1
|
Stephens CA, van Hilten N, Zheng L, Grabe M. Simulation-based survey of TMEM16 family reveals that robust lipid scrambling requires an open groove. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.25.615027. [PMID: 39386458 PMCID: PMC11463437 DOI: 10.1101/2024.09.25.615027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Biological membranes are complex and dynamic structures with different populations of lipids in their inner and outer leaflets. The Ca2+-activated TMEM16 family of membrane proteins plays an important role in collapsing this asymmetric lipid distribution by spontaneously, and bidirectionally, scrambling phospholipids between the two leaflets, which can initiate signaling and alter the physical properties of the membrane. While evidence shows that lipid scrambling can occur via an open hydrophilic pathway ("groove") that spans the membrane, it remains unclear if all family members facilitate lipid movement in this manner. Here we present a comprehensive computational study of lipid scrambling by all TMEM16 members with experimentally solved structures. We performed coarse-grained molecular dynamics (MD) simulations of 27 structures from five different family members solved under activating and non-activating conditions, and we captured over 700 scrambling events in aggregate. This enabled us to directly compare scrambling rates, mechanisms, and protein-lipid interactions for fungal and mammalian TMEM16s, in both open (Ca2+-bound) and closed (Ca2+-free) conformations with statistical rigor. We show that all TMEM16 structures thin the membrane and that the majority of scrambling (>90%) occurs at the groove only when TM4 and TM6 have sufficiently separated. Surprisingly, we also observed 60 scrambling events that occurred outside the canonical groove, over 90% of which took place at the dimer-dimer interface in mammalian TMEM16s. This new site suggests an alternative mechanism for lipid scrambling in the absence of an open groove.
Collapse
Affiliation(s)
- Christina A. Stephens
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Graduate Group in Biophysics, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Niek van Hilten
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Lisa Zheng
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Graduate Group in Biophysics, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Michael Grabe
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| |
Collapse
|
2
|
Feng Z, Di Zanni E, Alvarenga O, Chakraborty S, Rychlik N, Accardi A. In or out of the groove? Mechanisms of lipid scrambling by TMEM16 proteins. Cell Calcium 2024; 121:102896. [PMID: 38749289 PMCID: PMC11178363 DOI: 10.1016/j.ceca.2024.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Phospholipid scramblases mediate the rapid movement of lipids between membrane leaflets, a key step in establishing and maintaining membrane homeostasis of the membranes of all eukaryotic cells and their organelles. Thus, impairment of lipid scrambling can lead to a variety of pathologies. How scramblases catalyzed the transbilayer movement of lipids remains poorly understood. Despite the availability of direct structural information on three unrelated families of scramblases, the TMEM16s, the Xkrs, and ATG-9, a unifying mechanism has failed to emerge thus far. Among these, the most extensively studied and best understood are the Ca2+ activated TMEM16s, which comprise ion channels and/or scramblases. Early work supported the view that these proteins provided a hydrophilic, membrane-exposed groove through which the lipid headgroups could permeate. However, structural, and functional experiments have since challenged this mechanism, leading to the proposal that the TMEM16s distort and thin the membrane near the groove to facilitate lipid scrambling. Here, we review our understanding of the structural and mechanistic underpinnings of lipid scrambling by the TMEM16s and discuss how the different proposals account for the various experimental observations.
Collapse
Affiliation(s)
- Zhang Feng
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Eleonora Di Zanni
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Omar Alvarenga
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Sayan Chakraborty
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Nicole Rychlik
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States; Institute of Physiology I, University of Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
3
|
Arreola J, López-Romero AE, Huerta M, Guzmán-Hernández ML, Pérez-Cornejo P. Insights into the function and regulation of the calcium-activated chloride channel TMEM16A. Cell Calcium 2024; 121:102891. [PMID: 38772195 DOI: 10.1016/j.ceca.2024.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
The TMEM16A channel, a member of the TMEM16 protein family comprising chloride (Cl-) channels and lipid scramblases, is activated by the free intracellular Ca2+ increments produced by inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release after GqPCRs or Ca2+ entry through cationic channels. It is a ubiquitous transmembrane protein that participates in multiple physiological functions essential to mammals' lives. TMEM16A structure contains two identical 10-segment monomers joined at their transmembrane segment 10. Each monomer harbours one independent hourglass-shaped pore gated by Ca2+ ligation to an orthosteric site adjacent to the pore and controlled by two gates. The orthosteric site is created by assembling negatively charged glutamate side chains near the pore´s cytosolic end. When empty, this site generates an electrostatic barrier that controls channel rectification. In addition, an isoleucine-triad forms a hydrophobic gate at the boundary of the cytosolic vestibule and the inner side of the neck. When the cytosolic Ca2+ rises, one or two Ca2+ ions bind to the orthosteric site in a voltage (V)-dependent manner, thus neutralising the electrostatic barrier and triggering an allosteric gating mechanism propagating via transmembrane segment 6 to the hydrophobic gate. These coordinated events lead to pore opening, allowing the Cl- flux to ensure the physiological response. The Ca2+-dependent function of TMEM16A is highly regulated. Anions with higher permeability than Cl- facilitate V dependence by increasing the Ca2+ sensitivity, intracellular protons can replace Ca2+ and induce channel opening, and phosphatidylinositol 4,5-bisphosphate bound to four cytosolic sites likely maintains Ca2+ sensitivity. Additional regulation is afforded by cytosolic proteins, most likely by phosphorylation and protein-protein interaction mechanisms.
Collapse
Affiliation(s)
- Jorge Arreola
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico.
| | - Ana Elena López-Romero
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico
| | - Miriam Huerta
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico
| | - María Luisa Guzmán-Hernández
- Catedrática CONAHCYT, Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí. Ave. V. Carranza 2905, Los Filtros, San Luis Potosí, SLP 78210, Mexico
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí. Ave. V. Carranza 2905, Los Filtros, San Luis Potosí, SLP 78210, Mexico
| |
Collapse
|
4
|
Li X, Wang Y, Zhang L, Yao S, Liu Q, Jin H, Tuo B. The role of anoctamin 1 in liver disease. J Cell Mol Med 2024; 28:e18320. [PMID: 38685684 PMCID: PMC11058335 DOI: 10.1111/jcmm.18320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Liver diseases include all types of viral hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), cirrhosis, liver failure (LF) and hepatocellular carcinoma (HCC). Liver disease is now one of the leading causes of disease and death worldwide, which compels us to better understand the mechanisms involved in the development of liver diseases. Anoctamin 1 (ANO1), a calcium-activated chloride channel (CaCC), plays an important role in epithelial cell secretion, proliferation and migration. ANO1 plays a key role in transcriptional regulation as well as in many signalling pathways. It is involved in the genesis, development, progression and/or metastasis of several tumours and other diseases including liver diseases. This paper reviews the role and molecular mechanisms of ANO1 in the development of various liver diseases, aiming to provide a reference for further research on the role of ANO1 in liver diseases and to contribute to the improvement of therapeutic strategies for liver diseases by regulating ANO1.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Qian Liu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical UniversityZunyiChina
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
5
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
6
|
Nguyen DM, Chen TY. Structure and Function of Calcium-Activated Chloride Channels and Phospholipid Scramblases in the TMEM16 Family. Handb Exp Pharmacol 2024; 283:153-180. [PMID: 35792944 DOI: 10.1007/164_2022_595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transmembrane protein 16 (TMEM16) family consists of Ca2+-activated chloride channels and phospholipid scramblases. Ten mammalian TMEM16 proteins, TMEM16A-K (with no TMEM16I), and several non-mammalian TMEM16 proteins, such as afTMEM16 and nhTMEM16, have been discovered. All known TMEM16 proteins are homodimeric proteins containing two subunits. Each subunit consists of ten transmembrane helices with Ca2+-binding sites and a single ion-permeation/phospholipid transport pathway. The ion-permeation pathway and the phospholipid transport pathway of TMEM16 proteins have a wide intracellular vestibule, a narrow neck, and a smaller extracellular vestibule. Interestingly, the lining wall of the ion-permeation/phospholipid transport pathway may be formed, at least partially, by membrane phospholipids, though the degree of pore-wall forming by phospholipids likely varies among TMEM16 proteins. Thus, the biophysical properties and activation mechanisms of TMEM16 proteins could differ from each other accordingly. Here we review the current understanding of the structure and function of TMEM16 molecules.
Collapse
Affiliation(s)
- Dung Manh Nguyen
- Center for Neuroscience, University of California, Davis, CA, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Tsung-Yu Chen
- Department of Neurology, Center for Neuroscience, University of California, Davis, CA, USA.
| |
Collapse
|
7
|
Talbi K, Ousingsawat J, Centeio R, Schreiber R, Kunzelmann K. KCNE1 does not shift TMEM16A from a Ca 2+ dependent to a voltage dependent Cl - channel and is not expressed in renal proximal tubule. Pflugers Arch 2023:10.1007/s00424-023-02829-5. [PMID: 37442855 PMCID: PMC10359377 DOI: 10.1007/s00424-023-02829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023]
Abstract
The TMEM16A (ANO1) Cl- channel is activated by Ca2+ in a voltage-dependent manner. It is broadly expressed and was shown to be also present in renal proximal tubule (RPT). KCNQ1 is an entirely different K+ selective channel that forms the cardiac IKS potassium channel together with its ß-subunit KCNE1. Surprisingly, KCNE1 has been claimed to interact with TMEM16A, and to be required for activation of TMEM16A in mouse RPT. Interaction with KCNE1 was reported to switch TMEM16A from a Ca22+-dependent to a voltage-dependent ion channel. Here we demonstrate that KCNE1 is not expressed in mouse RPT. TMEM16A expressed in RPT is activated by angiotensin II and ATP in a KCNE1-independent manner. Coexpression of KCNE1 does not change TMEM16A to a voltage gated Cl- channel and Ca2+-dependent regulation of TMEM16A is fully maintained in the presence of KCNE1. While overexpressed KCNE1 slightly affects Ca2+-dependent regulation of TMEM16A, the data provide no evidence for KCNE1 being an auxiliary functional subunit for TMEM16A.
Collapse
Affiliation(s)
- Khaoula Talbi
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University street 31, D-93053, Regensburg, Germany.
| |
Collapse
|
8
|
Bernareggi A, Zangari M, Constanti A, Zacchi P, Borelli V, Mangogna A, Lorenzon P, Zabucchi G. Asbestos Fibers Enhance the TMEM16A Channel Activity in Xenopus Oocytes. MEMBRANES 2023; 13:180. [PMID: 36837683 PMCID: PMC9960392 DOI: 10.3390/membranes13020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The interaction of asbestos fibers with target cell membranes is still poorly investigated. Here, we detected and characterized an enhancement of chloride conductance in Xenopus oocyte cell membranes induced by exposure to crocidolite (Croc) asbestos fibers. METHODS A two-microelectrode voltage clamp technique was used to test the effect of Croc fiber suspensions on outward chloride currents evoked by step membrane depolarization. Calcium imaging experiments were also performed to investigate the variation of 'resting' oocyte [Ca2+]i following asbestos exposure. RESULTS The increase in chloride current after asbestos treatment, was sensitive to [Ca2+]e, and to specific blockers of TMEM16A Ca2+-activated chloride channels, MONNA and Ani9. Furthermore, asbestos treatment elevated the 'resting' [Ca2+]i likelihood by increasing the cell membrane permeability to Ca2 in favor of a tonic activation of TMEME16A channels. Western blot analysis confirmed that TMEME16A protein was endogenously present in the oocyte cell membrane and absorbed by Croc. CONCLUSION the TMEM16A channels endogenously expressed by Xenopus oocytes are targets for asbestos fibers and represent a powerful tool for asbestos-membrane interaction studies. Interestingly, TMEM16A channels are highly expressed in many types of tumors, including some asbestos-related cancers, suggesting them, for the first time, as a possible early target of crocidolite-mediated tumorigenic effects on target cell membranes.
Collapse
Affiliation(s)
- Annalisa Bernareggi
- Department of Life Sciences, University of Trieste, Via Fleming 22, 34127 Trieste, Italy
| | - Martina Zangari
- Department of Life Sciences, University of Trieste, Via Fleming 22, 34127 Trieste, Italy
| | - Andrew Constanti
- Department of Pharmacology, UCL School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX, UK
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Via Valerio 28/1, 34127 Trieste, Italy
| | - Violetta Borelli
- Department of Life Sciences, University of Trieste, Via Valerio 28/1, 34127 Trieste, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via Dell’Istria 65/1, 34137 Trieste, Italy
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, Via Fleming 22, 34127 Trieste, Italy
| | - Giuliano Zabucchi
- Department of Life Sciences, University of Trieste, Via Valerio 28/1, 34127 Trieste, Italy
| |
Collapse
|
9
|
Fukami T, Shiozaki A, Kosuga T, Kudou M, Shimizu H, Ohashi T, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Morinaga Y, Konishi E, Otsuji E. Anoctamin 5 regulates the cell cycle and affects prognosis in gastric cancer. World J Gastroenterol 2022; 28:4649-4667. [PMID: 36157935 PMCID: PMC9476871 DOI: 10.3748/wjg.v28.i32.4649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/10/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Anoctamin 5 (ANO5)/transmembrane protein 16E belongs to the ANO/ transmembrane protein 16 anion channel family. ANOs comprise a family of plasma membrane proteins that mediate ion transport and phospholipid scrambling and regulate other membrane proteins in numerous cell types. Previous studies have elucidated the roles and mechanisms of ANO5 activation in various cancer types. However, it remains unclear whether ANO5 acts as a plasma membrane chloride channel, and its expression and functions in gastric cancer (GC) have not been investigated.
AIM To examine the role of ANO5 in the regulation of tumor progression and clinicopathological significance of its expression in GC.
METHODS Knockdown experiments using ANO5 small interfering RNA were conducted in human GC cell lines, and changes in cell proliferation, cell cycle progression, apoptosis, and cellular movement were assessed. The gene expression profiles of GC cells were investigated following ANO5 silencing by microarray analysis. Immunohistochemical staining of ANO5 was performed on 195 primary tumor samples obtained from patients with GC who underwent curative gastrectomy between 2011 and 2013 at our department.
RESULTS Reverse transcription-quantitative polymerase chain reaction (PCR) and western blotting demonstrated high ANO5 mRNA and protein expression, respectively, in NUGC4 and MKN45 cells. In these cells, ANO5 silencing inhibited cell proliferation and induced apoptosis. In addition, the knockdown of ANO5 inhibited G1-S phase progression, invasion, and migration. The results of the microarray analysis revealed changes in the expression levels of several cyclin-associated genes, such as CDKN1A, CDK2/4/6, CCNE2, and E2F1, in ANO5-depleted NUGC4 cells. The expression of these genes was verified using reverse transcription-quantitative PCR. Immunohistochemical staining revealed that high ANO5 expression levels were associated with a poor prognosis. Multivariate analysis identified high ANO5 expression as an independent prognostic factor for 5-year survival in patients with GC (P = 0.0457).
CONCLUSION ANO5 regulates the cell cycle progression by regulating the expression of cyclin-associated genes and affects the prognosis of patients with GC. These results may provide insights into the role of ANO5 as a key mediator in tumor progression and/or promising prognostic biomarker for GC.
Collapse
Affiliation(s)
- Tomoyuki Fukami
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mitsuo Kishimoto
- Department of Pathology, Kyoto City Hospital, Kyoto 604-8845, Japan
| | - Yukiko Morinaga
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
10
|
De Jesús-Pérez JJ, López-Romero AE, Posadas O, Segura-Covarrubias G, Aréchiga-Figueroa I, Gutiérrez-Medina B, Pérez-Cornejo P, Arreola J. Gating and anion selectivity are reciprocally regulated in TMEM16A (ANO1). J Gen Physiol 2022; 154:213275. [PMID: 35687042 PMCID: PMC9194859 DOI: 10.1085/jgp.202113027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/23/2022] [Indexed: 02/03/2023] Open
Abstract
Numerous essential physiological processes depend on the TMEM16A-mediated Ca2+-activated chloride fluxes. Extensive structure-function studies have helped to elucidate the Ca2+ gating mechanism of TMEM16A, revealing a Ca2+-sensing element close to the anion pore that alters conduction. However, substrate selection and the substrate-gating relationship in TMEM16A remain less explored. Here, we study the gating-permeant anion relationship on mouse TMEM16A expressed in HEK 293 cells using electrophysiological recordings coupled with site-directed mutagenesis. We show that the apparent Ca2+ sensitivity of TMEM16A increased with highly permeant anions and SCN- mole fractions, likely by stabilizing bound Ca2+. Conversely, mutations at crucial gating elements, including the Ca2+-binding site 1, the transmembrane helix 6 (TM6), and the hydrophobic gate, impaired the anion permeability and selectivity of TMEM16A. Finally, we found that, unlike anion-selective wild-type channels, the voltage dependence of unselective TMEM16A mutant channels was less sensitive to SCN-. Therefore, our work identifies structural determinants of selectivity at the Ca2+ site, TM6, and hydrophobic gate and reveals a reciprocal regulation of gating and selectivity. We suggest that this regulation is essential to set ionic selectivity and the Ca2+ and voltage sensitivities in TMEM16A.
Collapse
Affiliation(s)
| | - Ana E. López-Romero
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Odalys Posadas
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Iván Aréchiga-Figueroa
- Consejo Nacional de Ciencia y Tecnología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Braulio Gutiérrez-Medina
- Advanced Materials Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México,Correspondence to Jorge Arreola:
| |
Collapse
|
11
|
Polymodal Control of TMEM16x Channels and Scramblases. Int J Mol Sci 2022; 23:ijms23031580. [PMID: 35163502 PMCID: PMC8835819 DOI: 10.3390/ijms23031580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors—including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins—also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.
Collapse
|
12
|
Wray S, Prendergast C, Arrowsmith S. Calcium-Activated Chloride Channels in Myometrial and Vascular Smooth Muscle. Front Physiol 2021; 12:751008. [PMID: 34867456 PMCID: PMC8637852 DOI: 10.3389/fphys.2021.751008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
In smooth muscle tissues, calcium-activated chloride channels (CaCC) provide the major anionic channel. Opening of these channels leads to chloride efflux and depolarization of the myocyte membrane. In this way, activation of the channels by a rise of intracellular [Ca2+], from a variety of sources, produces increased excitability and can initiate action potentials and contraction or increased tone. We now have a good mechanistic understanding of how the channels are activated and regulated, due to identification of TMEM16A (ANO1) as the molecular entity of the channel, but key questions remain. In reviewing these channels and comparing two distinct smooth muscles, myometrial and vascular, we expose the differences that occur in their activation mechanisms, properties, and control. We find that the myometrium only expresses “classical,” Ca2+-activated, and voltage sensitive channels, whereas both tonic and phasic blood vessels express classical, and non-classical, cGMP-regulated CaCC, which are voltage insensitive. This translates to more complex activation and regulation in vascular smooth muscles, irrespective of whether they are tonic or phasic. We therefore tentatively conclude that although these channels are expressed and functionally important in all smooth muscles, they are probably not part of the mechanisms governing phasic activity. Recent knockdown studies have produced unexpected functional results, e.g. no effects on labour and delivery, and tone increasing in some but decreasing in other vascular beds, strongly suggesting that there is still much to be explored concerning CaCC in smooth muscle.
Collapse
Affiliation(s)
- Susan Wray
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Clodagh Prendergast
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sarah Arrowsmith
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
13
|
Hawn MB, Akin E, Hartzell H, Greenwood IA, Leblanc N. Molecular mechanisms of activation and regulation of ANO1-Encoded Ca 2+-Activated Cl - channels. Channels (Austin) 2021; 15:569-603. [PMID: 34488544 PMCID: PMC8480199 DOI: 10.1080/19336950.2021.1975411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 01/13/2023] Open
Abstract
Ca2+-activated Cl- channels (CaCCs) perform a multitude of functions including the control of cell excitability, regulation of cell volume and ionic homeostasis, exocrine and endocrine secretion, fertilization, amplification of olfactory sensory function, and control of smooth muscle cell contractility. CaCCs are the translated products of two members (ANO1 and ANO2, also known as TMEM16A and TMEM16B) of the Anoctamin family of genes comprising ten paralogs. This review focuses on recent progress in understanding the molecular mechanisms involved in the regulation of ANO1 by cytoplasmic Ca2+, post-translational modifications, and how the channel protein interacts with membrane lipids and protein partners. After first reviewing the basic properties of native CaCCs, we then present a brief historical perspective highlighting controversies about their molecular identity in native cells. This is followed by a summary of the fundamental biophysical and structural properties of ANO1. We specifically address whether the channel is directly activated by internal Ca2+ or indirectly through the intervention of the Ca2+-binding protein Calmodulin (CaM), and the structural domains responsible for Ca2+- and voltage-dependent gating. We then review the regulation of ANO1 by internal ATP, Calmodulin-dependent protein kinase II-(CaMKII)-mediated phosphorylation and phosphatase activity, membrane lipids such as the phospholipid phosphatidyl-(4,5)-bisphosphate (PIP2), free fatty acids and cholesterol, and the cytoskeleton. The article ends with a survey of physical and functional interactions of ANO1 with other membrane proteins such as CLCA1/2, inositol trisphosphate and ryanodine receptors in the endoplasmic reticulum, several members of the TRP channel family, and the ancillary Κ+ channel β subunits KCNE1/5.
Collapse
Affiliation(s)
- M. B. Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - E. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - H.C. Hartzell
- Department of Cell Biology, Emory University School of Medicine, USA
| | - I. A. Greenwood
- Department of Vascular Pharmacology, St. George’s University of London, UK
| | - N. Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| |
Collapse
|
14
|
TMEM16A/ANO1: Current Strategies and Novel Drug Approaches for Cystic Fibrosis. Cells 2021; 10:cells10112867. [PMID: 34831090 PMCID: PMC8616501 DOI: 10.3390/cells10112867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is the most common of rare hereditary diseases in Caucasians, and it is estimated to affect 75,000 patients globally. CF is a complex disease due to the multiplicity of mutations found in the CF transmembrane conductance regulator (CFTR) gene causing the CFTR protein to become dysfunctional. Correctors and potentiators have demonstrated good clinical outcomes for patients with specific gene mutations; however, there are still patients for whom those treatments are not suitable and require alternative CFTR-independent strategies. Although CFTR is the main chloride channel in the lungs, others could, e.g., anoctamin-1 (ANO1 or TMEM16A), compensate for the deficiency of CFTR. This review summarizes the current knowledge on calcium-activated chloride channel (CaCC) ANO1 and presents ANO1 as an exciting target in CF.
Collapse
|
15
|
The application of Poisson distribution statistics in ion channel reconstitution to determine oligomeric architecture. Methods Enzymol 2021; 652:321-340. [PMID: 34059289 DOI: 10.1016/bs.mie.2021.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During reconstitution, membrane proteins are randomly inserted into liposomes according to Poisson distribution statistics. When the protein to lipid ratios in the reconstitution mixture are varied systematically, the characteristics of this statistical capture permit inferences about the proteins themselves, such as the number of subunits that assemble into a single functional unit. This chapter describes the Poisson distribution as applied to the reconstitution of membrane proteins into proteoliposomes and focuses on an application whereby this statistical behavior is used to determine the number of ion channel subunits that assemble into a functional pore. Practical considerations for performing these experiments are emphasized. Harnessing Poisson dilution statistics provides a function-based method to determine ion channel oligomerization, complementing other biophysical, biochemical, or structural approaches.
Collapse
|
16
|
The Groovy TMEM16 Family: Molecular Mechanisms of Lipid Scrambling and Ion Conduction. J Mol Biol 2021; 433:166941. [PMID: 33741412 DOI: 10.1016/j.jmb.2021.166941] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022]
Abstract
The TMEM16 family of membrane proteins displays a remarkable functional dichotomy - while some family members function as Ca2+-activated anion channels, the majority of characterized TMEM16 homologs are Ca2+-activated lipid scramblases, which catalyze the exchange of phospholipids between the two membrane leaflets. Furthermore, some TMEM16 scramblases can also function as channels. Due to their involvement in important physiological processes, the family has been actively studied ever since their molecular identity was unraveled. In this review, we will summarize the recent advances in the field and how they influenced our view of TMEM16 family function and evolution. Structural, functional and computational studies reveal how relatively small rearrangements in the permeation pathway are responsible for the observed functional duality: while TMEM16 scramblases can adopt both ion- and lipid conductive conformations, TMEM16 channels can only populate the former. Recent data further provides the molecular details of a stepwise activation mechanism, which is initiated by Ca2+ binding and modulated by various cellular factors, including lipids. TMEM16 function and the surrounding membrane properties are inextricably intertwined, with the protein inducing bilayer deformations associated with scrambling, while the surrounding lipids modulate TMEM16 conformation and activity.
Collapse
|
17
|
Roh JW, Hwang GE, Kim WK, Nam JH. Ca 2+ Sensitivity of Anoctamin 6/TMEM16F Is Regulated by the Putative Ca 2+-Binding Reservoir at the N-Terminal Domain. Mol Cells 2021; 44:88-100. [PMID: 33658434 PMCID: PMC7941003 DOI: 10.14348/molcells.2021.2203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/05/2021] [Accepted: 01/26/2021] [Indexed: 11/27/2022] Open
Abstract
Anoctamin 6/TMEM16F (ANO6) is a dual-function protein with Ca2+-activated ion channel and Ca2+-activated phospholipid scramblase activities, requiring a high intracellular Ca2+ concentration (e.g., half-maximal effective Ca2+ concentration [EC50] of [Ca2+]i > 10 μM), and strong and sustained depolarization above 0 mV. Structural comparison with Anoctamin 1/TMEM16A (ANO1), a canonical Ca2+- activated chloride channel exhibiting higher Ca2+ sensitivity (EC50 of 1 μM) than ANO6, suggested that a homologous Ca2+-transferring site in the N-terminal domain (Nt) might be responsible for the differential Ca2+ sensitivity and kinetics of activation between ANO6 and ANO1. To elucidate the role of the putative Ca2+-transferring reservoir in the Nt (Nt-CaRes), we constructed an ANO6-1-6 chimera in which Nt-CaRes was replaced with the corresponding domain of ANO1. ANO6- 1-6 showed higher sensitivity to Ca2+ than ANO6. However, neither the speed of activation nor the voltage-dependence differed between ANO6 and ANO6-1-6. Molecular dynamics simulation revealed a reduced Ca2+ interaction with Nt- CaRes in ANO6 than ANO6-1-6. Moreover, mutations on potentially Ca2+-interacting acidic amino acids in ANO6 Nt- CaRes resulted in reduced Ca2+ sensitivity, implying direct interactions of Ca2+ with these residues. Based on these results, we cautiously suggest that the net charge of Nt- CaRes is responsible for the difference in Ca2+ sensitivity between ANO1 and ANO6.
Collapse
Affiliation(s)
- Jae Won Roh
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Ga Eun Hwang
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Woo Kyung Kim
- Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| |
Collapse
|
18
|
Fortea E, Accardi A. A quantitative flux assay for the study of reconstituted Cl - channels and transporters. Methods Enzymol 2021; 652:243-272. [PMID: 34059284 DOI: 10.1016/bs.mie.2021.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The recent deluge of high-resolution structural information on membrane proteins has not been accompanied by a comparable increase in our ability to functionally interrogate these proteins. Current functional assays often are not quantitative or are performed in conditions that significantly differ from those used in structural experiments, thus limiting the mechanistic correspondence between structural and functional experiments. A flux assay to determine quantitatively the functional properties of purified and reconstituted Cl- channels and transporters in membranes of defined lipid compositions is described. An ion-sensitive electrode is used to measure the rate of Cl- efflux from proteoliposomes reconstituted with the desired protein and the fraction of vesicles containing at least one active protein. These measurements enable the quantitative determination of key molecular parameters such as the unitary transport rate, the fraction of proteins that are active, and the molecular mass of the transport protein complex. The approach is illustrated using CLC-ec1, a CLC-type H+/Cl- exchanger as an example. The assay enables the quantitative study of a wide range of Cl- transporting molecules and proteins whose activity is modulated by ligands, voltage, and membrane composition as well as the investigation of the effects of compounds that directly inhibit or activate the reconstituted transport systems. The present assay is readily adapted to the study of transport systems with diverse substrate specificities and molecular characteristics, and the necessary modifications needed are discussed.
Collapse
Affiliation(s)
- Eva Fortea
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States
| | - Alessio Accardi
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States; Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States; Department of Biochemistry, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
19
|
Divalent Cation Modulation of Ion Permeation in TMEM16 Proteins. Int J Mol Sci 2021; 22:ijms22042209. [PMID: 33672260 PMCID: PMC7926781 DOI: 10.3390/ijms22042209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/01/2023] Open
Abstract
Intracellular divalent cations control the molecular function of transmembrane protein 16 (TMEM16) family members. Both anion channels (such as TMEM16A) and phospholipid scramblases (such as TMEM16F) in this family are activated by intracellular Ca2+ in the low µM range. In addition, intracellular Ca2+ or Co2+ at mM concentrations have been shown to further potentiate the saturated Ca2+-activated current of TMEM16A. In this study, we found that all alkaline earth divalent cations in mM concentrations can generate similar potentiation effects in TMEM16A when applied intracellularly, and that manipulations thought to deplete membrane phospholipids weaken the effect. In comparison, mM concentrations of divalent cations minimally potentiate the current of TMEM16F but significantly change its cation/anion selectivity. We suggest that divalent cations may increase local concentrations of permeant ions via a change in pore electrostatic potential, possibly acting through phospholipid head groups in or near the pore. Monovalent cations appear to exert a similar effect, although with a much lower affinity. Our findings resolve controversies regarding the ion selectivity of TMEM16 proteins. The physiological role of this mechanism, however, remains elusive because of the nearly constant high cation concentrations in cytosols.
Collapse
|
20
|
Shi S, Pang C, Guo S, Chen Y, Ma B, Qu C, Ji Q, An H. Recent progress in structural studies on TMEM16A channel. Comput Struct Biotechnol J 2020; 18:714-722. [PMID: 32257055 PMCID: PMC7118279 DOI: 10.1016/j.csbj.2020.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 11/26/2022] Open
Abstract
The calcium-activated chloride channel, also known as TMEM16A, shows both calcium and membrane potential dependent activation. The channel is expressed broadly and contributes to a variety of physiological processes, and it is expected to be a target for the treatment of diseases such as hypertension, pain, cystic fibrosis and lung cancer. A thorough understanding of the structural characteristics of TMEM16A is important to reveal its physiological and pathological roles. Recent studies have released several Cryo-EM structures of the channel, revealed the structural basis and mechanism of the gating of the channel. This review focused on the understandings of the structural basis and molecular mechanism of the gating and permeation of TMEM16A channel, which will provide important basis for the development of drugs targeting TMEM16A.
Collapse
Affiliation(s)
- Sai Shi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Shuai Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Chang Qu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Qiushuang Ji
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
21
|
Zajac M, Chakraborty K, Saha S, Mahadevan V, Infield DT, Accardi A, Qiu Z, Krishnan Y. What biologists want from their chloride reporters – a conversation between chemists and biologists. J Cell Sci 2020; 133:133/2/jcs240390. [DOI: 10.1242/jcs.240390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Impaired chloride transport affects diverse processes ranging from neuron excitability to water secretion, which underlie epilepsy and cystic fibrosis, respectively. The ability to image chloride fluxes with fluorescent probes has been essential for the investigation of the roles of chloride channels and transporters in health and disease. Therefore, developing effective fluorescent chloride reporters is critical to characterizing chloride transporters and discovering new ones. However, each chloride channel or transporter has a unique functional context that demands a suite of chloride probes with appropriate sensing characteristics. This Review seeks to juxtapose the biology of chloride transport with the chemistries underlying chloride sensors by exploring the various biological roles of chloride and highlighting the insights delivered by studies using chloride reporters. We then delineate the evolution of small-molecule sensors and genetically encoded chloride reporters. Finally, we analyze discussions with chloride biologists to identify the advantages and limitations of sensors in each biological context, as well as to recognize the key design challenges that must be overcome for developing the next generation of chloride sensors.
Collapse
Affiliation(s)
- Matthew Zajac
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Kasturi Chakraborty
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Sonali Saha
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Vivek Mahadevan
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Daniel T. Infield
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA 52242, USA
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY 10065, USA
- Department of Biochemistry, Weill Cornell Medical School, New York, NY 10065, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
22
|
A network of phosphatidylinositol 4,5-bisphosphate binding sites regulates gating of the Ca 2+-activated Cl - channel ANO1 (TMEM16A). Proc Natl Acad Sci U S A 2019; 116:19952-19962. [PMID: 31515451 DOI: 10.1073/pnas.1904012116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ANO1 (TMEM16A) is a Ca2+-activated Cl- channel that regulates diverse cellular functions including fluid secretion, neuronal excitability, and smooth muscle contraction. ANO1 is activated by elevation of cytosolic Ca2+ and modulated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Here, we describe a closely concerted experimental and computational study, including electrophysiology, mutagenesis, functional assays, and extended sampling of lipid-protein interactions with molecular dynamics (MD) to characterize PI(4,5)P2 binding modes and sites on ANO1. ANO1 currents in excised inside-out patches activated by 270 nM Ca2+ at +100 mV are increased by exogenous PI(4,5)P2 with an EC50 = 1.24 µM. The effect of PI(4,5)P2 is dependent on membrane voltage and Ca2+ and is explained by a stabilization of the ANO1 Ca2+-bound open state. Unbiased atomistic MD simulations with 1.4 mol% PI(4,5)P2 in a phosphatidylcholine bilayer identified 8 binding sites with significant probability of binding PI(4,5)P2 Three of these sites captured 85% of all ANO1-PI(4,5)P2 interactions. Mutagenesis of basic amino acids near the membrane-cytosol interface found 3 regions of ANO1 critical for PI(4,5)P2 regulation that correspond to the same 3 sites identified by MD. PI(4,5)P2 is stabilized by hydrogen bonding between amino acid side chains and phosphate/hydroxyl groups on PI(4,5)P2 Binding of PI(4,5)P2 alters the position of the cytoplasmic extension of TM6, which plays a crucial role in ANO1 channel gating, and increases the accessibility of the inner vestibule to Cl- ions. We propose a model consisting of a network of 3 PI(4,5)P2 binding sites at the cytoplasmic face of the membrane allosterically regulating ANO1 channel gating.
Collapse
|
23
|
Le SC, Jia Z, Chen J, Yang H. Molecular basis of PIP 2-dependent regulation of the Ca 2+-activated chloride channel TMEM16A. Nat Commun 2019; 10:3769. [PMID: 31434906 PMCID: PMC6704070 DOI: 10.1038/s41467-019-11784-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/02/2019] [Indexed: 11/20/2022] Open
Abstract
The calcium-activated chloride channel (CaCC) TMEM16A plays crucial roles in regulating neuronal excitability, smooth muscle contraction, fluid secretion and gut motility. While opening of TMEM16A requires binding of intracellular Ca2+, prolonged Ca2+-dependent activation results in channel desensitization or rundown, the mechanism of which is unclear. Here we show that phosphatidylinositol (4,5)-bisphosphate (PIP2) regulates TMEM16A channel activation and desensitization via binding to a putative binding site at the cytosolic interface of transmembrane segments (TMs) 3-5. We further demonstrate that the ion-conducting pore of TMEM16A is constituted of two functionally distinct modules: a Ca2+-binding module formed by TMs 6-8 and a PIP2-binding regulatory module formed by TMs 3-5, which mediate channel activation and desensitization, respectively. PIP2 dissociation from the regulatory module results in ion-conducting pore collapse and subsequent channel desensitization. Our findings thus provide key insights into the mechanistic understanding of TMEM16 channel gating and lipid-dependent regulation.
Collapse
Affiliation(s)
- Son C Le
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
24
|
Salzer I, Boehm S. Calcium-activated chloride channels: Potential targets for antinociceptive therapy. Int J Biochem Cell Biol 2019; 111:37-41. [PMID: 31005634 DOI: 10.1016/j.biocel.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 01/24/2023]
Abstract
The molecular identity of calcium-activated chloride channels (CaCCs) was clarified only some ten years ago when it was linked to the family of "transmembrane proteins of unknown function 16″ (TMEM16). Since then, numerous studies have been conducted both to define their role in physiology and identify their biophysical functions. For the latter, the ultrastructural description of mouse TMEM16 A was a breakthrough. CaCCs were functionally described in a number of different tissues including first-order sensory neurons. The activating rise in intracellular calcium concentration can be caused by an influx of calcium through other calcium permeable ion channels. Calcium release from intracellular stores, mediated by G-protein coupled receptors, also leads to CaCC activation. Prominent inflammatory mediators like bradykinin or serotonin stimulate CaCCs via such a mechanism. The (patho) physiological function of these ion channels renders them promising targets for antinociceptive treatment.
Collapse
Affiliation(s)
- Isabella Salzer
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria.
| | - Stefan Boehm
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| |
Collapse
|
25
|
Falzone ME, Rheinberger J, Lee BC, Peyear T, Sasset L, Raczkowski AM, Eng ET, Di Lorenzo A, Andersen OS, Nimigean CM, Accardi A. Structural basis of Ca 2+-dependent activation and lipid transport by a TMEM16 scramblase. eLife 2019; 8:e43229. [PMID: 30648972 PMCID: PMC6355197 DOI: 10.7554/elife.43229] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
The lipid distribution of plasma membranes of eukaryotic cells is asymmetric and phospholipid scramblases disrupt this asymmetry by mediating the rapid, nonselective transport of lipids down their concentration gradients. As a result, phosphatidylserine is exposed to the outer leaflet of membrane, an important step in extracellular signaling networks controlling processes such as apoptosis, blood coagulation, membrane fusion and repair. Several TMEM16 family members have been identified as Ca2+-activated scramblases, but the mechanisms underlying their Ca2+-dependent gating and their effects on the surrounding lipid bilayer remain poorly understood. Here, we describe three high-resolution cryo-electron microscopy structures of a fungal scramblase from Aspergillus fumigatus, afTMEM16, reconstituted in lipid nanodiscs. These structures reveal that Ca2+-dependent activation of the scramblase entails global rearrangement of the transmembrane and cytosolic domains. These structures, together with functional experiments, suggest that activation of the protein thins the membrane near the transport pathway to facilitate rapid transbilayer lipid movement.
Collapse
Affiliation(s)
- Maria E Falzone
- Department of BiochemistryWeill Cornell Medical CollegeNew YorkUnited States
| | - Jan Rheinberger
- Department of AnesthesiologyWeill Cornell Medical CollegeNew YorkUnited States
| | - Byoung-Cheol Lee
- Department of AnesthesiologyWeill Cornell Medical CollegeNew YorkUnited States
- Department of Structure and Function on Neural NetworkKorea Brain Research InstituteDeaguRepublic of Korea
| | - Thasin Peyear
- Department of Physiology and BiophysicsWeill Cornell Medical CollegeNew YorkUnited States
| | - Linda Sasset
- Department of PathologyWeill Cornell Medical CollegeNew YorkUnited States
| | - Ashleigh M Raczkowski
- Simons Electron Microscopy CenterNew York Structural Biology CenterNew YorkUnited States
| | - Edward T Eng
- Simons Electron Microscopy CenterNew York Structural Biology CenterNew YorkUnited States
| | | | - Olaf S Andersen
- Department of Physiology and BiophysicsWeill Cornell Medical CollegeNew YorkUnited States
| | - Crina M Nimigean
- Department of BiochemistryWeill Cornell Medical CollegeNew YorkUnited States
- Department of AnesthesiologyWeill Cornell Medical CollegeNew YorkUnited States
- Department of Physiology and BiophysicsWeill Cornell Medical CollegeNew YorkUnited States
| | - Alessio Accardi
- Department of BiochemistryWeill Cornell Medical CollegeNew YorkUnited States
- Department of AnesthesiologyWeill Cornell Medical CollegeNew YorkUnited States
- Department of Physiology and BiophysicsWeill Cornell Medical CollegeNew YorkUnited States
| |
Collapse
|
26
|
Brunner JD, Schenck S. Preparation of Proteoliposomes with Purified TMEM16 Protein for Accurate Measures of Lipid Scramblase Activity. Methods Mol Biol 2019; 1949:181-199. [PMID: 30790257 DOI: 10.1007/978-1-4939-9136-5_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The distribution of different lipid species between the two leaflets is tightly regulated and underlies the concerted action of distinct catalytic entities. While flippases and floppases establish membrane asymmetry, scramblases randomize the lipid distribution and play pivotal roles during blood clotting, apoptosis, and in processes such as N-linked glycosylation of proteins. The recent discovery of TMEM16 family members acting as scramblases has led to an increasing demand for developing protocols tailored for TMEM16 proteins to enable functional investigations of their scrambling activity. Here we describe a protocol for the expression, purification, and functional reconstitution of TMEM16 proteins into preformed liposomes and measurement of their scrambling activity using fluorescence-labeled lipid derivatives. The reconstitution involves extrusion of liposomes through a membrane, destabilization of liposomes using Triton X-100, and stepwise detergent removal by adsorption on styryl-beads. The scrambling assay is based on the selective bleaching of nitrobenzoxadiazol fluorescent lipids on the outer leaflet of liposomes by the membrane-impermeant reducing agent sodium dithionite. The assay allows conclusions on the substrate specificity and on the kinetics of the transported lipids as shown with the example of a Ca2+-activated TMEM16 scramblase from the fungus Nectria haematococca (nhTMEM16).
Collapse
Affiliation(s)
- Janine Denise Brunner
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland.
| | - Stephan Schenck
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| |
Collapse
|
27
|
Ji Q, Guo S, Wang X, Pang C, Zhan Y, Chen Y, An H. Recent advances in TMEM16A: Structure, function, and disease. J Cell Physiol 2018; 234:7856-7873. [PMID: 30515811 DOI: 10.1002/jcp.27865] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
TMEM16A (also known as anoctamin 1, ANO1) is the molecular basis of the calcium-activated chloride channels, with ten transmembrane segments. Recently, atomic structures of the transmembrane domains of mouse TMEM16A (mTMEM16A) were determined by single-particle electron cryomicroscopy. This gives us a solid ground to discuss the electrophysiological properties and functions of TMEM16A. TMEM16A is reported to be dually regulated by Ca2+ and voltage. In addition, the dysfunction of TMEM16A has been found to be involved in many diseases including cystic fibrosis, various cancers, hypertension, and gastrointestinal motility disorders. TMEM16A is overexpressed in many cancers, including gastrointestinal stromal tumors, gastric cancer, head and neck squamous cell carcinoma (HNSCC), colon cancer, pancreatic ductal adenocarcinoma, and esophageal cancer. Furthermore, overexpression of TMEM16A is related to the occurrence, proliferation, and migration of tumor cells. To date, several studies have shown that many natural compounds and synthetic compounds have regulatory effects on TMEM16A. These small molecule compounds might be novel drugs for the treatment of diseases caused by TMEM16A dysfunction in the future. In addition, recent studies have shown that TMEM16A plays different roles in different diseases through different signal transduction pathways. This review discusses the topology, electrophysiological properties, modulators and functions of TMEM16A in mediates nociception, gastrointestinal dysfunction, hypertension, and cancer and focuses on multiple regulatory mechanisms regarding TMEM16A.
Collapse
Affiliation(s)
- Qiushuang Ji
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Shuai Guo
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Xuzhao Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yong Zhan
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| |
Collapse
|
28
|
Nezu A, Morita T, Nagai T, Tanimura A. Simultaneous monitoring of Ca 2+ responses and salivary secretion in live animals reveals a threshold intracellular Ca 2+ concentration for salivation. Exp Physiol 2018; 104:61-69. [PMID: 30367746 DOI: 10.1113/ep086868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the central question of this study? The effects of Ca2+ responses on salivary fluid secretion have been studied indirectly by monitoring ion channel activities and other indices. Therefore, Ca2+ responses during salivary secretion remain poorly understood. What is the main finding and its importance? Herein, we developed a simultaneous monitoring system for Ca2+ responses and salivary secretion in live animals using a YC-Nano50-expressing submandibular gland and a fibre-optic pressure sensor. This new approach revealed a clear time lag between the onset of Ca2+ responses and salivary secretion. We also estimated the [Ca2+ ]i and provided direct evidence for the regulation of salivary secretion by small increases in [Ca2+ ]i in submandibular gland acinar cells. ABSTRACT We monitored changes in [Ca2+ ]i during salivary secretion in the rat submandibular gland in live animals using a combination of intravital Ca2+ imaging with the ultrasensitive Ca2+ indicator YC-Nano50 and a fibre-optic pressure sensor. Intravenous infusion of ACh (10-720 nmol min-1 ) increased [Ca2+ ]i and salivary flow rate in a dose-dependent manner. Repetitive stimulation with ACh induced equivalent Ca2+ responses and salivary secretion in the same individual animals. The accurate ACh stimulation experiments revealed a clear time lag between the onset of the increase in [Ca2+ ]i and salivary secretion. The time lag with the lowest dose of ACh (30 nmol min-1 ) was 106 s, which shortened to 19 s with the dose used for maximal salivary secretion (360 nmol min-1 ). This time lag might reflect the time required for [Ca2+ ]i to reach the level required to activate molecules for fluid secretion. The resting [Ca2+ ]i in submandibular gland was 37 nm, and [Ca2+ ]i at the onset of salivary secretion was 45-57 nm, irrespective of ACh dose. These results indicate that low [Ca2+ ]i is sufficient to trigger fluid secretion in the rat submandibular gland in vivo.
Collapse
Affiliation(s)
- Akihiro Nezu
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Takao Morita
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Takeharu Nagai
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Akihiko Tanimura
- Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| |
Collapse
|
29
|
Lam AK, Dutzler R. Calcium-dependent electrostatic control of anion access to the pore of the calcium-activated chloride channel TMEM16A. eLife 2018; 7:39122. [PMID: 30311910 PMCID: PMC6195346 DOI: 10.7554/elife.39122] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022] Open
Abstract
TMEM16A is a ligand-gated anion channel that is activated by intracellular Ca2+. This channel comprises two independent pores and closely apposed Ca2+ binding sites that are contained within each subunit of a homodimeric protein. Previously we characterized the influence of positively charged pore-lining residues on anion conduction (Paulino et al., 2017a). Here, we demonstrate the electrostatic control of permeation by the bound calcium ions in mouse TMEM16A using electrophysiology and Poisson-Boltzmann calculations. The currents of constitutively active mutants lose their outward rectification as a function of Ca2+ concentration due to the alleviation of energy barriers for anion conduction. This phenomenon originates from Coulombic interactions between the bound Ca2+ and permeating anions and thus demonstrates that an electrostatic gate imposed by the vacant binding site present in the sterically open pore, is released by Ca2+ binding to enable an otherwise sub-conductive pore to conduct with full capacity.
Collapse
Affiliation(s)
- Andy Km Lam
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Schenk LK, Buchholz B, Henke SF, Michgehl U, Daniel C, Amann K, Kunzelmann K, Pavenstädt H. Nephron-specific knockout of TMEM16A leads to reduced number of glomeruli and albuminuria. Am J Physiol Renal Physiol 2018; 315:F1777-F1786. [PMID: 30156115 DOI: 10.1152/ajprenal.00638.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
TMEM16A is a transmembrane protein from a conserved family of calcium-activated proteins that is highly expressed in the kidney. TMEM16A confers calcium-activated chloride channel activity, which is of importance for various cellular functions in secretory epithelia and involved in secretion-dependent renal cyst growth. However, its specific function in renal physiology has remained elusive so far. Therefore, we generated conditional nephron-specific TMEM16A-knockout mice and found that these animals suffered from albuminuria. Kidney histology demonstrated an intact corticomedullary differentiation and absence of cysts. Electron microscopy showed a normal slit diaphragm. However, the total number of glomeruli and total nephron count was decreased in TMEM16A-knockout animals. At the same time, glomerular diameter was increased, presumably as a result of the hyperfiltration in the remaining glomeruli. TUNEL and PCNA stainings showed increased cell death and increased proliferation. Proximal tubular cilia were intact in young animals, but the number of properly ciliated cells was decreased in older, albuminuric animals. Taken together, our data suggest that TMEM16A may be involved in ureteric bud branching and proper nephron endowment. Loss of TMEM16A resulted in reduced nephron number and, subsequently, albuminuria and tubular damage.
Collapse
Affiliation(s)
- Laura K Schenk
- Internal Medicine D University Hospital of Muenster , Muenster Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Sebastian F Henke
- Internal Medicine D University Hospital of Muenster , Muenster Germany
| | - Ulf Michgehl
- Internal Medicine D University Hospital of Muenster , Muenster Germany
| | - Christoph Daniel
- Institute for Nephropathology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Kerstin Amann
- Institute for Nephropathology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg , Regensburg Germany
| | | |
Collapse
|
31
|
Munshi R, Qadri SM, Pralle A. Transient Magnetothermal Neuronal Silencing Using the Chloride Channel Anoctamin 1 (TMEM16A). Front Neurosci 2018; 12:560. [PMID: 30154692 PMCID: PMC6103273 DOI: 10.3389/fnins.2018.00560] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
Determining the role and necessity of specific neurons in a network calls for precisely timed, reversible removal of these neurons from the circuit via remotely triggered transient silencing. Previously, we have shown that alternating magnetic field mediated heating of magnetic nanoparticles, bound to neurons, expressing temperature-sensitive cation channels TRPV1 remotely activates these neurons, evoking behavioral responses in mice. Here, we demonstrate how to apply magnetic nanoparticle heating to silence target neurons. Rat hippocampal neuronal cultures were transfected to express the temperature gated chloride channel, anoctamin 1 (TMEM16A). Spontaneous firing was suppressed within seconds of alternating magnetic field application to anoctamin 1 (TMEM16A) channel expressing, magnetic nanoparticle decorated neurons. Five seconds of magnetic field application leads to 12 s of silencing, with a latency of 2 s and an average suppression ratio of more than 80%. Immediately following the silencing period spontaneous activity resumed. The method provides a promising avenue for tether free, remote, transient neuronal silencing in vivo for both scientific and therapeutic applications.
Collapse
Affiliation(s)
| | | | - Arnd Pralle
- Department of Physics, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
32
|
Ballesteros A, Fenollar-Ferrer C, Swartz KJ. Structural relationship between the putative hair cell mechanotransduction channel TMC1 and TMEM16 proteins. eLife 2018; 7:38433. [PMID: 30063209 PMCID: PMC6067890 DOI: 10.7554/elife.38433] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 02/03/2023] Open
Abstract
The hair cell mechanotransduction (MET) channel complex is essential for hearing, yet it's molecular identity and structure remain elusive. The transmembrane channel-like 1 (TMC1) protein localizes to the site of the MET channel, interacts with the tip-link responsible for mechanical gating, and genetic alterations in TMC1 alter MET channel properties and cause deafness, supporting the hypothesis that TMC1 forms the MET channel. We generated a model of TMC1 based on X-ray and cryo-EM structures of TMEM16 proteins, revealing the presence of a large cavity near the protein-lipid interface that also harbors the Beethoven mutation, suggesting that it could function as a permeation pathway. We also find that hair cells are permeable to 3 kDa dextrans, and that dextran permeation requires TMC1/2 proteins and functional MET channels, supporting the presence of a large permeation pathway and the hypothesis that TMC1 is a pore forming subunit of the MET channel complex.
Collapse
Affiliation(s)
- Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular & Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States.,Laboratory of Molecular Genetics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States.,Molecular Biology and Genetics Section, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Kenton Jon Swartz
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
33
|
Malvezzi M, Andra KK, Pandey K, Lee BC, Falzone ME, Brown A, Iqbal R, Menon AK, Accardi A. Out-of-the-groove transport of lipids by TMEM16 and GPCR scramblases. Proc Natl Acad Sci U S A 2018; 115:E7033-E7042. [PMID: 29925604 PMCID: PMC6065010 DOI: 10.1073/pnas.1806721115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipid scramblases externalize phosphatidylserine to facilitate numerous physiological processes. Several members of the structurally unrelated TMEM16 and G protein-coupled receptor (GPCR) protein families mediate phospholipid scrambling. The structure of a TMEM16 scramblase shows a membrane-exposed hydrophilic cavity, suggesting that scrambling occurs via the ‟credit-card" mechanism where lipid headgroups permeate through the cavity while their tails remain associated with the membrane core. Here we show that afTMEM16 and opsin, representatives of the TMEM16 and GCPR scramblase families, transport phospholipids with polyethylene glycol headgroups whose globular dimensions are much larger than the width of the cavity. This suggests that transport of these large headgroups occurs outside rather than within the cavity. These large lipids are scrambled at rates comparable to those of normal phospholipids and their presence in the reconstituted vesicles promotes scrambling of normal phospholipids. This suggests that both large and small phospholipids can move outside the cavity. We propose that the conformational rearrangements underlying TMEM16- and GPCR-mediated credit-card scrambling locally deform the membrane to allow transbilayer lipid translocation outside the cavity and that both mechanisms underlie transport of normal phospholipids.
Collapse
Affiliation(s)
- Mattia Malvezzi
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Kiran K Andra
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Kalpana Pandey
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Byoung-Cheol Lee
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Maria E Falzone
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Ashley Brown
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Rabia Iqbal
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065;
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
34
|
Falzone ME, Malvezzi M, Lee BC, Accardi A. Known structures and unknown mechanisms of TMEM16 scramblases and channels. J Gen Physiol 2018; 150:933-947. [PMID: 29915161 PMCID: PMC6028493 DOI: 10.1085/jgp.201711957] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022] Open
Abstract
Falzone et al. interpret the mechanisms underlying the activity of TMEM16 family members from recent structural and functional work. The TMEM16 family of membrane proteins is composed of both Ca2+-gated Cl− channels and Ca2+-dependent phospholipid scramblases. The functional diversity of TMEM16s underlies their involvement in numerous signal transduction pathways that connect changes in cytosolic Ca2+ levels to cellular signaling networks. Indeed, defects in the function of several TMEM16s cause a variety of genetic disorders, highlighting their fundamental pathophysiological importance. Here, we review how our mechanistic understanding of TMEM16 function has been shaped by recent functional and structural work. Remarkably, the recent determination of near-atomic-resolution structures of TMEM16 proteins of both functional persuasions has revealed how relatively minimal rearrangements in the substrate translocation pathway are sufficient to precipitate the dramatic functional differences that characterize the family. These structures, when interpreted in the light of extensive functional analysis, point to an unusual mechanism for Ca2+-dependent activation of TMEM16 proteins in which substrate permeation is regulated by a combination of conformational rearrangements and electrostatics. These breakthroughs pave the way to elucidate the mechanistic bases of ion and lipid transport by the TMEM16 proteins and unravel the molecular links between these transport activities and their function in human pathophysiology.
Collapse
Affiliation(s)
- Maria E Falzone
- Department of Biochemistry, Weill Cornell Medical School, New York, NY
| | - Mattia Malvezzi
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY
| | - Byoung-Cheol Lee
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY
| | - Alessio Accardi
- Department of Biochemistry, Weill Cornell Medical School, New York, NY .,Department of Anesthesiology, Weill Cornell Medical School, New York, NY.,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical School, New York, NY
| |
Collapse
|
35
|
Luo Y, Yu X, Ma C, Luo J, Yang W. Identification of a Novel EF-Loop in the N-terminus of TRPM2 Channel Involved in Calcium Sensitivity. Front Pharmacol 2018; 9:581. [PMID: 29915540 PMCID: PMC5994415 DOI: 10.3389/fphar.2018.00581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/15/2018] [Indexed: 01/10/2023] Open
Abstract
As an oxidative stress sensor, transient receptor potential melastatin 2 (TRPM2) channel is involved in many physiological and pathological processes including warmth sensing, ischemia injury, inflammatory diseases and diabetes. Intracellular calcium is critical for TRPM2 channel activation and the IQ-like motif in the N-terminus has been shown to be important by mediating calmodulin binding. Sequence analysis predicted two potential EF-loops in the N-terminus of TRPM2. Site-directed mutagenesis combining with functional assay showed that substitution with alanine of several residues, most of which are conserved in the typical EF-loop, including D267, D278, D288, and E298 dramatically reduced TRPM2 channel currents. By further changing the charges or side chain length of these conserved residues, our results indicate that the negative charge of D267 and the side chain length of D278 are critical for calcium-induced TRPM2 channel activation. G272I mutation also dramatically reduced the channel currents, suggesting that this site is critical for calcium-induced TRPM2 channel activation. Furthermore, D267A mutant dramatically reduced the currents induced by calcium alone compared with that by ADPR, indicating that D267 residue in D267–D278 motif is the most important site for calcium sensitivity of TRPM2. In addition, inside-out recordings showed that mutations at D267, G272, D278, and E298 had no effect on single-channel conductance. Taken together, our data indicate that D267–D278 motif in the N-terminus as a novel EF-loop is critical for calcium-induced TRPM2 channel activation.
Collapse
Affiliation(s)
- Yuhuan Luo
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiafei Yu
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Ma
- Co-facility Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhong Luo
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yang
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Rottgen TS, Nickerson AJ, Rajendran VM. Calcium-Activated Cl - Channel: Insights on the Molecular Identity in Epithelial Tissues. Int J Mol Sci 2018; 19:E1432. [PMID: 29748496 PMCID: PMC5983713 DOI: 10.3390/ijms19051432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca2+-activated Cl− secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca2+-activated Cl− channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca2+-sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.
Collapse
Affiliation(s)
- Trey S Rottgen
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
- Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| | - Andrew J Nickerson
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
- Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| | - Vazhaikkurichi M Rajendran
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
- Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| |
Collapse
|
37
|
Medrano-Soto A, Moreno-Hagelsieb G, McLaughlin D, Ye ZS, Hendargo KJ, Saier MH. Bioinformatic characterization of the Anoctamin Superfamily of Ca2+-activated ion channels and lipid scramblases. PLoS One 2018; 13:e0192851. [PMID: 29579047 PMCID: PMC5868767 DOI: 10.1371/journal.pone.0192851] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/31/2018] [Indexed: 01/01/2023] Open
Abstract
Our laboratory has developed bioinformatic strategies for identifying distant phylogenetic relationships and characterizing families and superfamilies of transport proteins. Results using these tools suggest that the Anoctamin Superfamily of cation and anion channels, as well as lipid scramblases, includes three functionally characterized families: the Anoctamin (ANO), Transmembrane Channel (TMC) and Ca2+-permeable Stress-gated Cation Channel (CSC) families; as well as four families of functionally uncharacterized proteins, which we refer to as the Anoctamin-like (ANO-L), Transmembrane Channel-like (TMC-L), and CSC-like (CSC-L1 and CSC-L2) families. We have constructed protein clusters and trees showing the relative relationships among the seven families. Topological analyses suggest that the members of these families have essentially the same topologies. Comparative examination of these homologous families provides insight into possible mechanisms of action, indicates the currently recognized organismal distributions of these proteins, and suggests drug design potential for the disease-related channel proteins.
Collapse
Affiliation(s)
- Arturo Medrano-Soto
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | | | - Daniel McLaughlin
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Zachary S. Ye
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Kevin J. Hendargo
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Phosphatidylinositol 4,5-bisphosphate, cholesterol, and fatty acids modulate the calcium-activated chloride channel TMEM16A (ANO1). Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:299-312. [PMID: 29277655 DOI: 10.1016/j.bbalip.2017.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/10/2017] [Accepted: 12/18/2017] [Indexed: 11/20/2022]
Abstract
The TMEM16A-mediated Ca2+-activated Cl- current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy. We found that depletion of membrane PI(4,5)P2 causes a decline in TMEM16A current that is independent of cytoskeleton, but is partially prevented by removing intracellular Ca2+. On the other hand, supplying PI(4,5)P2 to inside-out patches attenuated channel rundown and/or partially rescued activity after channel rundown. Also, depletion (with methyl-β-cyclodextrin M-βCD) or restoration (with M-βCD+cholesterol) of membrane cholesterol slows down the current decay observed after reduction of PI(4,5)P2. Neither depletion nor restoration of cholesterol change PI(4,5)P2 content. However, M-βCD alone transiently increases TMEM16A activity and dampens rundown whereas M-βCD+cholesterol increases channel rundown. Thus, PI(4,5)P2 is required for TMEM16A function while cholesterol directly and indirectly via a PI(4,5)P2-independent mechanism regulate channel function. Stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids as well as methyl stearate inhibit TMEM16A in a dose- and voltage-dependent manner. Phosphatidylserine, a phospholipid whose hydrocarbon tails contain stearic and oleic acids also inhibits TMEM16A. Finally, we show that TMEM16A remains in the plasma membrane after treatment with M-βCD, M-βCD+cholesterol, oleic, or docosahexaenoic acids. Thus, we propose that lipids and fatty acids regulate TMEM16A channels through a membrane-delimited protein-lipid interaction.
Collapse
|
39
|
Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM. Nature 2017; 552:421-425. [PMID: 29236691 DOI: 10.1038/nature24652] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022]
Abstract
The calcium-activated chloride channel TMEM16A is a ligand-gated anion channel that opens in response to an increase in intracellular Ca2+ concentration. The protein is broadly expressed and contributes to diverse physiological processes, including transepithelial chloride transport and the control of electrical signalling in smooth muscles and certain neurons. As a member of the TMEM16 (or anoctamin) family of membrane proteins, TMEM16A is closely related to paralogues that function as scramblases, which facilitate the bidirectional movement of lipids across membranes. The unusual functional diversity of the TMEM16 family and the relationship between two seemingly incompatible transport mechanisms has been the focus of recent investigations. Previous breakthroughs were obtained from the X-ray structure of the lipid scramblase of the fungus Nectria haematococca (nhTMEM16), and from the cryo-electron microscopy structure of mouse TMEM16A at 6.6 Å (ref. 14). Although the latter structure disclosed the architectural differences that distinguish ion channels from lipid scramblases, its low resolution did not permit a detailed molecular description of the protein or provide any insight into its activation by Ca2+. Here we describe the structures of mouse TMEM16A at high resolution in the presence and absence of Ca2+. These structures reveal the differences between ligand-bound and ligand-free states of a calcium-activated chloride channel, and when combined with functional experiments suggest a mechanism for gating. During activation, the binding of Ca2+ to a site located within the transmembrane domain, in the vicinity of the pore, alters the electrostatic properties of the ion conduction path and triggers a conformational rearrangement of an α-helix that comes into physical contact with the bound ligand, and thereby directly couples ligand binding and pore opening. Our study describes a process that is unique among channel proteins, but one that is presumably general for both functional branches of the TMEM16 family.
Collapse
|
40
|
Strege PR, Gibbons SJ, Mazzone A, Bernard CE, Beyder A, Farrugia G. EAVK segment "c" sequence confers Ca 2+-dependent changes to the kinetics of full-length human Ano1. Am J Physiol Gastrointest Liver Physiol 2017; 312:G572-G579. [PMID: 28336549 PMCID: PMC5495914 DOI: 10.1152/ajpgi.00429.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 01/31/2023]
Abstract
Anoctamin1 (Ano1 and TMEM16A) is a calcium-activated chloride channel specifically expressed in the interstitial cells of Cajal (ICC) of the gastrointestinal tract muscularis propria. Ano1 is necessary for normal electrical slow waves and ICC proliferation. The full-length human Ano1 sequence includes an additional exon, exon "0," at the NH2 terminus. Ano1 with exon 0 [Ano1(0)] had a lower EC50 for intracellular calcium ([Ca2+]i) and faster chloride current (ICl) kinetics. The Ano1 alternative splice variant with segment "c" encoding exon 13 expresses on the first intracellular loop four additional amino acid residues, EAVK, which alter ICl at low [Ca2+]i Exon 13 is expressed in 75-100% of Ano1 transcripts in most human tissues but only 25% in the human stomach. Our aim was to determine the effect of EAVK deletion on Ano1(0)ICl parameters. By voltage-clamp electrophysiology, we examined ICl in HEK293 cells transiently expressing Ano1(0) with or without the EAVK sequence [Ano1(0)ΔEAVK]. The EC50 values of activating and deactivating ICl for [Ca2+]i were 438 ± 7 and 493 ± 9 nM for Ano1(0) but higher for Ano1(0)ΔEAVK at 746 ± 47 and 761 ± 26 nM, respectively. Meanwhile, the EC50 values for the ratio of instantaneous to steady-state ICl were not different between variants. Congruently, the time constant of activation was slower for Ano1(0)ΔEAVK than Ano1(0) currents at intermediate [Ca2+]i These results suggest that EAVK decreases the calcium sensitivity of Ano1(0) current activation and deactivation by slowing activation kinetics. Differential expression of EAVK in the human stomach may function as a switch to increase sensitivity to [Ca2+]i via faster gating of Ano1.NEW & NOTEWORTHY Calcium-activated chloride channel anoctamin1 (Ano1) is necessary for normal slow waves in the gastrointestinal interstitial cells of Cajal. Exon 0 encodes the NH2 terminus of full-length human Ano1 [Ano1(0)], while exon 13 encodes residues EAVK on its first intracellular loop. Splice variants lack EAVK more often in the stomach than other tissues. Ano1(0) without EAVK [Ano1(0)ΔEAVK] has reduced sensitivity for intracellular calcium, attributable to slower kinetics. Differential expression of EAVK may function as a calcium-sensitive switch in the human stomach.
Collapse
|
41
|
Kamaleddin MA. Molecular, biophysical, and pharmacological properties of calcium-activated chloride channels. J Cell Physiol 2017; 233:787-798. [PMID: 28121009 DOI: 10.1002/jcp.25823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/15/2022]
Abstract
Calcium-activated chloride channels (CaCCs) are a family of anionic transmembrane ion channels. They are mainly responsible for the movement of Cl- and other anions across the biological membranes, and they are widely expressed in different tissues. Since the Cl- flow into or out of the cell plays a crucial role in hyperpolarizing or depolarizing the cells, respectively, the impact of intracellular Ca2+ concentration on these channels is attracting a lot of attentions. After summarizing the molecular, biophysical, and pharmacological properties of CaCCs, the role of CaCCs in normal cellular functions will be discussed, and I will emphasize how dysregulation of CaCCs in pathological conditions can account for different diseases. A better understanding of CaCCs and a pivotal regulatory role of Ca2+ can shed more light on the therapeutic strategies for different neurological disorders that arise from chloride dysregulation, such as asthma, cystic fibrosis, and neuropathic pain.
Collapse
Affiliation(s)
- Mohammad Amin Kamaleddin
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Sala-Rabanal M, Yurtsever Z, Berry KN, Nichols CG, Brett TJ. Modulation of TMEM16A channel activity by the von Willebrand factor type A (VWA) domain of the calcium-activated chloride channel regulator 1 (CLCA1). J Biol Chem 2017; 292:9164-9174. [PMID: 28420732 DOI: 10.1074/jbc.m117.788232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/18/2017] [Indexed: 11/06/2022] Open
Abstract
Calcium-activated chloride channels (CaCCs) are key players in transepithelial ion transport and fluid secretion, smooth muscle constriction, neuronal excitability, and cell proliferation. The CaCC regulator 1 (CLCA1) modulates the activity of the CaCC TMEM16A/Anoctamin 1 (ANO1) by directly engaging the channel at the cell surface, but the exact mechanism is unknown. Here we demonstrate that the von Willebrand factor type A (VWA) domain within the cleaved CLCA1 N-terminal fragment is necessary and sufficient for this interaction. TMEM16A protein levels on the cell surface were increased in HEK293T cells transfected with CLCA1 constructs containing the VWA domain, and TMEM16A-like currents were activated. Similar currents were evoked in cells exposed to secreted VWA domain alone, and these currents were significantly knocked down by TMEM16A siRNA. VWA-dependent TMEM16A modulation was not modified by the S357N mutation, a VWA domain polymorphism associated with more severe meconium ileus in cystic fibrosis patients. VWA-activated currents were significantly reduced in the absence of extracellular Mg2+, and mutation of residues within the conserved metal ion-dependent adhesion site motif impaired the ability of VWA to potentiate TMEM16A activity, suggesting that CLCA1-TMEM16A interactions are Mg2+- and metal ion-dependent adhesion site-dependent. Increase in TMEM16A activity occurred within minutes of exposure to CLCA1 or after a short treatment with nocodazole, consistent with the hypothesis that CLCA1 stabilizes TMEM16A at the cell surface by preventing its internalization. Our study hints at the therapeutic potential of the selective activation of TMEM16A by the CLCA1 VWA domain in loss-of-function chloride channelopathies such as cystic fibrosis.
Collapse
Affiliation(s)
- Monica Sala-Rabanal
- From the Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology and Physiology
| | - Zeynep Yurtsever
- Biochemistry Program.,Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine
| | - Kayla N Berry
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine.,Medical Scientist Training Program, and
| | - Colin G Nichols
- From the Center for the Investigation of Membrane Excitability Diseases.,Department of Cell Biology and Physiology
| | - Tom J Brett
- From the Center for the Investigation of Membrane Excitability Diseases, .,Department of Cell Biology and Physiology.,Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
43
|
Kulkarni S, Bill A, Godse NR, Khan NI, Kass JI, Steehler K, Kemp C, Davis K, Bertrand CA, Vyas AR, Holt DE, Grandis JR, Gaither LA, Duvvuri U. TMEM16A/ANO1 suppression improves response to antibody-mediated targeted therapy of EGFR and HER2/ERBB2. Genes Chromosomes Cancer 2017; 56:460-471. [PMID: 28177558 DOI: 10.1002/gcc.22450] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/22/2022] Open
Abstract
TMEM16A, a Ca2+ -activated Cl- channel, contributes to tumor growth in breast cancer and head and neck squamous cell carcinoma (HNSCC). Here, we investigated whether TMEM16A influences the response to EGFR/HER family-targeting biological therapies. Inhibition of TMEM16A Cl- channel activity in breast cancer cells with HER2 amplification induced a loss of viability. Cells resistant to trastuzumab, a monoclonal antibody targeting HER2, showed an increase in TMEM16A expression and heightened sensitivity to Cl- channel inhibition. Treatment of HNSCC cells with cetuximab, a monoclonal antibody targeting EGFR, and simultaneous TMEM16A suppression led to a pronounced loss of viability. Biochemical analyses of cells subjected to TMEM16A inhibitors or expressing chloride-deficient forms of TMEM16A provide further evidence that TMEM16A channel function may play a role in regulating EGFR/HER2 signaling. These data demonstrate that TMEM16A regulates EGFR and HER2 in growth and survival pathways. Furthermore, in the absence of TMEM16A cotargeting, tumor cells may acquire resistance to EGFR/HER inhibitors. Finally, targeting TMEM16A improves response to biological therapies targeting EGFR/HER family members.
Collapse
Affiliation(s)
- Sucheta Kulkarni
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health System, Pittsburgh, Pennsylvania
| | - Anke Bill
- Novartis Institute for Biomedical Research, Cambridge, MA, 02139
| | - Neal R Godse
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Nayel I Khan
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jason I Kass
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kevin Steehler
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Carolyn Kemp
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health System, Pittsburgh, Pennsylvania
| | - Kara Davis
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Carol A Bertrand
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Avani R Vyas
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Douglas E Holt
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - L Alex Gaither
- Novartis Institute for Biomedical Research, Cambridge, MA, 02139
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health System, Pittsburgh, Pennsylvania
| |
Collapse
|
44
|
Pifferi S. Permeation Mechanisms in the TMEM16B Calcium-Activated Chloride Channels. PLoS One 2017; 12:e0169572. [PMID: 28046119 PMCID: PMC5207786 DOI: 10.1371/journal.pone.0169572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 12/18/2016] [Indexed: 12/03/2022] Open
Abstract
TMEM16A and TMEM16B encode for Ca2+-activated Cl− channels (CaCC) and are expressed in many cell types and play a relevant role in many physiological processes. Here, I performed a site-directed mutagenesis study to understand the molecular mechanisms of ion permeation of TMEM16B. I mutated two positive charged residues R573 and K540, respectively located at the entrance and inside the putative channel pore and I measured the properties of wild-type and mutant TMEM16B channels expressed in HEK-293 cells using whole-cell and excised inside-out patch clamp experiments. I found evidence that R573 and K540 control the ion permeability of TMEM16B depending both on which side of the membrane the ion substitution occurs and on the level of channel activation. Moreover, these residues contribute to control blockage or activation by permeant anions. Finally, R573 mutation abolishes the anomalous mole fraction effect observed in the presence of a permeable anion and it alters the apparent Ca2+-sensitivity of the channel. These findings indicate that residues facing the putative channel pore are responsible both for controlling the ion selectivity and the gating of the channel, providing an initial understanding of molecular mechanism of ion permeation in TMEM16B.
Collapse
Affiliation(s)
- Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
- * E-mail:
| |
Collapse
|
45
|
Jeng G, Aggarwal M, Yu WP, Chen TY. Independent activation of distinct pores in dimeric TMEM16A channels. J Gen Physiol 2016; 148:393-404. [PMID: 27799319 PMCID: PMC5089935 DOI: 10.1085/jgp.201611651] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/30/2016] [Indexed: 01/16/2023] Open
Abstract
The TMEM16 family encompasses Ca2+-activated Cl- channels (CaCCs) and lipid scramblases. These proteins are formed by two identical subunits, as confirmed by the recently solved crystal structure of a TMEM16 lipid scramblase. However, the high-resolution structure did not provide definitive information regarding the pore architecture of the TMEM16 channels. In this study, we express TMEM16A channels constituting two covalently linked subunits with different Ca2+ affinities. The dose-response curve of the heterodimer appears to be a weighted sum of two dose-response curves-one corresponding to the high-affinity subunit and the other to the low-affinity subunit. However, fluorescence resonance energy transfer experiments suggest that the covalently linked heterodimeric proteins fold and assemble as one molecule. Together these results suggest that activation of the two TMEM16A subunits likely activate independently of each other. The Ca2+ activation curve for the heterodimer at a low Ca2+ concentration range ([Ca2+] < 5 µM) is similar to that of the wild-type channel-the Hill coefficients in both cases are significantly greater than one. This suggests that Ca2+ binding to one subunit of TMEM16A is sufficient to activate the channel and that each subunit contains more than one Ca2+-binding site. We also take advantage of the I-V curve rectification that results from mutation of a pore residue to address the pore architecture of the channel. By introducing the pore mutation and the mutation that alters Ca2+ affinity in the same or different subunits, we demonstrate that activation of different subunits appears to be associated with the opening of different pores. These results suggest that the TMEM16A CaCC may also adopt a "double-barrel" pore architecture, similar to that found in CLC channels and transporters.
Collapse
Affiliation(s)
- Grace Jeng
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
| | - Muskaan Aggarwal
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
| | - Wei-Ping Yu
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
| | - Tsung-Yu Chen
- Center for Neuroscience, University of California, Davis, Davis, CA 95618 .,Department of Neurology, University of California, Davis, Davis, CA 95618
| |
Collapse
|
46
|
Lim NK, Lam AKM, Dutzler R. Independent activation of ion conduction pores in the double-barreled calcium-activated chloride channel TMEM16A. J Gen Physiol 2016; 148:375-392. [PMID: 27799318 PMCID: PMC5089934 DOI: 10.1085/jgp.201611650] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/28/2016] [Indexed: 11/20/2022] Open
Abstract
The TMEM16 family contains dimeric membrane proteins activated by intracellular Ca2+. Realizing that lipid scramblase family members contain two independently activated subunits, Lim et al. use concatenated TMEM16A subunits to show that ion channel members contain two independently activated pores. The TMEM16 proteins constitute a family of membrane proteins with unusual functional breadth, including lipid scramblases and Cl− channels. Members of both these branches are activated by Ca2+, acting from the intracellular side, and probably share a common architecture, which was defined in the recent structure of the lipid scramblase nhTMEM16. The structural features of subunits and the arrangement of Ca2+-binding sites in nhTMEM16 suggest that the dimeric protein harbors two locations for catalysis that are independent with respect to both activation and lipid conduction. Here, we ask whether a similar independence is observed in the Ca2+-activated Cl− channel TMEM16A. For this purpose, we generated concatenated constructs containing subunits with distinct activation and permeation properties. Our biochemical investigations demonstrate the integrity of concatemers after solubilization and purification. During investigation by patch-clamp electrophysiology, the functional behavior of constructs containing either two wild-type (WT) subunits or one WT subunit paired with a second subunit with compromised activation closely resembles TMEM16A. This resemblance extends to ion selectivity, conductance, and the concentration and voltage dependence of channel activation by Ca2+. Constructs combining subunits with different potencies for Ca2+ show a biphasic activation curve that can be described as a linear combination of the properties of its constituents. The functional independence is further supported by mutation of a putative pore-lining residue that changes the conduction properties of the mutated subunit. Our results strongly suggest that TMEM16A contains two ion conduction pores that are independently activated by Ca2+ binding to sites that are embedded within the transmembrane part of each subunit.
Collapse
Affiliation(s)
- Novandy K Lim
- Department of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland
| | - Andy K M Lam
- Department of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland
| | - Raimund Dutzler
- Department of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland
| |
Collapse
|
47
|
Ma K, Wang H, Yu J, Wei M, Xiao Q. New Insights on the Regulation of Ca 2+ -Activated Chloride Channel TMEM16A. J Cell Physiol 2016; 232:707-716. [PMID: 27682822 DOI: 10.1002/jcp.25621] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022]
Abstract
TMEM16A, also known as anoctamin 1, is a recently identified Ca2+ -activated chloride channel and the first member of a 10-member TMEM16 family. TMEM16A dysfunction is implicated in many diseases such as cancer, hypertension, and cystic fibrosis. TMEM16A channels are well known to be dually regulated by voltage and Ca2+ . In addition, recent studies have revealed that TMEM16A channels are regulated by many molecules such as calmodulin, protons, cholesterol, and phosphoinositides, and a diverse range of stimuli such as thermal and mechanical stimuli. A better understanding of the regulatory mechanisms of TMEM16A is important to understand its physiological and pathological role. Recently, the crystal structure of a TMEM16 family member from the fungus Nectria haematococcaten (nhTMEM16) is discovered, and provides valuable information for studying the structure and function of TMEM16A. In this review, we discuss the structure and function of TMEM16A channels based on the crystal structure of nhTMEM16A and focus on the regulatory mechanisms of TMEM16A channels. J. Cell. Physiol. 232: 707-716, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Jiankun Yu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, P. R. China
| |
Collapse
|
48
|
Kumagai K, Toyoda F, Staunton C, Maeda T, Okumura N, Matsuura H, Matsusue Y, Imai S, Barrett-Jolley R. Activation of a chondrocyte volume-sensitive Cl(-) conductance prior to macroscopic cartilage lesion formation in the rabbit knee anterior cruciate ligament transection osteoarthritis model. Osteoarthritis Cartilage 2016; 24:1786-1794. [PMID: 27266646 PMCID: PMC5756537 DOI: 10.1016/j.joca.2016.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/29/2016] [Accepted: 05/25/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The anterior cruciate ligament transection (ACLT) rabbit osteoarthritis (OA) model confers permanent knee instability and induces joint degeneration. The degeneration process is complex, but includes chondrocyte apoptosis and OA-like loss of cartilage integrity. Previously, we reported that activation of a volume-sensitive Cl(-) current (ICl,vol) can mediate cell shrinkage and apoptosis in rabbit articular chondrocytes. Our objective was therefore to investigate whether ICl,vol was activated in the early stages of the rabbit ACLT OA model. DESIGN Adult Rabbits underwent unilateral ACLT and contralateral arthrotomy (sham) surgery. Rabbits were euthanized at 2 or 4 weeks. Samples were analyzed histologically and with assays of cell volume, apoptosis and electrophysiological characterization of ICl,vol. RESULTS At 2 and 4 weeks post ACLT cartilage appeared histologically normal, nevertheless cell swelling and caspase 3/7 activity were both significantly increased compared to sham controls. In cell-volume experiments, exposure of chondrocytes to hypotonic solution led to a greater increase in cell size in ACLT compared to controls. Caspase-3/7 activity, an indicator of apoptosis, was elevated in both ACLT 2wk and 4wk. Whole-cell currents were recorded with patch clamp of chondrocytes in iso-osmotic and hypo-osmotic external solutions under conditions where Na(+), K(+) and Ca(2+) currents were minimized. ACLT treatment resulted in a large increase in hypotonic-activated chloride conductance. CONCLUSION Changes in chondrocyte ion channels take place prior to the onset of apparent cartilage loss in the ACLT rabbit model of OA. Further studies are needed to investigate if pharmacological inhibition of ICl,vol decreases progression of OA in animal models.
Collapse
Affiliation(s)
- K. Kumagai
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK,Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - F. Toyoda
- Department of Physiology, Shiga University of Medical Science, Japan
| | - C.A. Staunton
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK
| | - T. Maeda
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - N. Okumura
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - H. Matsuura
- Department of Physiology, Shiga University of Medical Science, Japan
| | - Y. Matsusue
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - S. Imai
- Department of Orthopedic Surgery, Shiga University of Medical Science, Japan
| | - R. Barrett-Jolley
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK,Address correspondence and reprint requests to: R. Barrett-Jolley, Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, UK.Department of Musculoskeletal BiologyInstitute of Aging and Chronic DiseaseUniversity of LiverpoolUK
| |
Collapse
|
49
|
Han Y, Shewan AM, Thorn P. HCO3- Transport through Anoctamin/Transmembrane Protein ANO1/TMEM16A in Pancreatic Acinar Cells Regulates Luminal pH. J Biol Chem 2016; 291:20345-52. [PMID: 27510033 DOI: 10.1074/jbc.m116.750224] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Indexed: 02/01/2023] Open
Abstract
The identification of ANO1/TMEM16A as the likely calcium-dependent chloride channel of exocrine glands has led to a more detailed understanding of its biophysical properties. This includes a calcium-dependent change in channel selectivity and evidence that HCO3 (-) permeability can be significant. Here we use freshly isolated pancreatic acini that preserve the luminal structure to measure intraluminal pH and test the idea that ANO1/TMEM16A contributes to luminal pH balance. Our data show that, under physiologically relevant stimulation with 10 pm cholesystokinin, the luminal acid load that results from the exocytic fusion of zymogen granules is significantly blunted by HCO3 (-) buffer in comparison with HEPES, and that this is blocked by the specific TMEM16A inhibitor T16inh-A01. Furthermore, in a model of acute pancreatitis, we observed substantive luminal acidification and provide evidence that ANO1/TMEM16A acts to attenuate this pH shift. We conclude that ANO1/TMEM16A is a significant pathway in pancreatic acinar cells for HCO3 (-) secretion into the lumen.
Collapse
Affiliation(s)
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Peter Thorn
- From the School of Biomedical Sciences and the Charles Perkins Centre, John Hopkins Drive, University of Sydney, Sydney, New South Wales 2050, Australia
| |
Collapse
|
50
|
Sung TS, O'Driscoll K, Zheng H, Yapp NJ, Leblanc N, Koh SD, Sanders KM. Influence of intracellular Ca2+ and alternative splicing on the pharmacological profile of ANO1 channels. Am J Physiol Cell Physiol 2016; 311:C437-51. [PMID: 27413167 DOI: 10.1152/ajpcell.00070.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/09/2016] [Indexed: 11/22/2022]
Abstract
Anoctamin-1 (ANO1) is a Ca(2+)-activated Cl(-) channel expressed in many types of cells. Splice variants of ANO1 have been shown to influence the biophysical properties of conductance. It has been suggested that several new antagonists of ANO1 with relatively high affinity and selectivity might be useful for experimental and, potentially, therapeutic purposes. We investigated the effects of intracellular Ca(2+) concentration ([Ca(2+)]i) at 100-1,000 nM, a concentration range that might be achieved in cells during physiological activation of ANO1 channels, on blockade of ANO1 channels expressed in HEK-293 cells. Whole cell and excised patch configurations of the patch-clamp technique were used to perform tests on a variety of naturally occurring splice variants of ANO1. Blockade of ANO1 currents with aminophenylthiazole (T16Ainh-A01) was highly dependent on [Ca(2+)]i Increasing [Ca(2+)]i reduced the potency of this blocker. Similar Ca(2+)-dependent effects were also observed with benzbromarone. Experiments on excised, inside-out patches showed that the diminished potency of the blockers caused by intracellular Ca(2+) might involve a competitive interaction for a common binding site or repulsion of the blocking drugs by electrostatic forces at the cytoplasmic surface of the channels. The degree of interaction between the channel blockers and [Ca(2+)]i depends on the splice variant expressed. These experiments demonstrate that the efficacy of ANO1 antagonists depends on [Ca(2+)]i, suggesting a need for caution when ANO1 blockers are used to determine the role of ANO1 in physiological functions and in their use as therapeutic agents.
Collapse
Affiliation(s)
- Tae Sik Sung
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada; and
| | - Kate O'Driscoll
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada; and
| | - Haifeng Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada; and
| | - Nicholas J Yapp
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada; and
| | - Normand Leblanc
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada; and
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada; and
| |
Collapse
|