressed in a plant line engineered for mammalian-like N glycosylation. The plant-derived SIgA2 mAb demonstrated protection against diarrhea in a murine infection model. Although antibody yield and purification need to be optimized, anti-ETEC SIgA antibodies produced in a low-cost plant platform are functionally equivalent to CHO antibodies, and provide promise for passive immunotherapy in LMICs.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/genetics
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/metabolism
- Antibodies, Bacterial/therapeutic use
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibody Affinity
- Bacterial Adhesion/drug effects
- Caco-2 Cells
- Enterotoxigenic Escherichia coli/immunology
- Escherichia coli Infections/microbiology
- Escherichia coli Infections/therapy
- Gastric Acid/metabolism
- Glycosylation
- Humans
- Immunoglobulin A, Secretory/genetics
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin A, Secretory/metabolism
- Immunoglobulin A, Secretory/therapeutic use
- Immunotherapy
- Mice
- Plants, Genetically Modified
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Audrey Y-H Teh
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George’s University of London, London, UK
| | - Lisa Cavacini
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, USA
| | - Yue Hu
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ozan S. Kumru
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Jian Xiong
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - David T. Bolick
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sangeeta B. Joshi
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Clemens Grünwald-Gruber
- Department for Chemistry, Division of Biochemistry, Universität Für Bodenkultur Wien, Vienna, Austria
| | - Friedrich Altmann
- Department for Chemistry, Division of Biochemistry, Universität Für Bodenkultur Wien, Vienna, Austria
| | - Mark Klempner
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, USA
| | - Richard L. Guerrant
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David B. Volkin
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Yang Wang
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, USA
| | - Julian K-C. Ma
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George’s University of London, London, UK
| |
Collapse
|
12
|
Ghag SB, Adki VS, Ganapathi TR, Bapat VA. Plant Platforms for Efficient Heterologous Protein Production. BIOTECHNOL BIOPROC E 2021; 26:546-567. [PMID: 34393545 PMCID: PMC8346785 DOI: 10.1007/s12257-020-0374-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Production of recombinant proteins is primarily established in cultures of mammalian, insect and bacterial cells. Concurrently, concept of using plants to produce high-value pharmaceuticals such as vaccines, antibodies, and dietary proteins have received worldwide attention. Newer technologies for plant transformation such as plastid engineering, agroinfiltration, magnifection, and deconstructed viral vectors have been used to enhance the protein production in plants along with the inherent advantage of speed, scale, and cost of production in plant systems. Production of therapeutic proteins in plants has now a more pragmatic approach when several plant-produced vaccines and antibodies successfully completed Phase I clinical trials in humans and were further scheduled for regulatory approvals to manufacture clinical grade products on a large scale which are safe, efficacious, and meet the quality standards. The main thrust of this review is to summarize the data accumulated over the last two decades and recent development and achievements of the plant derived therapeutics. It also attempts to discuss different strategies employed to increase the production so as to make plants more competitive with the established production systems in this industry.
Collapse
Affiliation(s)
- Siddhesh B. Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz, Mumbai, 400098 India
| | - Vinayak S. Adki
- V. G. Shivdare College of Arts, Commerce and Science, Solapur, Maharashtra 413004 India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Vishwas A. Bapat
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
13
|
Kim TG, Lan TT, Lee JY. Immunogenicity of Fusion Protein of Cholera Toxin B Subunit-Porphyromonas gingivalis 53-kDa Minor Fimbrial Protein Produced in Nicotiana benthamiana. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Shahriari AG, Bagheri A, Afsharifar A, Habibi-Pirkoohi M. Induction of Immune Response in Animal Model Using Recombinant Anti-NDV Vaccine. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e2215. [PMID: 31457048 PMCID: PMC6697852 DOI: 10.21859/ijb.2215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Newcastle disease is a major avian disease that causes enormous economic loss in poultry industry. There have been a number of reports on the suitability of plant-based recombinant vaccine against this disease. Fusion (F) and hemagglutinin-neuraminidase (HN) epitopes of the Newcastle disease virus (NDV) represent the major immunogenic sites for development of recombinant anti-ND vaccines in plant hosts. Objectives The main objective of this research was to evaluate the ability of a recombinant anti-ND vaccine in induction of immune responses in animal model. Materials and Methods In this study, immunogenicity of recombinant fusion (F) and hemagglutinin-neuraminidase (HN) epitopes of the Newcastle disease virus (NDV) is investigated in an animal model. The corresponding genes encoding amino acids 65-81 of the F protein and 346-353 amino acids of HN were expressed in tobacco seedling using agrobacterium-mediated transformation. Expression of the foreign gene in the tobacco seedlings was investigated by a number of molecular assays including Real-Time PCR and ELISA. Transgenic plant extract was used to induce immunogenic response in animal model. Results Integration of the foreign gene in plant host genome was confirmed by polymerase chain reaction (PCR). Expression of the foreign recombinant protein was confirmed by Real-Time PCR and ELISA assays. Immunogenicity of the recombinant protein was investigated in rabbit by subcutaneous injection. Results indicated that the transgenic plant extract can induce immune responses in the host as confirmed by presence of specific antibodies in the sera in ELISA assay. Western blot assays showed that the foreign gene was actually expressed in transgenic seedlings. Conclusions The results obtained in this research provide further evidence on applicability of plant-based recombinant vaccines for protection of poultry against Newcastle disease.
Collapse
Affiliation(s)
- Amir Ghaffar Shahriari
- Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid, Iran
| | - Abdolreza Bagheri
- Department of Crop Biotechnology and Breeding, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Afsharifar
- Plant Virology Research Centre, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Maziar Habibi-Pirkoohi
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Iran
| |
Collapse
|
15
|
Huang LH, Lin HY, Lyu YT, Gung CL, Huang CT. Development of a Transgenic Flammulina velutipes Oral Vaccine for Hepatitis B. Food Technol Biotechnol 2019; 57:105-112. [PMID: 31316282 PMCID: PMC6600300 DOI: 10.17113/ftb.57.01.19.5865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Orally administered fungal vaccines show promise for the prevention of infectious diseases. Edible mushrooms are deemed appropriate hosts to produce oral vaccines due to their low production cost and low risk of gene contamination. However, their low expression level of antigens has limited the potential development of oral vaccines using mushrooms. The low expression level might result from impurity of the transgenic mycelia since dikaryotic mycelia are commonly used as transformation materials. In this study, stable transgenic hepatitis B virus surface antigen (HBsAg) in Flammulina velutipes transformants was obtained by Agrobacterium-mediated transformation, followed by fruiting and basidiospore mating. The formation of HBsAg was detected by western blot analysis. The expression levels of HBsAg in transgenic F. velutipes fruiting bodies were (129.3±15.1), (110.9±1.7) and (161.1±8.5) ng/g total soluble protein. However, the values may be underestimated due to incomplete protein extraction. Two of the four pigs in the experimental group produced positive anti-HBsAg-specific IgG after being fed the HBsAg transgenic F. velutipes fruiting bodies for 20 weeks, while no anti-HBsAg antibody was detected in the control group. One of the positive pigs had HBsAg titres of 5.36 and 14.9 mIU/mL in weeks 10 and 14, respectively, but expression faded thereafter. The other positive pig displayed HBsAg titres of 9.75, 17.86 and 39.87 mIU/mL in weeks 14, 18 and 20, respectively. The successful immunogenicity in pigs fed transgenic F. velutipes fruiting bodies demonstrated the potential of using the fungus as an oral vaccine.
Collapse
Affiliation(s)
- Li-Hsin Huang
- MycoMagic Biotechnology Co. Ltd., 8F-1, 12, Lane 270, Sec. 3, Beishen Road, New Taipei City, Taiwan
| | - Hao-Yeh Lin
- Department of Biochemical Science and Technology, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Ying-Tzu Lyu
- MycoMagic Biotechnology Co. Ltd., 8F-1, 12, Lane 270, Sec. 3, Beishen Road, New Taipei City, Taiwan
| | - Chiau-Ling Gung
- MycoMagic Biotechnology Co. Ltd., 8F-1, 12, Lane 270, Sec. 3, Beishen Road, New Taipei City, Taiwan
| | - Ching-Tsan Huang
- Department of Biochemical Science and Technology, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
16
|
Pniewski T, Milczarek M, Wojas-Turek J, Pajtasz-Piasecka E, Wietrzyk J, Czyż M. Plant lyophilisate carrying S-HBsAg as an oral booster vaccine against HBV. Vaccine 2018; 36:6070-6076. [DOI: 10.1016/j.vaccine.2018.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/12/2018] [Accepted: 09/01/2018] [Indexed: 12/25/2022]
|
17
|
Lee MF, Chiang CH, Li YL, Wang NM, Song PP, Lin SJ, Chen YH. Oral edible plant vaccine containing hypoallergen of American cockroach major allergen Per a 2 prevents roach-allergic asthma in a murine model. PLoS One 2018; 13:e0201281. [PMID: 30059516 PMCID: PMC6066233 DOI: 10.1371/journal.pone.0201281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022] Open
Abstract
Background American cockroaches (Periplaneta americana) are an important indoor allergen source and a major risk factor for exacerbations and poor control of asthma. We previously reported that allergen components from American cockroaches exhibit varying levels of pathogenicity. Sensitization to major American cockroach allergen, Per a 2, correlated with more severe clinical phenotypes among patients with allergic airway diseases. Materials and methods In this study, we examined whether oral plant vaccine-encoding full-length Per a 2 clone-996 or its hypoallergenic clone-372 could exert a prophylactic role in Per a 2-sensitized mice. The cDNAs coding Per a 2–996 and Per a 2–372 were inserted into TuMV vector and expressed in Chinese cabbage. Adult female BALB/c mice were fed with the cabbage extracts for 21 days and subsequently underwent two-step sensitization with recombinant Per a 2. Results Per a 2-specific IgE measured by in-house ELISA in the sera of Per a 2-372-treated groups were significantly lower than in the control groups after allergen challenge but not the Per a 2-996-treated group. Moreover, Per a 2–372 vaccine markedly decreased airway hyper-responsiveness and infiltration of inflammatory cells into the lungs, as well as reduced mRNA expression of IL-4 and IL-13 in comparison with the control mice. Conclusion Our data suggest that oral administration of edible plant vaccine encoding Per a 2 hypo-allergen may be used as a prophylactic strategy against the development of cockroach allergy.
Collapse
Affiliation(s)
- Mey-Fann Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chu-Hui Chiang
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ying-Lan Li
- Institute of Biotechnology, National Changhua University of Education, Changhua, Taiwan
| | - Nancy M. Wang
- Institute of Biotechnology, National Changhua University of Education, Changhua, Taiwan
| | - Pei-Pong Song
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shyh-Jye Lin
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsing Chen
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Clarke JL, Paruch L, Dobrica M, Caras I, Tucureanu C, Onu A, Ciulean S, Stavaru C, Eerde A, Wang Y, Steen H, Haugslien S, Petrareanu C, Lazar C, Popescu C, Bock R, Dubuisson J, Branza‐Nichita N. Lettuce-produced hepatitis C virus E1E2 heterodimer triggers immune responses in mice and antibody production after oral vaccination. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1611-1621. [PMID: 28419665 PMCID: PMC5698045 DOI: 10.1111/pbi.12743] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 05/18/2023]
Abstract
The hepatitis C virus (HCV) is a major etiologic agent for severe liver diseases (e.g. cirrhosis, fibrosis and hepatocellular carcinoma). Approximately 140 million people have chronic HCV infections and about 500 000 die yearly from HCV-related liver pathologies. To date, there is no licensed vaccine available to prevent HCV infection and production of a HCV vaccine remains a major challenge. Here, we report the successful production of the HCV E1E2 heterodimer, an important vaccine candidate, in an edible crop (lettuce, Lactuca sativa) using Agrobacterium-mediated transient expression technology. The wild-type dimer (E1E2) and a variant without an N-glycosylation site in the E2 polypeptide (E1E2∆N6) were expressed, and appropriate N-glycosylation pattern and functionality of the E1E2 dimers were demonstrated. The humoral immune response induced by the HCV proteins was investigated in mice following oral administration of lettuce antigens with or without previous intramuscular prime with the mammalian HEK293T cell-expressed HCV dimer. Immunization by oral feeding only resulted in development of weak serum levels of anti-HCV IgM for both antigens; however, the E1E2∆N6 proteins produced higher amounts of secretory IgA, suggesting improved immunogenic properties of the N-glycosylation mutant. The mice group receiving the intramuscular injection followed by two oral boosts with the lettuce E1E2 dimer developed a systemic but also a mucosal immune response, as demonstrated by the presence of anti-HCV secretory IgA in faeces extracts. In summary, our study demonstrates the feasibility of producing complex viral antigens in lettuce, using plant transient expression technology, with great potential for future low-cost oral vaccine development.
Collapse
Affiliation(s)
| | - Lisa Paruch
- NIBIO‐Norwegian Institute of Bioeconomy ResearchÅsNorway
| | | | - Iuliana Caras
- “Cantacuzino” National Research InstituteBucharestRomania
| | | | - Adrian Onu
- “Cantacuzino” National Research InstituteBucharestRomania
| | - Sonya Ciulean
- “Cantacuzino” National Research InstituteBucharestRomania
| | - Crina Stavaru
- “Cantacuzino” National Research InstituteBucharestRomania
| | - Andre Eerde
- NIBIO‐Norwegian Institute of Bioeconomy ResearchÅsNorway
| | - Yanliang Wang
- NIBIO‐Norwegian Institute of Bioeconomy ResearchÅsNorway
| | - Hege Steen
- NIBIO‐Norwegian Institute of Bioeconomy ResearchÅsNorway
| | | | | | - Catalin Lazar
- Institute of Biochemistry of the Romanian AcademyBucharestRomania
| | | | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Jean Dubuisson
- Center for Infection & Immunity of Lille (CIIL)Inserm U1019CNRS UMR8204Université de LilleInstitut Pasteur de LilleLilleFrance
| | | |
Collapse
|
19
|
Feng H, Li X, Song W, Duan M, Chen H, Wang T, Dong J. Oral Administration of a Seed-based Bivalent Rotavirus Vaccine Containing VP6 and NSP4 Induces Specific Immune Responses in Mice. FRONTIERS IN PLANT SCIENCE 2017; 8:910. [PMID: 28620404 PMCID: PMC5449476 DOI: 10.3389/fpls.2017.00910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Rotavirus is the leading cause of severe diarrheal disease among newborns. Plant-based rotavirus vaccines have been developed in recent years and have been proven to be effective in animal models. In the present study, we report a bivalent vaccine candidate expressing rotavirus subunits VP6 and NSP4 fused with the adjuvant subunit B of E. coli heat-labile enterotoxin (LTB) in maize seeds. The RT-PCR and Western blot results showed that VP6 and LTB-NSP4 antigens were expressed and accumulated in maize seeds. The expression levels were as high as 0.35 and 0.20% of the total soluble protein for VP6 and LTB-NSP4, respectively. Oral administration of transgenic maize seeds successfully stimulated systemic and mucosal responses, with high titers of serum IgG and mucosal IgA antibodies, even after long-term storage. This study is the first to use maize seeds as efficient generators for the development of a bivalent vaccine against rotavirus.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural UniversityBeijing, China
| | - Mei Duan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
20
|
Shamriz S, Ofoghi H. Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production. Biotechnol Genet Eng Rev 2017; 32:92-106. [PMID: 28359189 DOI: 10.1080/02648725.2017.1307673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microalgae, also called microphytes, are a vast group of microscopic photosynthetic organisms living in aquatic ecosystems. Microalgae have attracted the attention of biotechnology industry as a platform for extracting natural products with high commercial value. During last decades, microalgae have been also used as cost-effective and easily scalable platform for the production of recombinant proteins with medical and industrial applications. Most progress in this field has been made with Chlamydomonas reinhardtii as a model organism mainly because of its simple life cycle, well-established genetics and ease of cultivation. However, due to the scarcity of existing infrastructure for commercial production and processing together with relatively low product yields, no recombinant products from C. reinhardtii have gained approval for commercial production and most of them are still in research and development. In this review, we focus on the chloroplast of C. reinhardtii as an algal recombinant expression platform and compare its advantages and disadvantages to other currently used expression systems. We then discuss the strategies for engineering the chloroplast of C. reinhardtii to produce recombinant cells and present a comprehensive overview of works that have used this platform for the expression of high-value products.
Collapse
Affiliation(s)
- Shabnam Shamriz
- a Department of Biotechnology , Iranian Research Organization for Science and Technology , Tehran , Iran
| | - Hamideh Ofoghi
- a Department of Biotechnology , Iranian Research Organization for Science and Technology , Tehran , Iran
| |
Collapse
|
21
|
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this chapter, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitoring, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
22
|
Chan HT, Xiao Y, Weldon WC, Oberste SM, Chumakov K, Daniell H. Cold chain and virus-free chloroplast-made booster vaccine to confer immunity against different poliovirus serotypes. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2190-2200. [PMID: 27155248 PMCID: PMC5056803 DOI: 10.1111/pbi.12575] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 05/07/2023]
Abstract
The WHO recommends complete withdrawal of oral polio vaccine (OPV) type 2 by April 2016 globally and replacing with at least one dose of inactivated poliovirus vaccine (IPV). However, high-cost, limited supply of IPV, persistent circulating vaccine-derived polioviruses transmission and need for subsequent boosters remain unresolved. To meet this critical need, a novel strategy of a low-cost cold chain-free plant-made viral protein 1 (VP1) subunit oral booster vaccine after single IPV dose is reported. Codon optimization of the VP1 gene enhanced expression by 50-fold in chloroplasts. Oral boosting of VP1 expressed in plant cells with plant-derived adjuvants after single priming with IPV significantly increased VP1-IgG1 and VP1-IgA titres when compared to lower IgG1 or negligible IgA titres with IPV injections. IgA plays a pivotal role in polio eradication because of its transmission through contaminated water or sewer systems. Neutralizing antibody titres (~3.17-10.17 log2 titre) and seropositivity (70-90%) against all three poliovirus Sabin serotypes were observed with two doses of IPV and plant-cell oral boosters but single dose of IPV resulted in poor neutralization. Lyophilized plant cells expressing VP1 stored at ambient temperature maintained efficacy and preserved antigen folding/assembly indefinitely, thereby eliminating cold chain currently required for all vaccines. Replacement of OPV with this booster vaccine and the next steps in clinical translation of FDA-approved antigens and adjuvants are discussed.
Collapse
Affiliation(s)
- Hui-Ting Chan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuhong Xiao
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Konstantin Chumakov
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Joung YH, Park SH, Moon KB, Jeon JH, Cho HS, Kim HS. The Last Ten Years of Advancements in Plant-Derived Recombinant Vaccines against Hepatitis B. Int J Mol Sci 2016; 17:E1715. [PMID: 27754367 PMCID: PMC5085746 DOI: 10.3390/ijms17101715] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Disease prevention through vaccination is considered to be the greatest contribution to public health over the past century. Every year more than 100 million children are vaccinated with the standard World Health Organization (WHO)-recommended vaccines including hepatitis B (HepB). HepB is the most serious type of liver infection caused by the hepatitis B virus (HBV), however, it can be prevented by currently available recombinant vaccine, which has an excellent record of safety and effectiveness. To date, recombinant vaccines are produced in many systems of bacteria, yeast, insect, and mammalian and plant cells. Among these platforms, the use of plant cells has received considerable attention in terms of intrinsic safety, scalability, and appropriate modification of target proteins. Research groups worldwide have attempted to develop more efficacious plant-derived vaccines for over 30 diseases, most frequently HepB and influenza. More inspiring, approximately 12 plant-made antigens have already been tested in clinical trials, with successful outcomes. In this study, the latest information from the last 10 years on plant-derived antigens, especially hepatitis B surface antigen, approaches are reviewed and breakthroughs regarding the weak points are also discussed.
Collapse
Affiliation(s)
- Young Hee Joung
- School of Biological Sciences & Technology, Chonnam National University, Gwangju 61186, Korea.
| | - Se Hee Park
- School of Biological Sciences & Technology, Chonnam National University, Gwangju 61186, Korea.
| | - Ki-Beom Moon
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Jae-Heung Jeon
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Hye-Sun Cho
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Hyun-Soon Kim
- Molecular Biofarming Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea.
| |
Collapse
|
24
|
Saveleva NV, Burlakovskiy MS, Yemelyanov VV, Lutova LA. Transgenic plants as bioreactors to produce substances for medical and veterinary uses. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079059716060071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Arabidopsis thaliana plants expressing Rift Valley fever virus antigens: Mice exhibit systemic immune responses as the result of oral administration of the transgenic plants. Protein Expr Purif 2016; 127:61-67. [PMID: 27402440 DOI: 10.1016/j.pep.2016.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 11/17/2022]
Abstract
The zoonotic Rift Valley fever virus affects livestock and humans in Africa and on the Arabian Peninsula. The economic impact of this pathogen due to livestock losses, as well as its relevance to public health, underscores the importance of developing effective and easily distributed vaccines. Vaccines that can be delivered orally are of particular interest. Here, we report the expression in transformed plants (Arabidopsis thaliana) of Rift Valley fever virus antigens. The antigens used in this study were the N protein and a deletion mutant of the Gn glycoprotein. Transformed lines were analysed for specific mRNA and protein content by RT-PCR and Western blotting, respectively. Furthermore, the plant-expressed antigens were evaluated for their immunogenicity in mice fed the transgenic plants. After oral intake of fresh transgenic plant material, a proportion of the mice elicited specific IgG antibody responses, as compared to the control animals that were fed wild-type plants and of which none sero-converted. Thus, we show that transgenic plants can be readily used to express and produce Rift Valley Fever virus proteins, and that the plants are immunogenic when given orally to mice. These are promising findings and provide a basis for further studies on edible plant vaccines against the Rift Valley fever virus.
Collapse
|
26
|
He Y, Schmidt MA, Erwin C, Guo J, Sun R, Pendarvis K, Warner BW, Herman EM. Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF). PLoS One 2016; 11:e0157034. [PMID: 27314851 PMCID: PMC4912142 DOI: 10.1371/journal.pone.0157034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother's breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N' terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform.
Collapse
Affiliation(s)
- Yonghua He
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Monica A. Schmidt
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Christopher Erwin
- St. Louis Children's Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jun Guo
- St. Louis Children's Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Raphael Sun
- St. Louis Children's Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ken Pendarvis
- School of Animal & Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Brad W. Warner
- St. Louis Children's Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eliot M. Herman
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
27
|
Scallan CD, Lindbloom JD, Tucker SN. Oral Modeling of an Adenovirus-Based Quadrivalent Influenza Vaccine in Ferrets and Mice. Infect Dis Ther 2016; 5:165-83. [PMID: 27071663 PMCID: PMC4929087 DOI: 10.1007/s40121-016-0108-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 12/13/2022] Open
Abstract
Introduction Oral vaccines delivered as tablets offer a number of advantages over traditional parenteral-based vaccines including the ease of delivery, lack of needles, no need for trained medical personnel, and the ability to formulate into temperature-stable tablets. We have been evaluating an oral vaccine platform based on recombinant adenoviral vectors for the purpose of creating a prophylactic vaccine to prevent influenza, and have demonstrated vaccine efficacy in animal models and substantial immunogenicity in humans. These studies have evaluated monovalent vaccines to date. To protect against the major circulating A and B influenza strains, a multivalent influenza vaccine will be required. Methods In this study, the immunogenicity of orally delivered monovalent, bivalent, trivalent, and quadrivalent vaccines was tested in ferrets and mice. The various vaccine combinations were tested by blending monovalent recombinant adenovirus vaccines, each expressing hemagglutinin from a single strain. Human tablet delivery was modeled in animals by oral gavage in mice and by endoscopic delivery in ferrets. Results We demonstrated minimal interference between the various vaccine vectors when used in combination and that the oral quadrivalent vaccine compared favorably to an approved trivalent inactivated vaccine. Conclusion The quadrivalent vaccine presented here produced immune responses that we predict should be capable of providing protection against multiple influenza strains, and the platform should have applications to other multivalent vaccines. Funding Vaxart, Inc.
Collapse
|
28
|
Plants as Factories for Human Pharmaceuticals: Applications and Challenges. Int J Mol Sci 2015; 16:28549-65. [PMID: 26633378 PMCID: PMC4691069 DOI: 10.3390/ijms161226122] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023] Open
Abstract
Plant molecular farming (PMF), defined as the practice of using plants to produce human therapeutic proteins, has received worldwide interest. PMF has grown and advanced considerably over the past two decades. A number of therapeutic proteins have been produced in plants, some of which have been through pre-clinical or clinical trials and are close to commercialization. Plants have the potential to mass-produce pharmaceutical products with less cost than traditional methods. Tobacco-derived antibodies have been tested and used to combat the Ebola outbreak in Africa. Genetically engineered immunoadhesin (DPP4-Fc) produced in green plants has been shown to be able to bind to MERS-CoV (Middle East Respiratory Syndrome), preventing the virus from infecting lung cells. Biosafety concerns (such as pollen contamination and immunogenicity of plant-specific glycans) and costly downstream extraction and purification requirements, however, have hampered PMF production from moving from the laboratory to industrial application. In this review, the challenges and opportunities of PMF are discussed. Topics addressed include; transformation and expression systems, plant bioreactors, safety concerns, and various opportunities to produce topical applications and health supplements.
Collapse
|
29
|
Shah S, Hayden CA, Fischer ME, Rao AG, Howard JA. Biochemical and biophysical characterization of maize-derived HBsAg for the development of an oral vaccine. Arch Biochem Biophys 2015; 588:41-9. [PMID: 26519888 DOI: 10.1016/j.abb.2015.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/18/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023]
Abstract
Although a vaccine against hepatitis B virus (HBV) has been available since 1982, it is estimated that 600,000 people die every year due to HBV. An affordable oral vaccine could help alleviate the disease burden and to this end the hepatitis B surface antigen (HBsAg) was expressed in maize. Orally delivered maize material induced the strongest immune response in mice when lipid was extracted by CO2 supercritical fluid extraction (SFE), compared to full fat and hexane-extracted material. The present study provides a biochemical and biophysical basis for these immunological differences by comparing the active ingredient in the differently treated maize material. Purified maize-derived HBsAg underwent biophysical characterization by gel filtration, transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-CD, and fluorescence. Gel filtration showed that HBsAg forms higher-order oligomers and TEM demonstrated virus-like particle (VLP) formation. The VLPs obtained from SFE were more regular in shape and size compared to hexane or full fat material. In addition, SFE-derived HBsAg showed the greatest extent of α-helical structure by far UV-CD spectrum. Fluorescence experiments also revealed differences in protein conformation. This work establishes SFE-treated maize material as a viable oral vaccine candidate and advances the development of the first oral subunit vaccine.
Collapse
Affiliation(s)
- Shweta Shah
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Celine A Hayden
- Applied Biotechnology Institute, Cal Poly Tech Park, San Luis Obispo, CA 93407, USA
| | - Maria E Fischer
- Applied Biotechnology Institute, Cal Poly Tech Park, San Luis Obispo, CA 93407, USA
| | - A Gururaj Rao
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | - John A Howard
- Applied Biotechnology Institute, Cal Poly Tech Park, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
30
|
Study of the immunogenicity of hepatitis B surface antigen synthesized in transgenic potato plants with increased biosafety. J Biotechnol 2015; 203:84-8. [PMID: 25840367 DOI: 10.1016/j.jbiotec.2015.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 11/20/2022]
Abstract
Oral immunogenicity of the hepatitis B surface antigen (HBsAg) synthesized in the tubers of marker-free potato plants has been demonstrated. Experiments were performed in the two groups of outbred NMRI mice. At the beginning of investigations, the mice of experimental group were fed the tubers of transgenic potato synthesizing the HBsAg three times. The mice of control group were fed nontransgenic potato. Intraperitoneal injection of the commercial vaccine against hepatitis B (0.5μg/mouse) was made on day 71 of the experiment. Enzyme-linked immunoassay (ELISA) of the serum of immunized animals showed an increase in the level of HBsAg antibodies significantly above the protective value, which was maintained for 1 year after the immunization. In 1 year, the experimental group of mice underwent additional oral immunization with HBsAg-containing potato tubers. As a result, the level of antibodies against the HBsAg increased and remained at a high protective level for several months. The findings show the possibility of using transgenic plants as a substance for obtaining a safe edible vaccine against hepatitis B.
Collapse
|
31
|
Mucosal Vaccines from Plant Biotechnology. Mucosal Immunol 2015. [PMCID: PMC7158328 DOI: 10.1016/b978-0-12-415847-4.00065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of plants for production of recombinant proteins has evolved over the past 25 years. The first plant-based vaccines were expressed in stably transgenic plants, with the idea to conveniently deliver “edible vaccines” by ingestion of the antigen-containing plant material. These systems provided a proof of concept that oral delivery of vaccines in crude plant material could stimulate antigen-specific serum and mucosal antibodies. Transgenic grains like rice in particular provide a stable and robust vehicle for antigen delivery. However, some issues exist with stably transgenic plants, including relatively low expression levels and regulatory issues. Thus, many recent studies use transient expression with plant viral vectors to achieve rapid high expression in Nicotiana benthamiana, followed by purification of antigen and intranasal delivery for effective stimulation of mucosal immune responses.
Collapse
|
32
|
USING OF Agrobacterium-MEDIATED TRANSFORMATION FOR THE BIOTECHNOLOGICAL IMPROVEMENT OF COMPOSITAE PLANTS. BIOTECHNOLOGIA ACTA 2015. [DOI: 10.15407/biotech8.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
33
|
Abstract
Plant-made or "biofarmed" viral vaccines are some of the earliest products of the technology of plant molecular farming, and remain some of the brightest prospects for the success of this field. Proofs of principle and of efficacy exist for many candidate viral veterinary vaccines; the use of plant-made viral antigens and of monoclonal antibodies for therapy of animal and even human viral disease is also well established. This review explores some of the more prominent recent advances in the biofarming of viral vaccines and therapies, including the recent use of ZMapp for Ebolavirus infection, and explores some possible future applications of the technology.
Collapse
Affiliation(s)
- Edward P Rybicki
- Biopharming Research Unit, Department of Molecular & Cell Biology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa.
| |
Collapse
|
34
|
Oral vaccination of mice with Tremella fuciformis yeast-like conidium cells expressing HBsAg. Biotechnol Lett 2014; 37:539-44. [PMID: 25374008 DOI: 10.1007/s10529-014-1720-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
Abstract
Tremella fuciformis yeast-like conidium (YLC) cells were transformed by co-cultivation with Agrobacterium cells harboring the hepatitis B surface antigen (HBsAg) gene construct under the control of the CaMV35S promoter. Integration of HBsAg DNA into the YLC genome was confirmed by PCR and dot-blot hybridization. Immunoblotting verified expression of the recombinant protein. Oral administration of YLC cells expressing HBsAg in mice significantly increased anti-HBsAg antibody titer levels using a double prime-boost strategy that combined parenteral and oral HBsAg boosters.
Collapse
|
35
|
Czyż M, Dembczyński R, Marecik R, Wojas-Turek J, Milczarek M, Pajtasz-Piasecka E, Wietrzyk J, Pniewski T. Freeze-drying of plant tissue containing HBV surface antigen for the oral vaccine against hepatitis B. BIOMED RESEARCH INTERNATIONAL 2014; 2014:485689. [PMID: 25371900 PMCID: PMC4209752 DOI: 10.1155/2014/485689] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 11/17/2022]
Abstract
The aim of this study was to develop a freeze-drying protocol facilitating successful processing of plant material containing the small surface antigen of hepatitis B virus (S-HBsAg) while preserving its VLP structure and immunogenicity. Freeze-drying of the antigen in lettuce leaf tissue, without any isolation or purification step, was investigated. Each process step was consecutively evaluated and the best parameters were applied. Several drying profiles and excipients were tested. The profile of 20°C for 20 h for primary and 22°C for 2 h for secondary drying as well as sucrose expressed efficient stabilisation of S-HBsAg during freeze-drying. Freezing rate and postprocess residual moisture were also analysed as important factors affecting S-HBsAg preservation. The process was reproducible and provided a product with VLP content up to 200 µg/g DW. Assays for VLPs and total antigen together with animal immunisation trials confirmed preservation of antigenicity and immunogenicity of S-HBsAg in freeze-dried powder. Long-term stability tests revealed that the stored freeze-dried product was stable at 4°C for one year, but degraded at elevated temperatures. As a result, a basis for an efficient freeze-drying process has been established and a suitable semiproduct for oral plant-derived vaccine against HBV was obtained.
Collapse
Affiliation(s)
- Marcin Czyż
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | | | - Roman Marecik
- Poznań University of Life Sciences, Wojska Polskiego 28, 60-995 Poznań, Poland
| | - Justyna Wojas-Turek
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Magdalena Milczarek
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Elżbieta Pajtasz-Piasecka
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Joanna Wietrzyk
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Tomasz Pniewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| |
Collapse
|
36
|
Agrobacterium-mediated plant transformation: Factors, applications and recent advances. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Rosales-Mendoza S, Salazar-González JA. Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Rev Vaccines 2014; 13:737-49. [DOI: 10.1586/14760584.2014.913483] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Rosales-Mendoza S. Future directions for the development of Chlamydomonas-based vaccines. Expert Rev Vaccines 2014; 12:1011-9. [PMID: 24053395 DOI: 10.1586/14760584.2013.825455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Besides serving as a valuable model in biological sciences, Chamydomonas reinhardtii has been used during the last decade in the biotechnology arena to establish models for the low cost production of vaccines. Antigens from various pathogens including Plasmodium falciparum, foot and mouth disease virus, Staphylococcus aureus, classical swine fever virus (CSFV) as well as some auto-antigens, have been produced in C. reinhardtii. Although some of them have been functionally characterized with promising results, this review identifies future directions for the advancement in the exploitation of this robust and safe vaccine production platform. The present analysis reflects that important immunological implications exist for this system and remain unexplored, including the possible adjuvant effects of algae biomolecules, the effect of bioencapsulation on immunogenicity and the possible development of whole-cell vaccines as an approach to trigger cytotoxic immune responses. Recently described molecular strategies that aim to optimize the expression of nuclear-encoded target antigens are also discussed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México +52 444 826 2440 +52 444 826 2440
| |
Collapse
|
39
|
Lindh I, Bråve A, Hallengärd D, Hadad R, Kalbina I, Strid Å, Andersson S. Oral delivery of plant-derived HIV-1 p24 antigen in low doses shows a superior priming effect in mice compared to high doses. Vaccine 2014; 32:2288-93. [PMID: 24631072 DOI: 10.1016/j.vaccine.2014.02.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 02/16/2014] [Accepted: 02/26/2014] [Indexed: 02/04/2023]
Abstract
During early infection with human immunodeficiency virus type 1 (HIV-1), there is a rapid depletion of CD4(+) T-cells in the gut-associated lymphoid tissue (GALT) in the gastrointestinal tract. Therefore, immediate protection at these surfaces is of high priority for the development of an HIV-1 vaccine. Thus, transgenic plants expressing HIV-1 antigens, which are exposed to immune competent cells in the GALT during oral administration, can be interesting as potential vaccine candidates. In the present study, we used two HIV-1 p24 antigen-expressing transgenic plant systems, Arabidopsis thaliana and Daucus carota, in oral immunization experiments. Both transgenic plant systems showed a priming effect in mice and induced humoral immune responses, which could be detected as anti-p24-specific IgG in sera after an intramuscular p24 protein boost. Dose-dependent antigen analyses using transgenic A. thaliana indicated that low p24 antigen doses were superior to high p24 antigen doses.
Collapse
Affiliation(s)
- Ingrid Lindh
- Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden; School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Andreas Bråve
- Swedish Institute for Communicable Disease Control (SMI), SE-17182 Stockholm, Sweden
| | - David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Ronza Hadad
- Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden; School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Irina Kalbina
- Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden; School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Åke Strid
- Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden; School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Sören Andersson
- Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden; Department of Laboratory Medicine, Örebro University Hospital, SE-70185 Örebro, Sweden.
| |
Collapse
|
40
|
Shchelkunov SN, Shchelkunova GA. Plant-based vaccines against human hepatitis B virus. Expert Rev Vaccines 2014; 9:947-55. [DOI: 10.1586/erv.10.67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Scotti N, Rybicki EP. Virus-like particles produced in plants as potential vaccines. Expert Rev Vaccines 2014; 12:211-24. [DOI: 10.1586/erv.12.147] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Abstract
Plants offer an attractive alternative for the production and delivery of subunit vaccines. Various antigens have been expressed at sufficiently high levels in plants to render vaccine development practical. An increasing body of evidence demonstrates that these plant-produced antigens can induce immunogenic responses and confer protection when delivered orally. Plant-based vaccines are relatively inexpensive to produce and production can be rapidly scaled up. There is also the potential for oral delivery of these vaccines, which can dramatically reduce distribution and delivery costs. Here we describe the technology to develop plant-based vaccines, review their advantages and discuss potential roadblocks and concerns over their commercialization. We also speculate on likely future developments with these vaccines and on their potential impact in the realms of human and animal health.
Collapse
|
43
|
Thanavala Y, Huang Z, Mason HS. Plant–derived vaccines: a look back at the highlights and a view to the challenges on the road ahead. Expert Rev Vaccines 2014; 5:249-60. [PMID: 16608424 DOI: 10.1586/14760584.5.2.249] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The sobering reality is that each year, 33 million children remain unvaccinated for vaccine-preventable diseases. Universal childhood vaccination would have profound effects on leveling the health inequities in many parts of the world. As an alternative to administration of vaccines by needle and syringe, oral vaccines offer significant logistical advantages, as the polio eradication campaign has demonstrated. Over the past decade, the expression of subunit vaccine antigens in plants has emerged as a convenient, safe and potentially economical platform technology, with the potential to provide a novel biotechnological solution to vaccine production and delivery. As this technology has come of age, many improvements have been made on several fronts, as a growing number of research groups worldwide have extensively investigated plants as factories for vaccine production. This review attempts to highlight some of the achievements over the past 15 years, identify some of the potential problems and discuss the promises that this technology could fulfill.
Collapse
Affiliation(s)
- Yasmin Thanavala
- Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | | | |
Collapse
|
44
|
Rosales-Mendoza S, Orellana-Escobedo L, Romero-Maldonado A, Decker EL, Reski R. The potential of Physcomitrella patens as a platform for the production of plant-based vaccines. Expert Rev Vaccines 2014; 13:203-12. [PMID: 24405402 DOI: 10.1586/14760584.2014.872987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The moss Physcomitrella patens has a number of advantages for the production of biopharmaceuticals, including: i) availability of standardized conditions for cultivation in bioreactors; ii) not being part of the food chain; iii) high biosafety; iv) availability of highly efficient transformation methods; v) a haploid, fully sequenced genome providing genetic stability and uniform expression; vi) efficient gene targeting at the nuclear level allows for the generation of mutants with specific post-translational modifications (e.g., glycosylation patterns); and vii) oral formulations are a viable approach as no toxic effects are attributed to ingestion of this moss. In the light of this panorama, this opinion paper analyzes the possibilities of using P. patens for the production of oral vaccines and presents some specific cases where its use may represent significant progress in the field of plant-based vaccine development. The advantages represented by putative adjuvant effects of endogenous secondary metabolites and producing specific glycosylation patterns are highlighted.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México
| | | | | | | | | |
Collapse
|
45
|
An Oral Vaccine for TGEV Immunization of Pigs. COMMERCIAL PLANT-PRODUCED RECOMBINANT PROTEIN PRODUCTS 2014. [PMCID: PMC7120389 DOI: 10.1007/978-3-662-43836-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transmissible gastroenteritis virus (TGEV) is a commercially important pathogen of hog farms and causes contagious, lethal diarrhea in piglets. While orally and parenterally administered vaccines made from inactivated or attenuated TGEV are commercially available, they require individual administration to piglets, which is time and labor intensive, and run the risk of reversion to pathogenicity. Also, parenteral vaccines produce neutralizing serum antibodies which may be less effective against an orally transmitted pathogen, compared to an oral vaccine that would induce the production of mucosal antibodies. There has been an effort to produce subunit vaccines in an edible form in plants for convenient administration through feed. These efforts towards the expression of the S-antigen of TGEV in maize seed, its effectiveness at inducing neutralizing antibody production in the colostrum of gilts, and its efficacy in protecting piglets against challenge by virulent TGEV are summarized here.
Collapse
|
46
|
Oral Immunization of Mice with Lily Pollen Expressing HBsAg. Biosci Biotechnol Biochem 2013; 77:2492-4. [DOI: 10.1271/bbb.130531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Inoculation of the attenuated Coxsackievirus B3 Sabin3-like strain induces a protection against virulent CVB3 Nancy and CVB4 E2 strains in Swiss mice by both oral and intraperitoneal routes. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Li C, Jiang Y, Guo W, Liu Z. Production of a chimeric allergen derived from the major allergen group 1 of house dust mite species in Nicotiana benthamiana. Hum Immunol 2013; 74:531-7. [PMID: 23354320 DOI: 10.1016/j.humimm.2013.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/06/2013] [Accepted: 01/14/2013] [Indexed: 11/23/2022]
Abstract
Plants are widely accepted as a general platform for the large-scale production of recombinant proteins, which has been demonstrated by the successful expression of various exogenous proteins. Using plants as a bioreactor for mass production of target proteins for vaccines is thought to show the most potential. This study explores whether a chimeric allergen R8, derived from the major allergen group 1 of house dust mites species (Dermatophagoides farinae and Dermatophagoides pteronyssinus), is expressed in tobacco. The highly efficient and useful Tobacco mosaic virus RNA-based overexpression (TRBO) vector was used to investigate expression of the R8 molecule in tobacco by agroinfection. Presence of R8 was detected using SDS-PAGE and Western blotting. Purified allergens were characterized using IgE-binding activity assay and allergen-specific immunotherapy (ASIT) in murine asthmatic models. The recombinant R8 was successfully expressed in tobacco leaves. The pro-peptide was observed in the herbaceous leaf extracts. This protein exhibits properties similar to the parental allergen ProDer f 1 expressed in Escherichia coli or tobacco with respect to IgE immunoreactivity. R8 also rectifies imbalance of TH1/TH2 cells. An herbaceous plant expression system model allows mass production of R8, which might be used in the future for diagnosis of asthma or production of a candidate vaccine for allergen-specific immunotherapy of asthma.
Collapse
Affiliation(s)
- Chaopin Li
- Department of Medical Parasitology, Wannan Medical College, Wuhu, Anhui, China.
| | | | | | | |
Collapse
|
49
|
Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines. Appl Environ Microbiol 2013; 79:3917-25. [PMID: 23603678 DOI: 10.1128/aem.00714-13] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infectious diseases disproportionately affect indigent regions and are the greatest cause of childhood mortality in developing countries. Practical, low-cost vaccines for use in these countries are paramount to reducing disease burdens and concomitant poverty. Algae are a promising low-cost system for producing vaccines that can be orally delivered, thereby avoiding expensive purification and injectable delivery. We engineered the chloroplast of the eukaryotic alga Chlamydomonas reinhardtii to produce a chimeric protein consisting of the 25-kDa Plasmodium falciparum surface protein (Pfs25) fused to the β subunit of the cholera toxin (CtxB) to investigate an alga-based whole-cell oral vaccine. Pfs25 is a promising malaria transmission-blocking vaccine candidate that has been difficult to produce in traditional recombinant systems due to its structurally complex tandem repeats of epidermal growth factor-like domains. The noncatalytic CtxB domain of the cholera holotoxin assembles into a pentameric structure and acts as a mucosal adjuvant by binding GM1 ganglioside receptors on gut epithelial cells. We demonstrate that CtxB-Pfs25 accumulates as a soluble, properly folded and functional protein within algal chloroplasts, and it is stable in freeze-dried alga cells at ambient temperatures. In mice, oral vaccination using freeze-dried algae that produce CtxB-Pfs25 elicited CtxB-specific serum IgG antibodies and both CtxB- and Pfs25-specific secretory IgA antibodies. These data suggest that algae are a promising system for production and oral delivery of vaccine antigens, but as an orally delivered adjuvant, CtxB is best suited for eliciting secretory IgA antibodies for vaccine antigens against pathogens that invade mucosal surfaces using this strategy.
Collapse
|
50
|
The twenty-year story of a plant-based vaccine against hepatitis B: stagnation or promising prospects? Int J Mol Sci 2013; 14:1978-98. [PMID: 23337199 PMCID: PMC3565360 DOI: 10.3390/ijms14011978] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/07/2013] [Accepted: 01/14/2013] [Indexed: 01/20/2023] Open
Abstract
Hepatitis B persists as a common human disease despite effective vaccines having been employed for almost 30 years. Plants were considered as alternative sources of vaccines, to be mainly orally administered. Despite 20-year attempts, no real anti-HBV plant-based vaccine has been developed. Immunization trials, based on ingestion of raw plant tissue and conjugated with injection or exclusively oral administration of lyophilized tissue, were either impractical or insufficient due to oral tolerance acquisition. Plant-produced purified HBV antigens were highly immunogenic when injected, but their yields were initially insufficient for practical purposes. However, knowledge and technology have progressed, hence new plant-derived anti-HBV vaccines can be proposed today. All HBV antigens can be efficiently produced in stable or transient expression systems. Processing of injection vaccines has been developed and needs only to be successfully completed. Purified antigens can be used for injection in an equivalent manner to the present commercial vaccines. Although oral vaccines require improvement, plant tissue, lyophilized or extracted and converted into tablets, etc., may serve as a boosting vaccine. Preliminary data indicate also that both vaccines can be combined in an effective parenteral-oral immunization procedure. A partial substitution of injection vaccines with oral formulations still offers good prospects for economically viable and efficacious anti-HBV plant-based vaccines.
Collapse
|