1
|
Vasileiou M, Diamantoudis SC, Tsianava C, Nguyen NP. Immunotherapeutic Strategies Targeting Breast Cancer Stem Cells. Curr Oncol 2024; 31:3040-3063. [PMID: 38920716 PMCID: PMC11203270 DOI: 10.3390/curroncol31060232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women and is a leading cause of cancer death in women worldwide. Despite the implementation of multiple treatment options, including immunotherapy, breast cancer treatment remains a challenge. In this review, we aim to summarize present challenges in breast cancer immunotherapy and recent advancements in overcoming treatment resistance. We elaborate on the inhibition of signaling cascades, such as the Notch, Hedgehog, Hippo, and WNT signaling pathways, which regulate the self-renewal and differentiation of breast cancer stem cells and, consequently, disease progression and survival. Cancer stem cells represent a rare population of cancer cells, likely originating from non-malignant stem or progenitor cells, with the ability to evade immune surveillance and develop resistance to immunotherapeutic treatments. We also discuss the interactions between breast cancer stem cells and the immune system, including potential agents targeting breast cancer stem cell-associated signaling pathways, and provide an overview of the emerging approaches to breast cancer stem cell-targeted immunotherapy. Finally, we consider the development of breast cancer vaccines and adoptive cellular therapies, which train the immune system to recognize tumor-associated antigens, for eliciting T cell-mediated responses to target breast cancer stem cells.
Collapse
Affiliation(s)
- Maria Vasileiou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | | | - Christina Tsianava
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Nam P. Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC 20060, USA
| |
Collapse
|
2
|
Zhang X, Kuang Q, Xu J, Lin Q, Chi H, Yu D. MSC-Based Cell Therapy in Neurological Diseases: A Concise Review of the Literature in Pre-Clinical and Clinical Research. Biomolecules 2024; 14:538. [PMID: 38785945 PMCID: PMC11117494 DOI: 10.3390/biom14050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells with the ability to self-renew and multi-directional differentiation potential. Exogenously administered MSCs can migrate to damaged tissue sites and participate in the repair of damaged tissues. A large number of pre-clinical studies and clinical trials have demonstrated that MSCs have the potential to treat the abnormalities of congenital nervous system and neurodegenerative diseases. Therefore, MSCs hold great promise in the treatment of neurological diseases. Here, we summarize and highlight current progress in the understanding of the underlying mechanisms and strategies of MSC application in neurological diseases.
Collapse
Affiliation(s)
- Xiaorui Zhang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qihong Kuang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianguang Xu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Lin
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoming Chi
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daojin Yu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Khandani B, Movahedin M. Learning Towards Maturation of Defined Feeder-free Pluripotency Culture Systems: Lessons from Conventional Feeder-based Systems. Stem Cell Rev Rep 2024; 20:484-494. [PMID: 38079087 DOI: 10.1007/s12015-023-10662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Pluripotent stem cells (PSCs) are widely recognized as one of the most promising types of stem cells for applications in regenerative medicine, tissue engineering, disease modeling, and drug screening. This is due to their unique ability to differentiate into cells from all three germ layers and their capacity for indefinite self-renewal. Initially, PSCs were cultured using animal feeder cells, but these systems presented several limitations, particularly in terms of Good Manufacturing Practices (GMP) regulations. As a result, feeder-free systems were introduced as a safer alternative. However, the precise mechanisms by which feeder cells support pluripotency are not fully understood. More importantly, it has been observed that some aspects of the need for feeder cells like the optimal density and cell type can vary depending on conditions such as the developmental stage of the PSCs, phases of the culture protocol, the method used in culture for induction of pluripotency, and intrinsic variability of PSCs. Thus, gaining a better understanding of the divergent roles and necessity of feeder cells in various conditions would lead to the development of condition-specific defined feeder-free systems that resolve the failure of current feeder-free systems in some conditions. Therefore, this review aims to explore considerable feeder-related issues that can lead to the development of condition-specific feeder-free systems.
Collapse
Affiliation(s)
- Bardia Khandani
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115111, Iran.
| |
Collapse
|
4
|
Faccioli LA, Dias ML, Martins-Santos R, Paredes BD, Takiya CM, dos Santos Goldenberg RC. Resident Liver Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:23-51. [DOI: 10.1016/b978-0-443-15289-4.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Muench MO, Fomin ME, Gutierrez AG, López-Terrada D, Gilfanova R, Nosworthy C, Beyer AI, Ostolaza G, Kats D, Matlock KL, Cairo S, Keller C. CD203c is expressed by human fetal hepatoblasts and distinguishes subsets of hepatoblastoma. Front Oncol 2023; 13:927852. [PMID: 36845728 PMCID: PMC9947649 DOI: 10.3389/fonc.2023.927852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Background & Aims Hepatocytic cells found during prenatal development have unique features compared to their adult counterparts, and are believed to be the precursors of pediatric hepatoblastoma. The cell-surface phenotype of hepatoblasts and hepatoblastoma cell lines was evaluated to discover new markers of these cells and gain insight into the development of hepatocytic cells and the phenotypes and origins of hepatoblastoma. Methods Human midgestation livers and four pediatric hepatoblastoma cell lines were screened using flow cytometry. Expression of over 300 antigens was evaluated on hepatoblasts defined by their expression of CD326 (EpCAM) and CD14. Also analyzed were hematopoietic cells, expressing CD45, and liver sinusoidal-endothelial cells (LSECs), expressing CD14 but lacking CD45 expression. Select antigens were further examined by fluorescence immunomicroscopy of fetal liver sections. Antigen expression was also confirmed on cultured cells by both methods. Gene expression analysis by liver cells, 6 hepatoblastoma cell lines, and hepatoblastoma cells was performed. Immunohistochemistry was used to evaluate CD203c, CD326, and cytokeratin-19 expression on three hepatoblastoma tumors. Results Antibody screening identified many cell surface markers commonly or divergently expressed by hematopoietic cells, LSECs, and hepatoblasts. Thirteen novel markers expressed on fetal hepatoblasts were identified including ectonucleotide pyrophosphatase/phosphodiesterase family member 3 (ENPP-3/CD203c), which was found to be expressed by hepatoblasts with widespread expression in the parenchyma of the fetal liver. In culture CD203c+CD326++ cells resembled hepatocytic cells with coexpression of albumin and cytokeratin-19 confirming a hepatoblast phenotype. CD203c expression declined rapidly in culture whereas the loss of CD326 was not as pronounced. CD203c and CD326 were co-expressed on a subset of hepatoblastoma cell lines and hepatoblastomas with an embryonal pattern. Conclusions CD203c is expressed on hepatoblasts and may play a role in purinergic signaling in the developing liver. Hepatoblastoma cell lines were found to consist of two broad phenotypes consisting of a cholangiocyte-like phenotype that expressed CD203c and CD326 and a hepatocyte-like phenotype with diminished expression of these markers. CD203c was expressed by some hepatoblastoma tumors and may represent a marker of a less differentiated embryonal component.
Collapse
Affiliation(s)
- Marcus O. Muench
- Vitalant Research Institute, San Francisco, CA, United States,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States,*Correspondence: Marcus O. Muench,
| | - Marina E. Fomin
- Vitalant Research Institute, San Francisco, CA, United States
| | | | - Dolores López-Terrada
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States,Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX, United States
| | | | | | - Ashley I. Beyer
- Vitalant Research Institute, San Francisco, CA, United States
| | | | - Dina Kats
- Pediatric Cancer Biology, Children’s Cancer Therapy Development Institute, Beaverton, OR, United States
| | | | - Stefano Cairo
- Research and Development Unit, XenTech, Evry, France
| | - Charles Keller
- Pediatric Cancer Biology, Children’s Cancer Therapy Development Institute, Beaverton, OR, United States
| |
Collapse
|
6
|
Gulrajani NB, Montes S, McGough D, Wimberly CE, Khattab A, Semmes EC, Towry L, Cohen JL, Hurst JH, Landi D, Hill SN, Walsh KM. Assisted reproductive technology and association with childhood cancer subtypes. Cancer Med 2023; 12:3410-3418. [PMID: 35929579 PMCID: PMC9939138 DOI: 10.1002/cam4.5114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES To investigate the association between assisted reproductive technology (ART) use and childhood cancer subtype. STUDY DESIGN We deployed a cross-sectional survey of 1701 parents of children with cancer about their ART use, demographics, and gestational and perinatal factors. Multivariable logistic regression modeled the association between ART use, birthweight and multiple gestation status with childhood cancer, by subtype. RESULTS ART use was highest among children with osteosarcoma relative to children with other cancer types, and this association was statistically significant in multivariable models (OR = 4.4; 95% CI = 1.7-11.3; p = 0.0020). ART use was also elevated among children with hepatoblastoma, but this relationship appeared to be due to the strong associations between ART use and lower birthweight in our sample. No specific ART modality appeared to drive these associations. In univariate models, multiple gestation was associated with a 2.7-fold increased odds of hepatoblastoma (OR = 2.71; 95% CI = 1.14-6.42; p = 0.02) and a 1.6-fold increased odds of neuroblastoma (OR = 1.62; 95% CI = 1.03-2.54; p = 0.03), but these associations were not retained in multivariable models. CONCLUSIONS Associations between ART use and hepatoblastoma risk may be attributable to birthweight, a known hepatoblastoma risk factor. ART use may also be associated with osteosarcoma, independent of birthweight, an association not previously observed in studies limited to cancers diagnosed before adolescence. Evaluating long-term health outcomes in children conceived by ART, throughout adolescence and potentially into adulthood, appears warranted.
Collapse
Affiliation(s)
- Natalie B. Gulrajani
- Children's Health and Discovery Institute, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Samuel Montes
- Master of Biomedical Sciences ProgramDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Daniel McGough
- Master of Biomedical Sciences ProgramDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Courtney E. Wimberly
- Department of Neurosurgery and Preston Robert Tisch Brain Tumor CenterDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Ameera Khattab
- Master of Biomedical Sciences ProgramDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Eleanor C. Semmes
- Children's Health and Discovery Institute, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Lisa Towry
- My Childhood Cancer ProgramAlex's Lemonade Stand FoundationBala CynwydPennsylvaniaUSA
| | - Jennifer L. Cohen
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Jillian H. Hurst
- Children's Health and Discovery Institute, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Daniel Landi
- Department of Neurosurgery and Preston Robert Tisch Brain Tumor CenterDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Sherika N. Hill
- Children's Health and Discovery Institute, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
- Frank Porter Graham Child Development InstituteThe University of North CarolinaChapel HillNorth CarolinaUSA
| | - Kyle M. Walsh
- Children's Health and Discovery Institute, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of Neurosurgery and Preston Robert Tisch Brain Tumor CenterDuke University School of MedicineDurhamNorth CarolinaUSA
- Duke Cancer InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
7
|
Palao N, Sequera C, Cuesta ÁM, Baquero C, Bragado P, Gutierrez-Uzquiza A, Sánchez A, Guerrero C, Porras A. C3G down-regulation enhances pro-migratory and stemness properties of oval cells by promoting an epithelial-mesenchymal-like process. Int J Biol Sci 2022; 18:5873-5884. [PMID: 36263169 PMCID: PMC9576514 DOI: 10.7150/ijbs.73192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
Previous data indicate that C3G (RapGEF1) main isoform is highly expressed in liver progenitor cells (or oval cells) compared to adult mature hepatocytes, suggesting it may play an important role in oval cell biology. Hence, we have explored C3G function in the regulation of oval cell properties by permanent gene silencing using shRNAs. We found that C3G knock-down enhanced migratory and invasive ability of oval cells by promoting a partial epithelial to mesenchymal transition (EMT). This is likely mediated by upregulation of mRNA expression of the EMT-inducing transcription factors, Snail1, Zeb1 and Zeb2, induced in C3G-silenced oval cells. This EMT is associated to a higher expression of the stemness markers, CD133 and CD44. Moreover, C3G down-regulation increased oval cells clonogenic capacity by enhancing cell scattering. However, C3G knock-down did not impair oval cell differentiation into hepatocyte lineage. Mechanistic studies revealed that HGF/MET signaling and its pro-invasive activity was impaired in oval cells with low levels of C3G, while TGF-β signaling was increased. Altogether, these data suggest that C3G might be tightly regulated to ensure liver repair in chronic liver diseases such as non-alcoholic steatohepatitis. Hence, reduced C3G levels could facilitate oval cell expansion, after the proliferation peak, by enhancing migration.
Collapse
Affiliation(s)
- Nerea Palao
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Celia Sequera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.,Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Ángel M Cuesta
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Cristina Baquero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Paloma Bragado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alvaro Gutierrez-Uzquiza
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Aránzazu Sánchez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain.,Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain.,✉ Corresponding authors: A. Porras, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, UCM, Ciudad Universitaria, Madrid, Spain. Tel.: +34 913941627; E-mail: . Co-correspondence: C. Guerrero, Centro de Investigación del Cáncer, Campus Unamuno s/n, Salamanca, Spain. Tel.: +34 923294801; Fax.: +34 923294795; e-mail:
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.,✉ Corresponding authors: A. Porras, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, UCM, Ciudad Universitaria, Madrid, Spain. Tel.: +34 913941627; E-mail: . Co-correspondence: C. Guerrero, Centro de Investigación del Cáncer, Campus Unamuno s/n, Salamanca, Spain. Tel.: +34 923294801; Fax.: +34 923294795; e-mail:
| |
Collapse
|
8
|
Dubois-Pot-Schneider H, Aninat C, Kattler K, Fekir K, Jarnouen K, Cerec V, Glaise D, Salhab A, Gasparoni G, Takashi K, Ishida S, Walter J, Corlu A. Transcriptional and Epigenetic Consequences of DMSO Treatment on HepaRG Cells. Cells 2022; 11:cells11152298. [PMID: 35892596 PMCID: PMC9331440 DOI: 10.3390/cells11152298] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is used to sustain or favor hepatocyte differentiation in vitro. Thus, DMSO is used in the differentiation protocol of the HepaRG cells that present the closest drug-metabolizing enzyme activities to primary human hepatocytes in culture. The aim of our study is to clarify its influence on liver-specific gene expression. For that purpose, we performed a large-scale analysis (gene expression and histone modification) to determine the global role of DMSO exposure during the differentiation process of the HepaRG cells. The addition of DMSO drives the upregulation of genes mainly regulated by PXR and PPARα whereas genes not affected by this addition are regulated by HNF1α, HNF4α, and PPARα. DMSO-differentiated-HepaRG cells show a differential expression for genes regulated by histone acetylation, while differentiated-HepaRG cells without DMSO show gene signatures associated with histone deacetylases. In addition, we observed an interplay between cytoskeleton organization and EMC remodeling with hepatocyte maturation.
Collapse
Affiliation(s)
- Hélène Dubois-Pot-Schneider
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
- Correspondence: ; Tel.: +33-372746115
| | - Caroline Aninat
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Kathrin Kattler
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Karim Fekir
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Kathleen Jarnouen
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Virginie Cerec
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Denise Glaise
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Abdulrahman Salhab
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Gilles Gasparoni
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Kubo Takashi
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 2109501, Japan; (K.T.); (S.I.)
| | - Seiichi Ishida
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 2109501, Japan; (K.T.); (S.I.)
| | - Jörn Walter
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Anne Corlu
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| |
Collapse
|
9
|
Guo Z, Pu S, Li Y, Wang X, Hu S, Zhao H, Yang C, Zhou Z. Functional characterization of CD49f + hepatic stem/progenitor cells in adult mice liver. J Mol Histol 2022; 53:239-256. [PMID: 35166962 DOI: 10.1007/s10735-022-10063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Hepatic Stem/progenitor cells (HSPCs) have gained a large amount of interest for treating acute liver disease. However, the isolation and identification of HSPCs are unclear due to the lack of cell-specific surface markers. To isolate adult HSPCs, we used cell surface-marking antibodies, including CD49f and Sca-1. Two subsets of putative HSPCs, Lin-CD45-Sca-1-CD49f+ (CD49f+) and Lin-CD45-Sca-1+CD49f- (Sca-1+) cells, were isolated from adult mice liver by flow cytometry. Robust proliferative activity and clonogenic activity were found in both CD49f+ and Sca-1+ cells through colony-forming tests and cell cycle analyses. Immunofluorescence staining revealed that CD49f+ cells expressed ALB and CK-19 while Sca-1+ cells expressed only ALB, indicating that CD49f+ cells were bipotential and capable of differentiating into hepatocyte and cholangiocyte. Consequently, PAS stain showed that differentiated CD49f+ and Sca-1+ cells synthesised glycogen, indicating they could differentiate into functional hepatocytes. mRNA expression profile indicated that both CD49f+ and Sca-1+ cells showed differential expression of genes that are associated with liver progenitor function such as Sox9 and EpCam. Moreover, two subsets of putative HSPCs were activated by DDC and we found that their abundance and proliferation increased with age. In summary, we hypothesized that CD49f+ cells were a type of potential HSPCs and may be utilised for clinical stem cell therapy.
Collapse
Affiliation(s)
- Ziqi Guo
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yun Li
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaoxia Wang
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Suying Hu
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China. .,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China. .,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China. .,Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China. .,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
10
|
Feng J, Zhu R, Yin Y, Wang S, Zhou L, Lv F, Zhao D. Re-Recognizing the Cellular Origin of the Primary Epithelial Tumors of the Liver. J Hepatocell Carcinoma 2021; 8:1537-1563. [PMID: 34917552 PMCID: PMC8668194 DOI: 10.2147/jhc.s334935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
The primary epithelial tumors of the liver (PETL) are composed of a series of heterogeneous tumors. Although the classification of PETLs has been updated several times by the World Health Organization, the cellular origins of some tumors in this family remain to be precisely depicted. In addition, certain tumors in different categories have similar histology, molecular phenotypes and biological characteristics, suggesting that they may have the same cellular origin. In this work, a narrative review method was adopted to review the relevant papers. By comparing the expression profiles of biomarkers of liver epithelium at different lineages and stages of differentiation, the cells-of-origin of some major members of the PETL family were reassessed. We propose that 1) hepatic adenomas, hepatocellular carcinomas (HCCs) and pure fetal hepatoblastomas (HBs) share the same spectrum in their cellular origin including the hepatocytic-committed progenitors (HCP) and their differentiated descendants. 2) Bile duct adenomas, peribiliary cysts and intrahepatic cholangiocellular carcinomas (ICCs) can share the same spectrum in their cellular origin including the cholangiocytic-committed progenitors (CCP) and their differentiated descendants. 3) The cells-of-origin of embryonal HBs include liver stem cells (LSCs), hepatoblasts, and transitional cells between them. Embryonal HB with small cell element, small cell undifferentiated HB and small cell neuroendocrine carcinoma of the liver can have the same or similar cells-of-origin from LSC. Embryonal HB lacking the small cell component of the LSC phenotype and presenting both hepatocytic and bile duct/ductule components may originate from actual hepatoblasts/hepatic progenitor cells (HPCs) as the combined HCC-ICC does. 4) Teratoid hepatoblastoma and mixed epithelial/mesenchymal HBs can be derived from the LSCs or even less committed extrahepatic pluripotent stem cell. 5) Many members of the PETLs family, including those derived from LSCs, hepatoblasts/HPCs, early HCPs and CCPs, have neuroendocrine potentiality. Except for those primary hepatic neuroendocrine tumor (PHNET) exhibit hepatocytic and/or cholangiocytic phenotypes, other PHNETs subtype may be derived from the descendants of LSC that differentiate towards the upper digestive tract, pancreas or other lineages.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
- Correspondence: Jiliang Feng Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, No. 8, Xitoutiao, Youanmenwai Street, FengTai District, Beijing, 100069, People’s Republic of ChinaTel +86-10-83997342Fax +86-10-83997343 Email
| | - Ruidong Zhu
- General Surgical Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Yu Yin
- Department of Pathology, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Shanshan Wang
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Lei Zhou
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College/Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Fudong Lv
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Dawei Zhao
- Department of Medical Imaging, Capital Medical University, Beijing, 100069, People’s Republic of China
| |
Collapse
|
11
|
Bruno S, Herrera Sanchez MB, Chiabotto G, Fonsato V, Navarro-Tableros V, Pasquino C, Tapparo M, Camussi G. Human Liver Stem Cells: A Liver-Derived Mesenchymal Stromal Cell-Like Population With Pro-regenerative Properties. Front Cell Dev Biol 2021; 9:644088. [PMID: 33981703 PMCID: PMC8107725 DOI: 10.3389/fcell.2021.644088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Human liver stem cells (HLSCs) were described for the first time in 2006 as a new stem cell population derived from healthy human livers. Like mesenchymal stromal cells, HLSCs exhibit multipotent and immunomodulatory properties. HLSCs can differentiate into several lineages under defined in vitro conditions, such as mature hepatocytes, osteocytes, endothelial cells, and islet-like cell organoids. Over the years, HLSCs have been shown to contribute to tissue repair and regeneration in different in vivo models, leading to more than five granted patents and over 15 peer reviewed scientific articles elucidating their potential therapeutic role in various experimental pathologies. In addition, HLSCs have recently completed a Phase 1 study evaluating their safety post intrahepatic injection in infants with inherited neonatal onset hyperammonemia. Even though a lot of progress has been made in understanding HLSCs over the past years, some important questions regarding the mechanisms of action remain to be elucidated. Among the mechanisms of interaction of HLSCs with their environment, a paracrine interface has emerged involving extracellular vesicles (EVs) as vehicles for transferring active biological materials. In our group, the EVs derived from HLSCs have been studied in vitro as well as in vivo. Our attention has mainly been focused on understanding the in vivo ability of HLSC–derived EVs as modulators of tissue regeneration, inflammation, fibrosis, and tumor growth. This review article aims to discuss in detail the role of HLSCs and HLSC-EVs in these processes and their possible future therapeutic applications.
Collapse
Affiliation(s)
- Stefania Bruno
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Center, University of Torino, Turin, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Valentina Fonsato
- Molecular Biotechnology Center, University of Torino, Turin, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| | - Victor Navarro-Tableros
- Molecular Biotechnology Center, University of Torino, Turin, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| | - Chiara Pasquino
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
12
|
Microvesicles - promising tiny players' of cancer stem cells targeted liver cancer treatments: The interesting interactions and therapeutic aspects. Pharmacol Res 2021; 169:105609. [PMID: 33852962 DOI: 10.1016/j.phrs.2021.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022]
Abstract
Liver cancer is one of the most malignant cancers worldwide with poor prognosis. Intracellular mediators like microvesicles (MVs) and cancer stem cells (CSCs) are considered as potential candidates in liver cancer progression. CSCs receive stimuli from the tumor microenvironment to initiate tumor formation in which it's secreted MVs play a noteworthy role. The phenotypic conversion of tumor cells during epithelial-to-mesenchymal transition (EMT) is a key step in tumor invasion and metastasis which indicates that the diverse cell populations within the primary tumor are in a dynamic balance and can be regulated by cell to cell communication via secreted microvesicles. Thus, in this review, we aim to highlight the evidences that suggest CSCs are crucial for liver cancer development where the microvesicles plays an important part in the maintenance of its stemness properties. In addition, we summarize the existing evidences that support the concept of microvesicles, the tiny particles have a big role behind the rare immortal CSCs which controls the tumor initiation, propagation and metastasis in liver cancer. Identifying interactions between CSCs and microvesicles may offer new insights into precise anti-cancer therapies in the future.
Collapse
|
13
|
Abstract
Aim of the study CD326 has been used as a single marker to enrich for hepatic stem cell populations in the liver. However, bile duct epithelium is also positive for CD326, which impedes the selection of pure hepatic stem cell populations. Some markers have been proposed to be co-expressed by hepatic stem cells but these have not been systematically compared. Therefore, we determined the percentages and compared the characteristics of human liver cells expressing potential stem cell surface markers. Material and methods We analyzed CD326 expression in human liver tissues from fetal, neonatal, pediatric, and adult stages using immunohistochemistry. In flow cytometry, we quantified fetal liver cells for their co-expression of CD326 with CD56, CD117, CD44, CD90, CD49f, LGR5 and SSEA4. We analyzed the various fractions for their quantitative expression of genes typically associated with progenitors and hepatic lineages. Results 12.5% of cells were positive for CD326; of these, 63.5% co-expressed CD44. The lowest co-expression percentages were for SSEA4 (2.1%) and LGR5 (0.7%). Fractions revealed distinct gene expression patterns. Of all combinations, cells that co-expressed surface CD326 and SSEA4 demonstrated the highest gene expression for the proliferation marker MKi67 and hepatic markers DLK1, AFP and ALB, and were the only fraction negative for the biliary epithelial marker KRT19. Histology of adult and fetal liver showed cells positive for CD326 and SSEA4 but negative for CK19. Conclusions CD326-positive cells represent a heterogeneous population, which in combination with SSEA4 potentially distinguishes bile duct epithelium from hepatic stem cells. These findings can help to further classify human hepatic progenitor stages.
Collapse
|
14
|
Freeburg SH, Goessling W. Hepatobiliary Differentiation: Principles from Embryonic Liver Development. Semin Liver Dis 2020; 40:365-372. [PMID: 32526786 DOI: 10.1055/s-0040-1709679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hepatocytes and biliary epithelial cells (BECs), the two endodermal cell types of the liver, originate from progenitor cells called hepatoblasts. Based principally on in vitro data, hepatoblasts are thought to be bipotent stem cells with the potential to produce both hepatocytes and BECs. However, robust in vivo evidence for this model has only recently emerged. We examine the molecular mechanisms that stimulate hepatoblast differentiation into hepatocytes or BECs. In the absence of extrinsic cues, the default fate of hepatoblasts is hepatocyte differentiation. Inductive cues from the hepatic portal vein, however, initiate transcription factor expression in hepatoblasts, driving biliary specification. Defining the mechanisms of hepatobiliary differentiation provides important insights into congenital disorders, such as Alagille syndrome, and may help to better characterize the poorly understood hepatic lineage relationships observed during regeneration from liver injury.
Collapse
Affiliation(s)
- Scott H Freeburg
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Harvard Stem Cell Institute, Cambridge, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
15
|
Kuzmina LA, Petinati NA, Vasilieva VA, Dovydenko MV, Drokov MY, Davydova YO, Kapranov NM, Sats NV, Chabaeva YA, Kulikov SM, Gaponova TV, Drize NI, Parovichnikova EN, Savchenko VG. [Multipotent mesenchymal stromal cells application for acute graft versus host disease treatment]. TERAPEVT ARKH 2020; 92:23-30. [PMID: 33346442 DOI: 10.26442/00403660.2020.07.000757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/22/2022]
Abstract
AIM Analysis of the effectiveness of the MSCs aministration as the second- or third-line therapy of acute GVHD (aGVHD) resistant to glucocorticosteroid treatment. MATERIALS AND METHODS The study included 35 patients who received MSCs obtained from the bone marrow of healthy donors as a treatment of steroid-resistant aGVHD. The clinical parameters of patients, MSCs cultural characteristics, the MSC expression profile for various genes including those involved in immunomodulation, expression of cells surface markers, the source of MSCs, as well as the frequency and number of MSC administrations were analyzed. RESULTS Response to therapy was achieved in 74% of cases, a complete response was reached in 13 (37%) patients, partial response/clinical improvement was demonstrated in 13 (37%). This treatment was ineffective in 9 patients. The prediction of a group of patients with good response to MSC therapy turned to be impossible. The differences between the effective and ineffective for the GVHD treatment MSCs samples were found. The effective ones were characterized with a decreased total MSCs production and an increase in the main histocompatibility complex and PDL-1 antigens expression. CONCLUSION These data allow to select optimal samples for aGVHD treatment that can improve clinical results. aGVHD treatment with MSCs has shown efficacy comparable to other treatment approaches. Given the low percentage of complications and the absence of significant adverse effects, MSC therapy seems to be one of the optimal approaches to the treatment of resistant forms of GVHD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - N V Sats
- National Research Center for Hematology
| | | | | | | | - N I Drize
- National Research Center for Hematology
| | | | | |
Collapse
|
16
|
So J, Kim A, Lee SH, Shin D. Liver progenitor cell-driven liver regeneration. Exp Mol Med 2020; 52:1230-1238. [PMID: 32796957 PMCID: PMC8080804 DOI: 10.1038/s12276-020-0483-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022] Open
Abstract
The liver is a highly regenerative organ, but its regenerative capacity is compromised in severe liver diseases. Hepatocyte-driven liver regeneration that involves the proliferation of preexisting hepatocytes is a primary regeneration mode. On the other hand, liver progenitor cell (LPC)-driven liver regeneration that involves dedifferentiation of biliary epithelial cells or hepatocytes into LPCs, LPC proliferation, and subsequent differentiation of LPCs into hepatocytes is a secondary mode. This secondary mode plays a significant role in liver regeneration when the primary mode does not effectively work, as observed in severe liver injury settings. Thus, promoting LPC-driven liver regeneration may be clinically beneficial to patients with severe liver diseases. In this review, we describe the current understanding of LPC-driven liver regeneration by exploring current knowledge on the activation, origin, and roles of LPCs during regeneration. We also describe animal models used to study LPC-driven liver regeneration, given their potential to further deepen our understanding of the regeneration process. This understanding will eventually contribute to developing strategies to promote LPC-driven liver regeneration in patients with severe liver diseases.
Collapse
Affiliation(s)
- Juhoon So
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Angie Kim
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Seung-Hoon Lee
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
17
|
Ziloochi Kashani M, Bagher Z, Asgari HR, Najafi M, Koruji M, Mehraein F. Differentiation of neonate mouse spermatogonial stem cells on three-dimensional agar/polyvinyl alcohol nanofiber scaffold. Syst Biol Reprod Med 2020; 66:202-215. [PMID: 32138551 DOI: 10.1080/19396368.2020.1725927] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrospun nanofiber matrices sufficiently mimic the structural morphology of natural extracellular matrix. In this study, we aimed to examine the effects of agar/polyvinyl alcohol nanofiber (PVA) scaffold on the proliferation efficiency and differentiation potential of neonate mouse spermatogonial stem cells (SCCs). Testicular cells were isolated from testes of 40 mouse pups and were seeded in: 1) 2D cell culture plates in the absence (2D/-GF) or presence (2D/+GF) of growth factors and 2) onto agar/PVA scaffold in the absence (3D/-GF) or presence (3D/+GF) of growth factors. The cells were subsequently cultured for 4 weeks. First 2 weeks were dedicated to proliferative phase, whereas the next 2 weeks emphasized the differentiation phase. The identity of the SCCs was investigated at different time-points by flow cytometry and quantitative reverse transcription PCR (qRT-PCR) analyses against the germ cell markers, including PLZF, Id-4, Gfrα-1, Tekt-1, and Sycp-3. After 2 weeks of culture, the 3D/+GF group showed the highest percentage of PLZF-positive cells among culture systems (P < 0.05). The expression levels of pre-meiotic markers (Id-4 and Gfrα-1) decreased significantly in all groups, particularly in 3D/+GF group after 28 days of culture. Additionally, the cells in the 3D/+GF group displayed the highest expression of meiotic (Sycp-3) and post-meiotic markers (Tekt-1) 14 days after differentiation induction. Seemingly, the combination of the agar/PVA scaffold and growth factor-supplemented medium synergistically increased the differentiation rate of mouse SSCs into meiotic and post-meiotic cells. Thus, agar/PVA nanofiber scaffolds may have the potential for applications in the restoration of infertility, especially in azoospermic males. ABBREVIATIONS 2D: two dimentional; 3D: three dimentional; bFGF: basic fibroblast growth factor; BMP-4: bone morphogenetic protein 4; DMEM: Dulbecco's modified Eagle's medium; ECM: extracellular matrix; FCS: fetal calf serum; FTIR: Fourier-transform infrared spectroscopy; GDNF: glial cell line-derived neurotrophic factor; GF: growth factors; Gfrα-1, GDNF family co-receptor α1; Id-4, Inhibitor of DNA Binding 4; MTT: methylthiazoltetrazolium; PLZF: promyelocytic leukemia zinc finger; PVA: polyvinyl alcohol; qRT-PCR: quantitative reverse transcription PCR; RA: retinoic acid; SACS: soft agar culture system; SD: standard deviation; SEM: scanning electron microscope; SSCs: spermatogonial stem cells; Sycp-3, Synaptonemal complex protein 3; Tekt-1, Tektin 1.
Collapse
Affiliation(s)
- Marzieh Ziloochi Kashani
- Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran, Iran.,Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Center and Department, the Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences , Tehran, Iran
| | - Hamid Reza Asgari
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran, Iran.,Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Fereshteh Mehraein
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran.,Minimally Invasive Surgery Research Center, Iran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
18
|
Sang X, Wu F, Wu D, Lin S, Li J, Zhao N, Chen X, Xu A. Human Hepatic Cancer Stem Cells (HCSCs) Markers Correlated With Immune Infiltrates Reveal Prognostic Significance of Hepatocellular Carcinoma. Front Genet 2020; 11:112. [PMID: 32184801 PMCID: PMC7058667 DOI: 10.3389/fgene.2020.00112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background Several markers have been reported to be specific for hepatic cancer stem cells (HCSCs), which is usually thought to be highly associated with poor clinical outcomes. Tumor-infiltrating immune cells act as an important factor for oncogenesis. Little is known about the correlation of HCSC markers to prognosis and immune infiltrates. Methods Expression of HCSC markers was analyzed through Oncomine database, Gene Expression Profiling Interactive Analysis (GEPIA) and Integrative Molecular Database of Hepatocellular Carcinoma (HCCDB), respectively. The prognostic effect of HCSC markers was evaluated using Kaplan-Meier plotter in association with different tumor stages, risk factors, and gender. The correlation of HCSC markers to tumor-infiltrating immune cells was tested by Tumor Immune Estimation Resource (TIMER). HCSC markers related gene sets were investigated by GEPIA, with their biological functions being analyzed by Cytoscape software. Results The expression level of 10 HCSC markers in HCC was higher than that in normal tissues in at least one database. Among them, high expression of CD24, SOX9, and SOX12 was positively correlated with poor prognosis (CD24: OS P = 0.0012, PFS P = 7.9E–05. SOX9: OS P = 0.012. SOX12: OS P = 0.0004, PFS P = 0.0013, respectively). However, the expression of CD13, CD34 and ALDH1A1 was associated with prolonged OS and PFS. SOX12 was significantly upregulated in poor prognosis of HCC patients with different conditions. Besides, total nine HCSC markers were identified to be positively associated with immune infiltration, including SOX12. Furthermore, Toll-like receptor signaling pathway was found to be one major pathway of these HCSC markers related gene networks. Conclusion Our results suggest that seven upregulated HCSC markers (CD90, EpCAM, CD133, CD24, SOX9, CK19, and SOX12) are related with poor prognosis and immune infiltration in HCC. In addition, we find that high SOX12 expression remarkably affect prognosis in male HCC patients but not in female. HCC patients under viral infection or alcohol intake with increased SOX12 expression had poorer prognosis. Therefore, HCSCs markers likely play an important role in tumor related immune infiltration and SOX12 might be a potential therapeutic target in patients with HCC.
Collapse
Affiliation(s)
- Xiaopu Sang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fenfang Wu
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Di Wu
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Shan Lin
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Jingyi Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Nan Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoni Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
19
|
Tsunedomi R, Yoshimura K, Suzuki N, Hazama S, Nagano H. Clinical implications of cancer stem cells in digestive cancers: acquisition of stemness and prognostic impact. Surg Today 2020; 50:1560-1577. [PMID: 32025858 DOI: 10.1007/s00595-020-01968-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Digestive system cancers are the most frequent cancers worldwide and often associated with poor prognosis because of their invasive and metastatic characteristics. Recent studies have found that the plasticity of cancer cells can impart cancer stem-like properties via the epithelial-mesenchymal transition (EMT). Cancer stem-like properties such as tumor initiation are integral to the formation of metastasis, which is the main cause of poor prognosis. Numerous markers of cancer stem cells (CSCs) have been identified in many types of cancer. Therefore, CSCs, via their stem cell-like functions, may play an important role in prognosis after surgery. While several reports have described prognostic analysis using CSC markers, few reviews have summarized CSCs and their association with prognosis. Herein, we review the prognostic potential of eight CSC markers, CD133, CD44, CD90, ALDH1A1, EPCAM, SOX2, SOX9, and LGR5, in digestive cancers including those of the pancreas, colon, liver, gastric, and esophagus.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Kiyoshi Yoshimura
- Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Faculty of Medicine, Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
20
|
Ko S, Russell JO, Molina LM, Monga SP. Liver Progenitors and Adult Cell Plasticity in Hepatic Injury and Repair: Knowns and Unknowns. ANNUAL REVIEW OF PATHOLOGY 2020; 15:23-50. [PMID: 31399003 PMCID: PMC7212705 DOI: 10.1146/annurev-pathmechdis-012419-032824] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is a complex organ performing numerous vital physiological functions. For that reason, it possesses immense regenerative potential. The capacity for repair is largely attributable to the ability of its differentiated epithelial cells, hepatocytes and biliary epithelial cells, to proliferate after injury. However, in cases of extreme acute injury or prolonged chronic insult, the liver may fail to regenerate or do so suboptimally. This often results in life-threatening end-stage liver disease for which liver transplantation is the only effective treatment. In many forms of liver injury, bipotent liver progenitor cells are theorized to be activated as an additional tier of liver repair. However, the existence, origin, fate, activation, and contribution to regeneration of liver progenitor cells is hotly debated, especially since hepatocytes and biliary epithelial cells themselves may serve as facultative stem cells for one another during severe liver injury. Here, we discuss the evidence both supporting and refuting the existence of liver progenitor cells in a variety of experimental models. We also debate the validity of developing therapies harnessing the capabilities of these cells as potential treatments for patients with severe and chronic liver diseases.
Collapse
Affiliation(s)
- Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Jacquelyn O Russell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Laura M Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
21
|
Mirdamadi ES, Kalhori D, Zakeri N, Azarpira N, Solati-Hashjin M. Liver Tissue Engineering as an Emerging Alternative for Liver Disease Treatment. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:145-163. [PMID: 31797731 DOI: 10.1089/ten.teb.2019.0233] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic liver diseases affect thousands of lives throughout the world every year. The shortage of liver donors for transplantation has been the main driving force to employ alternative methods such as liver tissue engineering (LTE) in fabricating a three-dimensional transplantable liver tissue or enhancing cell delivery techniques alleviating the need for liver donors. LTE consists of three components, cells, ECM (extracellular matrix), and signaling molecules, which we discuss the first and second. The three most common cell sources used in LTE are human and animal primary hepatocytes, and stem cells for different applications. Two major categories of ECM are used to mimic the microenvironment of these cells, named scaffolds and microbeads. Scaffolds have been made by numerous methods with a wide range of synthetic and natural biomaterials. Cell encapsulation has also been utilized by many polymeric biomaterials. To investigate their functions, many properties have been discussed in the literature, such as biochemical, geometrical, and mechanical properties, in both of these categories. Overall, LTE shows excellent potential in assisting hepatic disorders. However, some challenges exist that prevent the practical use of it clinically, making LTE an ongoing research subject in the scientific society.
Collapse
Affiliation(s)
- Elnaz Sadat Mirdamadi
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Dianoosh Kalhori
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Nima Zakeri
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Solati-Hashjin
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
22
|
Muthiah MD, Huang DQ, Zhou L, Jumat NH, Choolani M, Chan JKY, Wee A, Lim SG, Dan YY. A murine model demonstrating reversal of structural and functional correlates of cirrhosis with progenitor cell transplantation. Sci Rep 2019; 9:15446. [PMID: 31659188 PMCID: PMC6817879 DOI: 10.1038/s41598-019-51189-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/03/2019] [Indexed: 01/07/2023] Open
Abstract
Development of cell transplantation for treating liver cirrhosis hinges critically on the availability of animal models for studying human stem cell transplantation. We report an immune-permissive murine model of liver cirrhosis with full clinical correlates of decompensated liver disease, and allows testing efficacy of stem cell transplantation. Liver cirrhosis was induced in Nod-scid gamma(NSG) mice with oral thioacetamide(TA) and compared to controls over 12 months. 4 month TA treated cirrhotic mice were then transplanted intrasplenically with 2million human fetal liver progenitor cells(HFH) and compared with cirrhotic controls 2 months after transplantation. NSG-TA mice developed shrunken and nodular livers with histological evidence of fibrosis as compared to controls. This was associated with evidence of worsening decompensated liver disease, with jaundice, hypoalbuminemia, coagulopathy, and encephalopathy in NSG-TA mice. Transplantation of HFH resulted in improvement in both fibrosis and markers of decompensated liver disease. We have demonstrated that NSG-TA mice can recapitulate the full clinical picture of structural and functional cirrhosis, both of which can be improved by transplantation of human fetal liver cells. This model serves as a valuable tool for validation of in vivo liver stem cell transplantation and opens up opportunities for studying the mechanism how stem cells reverse fibrosis.
Collapse
Affiliation(s)
- Mark D Muthiah
- Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel Q Huang
- Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lei Zhou
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nur Halisah Jumat
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University Health System, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aileen Wee
- Department of Pathology, National University Health System, Singapore, Singapore
| | - Seng Gee Lim
- Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yock-Young Dan
- Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
Zhou T, Kyritsi K, Wu N, Francis H, Yang Z, Chen L, O'Brien A, Kennedy L, Ceci L, Meadows V, Kusumanchi P, Wu C, Baiocchi L, Skill NJ, Saxena R, Sybenga A, Xie L, Liangpunsakul S, Meng F, Alpini G, Glaser S. Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2 -/- mouse model of primary sclerosing cholangitis (PSC). EBioMedicine 2019; 48:130-142. [PMID: 31522982 PMCID: PMC6838376 DOI: 10.1016/j.ebiom.2019.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholangiocytes are the target cells of cholangiopathies including primary sclerosing cholangitis (PSC). Vimentin is an intermediate filament protein that has been found in various types of mesenchymal cells. The aim of this study is to evaluate the role of vimentin in the progression of biliary damage/liver fibrosis and whether there is a mesenchymal phenotype of cholangiocytes in the Mdr2-/- model of PSC. METHODS In vivo studies were performed in 12 wk. Mdr2-/- male mice with or without vimentin Vivo-Morpholino treatment and their corresponding control groups. Liver specimens from human PSC patients, human intrahepatic biliary epithelial cells (HIBEpiC) and human hepatic stellate cell lines (HHSteCs) were used to measure changes in epithelial-to-mesenchymal transition (EMT). FINDINGS There was increased mesenchymal phenotype of cholangiocytes in Mdr2-/- mice, which was reduced by treatment of vimentin Vivo-Morpholino. Concomitant with reduced vimentin expression, there was decreased liver damage, ductular reaction, biliary senescence, liver fibrosis and TGF-β1 secretion in Mdr2-/- mice treated with vimentin Vivo-Morpholino. Human PSC patients and derived cell lines had increased expression of vimentin and other mesenchymal markers compared to healthy controls and HIBEpiC, respectively. In vitro silencing of vimentin in HIBEpiC suppressed TGF-β1-induced EMT and fibrotic reaction. HHSteCs had decreased fibrotic reaction and increased cellular senescence after stimulation with cholangiocyte supernatant with reduced vimentin levels. INTERPRETATION Our study demonstrated that knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes, which leads to decreased biliary senescence and liver fibrosis. Inhibition of vimentin may be a key therapeutic target in the treatment of cholangiopathies including PSC. FUND: National Institutes of Health (NIH) awards, VA Merit awards.
Collapse
Affiliation(s)
- Tianhao Zhou
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Konstantina Kyritsi
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Nan Wu
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Zhihong Yang
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Lixian Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - April O'Brien
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Lindsey Kennedy
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Ludovica Ceci
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Vik Meadows
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Praveen Kusumanchi
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Chaodong Wu
- Department of Nutrition and Food Science, College of Medicine, Texas A&M University, United States of America
| | | | - Nicholas J Skill
- Department of Surgery, Indiana University, Indianapolis, IN, United States of America
| | - Romil Saxena
- Department of Pathology, Indiana University, Indianapolis, IN, United States of America
| | - Amelia Sybenga
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Linglin Xie
- Department of Nutrition and Food Science, College of Medicine, Texas A&M University, United States of America
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America.
| | - Shannon Glaser
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America.
| |
Collapse
|
24
|
Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors. Nat Commun 2019; 10:3350. [PMID: 31350390 PMCID: PMC6659636 DOI: 10.1038/s41467-019-11266-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
The liver parenchyma is composed of hepatocytes and bile duct epithelial cells (BECs). Controversy exists regarding the cellular origin of human liver parenchymal tissue generation during embryonic development, homeostasis or repair. Here we report the existence of a hepatobiliary hybrid progenitor (HHyP) population in human foetal liver using single-cell RNA sequencing. HHyPs are anatomically restricted to the ductal plate of foetal liver and maintain a transcriptional profile distinct from foetal hepatocytes, mature hepatocytes and mature BECs. In addition, molecular heterogeneity within the EpCAM+ population of freshly isolated foetal and adult human liver identifies diverse gene expression signatures of hepatic and biliary lineage potential. Finally, we FACS isolate foetal HHyPs and confirm their hybrid progenitor phenotype in vivo. Our study suggests that hepatobiliary progenitor cells previously identified in mice also exist in humans, and can be distinguished from other parenchymal populations, including mature BECs, by distinct gene expression profiles. The liver parenchyma consists of several cell types, but the origin of this tissue in humans is unclear. Here, the authors perform single cell RNA sequencing of human fetal and adult liver to identify a hepatobiliary hybrid progenitor population of cells, which have a similar gene signature to mouse oval cells.
Collapse
|
25
|
Zhao L, Chen S, Yang P, Cao H, Li L. The role of mesenchymal stem cells in hematopoietic stem cell transplantation: prevention and treatment of graft-versus-host disease. Stem Cell Res Ther 2019; 10:182. [PMID: 31227011 PMCID: PMC6588914 DOI: 10.1186/s13287-019-1287-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The use and effectiveness of hematopoietic stem cell transplantation (HSCT) are limited by lethal complications, i.e., acute and chronic graft-versus-host disease (aGVHD and cGVHD, respectively), in which immune cells from the donor attack healthy recipient tissues. GVHD presents both prophylactic and therapeutic challenges, and overall survival is poor. Mesenchymal stem cells (MSCs) show considerable promise in the treatment of GVHD because of their potential immunomodulatory activity. Multiple studies have been performed to explore the possible benefit of MSCs in GVHD, but the results of these studies are sometimes conflicting. Therefore, we performed a systematic review and meta-analysis to estimate the effect of MSC infusion on GVHD treatment and prevention. METHODS We systematically searched the MEDLINE (PubMed), Cochrane Library, EMBASE, ClinicalTrials.gov, and SinoMed CBM databases to identify studies published before February 2018 involving patients with hematologic malignancies undergoing HSCT and receiving MSC-based or conventional therapy. We included studies if they reported on the outcomes of interest. RESULTS Ultimately, 10 studies were selected from among 413 candidates. According to our meta-analyses, compared with conventional treatment, MSC therapy demonstrated substantial improvements in terms of complete response (CR) and overall survival for cGVHD. However, MSC therapy did not show substantial improvements in terms of engraftment, the incidence of aGVHD, relapse, death, death due to relapse, or death due to infection. Subgroup analyses showed that MSCs derived from the umbilical cord (U-MSCs) and MSC infusion after HSCT substantially improved engraftment and cGVHD incidence, whereas MSCs derived from bone marrow (B-MSCs) and MSC infusion before HSCT shows no improvement. In addition, B-MSCs and MSC infusion before HSCT tend to prolong engraftment time, as well as increase the rates of relapse and death. CONCLUSIONS MSC infusion can reduce cGVHD but not aGVHD incidence and showed a positive effect in patients who already had aGVHD. For GVHD prevention, the use of U-MSCs and MSC infusion after HSCT were optimal for reducing cGVHD incidence and promoting engraftment, and might help decrease the incidence rate of relapse and death. However, B-MSCs and MSC infusion before HSCT may be harmful to patients and thus require serious consideration. A lack of robust evidence, owing to the small number of studies and small sample sizes, indicates a need for further high-quality clinical trials including large numbers of patients to validate our findings.
Collapse
Affiliation(s)
- Lu Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Rd., Hangzhou City, 310003 China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City, 310003 China
| | - Shanquan Chen
- The School of Clinical Medicine, University of Cambridge, Cambridgeshire, UK
| | - Panxin Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Rd., Hangzhou City, 310003 China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City, 310003 China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Rd., Hangzhou City, 310003 China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City, 310003 China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Rd., Hangzhou City, 310003 China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd., Hangzhou City, 310003 China
| |
Collapse
|
26
|
Almalé L, García-Álvaro M, Martínez-Palacián A, García-Bravo M, Lazcanoiturburu N, Addante A, Roncero C, Sanz J, de la O López M, Bragado P, Mikulits W, Factor VM, Thorgeirsson SS, Casal JI, Segovia JC, Rial E, Fabregat I, Herrera B, Sánchez A. c-Met Signaling Is Essential for Mouse Adult Liver Progenitor Cells Expansion After Transforming Growth Factor-β-Induced Epithelial-Mesenchymal Transition and Regulates Cell Phenotypic Switch. Stem Cells 2019; 37:1108-1118. [PMID: 31108004 DOI: 10.1002/stem.3038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 01/10/2023]
Abstract
Adult hepatic progenitor cells (HPCs)/oval cells are bipotential progenitors that participate in liver repair responses upon chronic injury. Recent findings highlight HPCs plasticity and importance of the HPCs niche signals to determine their fate during the regenerative process, favoring either fibrogenesis or damage resolution. Transforming growth factor-β (TGF-β) and hepatocyte growth factor (HGF) are among the key signals involved in liver regeneration and as component of HPCs niche regulates HPCs biology. Here, we characterize the TGF-β-triggered epithelial-mesenchymal transition (EMT) response in oval cells, its effects on cell fate in vivo, and the regulatory effect of the HGF/c-Met signaling. Our data show that chronic treatment with TGF-β triggers a partial EMT in oval cells based on coexpression of epithelial and mesenchymal markers. The phenotypic and functional profiling indicates that TGF-β-induced EMT is not associated with stemness but rather represents a step forward along hepatic lineage. This phenotypic transition confers advantageous traits to HPCs including survival, migratory/invasive and metabolic benefit, overall enhancing the regenerative potential of oval cells upon transplantation into a carbon tetrachloride-damaged liver. We further uncover a key contribution of the HGF/c-Met pathway to modulate the TGF-β-mediated EMT response. It allows oval cells expansion after EMT by controlling oxidative stress and apoptosis, likely via Twist regulation, and it counterbalances EMT by maintaining epithelial properties. Our work provides evidence that a coordinated and balanced action of TGF-β and HGF are critical for achievement of the optimal regenerative potential of HPCs, opening new therapeutic perspectives. Stem Cells 2019;37:1108-1118.
Collapse
Affiliation(s)
- Laura Almalé
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - María García-Álvaro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Adoración Martínez-Palacián
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - María García-Bravo
- Cell Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Advanced Therapies Mixed Unit, CIEMAT/IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Nerea Lazcanoiturburu
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Annalisa Addante
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Cesáreo Roncero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Julián Sanz
- Department of Pathology, Hospital Clínico San Carlos, Madrid, Spain
| | - María de la O López
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Wolfgang Mikulits
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Valentina M Factor
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Snorri S Thorgeirsson
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - J Ignacio Casal
- Department of Functional Proteomics, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - José-Carlos Segovia
- Cell Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Advanced Therapies Mixed Unit, CIEMAT/IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Eduardo Rial
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
27
|
Perilipin 5 and Lipocalin 2 Expression in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11030385. [PMID: 30893876 PMCID: PMC6468921 DOI: 10.3390/cancers11030385] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly cancers worldwide. Therefore, current global research focuses on molecular tools for early diagnosis of HCC, which can lead to effective treatment at an early stage. Perilipin 5 (PLIN5) has been studied as one of the main proteins of the perilipin family, whose role is to maintain lipid homeostasis by inhibiting lipolysis. In this study, we show for the first time that PLIN5 is strongly expressed in tumors of human patients with HCC as well as in mouse livers, in which HCC was genetically or experimentally induced by treatment with the genotoxic agent diethylnitrosamine. Moreover, the secreted acute phase glycoprotein Lipocalin 2 (LCN2) established as a biomarker of acute kidney injury, is also proven to indicate liver injury with upregulated expression in numerous cases of hepatic damage, including steatohepatitis. LCN2 has been studied in various cancers, and it has been assigned roles in multiple cellular processes such as the suppression of the invasion of HCC cells and their metastatic abilities. The presence of this protein in blood and urine, in combination with the presence of α-Fetoprotein (AFP), is hypothesized to serve as a biomarker of early stages of HCC. In the current study, we show in humans and mice that LCN2 is secreted into the serum from liver cancer tissue. We also show that AFP-positive hepatocytes represent the main source for the massive expression of LCN2 in tumoral tissue. Thus, the strong presence of PLIN5 and LCN2 in HCC and understanding their roles could establish them as markers for diagnosis or as treatment targets against HCC.
Collapse
|
28
|
Schmelzer E. Hepatic progenitors of the fetal liver: Interactions with hematopoietic stem cells. Differentiation 2019; 106:9-14. [PMID: 30826473 DOI: 10.1016/j.diff.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022]
Abstract
The aim of this review is to summarize and give an overview on the findings of signaling between hepatic and hematopoietic progenitors of the liver. To date, there are not many findings published in the field, and the aim of this review is to cover all current publications in this area. The liver is the main site of hematopoiesis during fetal development. However, little is known about how hepatic and other non-hematopoietic progenitors potentially influence hematopoiesis and vice versa. The concurrent peaks of hepatic and hematopoietic progenitor proliferation during development indicate interactions that could possibly be mediated through cell-cell contact, extracellular matrices, cytokines and growth factors, or other signaling molecules. For example, hepatic progenitors, such as hepatic stem cells and hepatoblasts, possess characteristic surface markers that can be cleaved, giving rise to fragments of various lengths. A surface molecule of hepatoblasts has been demonstrated to play an essential role in hematopoiesis. Particularly, these effects on hematopoiesis were distinct, depending on whether it was membrane-bound or cleaved. In this review, the various hepatic and hematopoietic progenitor cell types are concisely described, and the current findings of their potential interactions are summarized.
Collapse
Affiliation(s)
- Eva Schmelzer
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 3025 East Carson Street, Pittsburgh, PA 15203, USA.
| |
Collapse
|
29
|
Huang J, Zhao X, Wang J, Cheng Y, Wu Q, Wang B, Zhao F, Meng L, Zhang Y, Jin M, Xu H. Distinct roles of Dlk1 isoforms in bi-potential differentiation of hepatic stem cells. Stem Cell Res Ther 2019; 10:31. [PMID: 30646961 PMCID: PMC6334473 DOI: 10.1186/s13287-019-1131-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Fully understanding the developmental process of hepatic stem cells (HSCs) and the mechanisms of their committed differentiation is essential for optimizing the generation of functional hepatocytes for cell therapy in liver disease. Delta-like 1 homolog (Dlk1), primarily the membrane-bound form (Dlk1M), is generally used as a surface marker for fetal hepatic stem cell isolation, while its soluble form (Dlk1S) and the functional roles of different Dlk1 isoforms in HSC differentiation remain to be investigated. METHODS Hepatic spheroid-derived cells (HSDCs) were isolated from E12.5 mouse livers to obtain Dlk1+ and Dlk1-subpopulations. Colony formation, BrdU staining, and CCK8 assays were used to evaluate the cell proliferation capacity, and hepatic/cholangiocytic differentiation and osteogenesis/adipogenesis were used to assess the multipotency of the two subpopulations. Transformation of Dlk1+ cells into Dlk1- cells was detected by FACS, and the expression of Dlk1 isoforms were measured by western blot. The distinct roles and regulatory mechanisms of Dlk1 isoforms in HSC differentiation were investigated by overexpressing Dlk1M. RESULTS HSDCs were capable of differentiating into liver and mesenchymal lineages, comprising Dlk1+ and Dlk1- subpopulations. Dlk1+ cells expressed both Dlk1M and Dlk1S and lost expression of Dlk1M during passaging, thus transforming into Dlk1- cells, which still contained Dlk1S. Dlk1- cells maintained a self-renewal ability similar to that of Dlk1+ cells, but their capacity to differentiate into cholangiocytes was obviously enhanced. Forced expression of Dlk1M in Dlk1- cells restored their ability to differentiate into hepatocytes, with an attenuated ability to differentiate into cholangiocytes, suggesting a functional role of Dlk1 in regulating HSC differentiation in addition to acting as a biomarker. Further experiments illustrated that the regulation of committed HSC differentiation by Dlk1 was mediated by the AKT and MAPK signaling pathways. In addition, bFGF was found to serve as an important inducement for the loss of Dlk1M from Dlk1+ cells, and autophagy might be involved. CONCLUSIONS Overall, our study uncovered the differential expression and regulatory roles of Dlk1 isoforms in the commitment of HSC differentiation and suggested that Dlk1 functions as a key regulator that instructs cell differentiation rather than only as a marker of HSCs. Thus, our findings expand the current understanding of the differential regulation of bi-potential HSC differentiation and provide a fine-tuning target for cell therapy in liver disease.
Collapse
Affiliation(s)
- Jiefang Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaonan Zhao
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China
| | - Yiji Cheng
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiong Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bei Wang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lijun Meng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China
| | - Yanyun Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China. .,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Min Jin
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China. .,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
30
|
Induction of Expression of CD271 and CD34 in Mesenchymal Stromal Cells Cultured as Spheroids. Stem Cells Int 2018; 2018:7357213. [PMID: 30154865 PMCID: PMC6091361 DOI: 10.1155/2018/7357213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cultured mesenchymal stromal cells (MSCs) are cells that can be used for tissue engineering or cell therapies owing to their multipotency and ability to secrete immunomodulatory and trophic molecules. Several studies suggest that MSCs can become pericytes when cocultured with endothelial cells (ECs) but failed to use pericyte markers not already expressed by MSCs. We hypothesized ECs could instruct MSCs to express the molecules CD271 or CD34, which are expressed by pericytes in situ but not by MSCs. CD271 is a marker of especial interest because it is associated with multipotency, a characteristic that wanes in MSCs as they are culture expanded. Consequently, surface expression of CD271 and CD34 was detected in roughly half of the MSCs cocultured with ECs as spheroids in the presence of insulin-like growth factor 1 (IGF-1). Conversely, expression of CD271 and CD34 was detected in a similar proportion of MSCs cultured under these conditions without ECs, and expression of these markers was low or absent when no IGF-1 was added. These findings indicate that specific culture conditions including IGF-1 can endow cultured MSCs with expression of CD271 and CD34, which may enhance the multipotency of these cells when they are used for therapeutic purposes.
Collapse
|
31
|
Fomin ME, Beyer AI, Muench MO. Human fetal liver cultures support multiple cell lineages that can engraft immunodeficient mice. Open Biol 2018; 7:rsob.170108. [PMID: 29237808 PMCID: PMC5746544 DOI: 10.1098/rsob.170108] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/17/2017] [Indexed: 12/25/2022] Open
Abstract
During prenatal development the liver is composed of multiple cell types with unique properties compared to their adult counterparts. We aimed to establish multilineage cultures of human fetal liver cells that could maintain stem cell and progenitor populations found in the developing liver. An aim of this study was to test if maturation of fetal hepatocytes in short-term cultures supported by epidermal growth factor and oncostatin M can improve their ability to engraft immunodeficient mice. Fetal liver cultures supported a mixture of albumin+ cytokertin-19+ hepatoblasts, hepatocytes, cholangiocytes, CD14++CD32+ liver sinusoidal endothelial cells (LSECs) and CD34+CD133+ haematopoietic stem cells. Transplantation of cultured cells into uPA-NOG or TK-NOG mice yielded long-term engraftment of hepatocytes, abundant LSEC engraftment and multilineage haematopoiesis. Haematopoietic engraftment included reconstitution of B-, T- and NK-lymphocytes. Colonies of polarized human hepatocytes were observed surrounded by human LSECs in contact with human CD45+ blood cells in the liver sinusoids. Thus, fetal liver cultures support multiple cell lineages including LSECs and haematopoietic stem cells while also promoting the ability of fetal hepatocytes to engraft adult mouse livers. Fetal liver cultures and liver-humanized mice created from these cultures can provide useful model systems to study liver development, function and disease.
Collapse
Affiliation(s)
- Marina E Fomin
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA
| | - Ashley I Beyer
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA
| | - Marcus O Muench
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA .,Liver Center and Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
32
|
Zhang K, Che S, Pan C, Su Z, Zheng S, Yang S, Zhang H, Li W, Wang W, Liu J. The SHH/Gli axis regulates CD90-mediated liver cancer stem cell function by activating the IL6/JAK2 pathway. J Cell Mol Med 2018; 22:3679-3690. [PMID: 29722127 PMCID: PMC6010714 DOI: 10.1111/jcmm.13651] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
The cell surface antigen CD90 has recently been established as a promising marker for liver cancer stem cells. This study aimed to investigate potential implications of SHH/Gli signalling in CD90+ liver cancer stem cells. Correlation of the expression of SHH signalling components and CD90 in liver cancer cells and clinical tissues, as well as in enriched CD90+ liver cancer stem cells and the TCGA database, were analysed by quantitative RT-PCR, Western blotting and flow cytometry. Functional analysis was conducted by siRNA-mediated CD90, Gli1 and Gli3 gene knockdown, SHH treatment and application of the JAK2 inhibitor AZD1480 and IL6 neutralizing antibody in CD90+ liver cancer stem cells, followed by cell proliferation, migration, sphere formation and tumorigenicity assays. CD90 expression exhibited a high positive correlation with Gli1 and Gli3 in multiple liver cancer cell lines and human cancerous liver tissues, both of which showed a significant increase in liver cancer. Analysis of TCGA data revealed an association of CD90, Gli1 and Gli3 with a short overall survival and positive correlation between CD90 expression and Gli3 expression level. The stem cell potentials of CD90+ 97L liver cancer cells were greatly impaired by Gli1/3 knockdown with siRNA but enhanced by SHH treatment. Application of the JAK2 inhibitor AZD1480 and IL6 neutralizing antibody showed the CD90 and SHH/Gli-regulated liver cancer stem cell functions were mediated by the IL6/JAK2/STAT3 pathway. The stem cell properties of CD90+ liver cancer cells are regulated by the downstream SHH/Gli and IL6/JAK2/STAT3 signalling pathways.
Collapse
Affiliation(s)
- Ketao Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Hepatopancreatobiliary SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Siyao Che
- Department of Hepatobiliary SurgeryGaozhou People's HospitalGaozhouChina
| | - Chuzhi Pan
- Department of Hepatobiliary Surgerythe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zheng Su
- Department of Hepatopancreatobiliary SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Shangyou Zheng
- Department of Hepatopancreatobiliary SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Shanglin Yang
- Department of Hepatopancreatobiliary SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Huayao Zhang
- Department of Hepatopancreatobiliary SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Wenda Li
- Department of Hepatopancreatobiliary SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Weidong Wang
- Department of Hepatobiliary SurgeryShunde Hospital of Southern Medical UniversityFoshanGuangdong ProvinceChina
| | - Jianping Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Hepatopancreatobiliary SurgerySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
33
|
Molina L, Bell D, Tao J, Preziosi M, Pradhan-Sundd T, Singh S, Poddar M, Luo J, Ranganathan S, Chikina M, Monga SP. Hepatocyte-Derived Lipocalin 2 Is a Potential Serum Biomarker Reflecting Tumor Burden in Hepatoblastoma. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1895-1909. [PMID: 29920228 DOI: 10.1016/j.ajpath.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/24/2022]
Abstract
Hepatoblastoma (HB) is the most common pediatric liver malignant tumor. Previously, we reported co-activation of β-catenin and Yes-associated protein-1 (YAP1) in 80% of HB. Hepatic co-expression of active β-catenin and YAP1 via sleeping beauty transposon/transposase and hydrodynamic tail vein injection led to HB development in mice. Here, we identify lipocalin 2 (Lcn2) as a target of β-catenin and YAP1 in HB and show that serum Lcn2 values positively correlated with tumor burden. Lcn2 was strongly expressed in HB tumor cells in our mouse model. A tissue array of 62 HB cases showed highest LCN2 expression in embryonal and lowest in fetal, blastemal, and small cell undifferentiated forms of HB. Knockdown of LCN2 in HB cells had no effect on cell proliferation but reduced NF-κB reporter activity. Next, liver-specific Lcn2 knockout (KO) mice were generated. No difference in tumor burden was observed between Lcn2 KO mice and wild-type littermate controls after sleeping beauty transposon/transposase and hydrodynamic tail vein injection delivery of active YAP1 and β-catenin, although Lcn2 KO mice with HB lacked any serum Lcn2 elevation, demonstrating that transformed hepatocytes are the source of serum Lcn2. More blastemal areas and inflammation were observed within HB in Lcn2 KO compared with wild-type tumors. In conclusion, Lcn2 expressed in hepatocytes appears to be dispensable for the pathogenesis of HB. However, transformed hepatocytes secrete serum Lcn2, making Lcn2 a valuable biomarker for HB.
Collapse
Affiliation(s)
- Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Danielle Bell
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Division of Hematology-Oncology, Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Junyan Tao
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Morgan Preziosi
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tirthadipa Pradhan-Sundd
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Minakshi Poddar
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jianhua Luo
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sarangarajan Ranganathan
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Division of Pediatric Pathology, Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Maria Chikina
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
34
|
Bandi S, Gupta S, Tchaikovskaya T, Gupta S. Differentiation in stem/progenitor cells along fetal or adult hepatic stages requires transcriptional regulators independently of oscillations in microRNA expression. Exp Cell Res 2018; 370:1-12. [PMID: 29883712 DOI: 10.1016/j.yexcr.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023]
Abstract
Understanding mechanisms in lineage differentiation is critical for organ development, pathophysiology and oncogenesis. To determine whether microRNAs (miRNA) may serve as drivers or adjuncts in hepatic differentiation, we studied human embryonic stem cell-derived hepatocytes and primary hepatocytes representing fetal or adult stages. Model systems were used for hepatic lineage advancement or regression under culture conditions with molecular assays. Profiles of miRNA in primary fetal and adult hepatocytes shared similarities and distinctions from pluripotent stem cells or stem cell-derived early fetal-like hepatocytes. During phenotypic regression in fetal or adult hepatocytes, miRNA profiles oscillated to regain stemness-associated features that had not been extinguished in stem cell-derived fetal-like hepatocytes. These oscillations in stemness-associated features were not altered in fetal-like hepatocytes by inhibitory mimics for dominantly-expressed miRNA, such as hsa-miR-99b, -100, -214 and -221/222. The stem cell-derived fetal-like hepatocytes were permissive for miRNA characterizing mature hepatocytes, including mimics for hsa-miR-122, -126, -192, -194 and -26b, although transfections of the latter did not advance hepatic differentiation. Examination of genome-wide mRNA expression profiles in stem cell-derived or primary fetal hepatocytes indicated targets of highly abundant miRNA regulated general processes, e.g., cell survival, growth and proliferation, functional maintenance, etc., without directing cell differentiation. Among upstream regulators of gene networks in stem cell-derived hepatocytes included HNF4A, SNAI1, and others, which affect transcriptional circuits directing lineage development or maintenance. Therefore, miRNA expression oscillated in response to microenvironmental conditions, whereas lineage-specific transcriptional regulators, such as HNF4A, were necessary for directing hepatic differentiation. This knowledge will be helpful for understanding the contribution of stem cells in pathophysiological states and oncogenesis, as well as for applications of stem cell-derived hepatocytes.
Collapse
Affiliation(s)
- Sriram Bandi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Sanchit Gupta
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Tatyana Tchaikovskaya
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States; Diabetes Center, Albert Einstein College of Medicine, Bronx, NY, United States; The Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, United States; The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
35
|
Immortalized common marmoset ( Callithrix jacchus) hepatic progenitor cells possess bipotentiality in vitro and in vivo. Cell Discov 2018; 4:23. [PMID: 29796307 PMCID: PMC5951880 DOI: 10.1038/s41421-018-0020-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 12/20/2022] Open
Abstract
Common marmoset (Callithrix jacchus) is emerging as a clinically relevant nonhuman primate model for various diseases, but is hindered by the availability of marmoset cell lines, which are critical for understanding the disease pathogenesis and drug/toxicological screening prior to animal testing. Here we describe the generation of immortalized marmoset hepatic progenitor cells (MHPCs) by lentivirus-mediated transfer of the simian virus 40 large T antigen gene in fetal liver polygonal cells. MHPCs proliferate indefinitely in vitro without chromosomal alteration and telomere shortening. These cells possess hepatic progenitor cell-specific gene expression profiles with potential to differentiate into both hepatocytic and cholangiocytic lineages in vitro and in vivo and also can be genetically modified. Importantly, injected MHPCs repopulated the injured liver of fumarylacetoacetate hydrolase (Fah)-deficient mice with hepatocyte-like cells. MHPCs also engraft as cholangiocytes into bile ducts of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced bile ductular injured mice. MHPCs provide a tool to enable efficient derivation and genetic modification of both hepatocytes and cholangiocytes for use in disease modeling, tissue engineering, and drug screening.
Collapse
|
36
|
Tumor-promoting cyanotoxin microcystin-LR does not induce procarcinogenic events in adult human liver stem cells. Toxicol Appl Pharmacol 2018. [PMID: 29534881 DOI: 10.1016/j.taap.2018.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HL1-hT1 cell line represents adult human liver stem cells (LSCs) immortalized with human telomerase reverse transcriptase. In this study, HL1-hT1 cells were found to express mesenchymal markers (vimentin, CD73, CD90/THY-1 and CD105) and an early hepatic endoderm marker FOXA2, while not expressing hepatic progenitor (HNF4A, LGR5, α-fetoprotein) or differentiated hepatocyte markers (albumin, transthyretin, connexin 32). In response to microcystin-LR (MC-LR), a time- and concentration-dependent formation of MC-positive protein bands in HL1-hT1 cells was observed. Cellular accumulation of MC-LR occurred most likely via mechanisms independent on organic anion transporting polypeptides (OATPs) or multidrug resistance (MDR) proteins, as indicated (a) by a gene expression analysis of 11 human OATP genes and 4 major MDR genes (MDR1/P-glycoprotein, MRP1, MRP2 and BCRP); (b) by non-significant effects of OATP or MDR1 inhibitors on MC-LR uptake. Accumulation of MC-positive protein bands in HL1-hT1 cells was associated neither with alterations of cell viability and growth, dysregulations of ERK1/2 and p38 kinases, reactive oxygen species formation, induction of double-stranded DNA breaks nor modulations of stress-inducible genes (ATF3, HSP5). It suggests that LSCs might have a selective, MDR1-independent, survival advantage and higher tolerance towards MC-induced cytotoxic, genotoxic or cancer-related events than differentiated adult hepatocytes, fetal hepatocyte or malignant liver cell lines. HL1-hT1 cells provide a valuable in vitro tool for studying effects of toxicants and pharmaceuticals on LSCs, whose important role in the development of chronic toxicities and liver diseases is being increasingly recognized.
Collapse
|
37
|
De Vitis M, Berardinelli F, Sgura A. Telomere Length Maintenance in Cancer: At the Crossroad between Telomerase and Alternative Lengthening of Telomeres (ALT). Int J Mol Sci 2018; 19:ijms19020606. [PMID: 29463031 PMCID: PMC5855828 DOI: 10.3390/ijms19020606] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cells undergo continuous telomere shortening as a consequence of multiple rounds of replications. During tumorigenesis, cells have to acquire telomere DNA maintenance mechanisms (TMMs) in order to counteract telomere shortening, to preserve telomeres from DNA damage repair systems and to avoid telomere-mediated senescence and/or apoptosis. For this reason, telomere maintenance is an essential step in cancer progression. Most human tumors maintain their telomeres expressing telomerase, whereas a lower but significant proportion activates the alternative lengthening of telomeres (ALT) pathway. However, evidence about the coexistence of ALT and telomerase has been found both in vivo in the same cancer populations and in vitro in engineered cellular models, making the distinction between telomerase- and ALT-positive tumors elusive. Indeed, after the development of drugs able to target telomerase, the capability for some cancer cells to escape death, switching from telomerase to ALT, was highlighted. Unfortunately, to date, the mechanism underlying the possible switching or the coexistence of telomerase and ALT within the same cell or populations is not completely understood and different factors could be involved. In recent years, different studies have tried to shed light on the complex regulation network that controls the transition between the two TMMs, suggesting a role for embryonic cancer origin, epigenetic modifications, and specific genes activation—both in vivo and in vitro. In this review, we examine recent findings about the cancer-associated differential activation of the two known TMMs and the possible factors implicated in this process. Furthermore, some studies on cancers are also described that did not display any TMM.
Collapse
Affiliation(s)
- Marco De Vitis
- Department of Science, Roma Tre University, 00146 Rome, Italy.
| | | | - Antonella Sgura
- Department of Science, Roma Tre University, 00146 Rome, Italy.
| |
Collapse
|
38
|
Abstract
The liver has an important function in the human body and plays a crucial role in its metabolism. Orthotopic liver transplantation (OLT) is the gold standard treatment for patients presenting liver failure or end stage liver diseases, and is also applied for liver based intractable metabolic disorders. Due to organ shortage, invasive surgery and persistent mortality/morbidity, other treatments have to be explored. Amongst these, hepatocyte transplantation is an attractive alternative and has shown promising results in the treatment of miscellaneous metabolic disorders.
Collapse
|
39
|
Abstract
Introduction: Hepatoblastoma (HB) is the most common primary malignant liver neoplasm in children. Its increasing survival rate is related to the progress in modern imaging, surgical techniques, and new chemotherapy regimens. Clinical approach: One of the past achievements was the development of the pretreatment extension of disease (PRETEXT) system. Gradually, the HB therapeutic approach has become more individualized with better stratification of patients. Controversies: These include the need for preoperative chemotherapy and its optimal duration; intensity of preoperative chemotherapy required for locally advanced cases (PRETEXT 4); optimal surgical treatment for locally advanced tumors: aggressive hepatic resections versus liver transplantation; the role of postoperative chemotherapy in the post-transplant setting; the timing and role of metastasectomy in patients with disseminated disease who undergo partial liver resection; and the prognostic significance of several HB pathology variants. Hepatoblastoma biology: Beta-catenin mutations and the beta-catenin/Wnt pathway play an important role in HB development. There have been at least two molecular signatures in HB published. Unluckily, all of these findings are based on relatively small clinical series and require confirmation. Conclusion: The treatment of HB started from one and the same therapy for all patients and aimed at increased treatment individualization, but the future seems to lie in biology-driven patient-tailored therapies.
Collapse
Affiliation(s)
- Piotr Czauderna
- Department of Surgery and Urology for Children and Adolescents, Medical University of Gdansk, Ul. Nowe Ogrody 1-6, 80-803 Gdansk, Poland
| | - Hanna Garnier
- Department of Surgery and Urology for Children and Adolescents, Medical University of Gdansk, Ul. Nowe Ogrody 1-6, 80-803 Gdansk, Poland
| |
Collapse
|
40
|
Rameshwar P, Moore CA, Shah NN, Smith CP. An Update on the Therapeutic Potential of Stem Cells. Methods Mol Biol 2018; 1842:3-27. [PMID: 30196398 DOI: 10.1007/978-1-4939-8697-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The seeming setbacks noted for stem cells underscore the need for experimental studies for safe and efficacious application to patients. Both clinical and experimental researchers have gained valuable knowledge on the characteristics of stem cells, and their behavior in different microenvironment. This introductory chapter focuses on adult mesenchymal stem cells (MSCs) based on the predominance in the clinic. MSCs can be influenced by inflammatory mediators to exert immune suppressive properties, commonly referred to as "licensing." Interestingly, while there are questions if other stem cells can be delivered across allogeneic barrier, there is no question on the ability of MSCs to provide this benefit. This property has been a great advantage since MSCs could be available for immediate application as "off-the-shelf" stem cells for several disorders, tissue repair and gene/drug delivery. Despite the benefit of MSCs, it is imperative that research continues with the various types of stem cells. The method needed to isolate these cells is outlined in this book. In parallel, safety studies are needed; particularly links to oncogenic event. In summary, this introductory chapter discusses several potential areas that need to be addressed for safe and efficient delivery of stem cells, and argue for the incorporation of microenvironmental factors in the studies. The method described in this chapter could be extrapolated to the field of chimeric antigen receptor T-cells (CAR-T). This will require application to stem cell hierarchy of memory T-cells.
Collapse
Affiliation(s)
- Pranela Rameshwar
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Caitlyn A Moore
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Niloy N Shah
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ, USA
| | - Caroline P Smith
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
41
|
Gerlach JC, Foka HG, Thompson RL, Gridelli B, Schmelzer E. Epithelial cell adhesion molecule fragments and signaling in primary human liver cells. J Cell Physiol 2017; 233:4841-4851. [PMID: 29150960 DOI: 10.1002/jcp.26286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/14/2017] [Indexed: 01/15/2023]
Abstract
Epithelial Cell Adhesion Molecule (EpCAM), or CD326, is a trans-membrane glycoprotein expressed by multiple normal epithelia as well as carcinoma. Human hepatic stem cells and bile duct epithelium of the liver are EpCAM positive. In tumor cell lines, its intracellular domain can be released after cleavage of the extracellular domain. Within the cell nucleus, it induces cell proliferation, but cleavage depends on cell contact. Fragments of various lengths have been described in tumor cells. Despite its described important role in proliferation in tumor cells, there is not much known about the expression and role of EpCAM fragments in primary human liver cells. Here, we demonstrate that EpCAM protein fragments and function are considerable different between tumor cells, normal fetal and adult liver cells. Contrary to previously reported findings in tumor cells, gene knockdown or treatment with an inhibitor of the cleavage enzyme ADAM17 (TACE) rather increased cell numbers in primary human fetal liver-derived EpCAM-positive cells. EpCAM fragment sizes were not affected by treatment with inhibitor. Knockdown of EPCAM gene expression by siRNA in sorted cells did not significantly affect proliferation-associated genes or cell numbers. The intracellular domain could not be detected within cell nuclei of fetal and adult liver cells. In conclusion, signaling through the intracellular domain of EpCAM appears to be a mechanism that induces proliferation specifically in tumorigenic cells but not in normal primary EpCAM-positive liver cells.
Collapse
Affiliation(s)
- Jörg C Gerlach
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hubert G Foka
- University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert L Thompson
- University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bruno Gridelli
- University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Surgery, ISMETT-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, UPMC Italy, Palermo, Italy
| | - Eva Schmelzer
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Abdellatif H, Shiha G, Saleh DM, Eltahry H, Botros KG. Effect of human umbilical cord blood stem cell transplantation on oval cell response in 2-AAF/CCL4 liver injury model: experimental immunohistochemical study. Inflamm Regen 2017; 37:5. [PMID: 29259704 PMCID: PMC5725643 DOI: 10.1186/s41232-017-0035-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/02/2017] [Indexed: 12/26/2022] Open
Abstract
Background Oval cells, specific liver progenitors, are activated in response to injury. The human umbilical cord blood (hUCB) is a possible source of transplantable hepatic progenitors and can be used in cases of severe liver injury. We detected the effect of hUCB stem cell transplantation on natural response of oval cells to injury. Methods Twenty-four female albino rats were randomly divided into three groups: (A) control, (B) liver injury with hepatocyte block, and (C) hUCB transplanted group. Hepatocyte block was performed by administration of 2-acetylaminofluorene (2-AAF) for 12 days. CCL4 was administrated at day 5 from experiment start. Animals were sacrificed at 9 days post CCL4 administration, and samples were collected for biochemical and histopathological analysis. Oval cell response to injury was evaluated by the percentage of oval cells in the liver tissue and frequency of cells incorporated into new ducts. Results Immunohistochemical analysis of oval cell response to injury was performed. There was significant deviation in the hUCB-transplanted (4.9 ± 1.4) and liver injury groups (2.4 ± 0.9) as compared to control (0.89 ± 0.4) 9 days post injury. Detection of oval cell response was dependant on OV-6 immunoreactivity. For mere localization of cells with human origin, CD34 antihuman immunoreactivity was performed. There was no significant difference in endogenous OV-6 immunoreactivity following stem cell transplantation as compared to the liver injury group. Conclusions In vivo transplantation of cord blood stem cells (hUCB) does not interfere with natural oval cell response to liver injury.
Collapse
Affiliation(s)
- Hussein Abdellatif
- Anatomy and Embryology Department, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Gamal Shiha
- Internal Medicine Department, Faculty of Medicine, University of Mansoura, Mansoura, Egypt.,Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt
| | - Dalia M Saleh
- Anatomy and Embryology Department, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Huda Eltahry
- Anatomy and Embryology Department, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Kamal G Botros
- Anatomy and Embryology Department, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
43
|
Goldman O, Cohen I, Gouon-Evans V. Functional Blood Progenitor Markers in Developing Human Liver Progenitors. Stem Cell Reports 2017; 7:158-66. [PMID: 27509132 PMCID: PMC4983080 DOI: 10.1016/j.stemcr.2016.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 11/30/2022] Open
Abstract
In the early fetal liver, hematopoietic progenitors expand and mature together with hepatoblasts, the liver progenitors of hepatocytes and cholangiocytes. Previous analyses of human fetal livers indicated that both progenitors support each other's lineage maturation and curiously share some cell surface markers including CD34 and CD133. Using the human embryonic stem cell (hESC) system, we demonstrate that virtually all hESC-derived hepatoblast-like cells (Hep cells) transition through a progenitor stage expressing CD34 and CD133 as well as GATA2, an additional hematopoietic marker that has not previously been associated with human hepatoblast development. Dynamic expression patterns for CD34, CD133, and GATA2 in hepatoblasts were validated in human fetal livers collected from the first and second trimesters of gestation. Knockdown experiments demonstrate that each gene also functions to regulate hepatic fate mostly in a cell-autonomous fashion, revealing unprecedented roles of fetal hematopoietic progenitor markers in human liver progenitors.
Co-expression of hematopoietic markers CD34, CD133, and GATA2 in hESC-Hep cells Function of CD34, CD133, and GATA2 in hepatic specification of hESC-Hep cells Co-expression of CD34, CD133, and GATA2 in hepatoblasts from human fetal livers
Collapse
Affiliation(s)
- Orit Goldman
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Idan Cohen
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
44
|
Irudayaswamy A, Muthiah M, Zhou L, Hung H, Jumat NHB, Haque J, Teoh N, Farrell G, Riehle KJ, Lin JS, Su LL, Chan JK, Choolani M, Wong PC, Wee A, Lim SG, Campbell J, Fausto N, Dan YY. Long-Term Fate of Human Fetal Liver Progenitor Cells Transplanted in Injured Mouse Livers. Stem Cells 2017; 36:103-113. [PMID: 28960647 DOI: 10.1002/stem.2710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/25/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
Liver progenitor cells have the potential to repair and regenerate a diseased liver. The success of any translational efforts, however, hinges on thorough understanding of the fate of these cells after transplant, especially in terms of long-term safety and efficacy. Here, we report transplantation of a liver progenitor population isolated from human fetal livers into immune-permissive mice with follow-up up to 36 weeks after transplant. We found that human progenitor cells engraft and differentiate into functional human hepatocytes in the mouse, producing albumin, alpha-1-antitrypsin, and glycogen. They create tight junctions with mouse hepatocytes, with no evidence of cell fusion. Interestingly, they also differentiate into functional endothelial cell and bile duct cells. Transplantation of progenitor cells abrogated carbon tetrachloride-induced fibrosis in recipient mice, with downregulation of procollagen and anti-smooth muscle actin. Paradoxically, the degree of engraftment of human hepatocytes correlated negatively with the anti-fibrotic effect. Progenitor cell expansion was most prominent in cirrhotic animals, and correlated with transcript levels of pro-fibrotic genes. Animals that had resolution of fibrosis had quiescent native progenitor cells in their livers. No evidence of neoplasia was observed, even up to 9 months after transplantation. Human fetal liver progenitor cells successfully attenuate liver fibrosis in mice. They are activated in the setting of liver injury, but become quiescent when injury resolves, mimicking the behavior of de novo progenitor cells. Our data suggest that liver progenitor cells transplanted into injured livers maintain a functional role in the repair and regeneration of the liver. Stem Cells 2018;36:103-113.
Collapse
Affiliation(s)
| | - Mark Muthiah
- Department of Medicine, National University Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Hospital. National University Health System, Singapore
| | - Lei Zhou
- Department of Medicine, National University Singapore, Singapore
| | - Hau Hung
- Department of Medicine, National University Singapore, Singapore
| | | | - Jamil Haque
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Narcissus Teoh
- Department of Medicine, Australian National University, Canberra, Australia
| | - Geoffrey Farrell
- Department of Medicine, Australian National University, Canberra, Australia
| | - Kimberly J Riehle
- Department of Pathology, University of Washington, Seattle, Washington, USA.,Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Jaymie Siqi Lin
- Department of Medicine, National University Singapore, Singapore
| | - Lin Lin Su
- Department of Obstetrics and Gynecology, National University Singapore, Singapore
| | - Jerry Ky Chan
- Department of Obstetrics and Gynecology, National University Singapore, Singapore.,Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynecology, National University Singapore, Singapore
| | - Peng Cheang Wong
- Department of Obstetrics and Gynecology, National University Singapore, Singapore
| | - Aileen Wee
- Department of Pathology, National University Singapore, Singapore
| | - Seng Gee Lim
- Department of Medicine, National University Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Hospital. National University Health System, Singapore
| | - Jean Campbell
- Clinical Research Divison, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nelson Fausto
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Yock Young Dan
- Department of Medicine, National University Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Hospital. National University Health System, Singapore.,Cancer Science Institute, National University Singapore, Singapore.,Genome Institute Singapore, ASTAR, Singapore
| |
Collapse
|
45
|
Lin G, Sun W, Yang Z, Guo J, Liu H, Liang J. Hypoxia induces the expression of TET enzymes in HepG2 cells. Oncol Lett 2017; 14:6457-6462. [PMID: 29163682 PMCID: PMC5686438 DOI: 10.3892/ol.2017.7063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/01/2017] [Indexed: 12/23/2022] Open
Abstract
Hypoxia promotes tumor malignancy in solid tumors. One key mechanism by which this occurs is via epigenetic alteration. The present study demonstrates that hypoxia upregulates the expression of the ten-eleven-translocation 5-methylcytosine dioxygenase (TET) enzymes, which catalyze the conversion of 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC), thereby leading to elevated cellular 5-hmC levels in hepatoblastoma HepG2 cells. Hypoxia inducible factor-1α (HIF-1α) is the main transcription factor activated by hypoxia. A chemical inducer of HIF-1α, CoCl2, also increases the expression of TET enzymes. Knockdown of HIF-1α attenuates the hypoxia-induced expression of TET enzymes. These results indicate that hypoxia controls DNA methylation through HIF-1α-mediated TET enzyme regulation in HepG2 cells.
Collapse
Affiliation(s)
- Guofu Lin
- Department of The First General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Wenyu Sun
- Department of The First General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Zhi Yang
- Department of The First General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Jinshuai Guo
- Department of The First General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Haiyang Liu
- Department of The First General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Jian Liang
- Department of The First General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
46
|
Schmelzer E, Foka HG, Thompson RL, Luca A, Gridelli B, Gerlach JC. Response of Human Fetal Liver Progenitor Cell Types to Temperature and pH Stresses In Vitro. Rejuvenation Res 2017; 21:257-269. [PMID: 28891399 DOI: 10.1089/rej.2016.1890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prolonged physiological stresses, including abnormal pH and temperature, are deleterious. However, human hepatic progenitors have been shown to be quite tolerant of temporary temperature stress such as in cold ischemia. We aimed at identifying how various stresses affect liver progenitors, and at determining whether distinct effects exist on different progenitor cells of the human liver. Total fetal liver cells were exposed to low (25°C), normal (37°C), or high (40°C) temperatures, or low (6.76), normal (7.35), or high (7.88) pH in vitro. Culture at 25°C increased cell numbers and percentages of proliferation marker Ki67+ total cells. In total cell cultures, percentages of CD326+ hepatic progenitors co-expressing DLK1 (delta-like 1 homolog), SSEA4, or CD90 increased, as well as proliferation of SSEA4+ and CD235a+ progenitors. Analyses of presorted hepatic progenitors revealed that culture at 25°C increased cell numbers of CD326+ hepatic stem/progenitor cells but not DLK+ hepatoblasts. The expression of several mesenchymal genes was reduced, and distinct hepatic stem/progenitor cell colonies emerged. At 40°C, numbers of adherent hepatic cells decreased but those of hematopoietic nonadherent cells increased. High pH did not cause major effects. Acidic pH resulted in decreased total cell numbers and affected hematopoietic cells. Percentages of DLK1+ hepatoblasts were increased, but those of hematopoietic mature CD45+ cells were decreased. In particular, proliferation of adherent hepatic CD326+, SSEA4+ progenitors, and hematopoietic CD45+ cells and CD235a+ erythroblasts was reduced. Conclusively, our data indicate that low-temperature stress stimulates hepatic progenitor and erythroblast proliferation, whereas acidic pH promotes hepatic maturation and reduces hematopoietic cells.
Collapse
Affiliation(s)
- Eva Schmelzer
- 1 Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Hubert G Foka
- 2 University of Pittsburgh Medical Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Robert L Thompson
- 2 University of Pittsburgh Medical Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Angelo Luca
- 3 Department of Surgery, ISMETT-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione , UPMC Italy, Palermo, Italy
| | - Bruno Gridelli
- 2 University of Pittsburgh Medical Center, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Surgery, ISMETT-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione , UPMC Italy, Palermo, Italy
| | - Jörg C Gerlach
- 1 Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
47
|
Bria A, Marda J, Zhou J, Sun X, Cao Q, Petersen BE, Pi L. Hepatic progenitor cell activation in liver repair. LIVER RESEARCH (BEIJING, CHINA) 2017; 1:81-87. [PMID: 29276644 PMCID: PMC5739327 DOI: 10.1016/j.livres.2017.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The liver possesses an extraordinary ability to regenerate after injury. Hepatocyte-driven liver regeneration is the default pathway in response to mild-to-moderate acute liver damage. When replication of mature hepatocytes is blocked, facultative hepatic progenitor cells (HPCs), also referred to as oval cells (OCs) in rodents, are activated. HPC/OCs have the ability to proliferate clonogenically and differentiate into several lineages including hepatocytes and bile ductal epithelia. This is a conserved liver injury response that has been studied in many species ranging from mammals (rat, mouse, and human) to fish. In addition, improper HPC/OC activation is closely associated with fibrotic responses, characterized by myofibroblast activation and extracellular matrix production, in many chronic liver diseases. Matrix remodeling and metalloprotease activities play an important role in the regulation of HPC/OC proliferation and fibrosis progression. Thus, understanding molecular mechanisms underlying HPC/OC activation has therapeutic implications for rational design of anti-fibrotic therapies.
Collapse
Affiliation(s)
- Adam Bria
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Jorgessen Marda
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Junmei Zhou
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Xiaowei Sun
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Qi Cao
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Bryon E. Petersen
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Liya Pi
- Pediatric Stem Cell Research and Hepatic Disorders, Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
48
|
Chen J, Chen L, Zern MA, Theise ND, Diehl AM, Liu P, Duan Y. The diversity and plasticity of adult hepatic progenitor cells and their niche. Liver Int 2017; 37:1260-1271. [PMID: 28135758 PMCID: PMC5534384 DOI: 10.1111/liv.13377] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
The liver is a unique organ for homoeostasis with regenerative capacities. Hepatocytes possess a remarkable capacity to proliferate upon injury; however, in more severe scenarios liver regeneration is believed to arise from at least one, if not several facultative hepatic progenitor cell compartments. Newly identified pericentral stem/progenitor cells residing around the central vein is responsible for maintaining hepatocyte homoeostasis in the uninjured liver. In addition, hepatic progenitor cells have been reported to contribute to liver fibrosis and cancers. What drives liver homoeostasis, regeneration and diseases is determined by the physiological and pathological conditions, and especially the hepatic progenitor cell niches which influence the fate of hepatic progenitor cells. The hepatic progenitor cell niches are special microenvironments consisting of different cell types, releasing growth factors and cytokines and receiving signals, as well as the extracellular matrix (ECM) scaffold. The hepatic progenitor cell niches maintain and regulate stem cells to ensure organ homoeostasis and regeneration. In recent studies, more evidence has been shown that hepatic cells such as hepatocytes, cholangiocytes or myofibroblasts can be induced to be oval cell-like state through transitions under some circumstance, those transitional cell types as potential liver-resident progenitor cells play important roles in liver pathophysiology. In this review, we describe and update recent advances in the diversity and plasticity of hepatic progenitor cell and their niches and discuss evidence supporting their roles in liver homoeostasis, regeneration, fibrosis and cancers.
Collapse
Affiliation(s)
- Jiamei Chen
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
- E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Long Chen
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mark A Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Neil D. Theise
- Departments of Pathology and Medicine, Beth Israel Medical Center of Albert Einstein College of Medicine, New York, New York, USA
| | - Ann Mae Diehl
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ping Liu
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
- E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyou Duan
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
49
|
Kiernan J, Davies JE, Stanford WL. Concise Review: Musculoskeletal Stem Cells to Treat Age-Related Osteoporosis. Stem Cells Transl Med 2017; 6:1930-1939. [PMID: 28834263 PMCID: PMC6430063 DOI: 10.1002/sctm.17-0054] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/14/2017] [Indexed: 01/03/2023] Open
Abstract
Age‐related (type‐II) osteoporosis is a common and debilitating condition driven in part by the loss of bone marrow (BM) mesenchymal stromal cells (MSC) and their osteoblast progeny, leading to reduced bone formation. Current pharmacological regiments targeting age‐related osteoporosis do not directly treat the disease by increasing bone formation, but instead use bisphosphonates to reduce bone resorption—a treatment designed for postmenopausal (type‐I) osteoporosis. Recently, the bone regenerative capacity of MSCs has been found within a very rare population of skeletal stem cells (SSCs) residing within the larger heterogeneous BM‐MSC pool. The osteoregenerative potential of SSCs would be an ideal candidate for cell‐based therapies to treat degenerative bone diseases such as osteoporosis. However, to date, clinical and translational studies attempting to improve bone formation through cell transplantation have used the larger, nonspecific, MSC pool. In this review, we will outline the physiological basis of age‐related osteoporosis, as well as discuss relevant preclinical studies that use exogenous MSC transplantation with the aim of treating osteoporosis in murine models. We will also discuss results from specific clinical trials aimed at treating other systemic bone diseases, and how the discovery of SSC could help realize the full regenerative potential of MSC therapy to increase bone formation. Finally, we will outline how ancillary clinical trials could be initiated to assess MSC/SSC‐mediated bone formation gains in existing and potentially unrelated clinical trials, setting the stage for a dedicated clinical investigation to treat age‐related osteoporosis. Stem Cells Translational Medicine2017;6:1930–1939
Collapse
Affiliation(s)
- Jeffrey Kiernan
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - John E Davies
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - William L Stanford
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Departments of Cellular & Molecular Medicine, and Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
50
|
Fukuda T, Takayama K, Hirata M, Liu YJ, Yanagihara K, Suga M, Mizuguchi H, Furue MK. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions. Exp Cell Res 2017; 352:333-345. [PMID: 28215634 DOI: 10.1016/j.yexcr.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022]
Abstract
Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells.
Collapse
Affiliation(s)
- Takayuki Fukuda
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; K-CONNEX, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuhi Hirata
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yu-Jung Liu
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kana Yanagihara
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; iPS Cell-based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miho K Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|