1
|
Bruhm DC, Vulpescu NA, Foda ZH, Phallen J, Scharpf RB, Velculescu VE. Genomic and fragmentomic landscapes of cell-free DNA for early cancer detection. Nat Rev Cancer 2025; 25:341-358. [PMID: 40038442 DOI: 10.1038/s41568-025-00795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 03/06/2025]
Abstract
Genomic analyses of cell-free DNA (cfDNA) in plasma are enabling noninvasive blood-based biomarker approaches to cancer detection and disease monitoring. Current approaches for identification of circulating tumour DNA typically use targeted tumour-specific mutations or methylation analyses. An emerging approach is based on the recognition of altered genome-wide cfDNA fragmentation in patients with cancer. Recent studies have revealed a multitude of characteristics that can affect the compendium of cfDNA fragments across the genome, collectively called the 'cfDNA fragmentome'. These changes result from genomic, epigenomic, transcriptomic and chromatin states of an individual and affect the size, position, coverage, mutation, structural and methylation characteristics of cfDNA. Identifying and monitoring these changes has the potential to improve early detection of cancer, especially using highly sensitive multi-feature machine learning approaches that would be amenable to broad use in populations at increased risk. This Review highlights the rapidly evolving field of genome-wide analyses of cfDNA characteristics, their comparison to existing cfDNA methods, and recent related innovations at the intersection of large-scale sequencing and artificial intelligence. As the breadth of clinical applications of cfDNA fragmentome methods have enormous public health implications for cancer screening and personalized approaches for clinical management of patients with cancer, we outline the challenges and opportunities ahead.
Collapse
Affiliation(s)
- Daniel C Bruhm
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas A Vulpescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachariah H Foda
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jillian Phallen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert B Scharpf
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Zhao ZY, Huang CL, Wang TM, Zhou SH, Pei L, Jia WH, Jia WH. EM-DeepSD: A Deep Neural Network Model Based on Cell-Free DNA End-Motif Signal Decomposition for Cancer Diagnosis. Diagnostics (Basel) 2025; 15:1156. [PMID: 40361973 PMCID: PMC12071254 DOI: 10.3390/diagnostics15091156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Background and Objectives: The accurate discrimination between patients with and without cancer using their cell-free DNA (cfDNA) is crucial for early cancer diagnosis. The end-motifs of cfDNA serve as significant cancer biomarkers, offering compelling prospects for cancer diagnosis. This study proposes EM-DeepSD, a signal decomposition deep learning framework based on cfDNA end-motifs, which is aimed at improving the accuracy of cancer diagnosis and adapting to different sequencing modalities. Materials and Methods: This study included 146 patients diagnosed with cancer and 122 non-cancer controls. EM-DeepSD comprises three core modules. Initially, it utilizes a signal decomposition module to decompose and reconstruct the input end-motif profiles, thereby generating multiple regular subsequences that optimize the subsequent modeling process. Subsequently, both a machine learning module and a deep learning module are employed to improve the accuracy of cancer diagnosis. Furthermore, this paper compares the performance of EM-DeepSD with that of existing benchmarked methods to demonstrate its superiority. Based on the EM-DeepSD framework, we developed the EM-DeepSSA model and compared it with two benchmarked methods across different cfDNA sequencing datasets. Results: In the internal validation set, EM-DeepSSA outperformed the two benchmark methods for cancer diagnosis (area under the curve (AUC), 0.920; adjusted p value < 0.05). Meanwhile, EM-DeepSSA also exhibited the best performance on two independent external testing sets that were subjected to 5-hydroxymethylcytosine sequencing (5hmCS) and broad-range cell-free DNA sequencing (BR-cfDNA-Seq), respectively (test set-1: AUC = 0.933; test set-2: AUC = 0.956; adjusted p value < 0.05). Conclusions: In summary, we present a new framework which can achieve high classification performance in cancer diagnosis and which is applicable to different sequencing modalities.
Collapse
Affiliation(s)
- Zhi-Yang Zhao
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Z.-Y.Z.); (C.-L.H.); (S.-H.Z.); (W.-H.J.)
| | - Chang-Ling Huang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Z.-Y.Z.); (C.-L.H.); (S.-H.Z.); (W.-H.J.)
| | - Tong-Min Wang
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (T.-M.W.); (L.P.)
| | - Shi-Hao Zhou
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Z.-Y.Z.); (C.-L.H.); (S.-H.Z.); (W.-H.J.)
| | - Lu Pei
- Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (T.-M.W.); (L.P.)
| | - Wen-Hui Jia
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Z.-Y.Z.); (C.-L.H.); (S.-H.Z.); (W.-H.J.)
| | - Wei-Hua Jia
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Z.-Y.Z.); (C.-L.H.); (S.-H.Z.); (W.-H.J.)
| |
Collapse
|
3
|
Lam WKJ, Kang G, Chan CML, Lee VCT, Ma MJL, Zhou Q, Jiang P, Tse IOL, King AD, Wong KCW, Hui EP, Ma BBY, Chan ATC, Chan KCA, Lo YMD. Fragmentomics profiling and quantification of plasma Epstein-Barr virus DNA enhance prediction of future nasopharyngeal carcinoma. Cancer Cell 2025; 43:728-739.e5. [PMID: 40054465 DOI: 10.1016/j.ccell.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/28/2024] [Accepted: 02/04/2025] [Indexed: 04/17/2025]
Abstract
Fragmentomics analysis of plasma autosomal DNA has shown promise in cancer diagnostics. Here we evaluated the clinical utility of plasma Epstein-Barr virus (EBV) DNA fragmentomics analysis for nasopharyngeal carcinoma (NPC) screening. Among our prospective cohort of approximately 20,000 subjects that underwent two rounds of screening, we analyzed the first-round blood samples of subjects who tested positive for EBV DNA via polymerase chain reaction (PCR) (n = 558). We found that those who subsequently developed NPC in the second round exhibited a distinctive mononucleosomal size pattern, an NPC-associated end motif (specifically, a depletion of CC-motif) and aberrations in methylation identified through fragmentomics-based methylation analysis (FRAGMA). Subjects with these aberrant fragmentomics features and higher quantity of EBV DNA had a relative risk of 87.1 times greater for developing NPC in the second round compared to subjects tested negative for EBV DNA on PCR. These results demonstrate plasma DNA fragmentomics could predict future cancer risk.
Collapse
Affiliation(s)
- W K Jacky Lam
- Centre for Novostics, Hong Kong Science Park, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China; Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Guannan Kang
- Centre for Novostics, Hong Kong Science Park, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Charles M L Chan
- Centre for Novostics, Hong Kong Science Park, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Vicky C T Lee
- Centre for Novostics, Hong Kong Science Park, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Mary-Jane L Ma
- Centre for Novostics, Hong Kong Science Park, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Qing Zhou
- Centre for Novostics, Hong Kong Science Park, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Irene O L Tse
- Centre for Novostics, Hong Kong Science Park, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Ann D King
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Kenneth C W Wong
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China; Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Edwin P Hui
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China; Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Brigette B Y Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China; Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Anthony T C Chan
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China; Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - K C Allen Chan
- Centre for Novostics, Hong Kong Science Park, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Centre for Novostics, Hong Kong Science Park, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
4
|
Ma MJL, Zhang WZ, Jiang P, Ji L, Xiong D, Peng W, Lam WKJ, Yu SCY, Choy LYL, Tse RTH, Cheng SH, Zhou Q, Bai J, Hu X, Shi Y, Chan LL, Chan WTC, Wong PY, Fung S, Lau SL, Wong J, Chan SL, Chiu PKF, Teoh JYC, Poon LC, Ng CF, Szeto CC, Chan KCA, Lo YMD. Chromatin accessibility states affect transrenal clearance of plasma DNA: Implications for urine-based diagnostics. MED 2025:100646. [PMID: 40209704 DOI: 10.1016/j.medj.2025.100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 03/07/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Urinary cell-free DNA (ucfDNA) is a valuable resource for truly non-invasive liquid biopsy. UcfDNA comprises transrenal ucfDNA passing from the bloodstream through the glomeruli and locally shed urinary-tract ucfDNA. Understanding their differences in characteristics may enable new diagnostic applications. METHODS We analyzed 136 ucfDNA samples from healthy controls, pregnant women, patients with chronic kidney diseases (CKDs), and bladder cancer using massively parallel sequencing. Fragmentomic characteristics including fragment sizes and 5' end motifs were deduced. The relationship between ucfDNA and chromatin accessibility was examined by overlapping ucfDNA with open chromatin regions (OCRs, lacking histones) and heterochromatin regions (HCRs, tightly packed with histones). FINDINGS Compared with urinary-tract ucfDNA, the transrenal ucfDNA was shorter and enriched for C-ends. The transrenal ucfDNA was over-represented in OCRs but depleted in HCRs, indicating an interplay between the glomerular filtration barrier and the effective cfDNA size. In patients with proteinuria (preeclampsia and CKDs), the amount of ucfDNA from HCRs increased, suggesting elevated glomerular permeability of histone-bound plasma DNA molecules. In oncology, the use of hypomethylation signals in HCRs enhanced bladder cancer detection, with an area under the receiver operating characteristic curve of 0.93. CONCLUSIONS Chromatin accessibility states impact the transrenal clearance of plasma DNA, likely through the size restriction of the glomerular barrier. This realization has enabled the rational development of novel approaches for detecting or monitoring renal dysfunction and urological cancers. FUNDING The Innovation and Technology Commission of the Hong Kong SAR Government (InnoHK initiative) and the Li Ka Shing Foundation supported this study.
Collapse
Affiliation(s)
- Mary-Jane L Ma
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Woody Z Zhang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Lu Ji
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Dongyan Xiong
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Wenlei Peng
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - W K Jacky Lam
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Stephanie C Y Yu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - L Y Lois Choy
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Ryan Tsz-Hei Tse
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Suk Hang Cheng
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Qing Zhou
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Jinyue Bai
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Xi Hu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Yuwei Shi
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Landon L Chan
- Department of Clinical Oncology, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - W T Charlotte Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Pik-Ying Wong
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Sherwood Fung
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - So Ling Lau
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - John Wong
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Stephen L Chan
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China; Department of Clinical Oncology, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Peter K F Chiu
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Jeremy Y C Teoh
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Liona C Poon
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Chi-Fai Ng
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Cheuk-Chun Szeto
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - K C Allen Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Y M Dennis Lo
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.
| |
Collapse
|
5
|
Zhu Z, Chen T, Zhang M, Shi X, Yu P, Liu J, Duan X, Tao Z, Wang X. Dynamic profiling of Cell-free DNA fragmentation uncovers postprandial metabolic and immune alterations. Hum Genomics 2025; 19:27. [PMID: 40102951 PMCID: PMC11921681 DOI: 10.1186/s40246-025-00739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Food intake affects body homeostasis and significantly changes circulating cell-free DNA (cfDNA). However, the source and elimination of postprandial cfDNA is difficult to trace, and it is unknown whether these changes can be revealed by cfDNA fragmentomics based on liquid biopsy. METHODS We performed shallow whole-genome sequencing of 30 plasma samples from 10 healthy individuals at fasting and postprandial (30-min and 2-h time points). We assessed the effect of postprandial states on cfDNA fragment size distribution and utilized deconvolutional analysis of end motifs to determine the potential roles of DNA nucleases in cfDNA fragmentation. We correlated the fragmentation index (defined as the ratio of short-to-long fragments) with gene expression to estimate the relative contribution of various cellular and tissue sources to cfDNA. RESULTS Compared to the fasting state, we observed a significant increase in short cfDNA fragments (70-150 bp) and a decrease in long fragments (151-250 bp) at the 30-minute postprandial state, followed by an inverse trend two hours later. Deconvolutional analysis of cfDNA end motifs showed that DNASE1L3 activity decreased at the 30-minute postprandial state, while DNASE1 and DFFB activities increased at the 2-hour postprandial state. We found that the expression of genes related to cellular metabolism and immune responses was upregulated at the postprandial state. Meanwhile, the contribution of cells and tissues involved in metabolic and immune progress to circulating plasma cfDNA was increased. CONCLUSIONS The fragmentation of cfDNA is considerably influenced by postprandial states, highlighting the significance of taking postprandial effects into account when evaluating cfDNA as a biomarker. Furthermore, our study reveals the potential application of cfDNA fragmentation features in monitoring metabolic and immune status changes.
Collapse
Affiliation(s)
- Ziting Zhu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Tao Chen
- Department of Blood Transfusion, Zhejiang Hospital, Hangzhou, 310027, China
| | - Manting Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Xiaodi Shi
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Pan Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Jianai Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China.
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China.
| | - Xuchu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
6
|
Ghanam J, Lichá K, Chetty VK, Pour OA, Reinhardt D, Tamášová B, Hoyer P, Lötvall J, Thakur BK. Unravelling the Significance of Extracellular Vesicle-Associated DNA in Cancer Biology and Its Potential Clinical Applications. J Extracell Vesicles 2025; 14:e70047. [PMID: 40091452 PMCID: PMC11911540 DOI: 10.1002/jev2.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Extracellular vesicles (EVs) play a key role in cell-to-cell communication and have drawn significant attention due to their potential clinical applications. However, much remains to be understood about the biology of EV-associated DNA (EV-DNA). EV-DNA is actively released by both normal and malignant cells and consists of diverse fragments with varying structures. Because EV-DNA spans the entire genome of cells from which it originates, it continues to be attractive as a biomarker for cancer diagnosis and monitoring. Further, EV-DNA delivery can alter the function of recipient cells by interfering with cytoplasmic DNA sensor pathways. This review explores the biology and significance of EV-DNA, including its topology and fragmentomics features, modality of association with EVs, packaging mechanisms, and potential functions. It also emphasizes the specificity of vesicular DNA in identifying genetic and epigenetic changes in cancer. Additionally, it delves into the impact of EV-DNA on cellular behaviour and its potential use as a therapeutic target in cancer. The review discusses new insights into EV-DNA biology and provides perspectives and alternatives to address the challenges and concerns for future EV-DNA studies.
Collapse
Affiliation(s)
- Jamal Ghanam
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
| | - Kristína Lichá
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
- Institute of Molecular Biomedicine, Faculty of MedicineComenius UniversityBratislavaSlovakia
| | | | | | | | - Barbora Tamášová
- Institute of Molecular Biomedicine, Faculty of MedicineComenius UniversityBratislavaSlovakia
| | - Peter Hoyer
- Department of Pediatrics IIUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | | |
Collapse
|
7
|
Aljaberi N, Bharathan A, Gopal RP, Mohammed E, Al Shibli F, Tabouni M, Alhmoudi S, Kizhakkedath P, Baydoun I, Allam M, Mustafa N, Aljasmi F, Al Dhaheri A, Alblooshi H. Identification and functional characterisation of a novel DNASE1L3 variant (c.572A>G, p.Asn191Ser) in three Emirati families with systemic lupus erythematosus and hypocomplementaemic urticarial vasculitis. Lupus Sci Med 2025; 12:e001477. [PMID: 39947743 PMCID: PMC11831315 DOI: 10.1136/lupus-2024-001477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/02/2025] [Indexed: 02/19/2025]
Abstract
OBJECTIVES To evaluate the functional impact of a novel DNASE1L3 variant (c.572A>G, p.Asn191Ser) in three families with SLE and hypocomplementaemic urticarial vasculitis (HUV) from the United Arab Emirates. METHODS Whole-exome sequencing was performed on affected patients and findings were confirmed using Sanger sequencing in family members. DNASE1L3 protein expression, secretion and enzymatic activity were assessed in HEK293 cell lines. Plasma smear assay for neutrophil extracellular traps (NETs) was evaluated in patients, family members and healthy control. RESULTS A total of seven patients diagnosed with both SLE and HUV were identified from three unrelated families. All affected individuals were found to carry a homozygous c.572A>G, p.Asn191Ser (191S) variant in DNASE1L3. The variant 191S was shown to impact the secretion and activity of DNASE1L3. Patients homozygous for 191S variant had significantly higher burden (p=0.0409) of NET structure in comparison to heterozygous and healthy control. CONCLUSIONS We functionally evaluated the effect of a novel DNASE1L3 (c.572A>G, p.Asn191Ser) in familial SLE with a consistent pattern of HUV across seven patients. This variant resulted in impaired secretion and enzymatic activity of DNASE1L3 along with increased NETosis in patients with homozygous genotype.
Collapse
Affiliation(s)
- Najla Aljaberi
- Department of Pediatrics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Anjali Bharathan
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Remya Prajesh Gopal
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Ekhlass Mohammed
- Department of Pediatrics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Fatema Al Shibli
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Mohammed Tabouni
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Sara Alhmoudi
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Praseetha Kizhakkedath
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Ibrahim Baydoun
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Mushal Allam
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Noor Mustafa
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Fatma Aljasmi
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Afra Al Dhaheri
- Rheumatology Department, Tawam Hospital, Al Ain, Abu Dhabi, UAE
| | - Hiba Alblooshi
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
8
|
Ates I, Terzi U, Suzen S, Irham LM. An overview on Sjögren's syndrome and systemic lupus erythematosus' genetics. Toxicol Res (Camb) 2025; 14:tfae194. [PMID: 39991010 PMCID: PMC11847510 DOI: 10.1093/toxres/tfae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
Major autoimmune rheumatic disorders, such as systemic lupus erythematosus and Sjögren's syndrome, are defined by the presence of autoantibodies. These diseases are brought on by immune system dysregulation, which can present clinically in a wide range of ways. The etiologies of these illnesses are complex and heavily impacted by a variety of genetic and environmental variables. The most powerful susceptibility element for each of these disorders is still the human leukocyte antigen (HLA) area, that was the initial locus found to be associated. This region is primarily responsible for the HLA class II genes, such as DQA1, DQB1, and DRB1, however class I genes have also been linked. Numerous genetic variants that do not pose a risk to HLA have been found as a result of intensive research into the genetic component of these diseases conducted over the last 20 years. Furthermore, it is generally acknowledged that autoimmune rheumatic illnesses have similar genetic backgrounds and share molecular pathways of disease, including the interferon (IFN) type I routes. Pleiotropic sites for autoimmune rheumatic illnesses comprise TNIP1, DNASEL13, IRF5, the HLA region, and others. It remains a challenge to determine the causative biological mechanisms beneath the genetic connections. Nonetheless, functional analyses of the loci and mouse models have produced recent advancements. With an emphasis on the HLA region, we present an updated summary of the structure of genes underpinning both of these autoimmune rheumatic illnesses here.
Collapse
Affiliation(s)
- Ilker Ates
- Department of Toxicology, Ankara University, Faculty of Pharmacy, Emniyet Distr, Degol Str, No. 4, 06560 Yenimahalle, Ankara, Turkey
| | - Ulku Terzi
- Department of Toxicology, Ankara University, Faculty of Pharmacy, Emniyet Distr, Degol Str, No. 4, 06560 Yenimahalle, Ankara, Turkey
| | - Sinan Suzen
- Department of Toxicology, Ankara University, Faculty of Pharmacy, Emniyet Distr, Degol Str, No. 4, 06560 Yenimahalle, Ankara, Turkey
| | - Lalu Muhammad Irham
- Department of Toxicology, Ahmad Dahlan University, Faculty of Pharmacy, Prof. Dr. Soepomo, S.H., Street, Warungboto, 55164, Yogyakarta, Indonesia
| |
Collapse
|
9
|
Wang Y, Guo Q, Huang Z, Song L, Zhao F, Gu T, Feng Z, Wang H, Li B, Wang D, Zhou B, Guo C, Xu Y, Song Y, Zheng Z, Bing Z, Li H, Yu X, Fung KL, Xu H, Shi J, Chen M, Hong S, Jin H, Tong S, Zhu S, Zhu C, Song J, Liu J, Li S, Li H, Sun X, Liang N. Cell-free epigenomes enhanced fragmentomics-based model for early detection of lung cancer. Clin Transl Med 2025; 15:e70225. [PMID: 39909829 PMCID: PMC11798665 DOI: 10.1002/ctm2.70225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/24/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Lung cancer is a leading cause of cancer mortality, highlighting the need for innovative non-invasive early detection methods. Although cell-free DNA (cfDNA) analysis shows promise, its sensitivity in early-stage lung cancer patients remains a challenge. This study aimed to integrate insights from epigenetic modifications and fragmentomic features of cfDNA using machine learning to develop a more accurate lung cancer detection model. METHODS To address this issue, a multi-centre prospective cohort study was conducted, with participants harbouring suspicious malignant lung nodules and healthy volunteers recruited from two clinical centres. Plasma cfDNA was analysed for its epigenetic and fragmentomic profiles using chromatin immunoprecipitation sequencing, reduced representation bisulphite sequencing and low-pass whole-genome sequencing. Machine learning algorithms were then employed to integrate the multi-omics data, aiding in the development of a precise lung cancer detection model. RESULTS Cancer-related changes in cfDNA fragmentomics were significantly enriched in specific genes marked by cell-free epigenomes. A total of 609 genes were identified, and the corresponding cfDNA fragmentomic features were utilised to construct the ensemble model. This model achieved a sensitivity of 90.4% and a specificity of 83.1%, with an AUC of 0.94 in the independent validation set. Notably, the model demonstrated exceptional sensitivity for stage I lung cancer cases, achieving 95.1%. It also showed remarkable performance in detecting minimally invasive adenocarcinoma, with a sensitivity of 96.2%, highlighting its potential for early detection in clinical settings. CONCLUSIONS With feature selection guided by multiple epigenetic sequencing approaches, the cfDNA fragmentomics-based machine learning model demonstrated outstanding performance in the independent validation cohort. These findings highlight its potential as an effective non-invasive strategy for the early detection of lung cancer. KEYPOINTS Our study elucidated the regulatory relationships between epigenetic modifications and their effects on fragmentomic features. Identifying epigenetically regulated genes provided a critical foundation for developing the cfDNA fragmentomics-based machine learning model. The model demonstrated exceptional clinical performance, highlighting its substantial potential for translational application in clinical practice.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qiang Guo
- Department of Thoracic SurgeryAffiliated Hospital of Hebei UniversityBaodingChina
| | - Zhicheng Huang
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Liyang Song
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Fei Zhao
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Tiantian Gu
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Zhe Feng
- Department of Cardiothoracic Surgerythe Sixth Hospital of BeijingBeijingChina
| | - Haibo Wang
- Department of Thoracic SurgeryAffiliated Hospital of Hebei UniversityBaodingChina
| | - Bowen Li
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Daoyun Wang
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Bin Zhou
- Department of Thoracic SurgeryAffiliated Hospital of Hebei UniversityBaodingChina
| | - Chao Guo
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuan Xu
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yang Song
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhibo Zheng
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhongxing Bing
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Haochen Li
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoqing Yu
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ka Luk Fung
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Heqing Xu
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianhong Shi
- Department of Scientific ResearchAffiliated Hospital of Hebei UniversityBaodingChina
| | - Meng Chen
- Department of Scientific ResearchAffiliated Hospital of Hebei UniversityBaodingChina
| | - Shuai Hong
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Haoxuan Jin
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Shiyuan Tong
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Sibo Zhu
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Chen Zhu
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Jinlei Song
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Jing Liu
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Shanqing Li
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hefei Li
- Department of Thoracic SurgeryAffiliated Hospital of Hebei UniversityBaodingChina
| | - Xueguang Sun
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Naixin Liang
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
10
|
Tsui WHA, Ding SC, Jiang P, Lo YMD. Artificial intelligence and machine learning in cell-free-DNA-based diagnostics. Genome Res 2025; 35:1-19. [PMID: 39843210 PMCID: PMC11789496 DOI: 10.1101/gr.278413.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The discovery of circulating fetal and tumor cell-free DNA (cfDNA) molecules in plasma has opened up tremendous opportunities in noninvasive diagnostics such as the detection of fetal chromosomal aneuploidies and cancers and in posttransplantation monitoring. The advent of high-throughput sequencing technologies makes it possible to scrutinize the characteristics of cfDNA molecules, opening up the fields of cfDNA genetics, epigenetics, transcriptomics, and fragmentomics, providing a plethora of biomarkers. Machine learning (ML) and/or artificial intelligence (AI) technologies that are known for their ability to integrate high-dimensional features have recently been applied to the field of liquid biopsy. In this review, we highlight various AI and ML approaches in cfDNA-based diagnostics. We first introduce the biology of cell-free DNA and basic concepts of ML and AI technologies. We then discuss selected examples of ML- or AI-based applications in noninvasive prenatal testing and cancer liquid biopsy. These applications include the deduction of fetal DNA fraction, plasma DNA tissue mapping, and cancer detection and localization. Finally, we offer perspectives on the future direction of using ML and AI technologies to leverage cfDNA fragmentation patterns in terms of methylomic and transcriptional investigations.
Collapse
Affiliation(s)
- W H Adrian Tsui
- Center for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Spencer C Ding
- Center for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Center for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Center for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
11
|
Malki Y, Kang G, Lam WKJ, Zhou Q, Cheng SH, Cheung PPH, Bai J, Chan ML, Lee CT, Peng W, Zhang Y, Gai W, Wong WWS, Ma MJL, Li W, Xu X, Gao Z, Tse IOL, Shang H, Choy LYL, Jiang P, Chan KCA, Lo YMD. Analysis of a cell-free DNA-based cancer screening cohort links fragmentomic profiles, nuclease levels, and plasma DNA concentrations. Genome Res 2025; 35:31-42. [PMID: 39603706 PMCID: PMC11789642 DOI: 10.1101/gr.279667.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
The concentration of circulating cell-free DNA (cfDNA) in plasma is an important determinant of the robustness of liquid biopsies. However, biological mechanisms that lead to inter-individual differences in cfDNA concentrations remain unexplored. The concentration of plasma cfDNA is governed by an interplay between its release and clearance. We hypothesized that cfDNA clearance by nucleases might be one mechanism that contributes toward inter-individual variations in cfDNA concentrations. We performed fragmentomic analysis of the plasma cfDNA from 862 healthy individuals, with a cfDNA concentration range of 1.61-41.01 ng/mL. We observed an increase in large DNA fragments (231-600 bp), a decreased frequencies of shorter DNA fragments (20-160 bp), and an increased frequency of G-end motifs with increasing cfDNA concentrations. End motif deconvolution analysis revealed a decreased contribution of DNASE1L3 and DFFB in subjects with higher cfDNA concentration. The five subjects with the highest plasma DNA concentration (top 0.58%) had aberrantly decreased levels of DNASE1L3 protein in plasma. The cfDNA concentration could be inferred from the fragmentomic profile through machine learning and was well correlated to the measured cfDNA concentration. Such an approach could infer the fractional DNA concentration from particular tissue types, such as the fetal and tumor fraction. This work shows that individuals with different cfDNA concentrations are associated with characteristic fragmentomic patterns of the cfDNA pool and that nuclease-mediated clearance of DNA is a key parameter that affects cfDNA concentration. Understanding these mechanisms has facilitated the enhanced measurement of cfDNA species of clinical interest, including circulating fetal and tumor DNA.
Collapse
Affiliation(s)
- Yasine Malki
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Guannan Kang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - W K Jacky Lam
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Qing Zhou
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Suk Hang Cheng
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Peter P H Cheung
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jinyue Bai
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ming Lok Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Chui Ting Lee
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wenlei Peng
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yiqiong Zhang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wanxia Gai
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Winsome W S Wong
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mary-Jane L Ma
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wenshuo Li
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xinzhou Xu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhuoran Gao
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Irene O L Tse
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Huimin Shang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - L Y Lois Choy
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - K C Allen Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
12
|
Goldbach-Mansky R, Alehashemi S, de Jesus AA. Emerging concepts and treatments in autoinflammatory interferonopathies and monogenic systemic lupus erythematosus. Nat Rev Rheumatol 2025; 21:22-45. [PMID: 39623155 DOI: 10.1038/s41584-024-01184-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 12/22/2024]
Abstract
Over the past two decades, the number of genetically defined autoinflammatory interferonopathies has steadily increased. Aicardi-Goutières syndrome and proteasome-associated autoinflammatory syndromes (PRAAS, also known as CANDLE) are caused by genetic defects that impair homeostatic intracellular nucleic acid and protein processing respectively. Research into these genetic defects revealed intracellular sensors that activate type I interferon production. In SAVI and COPA syndrome, genetic defects that cause chronic activation of the dinucleotide sensor stimulator of interferon genes (STING) share features of lung inflammation and fibrosis; and selected mutations that amplify interferon-α/β receptor signalling cause central nervous system manifestations resembling Aicardi-Goutières syndrome. Research into the monogenic causes of childhood-onset systemic lupus erythematosus (SLE) demonstrates the pathogenic role of autoantibodies to particle-bound extracellular nucleic acids that distinguishes monogenic SLE from the autoinflammatory interferonopathies. This Review introduces a classification for autoinflammatory interferonopathies and discusses the divergent and shared pathomechanisms of interferon production and signalling in these diseases. Early success with drugs that block type I interferon signalling, new insights into the roles of cytoplasmic DNA or RNA sensors, pathways in type I interferon production and organ-specific pathology of the autoinflammatory interferonopathies and monogenic SLE, reveal novel drug targets that could personalize treatment approaches.
Collapse
Affiliation(s)
- Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Tabrizi S, Martin-Alonso C, Xiong K, Bhatia SN, Adalsteinsson VA, Love JC. Modulating cell-free DNA biology as the next frontier in liquid biopsies. Trends Cell Biol 2024:S0962-8924(24)00249-6. [PMID: 39730275 DOI: 10.1016/j.tcb.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/29/2024]
Abstract
Technical advances over the past two decades have enabled robust detection of cell-free DNA (cfDNA) in biological samples. Yet, higher clinical sensitivity is required to realize the full potential of liquid biopsies. This opinion article argues that to overcome current limitations, the abundance of informative cfDNA molecules - such as circulating tumor DNA (ctDNA) - collected in a sample needs to increase. To accomplish this, new methods to modulate the biological processes that govern cfDNA production, trafficking, and clearance in the body are needed, informed by a deeper understanding of cfDNA biology. Successful development of such methods could enable a major leap in the performance of liquid biopsies and vastly expand their utility across the spectrum of clinical care.
Collapse
Affiliation(s)
- Shervin Tabrizi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Radiation Oncology, Mass General Brigham, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Carmen Martin-Alonso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kan Xiong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute at Harvard University, Boston, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA
| | | | - J Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Yuen N, Lemaire M, Wilson SL. Cell-free placental DNA: What do we really know? PLoS Genet 2024; 20:e1011484. [PMID: 39652523 PMCID: PMC11627368 DOI: 10.1371/journal.pgen.1011484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Cell-free placental DNA (cfpDNA) is present in maternal circulation during gestation. CfpDNA carries great potential as a research and clinical tool as it provides a means to investigate the placental (epi)genome across gestation, which previously required invasive placenta sampling procedures. CfpDNA has been widely implemented in the clinical setting for noninvasive prenatal testing (NIPT). Despite this, the basic biology of cfpDNA remains poorly understood, limiting the research and clinical utility of cfpDNA. This review will examine the current knowledge of cfpDNA, including origins and molecular characteristics, highlight gaps in knowledge, and discuss future research directions.
Collapse
Affiliation(s)
- Natalie Yuen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Melanie Lemaire
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Samantha L. Wilson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Pan M, Shi H, Qi T, Cai L, Ge Q. The biological characteristics of long cell-free DNA in spent embryos culture medium as noninvasive biomarker in in-vitro embryo selection. Gene 2024; 927:148667. [PMID: 38857715 DOI: 10.1016/j.gene.2024.148667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
An improved understanding of the cfDNA fragmentomics has proved it as a promising biomarker in clinical applications. However, biological characteristics of cfDNA in spent embryos culture medium (SECM) remain unsolved obstacles before the application in non-invasive in-vitro embryo selection. In this study, we developed a Tn5 transposase and ligase integrated dual-library construction sequencing strategy (TDual-Seq) and revealed the fragmentomic profile of cfDNA of all sizes in early embryonic development. The detected ratio of long cfDNA (>500 bp) was improved from 4.23 % by traditional NGS to 12.80 % by TDual-Seq. End motif analysis showed long cfDNA molecules have a more dominance of fragmentation intracellularly in apoptotic cells with higher predominance of G-end, while shorter cfDNA undergo fragmentation process both intracellularly and extracellularly. Moreover, the mutational pattern of cfDNA and the correlated GO biological process were well differentiated in cleavage and blastocyst embryos. Finally, we developed a multiparametric index (TQI) that employs the fragmentomic profiles of cfDNA, and achieved an area under the ROC curve of 0.927 in screening top quality embryos. TDual-Seq strategy has facilitated characterizing the fragmentomic profile of cfDNA of all sizes in SECM, which are served as a class of non-invasive biomarkers in the evaluation of embryo quality in in-vitro fertilization. And this improved strategy has opened up potential clinical utilities of long cfDNA analysis.
Collapse
Affiliation(s)
- Min Pan
- School of Medicine, Southeast University, Nanjing, China; State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Huajuan Shi
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ting Qi
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Lingbo Cai
- Clinical Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Qinyu Ge
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
16
|
Zhu G, Jiang P, Li X, Peng W, Choy LYL, Yu SCY, Zhou Q, Ma MJL, Kang G, Bai J, Qiao R, Deng CXS, Ding SC, Lam WKJ, Chan SL, Lau SL, Leung TY, Wong J, Chan KCA, Lo YMD. Methylation-Associated Nucleosomal Patterns of Cell-Free DNA in Cancer Patients and Pregnant Women. Clin Chem 2024; 70:1355-1365. [PMID: 39206580 DOI: 10.1093/clinchem/hvae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cell-free DNA (cfDNA) analysis offers an attractive noninvasive means of detecting and monitoring diseases. cfDNA cleavage patterns within a short range (e.g., 11 nucleotides) have been reported to correlate with cytosine-phosphate-guanine (CpG) methylation, allowing fragmentomics-based methylation analysis (FRAGMA). Here, we adopted FRAGMA to the extended region harboring multiple nucleosomes, termed FRAGMAXR. METHODS We profiled cfDNA nucleosomal patterns over the genomic regions from -800 to 800 bp surrounding differentially methylated CpG sites, harboring approximately 8 nucleosomes, referred to as CpG-associated cfDNA nucleosomal patterns. Such nucleosomal patterns were analyzed by FRAGMAXR in cancer patients and pregnant women. RESULTS We identified distinct cfDNA nucleosomal patterns around differentially methylated CpG sites. Compared with subjects without cancer, patients with hepatocellular carcinoma (HCC) showed reduced amplitude of nucleosomal patterns, with a gradual decrease over tumor stages. Nucleosomal patterns associated with differentially methylated CpG sites could be used to train a machine learning model, resulting in the detection of HCC patients with an area under the receiver operating characteristic curve of 0.93. We further demonstrated the feasibility of multicancer detection using a dataset comprising lung, breast, and ovarian cancers. The tissue-of-origin analysis of plasma cfDNA from pregnant women and cancer patients revealed that the placental DNA and tumoral DNA contributions deduced by FRAGMAXR correlated well with values measured using genetic variants (Pearson r: 0.85 and 0.94, respectively). CONCLUSIONS CpG-associated cfDNA nucleosomal patterns of cfDNA molecules are influenced by DNA methylation and might be useful for biomarker developments for cancer liquid biopsy and noninvasive prenatal testing.
Collapse
Affiliation(s)
- Guanhua Zhu
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Xingqian Li
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Wenlei Peng
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - L Y Lois Choy
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Stephanie C Y Yu
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Qing Zhou
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Mary-Jane L Ma
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Guannan Kang
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Jinyue Bai
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Rong Qiao
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Chian Xi Shirley Deng
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Spencer C Ding
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Wai Kei Jacky Lam
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Stephen L Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - So Ling Lau
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Tak Y Leung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - John Wong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - K C Allen Chan
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Y M Dennis Lo
- Centre for Novostics, Hong Kong Science Park, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
17
|
Artner T, Sharma S, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free DNA liquid biopsies in cardiovascular disease. Atherosclerosis 2024; 398:118583. [PMID: 39353793 DOI: 10.1016/j.atherosclerosis.2024.118583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and despite treatment efforts, cardiovascular function cannot always be restored, and progression of disease be prevented. Critical insights are oftentimes based on tissue samples. Current knowledge of tissue pathology typically relies on invasive biopsies or postmortem samples. Liquid biopsies, which assess circulating mediators to deduce the histology and pathology of distant tissues, have been advancing rapidly in cancer research and offer a promising approach to be translated to the understanding and treatment of CVD. The widely understood elevations in cell-free DNA during acute and chronic cardiovascular conditions, associate with disease, severity, and offer prognostic value. The role of neutrophil extracellular traps (NETs) and circulating nucleases in thrombosis provide a solid rationale for liquid biopsies in CVD. cfDNA originates from various tissue types and cellular sources, including mitochondria and nuclei, and can be used to trace cell and tissue type lineage, as well as to gain insight into the activation status of cells. This article discusses the origin, structure, and potential utility of cfDNA, offering a deeper and less invasive approach for the understanding of the complexities of CVD.
Collapse
Affiliation(s)
- Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| | - Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| |
Collapse
|
18
|
Linthorst J, Nivard M, Sistermans EA. GWAS shows the genetics behind cell-free DNA and highlights the importance of p.Arg206Cys in DNASE1L3 for non-invasive testing. Cell Rep 2024; 43:114799. [PMID: 39331505 DOI: 10.1016/j.celrep.2024.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
The properties of cell-free DNA (cfDNA) are intensely studied for their potential as non-invasive biomarkers. We explored the effect of common genetic variants on the concentration and fragmentation properties of cfDNA using a genome-wide association study (GWAS) based on low-coverage whole-genome sequencing data of 140,000 Dutch non-invasive prenatal tests (NIPTs). Our GWAS detects many genome-wide significant loci, functional enrichments for phagocytes, liver, adipose tissue, and macrophages, and genetic correlations with autoimmune and cardiovascular disease. A common (7%) missense variant in DNASE1L3 (p.Arg206Cys) strongly affects all cfDNA properties. It increases the size of fragments, lowers cfDNA concentrations, affects the distribution of cleave-site motifs, and increases the fraction of circulating fetal DNA during pregnancy. For the application of NIPT, and potentially other cfDNA-based tests, this variant has direct clinical consequences, as it increases the odds of inconclusive results and impairs the sensitivity of NIPT by causing predictors to overestimate the fetal fraction.
Collapse
Affiliation(s)
- Jasper Linthorst
- Department of Human Genetics, Amsterdam UMC Location VU, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands.
| | - Michel Nivard
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Erik A Sistermans
- Department of Human Genetics, Amsterdam UMC Location VU, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Wu Y, Su K, Zhang Y, Liang L, Wang F, Chen S, Gao L, Zheng Q, Li C, Su Y, Mao Y, Zhu S, Chai C, Lan Q, Zhai M, Jin X, Zhang J, Xu X, Zhang Y, Gao Y, Huang H. A spatiotemporal transcriptomic atlas of mouse placentation. Cell Discov 2024; 10:110. [PMID: 39438452 PMCID: PMC11496649 DOI: 10.1038/s41421-024-00740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
The placenta, a temporary but essential organ for gestational support, undergoes intricate morphological and functional transformations throughout gestation. However, the spatiotemporal patterns of gene expression underlying placentation remain poorly understood. Utilizing Stereo-seq, we constructed a Mouse Placentation Spatiotemporal Transcriptomic Atlas (MPSTA) spanning from embryonic day (E) 7.5 to E14.5, which includes the transcriptomes of large trophoblast cells that were not captured in previous single-cell atlases. We defined four distinct strata of the ectoplacental cone, an early heterogeneous trophectoderm structure, and elucidated the spatial trajectory of trophoblast differentiation during early postimplantation stages before E9.5. Focusing on the labyrinth region, the interface of nutrient exchange in the mouse placenta, our spatiotemporal ligand-receptor interaction analysis unveiled pivotal modulators essential for trophoblast development and placental angiogenesis. We also found that paternally expressed genes are exclusively enriched in the placenta rather than in the decidual regions, including a cluster of genes enriched in endothelial cells that may function in placental angiogenesis. At the invasion front, we identified interface-specific transcription factor regulons, such as Atf3, Jun, Junb, Stat6, Mxd1, Maff, Fos, and Irf7, involved in gestational maintenance. Additionally, we revealed that maternal high-fat diet exposure preferentially affects this interface, exacerbating inflammatory responses and disrupting angiogenic homeostasis. Collectively, our findings furnish a comprehensive, spatially resolved atlas that offers valuable insights and benchmarks for future explorations into placental morphogenesis and pathology.
Collapse
Affiliation(s)
- Yanting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
| | - Kaizhen Su
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- BGI Research, Shenzhen, Guangdong, China
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Langchao Liang
- BGI Research, Qingdao, Shandong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- BGI Research, Shenzhen, Guangdong, China
| | - Siyue Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Ling Gao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Qiutong Zheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yunfei Su
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Simeng Zhu
- Department of Cardiology, Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaochao Chai
- BGI Research, Qingdao, Shandong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Lan
- BGI Research, Shenzhen, Guangdong, China
| | - Man Zhai
- BGI Research, Shenzhen, Guangdong, China
| | - Xin Jin
- BGI Research, Shenzhen, Guangdong, China
| | - Jinglan Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Xun Xu
- BGI Research, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, Guangdong, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| | - Ya Gao
- BGI Research, Shenzhen, Guangdong, China.
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
- Shenzhen Engineering Laboratory for Birth Defects Screening, BGI Research, Shenzhen, Guangdong, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
Noë M, Mathios D, Annapragada AV, Koul S, Foda ZH, Medina JE, Cristiano S, Cherry C, Bruhm DC, Niknafs N, Adleff V, Ferreira L, Easwaran H, Baylin S, Phallen J, Scharpf RB, Velculescu VE. DNA methylation and gene expression as determinants of genome-wide cell-free DNA fragmentation. Nat Commun 2024; 15:6690. [PMID: 39107309 PMCID: PMC11303779 DOI: 10.1038/s41467-024-50850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Circulating cell-free DNA (cfDNA) is emerging as an avenue for cancer detection, but the characteristics of cfDNA fragmentation in the blood are poorly understood. We evaluate the effect of DNA methylation and gene expression on genome-wide cfDNA fragmentation through analysis of 969 individuals. cfDNA fragment ends more frequently contained CCs or CGs, and fragments ending with CGs or CCGs are enriched or depleted, respectively, at methylated CpG positions. Higher levels and larger sizes of cfDNA fragments are associated with CpG methylation and reduced gene expression. These effects are validated in mice with isogenic tumors with or without the mutant IDH1, and are associated with genome-wide changes in cfDNA fragmentation in patients with cancer. Tumor-related hypomethylation and increased gene expression are associated with decrease in cfDNA fragment size that may explain smaller cfDNA fragments in human cancers. These results provide a connection between epigenetic changes and cfDNA fragmentation with implications for disease detection.
Collapse
Grants
- T32 GM136577 NIGMS NIH HHS
- U01 CA271896 NCI NIH HHS
- R01 CA121113 NCI NIH HHS
- UG1 CA233259 NCI NIH HHS
- P50 CA062924 NCI NIH HHS
- P30 CA006973 NCI NIH HHS
- Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (Dr. Miriam & Sheldon G. Adelson Medical Research Foundation)
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- EIF | Stand Up To Cancer (SU2C)
- This work was supported in part by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, SU2C in-Time Lung Cancer Interception Dream Team Grant, Stand Up to Cancer-Dutch Cancer Society International Translational Cancer Research Dream Team Grant (SU2C-AACR-DT1415), the Gray Foundation, the Commonwealth Foundation, the Mark Foundation for Cancer Research, the Cole Foundation, a research grant from Delfi Diagnostics, and US National Institutes of Health grants CA121113, CA006973, CA233259, CA062924, and 1T32GM136577. Stand Up To Cancer is a program of the Entertainment Industry Foundation administered by the American Association for Cancer Research.
Collapse
Affiliation(s)
- Michaël Noë
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dimitrios Mathios
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akshaya V Annapragada
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shashikant Koul
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zacharia H Foda
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jamie E Medina
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Cristiano
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Cherry
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel C Bruhm
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noushin Niknafs
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vilmos Adleff
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leonardo Ferreira
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hari Easwaran
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Baylin
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jillian Phallen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert B Scharpf
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Liu X, Yang M, Hu D, An Y, Wang W, Lin H, Pan Y, Ju J, Sun K. Systematic biases in reference-based plasma cell-free DNA fragmentomic profiling. CELL REPORTS METHODS 2024; 4:100793. [PMID: 38866008 PMCID: PMC11228372 DOI: 10.1016/j.crmeth.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
Plasma cell-free DNA (cfDNA) fragmentation patterns are emerging directions in cancer liquid biopsy with high translational significance. Conventionally, the cfDNA sequencing reads are aligned to a reference genome to extract their fragmentomic features. In this study, through cfDNA fragmentomics profiling using different reference genomes on the same datasets in parallel, we report systematic biases in such conventional reference-based approaches. The biases in cfDNA fragmentomic features vary among races in a sample-dependent manner and therefore might adversely affect the performances of cancer diagnosis assays across multiple clinical centers. In addition, to circumvent the analytical biases, we develop Freefly, a reference-free approach for cfDNA fragmentomics profiling. Freefly runs ∼60-fold faster than the conventional reference-based approach while generating highly consistent results. Moreover, cfDNA fragmentomic features reported by Freefly can be directly used for cancer diagnosis. Hence, Freefly possesses translational merit toward the rapid and unbiased measurement of cfDNA fragmentomics.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Chemical and Biological Engineering, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Dingxue Hu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yunyun An
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wanqiu Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Huizhen Lin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuqi Pan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia Ju
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
22
|
Hu D, Zhang Z, Liu X, Wu Y, An Y, Wang W, Yang M, Pan Y, Qiao K, Du C, Zhao Y, Li Y, Bao J, Qin T, Pan Y, Xia Z, Zhao X, Sun K. Generalizable transcriptome-based tumor malignant level evaluation and molecular subtyping towards precision oncology. J Transl Med 2024; 22:512. [PMID: 38807223 PMCID: PMC11134716 DOI: 10.1186/s12967-024-05326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024] Open
Abstract
In cancer treatment, therapeutic strategies that integrate tumor-specific characteristics (i.e., precision oncology) are widely implemented to provide clinical benefits for cancer patients. Here, through in-depth integration of tumor transcriptome and patients' prognoses across cancers, we investigated dysregulated and prognosis-associated genes and catalogued such important genes in a cancer type-dependent manner. Utilizing the expression matrices of these genes, we built models to quantitatively evaluate the malignant levels of tumors across cancers, which could add value to the clinical staging system for improved prediction of patients' survival. Furthermore, we performed a transcriptome-based molecular subtyping on hepatocellular carcinoma, which revealed three subtypes with significantly diversified clinical outcomes, mutation landscapes, immune microenvironment, and dysregulated pathways. As tumor transcriptome was commonly profiled in clinical practice with low experimental complexity and cost, this work proposed easy-to-perform approaches for practical clinical promotion towards better healthcare and precision oncology of cancer patients.
Collapse
Affiliation(s)
- Dingxue Hu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ziteng Zhang
- Hepato-Biliary Surgery Division, The Second Affiliated Hospital, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518100, China
| | - Xiaoyi Liu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Youchun Wu
- Hepato-Biliary Surgery Division, The Second Affiliated Hospital, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518100, China
| | - Yunyun An
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Wanqiu Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuqi Pan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kun Qiao
- Thoracic Surgical Department, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518100, China
| | - Changzheng Du
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
- Beijing Tsinghua Changgung Hospital, Tsinghua University School of Medicine, Beijing, 102218, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yan Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, 510086, China
| | - Jianqiang Bao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Tao Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat- Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat- Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhaohua Xia
- Thoracic Surgical Department, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518100, China.
| | - Xin Zhao
- Hepato-Biliary Surgery Division, The Second Affiliated Hospital, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518100, China.
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
23
|
Jacob DR, Guiblet WM, Mamayusupova H, Shtumpf M, Ciuta I, Ruje L, Gretton S, Bikova M, Correa C, Dellow E, Agrawal SP, Shafiei N, Drobysevskaja A, Armstrong CM, Lam JDG, Vainshtein Y, Clarkson CT, Thorn GJ, Sohn K, Pradeepa MM, Chandrasekharan S, Brooke GN, Klenova E, Zhurkin VB, Teif VB. Nucleosome reorganisation in breast cancer tissues. Clin Epigenetics 2024; 16:50. [PMID: 38561804 PMCID: PMC10986098 DOI: 10.1186/s13148-024-01656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Nucleosome repositioning in cancer is believed to cause many changes in genome organisation and gene expression. Understanding these changes is important to elucidate fundamental aspects of cancer. It is also important for medical diagnostics based on cell-free DNA (cfDNA), which originates from genomic DNA regions protected from digestion by nucleosomes. RESULTS We have generated high-resolution nucleosome maps in paired tumour and normal tissues from the same breast cancer patients using MNase-assisted histone H3 ChIP-seq and compared them with the corresponding cfDNA from blood plasma. This analysis has detected single-nucleosome repositioning at key regulatory regions in a patient-specific manner and common cancer-specific patterns across patients. The nucleosomes gained in tumour versus normal tissue were particularly informative of cancer pathways, with ~ 20-fold enrichment at CpG islands, a large fraction of which marked promoters of genes encoding DNA-binding proteins. The tumour tissues were characterised by a 5-10 bp decrease in the average distance between nucleosomes (nucleosome repeat length, NRL), which is qualitatively similar to the differences between pluripotent and differentiated cells. This effect was correlated with gene activity, differential DNA methylation and changes in local occupancy of linker histone variants H1.4 and H1X. CONCLUSIONS Our study offers a novel resource of high-resolution nucleosome maps in breast cancer patients and reports for the first time the effect of systematic decrease of NRL in paired tumour versus normal breast tissues from the same patient. Our findings provide a new mechanistic understanding of nucleosome repositioning in tumour tissues that can be valuable for patient diagnostics, stratification and monitoring.
Collapse
Affiliation(s)
- Divya R Jacob
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Wilfried M Guiblet
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hulkar Mamayusupova
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Mariya Shtumpf
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Isabella Ciuta
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Luminita Ruje
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Svetlana Gretton
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- School of Engineering, Arts, Science and Technology, University of Suffolk, James Hehir Building, University Avenue, Ipswich, Suffolk, IP3 0FS, UK
| | - Milena Bikova
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Clark Correa
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Emily Dellow
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Shivam P Agrawal
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Navid Shafiei
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | | | - Chris M Armstrong
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Jonathan D G Lam
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Yevhen Vainshtein
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstraße 12, 70569, Stuttgart, Germany
| | - Christopher T Clarkson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- University College London, Gower St, Bloomsbury, London, WC1E 6BT, UK
| | - Graeme J Thorn
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Kai Sohn
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstraße 12, 70569, Stuttgart, Germany
| | - Madapura M Pradeepa
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Sankaran Chandrasekharan
- Colchester General Hospital, East Suffolk and North Essex NHS Foundation Trust, Turner Road, Colchester, CO4 5JL, UK
| | - Greg N Brooke
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Elena Klenova
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Victor B Zhurkin
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
24
|
Zhang X, Li J, Lan X, Li J. Cell‐free DNA‐associated multi‐feature applications in cancer diagnosis and treatment. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 01/03/2025]
Abstract
AbstractMalignant tumours pose significant challenges in terms of high morbidity and mortality rates, primarily due to the lack of large‐scale applicable screening methods and efficient treatment strategies. However, the development of liquid biopsies, particularly circulating cell‐free DNA (cfDNA), offers promising solutions characterised by their non‐invasiveness and cost‐effectiveness, providing comprehensive tumour information on a global scale. The release of cfDNA is predominantly associated with cell death and turnover, while its elimination occurs through nuclease digestion, renal excretion into the urine and uptake by the liver and spleen. Extensive research into the biological properties of cfDNA has led to the identification of novel applications, including non‐invasive cancer screening, cancer subtype classification, tissue‐of‐origin detection and monitoring of treatment efficacy. Additionally, emerging fields such as methylation‐omics, fragment‐omics and nucleosome‐omics show immense potential as tissue‐ and disease‐specific markers. Therefore, this review aims to comprehensively introduce the latest detection techniques of cfDNA, along with detailed information on its characteristics and applications, providing valuable insights for cancer diagnosis and monitoring, which will assist us in purposefully enhancing relevant features for a more comprehensive application in clinical practice.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- MOE Key Laboratory of Bioinformatics Tsinghua University Beijing China
- Tsinghua‐Peking Joint Center for Life Sciences Tsinghua University Beijing China
| | - Jingwei Li
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- MOE Key Laboratory of Bioinformatics Tsinghua University Beijing China
| | - Xun Lan
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- MOE Key Laboratory of Bioinformatics Tsinghua University Beijing China
- Tsinghua‐Peking Joint Center for Life Sciences Tsinghua University Beijing China
| | - Jie Li
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- Academy of Biomedical Engineering Kunming Medical University Kunming China
| |
Collapse
|
25
|
Che H, Jiang P, Choy LYL, Cheng SH, Peng W, Chan RWY, Liu J, Zhou Q, Lam WKJ, Yu SCY, Lau SL, Leung TY, Wong J, Wong VWS, Wong GLH, Chan SL, Chan KCA, Lo YMD. Genomic origin, fragmentomics, and transcriptional properties of long cell-free DNA molecules in human plasma. Genome Res 2024; 34:189-200. [PMID: 38408788 PMCID: PMC10984381 DOI: 10.1101/gr.278556.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Recent studies have revealed an unexplored population of long cell-free DNA (cfDNA) molecules in human plasma using long-read sequencing technologies. However, the biological properties of long cfDNA molecules (>500 bp) remain largely unknown. To this end, we have investigated the origins of long cfDNA molecules from different genomic elements. Analysis of plasma cfDNA using long-read sequencing reveals an uneven distribution of long molecules from across the genome. Long cfDNA molecules show overrepresentation in euchromatic regions of the genome, in sharp contrast to short DNA molecules. We observe a stronger relationship between the abundance of long molecules and mRNA gene expression levels, compared with short molecules (Pearson's r = 0.71 vs. -0.14). Moreover, long and short molecules show distinct fragmentation patterns surrounding CpG sites. Leveraging the cleavage preferences surrounding CpG sites, the combined cleavage ratios of long and short molecules can differentiate patients with hepatocellular carcinoma (HCC) from non-HCC subjects (AUC = 0.87). We also investigated knockout mice in which selected nuclease genes had been inactivated in comparison with wild-type mice. The proportion of long molecules originating from transcription start sites are lower in Dffb-deficient mice but higher in Dnase1l3-deficient mice compared with that of wild-type mice. This work thus provides new insights into the biological properties and potential clinical applications of long cfDNA molecules.
Collapse
Affiliation(s)
- Huiwen Che
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - L Y Lois Choy
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Suk Hang Cheng
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wenlei Peng
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Rebecca W Y Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jing Liu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qing Zhou
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - W K Jacky Lam
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Stephanie C Y Yu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - So Ling Lau
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tak Y Leung
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John Wong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Grace L H Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Stephen L Chan
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Clinical Oncology, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - K C Allen Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Y M Dennis Lo
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
26
|
Cheng JC, Swarup N, Wong DTW, Chia D. A review on the impact of single-stranded library preparation on plasma cell-free diversity for cancer detection. Front Oncol 2024; 14:1332004. [PMID: 38511142 PMCID: PMC10951391 DOI: 10.3389/fonc.2024.1332004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024] Open
Abstract
In clinical oncology, cell-free DNA (cfDNA) has shown immense potential in its ability to noninvasively detect cancer at various stages and monitor the progression of therapy. Despite the rapid improvements in cfDNA liquid biopsy approaches, achieving the required sensitivity to detect rare tumor-derived cfDNA still remains a challenge. For next-generation sequencing, the perceived presentation of cfDNA is strongly linked to the extraction and library preparation protocols. Conventional double-stranded DNA library preparation (dsDNA-LP) focuses on assessing ~167bp double-stranded mononucleosomal (mncfDNA) and its other oligonucleosomal cell-free DNA counterparts in plasma. However, dsDNA-LP methods fail to include short, single-stranded, or nicked DNA in the final library preparation, biasing the representation of the actual cfDNA populations in plasma. The emergence of single-stranded library preparation (ssDNA-LP) strategies over the past decade has now allowed these other populations of cfDNA to be studied from plasma. With the use of ssDNA-LP, single-stranded, nicked, and ultrashort cfDNA can be comprehensively assessed for its molecular characteristics and clinical potential. In this review, we overview the current literature on applications of ssDNA-LP on plasma cfDNA from a potential cancer liquid biopsy perspective. To this end, we discuss the molecular principles of single-stranded DNA adapter ligation, how library preparation contributes to the understanding of native cfDNA characteristics, and the potential for ssDNA-LP to improve the sensitivity of circulating tumor DNA detection. Additionally, we review the current literature on the newly reported species of plasma ultrashort single-stranded cell-free DNA plasma, which appear biologically distinct from mncfDNA. We conclude with a discussion of future perspectives of ssDNA-LP for liquid biopsy endeavors.
Collapse
Affiliation(s)
- Jordan C. Cheng
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
- Stanford Cancer Institute, Stanford University, Stanford, CA, United States
| | - Neeti Swarup
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David T. W. Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Chia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
27
|
Zhang J, Wu Y, Chen S, Luo Q, Xi H, Li J, Qin X, Peng Y, Ma N, Yang B, Qiu X, Lu W, Chen Y, Jiang Y, Chen P, Liu Y, Zhang C, Zhang Z, Xiong Y, Shen J, Liang H, Ren Y, Ying C, Dong M, Li X, Xu C, Wang H, Zhang D, Xu C, Huang H. Prospective prenatal cell-free DNA screening for genetic conditions of heterogenous etiologies. Nat Med 2024; 30:470-479. [PMID: 38253798 DOI: 10.1038/s41591-023-02774-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
Prenatal cell-free DNA (cfDNA) screening uses extracellular fetal DNA circulating in the peripheral blood of pregnant women to detect prevalent fetal chromosomal anomalies. However, numerous severe conditions with underlying single-gene defects are not included in current prenatal cfDNA screening. In this prospective, multicenter and observational study, pregnant women at elevated risk for fetal genetic conditions were enrolled for a cfDNA screening test based on coordinative allele-aware target enrichment sequencing. This test encompasses the following three of the most frequent pathogenic genetic variations: aneuploidies, microdeletions and monogenic variants. The cfDNA screening results were compared to invasive prenatal or postnatal diagnostic test results for 1,090 qualified participants. The comprehensive cfDNA screening detected a genetic alteration in 135 pregnancies with 98.5% sensitivity and 99.3% specificity relative to standard diagnostics. Of 876 fetuses with suspected structural anomalies on ultrasound examination, comprehensive cfDNA screening identified 55 (56.1%) aneuploidies, 6 (6.1%) microdeletions and 37 (37.8%) single-gene pathogenic variants. The inclusion of targeted monogenic conditions alongside chromosomal aberrations led to a 60.7% increase (from 61 to 98) in the detection rate. Overall, these data provide preliminary evidence that a comprehensive cfDNA screening test can accurately identify fetal pathogenic variants at both the chromosome and single-gene levels in high-risk pregnancies through a noninvasive approach, which has the potential to improve prenatal evaluation of fetal risks for severe genetic conditions arising from heterogenous molecular etiologies. ClinicalTrials.gov registration: ChiCTR2100045739 .
Collapse
Affiliation(s)
- Jinglan Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Beijing BioBiggen Technology Co., Ltd, Beijing, China.
| | - Yanting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Songchang Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Qiong Luo
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, and Zhejiang Provincial Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Xi
- National Health Commission (NHC) Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jianli Li
- Beijing BioBiggen Technology Co., Ltd, Beijing, China
| | - Xiaomei Qin
- Beijing BioBiggen Technology Co., Ltd, Beijing, China
| | - Ying Peng
- National Health Commission (NHC) Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Na Ma
- National Health Commission (NHC) Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Bingxin Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Qiu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Weiliang Lu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yuan Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, and Zhejiang Provincial Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Jiang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, and Zhejiang Provincial Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Panpan Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, and Zhejiang Provincial Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, and Zhejiang Provincial Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Zhiwei Zhang
- Beijing BioBiggen Technology Co., Ltd, Beijing, China
| | - Yu Xiong
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jie Shen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Huan Liang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yunyun Ren
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chunmei Ying
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Minyue Dong
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, and Zhejiang Provincial Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hua Wang
- National Health Commission (NHC) Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, and Zhejiang Provincial Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.
| | - Chenming Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Frontiers Science Research Center of Reproduction and Development, Shanghai, China.
| |
Collapse
|
28
|
Maansson CT, Thomsen LS, Meldgaard P, Nielsen AL, Sorensen BS. Integration of Cell-Free DNA End Motifs and Fragment Lengths Can Identify Active Genes in Liquid Biopsies. Int J Mol Sci 2024; 25:1243. [PMID: 38279243 PMCID: PMC10815977 DOI: 10.3390/ijms25021243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Multiple studies have shown that cell-free DNA (cfDNA) from cancer patients differ in both fragment length and fragment end motif (FEM) from healthy individuals, yet there is a lack of understanding of how the two factors combined are associated with cancer and gene transcription. In this study, we conducted cfDNA fragmentomics evaluations using plasma from lung cancer patients (n = 12) and healthy individuals (n = 7). A personal gene expression profile was established from plasma using H3K36me3 cell-free chromatin immunoprecipitation sequencing (cfChIP-seq). The genes with the highest expression displayed an enrichment of short cfDNA fragments (median = 19.99%, IQR: 16.94-27.13%, p < 0.0001) compared to the genes with low expression. Furthermore, distinct GC-rich FEMs were enriched after cfChIP. Combining the frequency of short cfDNA fragments with the presence of distinct FEMs resulted in an even further enrichment of the most expressed genes (median = 37.85%, IQR: 30.10-39.49%, p < 0.0001). An in vitro size selection of <150 bp cfDNA could isolate cfDNA representing active genes and the size-selection enrichment correlated with the cfChIP-seq enrichment (Spearman r range: 0.499-0.882, p < 0.0001). This study expands the knowledge regarding cfDNA fragmentomics and sheds new light on how gene activity is associated with both cfDNA fragment lengths and distinct FEMs.
Collapse
Affiliation(s)
- Christoffer Trier Maansson
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark; (C.T.M.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Louise Skov Thomsen
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark; (C.T.M.)
| | - Peter Meldgaard
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | | | - Boe Sandahl Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark; (C.T.M.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
29
|
Luo Y, Zhang H, Li L, Lin Y, Wang X, Chen W, Tao Y, Ou R, Zhou W, Zheng F, Jin Y, Cheng F, Zhu H, Zhang Y, Jin X. Heat inactivation does not alter host plasma cell-free DNA characteristics in infectious disease research. Clin Chim Acta 2024; 553:117751. [PMID: 38163539 DOI: 10.1016/j.cca.2023.117751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Cell-free DNA (cfDNA) is a promising analyte for non-invasive liquid biopsy, carrying abundant signatures for disease diagnosis and monitoring. In infectious disease researches, blood plasma samples are routinely heat-inactivated before proceeding with downstream analyses. However, the effects of heat inactivation on cfDNA fragmentomic analysis remain largely unclear, potentially introducing biases or altering the characteristics of cfDNA. METHODS We performed a comprehensive investigation of cfDNA concentrations and fragmentomics in 21 plasma samples from 7 healthy individuals, by comparing the sample group without the heat inactivation to those exposed to once or twice heat-inactivation at 56 °C for 30 min and following freeze-thaw. RESULTS Plasma samples with once and twice heat inactivation displayed no significant deviations in primary characteristics, including cfDNA concentrations, size profiles, end motif features, and genome-wide distributions, compared to samples without heat treatment. CONCLUSIONS Heat-inactivated cfDNA can be utilized for liquid biopsy in infectious disease researches, without substantial impact on cfDNA concentrations and fragmentomic properties. This study provides essential insights into the effects of heat inactivation on cfDNA properties and will contribute to the development of reliable non-invasive biomarkers for infectious disease.
Collapse
Affiliation(s)
- Yuxue Luo
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
| | | | - Lingguo Li
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Lin
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Xinxin Wang
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China; BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Ye Tao
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Rijing Ou
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Wenwen Zhou
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Fang Zheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yan Jin
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Fanjun Cheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | | | - Yan Zhang
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Xin Jin
- School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China; BGI-Shenzhen, Shenzhen 518083, Guangdong, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen 518083, China.
| |
Collapse
|
30
|
Xu J, Chen H, Fan W, Qiu M, Feng J. Plasma cell-free DNA as a sensitive biomarker for multi-cancer detection and immunotherapy outcomes prediction. J Cancer Res Clin Oncol 2024; 150:7. [PMID: 38196018 PMCID: PMC10776501 DOI: 10.1007/s00432-023-05521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Cell-free DNA (cfDNA) has shown promise in detecting various cancers, but the diagnostic performance of cfDNA end motifs for multiple cancer types requires verification. This study aimed to assess the utility of cfDNA end motifs for multi-cancer detection. METHODS This study included 206 participants: 106 individuals with cancer, representing 20 cancer types, and 100 healthy individuals. The participants were divided into training and testing cohorts. All plasma cfDNA samples were profiled by whole-genome sequencing. A random forest model was constructed using cfDNA 4 bp-end-motif profiles to predict cancer in the training cohort, and its performance was evaluated in the testing cohort. Additionally, a separate random forest model was developed to predict immunotherapy responses. RESULTS In the training cohort, the model based on 4 bp-end-motif profiles achieved an AUC of 0.962 (95% CI 0.936-0.987). The AUC in the testing cohort was 0.983 (95% CI 0.960-1.000). The model also maintained excellent predictive ability in different tumor sub-cohorts, including lung cancer (AUC 0.918, 95% CI 0.862-0.974), gastrointestinal cancer (AUC 0.966, 95% CI 0.938-0.993), and other cancer cohort (AUC 0.859, 95% CI 0.776-0.942). Moreover, the model utilizing 4 bp-end-motif profiles exhibited sensitivity in identifying responders to immunotherapy (AUC 0.784, 95% CI 0.609-0.960). CONCLUSION The model based on 4 bp-end-motif profiles demonstrates superior sensitivity in multi-cancer detection. Detection of 4 bp-end-motif profiles may serve as potential predictive biomarkers for cancer immunotherapy.
Collapse
Affiliation(s)
- Juqing Xu
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Haiming Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Weifei Fan
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Jifeng Feng
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
31
|
Alig SK, Shahrokh Esfahani M, Garofalo A, Li MY, Rossi C, Flerlage T, Flerlage JE, Adams R, Binkley MS, Shukla N, Jin MC, Olsen M, Telenius A, Mutter JA, Schroers-Martin JG, Sworder BJ, Rai S, King DA, Schultz A, Bögeholz J, Su S, Kathuria KR, Liu CL, Kang X, Strohband MJ, Langfitt D, Pobre-Piza KF, Surman S, Tian F, Spina V, Tousseyn T, Buedts L, Hoppe R, Natkunam Y, Fornecker LM, Castellino SM, Advani R, Rossi D, Lynch R, Ghesquières H, Casasnovas O, Kurtz DM, Marks LJ, Link MP, André M, Vandenberghe P, Steidl C, Diehn M, Alizadeh AA. Distinct Hodgkin lymphoma subtypes defined by noninvasive genomic profiling. Nature 2024; 625:778-787. [PMID: 38081297 PMCID: PMC11293530 DOI: 10.1038/s41586-023-06903-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
The scarcity of malignant Hodgkin and Reed-Sternberg cells hampers tissue-based comprehensive genomic profiling of classic Hodgkin lymphoma (cHL). By contrast, liquid biopsies show promise for molecular profiling of cHL due to relatively high circulating tumour DNA (ctDNA) levels1-4. Here we show that the plasma representation of mutations exceeds the bulk tumour representation in most cases, making cHL particularly amenable to noninvasive profiling. Leveraging single-cell transcriptional profiles of cHL tumours, we demonstrate Hodgkin and Reed-Sternberg ctDNA shedding to be shaped by DNASE1L3, whose increased tumour microenvironment-derived expression drives high ctDNA concentrations. Using this insight, we comprehensively profile 366 patients, revealing two distinct cHL genomic subtypes with characteristic clinical and prognostic correlates, as well as distinct transcriptional and immunological profiles. Furthermore, we identify a novel class of truncating IL4R mutations that are dependent on IL-13 signalling and therapeutically targetable with IL-4Rα-blocking antibodies. Finally, using PhasED-seq5, we demonstrate the clinical value of pretreatment and on-treatment ctDNA levels for longitudinally refining cHL risk prediction and for detection of radiographically occult minimal residual disease. Collectively, these results support the utility of noninvasive strategies for genotyping and dynamic monitoring of cHL, as well as capturing molecularly distinct subtypes with diagnostic, prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Stefan K Alig
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | | | - Andrea Garofalo
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Michael Yu Li
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Cédric Rossi
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
- Hematology Department, University Hospital F. Mitterrand and Inserm UMR 1231, Dijon, France
| | - Tim Flerlage
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jamie E Flerlage
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ragini Adams
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Stanford University, Stanford, CA, USA
| | - Michael S Binkley
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, USA
| | - Navika Shukla
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Michael C Jin
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Mari Olsen
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Adèle Telenius
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Jurik A Mutter
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Joseph G Schroers-Martin
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Brian J Sworder
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Shinya Rai
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Daniel A King
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Andre Schultz
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Jan Bögeholz
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Shengqin Su
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, USA
| | - Karan R Kathuria
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Chih Long Liu
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Xiaoman Kang
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Maya J Strohband
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Deanna Langfitt
- Department of Bone Marrow Transplant and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Sherri Surman
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Feng Tian
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Valeria Spina
- Laboratory of Molecular Diagnostics, Department of Medical Genetics EOLAB, Bellinzona, Switzerland
| | - Thomas Tousseyn
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | - Richard Hoppe
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, USA
| | | | - Luc-Matthieu Fornecker
- Institut de Cancérologie Strasbourg Europe (ICANS) and University of Strasbourg, Strasbourg, France
| | - Sharon M Castellino
- Department of Pediatrics, Emory University, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Ranjana Advani
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Davide Rossi
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Ryan Lynch
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hervé Ghesquières
- Department of Hematology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Benite, France
| | - Olivier Casasnovas
- Hematology Department, University Hospital F. Mitterrand and Inserm UMR 1231, Dijon, France
| | - David M Kurtz
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Lianna J Marks
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Stanford University, Stanford, CA, USA
| | - Michael P Link
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Stanford University, Stanford, CA, USA
| | - Marc André
- Department of Haematology, Université Catholique de Louvain, CHU UCL Namur, Yvoir, Belgium
| | - Peter Vandenberghe
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, USA.
| | - Ash A Alizadeh
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
32
|
Lu D, Wu X, Wu W, Wu S, Li H, Zhang Y, Yan X, Zhai J, Dong X, Feng S, Zhang X, Sun F, Wang S, Cai K. Plasma cell-free DNA 5-hydroxymethylcytosine and whole-genome sequencing signatures for early detection of esophageal cancer. Cell Death Dis 2023; 14:843. [PMID: 38114477 PMCID: PMC10730877 DOI: 10.1038/s41419-023-06329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/05/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Esophageal cancer is a highly incidence and deadly disease with a poor prognosis, especially in developing countries. Owing to the lack of specific symptoms and early diagnostic biomarkers, most patients are diagnosed with advanced disease, leading to a 5-year survival rate of less than 15%. Early (n = 50) and middle-advanced (n = 50) esophageal squamous cell carcinoma (ESCC) patients, as well as 71 healthy individuals, underwent 5-hydroxymethylcytosine (5hmC) sequencing on their plasma cell-free DNA (cfDNA). A Northern Chinese cohort of cfDNA 5hmC dataset of 150 ESCC patients and 183 healthy individuals were downloaded for validation. A diagnostic model was developed using cfDNA 5hmC signatures and then improved by low-pass whole genome sequencing (WGS) features of cfDNA. Conserved cfDNA 5hmC modification motifs were observed in the two independent ESCC cohorts. The diagnostic model with 5hmC features achieved an AUC of 0.810 and 0.862 in the Southern and Northern cohorts, respectively, with sensitivities of 69.3-74.3% and specificities of 82.4-90.7%. The performance was well maintained in Stage I to Stage IV, with accuracy of 70-100%, but low in Stage 0, 33.3%. Low-pass WGS of cfDNA improved the AUC to 0.934 with a sensitivity of 82.4%, a specificity of 88.2%, and an accuracy of 84.3%, particularly significantly in Stage 0, with an accuracy up to 80%. 5hmC and WGS could efficiently differentiate very early ESCC from healthy individuals. These findings imply a non-invasive and convenient method for ESCC detection when clinical treatments are available and may eventually prolong survival.
Collapse
Affiliation(s)
- Di Lu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuanzhen Wu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wendy Wu
- Berry Oncology Corporation, Beijing, 100102, China
| | - Shuangxiu Wu
- Berry Oncology Corporation, Beijing, 100102, China
| | - Hui Li
- Berry Oncology Corporation, Beijing, 100102, China
| | - Yuhong Zhang
- Berry Oncology Corporation, Beijing, 100102, China
| | - Xuebin Yan
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianxue Zhai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoying Dong
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Siyang Feng
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | | | - Fuming Sun
- Berry Oncology Corporation, Beijing, 100102, China
| | - Shaobo Wang
- Berry Oncology Corporation, Beijing, 100102, China
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
33
|
Gatto M, Depascale R, Stefanski AL, Schrezenmeier E, Dörner T. Translational implications of newly characterized pathogenic pathways in systemic lupus erythematosus. Best Pract Res Clin Rheumatol 2023; 37:101864. [PMID: 37625930 DOI: 10.1016/j.berh.2023.101864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Improved characterization of relevant pathogenic pathways in systemic lupus erythematosus (SLE) has been further delineated over the last decades. This led to the development of targeted treatments including belimumab and anifrolumab, which recently became available in clinics. Therapeutic targets in SLE encompass interferon (IFN) signaling, B-T costimulation including immune checkpoints, and increasing modalities of B lineage targeting, such as chimeric antigen receptor (CAR) T cells directed against CD19 or sequential anti-B cell targeting. Patient profiling based on characterization of underlying molecular abnormalities, often performed through comprehensive omics analyses, has recently been shown to better predict patients' treatment responses and also holds promise to unravel key molecular mechanisms driving SLE. SLE carries two key signatures, namely the IFN and B lineage/plasma cell signatures. Recent advances in SLE treatments clearly indicate that targeting innate and adaptive immunity is successful in such a complex autoimmune disease. Although those signatures may interact at the molecular level and provide the basis for the first selective treatments in SLE, it remains to be clarified whether these distinct treatments show different treatment responses among certain patient subsets. In fact, notwithstanding the remarkable amount of novel clues for innovative SLE treatment, harmonization of big data within tailored treatment strategies will be instrumental to better understand and treat this challenging autoimmune disorder. This review will provide an overview of recent improvements in SLE pathogenesis, related insights by analyses of big data and machine learning as well as technical improvements in conducting clinical trials with the ultimate goal that translational research results in improved patient outcomes.
Collapse
Affiliation(s)
- Mariele Gatto
- Unit of Rheumatology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Roberto Depascale
- Unit of Rheumatology, Department of Medicine, University of Padova, Padova, Italy
| | - Ana Luisa Stefanski
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Berlin, Germany
| | - Eva Schrezenmeier
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
34
|
Engavale M, Hernandez CJ, Infante A, LeRoith T, Radovan E, Evans L, Villarreal J, Reilly CM, Sutton RB, Keyel PA. Deficiency of macrophage-derived Dnase1L3 causes lupus-like phenotypes in mice. J Leukoc Biol 2023; 114:547-556. [PMID: 37804110 PMCID: PMC10843819 DOI: 10.1093/jleuko/qiad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/01/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease caused by environmental factors and loss of key proteins, including the endonuclease Dnase1L3. Dnase1L3 absence causes pediatric-onset lupus in humans, while reduced activity occurs in adult-onset SLE. The amount of Dnase1L3 that prevents lupus remains unknown. To genetically reduce Dnase1L3 levels, we developed a mouse model lacking Dnase1L3 in macrophages (conditional knockout [cKO]). Serum Dnase1L3 levels were reduced 67%, though Dnase1 activity remained constant. Homogeneous and peripheral antinuclear antibodies were detected in the sera by immunofluorescence, consistent with anti-double-stranded DNA (anti-dsDNA) antibodies. Total immunoglobulin M, total immunoglobulin G, and anti-dsDNA antibody levels increased in cKO mice with age. The cKO mice developed anti-Dnase1L3 antibodies. In contrast to global Dnase1L3-/- mice, anti-dsDNA antibodies were not elevated early in life. The cKO mice had minimal kidney pathology. Therefore, we conclude that an intermediate reduction in serum Dnase1L3 causes mild lupus phenotypes, and macrophage-derived DnaselL3 helps limit lupus.
Collapse
Affiliation(s)
- Minal Engavale
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Colton J. Hernandez
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Angelica Infante
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Tanya LeRoith
- Department of Cell Biology and Physiology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Elliott Radovan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Lauryn Evans
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Johanna Villarreal
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | - Christopher M. Reilly
- Department of Cell Biology and Physiology, Virginia Tech, Blacksburg, VA 24061, United States
| | - R. Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | - Peter A. Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| |
Collapse
|
35
|
Zhu D, Wang H, Wu W, Geng S, Zhong G, Li Y, Guo H, Long G, Ren Q, Luan Y, Duan C, Wei B, Ma J, Li S, Zhou J, Mao M. Circulating cell-free DNA fragmentation is a stepwise and conserved process linked to apoptosis. BMC Biol 2023; 21:253. [PMID: 37953260 PMCID: PMC10642009 DOI: 10.1186/s12915-023-01752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA) is a pool of short DNA fragments mainly released from apoptotic hematopoietic cells. Nevertheless, the precise physiological process governing the DNA fragmentation and molecular profile of cfDNA remains obscure. To dissect the DNA fragmentation process, we use a human leukemia cell line HL60 undergoing apoptosis to analyze the size distribution of DNA fragments by shallow whole-genome sequencing (sWGS). Meanwhile, we also scrutinize the size profile of plasma cfDNA in 901 healthy human subjects and 38 dogs, as well as 438 patients with six common cancer types by sWGS. RESULTS Distinct size distribution profiles were observed in the HL60 cell pellet and supernatant, suggesting fragmentation is a stepwise process. Meanwhile, C-end preference was seen in both intracellular and extracellular cfDNA fragments. Moreover, the cfDNA profiles are characteristic and conserved across mammals. Compared with healthy subjects, distinct cfDNA profiles with a higher proportion of short fragments and lower C-end preference were found in cancer patients. CONCLUSIONS Our study provides new insight into fragmentomics of circulating cfDNA processing, which will be useful for early diagnosis of cancer and surveillance during cancer progression.
Collapse
Affiliation(s)
- Dandan Zhu
- Clinical Laboratories, Shenyou Bio, Zhengzhou, 450000, China
| | - Haihong Wang
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Wu
- Research & Development, SeekIn Inc, Shenzhen, 518000, China
| | - Shuaipeng Geng
- Clinical Laboratories, Shenyou Bio, Zhengzhou, 450000, China
| | - Guolin Zhong
- Research & Development, SeekIn Inc, Shenzhen, 518000, China
| | - Yunfei Li
- Research & Development, SeekIn Inc, Shenzhen, 518000, China
| | - Han Guo
- Clinical Laboratories, Shenyou Bio, Zhengzhou, 450000, China
| | - Guanghui Long
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Qingqi Ren
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Yi Luan
- Clinical Laboratories, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chaohui Duan
- Clinical Laboratories, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Bing Wei
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Jie Ma
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Shiyong Li
- Research & Development, SeekIn Inc, Shenzhen, 518000, China
| | - Jun Zhou
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Mao Mao
- Research & Development, SeekIn Inc, Shenzhen, 518000, China.
- Yonsei Song-Dang Institute for Cancer Research, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
36
|
Cheng J, Swarup N, Li F, Kordi M, Lin CC, Yang SC, Huang WL, Aziz M, Kim Y, Chia D, Yeh YM, Wei F, Zheng D, Zhang L, Pellegrini M, Su WC, Wong DT. Distinct Features of Plasma Ultrashort Single-Stranded Cell-Free DNA as Biomarkers for Lung Cancer Detection. Clin Chem 2023; 69:1270-1282. [PMID: 37725931 PMCID: PMC10644908 DOI: 10.1093/clinchem/hvad131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Using broad range cell-free DNA sequencing (BRcfDNA-Seq), a nontargeted next-generation sequencing (NGS) methodology, we previously identified a novel class of approximately 50 nt ultrashort single-stranded cell-free DNA (uscfDNA) in plasma that is distinctly different from 167 bp mononucleosomal cell-free DNA (mncfDNA). We hypothesize that uscfDNA possesses characteristics that are useful for disease detection. METHODS Using BRcfDNA-Seq, we examined both cfDNA populations in the plasma of 18 noncancer controls and 14 patients with late-stage nonsmall cell lung carcinoma (NSCLC). In comparison to mncfDNA, we assessed whether functional element (FE) peaks, fragmentomics, end-motifs, and G-Quadruplex (G-Quad) signatures could be useful features of uscfDNA for NSCLC determination. RESULTS In noncancer participants, compared to mncfDNA, uscfDNA fragments showed a 45.2-fold increased tendency to form FE peaks (enriched in promoter, intronic, and exonic regions), demonstrated a distinct end-motif-frequency profile, and presented with a 4.9-fold increase in G-Quad signatures. Within NSCLC participants, only the uscfDNA population had discoverable FE peak candidates. Additionally, uscfDNA showcased different end-motif-frequency candidates distinct from mncfDNA. Although both cfDNA populations showed increased fragmentation in NSCLC, the G-Quad signatures were more discriminatory in uscfDNA. Compilation of cfDNA features using principal component analysis revealed that the first 5 principal components of both cfDNA subtypes had a cumulative explained variance of >80%. CONCLUSIONS These observations indicate that the distinct biological processes of uscfDNA and that FE peaks, fragmentomics, end-motifs, and G-Quad signatures are uscfDNA features with promising biomarker potential. These findings further justify its exploration as a distinct class of biomarker to augment pre-existing liquid biopsy approaches.
Collapse
Affiliation(s)
- Jordan Cheng
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Neeti Swarup
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Misagh Kordi
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chien-Chung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Szu-Chun Yang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Lun Huang
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Mohammad Aziz
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yong Kim
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Chia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yu-Min Yeh
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fang Wei
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Zheng
- Department of Molecular, Cell and Developmental Biology, Life Sciences Division, University of California, Los Angeles, Los Angeles, CA, United States
| | - Liying Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Life Sciences Division, University of California, Los Angeles, Los Angeles, CA, United States
| | - Wu-Chou Su
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - David T.W. Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
37
|
Kim J, Hong SP, Lee S, Lee W, Lee D, Kim R, Park YJ, Moon S, Park K, Cha B, Kim JI. Multidimensional fragmentomic profiling of cell-free DNA released from patient-derived organoids. Hum Genomics 2023; 17:96. [PMID: 37898819 PMCID: PMC10613368 DOI: 10.1186/s40246-023-00533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/11/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Fragmentomics, the investigation of fragmentation patterns of cell-free DNA (cfDNA), has emerged as a promising strategy for the early detection of multiple cancers in the field of liquid biopsy. However, the clinical application of this approach has been hindered by a limited understanding of cfDNA biology. Furthermore, the prevalence of hematopoietic cell-derived cfDNA in plasma complicates the in vivo investigation of tissue-specific cfDNA other than that of hematopoietic origin. While conventional two-dimensional cell lines have contributed to research on cfDNA biology, their limited representation of in vivo tissue contexts underscores the need for more robust models. In this study, we propose three-dimensional organoids as a novel in vitro model for studying cfDNA biology, focusing on multifaceted fragmentomic analyses. RESULTS We established nine patient-derived organoid lines from normal lung airway, normal gastric, and gastric cancer tissues. We then extracted cfDNA from the culture medium of these organoids in both proliferative and apoptotic states. Using whole-genome sequencing data from cfDNA, we analyzed various fragmentomic features, including fragment size, footprints, end motifs, and repeat types at the end. The distribution of cfDNA fragment sizes in organoids, especially in apoptosis samples, was similar to that found in plasma, implying occupancy by mononucleosomes. The footprints determined by sequencing depth exhibited distinct patterns depending on fragment sizes, reflecting occupancy by a variety of DNA-binding proteins. Notably, we discovered that short fragments (< 118 bp) were exclusively enriched in the proliferative state and exhibited distinct fragmentomic profiles, characterized by 3 bp palindromic end motifs and specific repeats. CONCLUSIONS In conclusion, our results highlight the utility of in vitro organoid models as a valuable tool for studying cfDNA biology and its associated fragmentation patterns. This, in turn, will pave the way for further enhancements in noninvasive cancer detection methodologies based on fragmentomics.
Collapse
Affiliation(s)
- Jaeryuk Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Pyo Hong
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seyoon Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woochan Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dakyung Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Rokhyun Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Jun Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungji Moon
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bukyoung Cha
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Li W, Nakano H, Fan W, Li Y, Sil P, Nakano K, Zhao F, Karmaus PW, Grimm SA, Shi M, Xu X, Mizuta R, Kitamura D, Wan Y, Fessler MB, Cook DN, Shats I, Li X, Li L. DNASE1L3 enhances antitumor immunity and suppresses tumor progression in colon cancer. JCI Insight 2023; 8:e168161. [PMID: 37581941 PMCID: PMC10544201 DOI: 10.1172/jci.insight.168161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
DNASE1L3, an enzyme highly expressed in DCs, is functionally important for regulating autoimmune responses to self-DNA and chromatin. Deficiency of DNASE1L3 leads to development of autoimmune diseases in both humans and mice. However, despite the well-established causal relationship between DNASE1L3 and immunity, little is known about the involvement of DNASE1L3 in regulation of antitumor immunity, the foundation of modern antitumor immunotherapy. In this study, we identify DNASE1L3 as a potentially new regulator of antitumor immunity and a tumor suppressor in colon cancer. In humans, DNASE1L3 is downregulated in tumor-infiltrating DCs, and this downregulation is associated with poor patient prognosis and reduced tumor immune cell infiltration in many cancer types. In mice, Dnase1l3 deficiency in the tumor microenvironment enhances tumor formation and growth in several colon cancer models. Notably, the increased tumor formation and growth in Dnase1l3-deficient mice are associated with impaired antitumor immunity, as evidenced by a substantial reduction of cytotoxic T cells and a unique subset of DCs. Consistently, Dnase1l3-deficient DCs directly modulate cytotoxic T cells in vitro. To our knowledge, our study unveils a previously unknown link between DNASE1L3 and antitumor immunity and further suggests that restoration of DNASE1L3 activity may represent a potential therapeutic approach for anticancer therapy.
Collapse
Affiliation(s)
- Wenling Li
- Biostatistics and Computational Biology Branch
- Signal Transduction Laboratory
| | | | - Wei Fan
- Biostatistics and Computational Biology Branch
- Signal Transduction Laboratory
| | - Yuanyuan Li
- Biostatistics and Computational Biology Branch
| | - Payel Sil
- Biostatistics and Computational Biology Branch
| | | | - Fei Zhao
- Immunity, Inflammation, and Disease Laboratory
| | | | | | - Min Shi
- Biostatistics and Computational Biology Branch
| | - Xin Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Ryushin Mizuta
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Daisuke Kitamura
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yisong Wan
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | | | | | | | | | - Leping Li
- Biostatistics and Computational Biology Branch
| |
Collapse
|
39
|
Skaug B, Guo X, Li YJ, Charles J, Pham KT, Couturier J, Lewis DE, Bracaglia C, Caiello I, Mayes MD, Assassi S. Reduced digestion of circulating genomic DNA in systemic sclerosis patients with the DNASE1L3 R206C variant. Rheumatology (Oxford) 2023; 62:3197-3204. [PMID: 36708011 PMCID: PMC10473277 DOI: 10.1093/rheumatology/kead050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/01/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Polymorphism in a coding region of deoxyribonuclease I-like III (DNASE1L3), causing amino acid substitution of Arg-206 to Cys (R206C), is a robustly replicated heritable risk factor for SSc and other autoimmune diseases. DNASE1L3 is secreted into the circulation, where it can digest genomic DNA (gDNA) in apoptosis-derived membrane vesicles (AdMVs). We sought to determine the impact of DNASE1L3 R206C on digestion of circulating gDNA in SSc patients and healthy controls (HCs). METHODS The ability of DNASE1L3 to digest AdMV-associated gDNA was tested in vitro. The effect of R206C substitution on extracellular secretion of DNASE1L3 was determined using a transfected cell line and primary monocyte-derived dendritic cells from SSc patients. Plasma samples from SSc patients and HCs with DNASE1L3 R206C or R206 wild type were compared for their ability to digest AdMV-associated gDNA. The digestion status of endogenous gDNA in plasma samples from 123 SSc patients and 74 HCs was determined by measuring the proportion of relatively long to short gDNA fragments. RESULTS The unique ability of DNASE1L3 to digest AdMV-associated gDNA was confirmed. Extracellular secretion of DNASE1L3 R206C was impaired. Plasma from individuals with DNASE1L3 R206C had reduced ability to digest AdMV-associated gDNA. The ratio of long: short gDNA fragments was increased in plasma from SSc patients with DNASE1L3 R206C, and this ratio correlated inversely with DNase activity. CONCLUSION Our results confirm that circulating gDNA is a physiological DNASE1L3 substrate and show that its digestion is reduced in SSc patients with the DNASE1L3 R206C variant.
Collapse
Affiliation(s)
- Brian Skaug
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Xinjian Guo
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Yuanteng Jeff Li
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Julio Charles
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Kay T Pham
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jacob Couturier
- Division of Infectious Diseases, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Dorothy E Lewis
- Division of Infectious Diseases, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Claudia Bracaglia
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Ivan Caiello
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Maureen D Mayes
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
40
|
Ge M, Zhu H, Song H, Schmeusser BN, Ng KL, Zeng Y, Liu T, Yang K. Integrative analysis of deoxyribonuclease 1-like 3 as a potential biomarker in renal cell carcinoma. Transl Androl Urol 2023; 12:1308-1320. [PMID: 37680233 PMCID: PMC10481204 DOI: 10.21037/tau-23-355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell carcinoma (RCC), is insensitive to radiotherapy and chemotherapy after surgery. Deoxyribonuclease 1-like 3 (DNASE1L3), an endonuclease that cleaves both membrane-encapsulated single- and double-stranded DNA, suppresses cell cycle progression, proliferation and metabolism in hepatocellular carcinoma cells. There is currently no established link between DNASE1L3 and RCC inhibition. We are gonging to explored the mechanism underlying the relationship between DNASEL1L3 and RCC. Methods RNA sequencing data for RCC tissue and peritumoral tissue were downloaded from The Cancer Genome Atlas database and analyzed. The expression levels of DNASE1L3 in RCC and normal samples were verified using the Gene Expression Omnibus (GEO) database, Human Protein Atlas database and western blotting. The role and potential mechanism of DNASE1L3 were investigated by analysis of immune-related databases and wound healing, invasion, cell counting kit 8 and immunofluorescence assays. Results We revealed that DNASE1L3 expression was downregulated in RCC group compared with control group [The Cancer Genome Atlas (TCGA): 7.98 vs. 10.87, P<0.001]. Meanwhile, DNASE1L3 expression correlated with the clinical characteristics of patients. Patients with low DNASE1L3 expression had worse survival (P<0.001) and larger (r=-0.32, P<0.001) and heavier tumors (r=-0.17, P<0.001). DNASE1L3 overexpression inhibited the proliferation (786-O: 0.135±0.014 vs. 0.322±0.027, P<0.001) and invasion (786-O: 1,479±134 vs. 832±67, P<0.05) of RCC cells. The expression of DNASE1L3 was significantly correlated with the tumor immune microenvironment and drug sensitivity in ccRCC. Moreover, the level of the key phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway protein P-AKT was decreased in the group of cells transfected with DNASE1L3. Conclusions This study strongly suggest that DNASE1L3 may be a promising potential biomarker for the diagnosis and treatment of ccRCC patients.
Collapse
Affiliation(s)
- Minghuan Ge
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hengcheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huajie Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | | | - Keng Lim Ng
- Department of Urology, Frimley Park Hospital, Frimley Health NHS Foundation Trust, Camberley, UK
| | - Yan Zeng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ting Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kang Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Zhang Z, Pi X, Gao C, Zhang J, Xia L, Yan X, Hu X, Yan Z, Zhang S, Wei A, Guo Y, Liu J, Li A, Liu X, Zhang W, Liu Y, Xie D. Integrated fragmentomic profile and 5-Hydroxymethylcytosine of capture-based low-pass sequencing data enables pan-cancer detection via cfDNA. Transl Oncol 2023; 34:101694. [PMID: 37209526 PMCID: PMC10209323 DOI: 10.1016/j.tranon.2023.101694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/09/2023] [Accepted: 05/14/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Using epigenetic markers and fragmentomics of cell-free DNA for cancer detection has been proven applicable. METHODS We further investigated the diagnostic potential of combining two features (epigenetic markers and fragmentomic information) of cell-free DNA for detecting various types of cancers. To do this, we extracted cfDNA fragmentomic features from 191 whole-genome sequencing data and studied them in 396 low-pass 5hmC sequencing data, which included four common cancer types and control samples. RESULTS In our analysis of 5hmC sequencing data from cancer samples, we observed aberrant ultra-long fragments (220-500 bp) that differed from normal samples in terms of both size and coverage profile. These fragments played a significant role in predicting cancer. Leveraging the ability to detect cfDNA hydroxymethylation and fragmentomic markers simultaneously in low-pass 5hmC sequencing data, we developed an integrated model that incorporated 63 features representing both fragmentomic features and hydroxymethylation signatures. This model achieved high sensitivity and specificity for pan-cancer detection (88.52% and 82.35%, respectively). CONCLUSION We showed that fragmentomic information in 5hmC sequencing data is an ideal marker for cancer detection and that it shows high performance in low-pass sequencing data.
Collapse
Affiliation(s)
- Zhidong Zhang
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, Sichuan Province, P. R. China
| | - Xuenan Pi
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, Sichuan Province, P. R. China
| | - Chang Gao
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, Sichuan Province, P. R. China
| | - Jun Zhang
- Tailai Inc., Shanghai 200233, P. R. China
| | - Lin Xia
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, Sichuan Province, P. R. China
| | | | - Xinlei Hu
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, Sichuan Province, P. R. China
| | - Ziyue Yan
- Tailai Inc., Shanghai 200233, P. R. China
| | - Shuxin Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, Sichuan Province, P. R. China
| | - Ailin Wei
- Guang'an People's Hospital, Guang'an, China
| | - Yuer Guo
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, Sichuan Province, P. R. China
| | - Jingfeng Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou 350025, Fujian Province, P. R. China
| | - Ang Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, Sichuan Province, P. R. China
| | - Xiaolong Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou 350025, Fujian Province, P. R. China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of the Second Military Medical University, Shanghai 200433, P. R. China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, Sichuan Province, P. R. China
| | - Dan Xie
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, Sichuan Province, P. R. China.
| |
Collapse
|
42
|
Condoluci A, Rossi D. Special issue on circulating tumor DNA: Introductory editorial. Semin Hematol 2023; 60:125-131. [PMID: 37620237 DOI: 10.1053/j.seminhematol.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023]
Affiliation(s)
- Adalgisa Condoluci
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland
| | - Davide Rossi
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
| |
Collapse
|
43
|
Meriranta L, Pitkänen E, Leppä S. Blood has never been thicker: Cell-free DNA fragmentomics in the liquid biopsy toolbox of B-cell lymphomas. Semin Hematol 2023; 60:132-141. [PMID: 37455222 DOI: 10.1053/j.seminhematol.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
Liquid biopsies utilizing plasma circulating tumor DNA (ctDNA) are anticipated to revolutionize decision-making in cancer care. In the field of lymphomas, ctDNA-based blood tests represent the forefront of clinically applicable tools to harness decades of genomic research for disease profiling, quantification, and detection. More recently, the discovery of nonrandom fragmentation patterns in cell-free DNA (cfDNA) has opened another avenue of liquid biopsy research beyond mutational interrogation of ctDNA. Through examination of structural features, nucleotide content, and genomic distribution of massive numbers of plasma cfDNA molecules, the study of fragmentomics aims at identifying new tools that augment existing ctDNA-based analyses and discover new ways to profile cancer from blood tests. Indeed, the characterization of aberrant lymphoma ctDNA fragment patterns and harnessing them with powerful machine-learning techniques are expected to unleash the potential of nonmutant molecules for liquid biopsy purposes. In this article, we review cfDNA fragmentomics as an emerging approach in the ctDNA research of B-cell lymphomas. We summarize the biology behind the formation of cfDNA fragment patterns and discuss the preanalytical and technical limitations faced with current methodologies. Then we go through the advances in the field of lymphomas and envision what other noninvasive tools based on fragment characteristics could be explored. Last, we place fragmentomics as one of the facets of ctDNA analyses in emerging multiview and multiomics liquid biopsies. We pay attention to the unknowns in the field of cfDNA fragmentation biology that warrant further mechanistic investigation to provide rational background for the development of these precision oncology tools and understanding of their limitations.
Collapse
Affiliation(s)
- Leo Meriranta
- Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Esa Pitkänen
- Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), HILIFE, Helsinki, Finland
| | - Sirpa Leppä
- Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
44
|
Lacey KA, Serpas L, Makita S, Wang Y, Rashidfarrokhi A, Soni C, Gonzalez S, Moreira A, Torres VJ, Reizis B. Secreted mammalian DNases protect against systemic bacterial infection by digesting biofilms. J Exp Med 2023; 220:e20221086. [PMID: 36928522 PMCID: PMC10037111 DOI: 10.1084/jem.20221086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
Extracellular DNase DNASE1L3 maintains tolerance to self-DNA in humans and mice, whereas the role of its homolog DNASE1 remains controversial, and the overall function of secreted DNases in immunity is unclear. We report that deletion of murine DNASE1 neither caused autoreactivity in isolation nor exacerbated lupus-like disease in DNASE1L3-deficient mice. However, combined deficiency of DNASE1 and DNASE1L3 rendered mice susceptible to bloodstream infection with Staphylococcus aureus. DNASE1/DNASE1L3 double-deficient mice mounted a normal innate response to S. aureus and did not accumulate neutrophil extracellular traps (NETs). However, their kidneys manifested severe pathology, increased bacterial burden, and biofilm-like bacterial lesions that contained bacterial DNA and excluded neutrophils. Furthermore, systemic administration of recombinant DNASE1 protein during S. aureus infection rescued the mortality of DNase-deficient mice and ameliorated the disease in wild-type mice. Thus, DNASE1 and DNASE1L3 jointly facilitate the control of bacterial infection by digesting extracellular microbial DNA in biofilms, suggesting the original evolutionary function of secreted DNases as antimicrobial agents.
Collapse
Affiliation(s)
- Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sohei Makita
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yueyang Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sandra Gonzalez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Andre Moreira
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
45
|
Semenkovich NP, Szymanski JJ, Earland N, Chauhan PS, Pellini B, Chaudhuri AA. Genomic approaches to cancer and minimal residual disease detection using circulating tumor DNA. J Immunother Cancer 2023; 11:e006284. [PMID: 37349125 PMCID: PMC10314661 DOI: 10.1136/jitc-2022-006284] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Liquid biopsies using cell-free circulating tumor DNA (ctDNA) are being used frequently in both research and clinical settings. ctDNA can be used to identify actionable mutations to personalize systemic therapy, detect post-treatment minimal residual disease (MRD), and predict responses to immunotherapy. ctDNA can also be isolated from a range of different biofluids, with the possibility of detecting locoregional MRD with increased sensitivity if sampling more proximally than blood plasma. However, ctDNA detection remains challenging in early-stage and post-treatment MRD settings where ctDNA levels are minuscule giving a high risk for false negative results, which is balanced with the risk of false positive results from clonal hematopoiesis. To address these challenges, researchers have developed ever-more elegant approaches to lower the limit of detection (LOD) of ctDNA assays toward the part-per-million range and boost assay sensitivity and specificity by reducing sources of low-level technical and biological noise, and by harnessing specific genomic and epigenomic features of ctDNA. In this review, we highlight a range of modern assays for ctDNA analysis, including advancements made to improve the signal-to-noise ratio. We further highlight the challenge of detecting ultra-rare tumor-associated variants, overcoming which will improve the sensitivity of post-treatment MRD detection and open a new frontier of personalized adjuvant treatment decision-making.
Collapse
Affiliation(s)
- Nicholas P Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey J Szymanski
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Noah Earland
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pradeep S Chauhan
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bruna Pellini
- Department of Thoracic Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Aadel A Chaudhuri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
46
|
Pham TMQ, Phan TH, Jasmine TX, Tran TTT, Huynh LAK, Vo TL, Nai THT, Tran TT, Truong MH, Tran NC, Nguyen VTC, Nguyen TH, Nguyen THH, Le NDK, Nguyen TD, Nguyen DS, Truong DK, Do TTT, Phan MD, Giang H, Nguyen HN, Tran LS. Multimodal analysis of genome-wide methylation, copy number aberrations, and end motif signatures enhances detection of early-stage breast cancer. Front Oncol 2023; 13:1127086. [PMID: 37223690 PMCID: PMC10200909 DOI: 10.3389/fonc.2023.1127086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/24/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Breast cancer causes the most cancer-related death in women and is the costliest cancer in the US regarding medical service and prescription drug expenses. Breast cancer screening is recommended by health authorities in the US, but current screening efforts are often compromised by high false positive rates. Liquid biopsy based on circulating tumor DNA (ctDNA) has emerged as a potential approach to screen for cancer. However, the detection of breast cancer, particularly in early stages, is challenging due to the low amount of ctDNA and heterogeneity of molecular subtypes. Methods Here, we employed a multimodal approach, namely Screen for the Presence of Tumor by DNA Methylation and Size (SPOT-MAS), to simultaneously analyze multiple signatures of cell free DNA (cfDNA) in plasma samples of 239 nonmetastatic breast cancer patients and 278 healthy subjects. Results We identified distinct profiles of genome-wide methylation changes (GWM), copy number alterations (CNA), and 4-nucleotide oligomer (4-mer) end motifs (EM) in cfDNA of breast cancer patients. We further used all three signatures to construct a multi-featured machine learning model and showed that the combination model outperformed base models built from individual features, achieving an AUC of 0.91 (95% CI: 0.87-0.95), a sensitivity of 65% at 96% specificity. Discussion Our findings showed that a multimodal liquid biopsy assay based on analysis of cfDNA methylation, CNA and EM could enhance the accuracy for the detection of early- stage breast cancer.
Collapse
Affiliation(s)
- Thi Mong Quynh Pham
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Thanh Hai Phan
- Ultrasound Department Medic Medical Center, Ho Chi Minh, Vietnam
| | | | - Thuy Thi Thu Tran
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Le Anh Khoa Huynh
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Thi Loan Vo
- Ultrasound Department Medic Medical Center, Ho Chi Minh, Vietnam
| | | | - Thuy Trang Tran
- Ultrasound Department Medic Medical Center, Ho Chi Minh, Vietnam
| | - My Hoang Truong
- Ultrasound Department Medic Medical Center, Ho Chi Minh, Vietnam
| | - Ngan Chau Tran
- Ultrasound Department Medic Medical Center, Ho Chi Minh, Vietnam
| | - Van Thien Chi Nguyen
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Trong Hieu Nguyen
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Thi Hue Hanh Nguyen
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Nguyen Duy Khang Le
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Thanh Dat Nguyen
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Duy Sinh Nguyen
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
- Faculty of Medicine Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| | | | | | - Minh-Duy Phan
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Hoa Giang
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Hoai-Nghia Nguyen
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Le Son Tran
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| |
Collapse
|
47
|
Li Y, Jiang G, Wu W, Yang H, Jin Y, Wu M, Liu W, Yang A, Chervova O, Zhang S, Zheng L, Zhang X, Du F, Kanu N, Wu L, Yang F, Wang J, Chen K. Multi-omics integrated circulating cell-free DNA genomic signatures enhanced the diagnostic performance of early-stage lung cancer and postoperative minimal residual disease. EBioMedicine 2023; 91:104553. [PMID: 37027928 PMCID: PMC10102814 DOI: 10.1016/j.ebiom.2023.104553] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Liquid biopsy is a promising non-invasive alternative for cancer screening and minimal residual disease (MRD) detection, although there are some concerns regarding its clinical applications. We aimed to develop an accurate detection platform based on liquid biopsy for both cancer screening and MRD detection in patients with lung cancer (LC), which is also applicable to clinical use. METHODS We applied a modified whole-genome sequencing (WGS) -based High-performance Infrastructure For MultIomics (HIFI) method for LC screening and postoperative MRD detection by combining the hyper-co-methylated read approach and the circulating single-molecule amplification and resequencing technology (cSMART2.0). FINDINGS For early screening of LC, the LC score model was constructed using the support vector machine, which showed sensitivity (51.8%) at high specificity (96.3%) and achieved an AUC of 0.912 in the validation set prospectively enrolled from multiple centers. The screening model achieved detection efficiency with an AUC of 0.906 in patients with lung adenocarcinoma and outperformed other clinical models in solid nodule cohort. When applied the HIFI model to real social population, a negative predictive value (NPV) of 99.92% was achieved in Chinese population. Additionally, the MRD detection rate improved significantly by combining results from WGS and cSMART2.0, with sensitivity of 73.7% at specificity of 97.3%. INTERPRETATION In conclusion, the HIFI method is promising for diagnosis and postoperative monitoring of LC. FUNDING This study was supported by CAMS Innovation Fund for Medical Sciences, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, Beijing Natural Science Foundation and Peking University People's Hospital.
Collapse
|
48
|
Abstract
Autoreactive B cells and interferons are central players in systemic lupus erythematosus (SLE) pathogenesis. The partial success of drugs targeting these pathways, however, supports heterogeneity in upstream mechanisms contributing to disease pathogenesis. In this review, we focus on recent insights from genetic and immune monitoring studies of patients that are refining our understanding of these basic mechanisms. Among them, novel mutations in genes affecting intrinsic B cell activation or clearance of interferogenic nucleic acids have been described. Mitochondria have emerged as relevant inducers and/or amplifiers of SLE pathogenesis through a variety of mechanisms that include disruption of organelle integrity or compartmentalization, defective metabolism, and failure of quality control measures. These result in extra- or intracellular release of interferogenic nucleic acids as well as in innate and/or adaptive immune cell activation. A variety of classic and novel SLE autoantibody specificities have been found to recapitulate genetic alterations associated with monogenic lupus or to trigger interferogenic amplification loops. Finally, atypical B cells and novel extrafollicular T helper cell subsets have been proposed to contribute to the generation of SLE autoantibodies. Overall, these novel insights provide opportunities to deepen the immunophenotypic surveillance of patients and open the door to patient stratification and personalized, rational approaches to therapy.
Collapse
Affiliation(s)
- Simone Caielli
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| | - Zurong Wan
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| |
Collapse
|
49
|
Engavale M, Hernandez CJ, Infante A, LeRoith T, Radovan E, Evans L, Villarreal J, Reilly CM, Sutton RB, Keyel PA. Deficiency of macrophage-derived Dnase1L3 causes lupus-like phenotypes in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537232. [PMID: 37131692 PMCID: PMC10153119 DOI: 10.1101/2023.04.17.537232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease caused by environmental factors and loss of key proteins. One such protein is a serum endonuclease secreted by macrophages and dendritic cells, Dnase1L3. Loss of Dnase1L3 causes pediatric-onset lupus in humans is Dnase1L3. Reduction in Dnase1L3 activity occurs in adult-onset human SLE. However, the amount of Dnase1L3 necessary to prevent lupus onset, if the impact is continuous or requires a threshold, and which phenotypes are most impacted by Dnase1L3 remain unknown. To reduce Dnase1L3 protein levels, we developed a genetic mouse model with reduced Dnase1L3 activity by deleting Dnase1L3 from macrophages (cKO). Serum Dnase1L3 levels were reduced 67%, though Dnase1 activity remained constant. Sera were collected weekly from cKO and littermate controls until 50 weeks of age. Homogeneous and peripheral anti-nuclear antibodies were detected by immunofluorescence, consistent with anti-dsDNA antibodies. Total IgM, total IgG, and anti-dsDNA antibody levels increased in cKO mice with increasing age. In contrast to global Dnase1L3 -/- mice, anti-dsDNA antibodies were not elevated until 30 weeks of age. The cKO mice had minimal kidney pathology, except for deposition of immune complexes and C3. Based on these findings, we conclude that an intermediate reduction in serum Dnase1L3 causes mild lupus phenotypes. This suggest that macrophage-derived DnaselL3 is critical to limiting lupus.
Collapse
|
50
|
Jin X, Wang Y, Xu J, Li Y, Cheng F, Luo Y, Zhou H, Lin S, Xiao F, Zhang L, Lin Y, Zhang Z, Jin Y, Zheng F, Chen W, Zhu A, Tao Y, Zhao J, Kuo T, Li Y, Li L, Wen L, Ou R, Li F, Lin L, Zhang Y, Sun J, Yuan H, Zhuang Z, Sun H, Chen Z, Li J, Zhuo J, Chen D, Zhang S, Sun Y, Wei P, Yuan J, Xu T, Yang H, Wang J, Xu X, Zhong N, Xu Y, Sun K, Zhao J. Plasma cell-free DNA promise monitoring and tissue injury assessment of COVID-19. Mol Genet Genomics 2023; 298:823-836. [PMID: 37059908 PMCID: PMC10104435 DOI: 10.1007/s00438-023-02014-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/25/2023] [Indexed: 04/16/2023]
Abstract
Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.
Collapse
Affiliation(s)
- Xin Jin
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jinjin Xu
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Yimin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Fanjun Cheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yuxue Luo
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Haibo Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, Guangdong, China
| | - Shanwen Lin
- Yangjiang People's Hospital, Yangjiang, 529500, Guangdong, China
| | - Fei Xiao
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Lu Zhang
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, 510060, Guangdong, China
| | - Yu Lin
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yan Jin
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fang Zheng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Wei Chen
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Ye Tao
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Tingyou Kuo
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Yuming Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Lingguo Li
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Liyan Wen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Rijing Ou
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Long Lin
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Hao Yuan
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Haixi Sun
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jie Li
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | | | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yuzhe Sun
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Peilan Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jinwei Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Tian Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yonghao Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|