1
|
Gyulkhandanyan A, Rezaie AR, Roumenina L, Lagarde N, Fremeaux-Bacchi V, Miteva MA, Villoutreix BO. Analysis of protein missense alterations by combining sequence- and structure-based methods. Mol Genet Genomic Med 2020; 8:e1166. [PMID: 32096919 PMCID: PMC7196459 DOI: 10.1002/mgg3.1166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Different types of in silico approaches can be used to predict the phenotypic consequence of missense variants. Such algorithms are often categorized as sequence based or structure based, when they necessitate 3D structural information. In addition, many other in silico tools, not dedicated to the analysis of variants, can be used to gain additional insights about the possible mechanisms at play. METHODS Here we applied different computational approaches to a set of 20 known missense variants present on different proteins (CYP, complement factor B, antithrombin and blood coagulation factor VIII). The tools that were used include fast computational approaches and web servers such as PolyPhen-2, PopMusic, DUET, MaestroWeb, SAAFEC, Missense3D, VarSite, FlexPred, PredyFlexy, Clustal Omega, meta-PPISP, FTMap, ClusPro, pyDock, PPM, RING, Cytoscape, and ChannelsDB. RESULTS We observe some conflicting results among the methods but, most of the time, the combination of several engines helped to clarify the potential impacts of the amino acid substitutions. CONCLUSION Combining different computational approaches including some that were not developed to investigate missense variants help to predict the possible impact of the amino acid substitutions. Yet, when the modified residues are involved in a salt-bridge, the tools tend to fail, even when the analysis is performed in 3D. Thus, interactive structural analysis with molecular graphics packages such as Chimera or PyMol or others are still needed to clarify automatic prediction.
Collapse
Affiliation(s)
- Aram Gyulkhandanyan
- INSERM U973, Laboratory MTi, University Paris Diderot, Paris, France
- Laboratory SABNP, University of Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lubka Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nathalie Lagarde
- INSERM U973, Laboratory MTi, University Paris Diderot, Paris, France
- Laboratoire GBCM, EA7528, Conservatoire national des arts et métiers, Hesam Université, Paris, France
| | - Veronique Fremeaux-Bacchi
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| | - Maria A Miteva
- INSERM U973, Laboratory MTi, University Paris Diderot, Paris, France
- Inserm U1268 MCTR, CNRS UMR 8038 CiTCoM, Faculté de Pharmacie de Paris, Univ. De Paris, Paris, France
| | - Bruno O Villoutreix
- INSERM U973, Laboratory MTi, University Paris Diderot, Paris, France
- INSERM, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, Université de Lille, Lille, France
| |
Collapse
|
2
|
Al-Eitan LN, Almasri AY, Al-Habahbeh SO. Impact of a variable number tandem repeat in the CYP2C9 promoter on warfarin sensitivity and responsiveness in Jordanians with cardiovascular disease. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:15-22. [PMID: 30962704 PMCID: PMC6432888 DOI: 10.2147/pgpm.s189838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose The purpose of this study was to investigate the influence of CYP/CYP450 2C9 (CYP2C9) promoter variable number tandem repeat (p-VNTR) polymorphism on susceptibility to cardiovascular disease and on warfarin sensitivity and responsiveness, in Jordanians with cardiovascular disease during initiation and stabilization phases of therapy. Patients and methods A total of 211 cardiovascular patients who were being treated with warfarin anticoagulants and 205 healthy individuals were enrolled in this study. PCR-based methods were performed to analyze the effects of CYP2C9 p-VNTR polymorphism on warfarin metabolism. The p-VNTR polymorphism was composed of tandem repeat motifs sorted into three alleles based on the length and structure: short (p-VNTR-S), middle (p-VNTR-M), and long (p-VNTR-L). Results We found that the genotypic and allelic frequencies differ significantly between patients and healthy individuals; therefore, our results suggest that this polymorphism is associated with cardiovascular disease in the Jordanian population. Moreover, during the initiation phase of therapy, 20% of warfarin-sensitive patients were homozygous for a short allele (p-VNTR-S), and 12.2% were heterozygous for this allele (p-VNTR-M/p-VNTR-S). During the stabilization phase, no significant differences were found between these groups and their genotypic frequencies. Additionally, we did not confirm any relationship between the CYP2C9 p-VNTR polymorphism and warfarin response during either the initiation or the stabilization phases of therapy. Conclusion Our data show a significant difference between the CYP2C9 p-VNTR polymorphism and risk of cardiovascular disease, in addition to significant association between this polymorphism and sensitivity to warfarin at the initiation phase of therapy in a Jordanian population. However, there is no correlation between this polymorphism and warfarin response, international normalized ratio (INR) values, or required warfarin dose to achieve a target INR either at the initiation or stabilization phases of therapy. To further corroborate our results, additional studies are required with a larger number of samples and different ethnic groups.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan, .,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan,
| | - Ayah Y Almasri
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan,
| | - Sahar O Al-Habahbeh
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan,
| |
Collapse
|
3
|
Effect of CYP2C19, UGT1A8, and UGT2B7 on valproic acid clearance in children with epilepsy: a population pharmacokinetic model. Eur J Clin Pharmacol 2018; 74:1029-1036. [DOI: 10.1007/s00228-018-2440-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/02/2018] [Indexed: 01/01/2023]
|
4
|
Daly AK, Rettie AE, Fowler DM, Miners JO. Pharmacogenomics of CYP2C9: Functional and Clinical Considerations. J Pers Med 2017; 8:E1. [PMID: 29283396 PMCID: PMC5872075 DOI: 10.3390/jpm8010001] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
CYP2C9 is the most abundant CYP2C subfamily enzyme in human liver and the most important contributor from this subfamily to drug metabolism. Polymorphisms resulting in decreased enzyme activity are common in the CYP2C9 gene and this, combined with narrow therapeutic indices for several key drug substrates, results in some important issues relating to drug safety and efficacy. CYP2C9 substrate selectivity is detailed and, based on crystal structures for the enzyme, we describe how CYP2C9 catalyzes these reactions. Factors relevant to clinical response to CYP2C9 substrates including inhibition, induction and genetic polymorphism are discussed in detail. In particular, we consider the issue of ethnic variation in pattern and frequency of genetic polymorphisms and clinical implications. Warfarin is the most well studied CYP2C9 substrate; recent work on use of dosing algorithms that include CYP2C9 genotype to improve patient safety during initiation of warfarin dosing are reviewed and prospects for their clinical implementation considered. Finally, we discuss a novel approach to cataloging the functional capabilities of rare 'variants of uncertain significance', which are increasingly detected as more exome and genome sequencing of diverse populations is conducted.
Collapse
Affiliation(s)
- Ann K Daly
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Douglas M Fowler
- Department of Genome Sciences and Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - John O Miners
- Department of Clinical Pharmacology, Flinders University School of Medicine, Adelaide 5042, Australia.
| |
Collapse
|
5
|
Polonikov A, Kharchenko A, Bykanova M, Sirotina S, Ponomarenko I, Bocharova A, Vagaytseva K, Stepanov V, Bushueva O, Churnosov M, Solodilova M. Polymorphisms of CYP2C8, CYP2C9 and CYP2C19 and risk of coronary heart disease in Russian population. Gene 2017; 627:451-459. [PMID: 28687336 DOI: 10.1016/j.gene.2017.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/12/2017] [Accepted: 07/02/2017] [Indexed: 12/22/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are important vasoactive products of arachidonic acid metabolism with a wide range of biological actions in the cardiovascular system. The present study investigated whether single nucleotide polymorphisms (SNP) of genes coding cytochrome P450 2C subfamily, enzymes involved in biosynthesis of EETs, are associated with the risk of coronary heart disease (CHD). A total of 1255 unrelated Russian subjects comprising 561 patients with angiographically diagnosed CHD and 694 age- and sex-matched healthy subjects were included in the study. DNA samples from all study participants were genotyped for six common SNPs rs7909236, rs1934953 of CYP2C8, rs9332242, rs4918758 and rs61886769 of CYP2C9 and rs4244285 of CYP2C19 using by the Mass-ARRAY 4 system. SNP rs4918758 of CYP2C9 was associated with decreased risk of CHD (codominant model) at a borderline significance with odds ratio adjusted for sex and age 0.61 (95% CI: 0.41-0.92, P=0.038, Q=0.20). SNP rs9332242 of CYP2C9 showed a trend towards association with increased CHD risk in cigarette smokers (P=0.049, Q=0.29). Log-likelihood ratio test (LRT) pointed out epistatic interactions between rs9332242 and rs61886769 of CYP2C9 (codominant model, Pinteraction=0.02), however, this P-value did not survive after correction for multiple tests. Bioinformatic analysis revealed a regulatory potential for a majority of the investigated SNPs. Our preliminary results demonstrate that polymorphisms of genes encoding CYP2C subfamily represent potential genetic markers of CHD susceptibility. Further studies are required to substantiate the contribution of these genes to the disease risk.
Collapse
Affiliation(s)
- Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation; Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation.
| | - Alexander Kharchenko
- Department of Internal Medicine, Kursk State Medical University, 14 Pirogova St., Kursk 305035, Russian Federation
| | - Marina Bykanova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation; Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Svetlana Sirotina
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation
| | - Irina Ponomarenko
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation
| | - Anna Bocharova
- Evolutionary Genetics Laboratory, Research Institute of Medical Genetics, Tomsk National Medical Research Center, 10 Nabereznaya Ushaiki, Tomsk 634050, Russian Federation
| | - Kseniya Vagaytseva
- Evolutionary Genetics Laboratory, Research Institute of Medical Genetics, Tomsk National Medical Research Center, 10 Nabereznaya Ushaiki, Tomsk 634050, Russian Federation
| | - Vadim Stepanov
- Evolutionary Genetics Laboratory, Research Institute of Medical Genetics, Tomsk National Medical Research Center, 10 Nabereznaya Ushaiki, Tomsk 634050, Russian Federation
| | - Olga Bushueva
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation; Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobeda St., Belgorod 308015, Russian Federation
| | - Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation
| |
Collapse
|
6
|
Mei S, Feng W, Zhu L, Yu Y, Yang W, Gao B, Wu X, Zhao Z, Fang F. Genetic polymorphisms and valproic acid plasma concentration in children with epilepsy on valproic acid monotherapy. Seizure 2017; 51:22-26. [PMID: 28763744 DOI: 10.1016/j.seizure.2017.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 01/07/2023] Open
Abstract
PURPOSE The aim of the study is to evaluate the association between genetic polymorphisms and valproic acid (VPA) concentration to dose ratio in children with epilepsy on VPA monotherapy. METHODS A total of 137 children, aged 3.5-18 years, (89 males and 48 females) with epilepsy on sustained-release VPA monotherapy were enrolled. Trough plasma concentrations of VPA at steady-state were measured using an AXSYM automatic immunity analyzer. The values were divided by body weight and total daily dose to calculate concentration to dose ratio of VPA (CDRV). Forty-eight single nucleotide polymorphisms involved in the pharmacokinetics of VPA were identified by MassARRAY system. The logarithmic transformed CDRV (lnCDRV) was normally distributed, and PLINK software was used to evaluate the association between genetic polymorphisms and lnCDRV using linear regression adjusted for gender and seizure type. RESULTS rs28898617 (UGT1A3/4/5/6/7/8/9/10, BETA=0.32, P=0.0089) was significantly associated with higher lnCDRV. No other associations were found. CONCLUSIONS In pediatric patients taking VPA monotherapy, rs28898617 was associated with a higher normalized VPA plasma concentration. Further studies are warranted to confirm the results.
Collapse
Affiliation(s)
- Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100045, China
| | - Weixing Feng
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China; Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Leting Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Yazhen Yu
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Weili Yang
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Baoqin Gao
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaojuan Wu
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100045, China.
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China.
| |
Collapse
|
7
|
Effects of UGT1A6 and GABRA1 on Standardized Valproic Acid Plasma Concentrations and Treatment Effect in Children With Epilepsy in China. Ther Drug Monit 2016; 38:738-743. [DOI: 10.1097/ftd.0000000000000337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Ochoa D, Prieto-Pérez R, Román M, Talegón M, Rivas A, Galicia I, Abad-Santos F, Cabaleiro T. Effect of gender and CYP2C9 and CYP2C8 polymorphisms on the pharmacokinetics of ibuprofen enantiomers. Pharmacogenomics 2015; 16:939-48. [PMID: 26122864 DOI: 10.2217/pgs.15.40] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM To evaluate the effect of polymorphisms in CYP2C9 and CYP2C8 and gender on the pharmacokinetics of the enantiomeric forms of ibuprofen. MATERIALS & METHODS 122 healthy volunteers were genotyped for polymorphisms in CY2C8 and CYP2C9 using real-time PCR. RESULTS CYP2C8 polymorphisms affected neither R- nor S-ibuprofen. CYP2C9*3 and CYP2C9*2 carriers had a lower S-ibuprofen clearance and a higher S-ibuprofen AUC and half-life. R-ibuprofen clearance was decreased in CYP2C9*3 carriers. Gender affected R-ibuprofen and S-ibuprofen pharmacokinetics. Multiple regression analysis showed that CYP2C9*2, CYP2C9*3 and gender were associated with S-ibuprofen clearance, but only CYP2C9*3 was associated with R-ibuprofen clearance. CONCLUSION The pharmacokinetics of S-ibuprofen and R-ibuprofen is affected by CYP2C9 polymorphisms and gender. CYP2C8 polymorphisms do not have a significant role. Original submitted 6 February 2015; Revision submitted 1 April 2015.
Collapse
Affiliation(s)
- Dolores Ochoa
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP), Diego de León 62, 28006 Madrid, Spain
| | - Rocío Prieto-Pérez
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP), Diego de León 62, 28006 Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP), Diego de León 62, 28006 Madrid, Spain
| | - María Talegón
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP), Diego de León 62, 28006 Madrid, Spain
| | - Angela Rivas
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP), Diego de León 62, 28006 Madrid, Spain
| | - Ignacio Galicia
- Fundación Teófilo Hernando, Parque Científico de Madrid - Edificio CLAID, C/Faraday 7 - Campus de Cantoblanco, 28049 Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP), Diego de León 62, 28006 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Teresa Cabaleiro
- Clinical Pharmacology Service, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP), Diego de León 62, 28006 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
9
|
Sasaki T, Takahashi S, Numata Y, Narita M, Tanaka Y, Kumagai T, Kondo Y, Matsunaga T, Ohmori S, Nagata K. Hepatocyte Nuclear Factor 6 Activates the Transcription of CYP3A4 in Hepatocyte-like Cells Differentiated from Human Induced Pluripotent Stem Cells. Drug Metab Pharmacokinet 2013; 28:250-9. [DOI: 10.2133/dmpk.dmpk-12-rg-132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Cabaleiro T, Román M, Ochoa D, Talegón M, Prieto-Pérez R, Wojnicz A, López-Rodríguez R, Novalbos J, Abad-Santos F. Evaluation of the relationship between sex, polymorphisms in CYP2C8 and CYP2C9, and pharmacokinetics of angiotensin receptor blockers. Drug Metab Dispos 2013; 41:224-9. [PMID: 23118328 DOI: 10.1124/dmd.112.046292] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Angiotensin II receptor blockers (ARBs) are used to treat hypertension. Most ARBs are metabolized by CYP2C9. The aim of this study is to evaluate the possible association between sex, polymorphisms in the CYP2C8 and CYP2C9 genes, and the pharmacokinetics of losartan, valsartan, candesartan, and telmisartan. The study population comprised 246 healthy volunteers from seven single-dose clinical trials: 64 from two candesartan studies, 43 from a telmisartan study, 36 from a losartan study, and 103 from three valsartan studies. DNA was extracted from blood samples and single-nucleotide polymorphisms in the CYP2C8 (CYP2C8*2, CYP2C8*3, CYP2C8*4, CYP2C8*5) and CYP2C9 (CYP2C9*2, CYP2C9*3) genes were evaluated using real-time polymerase chain reaction. Sex only affected telmisartan pharmacokinetics, since women showed a higher telmisartan C(max) than men (590.5 ± 75.8 ng/ml versus 282.1 ± 30.8 ng/ml; P ≤ 0.01). CYP2C9 variants were associated only with losartan pharmacokinetics: the half-life of losartan was higher in CYP2C9*3 allele carriers (3.1 ± 0.4 hours) than in volunteers with the wild-type genotype (2.3 ± 0.1 hours) (P ≤ 0.05). CYP2C8 polymorphisms were associated only with valsartan pharmacokinetics, since *2 allele carriers showed faster clearance (1.07 ± 0.57 l/h·kg) than those with the wild-type genotype (0.48 ± 0.72 l/h·kg; P ≤ 0.01) and carriers of the *3 allele (0.35 ± 0.49 l/h·kg; P ≤ 0.001). These results suggest that genotypes for CYP2C9 and CYP2C8 are relevant to the pharmacokinetics of losartan and valsartan, respectively, but not the pharmacokinetics of candesartan or telmisartan.
Collapse
Affiliation(s)
- Teresa Cabaleiro
- Service of Clinical Pharmacology, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Georgitsi M, Zukic B, Pavlovic S, Patrinos GP. Transcriptional regulation and pharmacogenomics. Pharmacogenomics 2012; 12:655-73. [PMID: 21619428 DOI: 10.2217/pgs.10.215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Interindividual variable drug response is correlated with sequence alterations in genes encoding drug-metabolizing enzymes and transporters, affecting drug absorption, distribution, metabolism and excretion. This variable drug response may have an impact on disease therapeutic outcomes, tolerance to adverse drug reactions and even survival. Sequence alterations may occur not only within the coding region of a gene, but in its regulatory elements too, affecting gene transcription and gene-expression levels. Here, we provide a compilation of the current knowledge of pharmacogenomics related to transcription, with a focus on the effect of SNPs and short tandem repeats residing in cis-regulatory elements of 11 genes encoding for drug-metabolizing enzymes and drug transporters. In addition, we comment on two genes encoding enzymes that are drug targets themselves. Finally, we briefly discuss the currently available methodologies for clinically assessing pharmacogenomic profiles, which could potentially in the future facilitate drug treatment-individualization via the identification of molecular signatures in specific patient groups.
Collapse
Affiliation(s)
- Marianthi Georgitsi
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Rion, Patras, Greece
| | | | | | | |
Collapse
|
12
|
Wang D, Sun X, Gong Y, Gawronski BE, Langaee TY, Shahin MHA, Khalifa SI, Johnson JA. CYP2C9 promoter variable number tandem repeat polymorphism regulates mRNA expression in human livers. Drug Metab Dispos 2012; 40:884-91. [PMID: 22289258 PMCID: PMC3336799 DOI: 10.1124/dmd.111.044255] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/30/2012] [Indexed: 12/13/2022] Open
Abstract
CYP2C9 is involved in metabolism of nearly 25% of clinically used drugs. Coding region polymorphisms CYP2C9*2 and *3 contribute to interperson variability in drug dosage and clinical outcomes, whereas the role of a regulatory polymorphism remains uncertain. Measuring allelic RNA expression in 87 human liver samples, combined with genotyping, sequencing, and reporter gene assays, we identified a promoter variable number tandem repeat polymorphism (pVNTR) that fully accounted for allelic CYP2C9 mRNA expression differences. Present in three different variant forms [short (pVNTR-S), medium (pVNTR-M), and long (pVNTR-L)], only the pVNTR-S allele reduced the CYP2C9 mRNA level compared with the pVNTR-M (reference) allele. pVNTR-S is in linkage disequilibrium with *3, with linkage disequilibrium r(2) of 0.53 to 0.75 in different populations. In patients who were taking a maintenance dose of warfarin, the mean warfarin dose was associated with the copies of pVNTR-S (p = 0.0001). However, in multivariate regression models that included the CYP2C9*3, pVNTR-S was no longer a significant predictor of the warfarin dose (p = 0.60). These results indicate that although pVNTR-S reduced CYP2C9 mRNA expression, the in vivo effects of pVNTR-S on warfarin metabolism cannot be separated from the effects of *3. Therefore, it is not necessary to consider pVNTR-S as an additional biomarker for warfarin dosing. Larger clinical studies are needed to define whether the pVNTR-S has a minimal effect in vivo, or whether the effect attributed to *3 is really a combination of effects on expression by the pVNTR-S along with effects on catalytic activity from the nonsynonymous *3 variant.
Collapse
Affiliation(s)
- Danxin Wang
- Program in Pharmacogenomics, Department of Pharmacology, School of Medicine, The Ohio State University, 333 West 10th Ave., Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lee IS, Kim D. Polymorphic metabolism by functional alterations of human cytochrome P450 enzymes. Arch Pharm Res 2011; 34:1799-816. [PMID: 22139682 DOI: 10.1007/s12272-011-1103-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/24/2011] [Indexed: 10/14/2022]
Abstract
The study of cytochrome P450 pharmacogenomics is of particular interest because of its promise in the development of rational means to optimize drug therapy with respect to patient's genotype to ensure maximum efficacy with minimal adverse effects. Drug metabolizing P450 enzymes are polymorphic and are the main phase I enzymes responsible for the metabolism of clinical drugs. Therefore, polymorphisms in the P450s have the most impact on the fate of clinical drugs in phase I metabolism since almost 80% of drugs in use today are metabolized by these enzymes. Predictive genotyping for P450 enzymes for a more effective therapy will be routine for specific drugs in the future. In this review, we discuss the current knowledge of polymorphic metabolism by functional alterations in nonsynonymous SNPs of P450 1A2, 2A6, 2C8, 2C9, 2C19, 2D6, and 3A4 enzymes.
Collapse
Affiliation(s)
- Im-Soon Lee
- Department of Biological Sciences and Center for Biotechnology Research in UBITA, Konkuk University, Seoul 143-701, Korea
| | | |
Collapse
|
14
|
Genetically Polymorphic Cytochrome P450s and Transporters and Personalized Antimicrobial Chemotherapy. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Deenen MJ, Cats A, Beijnen JH, Schellens JHM. Part 2: pharmacogenetic variability in drug transport and phase I anticancer drug metabolism. Oncologist 2011; 16:820-34. [PMID: 21632461 DOI: 10.1634/theoncologist.2010-0259] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Equivalent drug doses in anticancer chemotherapy may lead to wide interpatient variability in drug response reflected by differences in treatment response or in severity of adverse drug reactions. Differences in the pharmacokinetic (PK) and pharmacodynamic (PD) behavior of a drug contribute to variation in treatment outcome among patients. An important factor responsible for this variability is genetic polymorphism in genes that are involved in PK/PD processes, including drug transporters, phase I and II metabolizing enzymes, and drug targets, and other genes that interfere with drug response. In order to achieve personalized pharmacotherapy, drug dosing and treatment selection based on genotype might help to increase treatment efficacy while reducing unnecessary toxicity. We present a series of four reviews about pharmacogenetic variability in anticancer drug treatment. This is the second review in the series and is focused on genetic variability in genes encoding drug transporters (ABCB1 and ABCG2) and phase I drug-metabolizing enzymes (CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, DPYD, CDA and BLMH) and their associations with anticancer drug treatment outcome. Based on the literature reviewed, opportunities for patient-tailored anticancer therapy are presented.
Collapse
Affiliation(s)
- Maarten J Deenen
- Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
16
|
Springer JA, Iannotti NV, Kane MD, Haynes K, Sprague JE. Pharmacogenomics training using an instructional software system. AMERICAN JOURNAL OF PHARMACEUTICAL EDUCATION 2011; 75:32. [PMID: 21519421 PMCID: PMC3073107 DOI: 10.5688/ajpe75232] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/15/2010] [Indexed: 05/09/2023]
Abstract
OBJECTIVES To implement an elective course in pharmacogenomics designed to teach pharmacy students about the fundamentals of pharmacogenomics and the anticipated changes it will bring to the profession. DESIGN The 8 sessions of the course covered the basics of pharmacogenomics, genomic biotechnology, implementation of pharmacogenetics in pharmacy, information security and privacy, ethical issues related to the use of genomic data, pharmacoepidemiology, and use and promotion of GeneScription, a software program designed to mimic the professional pharmacy environment. ASSESSMENT Student grades were based on completion of a patient education pamphlet, a 2-page paper on pharmacogenomics, and precourse and postcourse survey instruments. In the postcourse survey, all students strongly agreed that genomic data could be used to determine the optimal dose of a drug and genomic data for metabolizing enzymes could be stored in a safe place. Students also were more willing to submit deoxyribonucleic acid (DNA) data for genetic profiling and better understood how DNA analysis is performed after completing the course. CONCLUSIONS An elective course in pharmacogenomics equipped pharmacy students with the basic knowledge necessary to make clinical decisions based on pharmacogenomic data and to teach other healthcare professionals and patients about pharmacogenomics. For personalized medicine to become a reality, all pharmacists and pharmacy students must learn this knowledge and these skills.
Collapse
Affiliation(s)
- John A. Springer
- Department of Computer and Information Technology, Purdue University
| | | | - Michael D. Kane
- Department of Computer and Information Technology, Purdue University
- Raabe College of Pharmacy, Ohio Northern University
| | | | | |
Collapse
|
17
|
Lee SJ, Jang YJ, Cha EY, Kim HS, Lee SS, Shin JG. A haplotype of CYP2C9 associated with warfarin sensitivity in mechanical heart valve replacement patients. Br J Clin Pharmacol 2011; 70:213-21. [PMID: 20653674 DOI: 10.1111/j.1365-2125.2010.03688.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT * CYP2C9 single nucleotide polymorphisms (SNPs) are important in safe and effective oral anticoagulation with warfarin use. * Although CYP2C9*2 and *3 are important genetic factors for the warfarin dose, one of the CYP2C9 SNPs, IVS-65G>C, has been suggested to be associated with warfarin sensitivity. However, as of yet, there has been no explanation about the possible mechanism and linkage analysis. WHAT THIS PAPER ADDS * New information on CYP2C9 SNPs and their occurrences in common haplotype structures in healthy unrelated Koreans and in individuals who require low warfarin dose after mechanical heart valve replacements (MHVRs) were studied. * Additional evidence showed that an Asian dominant haplotype consisting of -1565C>T, -1188T>C, IVS3+197G>A, IVS3-334C>T, IVS3-65G>C, IVS4-115A>G and IVS5-73A>G could be associated with a low warfarin maintenance dose in mechanical heart valve replacement (MHVR) patients. AIMS The objectives of this study were to determine the distribution of CYP2C9 variants in Koreans and investigate their association with warfarin dose requirements in patients who received MHVRs. METHODS All nine exons, intron-exon junction, and promoter region of CYP2C9 were amplified and directly sequenced in 50 healthy normal Koreans. Additional direct DNA sequencing of the CYP2C9 gene was conducted in 36 of the 267 MHVR patients who required low maintenance warfarin doses without carrying CYP2C9*3 and VKORC1 1173T mutations. The effects of CYP2C9 genetics on warfarin maintenance dose were assessed in 267 MHVR patients. RESULTS Thirty-nine single nucleotide polymorphisms (SNPs) including seven previously unidentified SNPs were identified in 50 Koreans by direct DNA sequencing. One of the CYP2C9 haplotypes exhibited an association with warfarin low dose requirement. The adjusted odds ratio for the haplotype between the low dose group and the normal subjects was 2.5 (95% confidence interval 1.05, 6.16). This haplotype consisting of -1565C>T, -1188T>C, IVS3+197G>A, IVS3-334C>T, IVS3-65G>C, IVS4-115A>G, and IVS5-73A>G was found in 15% of 36 MHVR patients who required low warfarin doses, while 4% of 50 normal healthy subjects exhibited this haplotype. One of the SNPs comprising this haplotype, -1565C>T, apparently changed a protein binding pattern as observed in electrophoretic mobility shift assay. CONCLUSION The haplotype including -1565C>T, -1188T>C, IVS3+197G>A, IVS3-334C>T, IVS3-65G>C, IVS4-115A>G, and IVS5-73A>G seems to be associated with low warfarin dose requirement and this haplotype could be considered in the development of a warfarin dose prediction model for Asian populations.
Collapse
Affiliation(s)
- Su-Jun Lee
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, Korea
| | | | | | | | | | | |
Collapse
|
18
|
Seripa D, Pilotto A, Panza F, Matera MG, Pilotto A. Pharmacogenetics of cytochrome P450 (CYP) in the elderly. Ageing Res Rev 2010; 9:457-74. [PMID: 20601196 DOI: 10.1016/j.arr.2010.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/28/2010] [Accepted: 06/01/2010] [Indexed: 12/22/2022]
Abstract
The genetics of cytochrome P450 (CYP) is a very active area of multidisciplinary research, overlapping the interest of medicine, biology and pharmacology, being the CYP enzyme system responsible for the metabolism of more than 80% of the commercially available drugs. Variations in CYP encoding genes are responsible for inter-individual differences in CYP production or function, with severe clinical consequences as therapeutic failures (TFs) and adverse drug reactions (ADRs), being ADRs worldwide primary causes of morbidity and mortality in elderly people. In fact, the prevalence of both TFs and ADRs strongly increased in the presence of multiple pharmacological treatments, a common status in subjects aging 65 years and over. The present article explored some basic concepts of human genetics that have important implications in the genetics of CYP. An attempted to transfer these basic concepts to the genetic data reported by the Home Page of The Human Cytochrome P450 (CYP) Allele Nomenclature Committee was also made, focusing on the current knowledge of CYP genetics. The status of what we know and what we need to know is the base for the clinical applications of pharmacogenetics, in which personalized drug treatments constituted the main aim, in particular in patients attending a geriatric ward.
Collapse
Affiliation(s)
- Davide Seripa
- Geriatric Unit & Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo (FG), Italy.
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Pharmacogénétique et antivitamine K aujourd’hui : un débat ouvert. Rev Med Interne 2010; 31:361-8. [DOI: 10.1016/j.revmed.2009.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/03/2009] [Accepted: 07/08/2009] [Indexed: 11/22/2022]
|
21
|
Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41:89-295. [PMID: 19514967 DOI: 10.1080/03602530902843483] [Citation(s) in RCA: 536] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pharmacogenetics is the study of how interindividual variations in the DNA sequence of specific genes affect drug response. This article highlights current pharmacogenetic knowledge on important human drug-metabolizing cytochrome P450s (CYPs) to understand the large interindividual variability in drug clearance and responses in clinical practice. The human CYP superfamily contains 57 functional genes and 58 pseudogenes, with members of the 1, 2, and 3 families playing an important role in the metabolism of therapeutic drugs, other xenobiotics, and some endogenous compounds. Polymorphisms in the CYP family may have had the most impact on the fate of therapeutic drugs. CYP2D6, 2C19, and 2C9 polymorphisms account for the most frequent variations in phase I metabolism of drugs, since almost 80% of drugs in use today are metabolized by these enzymes. Approximately 5-14% of Caucasians, 0-5% Africans, and 0-1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant enzyme that demonstrates multiple genetic variants with a potentially functional impact on the efficacy and adverse effects of drugs that are mainly eliminated by this enzyme. Studies into the CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and *3 alleles. Extensive polymorphism also occurs in other CYP genes, such as CYP1A1, 2A6, 2A13, 2C8, 3A4, and 3A5. Since several of these CYPs (e.g., CYP1A1 and 1A2) play a role in the bioactivation of many procarcinogens, polymorphisms of these enzymes may contribute to the variable susceptibility to carcinogenesis. The distribution of the common variant alleles of CYP genes varies among different ethnic populations. Pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and currently available drugs. Further studies are warranted to explore the gene-dose, gene-concentration, and gene-response relationships for these important drug-metabolizing CYPs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | |
Collapse
|
22
|
Zhou SF, Zhou ZW, Huang M. Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology 2009; 278:165-88. [PMID: 19715737 DOI: 10.1016/j.tox.2009.08.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 12/19/2022]
Abstract
Human cytochrome P450 2C9 (CYP2C9) accounts for ∼20% of hepatic total CYP content and metabolizes ~15% clinical drugs such as phenytoin, S-warfarin, tolbutamide, losartan, and many nonsteroidal anti-inflammatory agents (NSAIDs). CYP2C9 is highly polymorphic, with at least 33 variants of CYP2C9 (*1B through *34) being identified so far. CYP2C9*2 is frequent among Caucasians with ~1% of the population being homozygous carriers and 22% are heterozygous. The corresponding figures for the CYP2C9*3 allele are 0.4% and 15%, respectively. There are a number of clinical studies addressing the impact of CYP2C9 polymorphisms on the clearance and/or therapeutic response of therapeutic drugs. These studies have highlighted the importance of the CYP2C9*2 and *3 alleles as a determining factor for drug clearance and drug response. The CYP2C9 polymorphisms are relevant for the efficacy and adverse effects of numerous NSAIDs, sulfonylurea antidiabetic drugs and, most critically, oral anticoagulants belonging to the class of vitamin K epoxide reductase inhibitors. Warfarin has served as a practical example of how pharmacogenetics can be utilized to achieve maximum efficacy and minimum toxicity. For many of these drugs, a clear gene-dose and gene-effect relationship has been observed in patients. In this regard, CYP2C9 alleles can be considered as a useful biomarker in monitoring drug response and adverse effects. Genetic testing of CYP2C9 is expected to play a role in predicting drug clearance and conducting individualized pharmacotherapy. However, prospective clinical studies with large samples are warranted to establish gene-dose and gene-effect relationships for CYP2C9 and its substrate drugs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Victoria 3083, Australia.
| | | | | |
Collapse
|
23
|
Sánchez-Diz P, Estany-Gestal A, Aguirre C, Blanco A, Carracedo A, Ibáñez L, Passiu M, Provezza L, Ramos-Ruiz R, Ruiz B, Salado-Valdivieso I, Velasco EA, Figueiras A. Prevalence of CYP2C9 polymorphisms in the south of Europe. THE PHARMACOGENOMICS JOURNAL 2009; 9:306-10. [PMID: 19381164 DOI: 10.1038/tpj.2009.16] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CYP2C9 is a major liver enzyme responsible of the metabolism of many clinically important drugs. The presence of CYP2C9 genetic polymorphisms has been associated with marked interindividual variability in its catalytic activity that could result in drug toxicity. Here we present frequencies of the most common CYP2C9 coding variants CYP2C9*2 (C430T) and CYP2C9*3 (A1075C) in representative samples of four regions from Spain (Basque Country, n=358; Catalonia, n=240; Central Spain, n=190 and Galicia, n=288) and one northern Italian region, (Verona, n=164), which range between 0.125 and 0.165 in the case of CYP2C9*2 and between 0.071 and 0.085 for CYP2C9*3. No significant differences between CYP2C9 allele frequencies were found comparing all the sampled populations. A more extensive comparative analysis using allele frequency data of populations widely spread over Europe was performed, showing significant differences in the CYP2C9*2 allele frequencies distribution between some of the regions, being quite homogeneous in the case of CYP2C9*3 variant. The results obtained show that above 40% of our samples carry a mutate allele, which can result in a poor metabolization of low therapeutic index drugs as oral anticoagulants (warfarin, acenocoumarol), oral antidiabetic drugs and some non-steroidal anti-inflammatory drugs. Our study constitutes both a large (n=1240) and robust allele frequency database on CYP2C9 polymorphisms, which represents one of the most numerous CYP2C9*2 and *3 database existing to date.
Collapse
Affiliation(s)
- Paula Sánchez-Diz
- Genomics Medicine Group, Institute of Legal Medicine, University of Santiago de Compostela, CIBER for Rare Diseases (CIBERER), 15782 Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vormfelde SV, Brockmöller J, Bauer S, Herchenhein P, Kuon J, Meineke I, Roots I, Kirchheiner J. Relative impact of genotype and enzyme induction on the metabolic capacity of CYP2C9 in healthy volunteers. Clin Pharmacol Ther 2009; 86:54-61. [PMID: 19369937 DOI: 10.1038/clpt.2009.40] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pharmacokinetics in individual subjects is determined by genes and environment. The relative contributions of enzyme induction and inherited genomic variation to cytochrome P450 enzyme 2C9 (CYP2C9) activity are unknown. In 130 volunteers, CYP2C9 activity was measured in vivo using tolbutamide as a probe drug. Tolbutamide was administered orally, and the pharmacokinetics of the drug was analyzed twice--before and after four doses of 450 mg rifampin. Mean total apparent clearances (Cl/F) in the genotype groups CYP2C9*1/*1, *1/*2, *1/*3, *2/*3, and *3/*3 before rifampin were 0.78, 0.74, 0.52, 0.40, and 0.13 l/h, respectively. After rifampin administration, these clearances increased in all genotype groups by a median factor of 1.9 (range 1.1-4.8). The combined effects of genes and environment could be predicted by a simple additive model. Thus, enzyme induction resulted in an approximately twofold difference in CYP2C9 activity, irrespective of the CYP2C9 genotypes. But the difference in activity levels between the CYP2C9*1/*1 and *3/*3 genotypes before the administration of rifampin was sixfold.
Collapse
Affiliation(s)
- S V Vormfelde
- Department of Clinical Pharmacology, University Medical Center of the Georg August University Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Goldstein JA, Blaisdell JA, Limdi NA. A potentially deleterious new CYP2C9 polymorphism identified in an African American patient with major hemorrhage on warfarin therapy. Blood Cells Mol Dis 2008; 42:155-8. [PMID: 19083245 DOI: 10.1016/j.bcmd.2008.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
|
26
|
Hines RN, Koukouritaki SB, Poch MT, Stephens MC. Regulatory Polymorphisms and their Contribution to Interindividual Differences in the Expression of Enzymes Influencing Drug and Toxicant Disposition. Drug Metab Rev 2008; 40:263-301. [DOI: 10.1080/03602530801952682] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Kramer MA, Rettie AE, Rieder MJ, Cabacungan ET, Hines RN. Novel CYP2C9 promoter variants and assessment of their impact on gene expression. Mol Pharmacol 2008; 73:1751-60. [PMID: 18310303 PMCID: PMC2413059 DOI: 10.1124/mol.107.044149] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There are a considerable number of reports identifying and characterizing genetic variants within the CYP2C9 coding region. Much less is known about polymorphic promoter sequences that also might contribute to interindividual differences in CYP2C9 expression. To address this problem, approximately 10,000 base pairs of CYP2C9 upstream information were resequenced using 24 DNA samples from the Coriell Polymorphism Discovery Resource. Thirty-one single-nucleotide polymorphisms (SNPs) were identified; nine SNPs were novel, whereas 22 were reported previously. Using both sequencing and multiplex single-base extension, individual SNP frequencies were determined in 193 DNA samples obtained from unrelated, self-reported Hispanic Americans of Mexican descent, and they were compared with similar data obtained from a non-Latino white cohort. Significant interethnic differences were observed in several SNP frequencies, some of which seemed unique to the Hispanic population. Analysis using PHASE 2.1 inferred nine common (>1%) variant haplotypes, two of which included the g.3608C>T (R144C) CYP2C9(*)2 and two the g.42614A>C (I359L) CYP2C9(*)3 SNPs. Haplotype variants were introduced into a CYP2C9/luciferase reporter plasmid using site-directed mutagenesis, and the impact of the variants on promoter activity assessed by transient expression in HepG2 cells. Both constitutive and pregnane X receptor-mediated inducible activities were measured. Haplotypes 1B, 3A, and 3B each exhibited a 65% decrease in constitutive promoter activity relative to the reference haplotype. Haplotypes 1D and 3B exhibited a 50% decrease and a 40% increase in induced promoter activity, respectively. These data suggest that genetic variation within CYP2C9 regulatory sequences is likely to contribute to differences in CYP2C9 phenotype both within and among different populations.
Collapse
Affiliation(s)
- Melissa A Kramer
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI 53226, USA
| | | | | | | | | |
Collapse
|
28
|
YIN T, MAEKAWA K, KAMIDE K, SAITO Y, HANADA H, MIYASHITA K, KOKUBO Y, AKAIWA Y, OTSUBO R, NAGATSUKA K, OTSUKI T, HORIO T, TAKIUCHI S, KAWANO Y, MINEMATSU K, NARITOMI H, TOMOIKE H, SAWADA JI, MIYATA T. Genetic Variations of CYP2C9 in 724 Japanese Individuals and Their Impact on the Antihypertensive Effects of Losartan. Hypertens Res 2008; 31:1549-57. [DOI: 10.1291/hypres.31.1549] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Ohkubo A, Tanaka K, Taguchi H, Seio K, Nagasawa H, Tsukahara T, Sekine M. An effective method for the in situ synthesis of DNA-CPG conjugates using chemical ligation technology as tools for SNP analysis. Bioorg Med Chem Lett 2007; 17:5969-73. [PMID: 17845851 DOI: 10.1016/j.bmcl.2007.07.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/17/2007] [Accepted: 07/19/2007] [Indexed: 10/22/2022]
Abstract
In this paper, we report a new method for the SNP analysis by using a chemical ligation (CL) technique on CPG plates with high coupling efficiency. This method showed markedly high match/mismatch discrimination ability. Particularly, replacement of thymidine with 2-thiothymidine in DNA probes used in the CL technology resulted in significant improvement of the base discrimination ability of the thymine base in this system.
Collapse
Affiliation(s)
- Akihiro Ohkubo
- 4259, Nagatsuta, Department of Life Science, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Pilotto A, Seripa D, Franceschi M, Scarcelli C, Colaizzo D, Grandone E, Niro V, Andriulli A, Leandro G, Di Mario F, Dallapiccola B. Genetic susceptibility to nonsteroidal anti-inflammatory drug-related gastroduodenal bleeding: role of cytochrome P450 2C9 polymorphisms. Gastroenterology 2007; 133:465-471. [PMID: 17681167 DOI: 10.1053/j.gastro.2007.05.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 04/26/2007] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND AIMS Several nonsteroidal anti-inflammatory drugs (NSAIDs) are metabolized by the cytochrome P450 2C9 (CYP2C9). Two common variants of the CYP2C9 gene (CYP2C9*2 and *3) were reported to significantly affect the activity of the CYP2C9 enzyme. The aim of this study was to evaluate the impact of CYP2C9 polymorphisms on the risk of gastroduodenal bleeding in acute NSAID users. METHODS This case-control study included 26 patients with endoscopically documented NSAID-related gastroduodenal bleeding lesions and 52 age-, sex- and NSAID use-matched controls with no lesions at endoscopy. Both cases and controls were Helicobacter pylori negative and acute users of an NSAID or cycloxygenase-2 inhibitor that undergoes CYP2C9 metabolism (ie, celecoxib, diclofenac, ibuprofen, naproxen, or piroxicam). Two marker single nucleotide polymorphisms in the CYP2C9 gene, identifying the CYP2C9 *2 and *3 allele, were evaluated in all subjects. RESULTS Setting the CYP2C9*1/*1 wild type as reference, significantly higher frequencies of CYP2C9*1/*3 (34.6% vs 5.8%; P < .001; odds ratio [OR], 12.9; 95% confidence interval [CI], 2.917-57.922) and CYP2C9*1/*2 (26.9% vs 15.4%; P = .036; OR, 3.8; 95% CI, 1.090-13.190) were identified in bleeding versus control patients, whereas no differences between bleeding and controls were observed in the distribution of CYP2C9*2/*3 heterozygotes. Considering allele carriers, the presence of CYP2C9*3 allele was associated with a significant high risk of bleeding (adjusted OR, 7.3; 95% CI, 2.058-26.004). CONCLUSIONS CYP2C9 genotyping may identify subgroups of persons who potentially are at increased risk of gastroduodenal bleeding when treated with NSAIDs metabolized by CYP2C9. Further studies that evaluate the effectiveness of a strategy using CYP2C9 genotyping in NSAID users are needed before genotyping is introduced into clinical practice.
Collapse
Affiliation(s)
- Alberto Pilotto
- Geriatric Unit, Department of Medical Sciences, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Limdi N, Goldstein J, Blaisdell J, Beasley T, Rivers C, Acton R. Influence of CYP2C9 Genotype on warfarin dose among African American and European Americans. Per Med 2007; 4:157-169. [PMID: 19802360 DOI: 10.2217/17410541.4.2.157] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND: Cytochrome P4502C9 (CYP2C9) plays a vital role in drug metabolism. There has been an increased effort to identify polymorphisms within the gene and determine their clinical consequences. However, most of these efforts have focused on populations of European descent. Herein we report the influence of CYP2C9 genotype on warfarin dose among European American and African American patients. We also identify two new mutations; one in the coding region and one in the non-coding region of the CYP2C9 gene. METHODS: Patients (≥20 years of age) are enrolled after obtaining medical, lifestyle and concomitant medication history. Changes in International Normalized Ratio (INR), warfarin dose, co-medications, diet, physical activity and the occurrence of complications are documented. CYP2C9 genotype was determined using PCR-RFLP and pyrosequencing. Differences in genotype frequencies and HWE assumptions were assessed using χ(2) statistics and exact tests. The genotype dose association was evaluated using multivariable linear regression. RESULTS: This report includes 490 patients (mean age 60.6 ± 15.6, 51.3% men). African American patients comprise 48.9% of the cohort with mean follow-up of 13.5 (±10.6) months. Both the CYP2C9 *2 and *3 allele were more frequent in European Americans (11.24%, 5.1%) compared to African Americans (1.1% and 1.8%). CYP2C9 *5 (0.9%), *6 (0.4%), and *11 (1.1%) variants were only observed in African Americans. The variant genotype is more frequent among European Americans compared to African Americans (29.8% vs. 9.73%, p<0.0001). Warfarin dose was significantly related to CYP2C9 genotype (p<0.0001) both in univariate and multivariate analyses. Multivariable race-specific analyses highlight the contribution of CYP2C9 genotype among European American but not among African American patients. CONCLUSION: The variant CYP2C9 genotype is more frequent among European Americans compared to African Americans. Among African Americans the variant genotype frequency is higher than previously reported. CYP2C9 genotype predicts warfarin dose in European Americans, but not in African Americans.
Collapse
Affiliation(s)
- Na Limdi
- Departments of Neurology, University of Alabama at Birmingham, AL
| | | | | | | | | | | |
Collapse
|
32
|
Martínez C, Blanco G, García-Martín E, Agúndez JAG. [Clinical pharmacogenomics for CYP2C8 and CYP2C9: general concepts and application to the use of NSAIDs]. FARMACIA HOSPITALARIA 2007; 30:240-8. [PMID: 17022718 DOI: 10.1016/s1130-6343(06)73982-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To study the major mutations in genes CYP2C8 and CYP2C9, their frequency in populations of diverse ethnical descent, their analysis methods, and the major drugs with affected metabolism, with a special emphasis on NSAIDs. METHOD Repeated searches of Pubmed (January 1966-January 2006) and Scholar Google were performed. All searches were restricted to studies in humans, and papers not written in Spanish or English were excluded. RESULTS Ten allelic variants of CYP2C8 and 24 of CYP2C have been reported. Not all of them exert a relevant effect on drug metabolism. In Caucasians 22% of CYP2C8 genes and 31% of CYP2C9 genes have mutations. In Asians fewer than 1% and nearly 3% are mutated, respectively. Major identification methods include endonuclease digestion, PCR, pyrosequencing, and microarrays. Not all NSAIDs are exclusive substrates for CYP2C8/9. The usefulness of allelic variant analysis varies with each individual drug. The risk for digestive hemorrhage associated with the CYP2C9 genotype is particularly relevant when using aceclofenac, celecoxib, diclofenac, ibuprofen, indomethacin, lornoxicam, piroxicam, or naproxen. CONCLUSIONS Although CYP2C8/9 activity plays an essential role in the metabolism of and clinical response to many NSAIDs, the use of pharmacogenomic techniques is not equally useful for all these drugs.
Collapse
Affiliation(s)
- C Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Extremadura, Servicio de Cirugía General, Hospital Universitario Infanta Cristina, Badajoz
| | | | | | | |
Collapse
|
33
|
Sunder‐Plassmann R. Cytochrome P450: Another Player in the Myocardial Infarction Game? Adv Clin Chem 2007. [DOI: 10.1016/s0065-2423(06)43008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Ariyoshi N, Shimizu Y, Kobayashi Y, Nakamura H, Nakasa H, Nakazawa K, Ishii I, Kitada M. Identification and Partial Characterization of a Novel CYP2C9 Splicing Variant Encoding a Protein Lacking Eight Amino Acid Residues. Drug Metab Pharmacokinet 2007; 22:187-94. [PMID: 17603219 DOI: 10.2133/dmpk.22.187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CYP2C9 is known as an enzyme responsible for the metabolism of various clinically important drugs. Recently, we cloned a cDNA corresponding to a CYP2C9 splicing variant (SV), which seemed to have an open reading frame of a protein with 482 amino acid residues. To investigate whether or not the SV can be translated as a functionally active protein, we expressed the CYP2C9SV in insect cells, and spectrophotometric and enzymatic properties were characterized. The CYP2C9SV protein showed a typical reduced CO-difference spectrum, indicating that the translated protein binds a heme moiety. However, CYP2C9SV did not metabolize tolbutamide or diclofenac at all, suggesting that the SV protein appeared to lack the ability to catalyze reactions mediated by CYP2C9. Although the CYP2C9SV mRNA was detected in all human liver samples examined in this study by real-time PCR, the level was generally low, ranging between 0.7 and 9.6% of the normal CYP2C9 mRNA. These results suggest that the CYP2C9SV protein is unlikely to contribute to CYP2C9 activities, although it appears to be expressed in most individuals.
Collapse
Affiliation(s)
- Noritaka Ariyoshi
- Division of Pharmacy, University Hospital, Chiba University School of Medicine, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Vormfelde SV, Schirmer M, Toliat MR, Meineke I, Kirchheiner J, Nürnberg P, Brockmöller J. Genetic variation at the CYP2C locus and its association with torsemide biotransformation. THE PHARMACOGENOMICS JOURNAL 2006; 7:200-11. [PMID: 16969365 DOI: 10.1038/sj.tpj.6500410] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In 97 unselected volunteers and two additional homozygous carriers of CYP2C9(*)3, we investigated the oral clearance of torsemide in relation to 37 polymorphisms at the CYP2C gene locus. Torsemide total oral clearance was linearly associated with the number of CYP2C9(*)3 alleles (geometric mean: 59, 40 and 20 ml/min in carriers of no, one and two alleles) and so were the methyl- and ring-hydroxylation but not the carboxylation clearance. Haplotypes including the CYP2C9(*)3 allele were similarly associated with the clearances but no other variant and no haplotype not including the CYP2C9(*)3 variant. The extended haplotype length (EHL) of the CYP2C9 haplotypes was positively associated with higher activity of the gene product. Torsemide total oral clearance was predictable with r(2)=82.1% using plasma concentrations at 0.5, 1, 2 and 24 h. In conclusion, torsemide's biotransformation strongly depended on the CYP2C9(*)3 variant but no other. Higher clearance CYP2C9 haplotypes appear to be evolutionarily selected.
Collapse
Affiliation(s)
- S V Vormfelde
- Department of Clinical Pharmacology, University Medical Centre, Georg-August-University, Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Maekawa K, Fukushima-Uesaka H, Tohkin M, Hasegawa R, Kajio H, Kuzuya N, Yasuda K, Kawamoto M, Kamatani N, Suzuki K, Yanagawa T, Saito Y, Sawada JI. Four novel defective alleles and comprehensive haplotype analysis of CYP2C9 in Japanese. Pharmacogenet Genomics 2006; 16:497-514. [PMID: 16788382 DOI: 10.1097/01.fpc.0000215069.14095.c6] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genetic variations in cytochrome P450 2C9 (CYP2C9) are known to contribute to interindividual and interethnic variability in response to clinical drugs such as warfarin. In the present study, CYP2C9 from 263 Japanese subjects was resequenced, resulting in the discovery of 62 variations including 32 novel ones. In addition to the two known non-synonymous single nucleotide polymorphisms (SNPs), Ile359Leu (*3; allele frequency=0.030) and Leu90Pro (*13; 0.002), seven novel non-synonymous SNPs, Leu17Ile (0.002), Lys118ArgfsX9 (*25; 0.002), Thr130Arg (*26; 0.002), Arg150Leu (*27; 0.004), Gln214Leu (*28; 0.002), Pro279Thr (*29; 0.002) and Ala477Thr (*30; 0.002), were found. Functional characterization of novel alleles using a mammalian cell expression system in vitro revealed that *25 was a null allele and that *26, *28 and *30 were defective alleles. The *26 product showed a 90% decrease in the Vmax value but little change in the Km value towards diclofenac. Both *28 and *30 products showed two-fold higher Km values and three-fold lower Vmax values than the *1 allele, suggesting the importance of Gln214 and Ala477 for substrate recognition. Linkage disequilibrium and haplotype analyses were performed using the detected variations. Only five haplotypes (frequency >0.02) accounted for most (>87%) of the inferred haplotypes, and they were closely associated with the haplotypes of CYP2C19 in Japanese. Although the haplotype structure of CYP2C9 was rather simple in Japanese, the haplotype distribution was quite different from those previously reported in Caucasians and Africans. Taken together, novel defective alleles and detailed haplotype structures would be useful for determining metabolic phenotypes of CYP2C9 substrate drugs in Japanese and probably Asians.
Collapse
Affiliation(s)
- Keiko Maekawa
- Project Team for Pharmacogenetics, Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Vitamin K antagonists (coumarins) are widely-used oral anticoagulants for the prevention of venous thromboembolism and strokes. Wide inter-individual variation in dose response and frequent bleeds characterize the initiation of coumarin therapy. Over the past 10 years both genetic and nongenetic determinants of coumarin dose response have been identified. A comprehensive pharmacogenetics approach to warfarin therapy has the potential to improve the safety and efficiency of warfarin initiation.
Collapse
Affiliation(s)
- Deepak Voora
- Washington University School of Medicine, Departments of Medicine and of Pathology, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
38
|
Dlugos DJ, Buono RJ, Ferraro TN. Defining the clinical role of pharmacogenetics in antiepileptic drug therapy. THE PHARMACOGENOMICS JOURNAL 2006; 6:357-9. [PMID: 16505830 DOI: 10.1038/sj.tpj.6500379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- D J Dlugos
- Divison of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104-3403, USA
| | | | | |
Collapse
|
39
|
Daly AK, King BP. Contribution of CYP2C9 to variability in vitamin K antagonist metabolism. Expert Opin Drug Metab Toxicol 2006; 2:3-15. [PMID: 16863464 DOI: 10.1517/17425255.2.1.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
CYP2C9 is the third most important cytochrome P450 (CYP) in terms of number of drugs metabolised. A considerable amount of information on this isoform is now available with respect to its structural biology, the mechanisms by which it can be induced and the existence of a range of variant alleles, which are often functionally significant. CYP2C9 makes a very important contribution to metabolism of vitamin K antagonist anticoagulants, and is the main oxidising enzyme for S-warfarin and S-acenocoumarol as well as contributing to phenprocoumon metabolism. A large number of studies have now shown that CYP2C9 genotype predicts dose requirement for both warfarin and acenocoumarol, with a possible contribution for phenprocoumon. Patients with variant alleles are likely to require a lower dose and may be at risk of overcoagulation and resultant bleeding, especially during the induction phase of therapy. Although CYP2C9 genotype is clearly a predictor of vitamin K antagonist dose requirement, especially in Caucasian populations in whom variant alleles are common, a number of recent studies have shown that age, genotype for the gene encoding the target gene vitamin K epoxide reductase and concomitant drugs are equally important factors in determining dose. There is a need for prospective studies to assess the value of predicting dose requirement on the basis of all these factors, including the CYP2C9 genotype.
Collapse
Affiliation(s)
- Ann K Daly
- University of Newcastle Medical School, School of Clinical and Laboratory Sciences, Framlington Place, Newcastle upon Tyne, UK.
| | | |
Collapse
|
40
|
Ferraro TN, Dlugos DJ, Buono RJ. Challenges and opportunities in the application of pharmacogenetics to antiepileptic drug therapy. Pharmacogenomics 2006; 7:89-103. [PMID: 16354127 DOI: 10.2217/14622416.7.1.89] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The recent surge of interest in pharmacogenetics has provoked considerable thought regarding its relevance to antiepileptic drug (AED) therapy. Initial studies have focused on genes whose products play a putatively important role in AED pharmacology, particularly drug transporter proteins, drug metabolizing enzymes and ion channel subunits. However, there is a lack of good correspondence between results from different laboratories, and more recent findings are awaiting attempts at confirmation. Thus, there are currently no AED treatment guidelines that are informed by pharmacogenetic data. In order to begin to have clinical impact, standards specific to the conduct of future AED studies must be established. Of particular importance are the need for accurate epilepsy classification, appropriate AED selection and clear and objective assessment outcome measures. In addition, general standards for analysis and interpretation of genetic association data must be better codified and applied consistently across studies. Finally, extensive clinical research networks must be formulated and large numbers of well characterized patients must be recruited. Further development of these critical factors will optimize chances for overcoming current challenges posed by AED pharmacogenetic research and ultimately allow the realization of improved, more rational therapeutic strategies.
Collapse
Affiliation(s)
- Thomas N Ferraro
- University of Pennsylvania, Center for Neurobiology and Behavior, Room 2209, Translational Research Laboratories, and The Children's Hospital of Philadelphia, Department of Pediatrics, Philadelphia, PA 19104, USA. TNF-@mail.med.upenn.edu
| | | | | |
Collapse
|
41
|
DeLozier TC, Lee SC, Coulter SJ, Goh BC, Goldstein JA. Functional characterization of novel allelic variants of CYP2C9 recently discovered in southeast Asians. J Pharmacol Exp Ther 2005; 315:1085-90. [PMID: 16099926 DOI: 10.1124/jpet.105.091181] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CYP2C9 was recently resequenced in 150 Asian subjects from Singapore. Several new coding variants were reported, and these variants are now named CYP2C9*14 (R125H), CYP2C9*15 (S162X), CYP2C9*16 (T299A), CYP2C9*17 (P382S), CYP2C9*18 (D397A), and CYP2C9*19 (Q454H). The CYP2C9*18 variant also contained an I359L change previously associated with the CYP2C9*3 allele. In this study, we assessed the functional consequences of the new coding changes. cDNAs containing each of the new coding changes were constructed by site-directed mutagenesis and expressed in a bacterial cDNA expression system, the allelic proteins were partially purified, and their ability to hydroxylate a prototype CYP2C9 substrate was assayed. Expression of cDNAs in Escherichia coli containing either the D397A change or the S162X (premature stop codon) could not be detected either spectrally or at the apoprotein level. CYP2C9.14 and CYP2C9.16 exhibited 80 to 90% lower catalytic activity toward tolbutamide at two substrate concentrations compared with wild-type CYP2C9.1. Kinetic analysis confirmed that CYP2C9.14 and CYP2C9.16 have a higher Km and a >90% lower intrinsic clearance of tolbutamide compared with wild-type CYP2C9.1. Both CYP2C9.17 and CYP2C9.19 proteins exhibited modest 30 to 40% decreases in catalytic activity toward tolbutamide. Thus, CYP2C9*15 and CYP2C9*18 may represent null alleles, whereas CYP2C9*14 and CYP2C9*16 allelic variants produce proteins that are clearly catalytically defective in vitro, indicating the existence of new defective putative alleles of CYP2C9 in Asians.
Collapse
Affiliation(s)
- Tracy C DeLozier
- Human Metabolism Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
42
|
Samer CF, Piguet V, Dayer P, Desmeules JA. Polymorphisme génétique et interactions médicamenteuses : leur importance dans le traitement de la douleur. Can J Anaesth 2005; 52:806-21. [PMID: 16189332 DOI: 10.1007/bf03021775] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES To evaluate the impact of certain genetic polymorphisms on variable responses to analgesics SOURCES Systematic review, by means of a structured computerized search in the Medline database (1966-2004). Articles in English and French were selected. References in relevant articles were also retrieved. MAIN FINDINGS Most analgesics are metabolized by CYP isoenzymes subject to genetic polymorphism. NSAIDs are metabolized by CYP2C9; opioids described as "weak" (codeine, tramadol), anti-depressants and dextromethorphan are metabolized by CYP2D6 and some "potent" opioids (buprenorphine, methadone or fentanyl) by CYP3A4/5. After the usual doses have been administered, drug toxicity or, on the contrary, therapeutic ineffectiveness may occur, depending on polymorphism and the substance. Drug interactions mimicking genetic defects because of the existence of CYP inhibitors and inducers, also contribute to the variable response to analgesics. Some opioids are substrates of P-gp, a transmembrane transporter also subject to genetic polymorphism. However, P-gp could only play a minor modulating role in man on the central effects of morphine, methadone and fentanyl. CONCLUSION In the near future, pharmacogenetics should enable us to optimize therapeutics by individualizing our approach to analgesic drugs and making numerous analgesics safer and more effective. The clinical usefulness of these individualized approaches will have to be demonstrated by appropriate pharmacoeconomic studies and analyses.
Collapse
Affiliation(s)
- Caroline F Samer
- Service de pharmacologie et toxicologie cliniques et Centre multidisciplinaire d'étude et de traitement de la douleur, Hôpitaux Universitaires de Genève, Genève, Suisse.
| | | | | | | |
Collapse
|
43
|
Robert J, Morvan VL, Smith D, Pourquier P, Bonnet J. Predicting drug response and toxicity based on gene polymorphisms. Crit Rev Oncol Hematol 2005; 54:171-96. [PMID: 15890268 DOI: 10.1016/j.critrevonc.2005.01.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 01/01/2005] [Accepted: 01/28/2005] [Indexed: 12/16/2022] Open
Abstract
The sequencing of the human genome has allowed the identification of thousands of gene polymorphisms, most often single nucleotide polymorphims (SNP), which may play an important role in the expression level and activity of the corresponding proteins. When these polymorphisms occur at the level of drug metabolising enzymes or transporters, the disposition of the drug may be altered and, consequently, its efficacy may be compromised or its toxicity enhanced. Polymorphisms can also occur at the level of proteins directly involved in drug action, either when the protein is the target of the drug or when the protein is involved in the repair of drug-induced lesions. There again, these polymorphisms may lead to alterations in drug efficacy and/or toxicity. The identification of functional polymorphisms in patients undergoing chemotherapy may help the clinician prescribe the optimal drug combination or schedule and predict with more accuracy the response to these prescriptions. We have recorded in this review the polymorphisms that have been identified up till now in genes involved in anticancer drug activity. Some of them appear especially important in predicting drug toxicity and should be determined in routine before drug administration; this is the case of the most common variations of thiopurine methyltransferase for 6-mercaptopurine and of dihydropyrimidine dehydrogenase for fluorouracil. Other appear determinant for drug response, such as the common SNPs found in glutathione S-transferase P1 or xereoderma pigmentosum group D enzyme for the activity of oxaliplatin. However, confusion factors may exist between the role of gene polymorphisms in cancer risk or overall prognosis and their role in drug response.
Collapse
Affiliation(s)
- Jacques Robert
- Institut Bergonié and Université Victor Segalen Bordeaux 2, 229 cours de l'Argonne, 33076 Bordeaux-Cedex, France.
| | | | | | | | | |
Collapse
|
44
|
Mas S, Crescenti A, Vidal-Taboada JM, Bergoñon S, Cuevillas F, Laso N, Molina R, Ballesta A, Lafuente A. Simultaneous genotyping of CYP2C9*2, *3, and 5′ flanking region (C-1189T) polymorphisms in a Spanish population through a new minisequencing multiplex single-base extension analysis. Eur J Clin Pharmacol 2005; 61:635-41. [PMID: 16082538 DOI: 10.1007/s00228-005-0977-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 06/28/2005] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To conduct a descriptive study on the prevalence of relevant cytochrome P450 2C9 (CYP2C9) polymorphisms--the *2, *3, and 5' flanking region (C-1189T)--in a Spanish population using a new minisequencing fluorescent method through a multiplex single base extension (SBE) analysis. METHOD The method simultaneously and accurately genotypes the CYP2C9 polymorphisms studied and is available as a commercial protocol (SNaPshot). Various strategies, including restriction fragment length polymorphism (RFLP) and Taqman, were used to validate the methodology. RESULTS The frequencies of alleles CYP2C9*2 (12%) and *3 (6.2%) were similar to those described for other Caucasian populations. The frequency of allele t at the 5' flanking region was 62%, which is close to the percentage reported in Japanese and French populations. The four haplotypes inferred in our samples and their frequencies were consistent with those reported in other studies. CONCLUSION Our results confirm previously reported Caucasian frequencies for the CYP2C9*2 and *3 alleles and, for the first time, provide data on the frequency of the CYP2C9 5' flanking region (C-1189T), a recently described polymorphism, in a Spanish population. The SBE technique detects unequivocally the three polymorphisms in a single reaction, which makes it suitable for the analysis of CYP2C9 in the many therapeutic situations in which it is involved.
Collapse
Affiliation(s)
- Sergi Mas
- Departamento Farmacologia y Química Terapeutica, Facultad de Medicina, IDIBAPS, Universidad de Barcelona, Casanova 143, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ferraro TN, Buono RJ. The relationship between the pharmacology of antiepileptic drugs and human gene variation: an overview. Epilepsy Behav 2005; 7:18-36. [PMID: 15979945 DOI: 10.1016/j.yebeh.2005.04.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
Individual differences in clinical responsiveness to antiepileptic drugs are due to a complex interaction between environmental factors and genetic variation. Considerable interest has arisen in exploiting advances in molecular genetics to improve drug therapy for epilepsy and many other diseases; however, practical application of pharmacogenetics has been difficult to realize. Attempts to define gene variants that are associated with therapeutic (or adverse) effects of antiepileptic drugs rely currently on the prior identification of candidate genes and the subsequent evaluation of the distribution of allelic variants between individuals who have a "good" versus a "poor" clinical response. Many factors can adversely affect interpretation of such data, and careful consideration must be given to the design of genetic association studies involving candidate genes. Candidate genes may be identified in a number of ways; however, for studies of drugs, application of knowledge derived from basic pharmacology can suggest focused and testable hypotheses that are based on the fundamental principles of drug action. Thus, studies of genetic variation as they relate to proteins involved in antiepileptic drug kinetics and dynamics will identify key polymorphisms in endogenous molecules that determine degrees of drug efficacy and toxicity. Delineation of these effects in the coming years will promote enhanced success in the treatment of epilepsy.
Collapse
Affiliation(s)
- Thomas N Ferraro
- Departments of Psychiatry and Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
46
|
Rettie AE, Jones JP. Clinical and toxicological relevance of CYP2C9: drug-drug interactions and pharmacogenetics. Annu Rev Pharmacol Toxicol 2005; 45:477-94. [PMID: 15822186 DOI: 10.1146/annurev.pharmtox.45.120403.095821] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CYP2C9 is a major cytochrome P450 enzyme that is involved in the metabolic clearance of a wide variety of therapeutic agents, including nonsteroidal antiinflammatories, oral anticoagulants, and oral hypoglycemics. Disruption of CYP2C9 activity by metabolic inhibition or pharmacogenetic variability underlies many of the adverse drug reactions that are associated with the enzyme. CYP2C9 is also the first human P450 to be crystallized, and the structural basis for its substrate and inhibitor selectivity is becoming increasingly clear. New, ultrapotent inhibitors of CYP2C9 have been synthesised that aid in the development of quantitative structure-activity relationship (QSAR) models to facilitate drug redesign, and extensive resequencing of the gene and studies of its regulation will undoubtedly help us understand interindividual variability in drug response and toxicity controlled by this enzyme.
Collapse
Affiliation(s)
- Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
47
|
King BP, Khan TI, Aithal GP, Kamali F, Daly AK. Upstream and coding region CYP2C9 polymorphisms: correlation with warfarin dose and metabolism. ACTA ACUST UNITED AC 2005; 14:813-22. [PMID: 15608560 DOI: 10.1097/00008571-200412000-00004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To assess whether CYP2C9 alleles other than CYP2C9*2 and *3 are associated with a low-warfarin dose requirement and the relevance of upstream CYP2C9 polymorphisms to dose requirement and metabolism. METHODS CYP2C9 exons, intron-exon boundaries and 3 kb of upstream sequence in 20 patients requiring <or= 1.5 mg warfarin per day and with apparently homozygous wild-type or heterozygous CYP2C9*2 genotypes were screened for novel polymorphisms by single-strand conformational polymorphism analysis. PCR-based genotyping assays for novel upstream and other known polymorphisms were used to screen a larger patient population of known CYP2C9*2 and *3 genotype requiring a range of warfarin doses. RESULTS Polymorphisms at eight different upstream sites were found, five of which were already described. We found that the majority of the upstream polymorphisms were in complete linkage disequilibrium with previously described coding region polymorphisms. However, two polymorphisms, T-1188C and the novel DeltaG-2664DeltaT-2665, occurred both in individuals who were otherwise wild-type and in individuals positive for coding region polymorphisms. Evidence for 11 haplotypes, including 8 with frequencies >or= 0.01, was obtained. In individuals negative for coding region polymorphisms, neither individual genotypes for T-1188C or DeltaG-2664DeltaT-2665 or particular combinations of haplotype pairs were predictive of dose requirement or S-warfarin total clearance, suggesting neither upstream polymorphism was functionally significant. Dose requirements in CYP2C9*11 heterozygotes were not statistically significantly different from homozygous wild-type individuals. CONCLUSIONS The coding region non-synonymous polymorphisms associated with the CYP2C9*2 and CYP2C9*3 alleles are the major CYP2C9-related factor affecting warfarin dose in UK Caucasians. Upstream CYP2C9 polymorphisms do not appear to be important independent determinants of dose requirement.
Collapse
Affiliation(s)
- Barry P King
- School of Clinical and Laboratory Sciences, University of Newcastle upon Tyne, Medical School, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
48
|
Kirchheiner J, Tsahuridu M, Jabrane W, Roots I, Brockmöller J. The CYP2C9 polymorphism: from enzyme kinetics to clinical dose recommendations. Per Med 2004; 1:63-84. [DOI: 10.1517/17410541.1.1.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CYP2C9 is the major human enzyme of the cytochrome P450 2C subfamily and metabolizes approximately 10% of all therapeutically relevant drugs. Two inherited SNPs termed CYP2C9*2 (Arg144Cys) and *3 (Ile359Leu) are known to affect catalytic function. Numerous rare or functionally silent polymorphisms have been identified. About 35% of the Caucasian population carries at least one *2 or *3 allele. CYP2C9 metabolizes several oral hypoglycemics, oral anticoagulants, non-steroidal anti-inflammatory drugs and other drugs, including phenytoin, losartan, fluvastatin, and torsemide. In vitro studies with several drugs indicate that the Cys144 (.2) and Leu359 (.3) variants confer only about 70 and 10% of the intrinsic clearance of the wild-type protein (.1), respectively. The clinical pharmacokinetic implications of these polymorphisms vary depending on the enzymes contribution to total oral clearance. Several studies demonstrated that the CYP2C9 polymorphisms are medically important for non-steroidal anti-inflammatory drugs, for oral hypoglycemics, vitamin K antagonistic oral anticoagulants, and phenytoin. In particular, CYP2C9 polymorphisms should be routinely considered in therapy with oral anticoagulants where severe adverse events at initiation of therapy might be reduced by genotyping. CYP2C9 polymorphisms were also clinically associated with side effects of phenytoin, with gastric bleeding during therapy with non-steroidals and with hypoglycemia under oral hypoglycemic drugs. Data appear mature enough for the routine consideration of CYP2C9 genotypes in therapy with acenocoumarol, phenytoin, warfarin, and some other drugs. Nevertheless, it is advisable before the routine clinical use of these genotype data to rigorously test the benefits of genotype-based therapeutic recommendations by randomized controlled clinical trials.
Collapse
Affiliation(s)
- Julia Kirchheiner
- University of Cologne, Department of Pharmacology, University of Cologne, Gleueler Str. 24, 50931 Koln, Germany.
| | - Martina Tsahuridu
- Humboldt University, Institute of Clinical Pharmacology, University Medical Center Charité, Humboldt University Berlin, Germany
| | - Wafaa Jabrane
- University of Cologne, Department of Pharmacology, University of Cologne, Gleueler Str. 24, 50931 Koln, Germany
| | - Ivar Roots
- Humboldt University, Institute of Clinical Pharmacology, University Medical Center Charité, Humboldt University Berlin, Germany
| | - Jürgen Brockmöller
- Georg August University, Department of Clinical Pharmacology, Georg August University Gottingen, Germany
| |
Collapse
|
49
|
Si D, Guo Y, Zhang Y, Yang L, Zhou H, Zhong D. Identification of a novel variant CYP2C9 allele in Chinese. ACTA ACUST UNITED AC 2004; 14:465-9. [PMID: 15226678 DOI: 10.1097/01.fpc.0000114749.08559.e4] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cytochrome P450 (CYP) 2C9 metabolizes about 16% of drugs in current clinical use, including lornoxicam and tolbutamide. SNPs in the CYP2C9 gene have increasingly been recognized as determinants of the metabolic phenotype that underlies interindividual and ethnic differences. METHODS The present study focused on a Chinese poor metabolizer (PM) whose apparent genotype (CYP2C9*1/CYP2C9*3) did not agree with his PM phenotype for both lornoxicam and tolbutamide. By sequencing his CYP2C9 gene, we identified a new variant CYP2C9 allele involving a T269C transversion in exon 2 that leads to a Leu90Pro substitution in the encoded protein. RESULTS The CYP2C9 genotype analysis in the family of the poor metabolizer showed the new exon 2 change and CYP2C9*3 occurred on different alleles. Thus, the PM status of this subject could be attributed to his being heterozygous for the CYP2C9 T269C allele together with the CYP2C9*3. Frequency analysis in 147 unrelated Chinese males indicated approximately 2% of the Chinese population carry the allele. CONCLUSION This study suggests that this novel CYP2C9 allele was correlated with reduced plasma clearance of drugs that are substrates for CYP2C9.
Collapse
Affiliation(s)
- Dayong Si
- College of Life Science, Jilin University, Changchun, China
| | | | | | | | | | | |
Collapse
|
50
|
Sandberg M, Johansson I, Christensen M, Rane A, Eliasson E. The impact of CYP2C9 genetics and oral contraceptives on cytochrome P450 2C9 phenotype. Drug Metab Dispos 2004; 32:484-9. [PMID: 15100169 DOI: 10.1124/dmd.32.5.484] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CYP2C9-dependent drug metabolism is subject to large interindividual variation. To some extent, this is explained by genetic polymorphism with expression of enzyme variants that differ in catalytic activity. The aim of this study was to characterize the variation in CYP2C9 phenotype in relation to genotype, with further analysis of the CYP2C9 gene in metabolic outliers. A study population of 126 healthy white subjects were recruited and genotyped for the variant alleles, CYP2C9*1-3. In CYP2C9 phenotyping with losartan, three subpopulations were distinguished that differed in the number of CYP2C9*3 alleles (0, 1, or 2). A three-fold higher metabolic ratio (MR; urinary losartan/carboxymetabolite) was found comparing CYP2C9*1/*3 (n = 20) to CYP2C9*1/*1 (n = 81), but there was considerable variation within each genotype. Subjects genotyped as CYP2C9*1/*1, but with an unexpectedly slow oxidation of losartan, were selected for DNA-sequencing analysis of the CYP2C9 gene. Interestingly, single nucleotide polymorphisms (SNPs) could not be identified either in the 5'-flanking region, the nine exons, or exon-intron boundaries. However, sequencing of the CYP2C9 gene was also carried out in patients genotyped as CYP2C9*1/*1 but with an exceptionally low steady-state clearance of S-warfarin. Here, five different SNPs were identified. In further analysis of the healthy volunteers, it became evident that women on oral contraceptives (OCs) had slower oxidation of losartan (MR of losartan: 1.7) than women without OCs (MR of losartan: 0.86). This novel finding was not explained by a different frequency of variant alleles. In summary, CYP2C9 genotype and oral contraceptives both contribute to a large interindividual variation in CYP2C9 activity.
Collapse
Affiliation(s)
- Mia Sandberg
- Division of Clinical Pharmacology, Karolinska University Hospital at Huddinge, SE 141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|