1
|
Du Y, Shang Y, Qian Y, Guo Y, Chen S, Lin X, Cao W, Tang X, Zhou A, Huang S, Zhang A, Jia Z, Zhang Y. Plk1 promotes renal tubulointerstitial fibrosis by targeting autophagy/lysosome axis. Cell Death Dis 2023; 14:571. [PMID: 37640723 PMCID: PMC10462727 DOI: 10.1038/s41419-023-06093-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
The prevalence of chronic kidney disease (CKD) has been increasing over the past decades. However, no effective therapies are available for delaying or curing CKD. Progressive fibrosis is the major pathological feature of CKD, which leads to end-stage renal disease (ESRD). The present study showed that Polo-like kinase 1 (Plk1) was upregulated in the kidneys of CKD patients and mice subjected to unilateral ureteral obstruction (UUO) with location in proximal tubules and tubulointerstitial fibroblasts. Pharmacological inhibition, genetic silencing or knockout of Plk1 attenuated obstructive nephropathy due to suppressed fibroblast activation mediated by reduced autophagic flux. We found Plk1 plays a critical role in maintaining intralysosomal pH by regulating ATP6V1A phosphorylation, and inhibition of Plk1 impaired lysosomal function leading to blockade of autophagic flux. In addition, Plk1 also prevented partial epithelial-mesenchymal transition (pEMT) of tubular epithelial cells via autophagy pathway. In conclusion, this study demonstrated that Plk1 plays a pathogenic role in renal tubulointerstitial fibrosis by regulating autophagy/lysosome axis. Thus, targeting Plk1 could be a promising strategy for CKD treatment.
Collapse
Affiliation(s)
- Yang Du
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, 210029, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, 210008, Nanjing, China
| | - Yaqiong Shang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, 210029, Nanjing, China
| | - Yun Qian
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, 210029, Nanjing, China
| | - Yan Guo
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, 210029, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, 210008, Nanjing, China
| | - Shuang Chen
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, 210029, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, 210008, Nanjing, China
| | - Xiuli Lin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, 210029, Nanjing, China
| | - Weidong Cao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, 210029, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, 210008, Nanjing, China
| | - Xiaomei Tang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, 210029, Nanjing, China
| | - Anning Zhou
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, 210029, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, 210008, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, 210029, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, 210008, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, 210008, Nanjing, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, 210029, Nanjing, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, 210008, Nanjing, China.
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, 210008, Nanjing, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, 210029, Nanjing, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, 210008, Nanjing, China.
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Gulou District, 210008, Nanjing, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Hanzhong Road #140, Gulou District, 210029, Nanjing, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Gulou District, Guangzhou Road #72, 210008, Nanjing, China.
| |
Collapse
|
2
|
Qi H, Kikuchi M, Yoshino Y, Fang Z, Ohashi K, Gotoh T, Ideta R, Ui A, Endo S, Otsuka K, Shindo N, Gonda K, Ishioka C, Miki Y, Iwabuchi T, Chiba N. BRCA1 transports the DNA damage signal for CDDP-induced centrosome amplification through the centrosomal Aurora A. Cancer Sci 2022; 113:4230-4243. [PMID: 36082621 PMCID: PMC9746055 DOI: 10.1111/cas.15573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer gene 1 (BRCA1) plays roles in DNA repair and centrosome regulation and is involved in DNA damage-induced centrosome amplification (DDICA). Here, the centrosomal localization of BRCA1 and the kinases involved in centrosome duplication were analyzed in each cell cycle phase after treatment with DNA crosslinker cisplatin (CDDP). CDDP treatment increased the centrosomal localization of BRCA1 in early S-G2 phase. BRCA1 contributed to the increased centrosomal localization of Aurora A in S phase and that of phosphorylated Polo-like kinase 1 (PLK1) in late S phase after CDDP treatment, resulting in centriole disengagement and overduplication. The increased centrosomal localization of BRCA1 and Aurora A induced by CDDP treatment involved the nuclear export of BRCA1 and BRCA1 phosphorylation by ataxia telangiectasia mutated (ATM). Patient-derived variants and mutations at phosphorylated residues of BRCA1 suppressed the interaction between BRCA1 and Aurora A, as well as the CDDP-induced increase in the centrosomal localization of BRCA1 and Aurora A. These results suggest that CDDP induces the phosphorylation of BRCA1 by ATM in the nucleus and its transport to the cytoplasm, thereby promoting the centrosomal localization Aurora A, which phosphorylates PLK1. The function of BRCA1 in the translocation of the DNA damage signal from the nucleus to the centrosome to induce centrosome amplification after CDDP treatment might support its role as a tumor suppressor.
Collapse
Affiliation(s)
- Huicheng Qi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Megumi Kikuchi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Yuki Yoshino
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Zhenzhou Fang
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kazune Ohashi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Takato Gotoh
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Ryo Ideta
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Tohoku University School of MedicineSendaiJapan
| | - Ayako Ui
- Department of Molecular Oncology, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Shino Endo
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kei Otsuka
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Norihisa Shindo
- Division of Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Kohsuke Gonda
- Department of Medical PhysicsTohoku University Graduate School of MedicineSendaiJapan
| | - Chikashi Ishioka
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| | - Tokuro Iwabuchi
- Faculty of Bioscience and BiotechnologyTokyo University of TechnologyTokyoJapan
| | - Natsuko Chiba
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
3
|
Zhu K, Cai Y, Si X, Ye Z, Gao Y, Liu C, Wang R, Ma Z, Zhu H, Zhang L, Li S, Zhang H, Yue J. The phosphorylation and dephosphorylation switch of VCP/p97 regulates the architecture of centrosome and spindle. Cell Death Differ 2022; 29:2070-2088. [PMID: 35430615 PMCID: PMC9525716 DOI: 10.1038/s41418-022-01000-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
The proper orientation of centrosome and spindle is essential for genome stability; however, the mechanism that governs these processes remains elusive. Here, we demonstrated that polo-like kinase 1 (Plk1), a key mitotic kinase, phosphorylates residue Thr76 in VCP/p97 (an AAA-ATPase), at the centrosome from prophase to anaphase. This phosphorylation process recruits VCP to the centrosome and in this way, it regulates centrosome orientation. VCP exhibits strong co-localization with Eg5 (a mitotic kinesin motor), at the mitotic spindle, and the dephosphorylation of Thr76 in VCP is required for the enrichment of both VCP and Eg5 at the spindle, thus ensuring proper spindle architecture and chromosome segregation. We also showed that the phosphatase, PTEN, is responsible for the dephosphorylation of Thr76 in VCP; when PTEN was knocked down, the normal spread of VCP from the centrosome to the spindle was abolished. Cryo-EM structures of VCPT76A and VCPT76E, which represent dephosphorylated and phosphorylated states of VCP, respectively, revealed that the Thr76 phosphorylation modulates VCP by altering the inter-domain and inter-subunit interactions, and ultimately the nucleotide-binding pocket conformation. Interestingly, the tumor growth in nude mice implanted with VCPT76A-reconstituted cancer cells was significantly slower when compared with those implanted with VCPWT-reconstituted cancer cells. Collectively, our findings demonstrate that the phosphorylation and dephosphorylation switch of VCP regulates the architecture of centrosome and spindle for faithful chromosome segregation.
Collapse
Affiliation(s)
- Kaiyuan Zhu
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yang Cai
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaotong Si
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zuodong Ye
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yuanzhu Gao
- Department of Biology, SUSTech Cryo-EM Centre, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuang Liu
- Department of Biology, SUSTech Cryo-EM Centre, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Wang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhibin Ma
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Huazhang Zhu
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Liang Zhang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Shengjin Li
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hongmin Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Yang S, McAdow J, Du Y, Trigg J, Taghert PH, Johnson AN. Spatiotemporal expression of regulatory kinases directs the transition from mitosis to cellular morphogenesis in Drosophila. Nat Commun 2022; 13:772. [PMID: 35140224 PMCID: PMC8828718 DOI: 10.1038/s41467-022-28322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Embryogenesis depends on a tightly regulated balance between mitosis, differentiation, and morphogenesis. Understanding how the embryo uses a relatively small number of proteins to transition between growth and morphogenesis is a central question of developmental biology, but the mechanisms controlling mitosis and differentiation are considered to be fundamentally distinct. Here we show the mitotic kinase Polo, which regulates all steps of mitosis in Drosophila, also directs cellular morphogenesis after cell cycle exit. In mitotic cells, the Aurora kinases activate Polo to control a cytoskeletal regulatory module that directs cytokinesis. We show that in the post-mitotic mesoderm, the control of Polo activity transitions from the Aurora kinases to the uncharacterized kinase Back Seat Driver (Bsd), where Bsd and Polo cooperate to regulate muscle morphogenesis. Polo and its effectors therefore direct mitosis and cellular morphogenesis, but the transition from growth to morphogenesis is determined by the spatiotemporal expression of upstream activating kinases. The mechanisms regulating mitosis and differentiation during development are thought to be distinct. Here they show that in Drosophila the mitotic kinase Polo regulates cellular morphogenesis after cell cycle exit.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jennifer McAdow
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yingqiu Du
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jennifer Trigg
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paul H Taghert
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aaron N Johnson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Keep Calm and Carry on with Extra Centrosomes. Cancers (Basel) 2022; 14:cancers14020442. [PMID: 35053604 PMCID: PMC8774008 DOI: 10.3390/cancers14020442] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Precise chromosome segregation during mitosis is a vital event orchestrated by formation of bipolar spindle poles. Supernumerary centrosomes, caused by centrosome amplification, deteriorates mitotic processes, resulting in segregation defects leading to chromosomal instability (CIN). Centrosome amplification is frequently observed in various types of cancer and considered as a significant contributor to destabilization of chromosomes. This review provides a comprehensive overview of causes and consequences of centrosome amplification thoroughly describing molecular mechanisms. Abstract Aberrations in the centrosome number and structure can readily be detected at all stages of tumor progression and are considered hallmarks of cancer. Centrosome anomalies are closely linked to chromosome instability and, therefore, are proposed to be one of the driving events of tumor formation and progression. This concept, first posited by Boveri over 100 years ago, has been an area of interest to cancer researchers. We have now begun to understand the processes by which these numerical and structural anomalies may lead to cancer, and vice-versa: how key events that occur during carcinogenesis could lead to amplification of centrosomes. Despite the proliferative advantages that having extra centrosomes may confer, their presence can also lead to loss of essential genetic material as a result of segregational errors and cancer cells must deal with these deadly consequences. Here, we review recent advances in the current literature describing the mechanisms by which cancer cells amplify their centrosomes and the methods they employ to tolerate the presence of these anomalies, focusing particularly on centrosomal clustering.
Collapse
|
6
|
Li J, Zhou L, Liu Y, Yang L, Jiang D, Li K, Xie S, Wang X, Wang S. Comprehensive Analysis of Cyclin Family Gene Expression in Colon Cancer. Front Oncol 2021; 11:674394. [PMID: 33996604 PMCID: PMC8117346 DOI: 10.3389/fonc.2021.674394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 12/27/2022] Open
Abstract
Colon cancer is a common malignancy of the digestive tract with high morbidity and mortality. There is an urgent need to identify effective biomarkers for the early diagnosis of colon cancer and to prolong patient survival. Cyclins are a family of proteins that directly participate in the cell cycle and are associated with many types of tumors, but the role and regulatory mechanism of most cyclin family members in colon cancer remain unclear. Here, we provide a systematic and comprehensive study of cyclin family gene expression and their potential roles in colon cancer. Pan-cancer analysis revealed that cyclin genes were most differentially expressed in colon adenocarcinoma. Among the four datasets of colon cancer from The Cancer Genome Atlas and the Gene Expression Omnibus, six cyclin genes (CCNA2, CCNB1, CCND1, CCNE1, CCNF, and CCNJL) were differentially expressed between normal and tumor tissues. Four of them (CCNA2, CCNB1, CCNE1, and CCNF) were notably elevated in the early TNM stages and significantly correlated with overall survival. Meanwhile, the expression of CCNA2 and CCNB1 was positively correlated with tumor-killing immune cells, such as CD8+ T cells.The copy numbers of CCNA2, CCNB1, CCND1, CCNE1, and CCNF was positively related to gene expression. The methylation levels of CCNB1 were lower in tumor tissues than in normal tissues and were negatively correlated with gene expression. The receiver operating characteristic curves indicated that the gene expression of 24 cyclins had higher predictive accuracy than the TNM stage. Pathway analysis showed that cyclin genes were tightly associated with apoptosis, the cell cycle, hormone ER, the RAS/MAPK pathway, mismatch repair, mTORC1 signaling, KRAS signaling, Akt, and TGFB in colon cancer. Weighted gene co-expression network analysis suggested that cyclin genes were closely linked to CDK1, BIRC5, PLK1, and BCL2L12. At the protein level, Cyclin A2 and Cyclin B1 were also expressed higher in colon adenocarcinoma tissues. In addition, cyclin genes were highly related to the drug sensitivity of some FDA-approved drugs, such as MEK and EGFR inhibitors, which might provide guidance for clinical treatment. In conclusion, cyclin genes are promising biomarkers for the diagnosis and prognosis of colon cancer.
Collapse
Affiliation(s)
- Jieling Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Liyuan Zhou
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Ying Liu
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Lingzhi Yang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Dayi Jiang
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Kuan Li
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Shouxia Xie
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
7
|
Shakeel I, Basheer N, Hasan GM, Afzal M, Hassan MI. Polo-like Kinase 1 as an emerging drug target: structure, function and therapeutic implications. J Drug Target 2021; 29:168-184. [PMID: 32886539 DOI: 10.1080/1061186x.2020.1818760] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 12/22/2022]
Abstract
Polo-like kinase 1 (PLK1) is a conserved mitotic serine-threonine protein kinase, functions as a regulatory protein, and is involved in the progression of the mitotic cycle. It plays important roles in the regulation of cell division, maintenance of genome stability, in spindle assembly, mitosis, and DNA-damage response. PLK1 is consist of a N-terminal serine-threonine kinase domain, and a C-terminal Polo-box domain (regulatory site). The expression of PLK1 is controlled by transcription repressor in the G1 stage and transcription activators in the G2 stage of the cell cycle. Overexpression of PLK1 results in undermining of checkpoints causes excessive cellular division resulting in abnormal cell growth, leading to the development of cancer. Blocking the expression of PLK1 by an antibody, RNA interference, or kinase inhibitors, causes a subsequent reduction in the proliferation of tumour cells and induction of apoptosis in tumour cells without affecting the healthy cells, suggesting an attractive target for drug development. In this review, we discuss detailed information on expression, gene and protein structures, role in different diseases, and progress in the design and development of PLK1 inhibitors. We have performed an in-depth analysis of the PLK1 inhibitors and their therapeutic implications with special focus to the cancer therapeutics.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Neha Basheer
- Institute of Neuroimmunology, Slovak Republic Bratislava, Bratislava, Slovakia
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
8
|
Alafate W, Xu D, Wu W, Xiang J, Ma X, Xie W, Bai X, Wang M, Wang J. Loss of PLK2 induces acquired resistance to temozolomide in GBM via activation of notch signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:239. [PMID: 33176854 PMCID: PMC7657349 DOI: 10.1186/s13046-020-01750-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Background Glioblastoma (GBM) is a lethal type of primary brain tumor with a median survival less than 15 months. Despite the recent improvements of comprehensive strategies, the outcomes for GBM patients remain dismal. Accumulating evidence indicates that rapid acquired chemoresistance is the major cause of GBM recurrence thus leads to worse clinical outcomes. Therefore, developing novel biomarkers and therapeutic targets for chemoresistant GBM is crucial for long-term cures. Methods Transcriptomic profiles of glioblastoma were downloaded from gene expression omnibus (GEO) and TCGA database. Differentially expressed genes were analyzed and candidate gene PLK2 was selected for subsequent validation. Clinical samples and corresponding data were collected from our center and measured using immunohistochemistry analysis. Lentiviral transduction and in vivo xenograft transplantation were used to validate the bioinformatic findings. GSEA analyses were conducted to identify potential signaling pathways related to PLK2 expression and further confirmed by in vitro mechanistic assays. Results In this study, we identified PLK2 as an extremely suppressed kinase-encoding gene in GBM samples, particularly in therapy resistant GBM. Additionally, reduced PLK2 expression implied poor prognosis and TMZ resistance in GBM patients. Functionally, up-regulated PLK2 attenuated cell proliferation, migration, invasion, and tumorigenesis of GBM cells. Besides, exogenous overexpression of PLK2 reduced acquired TMZ resistance of GBM cells. Furthermore, bioinformatics analysis indicated that PLK2 was negatively correlated with Notch signaling pathway in GBM. Mechanically, loss of PLK2 activated Notch pathway through negative transcriptional regulation of HES1 and degradation of Notch1. Conclusion Loss of PLK2 enhances aggressive biological behavior of GBM through activation of Notch signaling, indicating that PLK2 could be a prognostic biomarker and potential therapeutic target for chemoresistant GBM.
Collapse
Affiliation(s)
- Wahafu Alafate
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dongze Xu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jianyang Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xudong Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China. .,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China. .,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
9
|
Cunningham CE, MacAuley MJ, Vizeacoumar FS, Abuhussein O, Freywald A, Vizeacoumar FJ. The CINs of Polo-Like Kinase 1 in Cancer. Cancers (Basel) 2020; 12:cancers12102953. [PMID: 33066048 PMCID: PMC7599805 DOI: 10.3390/cancers12102953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Many alterations specific to cancer cells have been investigated as targets for targeted therapies. Chromosomal instability is a characteristic of nearly all cancers that can limit response to targeted therapies by ensuring the tumor population is not genetically homogenous. Polo-like Kinase 1 (PLK1) is often up regulated in cancers and it regulates chromosomal instability extensively. PLK1 has been the subject of much pre-clinical and clinical studies, but thus far, PLK1 inhibitors have not shown significant improvement in cancer patients. We discuss the numerous roles and interactions of PLK1 in regulating chromosomal instability, and how these may provide an avenue for identifying targets for targeted therapies. As selective inhibitors of PLK1 showed limited clinical success, we also highlight how genetic interactions of PLK1 may be exploited to tackle these challenges. Abstract Polo-like kinase 1 (PLK1) is overexpressed near ubiquitously across all cancer types and dysregulation of this enzyme is closely tied to increased chromosomal instability and tumor heterogeneity. PLK1 is a mitotic kinase with a critical role in maintaining chromosomal integrity through its function in processes ranging from the mitotic checkpoint, centrosome biogenesis, bipolar spindle formation, chromosome segregation, DNA replication licensing, DNA damage repair, and cytokinesis. The relation between dysregulated PLK1 and chromosomal instability (CIN) makes it an attractive target for cancer therapy. However, clinical trials with PLK1 inhibitors as cancer drugs have generally displayed poor responses or adverse side-effects. This is in part because targeting CIN regulators, including PLK1, can elevate CIN to lethal levels in normal cells, affecting normal physiology. Nevertheless, aiming at related genetic interactions, such as synthetic dosage lethal (SDL) interactions of PLK1 instead of PLK1 itself, can help to avoid the detrimental side effects associated with increased levels of CIN. Since PLK1 overexpression contributes to tumor heterogeneity, targeting SDL interactions may also provide an effective strategy to suppressing this malignant phenotype in a personalized fashion.
Collapse
Affiliation(s)
- Chelsea E. Cunningham
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Mackenzie J. MacAuley
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Frederick S. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Omar Abuhussein
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Franco J. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| |
Collapse
|
10
|
Hu H, Shao D, Wang L, He F, Huang X, Lu Y, Xiang X, Zhu S, Zhang P, Li J, Chen J. Phospho‑regulation of Cdc14A by polo‑like kinase 1 is involved in β‑cell function and cell cycle regulation. Mol Med Rep 2019; 20:4277-4284. [PMID: 31545409 DOI: 10.3892/mmr.2019.10653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/29/2019] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to investigate the effects of polo‑like kinase 1 (PLK1) and the phosphorylation of human cell division cycle protein 14A (Cdc14A) by PLK1 on β‑cell function and cell cycle regulation. Mouse β‑TC3 cells were incubated with small interfering RNA (siRNA) to knock down the expression of PLK1. Cell cycle analysis was performed using flow cytometry, and cell proliferation and apoptosis was determined. Insulin secretion was evaluated by a radioimmunoassay under both low and high glucose conditions. Mouse β‑TC3 cells were transfected with a wild type or a non‑phosphorylatable Cdc14A mutant (Cdc14AS351A/363A; Cdc14AAA) to investigate whether the phosphorylation of Cdc14A is involved in cellular regulation of PLK1 under high glucose conditions. It was found that PLK1 siRNA significantly promoted cellular apoptosis, inhibited cell proliferation, decreased insulin secretion and reduced Cdc14A expression under both low and high glucose conditions. Cdc14A overexpression promoted β‑TC3 cell proliferation and insulin secretion, while Cdc14AAA overexpression inhibited cell proliferation and insulin secretion under high glucose conditions. PLK1 siRNA partially reversed the proliferation‑promoting effects of Cdc14A and further intensified the inhibition of proliferation by Cdc14AAA under high glucose conditions. Similarly, Cdc14A overexpression partially reversed the insulin‑inhibiting effects of PLK1 siRNA, while Cdc14AAA overexpression showed a synergistic inhibitory effect on insulin secretion with PLK1 siRNA under high glucose conditions. In conclusion, PLK1 promoted cell proliferation and insulin secretion while inhibiting cellular apoptosis in β‑TC3 cell lines under both low and high glucose conditions. In addition, the phospho‑regulation of Cdc14A by PLK1 may be involved in β‑TC3 cell cycle regulation and insulin secretion under high glucose conditions.
Collapse
Affiliation(s)
- Haiying Hu
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Dandan Shao
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Leilei Wang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Fang He
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaoxu Huang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yanyu Lu
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaona Xiang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Susu Zhu
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Pianhong Zhang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jingsen Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
11
|
Stratmann JA, Sebastian M. Polo-like kinase 1 inhibition in NSCLC: mechanism of action and emerging predictive biomarkers. LUNG CANCER-TARGETS AND THERAPY 2019; 10:67-80. [PMID: 31308774 PMCID: PMC6612950 DOI: 10.2147/lctt.s177618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Due to often unspecific disease symptoms, locally advanced or metastatic disease is diagnosed in the majority of all cases. Palliative treatment options comprise of conventional cytotoxic agents, immunotherapy with checkpoint inhibitors and the use of specific small-molecule tyrosine kinase inhibitors (TKI). However, these TKIs are mainly restricted to a small proportion of patients with lung cancer that harbor activating driver mutations. Still, the effectiveness and favorable safety profile of these compounds have prompted a systematic search for specific driver mechanisms of tumorigenesis and moreover the development of corresponding kinase inhibitors. In recent years, the Polo-like kinase (PLK) family has emerged as a key regulator in mitotic regulation. Its role in cell proliferation and the frequently observed overexpression in various tumor entities have raised much interest in basic and clinical oncology aiming to attenuate tumor growth by targeting the PLK. In this review, we give a comprehensive summary on the (pre-) clinical development of the different types of PLK inhibitors in lung cancer and summarize their mechanisms of action, safety and efficacy data and give an overview on translational research aiming to identify predictive biomarkers for a rational use of PLK inhibitors.
Collapse
Affiliation(s)
- Jan A Stratmann
- Department of Internal Medicine II, University Clinic of Frankfurt, 60596 Frankfurt, Germany
| | - Martin Sebastian
- Department of Internal Medicine II, University Clinic of Frankfurt, 60596 Frankfurt, Germany
| |
Collapse
|
12
|
de Almeida BP, Vieira AF, Paredes J, Bettencourt-Dias M, Barbosa-Morais NL. Pan-cancer association of a centrosome amplification gene expression signature with genomic alterations and clinical outcome. PLoS Comput Biol 2019; 15:e1006832. [PMID: 30856170 PMCID: PMC6411098 DOI: 10.1371/journal.pcbi.1006832] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/25/2019] [Indexed: 02/05/2023] Open
Abstract
Centrosome amplification (CA) is a common feature of human tumours and a promising target for cancer therapy. However, CA's pan-cancer prevalence, molecular role in tumourigenesis and therapeutic value in the clinical setting are still largely unexplored. Here, we used a transcriptomic signature (CA20) to characterise the landscape of CA-associated gene expression in 9,721 tumours from The Cancer Genome Atlas (TCGA). CA20 is upregulated in cancer and associated with distinct clinical and molecular features of breast cancer, consistently with our experimental CA quantification in patient samples. Moreover, we show that CA20 upregulation is positively associated with genomic instability, alteration of specific chromosomal arms and C>T mutations, and we propose novel molecular players associated with CA in cancer. Finally, high CA20 is associated with poor prognosis and, by integrating drug sensitivity with drug perturbation profiles in cell lines, we identify candidate compounds for selectively targeting cancer cells exhibiting transcriptomic evidence for CA.
Collapse
Affiliation(s)
- Bernardo P. de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - André F. Vieira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Joana Paredes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | | | - Nuno L. Barbosa-Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Chen C, Xu Z, Zhang T, Lin L, Lu M, Xie C, Yu X. Cep85 Relays Plk1 Activity to Phosphorylated Nek2A for Its Timely Activation in Centrosome Disjunction. iScience 2018; 11:114-133. [PMID: 30611117 PMCID: PMC6317306 DOI: 10.1016/j.isci.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/19/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
Timely centrosome separation is critical for accurate chromosome separation. It is initiated by Nek2A at the onset of mitosis, but the mechanism for the strict requirement of phosphorylated Nek2A for its own activation remains unclear. In this study, we have found that Plk1 interacts with Cep85 and forms a ternary complex with Cep85-Nek2A. Nek2A binding, but not its kinase activity, is pre-required for Cep85 to be phosphorylated by Plk1. Nek2A-dependent Cep85 phosphorylation, in turn, leads to the dissociation of phosphorylated Cep85 exclusively from phospho-Nek2A, thereby increasing the freed phospho-Nek2A activity. Both kinases are also required for phosphorylating endogenous Cep85 in cells, and timely phosphorylation of Cep85 and Nek2A is crucial for initiating centrosome disjunction at G2/M. Overall, our study has uncovered a previously unrecognized role of Plk1 and Nek2A and identified Cep85 as a missing piece directly relaying Plk1 activity to Nek2A for its activation in centrosome disjunction.
Cep85 prevents centrosome separation by binding to and inhibiting Nek2A in interphase Plk1 binds to Cep85 and forms a ternary Plk1-Cep85-Nek2A complex in late G2 Nek2A-assisting Cep85 phosphorylation by Plk1 releases phospho-Nek2A from Cep85 Freed phospho-Nek2A initiates centrosome separation in G2/M
Collapse
Affiliation(s)
- Canhe Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Zhenping Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ting Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Liping Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mingke Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xianwen Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
14
|
He Z, Deng W, Jiang B, Liu S, Tang M, Liu Y, Zhang J. Hsa-let-7b inhibits cell proliferation by targeting PLK1 in HCC. Gene 2018; 673:46-55. [PMID: 29913237 DOI: 10.1016/j.gene.2018.06.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that high levels of PLK1 are expressed in HCC, and PLK1 inhibitors are being tested in clinical trials. However, the mechanisms, which regulate PLK1 expression in HCC, have not been clarified. Here, we show that induction of let-7b over-expression inhibits the PLK1-regulated luciferase activity in HEK-293T cells, and decreases the levels of PLK1 expression in HCC cells. Furthermore, the levels of let-7b expression were negatively correlated with PLK1 expression in HCC tissues. Let-7b over-expression inhibited the proliferation of HCC cells and promoted their apoptosis, which were partially rescued by increased PLK1 expression. Let-7b over-expression decreased the levels of PLK1, CDC25C and Survivin phosphorylation and CDC2, β-catenin, TCF-4 expression, which were mitigated by increased PLK1 expression in MHCC-97H cells. Let-7b over-expression inhibited the development and growth of implanted HCC tumors in mice by decreasing PLK1 and Survivin expression in the tumors. Together, our data indicated that let-7b targeted PLK1 to inhibit HCC growth and induce their apoptosis by attenuating the PLK1-mediated Survivin phosphorylation. Our findings may provide new insights into the pathogenesis of HCC.
Collapse
Affiliation(s)
- Zili He
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China; Key Laboratory of Protein Chemistry, Developmental Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China; Laboratory of Hepatobiliary Molecular Oncology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, People's Republic of China.
| | - Wen Deng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China
| | - Mingchun Tang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China
| | - Yi Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China
| | - Jian Zhang
- Key Laboratory of Protein Chemistry, Developmental Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China.
| |
Collapse
|
15
|
Jiang M, Rao R, Wang J, Wang J, Xu L, Wu LM, Chan JR, Wang H, Lu QR. The TSC1-mTOR-PLK axis regulates the homeostatic switch from Schwann cell proliferation to myelination in a stage-specific manner. Glia 2018; 66:1947-1959. [PMID: 29722913 PMCID: PMC6185760 DOI: 10.1002/glia.23449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022]
Abstract
Proper peripheral myelination depends upon the balance between Schwann cell proliferation and differentiation programs. The serine/threonine kinase mTOR integrates various environmental cues to serve as a central regulator of cell growth, metabolism, and function. We report here that tuberous sclerosis complex 1 (TSC1), a negative regulator of mTOR activity, establishes a stage-dependent program for Schwann cell lineage progression and myelination by controlling cell proliferation and myelin homeostasis. Tsc1 ablation in Schwann cell progenitors in mice resulted in activation of mTOR signaling, and caused over-proliferation of Schwann cells and blocked their differentiation, leading to hypomyelination. Transcriptome profiling analysis revealed that mTOR activation in Tsc1 mutants resulted in upregulation of a polo-like kinase (PLK)-dependent pathway and cell cycle regulators. Attenuation of mTOR or pharmacological inhibition of polo-like kinases partially rescued hypomyelination caused by Tsc1 loss in the developing peripheral nerves. In contrast, deletion of Tsc1 in mature Schwann cells led to redundant and overgrown myelin sheaths in adult mice. Together, our findings indicate stage-specific functions for the TSC1-mTOR-PLK signaling axis in controlling the transition from proliferation to differentiation and myelin homeostasis during Schwann cell development.
Collapse
Affiliation(s)
- Minqing Jiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
- The Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Rohit Rao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jincheng Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jiajia Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lingli Xu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lai Man Wu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jonah R. Chan
- Department of Neurology and Programs in Biomedical and Neurosciences, University of California, San Francisco, CA 94158
| | - Huimin Wang
- The Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Q. Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
16
|
Cao YY, Yu J, Liu TT, Yang KX, Yang LY, Chen Q, Shi F, Hao JJ, Cai Y, Wang MR, Lu WH, Zhang Y. Plumbagin inhibits the proliferation and survival of esophageal cancer cells by blocking STAT3-PLK1-AKT signaling. Cell Death Dis 2018; 9:17. [PMID: 29339720 PMCID: PMC5833725 DOI: 10.1038/s41419-017-0068-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers, and it requires novel treatment approaches and effective drugs. In the present study, we found that treatment with plumbagin, a natural compound, reduced proliferation and survival of the KYSE150 and KYSE450 ESCC cell lines in a dose-dependent manner in vitro. The drug also effectively inhibited the viability of primary ESCC cells from fresh biopsy specimens. Furthermore, plumbagin-induced mitotic arrest and massive apoptosis in ESCC cells. Notably, the drug significantly suppressed the colony formation capacity of ESCC cells in vitro and the growth of KYSE150 xenograft tumors in vivo. At the molecular level, we found that exposure to plumbagin decreased both polo-like kinase 1 (PLK1) and phosphorylated protein kinase B (p-AKT) expression in both ESCC cell lines. Enforced PLK1 expression in ESCC cells not only markedly rescued cells from plumbagin-induced apoptosis and proliferation inhibition but also restored the impaired AKT activity. Furthermore, signal transducer and activator of transcription 3 (STAT3), a transcription factor of PLK1, was also inactivated in plumbagin-treated ESCC cells; however, the overexpression of a constitutively activated STAT3 mutant, STAT3C, reinstated the plumbagin-elicited blockade of PLK1-AKT signaling in ESCC cells. Taken together, these findings indicate that plumbagin inhibits proliferation and potentiates apoptosis in human ESCC cells in vitro and in vivo. Plumbagin may exert these antitumor effects by abrogating STAT3-PLK1-AKT signaling, which suggests that plumbagin may be a novel, promising anticancer agent for the treatment of ESCC.
Collapse
Affiliation(s)
- Ying-Ya Cao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Department of Intensive Care Medicine, Yijishan Hospital, Wannan Medical College, 241001, Wuhu, China
| | - Jing Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Ting-Ting Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Kai-Xia Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Li-Yan Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Qun Chen
- Department of Intensive Care Medicine, Yijishan Hospital, Wannan Medical College, 241001, Wuhu, China
| | - Feng Shi
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Wei-Hua Lu
- Department of Intensive Care Medicine, Yijishan Hospital, Wannan Medical College, 241001, Wuhu, China.
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
17
|
Li Z, Cui Q, Xu J, Cheng D, Wang X, Li B, Lee JM, Xia Q, Kusakabe T, Zhao P. SUMOylation regulates the localization and activity of Polo-like kinase 1 during cell cycle in the silkworm, Bombyx mori. Sci Rep 2017; 7:15536. [PMID: 29138491 PMCID: PMC5686133 DOI: 10.1038/s41598-017-15884-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/26/2017] [Indexed: 12/15/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a crucial cell cycle regulator by its specific localization and activity during cell cycle. It has been shown that the phosphorylation and ubiquitylation of Plk1 are required for its own activation and localization. Here, we report that SUMOylation regulates the activity of Plk1 in the lepidopteran insect of Bombyx mori. In the absence of SUMOylation, it causes the lost localization of Plk1 on centrosomes and kinetochores, as well as an uneven distribution in midzone. We further identify that the putative SUMOylation site of Bombyx Plk1 at lysine 466 is required for its localization on centrosomes, and K466 mutation in Plk1 could influence its interaction with Smt3/Ubc9 complex. These findings are also confirmed by Drosophila Polo and human Plk1, which together reveals a conserved role of Plk1 SUMOylation in mammals. Moreover, conjugation of Smt3 to Plk1 SUMOylation mutant promotes its localization on centrosomes and kinetochores, and rescues functional defects of chromosome alignment in cells depleted of endogenous Plk1. Altogether, the present data indicate that the SUMOylation of Plk1 could participate in proper chromosome alignment and segregation during mitosis, and provides a novel layer for the regulation of Plk1 localization and activity throughout cell cycle.
Collapse
Affiliation(s)
- Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Qixin Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jian Xu
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Xiaoyan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bingqian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China.
| |
Collapse
|
18
|
Kedves AT, Gleim S, Liang X, Bonal DM, Sigoillot F, Harbinski F, Sanghavi S, Benander C, George E, Gokhale PC, Nguyen QD, Kirschmeier PT, Distel RJ, Jenkins J, Goldberg MS, Forrester WC. Recurrent ubiquitin B silencing in gynecological cancers establishes dependence on ubiquitin C. J Clin Invest 2017; 127:4554-4568. [PMID: 29130934 DOI: 10.1172/jci92914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023] Open
Abstract
Transcriptional repression of ubiquitin B (UBB) is a cancer-subtype-specific alteration that occurs in a substantial population of patients with cancers of the female reproductive tract. UBB is 1 of 2 genes encoding for ubiquitin as a polyprotein consisting of multiple copies of ubiquitin monomers. Silencing of UBB reduces cellular UBB levels and results in an exquisite dependence on ubiquitin C (UBC), the second polyubiquitin gene. UBB is repressed in approximately 30% of high-grade serous ovarian cancer (HGSOC) patients and is a recurrent lesion in uterine carcinosarcoma and endometrial carcinoma. We identified ovarian tumor cell lines that retain UBB in a repressed state, used these cell lines to establish orthotopic ovarian tumors, and found that inducible expression of a UBC-targeting shRNA led to tumor regression, and substantial long-term survival benefit. Thus, we describe a recurrent cancer-specific lesion at the level of ubiquitin production. Moreover, these observations reveal the prognostic value of UBB repression and establish UBC as a promising therapeutic target for ovarian cancer patients with recurrent UBB silencing.
Collapse
Affiliation(s)
- Alexia T Kedves
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Scott Gleim
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Xiaoyou Liang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Dennis M Bonal
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Frederic Sigoillot
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Fred Harbinski
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Sneha Sanghavi
- Neurosciences, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Christina Benander
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Elizabeth George
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | | | | | | | | | - Jeremy Jenkins
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | | | - William C Forrester
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Prognostic value of CA20, a score based on centrosome amplification-associated genes, in breast tumors. Sci Rep 2017; 7:262. [PMID: 28325915 PMCID: PMC5428291 DOI: 10.1038/s41598-017-00363-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/20/2017] [Indexed: 11/08/2022] Open
Abstract
Centrosome amplification (CA) is a hallmark of cancer, observable in ≥75% of breast tumors. CA drives aggressive cellular phenotypes such as chromosomal instability (CIN) and invasiveness. Thus, assessment of CA may offer insights into the prognosis of breast cancer and identify patients who might benefit from centrosome declustering agents. However, it remains unclear whether CA is correlated with clinical outcomes after adjusting for confounding factors. To gain insights, we developed a signature, “CA20”, comprising centrosome structural genes and genes whose dysregulation is implicated in inducing CA. We found that CA20 was a significant independent predictor of worse survival in two large independent datasets after adjusting for potentially confounding factors. In multivariable analyses including both CA20 and CIN25 (a gene expression-based score that correlates with aneuploidy and has prognostic value in many types of cancer), only CA20 was significant, suggesting CA20 captures the risk-predictive information of CIN25 and offers information beyond it. CA20 correlated strongly with CIN25, so a high CA20 score may reflect tumors with high CIN and potentially other aggressive features that may require more aggressive treatment. Finally, we identified processes and pathways differing between CA20-low and high groups that may be valuable therapeutic targets.
Collapse
|
20
|
Zhang Z, Chen C, Cui P, Liao Y, Yao L, Zhang Y, Rui R, Ju S. Plk1 inhibition leads to a failure of mitotic division during the first mitotic division in pig embryos. J Assist Reprod Genet 2017; 34:399-407. [PMID: 28074435 PMCID: PMC5360688 DOI: 10.1007/s10815-016-0864-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/19/2016] [Indexed: 12/01/2022] Open
Abstract
PURPOSE This study was conducted to examine the dynamic distribution of polo-like 1 kinase (Plk1) and the possible role it plays in first mitotic division during early porcine embryo development. METHODS Indirect immunofluorescence and confocal microscopy imaging techniques combined with western blot analyses were used to study the dynamic expression and subcellular localization of Plk1 protein in pig parthenogenetic embryos. Finally, a selective Plk1 inhibitor, GSK461364, was used to evaluate the potential role of Plk1 during this special stage. RESULTS The results showed that Plk1 upon expression exhibited specific dynamic intracellular localization, which closely correlated with the α-tubulin distribution during the first mitotic division. GSK461364 treatment resulted in cleavage failure, with majority of the GSK461364-treated embryos being arrested in prometaphase. Further results of the subcellular structure examination showed that GSK461364 treatment led to a significantly higher proportion of the treated embryos having abnormal spindles and misarranged chromosomes at the prometaphase stage. CONCLUSIONS Thus, these results indicated that Plk1 is essential for porcine embryos to complete the first mitotic division. Furthermore, Plk1 regulation was associated with effects on spindle assembly and chromosome arrangement.
Collapse
Affiliation(s)
- Zixiao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Changchao Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Panpan Cui
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Yaya Liao
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Lingyun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Rong Rui
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Shiqiang Ju
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, China.
| |
Collapse
|
21
|
Wachowicz P, Fernández-Miranda G, Marugán C, Escobar B, de Cárcer G. Genetic depletion of Polo-like kinase 1 leads to embryonic lethality due to mitotic aberrancies. Bioessays 2016; 38 Suppl 1:S96-S106. [PMID: 27417127 DOI: 10.1002/bies.201670908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022]
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase that plays multiple and essential roles during the cell division cycle. Its inhibition in cultured cells leads to severe mitotic aberrancies and cell death. Whereas previous reports suggested that Plk1 depletion in mice leads to a non-mitotic arrest in early embryos, we show here that the bi-allelic Plk1 depletion in mice certainly results in embryonic lethality due to extensive mitotic aberrations at the morula stage, including multi- and mono-polar spindles, impaired chromosome segregation and cytokinesis failure. In addition, the conditional depletion of Plk1 during mid-gestation leads also to severe mitotic aberrancies. Our data also confirms that Plk1 is completely dispensable for mitotic entry in vivo. On the other hand, Plk1 haploinsufficient mice are viable, and Plk1-heterozygous fibroblasts do not harbor any cell cycle alterations. Plk1 is overexpressed in many human tumors, suggesting a therapeutic benefit of inhibiting Plk1, and specific small-molecule inhibitors for this kinase are now being evaluated in clinical trials. Therefore, the different Plk1 mouse models here presented are a valuable tool to reexamine the relevance of the mitotic kinase Plk1 during mammalian development and animal physiology.
Collapse
Affiliation(s)
- Paulina Wachowicz
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gonzalo Fernández-Miranda
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Carlos Marugán
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Beatriz Escobar
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Spanish National Cardiovascular Research Centre (CNIC), Madrid, Spain
| | | |
Collapse
|
22
|
Cdk2 catalytic activity is essential for meiotic cell division in vivo. Biochem J 2016; 473:2783-98. [PMID: 27371320 DOI: 10.1042/bcj20160607] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/29/2016] [Indexed: 01/18/2023]
Abstract
Cyclin-dependent kinases (Cdks) control the eukaryotic cell cycle by phosphorylating serine and threonine residues in key regulatory proteins, but some Cdk family members may exert kinase-independent functions that cannot easily be assessed using gene knockout approaches. While Cdk2-deficient mice display near-normal mitotic cell proliferation due to the compensatory activities of Cdk1 and Cdk4, they are unable to undergo meiotic generation of gametes and are consequently sterile. To investigate whether Cdk2 regulates meiosis via protein phosphorylation or by alternative kinase-independent mechanisms, we generated two different knockin mouse strains in which Cdk2 point mutations ablated enzyme activity without altering protein expression levels. Mice homozygous for the mutations Cdk2(D145N/D145N) or Cdk2(T160A/T160A) expressed only 'kinase-dead' variants of Cdk2 under the control of the endogenous promoter, and despite exhibiting normal expression of cell cycle regulatory proteins and complexes, both mutations rendered mice sterile. Mouse cells that expressed only 'kinase-dead' variants of Cdk2 displayed normal mitotic cell cycle progression and proliferation both in vitro and in vivo, indicating that loss of Cdk2 kinase activity exerted little effect on this mode of cell division. In contrast, the reproductive organs of Cdk2 mutant mice exhibited abnormal morphology and impaired function associated with defective meiotic cell division and inability to produce gametes. Cdk2 mutant animals were therefore comparable to gene knockout mice, which completely lack the Cdk2 protein. Together, our data indicate that the essential meiotic functions of Cdk2 depend on its kinase activity, without which the generation of haploid cells is disrupted, resulting in sterility of otherwise healthy animals.
Collapse
|
23
|
Chen JLY, Chen JP, Huang YS, Tsai YC, Tsai MH, Jaw FS, Cheng JCH, Kuo SH, Shieh MJ. Radiosensitization in esophageal squamous cell carcinoma: Effect of polo-like kinase 1 inhibition. Strahlenther Onkol 2016; 192:260-268. [PMID: 26952039 DOI: 10.1007/s00066-016-0951-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/28/2016] [Indexed: 01/27/2023]
Abstract
PURPOSE This study examined the efficacy of polo-like kinase 1 (PLK1) inhibition on radiosensitivity in vitro and in vivo by a pharmacologic approach using the highly potent PLK1 inhibitor volasertib. METHODS AND MATERIALS Human esophageal squamous cell carcinoma (ESCC) cell lines KYSE 70 and KYSE 150 were used to evaluate the synergistic effect of volasertib and irradiation in vitro using cell viability assay, colony formation assay, cell cycle phase analysis, and western blot, and in vivo using ectopic tumor models. RESULTS Volasertib decreased ESCC cell proliferation in a dose- and time-dependent manner. Combination of volasertib and radiation caused G2/M cell cycle arrest, increased cyclin B levels, and induced apoptosis. Volasertib significantly enhanced radiation-induced death in ESCC cells by a mechanism involving the enhancement of histone H3 phosphorylation and significant cell cycle interruption. The combination of volasertib plus irradiation delayed the growth of ESCC tumor xenografts markedly compared with either treatment modality alone. CONCLUSIONS The in vitro results suggested that targeting PLK1 might be a viable approach to improve the effects of radiation in ESCC. In vivo studies showed that PLK1 inhibition with volasertib during irradiation significantly improved local tumor control when compared to irradiation or drug treatment alone.
Collapse
Affiliation(s)
- Jenny Ling-Yu Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
| | - Jo-Pai Chen
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Yu-Sen Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.
- Department of Medical Imaging, National Taiwan University Hospital, No.7, Chung-Shan South Road, 100, Taipei, Taiwan.
- Department of Medical Imaging, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan.
| | - Yuan-Chun Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsien Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Fu-Shan Jaw
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Jason Chia-Hsien Cheng
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
| |
Collapse
|
24
|
Bouhlal H, Ouled-Haddou H, Debuysscher V, Singh AR, Ossart C, Reignier A, Hocini H, Fouquet G, Baghami MA, Eugenio MS, Nguyen-Khac E, Regimbeau JM, Marcq I. RB/PLK1-dependent induced pathway by SLAMF3 expression inhibits mitosis and control hepatocarcinoma cell proliferation. Oncotarget 2016; 7:9832-43. [PMID: 26799423 PMCID: PMC4891087 DOI: 10.18632/oncotarget.6954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/09/2015] [Indexed: 12/18/2022] Open
Abstract
Polo-like kinase PLK1 is a cell cycle protein that plays multiple roles in promoting cell cycle progression. Among the many roles, the most prominent role of PLK1 is to regulate the mitotic spindle formation checkpoint at the M-phase. Recently we reported the expression of SLAMF3 in Hepatocytes and show that it is down regulated in tumor cells of hepatocellular carcinoma (HCC). We also show that the forced high expression level of SLAMF3 in HCC cells controls proliferation by inhibiting the MAPK ERK/JNK and the mTOR pathways. In the present study, we provide evidence that the inhibitory effect of SLAMF3 on HCC proliferation occurs through Retinoblastoma (RB) factor and PLK1-dependent pathway. In addition to the inhibition of MAPK ERK/JNK and the mTOR pathways, expression of SLAMF3 in HCC retains RB factor in its hypophosphorylated active form, which in turn inactivates E2F transcription factor, thereby repressing the expression and activation of PLK1. A clear inverse correlation was also observed between SLAMF3 and PLK expression in patients with HCC. In conclusion, the results presented here suggest that the tumor suppressor potential of SLAMF3 occurs through activation of RB that represses PLK1. We propose that the induction of a high expression level of SLAMF3 in cancerous cells could control cellular mitosis and block tumor progression.
Collapse
Affiliation(s)
- Hicham Bouhlal
- Centre Universitaire de Recherche en Santé CURS, CAP-Santé (FED 4231), Université de Picardie Jules Verne, CHU Sud, Amiens, France
- Service d'Hématologie Clinique et de Thérapie Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France
| | - Hakim Ouled-Haddou
- Centre Universitaire de Recherche en Santé CURS, CAP-Santé (FED 4231), Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Véronique Debuysscher
- Centre Universitaire de Recherche en Santé CURS, CAP-Santé (FED 4231), Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Amrathlal Rabbind Singh
- Centre Universitaire de Recherche en Santé CURS, CAP-Santé (FED 4231), Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Christèle Ossart
- Centre Universitaire de Recherche en Santé CURS, CAP-Santé (FED 4231), Université de Picardie Jules Verne, CHU Sud, Amiens, France
- Service d'Hématologie Clinique et de Thérapie Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France
| | - Aline Reignier
- Centre Universitaire de Recherche en Santé CURS, CAP-Santé (FED 4231), Université de Picardie Jules Verne, CHU Sud, Amiens, France
- Service d'Hématologie Clinique et de Thérapie Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France
| | - Hakim Hocini
- IMRB, Equipe 16, Génomique Médicale, UFR de Médecine, Créteil, France
| | - Gregory Fouquet
- Centre Universitaire de Recherche en Santé CURS, CAP-Santé (FED 4231), Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Mohammed Al Baghami
- Centre Universitaire de Recherche en Santé CURS, CAP-Santé (FED 4231), Université de Picardie Jules Verne, CHU Sud, Amiens, France
- Service d'Hématologie Clinique et de Thérapie Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France
| | - Mélanie Simoes Eugenio
- Centre Universitaire de Recherche en Santé CURS, CAP-Santé (FED 4231), Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Eric Nguyen-Khac
- Service Hepato-Gastroenterologie, Centre Hospitalier Universitaire Sud, Amiens, France
| | - Jean-Marc Regimbeau
- Service de Chirurgie Digestive Centre Hospitalier Universitaire Sud, Amiens, France
| | - Ingrid Marcq
- Centre Universitaire de Recherche en Santé CURS, CAP-Santé (FED 4231), Université de Picardie Jules Verne, CHU Sud, Amiens, France
| |
Collapse
|
25
|
Sur S, Swier VJ, Radwan MM, Agrawal DK. Increased Expression of Phosphorylated Polo-Like Kinase 1 and Histone in Bypass Vein Graft and Coronary Arteries following Angioplasty. PLoS One 2016; 11:e0147937. [PMID: 26820885 PMCID: PMC4731576 DOI: 10.1371/journal.pone.0147937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
Interventional procedures, including percutaneous transluminal coronary angioplasty (PTCA) and coronary artery bypass surgery (CABG) to re-vascularize occluded coronary arteries, injure the vascular wall and cause endothelial denudation and medial vascular smooth muscle cell (VSMCs) metaplasia. Proliferation of the phenotypically altered SMCs is the key event in the pathogenesis of intimal hyperplasia (IH). Several kinases and phosphatases regulate cell cycle in SMC proliferation. It is our hypothesis that increased expression and activity of polo-like kinase-1 (PLK1) in SMCs, following PTCA and CABG, contributes to greater SMC proliferation in the injured than uninjured blood vessels. Using immunofluorescence (IF), we assessed the expression of PLK1 and phosphorylated-PLK1 (pPLK1) in post-PTCA coronary arteries, and superficial epigastric vein grafts (SEV) and compared it with those in the corresponding uninjured vessels. We also compared the expressions of mitotic marker phospho-histone, synthetic-SMC marker, contractile SMC marker, IFN-γ and phosphorylated STAT-3 in the post-PTCA arteries, SEV-grafts, and the uninjured vessels. Immunostaining demonstrated an increase in the number of cells expressing PLK1 and pPLK1 in the neointima of post PTCA-coronary arteries and SEV-grafts compared to their uninjured counterparts. VSMCs in the neointima showed an increased expression of phospho-histone, synthetic and contractile SMC markers, IFN-γ and phosphorylated STAT-3. However, VSMCs of uninjured coronaries and SEV had no significant expression of the aforementioned proteins. These data suggest that PLK1 might play a critical role in VSMC mitosis in hyperplastic intima of the injured vessels. Thus, novel therapies to inhibit PLK1 could be developed to inhibit the mitogenesis of VSMCs and control neointimal hyperplasia.
Collapse
Affiliation(s)
- Swastika Sur
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Vicki J. Swier
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Mohamed M. Radwan
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Devendra K. Agrawal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States of America
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, United States of America
| |
Collapse
|
26
|
D'Assoro AB, Haddad T, Galanis E. Aurora-A Kinase as a Promising Therapeutic Target in Cancer. Front Oncol 2016; 5:295. [PMID: 26779440 PMCID: PMC4701905 DOI: 10.3389/fonc.2015.00295] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/11/2015] [Indexed: 12/14/2022] Open
Abstract
Mammalian Aurora family of serine/threonine kinases are master regulators of mitotic progression and are frequently overexpressed in human cancers. Among the three members of the Aurora kinase family (Aurora-A, -B, and -C), Aurora-A and Aurora-B are expressed at detectable levels in somatic cells undergoing mitotic cell division. Aberrant Aurora-A kinase activity has been implicated in oncogenic transformation through the development of chromosomal instability and tumor cell heterogeneity. Recent studies also reveal a novel non-mitotic role of Aurora-A activity in promoting tumor progression through activation of epithelial-mesenchymal transition reprograming resulting in the genesis of tumor-initiating cells. Therefore, Aurora-A kinase represents an attractive target for cancer therapeutics, and the development of small molecule inhibitors of Aurora-A oncogenic activity may improve the clinical outcomes of cancer patients. In the present review, we will discuss mitotic and non-mitotic functions of Aurora-A activity in oncogenic transformation and tumor progression. We will also review the current clinical studies, evaluating small molecule inhibitors of Aurora-A activity and their efficacy in the management of cancer patients.
Collapse
Affiliation(s)
- Antonino B D'Assoro
- Department of Medical Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tufia Haddad
- Department of Medical Oncology, Mayo Clinic College of Medicine , Rochester, MN , USA
| | - Evanthia Galanis
- Department of Medical Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
27
|
Kim J, Lee K, Rhee K. PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit. Nat Commun 2015; 6:10076. [PMID: 26647647 PMCID: PMC4682042 DOI: 10.1038/ncomms10076] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/30/2015] [Indexed: 11/26/2022] Open
Abstract
Centrioles are duplicated and segregated in close link to the cell cycle. During mitosis, daughter centrioles are disengaged and eventually separated from mother centrioles. New daughter centrioles may be generated only after centriole separation. Therefore, centriole separation is considered a licensing step for centriole duplication. It was previously known that separase specifically cleaves pericentrin (PCNT) during mitotic exit. Here we report that PCNT has to be phosphorylated by PLK1 to be a suitable substrate of separase. Phospho-resistant mutants of PCNT are not cleaved by separase and eventually inhibit centriole separation. Furthermore, phospho-mimetic PCNT mutants rescue centriole separation even in the presence of a PLK1 inhibitor. On the basis on these results, we propose that PLK1 phosphorylation is a priming step for separase-mediated cleavage of PCNT and eventually for centriole separation. PLK1 phosphorylation of PCNT provides an additional layer of regulatory mechanism to ensure the fidelity of centriole separation during mitotic exit.
Collapse
Affiliation(s)
- Jaeyoun Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kwanwoo Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
28
|
Seo MY, Jang W, Rhee K. Integrity of the Pericentriolar Material Is Essential for Maintaining Centriole Association during M Phase. PLoS One 2015; 10:e0138905. [PMID: 26407333 PMCID: PMC4583256 DOI: 10.1371/journal.pone.0138905] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 09/06/2015] [Indexed: 01/05/2023] Open
Abstract
A procentriole is assembled next to the mother centriole during S phase and remains associated until M phase. After functioning as a spindle pole during mitosis, the mother centriole and procentriole are separated at the end of mitosis. A close association of the centriole pair is regarded as an intrinsic block to the centriole reduplication. Therefore, deregulation of this process may cause a problem in the centriole number control, resulting in increased genomic instability. Despite its importance for faithful centriole duplication, the mechanism of centriole separation is not fully understood yet. Here, we report that centriole pairs are prematurely separated in cells whose cell cycle is arrested at M phase by STLC. Dispersal of the pericentriolar material (PCM) was accompanied. This phenomenon was independent of the separase activity but needed the PLK1 activity. Nocodazole effectively inhibited centriole scattering in STLC-treated cells, possibly by reducing the microtubule pulling force around centrosomes. Inhibition of PLK1 also reduced the premature separation of centrioles and the PCM dispersal as well. These results revealed the importance of PCM integrity in centriole association. Therefore, we propose that PCM disassembly is one of the driving forces for centriole separation during mitotic exit.
Collapse
Affiliation(s)
- Mi Young Seo
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Wonyul Jang
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
29
|
Kazazian K, Brashavitskaya O, Zih FSW, Berger-Richardson D, Xu RSZ, Pacholczyk K, Macmillan J, Swallow CJ. Polo-Like Kinases in Colorectal Cancer: Potential for Targeted Therapy. CURRENT COLORECTAL CANCER REPORTS 2015. [DOI: 10.1007/s11888-015-0275-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Chen L, Li Z, Ahmad N, Liu X. Plk1 phosphorylation of IRS2 prevents premature mitotic exit via AKT inactivation. Biochemistry 2015; 54:2473-80. [PMID: 25830382 PMCID: PMC4950874 DOI: 10.1021/acs.biochem.5b00016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Insulin receptor substrate (IRS) proteins play important roles by acting as a platform in transducing signals from transmembrane receptors upon growth factor stimulation. Although tyrosine phosphorylation on IRS proteins plays critical roles in signal transduction, phosphorylation of IRS proteins on serine/threonine residues is believed to play various regulatory roles in IRS protein function. However, studies of serine/threonine phosphorylation of IRS proteins are very limited, especially for insulin receptor substrate 2 (IRS2), one member of the IRS protein family. In this study, we identify Polo-like kinase 1 (Plk1) as the responsible kinase for phosphorylation of IRS2 on two serine residues, Ser 556 and Ser 1098. Phosphorylation of IRS2 at these two serine residues by Plk1 prevents the activation of the PI3K pathway upon growth factor stimulation by inhibiting the binding between IRS2 and the PI3K pathway components and increasing the level of IRS2 protein degradation. Significantly, we show that IRS2 phosphorylation is cell cycle-regulated and that Plk1 phosphorylation of IRS2 prevents premature mitotic exit via AKT inactivation.
Collapse
Affiliation(s)
- Long Chen
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Zhiguo Li
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
31
|
Choi BH, Pagano M, Dai W. Plk1 protein phosphorylates phosphatase and tensin homolog (PTEN) and regulates its mitotic activity during the cell cycle. J Biol Chem 2014; 289:14066-74. [PMID: 24706748 PMCID: PMC4022876 DOI: 10.1074/jbc.m114.558155] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/30/2014] [Indexed: 01/21/2023] Open
Abstract
PTEN is a well known tumor suppressor through the negative regulation of the PI3K signaling pathway. Here we report that PTEN plays an important role in regulating mitotic timing, which is associated with increased PTEN phosphorylation in the C-terminal tail and its localization to chromatin. Pulldown analysis revealed that Plk1 physically interacted with PTEN. Biochemical studies showed that Plk1 phosphorylates PTEN in vitro in a concentration-dependent manner and that the phosphorylation was inhibited by Bi2635, a Plk1-specific inhibitor. Deletional and mutational analyses identified that Plk1 phosphorylated Ser-380, Thr-382, and Thr-383, but not Ser-385, a cluster of residues known to affect the PTEN stability. Interestingly, a combination of molecular and genetic analyses revealed that only Ser-380 was significantly phosphorylated in vivo and that Plk1 regulated the phosphorylation, which was associated with the accumulation of PTEN on chromatin. Moreover, expression of phospho-deficient mutant, but not wild-type PTEN, caused enhanced mitotic exit. Taken together, our studies identify Plk1 as an important regulator of PTEN during the cell cycle.
Collapse
Affiliation(s)
- Byeong Hyeok Choi
- From the Departments of Environmental Medicine, Biochemistry, and Molecular Pharmacology, New York University School of Medicine, Tuxedo, New York 10987
| | - Michele Pagano
- the Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, and the Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016
| | - Wei Dai
- From the Departments of Environmental Medicine, Biochemistry, and Molecular Pharmacology, New York University School of Medicine, Tuxedo, New York 10987,
| |
Collapse
|
32
|
Kakeno M, Matsuzawa K, Matsui T, Akita H, Sugiyama I, Ishidate F, Nakano A, Takashima S, Goto H, Inagaki M, Kaibuchi K, Watanabe T. Plk1 phosphorylates CLIP-170 and regulates its binding to microtubules for chromosome alignment. Cell Struct Funct 2014; 39:45-59. [PMID: 24451569 DOI: 10.1247/csf.14001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The microtubule (MT) cytoskeleton is essential for cellular morphogenesis, cell migration, and cell division. MT organization is primarily mediated by a variety of MT-associated proteins. Among these proteins, plus-end-tracking proteins (+TIPs) are evolutionarily conserved factors that selectively accumulate at growing MT plus ends. Cytoplasmic linker protein (CLIP)-170 is a +TIP that associates with diverse proteins to determine the behavior of MT ends and their linkage to intracellular structures, including mitotic chromosomes. However, how CLIP-170 activity is spatially and temporally controlled is largely unknown. Here, we show that phosphorylation at Ser312 in the third serine-rich region of CLIP-170 is increased during mitosis. Polo-like kinase 1 (Plk1) is responsible for this phosphorylation during the mitotic phase of dividing cells. In vitro analysis using a purified CLIP-170 N-terminal fragment showed that phosphorylation by Plk1 diminishes CLIP-170 binding to the MT ends and lattice without affecting binding to EB3. Furthermore, we demonstrate that during mitosis, stable kinetochore/MT attachment and subsequent chromosome alignment require CLIP-170 and a proper phosphorylation/dephosphorylation cycle at Ser312. We propose that CLIP-170 phosphorylation by Plk1 regulates proper chromosome alignment by modulating the interaction between CLIP-170 and MTs in mitotic cells and that CLIP-170 activity is stringently controlled by its phosphorylation state, which depends on the cellular context.
Collapse
Affiliation(s)
- Mai Kakeno
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zou J, Zhang D, Qin G, Chen X, Wang H, Zhang D. BRCA1 and FancJ cooperatively promote interstrand crosslinker induced centrosome amplification through the activation of polo-like kinase 1. Cell Cycle 2014; 13:3685-97. [PMID: 25483079 PMCID: PMC4612125 DOI: 10.4161/15384101.2014.964973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 12/15/2022] Open
Abstract
DNA damage response (DDR) and the centrosome cycle are 2 of the most critical cellular processes affecting the genome stability in animal cells. Yet the cross-talks between DDR and the centrosome are poorly understood. Here we showed that deficiency of the breast cancer 1, early onset gene (BRCA1) induces centrosome amplification in non-stressed cells as previously reported while attenuating DNA damage-induced centrosome amplification (DDICA) in cells experiencing prolonged genotoxic stress. Mechanistically, the function of BRCA1 in promoting DDICA is through binding and recruiting polo-like kinase 1 (PLK1) to the centrosome. In a recent study, we showed that FancJ also suppresses centrosome amplification in non-stressed cells while promoting DDICA in both hydroxyurea and mitomycin C treated cells. FancJ is a key component of the BRCA1 B-complex. Here, we further demonstrated that, in coordination with BRCA1, FancJ promotes DDICA by recruiting both BRCA1 and PLK1 to the centrosome in the DNA damaged cells. Thus, we have uncovered a novel role of BRCA1 and FancJ in the regulation of DDICA. Dysregulation of DDR or centrosome cycle leads to aneuploidy, which is frequently seen in both solid and hematological cancers. BRCA1 and FancJ are known tumor suppressors and have well-recognized functions in DNA damage checkpoint and DNA repair. Together with our recent findings, we demonstrated here that BRCA1 and FancJ also play an important role in centrosome cycle especially in DDICA. DDICA is thought to be an alternative fail-safe mechanism to prevent cells experiencing severe DNA damage from becoming carcinogenic. Therefore, BRCA1 and FancJ are potential liaisons linking early DDR with the DDICA. We propose that together with their functions in DDR, the role of BRCA1 and FancJ in the activation of DDICA is also crucial for their tumor suppression functions in vivo.
Collapse
Key Words
- ATM, ataxia telangiectasia mutated
- ATR, ataxia telangiectasia Rad3-related
- BRCA1
- BRCA1, breast cancer gene 1
- CIN, chromosome instability
- DDICA, DNA damage induced centrosome amplification
- DDR, DNA damage response
- DNA damage response
- FancJ
- GFP, green fluorescent protein
- HR, homologous recombination
- HU, hydroxyurea
- ICL, interstrand cross-linkers
- MIN, microsatellite instability
- MMC, mitomycin C
- MT, microtubule
- PCM, pericentriolar materials
- PLK1
- PLK1, Polo-like kinase 1
- UTR, untranslated region
- WCL, whole-cell lysate
- centrosome amplification
- interstrand cross-link
Collapse
Affiliation(s)
- Jianqiu Zou
- Basic Biomedical Science Division; Sanford School of Medicine; University of South Dakota; Vermillion, SD USA
| | - Deli Zhang
- WeiFang Medical University; WeiFang, Shandong, China
| | - Guang Qin
- Department of Oncology; Central Hospital of TaiAn; TaiAn, Shandong, China
| | - Xiangming Chen
- Department of Oncology; Central Hospital of TaiAn; TaiAn, Shandong, China
| | - Hongmin Wang
- Basic Biomedical Science Division; Sanford School of Medicine; University of South Dakota; Vermillion, SD USA
| | - Dong Zhang
- Basic Biomedical Science Division; Sanford School of Medicine; University of South Dakota; Vermillion, SD USA
- Department of Biomedical Sciences; College of Osteopathic Medicine; New York Institute of Technology; Old Westbury, NY USA
| |
Collapse
|
34
|
Zhou Z, Cao JX, Li SY, An GS, Ni JH, Jia HT. p53 Suppresses E2F1-dependent PLK1 expression upon DNA damage by forming p53-E2F1-DNA complex. Exp Cell Res 2013; 319:3104-15. [PMID: 24076372 DOI: 10.1016/j.yexcr.2013.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 12/16/2022]
Abstract
E2F1 is implicated in transcriptional activation of polo-like kinase-1 (PLK1), but yet the mechanism is not fully understood. PLK1 suppression plays an important checkpoint role in response to DNA damage. Suppression of the PLK1 gene by binding of p53 to upstream p53RE2 element in the promoter has been recently revealed. Here we report another mechanism, in which p53 interacts with E2F1 to form p53-E2F1-DNA complex repressing E2F1-dependent PLK1 expression. PLK1 was downregulated in cisplatin exposed HCT116p53(+/+) but not HCT116p53(-/-) cells, indicating p53-suppressed PLK1 upon DNA damage. Co-transfection and reporter enzyme assays revealed that p53 suppressed but E2F1 promoted PLK1 gene activation. 5'-Deletion and substitution mutations showed multiple positive cis-elements residing in the PLK1 promoter, of which at least two E2F1 sites at positions -75/-68 and -40/-32 were required for the full activity of the promoter. Combination of 5'-deletion and substitution mutations with over-expression of p53 showed that suppression of the PLK1 gene by p53 was E2F1-dependent: mutation of the E2F1 site at position -75/-68 partially abrogated suppression activity of p53; mutation of E2F1 site at position -40/-32 released from p53 suppression of PLK1 gene completely. Co-immunoprecipitation and electrophoretic mobility shift assay showed that DNA damage promoted p53-E2F1 interaction, thereby creating a p53-E2F1 complex assembly on the PLK1 promoter in vitro. The in vivo formation of p53-E2F1-PLK1 promoter complex upon DNA damage was further evidenced by chromatin immunoprecipitation (ChIP) and re-ChIP. In addition, we showed that suppression of PLK1 by p53 promoted apoptosis. Our data suggest that p53 may interact with E2F1 to form p53-E2F1-DNA complex suppressing E2F1-dependent PLK1 expression. The model of p53 action on E2F1-activated PLK1 gene may explain at least partly how p53 as a suppressor regulates the downstream effects of E2F1 in cellular stresses including DNA damage stress.
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Xue Yuan Road 38, Beijing 100191, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Reinhardt HC, Yaffe MB. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol 2013; 14:563-80. [PMID: 23969844 DOI: 10.1038/nrm3640] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coordinated progression through the cell cycle is a complex challenge for eukaryotic cells. Following genotoxic stress, diverse molecular signals must be integrated to establish checkpoints specific for each cell cycle stage, allowing time for various types of DNA repair. Phospho-Ser/Thr-binding domains have emerged as crucial regulators of cell cycle progression and DNA damage signalling. Such domains include 14-3-3 proteins, WW domains, Polo-box domains (in PLK1), WD40 repeats (including those in the E3 ligase SCF(βTrCP)), BRCT domains (including those in BRCA1) and FHA domains (such as in CHK2 and MDC1). Progress has been made in our understanding of the motif (or motifs) that these phospho-Ser/Thr-binding domains connect with on their targets and how these interactions influence the cell cycle and DNA damage response.
Collapse
Affiliation(s)
- H Christian Reinhardt
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
36
|
Shen M, Cai Y, Yang Y, Yan X, Liu X, Zhou T. Centrosomal protein FOR20 is essential for S-phase progression by recruiting Plk1 to centrosomes. Cell Res 2013; 23:1284-95. [PMID: 24018379 PMCID: PMC3817547 DOI: 10.1038/cr.2013.127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 12/28/2022] Open
Abstract
Centrosomes are required for efficient cell cycle progression mainly by orchestrating microtubule dynamics and facilitating G1/S and G2/M transitions. However, the role of centrosomes in S-phase progression is largely unknown. Here, we report that depletion of FOR20 (FOP-related protein of 20 kDa), a conserved centrosomal protein, inhibits S-phase progression and prevents targeting of Plk1 (polo-like kinase 1) to centrosomes, where FOR20 interacts with Plk1. Ablation of Plk1 also significantly induces S-phase defects, which are reversed by ectopic expression of Plk1, even a kinase-dead mutant, but not a mutant that fails to localize to centrosomes. Exogenous expression of centrosome-tethered Plk1, but not wild-type Plk1, overrides FOR20 depletion-induced S-phase defects independently of its kinase activity. Thus, these data indicate that recruitment of Plk1 to centrosomes by FOR20 may act as a signal to license efficient progression of S-phase. This represents a hitherto uncharacterized role of centrosomes in cell cycle regulation.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuqi Cai
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuehong Yang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xiaoyi Yan
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Tianhua Zhou
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
37
|
Abstract
FOR20, a conserved centrosomal protein, is essential for Plk1 to localize to the centrosome during the S phase and regulate DNA replication. The absence of either Plk1 or FOR20 can stall the cell cycle by a previously unknown intra-S phase centrosomal checkpoint.
Collapse
Affiliation(s)
- Ranadip Mandal
- Department of Gynecology and Obstetrics, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Klaus Strebhardt
- Department of Gynecology and Obstetrics, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
38
|
Zou J, Tian F, Li J, Pickner W, Long M, Rezvani K, Wang H, Zhang D. FancJ regulates interstrand crosslinker induced centrosome amplification through the activation of polo-like kinase 1. Biol Open 2013; 2:1022-31. [PMID: 24167712 PMCID: PMC3798185 DOI: 10.1242/bio.20135801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/03/2013] [Indexed: 01/05/2023] Open
Abstract
DNA damage response (DDR) and the centrosome cycle are two of the most critical processes for maintaining a stable genome in animals. Sporadic evidence suggests a connection between these two processes. Here, we report our findings that six Fanconi Anemia (FA) proteins, including FancI and FancJ, localize to the centrosome. Intriguingly, we found that the localization of FancJ to the mother centrosome is stimulated by a DNA interstrand crosslinker, Mitomycin C (MMC). We further show that, in addition to its role in interstrand crosslinking (ICL) repair, FancJ also regulates the normal centrosome cycle as well as ICL induced centrosome amplification by activating the polo-like kinase 1 (PLK1). We have uncovered a novel function of FancJ in centrosome biogenesis and established centrosome amplification as an integral part of the ICL response.
Collapse
Affiliation(s)
- Jianqiu Zou
- Basic Biomedical Science Division, Sanford School of Medicine, University of South Dakota , Vermillion, South Dakota, 57069 , USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lu J, Xin S, Meng H, Veldman M, Schoenfeld D, Che C, Yan R, Zhong H, Li S, Lin S. A novel anti-tumor inhibitor identified by virtual screen with PLK1 structure and zebrafish assay. PLoS One 2013; 8:e53317. [PMID: 23658603 PMCID: PMC3637257 DOI: 10.1371/journal.pone.0053317] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022] Open
Abstract
Polo-like kinase 1 (PLK1), one of the key regulators of mitosis, is a target for cancer therapy due to its abnormally high activity in several tumors. Plk1 is highly conserved and shares a nearly identical 3-D structure between zebrafish and humans. The initial 10 mitoses of zebrafish embryonic cleavages occur every∼30 minutes, and therefore provide a rapid assay to evaluate mitosis inhibitors including those targeting Plk1. To increase efficiency and specificity, we first performed a computational virtual screen of∼60000 compounds against the human Plk1 3-D structure docked to both its kinase and Polo box domain. 370 candidates with the top free-energy scores were subjected to zebrafish assay and 3 were shown to inhibit cell division. Compared to general screen for compounds inhibiting zebrafish embryonic cleavage, computation increased the efficiency by 11 folds. One of the 3 compounds, named I2, was further demonstrated to effectively inhibit multiple tumor cell proliferation in vitro and PC3 prostate cancer growth in Xenograft mouse model in vivo. Furthermore, I2 inhibited Plk1 enzyme activity in a dose dependent manner. The IC50 values of I2 in these assays are compatible to those of ON-01910, a Plk1 inhibitor currently in Phase III clinic trials. Our studies demonstrate that zebrafish assays coupled with computational screening significantly improves the efficiency of identifying specific regulators of biological targets. The PLK1 inhibitor I2, and its analogs, may have potential in cancer therapeutics.
Collapse
Affiliation(s)
- Jing Lu
- Shenzhen Graduate School of Peking University, Shenzhen, China
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shengchang Xin
- Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Huan Meng
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Matt Veldman
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - David Schoenfeld
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chao Che
- Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Ruibin Yan
- Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Hanbing Zhong
- Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Song Li
- Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Shuo Lin
- Shenzhen Graduate School of Peking University, Shenzhen, China
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
40
|
Yu WJ, Zhang BG, Chen LM, Wang SX, Feng WG, Du CQ, Liu SM, Zhao CL. Lentiviral-mediated RNA interference targeting the PLK1gene inhibits invasion and metastasis of esophageal squamous cell carcinoma cells. Shijie Huaren Xiaohua Zazhi 2013; 21:2128. [DOI: 10.11569/wcjd.v21.i22.2128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
41
|
Zhang Q, Xia Z, Mitten MJ, Lasko LM, Klinghofer V, Bouska J, Johnson EF, Penning TD, Luo Y, Giranda VL, Shoemaker AR, Stewart KD, Djuric SW, Vasudevan A. Hit to Lead optimization of a novel class of squarate-containing polo-like kinases inhibitors. Bioorg Med Chem Lett 2012; 22:7615-22. [PMID: 23103095 DOI: 10.1016/j.bmcl.2012.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 02/01/2023]
Abstract
A high throughput screening (HTS) hit, 1 (Plk1 K(i)=2.2 μM) was optimized and evaluated for the enzymatic inhibition of Plk-1 kinase. Molecular modeling suggested the importance of adding a hydrophobic aromatic amine side chain in order to improve the potency by a classic kinase H-donor-acceptor binding mode. Extensive SAR studies led to the discovery of 49 (Plk1 K(i)=5 nM; EC(50)=1.05 μM), which demonstrated moderate efficacy at 100 mpk in a MiaPaCa tumor model, with no overt toxicity.
Collapse
Affiliation(s)
- Qingwei Zhang
- Medicinal Chemistry Technologies and Structural Biology, Global Pharmaceutical Research & Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ruan K, Ye F, Li C, Liou YC, Lin SC, Lin SY. PLK1 interacts and phosphorylates Axin that is essential for proper centrosome formation. PLoS One 2012; 7:e49184. [PMID: 23155463 PMCID: PMC3498349 DOI: 10.1371/journal.pone.0049184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/04/2012] [Indexed: 11/18/2022] Open
Abstract
Abnormal amplification of centrosomes could lead to improper chromosome segregation and aneuploidy and is implicated in cancer development. Here, we demonstrate that Axin, a scaffolding protein in Wnt signaling, is phosphorylated by PLK1 during mitosis. Phosphorylation of Axin Ser-157 by PLK1 abolished Axin association with γ-tubulin, while substitution of Ser-157 with alanine exhibited sustained interaction with γ-tubulin. In addition, overexpression of Axin-S157A significantly increased the number of cells with multi-centrosomes. These results suggest that the phosphorylation status of Axin, mediated by PLK1, dynamically regulates its association with γ-tubulin and centrosome formation and segregation.
Collapse
Affiliation(s)
- Ka Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fan Ye
- Department of Biological Science, National University of Singapore, Singapore, Republic of Singapore
| | - Chenyu Li
- Department of Biological Science, National University of Singapore, Singapore, Republic of Singapore
| | - Yih-Cherng Liou
- Department of Biological Science, National University of Singapore, Singapore, Republic of Singapore
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
43
|
Lan R, Lin G, Yin F, Xu J, Zhang X, Wang J, Wang Y, Gong J, Ding YH, Yang Z, Lu F, Zhang H. Dissecting the phenotypes of Plk1 inhibition in cancer cells using novel kinase inhibitory chemical CBB2001. J Transl Med 2012; 92:1503-14. [PMID: 22890557 DOI: 10.1038/labinvest.2012.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a mitotic serine/threonine kinase and its kinase activity is closely interrelated to cell cycle progression, various types of cancer development and often correlates with poor prognosis. Thus, it is of prime importance to characterize the phenotypes of Plk1 inhibition in cells for drug development and clinical application. Here, we report a novel kinase inhibitory chemical, CBB2001, which specifically inhibited Plk1 kinase activity in vitro with an IC(50) of 0.39 μM. In cervical carcinoma HeLa cells, we found that treatment of CBB2001 caused mitotic cell cycle arrest (EC(50)=0.72 μM) and induction of 'polo' cells (EC(50)=0.32 μM). Interestingly, the cell cycle arrest induced by CBB2001 was associated with accumulation of Plk1 (EC(50)=0.61 μM) and Geminin (EC(50)=0.43 μM) proteins, but distinct from the phenotypes induced by Aurora kinase inhibitors. The inhibitory effects of CBB2001 were phenocopied by RNA interferences of Plk1. We also confirmed the cell cycle inhibitory effects of CBB2001 in other cancer cells. Moreover, CBB2001 inhibited the growth of HeLa cells with an IC(50) of 0.85 μM in MTT assays, which is better than that of reported Plk1 inhibitory chemicals ON01910 (IC(50)=6.46 μM) and LFM-A13 (IC(50)=37.36 μM). CBB2001 also inhibited mouse xenograft tumor growth. Furthermore, CBB2001 inhibited mitotic exit and delayed degradation of APC/C substrates, Geminin, Cyclin B1 and Aurora A. These specific phenotypes may serve as specific features for Plk1 inhibition and for Plk1-based clinic trials.
Collapse
Affiliation(s)
- Rongfeng Lan
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu XS, Song B, Tang J, Liu W, Kuang S, Liu X. Plk1 phosphorylates Sgt1 at the kinetochores to promote timely kinetochore-microtubule attachment. Mol Cell Biol 2012; 32:4053-67. [PMID: 22869522 PMCID: PMC3457539 DOI: 10.1128/mcb.00516-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/26/2012] [Indexed: 01/20/2023] Open
Abstract
Accurate chromosome segregation during cell division maintains genomic integrity and requires the proper establishment of kinetochore-microtubule attachment in mitosis. As a key regulator of mitosis, Polo-like kinase 1 (Plk1) is essential for this attachment process, but the molecular mechanism remains elusive. Here we identify Sgt1, a cochaperone for Hsp90, as a novel Plk1 substrate during mitosis. We show that Sgt1 dynamically localizes at the kinetochores, which lack microtubule attachments during prometaphase. Plk1 is required for the kinetochore localization of Sgt1 and phosphorylates serine 331 of Sgt1 at the kinetochores. This phosphorylation event enhances the association of the Hsp90-Sgt1 chaperone with the MIS12 complex to stabilize this complex at the kinetochores and thus coordinates the recruitment of the NDC80 complex to form efficient microtubule-binding sites. Disruption of Sgt1 phosphorylation reduces the MIS12 and NDC80 complexes at the kinetochores, impairs stable microtubule attachment, and eventually results in chromosome misalignment to delay the anaphase onset. Our results demonstrate a mechanism for Plk1 in promoting kinetochore-microtubule attachment to ensure chromosome stability.
Collapse
Affiliation(s)
- X. Shawn Liu
- Department of Biochemistry
- Center for Cancer Research
| | - Bing Song
- Department of Biological Sciences
- Center for Cancer Research
| | | | - Weiyi Liu
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Xiaoqi Liu
- Department of Biochemistry
- Center for Cancer Research
| |
Collapse
|
45
|
Hatano T, Sluder G. The interrelationship between APC/C and Plk1 activities in centriole disengagement. Biol Open 2012; 1:1153-60. [PMID: 23213396 PMCID: PMC3507193 DOI: 10.1242/bio.20122626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/06/2012] [Indexed: 11/20/2022] Open
Abstract
Mother–daughter centriole disengagement, the necessary first step in centriole duplication, involves Plk1 activity in early mitosis and separase activity after APC/C activity mediates securin degradation. Plk1 activity is thought to be essential and sufficient for centriole disengagement with separase activity playing a supporting but non-essential role. In separase null cells, however, centriole disengagement is substantially delayed. The ability of APC/C activity alone to mediate centriole disengagement has not been directly tested. We investigate the interrelationship between Plk1 and APC/C activities in disengaging centrioles in S or G2 HeLa and RPE1 cells, cell types that do not reduplicate centrioles when arrested in S phase. Knockdown of the interphase APC/C inhibitor Emi1 leads to centriole disengagement and reduplication of the mother centrioles, though this is slow. Strong inhibition of Plk1 activity, if any, during S does not block centriole disengagement and mother centriole reduplication in Emi1 depleted cells. Centriole disengagement depends on APC/C–Cdh1 activity, not APC/C–Cdc20 activity. Also, Plk1 and APC/C–Cdh1 activities can independently promote centriole disengagement in G2 arrested cells. Thus, Plk1 and APC/C–Cdh1 activities are independent but slow pathways for centriole disengagement. By having two slow mechanisms for disengagement working together, the cell ensures that centrioles will not prematurely separate in late G2 or early mitosis, thereby risking multipolar spindle assembly, but rather disengage in a timely fashion only late in mitosis.
Collapse
Affiliation(s)
- Toshiyuki Hatano
- Department of Cell Biology, University of Massachusetts Medical School , Worcester, MA 01605 , USA
| | | |
Collapse
|
46
|
Han DP, Zhu QL, Cui JT, Wang PX, Qu S, Cao QF, Zong YP, Feng B, Zheng MH, Lu AG. Polo-like kinase 1 is overexpressed in colorectal cancer and participates in the migration and invasion of colorectal cancer cells. Med Sci Monit 2012; 18:BR237-46. [PMID: 22648245 PMCID: PMC3560731 DOI: 10.12659/msm.882900] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 11/13/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Polo-like kinase 1 (PLK1) is an important molecule in proliferation of many human cancers. The aim of study is to clarify the expression patterns and potential function of PLK1 in colorectal cancers. MATERIAL/METHODS Fifty-six colorectal cancers samples were collected and arranged onto a tissue array and the expression of PLK1 were detected by immunohistochemistry and correlated with clinico-pathological characteristics and expression of PCNA. Expression of PLK1 in 9 colorectal cancer cells lines was investigated by RT-PCR and Western blot, then SW1116 cells lines were treated with PLK1 siRNA and the efficiency was examined by Western blot. Transwell test was applied to detect the migration and invasion capability of cancer cells by counting the number of cells passing through the membranes. Cell proliferation and apoptosis were examined by Cell Counting Kit-8 (CCK-8) and Annexin-V Kit. RESULTS PLK1 was positively expressed in 73.2% (41/56) of colorectal cancers tissues, but in only 3.6% (2/56) of normal tissues, and was associated with Duke's stage (P<0.01), tumor size (P<0.01), invasion extent (P<0.05) and lymphatic metastasis (P<0.01). The expression of PLK1 was correlated with expression of PCNA (R=0.553, P<0.01). PLK1 was inhibited in SW1116 cells by treating with PLK1 siRNA oligos, which resulted in a decreased number of cells passing through the membrane as compared with control groups (P<0.01) at 24 hours after transfection. Cell proliferation was inhibited from 48 hours after transfection, while cells apoptosis was induced from 72 hours after transfection. CONCLUSIONS PLK1 could be a progression marker for colorectal cancer patients and PLK1 depletion can inhibit migration and invasion capability of colorectal cancer cells SW1116, suggesting that PLK1 might be involved in metastasis and invasion of colorectal cancer. Therapeutic strategies targeting PLK1 may be a new approach to colorectal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ai-guo Lu
- Lu Ai-Guo, Department of General Surgery, Shanghai Ruijin Hospital, Shanghai Minimally Invasive Surgery Center, 197 Ruijin Er Rd, Shanghai 200025, China, e-mail:
| |
Collapse
|
47
|
Harris PS, Venkataraman S, Alimova I, Birks DK, Donson AM, Knipstein J, Dubuc A, Taylor MD, Handler MH, Foreman NK, Vibhakar R. Polo-like kinase 1 (PLK1) inhibition suppresses cell growth and enhances radiation sensitivity in medulloblastoma cells. BMC Cancer 2012; 12:80. [PMID: 22390279 PMCID: PMC3311601 DOI: 10.1186/1471-2407-12-80] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 03/05/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Medulloblastoma is the most common malignant brain tumor in children and remains a therapeutic challenge due to its significant therapy-related morbidity. Polo-like kinase 1 (PLK1) is highly expressed in many cancers and regulates critical steps in mitotic progression. Recent studies suggest that targeting PLK1 with small molecule inhibitors is a promising approach to tumor therapy. METHODS We examined the expression of PLK1 mRNA in medulloblastoma tumor samples using microarray analysis. The impact of PLK1 on cell proliferation was evaluated by depleting expression with RNA interference (RNAi) or by inhibiting function with the small molecule inhibitor BI 2536. Colony formation studies were performed to examine the impact of BI 2536 on medulloblastoma cell radiosensitivity. In addition, the impact of depleting PLK1 mRNA on tumor-initiating cells was evaluated using tumor sphere assays. RESULTS Analysis of gene expression in two independent cohorts revealed that PLK1 mRNA is overexpressed in some, but not all, medulloblastoma patient samples when compared to normal cerebellum. Inhibition of PLK1 by RNAi significantly decreased medulloblastoma cell proliferation and clonogenic potential and increased cell apoptosis. Similarly, a low nanomolar concentration of BI 2536, a small molecule inhibitor of PLK1, potently inhibited cell growth, strongly suppressed the colony-forming ability, and increased cellular apoptosis of medulloblastoma cells. Furthermore, BI 2536 pretreatment sensitized medulloblastoma cells to ionizing radiation. Inhibition of PLK1 impaired tumor sphere formation of medulloblastoma cells and decreased the expression of SRY (sex determining region Y)-box 2 (SOX2) mRNA in tumor spheres indicating a possible role in targeting tumor initiating cells. CONCLUSIONS Our data suggest that targeting PLK1 with small molecule inhibitors, in combination with radiation therapy, is a novel strategy in the treatment of medulloblastoma that warrants further investigation.
Collapse
Affiliation(s)
- Peter S Harris
- Department of Pediatrics and Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sujatha Venkataraman
- Department of Pediatrics and Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Irina Alimova
- Department of Pediatrics and Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Diane K Birks
- Division of Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew M Donson
- Department of Pediatrics and Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffrey Knipstein
- Department of Pediatrics and Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Adrian Dubuc
- Division of Neurosurgery, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Michael H Handler
- Division of Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas K Foreman
- Department of Pediatrics and Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Rajeev Vibhakar
- Department of Pediatrics and Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Denver, 12800 E 19th Ave, Mail Stop 8302, Aurora, CO 80045, USA
| |
Collapse
|
48
|
Venkataraman S, Alimova I, Tello T, Harris PS, Knipstein JA, Donson AM, Foreman NK, Liu AK, Vibhakar R. Targeting Aurora Kinase A enhances radiation sensitivity of atypical teratoid rhabdoid tumor cells. J Neurooncol 2012; 107:517-26. [PMID: 22246202 DOI: 10.1007/s11060-011-0795-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/27/2011] [Indexed: 10/14/2022]
Abstract
Atypical teratoid/rhabdoid tumors (ATRT) are rare, highly malignant, embryonal CNS tumors with a poor prognosis. Therapy relies on highly toxic chemotherapy and radiotherapy. To improve outcomes and decrease morbidity, more targeted therapy is required. Gene expression analysis revealed elevated expression of multiple kinases in ATRT tissues. Aurora Kinase A was one of the candidate kinases. The objective of this study was to evaluate the impact of Aurora Kinase A inhibition in ATRT cell lines. Our analysis revealed that inhibition of Aurora Kinase A induces cell death in ATRT cells and the small molecule inhibitor MLN 8237 sensitizes these cells to radiation. Furthermore, inhibition of Aurora Kinase A resulted in decreased activity of pro-proliferative signaling pathways. These data indicate that inhibition of Aurora Kinase A is a promising small molecule target for ATRT therapy.
Collapse
Affiliation(s)
- Sujatha Venkataraman
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Morales AG, Brassesco MS, Pezuk JA, Oliveira JC, Montaldi AP, Sakamoto-Hojo ET, Scrideli CA, Tone LG. BI 2536-mediated PLK1 inhibition suppresses HOS and MG-63 osteosarcoma cell line growth and clonogenicity. Anticancer Drugs 2011; 22:995-1001. [PMID: 21822121 DOI: 10.1097/cad.0b013e32834a16d4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Osteosarcoma is the most common primary malignant tumor of bone, which frequently occurs in the second decade of life. Despite the improvements in neoadjuvant chemotherapy, the outcome of patients with chemoresistant or metastatic tumors is still poor. Therefore, there is a need for the development of more efficient therapeutic agents. BI 2536, an innovative selective inhibitor of Polo-like kinase 1, has shown anticancer potential promoting mitotic arrest and apoptosis in a variety of tumor cells, including osteosarcoma. Here, we present more evidence of the antiproliferative effects of BI 2536 on HOS and MG-63 osteosarcoma cell lines. Our results showed that nanomolar concentrations (10, 50, and 100 nmol/l) of the drug significantly decreased cell proliferation and clonogenic capacity, inducing mitotic arrest and aneuploidy. Interestingly, although BI 2536 mediated a moderate increase of apoptosis after 48 h in HOS cells, no increased caspase-3 activity was detected for MG-63 cells. In contrast to previous studies, we show that perturbation of normal mitotic progression by BI 2536 in these osteosarcoma cell lines results in caspase-independent mitotic catastrophe followed by necrosis. Our findings reinforce the likelihood of directing against Polo-like kinase 1 as a therapeutic option in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Andressa G Morales
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
50
|
de Cárcer G, Manning G, Malumbres M. From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle 2011; 10:2255-62. [PMID: 21654194 DOI: 10.4161/cc.10.14.16494] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mammalian polo-like kinases (Plks) are characterized by the presence of an N-terminal protein kinase domain and a C-terminal polo-box domain (PBD) involved in substrate binding and regulation of kinase activity. Plk1-4 have traditionally been linked to cell cycle progression, genotoxic stress and, more recently, neuron biology. Recently, a fifth mammalian Plk family member, Plk5, has been characterized in murine and human cells. Plk5 is expressed mainly in differentiated tissues such as the cerebellum. Despite apparent loss of catalytic activity and a stop codon in the middle of the human gene, Plk5 proteins retain important functions in neuron biology. Notably, its expression is silenced by epigenetic alterations in brain tumors, such as glioblastomas, and its re-expression prevents cell proliferation of these tumor cells. In this review, we will focus on the non-cell cycle roles of Plks, the biology of the new member of the family and the possible kinase- and PBD-independent functions of polo-like kinases.
Collapse
Affiliation(s)
- Guillermo de Cárcer
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | |
Collapse
|