1
|
Lan X, Xia Y. Alleviating effects of Nigella sativa supplements on biomarkers of inflammation and oxidative stress: Results from an umbrella meta-analysis. Prostaglandins Other Lipid Mediat 2025; 176:106945. [PMID: 39709091 DOI: 10.1016/j.prostaglandins.2024.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Several meta-analyses have examined the effect of Nigella sativa (N. Sativa) supplementation on inflammatory and oxidative markers, with conflicting results. So, the current study evaluated the effect of N. Sativa on some oxidative and inflammatory parameters. The Embase, Web of Science, Scopus, PubMed databases, and Google Scholar were systemically searched to identify papers indexed before February 2023. The pooled results were calculated with the use of a random-effects model to evaluate the effects of N. Sativa on inflammatory and oxidative markers. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was used to assess the certainty of evidence. Overall, seven meta-analyses were included in the study. N. Sativa supplementation significantly decreased serum C-reactive protein (CRP) (ES = -0.42; 95 % CI: -0.58, -0.25, p < 0.001), tumor necrosis factor-alpha (TNF-α) (ES= -1.27; 95 % CI: -2.29, -0.25; p = 0.015), and malondialdehyde (MDA) (ES = -0.67; 95 % CI: -0.97, -0.36, p < 0.001) levels, and significantly improved total antioxidant capacity (TAC) (ES = 0.34; 95 % CI: 0.20, 0.47, p < 0.001) and superoxide dismutase (SOD) (ES = 50.66; 95 % CI: 34.15, 67.18, p < 0.001) levels. N. Sativa supplementation had beneficial effects on CRP, TNF-α, MDA, SOD, and TAC. Thus, N. Sativa can be recommended as an adjuvant anti-inflammatory and anti-oxidant agent.
Collapse
Affiliation(s)
- Xinyu Lan
- The First Clinical Medical College of Zhejiang Traditional Chinese Medical University, Zhejiang, China
| | - Yongliang Xia
- Department of Internal Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Manjunatha V, Nixon JE, Mathis GF, Lumpkins BS, Güzel-Seydim ZB, Seydim AC, Greene AK, Jiang X. Combined Effect of Nigella sativa and Kefir on the Live Performance and Health of Broiler Chickens Affected by Necrotic Enteritis. Animals (Basel) 2024; 14:2074. [PMID: 39061536 PMCID: PMC11273500 DOI: 10.3390/ani14142074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Coccidiosis and necrotic enteritis (NE) are prevalent poultry ailments worldwide, leading to decreased live performance and elevated mortality rates without antibiotic usage. This study evaluated Nigella sativa (black cumin) seeds (BCS) and kefir as alternatives to antibiotics for broilers. An in vivo study over a 28-day period, using 384 Cobb 500 male broilers organized into six treatment groups as part of a completely randomized block experimental design was conducted. Each treatment group included eight replicates, with each replicate containing eight birds. The treatments included positive control, negative control, antibiotic control, 5% BCS in feed, 20% kefir in drinking water, and a combination of 5% BCS and 20% kefir. NE was induced in broilers by administering ~5000 oocysts of Eimeria maxima orally on day 14, followed by inoculation with about 108 CFU/mL of Clostridium perfringens (Cp) (strain Cp#4) on days 19, 20, and 21. Live performance metrics including feed intake, body weight gain, and feed conversion were assessed in broilers. Additionally, NE disease outcomes such as lesion scores, mortality rates, and Cp populations in cecum were determined during the study. The BCS, kefir, and the combination had no detrimental effect on broiler live performance. BCS-treated and combination groups had lower NE scores (p > 0.05) in comparison to the positive control and exhibited no significant difference (p > 0.05) from antibiotic control. Additionally, treatment groups and antibiotic control were not significantly different (p > 0.05) in mortality, whereas the BCS and kefir combination significantly reduced (p < 0.05) mortality to 14.1% compared to 31.3% for the positive control. C. perfringens vegetative cells significantly decreased (p < 0.05) in treatments with BCS, kefir, and their combination on days 22 and 28 compared to the positive control. On day 22, Cp sores were significantly lower (p < 0.05) for the kefir and combination treatments compared to the positive control. In conclusion, BCS and kefir successfully reduced C. perfringens infection and mortality without any detrimental impact on broiler live performance with the combined treatment being the most effective. These results suggest that BCS and kefir could serve as potential alternatives to antibiotics in managing NE.
Collapse
Affiliation(s)
- Vishal Manjunatha
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Julian E. Nixon
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29631, USA; (J.E.N.); (G.F.M.); (B.S.L.); or (Z.B.G.-S.); or (A.C.S.); (A.K.G.)
| | - Greg F. Mathis
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29631, USA; (J.E.N.); (G.F.M.); (B.S.L.); or (Z.B.G.-S.); or (A.C.S.); (A.K.G.)
- Southern Poultry Feed & Research, Inc., Athens, GA 30607, USA
| | - Brett S. Lumpkins
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29631, USA; (J.E.N.); (G.F.M.); (B.S.L.); or (Z.B.G.-S.); or (A.C.S.); (A.K.G.)
- Southern Poultry Feed & Research, Inc., Athens, GA 30607, USA
| | - Zeynep B. Güzel-Seydim
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29631, USA; (J.E.N.); (G.F.M.); (B.S.L.); or (Z.B.G.-S.); or (A.C.S.); (A.K.G.)
- Department of Food Engineering, Süleyman Demirel University, Isparta 32260, Turkey
| | - Atif C. Seydim
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29631, USA; (J.E.N.); (G.F.M.); (B.S.L.); or (Z.B.G.-S.); or (A.C.S.); (A.K.G.)
- Department of Food Engineering, Süleyman Demirel University, Isparta 32260, Turkey
| | - Annel K. Greene
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29631, USA; (J.E.N.); (G.F.M.); (B.S.L.); or (Z.B.G.-S.); or (A.C.S.); (A.K.G.)
| | - Xiuping Jiang
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA;
| |
Collapse
|
3
|
Al Dhaheri AS, Alkhatib DH, Feehan J, Cheikh Ismail L, Apostolopoulos V, Stojanovska L. The Effect of Therapeutic Doses of Culinary Spices in Metabolic Syndrome: A Randomized Controlled Trial. Nutrients 2024; 16:1685. [PMID: 38892617 PMCID: PMC11175078 DOI: 10.3390/nu16111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Non-communicable diseases (NCDs) place a significant burden on global health and the healthcare systems which support it. Metabolic syndrome is a major risk factor for a large number of NCDs; however, treatments remain limited. Previous research has shown the protective benefits of edible dietary spices on key components of metabolic syndrome. Therefore we performed a 12-week double-blind, placebo-controlled, randomized, clinical trial to evaluate the effect of ginger (Zingiber officinale), cinnamon (Cinnamomum), and black seed (Nigella sativa) consumption on blood glucose, lipid profiles, and body composition in 120 participants with, or at risk of, metabolic syndrome. Each participant consumed 3 g/day of powder (spice or placebo). Data related to different parameters were collected from participants at the baseline, midpoint, and endpoint of the intervention. Over the 12-week interventions, there was an improvement in a number of biochemical indices of metabolic syndrome, including fasting blood glucose, HbA1c, LCL, and total cholesterol associated with supplementation with the spices when compared to a placebo. This study provides evidence to support the adjunct use of supplementation for those at risk of metabolic syndrome and its sequelae.
Collapse
Affiliation(s)
- Ayesha S. Al Dhaheri
- Department of Nutrition & Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (D.H.A.); (L.S.)
| | - Dana Hasan Alkhatib
- Department of Nutrition & Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (D.H.A.); (L.S.)
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (J.F.); (V.A.)
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford OX1 2JD, UK
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (J.F.); (V.A.)
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Lily Stojanovska
- Department of Nutrition & Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (D.H.A.); (L.S.)
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (J.F.); (V.A.)
| |
Collapse
|
4
|
Alu'datt MH, Rababah T, Al-U'datt DGF, Gammoh S, Alkandari S, Allafi A, Alrosan M, Kubow S, Al-Rashdan HK. Designing novel industrial and functional foods using the bioactive compounds from Nigella sativa L. (black cumin): Biochemical and biological prospects toward health implications. J Food Sci 2024; 89:1865-1893. [PMID: 38407314 DOI: 10.1111/1750-3841.16981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Nigella sativa is one of the nutraceuticals that has gained popularity and studied extensively in recent decades as it is considered a safe medicinal plant for use as a dietary supplement. N. sativa contains a wide variety of bioactive substances, which include polyphenols, volatile oils (thymoquinone and p-cymene), proteins, and peptides. The biological attributes of N. sativa include antioxidant, antimicrobial, antifungal, anti-inflammatory, anticancer, antidiabetic, antihypertensive, hypolipidemic, and antioxidant activities, which have potential applications for the prevention of a variety of chronic diseases. In the food industry, N. sativa improves the sensory qualities, shelf life, strength, and freshness of foods, such as bread, pizza, biscuits, cookies, and cakes. This review discusses the industrial use of N. sativa, which includes processing technologies to enhance its health-promoting properties as well as the isolation of nutraceutical components.
Collapse
Affiliation(s)
- Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Sharifa Alkandari
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ahmed Allafi
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Mohammad Alrosan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada
| | - Haneen K Al-Rashdan
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Kumar S L, Naik Z, Panwar A, M S, Keluskar V, Kumar RS. Comparative evaluation of the efficacy of Nigella sativa (75% v/v) cream and clobetasol propionate (0.05% w/w) gel in oral lichen planus-a double-blinded randomized control trial. Oral Maxillofac Surg 2024; 28:225-234. [PMID: 36547822 DOI: 10.1007/s10006-022-01130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVES The a im of this study is to evaluate and compare the efficacy of Nigella sativa (75% v/v) cream and clobetasol propionate (0.05% w/w) gel for the management of oral lichen planus (OLP). STUDY DESIGN Sixty clinically diagnosed cases of OLP were stratified into moderate cases or severe cases based on burning sensation before getting allocated to group I receiving Nigella sativa cream and group II receiving clobetasol propionate gel, two times a day for 45 days. Patients were examined every 15 days for a change in burning sensation and size of the lesion using the numeric pain rating scale (NRS) and a standard Vernier caliper, respectively. Statistical tests including Mann-Whitney U, Wilcoxon signed-rank, Friedman's, Dunn's post hoc, unpaired t, paired t, one-way repeated measures ANOVA, and Bonferroni's post hoc were applied. RESULTS There was a statistically significant reduction in the burning sensation as well as the size of the lesion in both groups (P ≤ 0.05). There was an 87.8% (moderate cases) and 85.7% (severe cases) reduction in the mean NRS scores on the 45th day in group I when compared to the 96.5% (moderate cases) and 93.48% (severe cases) in group II. There was a 92.9% (moderate cases) and 90.7% (severe cases) reduction in the size of the lesion in group I when compared to the 92.6% (moderate cases) and 93.1% (severe cases) in group II. CONCLUSION The topical application of Nigella sativa cream was effective and comparable to clobetasol propionate 0.05% gel in the management of OLP, without any side effects. Hence, this study recommends the use of topical Nigella sativa cream therapy in the management of OLP. CLINICAL RELEVANCE The current mainstay of treatment for OLP is the administration of topical or systemic corticosteroids, which are known to cause side effects, demanding a search for an alternative. Nigella sativa oil cream could be a safe, promising, cost-effective, adjunctive, or alternative modality. Clinical trial registration number: CTRI/2020/07/026745 (India).
Collapse
Affiliation(s)
- Lokesh Kumar S
- Department of Oral Medicine, Radiology, and Special Care Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), No. 162, Poonamalle High Road, Chennai-, 600077, Tamil Nadu, India.
| | - Zameera Naik
- Department of Oral Medicine and Radiology, KAHER's KLE Vishwanath Katti Institute of Dental Sciences, KLE Academy of Higher Education and Research, JNMC Campus, Nehru Nagar, Belagavi-, 590010, Karnataka, India
| | - Arun Panwar
- Department of Oral Medicine and Radiology, KAHER's KLE Vishwanath Katti Institute of Dental Sciences, KLE Academy of Higher Education and Research, JNMC Campus, Nehru Nagar, Belagavi-, 590010, Karnataka, India
| | - Sridhar M
- Department of Oral Medicine and Radiology, KAHER's KLE Vishwanath Katti Institute of Dental Sciences, KLE Academy of Higher Education and Research, JNMC Campus, Nehru Nagar, Belagavi-, 590010, Karnataka, India
| | - Vaishali Keluskar
- Department of Oral Medicine and Radiology, KAHER's KLE Vishwanath Katti Institute of Dental Sciences, KLE Academy of Higher Education and Research, JNMC Campus, Nehru Nagar, Belagavi-, 590010, Karnataka, India
| | - Ram Surath Kumar
- Department of Public Health Dentistry, KAHER's KLE Vishwanath Katti Institute of Dental Sciences, KLE Academy of Higher Education and Research, JNMC Campus, Nehru Nagar, Belagavi-, 590010, Karnataka, India
| |
Collapse
|
6
|
Bahloul B, Chaabani R, Zahra Y, Kalboussi N, Kraiem J, Sfar S, Mignet N, Abdennebi HB. Thymoquinone-loaded self-nano-emulsifying drug delivery system against ischemia/reperfusion injury. Drug Deliv Transl Res 2024; 14:223-235. [PMID: 37523093 DOI: 10.1007/s13346-023-01395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
In the present study, a self-nano-emulsifying drug delivery system (SNEDDS) was developed to evaluate the efficiency of thymoquinone (TQ) in hepatic ischemia/reperfusion. SNEDDS was pharmaceutically characterized to evaluate droplet size, morphology, zeta potential, thermodynamic stability, and dissolution/diffusion capacity. Animals were orally pre-treated during 10 days with TQ-loaded SNEDDS. Biochemical analyses, hematoxylin-eosin staining, indirect immunofluorescence, and reverse transcription polymerase chain reaction (RT-PCR) were carried out to assess cell injury, oxidative stress, inflammation, and apoptosis. The TQ formulation showed good in vitro characteristics, including stable nanoparticle structure and size with high drug release rate. In vivo determinations revealed that TQ-loaded SNEDDS pre-treatment of rats maintained cellular integrity by decreasing transaminase (ALT and AST) release and preserving the histological characteristics of their liver. The antioxidant ability of the formulation was proven by increased SOD activity, reduced MDA concentration, and iNOS protein expression. In addition, this formulation exerted an anti-inflammatory effect evidenced by reduced plasma CRP concentration, MPO activity, and gene expressions of TLR-4, TNF-α, NF-κB, and IL-6. Finally, the TQ-loaded SNEDDS formulation promoted cell survival by enhancing the Bcl-2/Bax ratio. In conclusion, our results indicate that TQ encapsulated in SNEDDS significantly protects rat liver from I/R injury.
Collapse
Affiliation(s)
- Badr Bahloul
- Drug Development Laboratory (LR12ES09), Faculty of Pharmacy, University of Monastir, 1 Rue Avicenne 5000, Monastir, Tunisia.
| | - Roua Chaabani
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Yosri Zahra
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Nesrine Kalboussi
- Drug Development Laboratory (LR12ES09), Faculty of Pharmacy, University of Monastir, 1 Rue Avicenne 5000, Monastir, Tunisia
- Pharmacy Department, Sahloul University Hospital, Sousse, Tunisia
| | - Jamil Kraiem
- Drug Development Laboratory (LR12ES09), Faculty of Pharmacy, University of Monastir, 1 Rue Avicenne 5000, Monastir, Tunisia
| | - Souad Sfar
- Drug Development Laboratory (LR12ES09), Faculty of Pharmacy, University of Monastir, 1 Rue Avicenne 5000, Monastir, Tunisia
| | - Nathalie Mignet
- Faculté de Pharmacie, University of Paris Cité, CNRS, INSERM, UTCBS, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
7
|
Wahab S, Alsayari A. Potential Pharmacological Applications of Nigella Seeds with a Focus on Nigella sativa and Its Constituents against Chronic Inflammatory Diseases: Progress and Future Opportunities. PLANTS (BASEL, SWITZERLAND) 2023; 12:3829. [PMID: 38005726 PMCID: PMC10675207 DOI: 10.3390/plants12223829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
The leading cause of death worldwide has been identified as chronic illnesses, according to the World Health Organization (WHO). Chronic inflammatory conditions such as asthma, cancer, diabetes, heart disease, and obesity account for three out of every five deaths. Although many people benefit from using nonsteroidal anti-inflammatory medicines (NSAIDs) for pain and inflammation relief, there are significant adverse effects to using these medications. Medicinal plants possess anti-inflammatory properties with minimal or no side effects. Nigella sativa (NS), also known as black cumin, is one of the plants used in traditional medicine the most. Many studies on the NS have shown that their therapeutic properties are attributed to the seed, oil, and secondary metabolites. This plant has been studied extensively and has many medical uses, such as anti-inflammatory. NS or its phytochemical compounds, such as thymoquinone, can cause cell apoptosis via oxidative stress, block efflux pumps, enhance membrane permeability, and exert potent biocidal effects. Notwithstanding the extensively documented anti-inflammatory effectiveness observed in the experimental model, the precise mechanisms underlying its anti-inflammatory effects in diverse chronic inflammatory diseases and its multi-targeting characteristics remain largely unexplored. This review examines NS or its secondary metabolites, a valuable source for the therapeutic development of chronic inflammatory diseases. Most clinical studies were done for diabetes and cardiovascular disease; therefore, more studies are required to examine the NS extracts and phytoconstituents to treat cancer, obesity, diabetes, asthma, neurological disorders, and COVID-19. This study will be a significant resource for clinicians and biologists seeking a pharmaceutical solution for inflammatory diseases.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | | |
Collapse
|
8
|
Mohammad MY, Haniffa HM, Choudhary MI. Antibacterial activity of thymoquinone derivative. BMC Res Notes 2023; 16:260. [PMID: 37798782 PMCID: PMC10557212 DOI: 10.1186/s13104-023-06523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
Natural products such as terpenoidal compounds have been extremely tested against pathogenic bacteria. Researches are frequently carried out to find out new natural, semisynthetic and synthetic antibacterial agents due to problems of resistance. Thymoquinone derivative was obtained in our previous study and the current research is a continuation. The antibacterial activity of a monoterpenoid; thymoquinone derivative, 5-isopropyl-2-methyloxepine-1-one (1) has been evaluated for the first time by following the Agar cup bioassay method employed. The bacterial strains used in this study were Escherichia coli and Bacillus subtilis. Compound 1 showed moderate activity against Gram-positive organism; B. subtilis and good activity against Gram-negative species; E. coli with zones of inhibition (ZOI) 10.0 ± 0.2 mm and 11.0 ± 0.2 mm against E. coli and B. subtilis, respectively, and in comparison with antibiotic, imipenem. The zones of inhibition were calculated as the mean of the triplicate. The antibacterial activity of thymoquinone derivative 1 could be explained by the presence of unsaturated lactone.
Collapse
Affiliation(s)
| | - Haroon M. Haniffa
- Department of Chemical Sciences, Faculty of Applied Sciences, South Eastern University, Oluvil, Sri Lanka
| | - M. Iqbal Choudhary
- H. E. J, Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
9
|
Parveen N, Akbarsha MA, Latif Wani AB, Ansari MO, Ahmad MF, Shadab GGHA. Protective effect of quercetin and thymoquinone against genotoxicity and oxidative stress induced by ZnO nanoparticles in the Wistar rat model. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 890:503661. [PMID: 37567646 DOI: 10.1016/j.mrgentox.2023.503661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in a variety of consumer and other commercial products. Hence, man faces the risk of exposure to ZnO-NPs and the consequent adverse health effects. Mitigation/prevention of such effects using natural products has drawn the attention of scientists. Therefore, the aim of the present study has been to find the toxic effects associated with exposure to ZnO-NPs, and the protective role of the phytochemicals thymoquinone (TQ) and quercetin (QCT) in the rat model. ZnO-NPs were administered to male Wistar rats through oral route; TQ / QCT was concurrently administered through intra-peritoneal route. The response in the animal was analyzed adopting chromosomal aberration test, micronucleus test, and comet assay of bone marrow cells to assess the genotoxicity, and biochemical assays of superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO), total extractable protein of liver, and reduced glutathione (GSH) of liver homogenate to monitor the changes in the antioxidant defense mechanism in response to the oxidative stress. Treatment of 300 mg/kg body weight (bw) of ZnO-NPs produced adverse effects on all aspects analyzed viz., structural chromosomal aberrations, micronuclei formation, DNA damage, SOD, catalase, lipid peroxidation, GSH, and extractable total protein of liver. Co-treatment of TQ / QCT offered protection against the toxicity induced by ZnO-NPs. The most optimum doses of TQ and QCT that offered the best protection were 18 mg/kg bw and 500 mg/kg bw, respectively. The study reveals that TQ / QCT supplementation is beneficial in the context of toxic effects of ZnO-NPs.
Collapse
Affiliation(s)
- Nuzhat Parveen
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | | | - A B Latif Wani
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Owais Ansari
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Md Fahim Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - G G H A Shadab
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
10
|
Rahaman MM, Hossain R, Herrera‐Bravo J, Islam MT, Atolani O, Adeyemi OS, Owolodun OA, Kambizi L, Daştan SD, Calina D, Sharifi‐Rad J. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Sci Nutr 2023; 11:1657-1670. [PMID: 37051367 PMCID: PMC10084981 DOI: 10.1002/fsn3.3217] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Antioxidants are compounds that inhibit the oxidation of other molecules and protect the body from the effects of free radicals, produced either by normal cell metabolism or as an effect of pollution and exposure to other external factors and are responsible for premature aging and play a role in cardiovascular disease. degenerative diseases such as cataracts, Alzheimer's disease, and cancer. While many antioxidants are found in nature, others are obtained in synthetic form and reduce oxidative stress in organisms. This review highlights the pharmacological relevance of antioxidants in fruits, plants, and other natural sources and their beneficial effect on human health through the analysis and in-depth discussion of studies that included phytochemistry and their pharmacological effects. The information obtained for this review was collected from several scientific databases (ScienceDirect, TRIP database, PubMed/Medline, Scopus, Web of Science), professional websites, and traditional medicine books. Current pharmacological studies and evidence have shown that the various natural antioxidants present in some fruits, seeds, foods, and natural products have different health-promoting effects. Adopting functional foods with high antioxidant potential will improve the effective and affordable management of free radical diseases while avoiding the toxicities and unwanted side effects caused by conventional medication.
Collapse
Affiliation(s)
- Md. Mizanur Rahaman
- Department of PharmacyBangabandhu Sheikh MujiburRahman Science and Technology UniversityDhakaBangladesh
| | - Rajib Hossain
- Department of PharmacyBangabandhu Sheikh MujiburRahman Science and Technology UniversityDhakaBangladesh
| | - Jesús Herrera‐Bravo
- Departamento de Ciencias Básicas, Facultad de CienciasUniversidad Santo TomasTalcaChile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource NucleusUniversidad de La FronteraTemucoChile
| | - Mohammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh MujiburRahman Science and Technology UniversityDhakaBangladesh
| | | | - Oluyomi Stephen Adeyemi
- Department of Biochemistry, Medicinal Biochemistry, Infectious Diseases, Nanomedicine& Toxicology LaboratoryLandmark UniversityOmu‐AranNigeria
| | | | - Learnmore Kambizi
- Department of HorticultureCape Peninsula University of TechnologyBellvilleSouth Africa
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of ScienceSivas Cumhuriyet UniversitySivasTurkey
- Beekeeping Development Application and Research CenterSivas Cumhuriyet UniversitySivasTurkey
| | - Daniela Calina
- Department of Clinical PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | | |
Collapse
|
11
|
Nejabati F, Ebrahimzadeh H. Electrospun nanofibers for extraction of thymoquinone from Nigella-Stevia prior to detection using electrochemical biosensor based on GCE/rGO/CuO. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
12
|
El-Sayed SAES, Rizk MA. COVID-19 and Thymoquinone: Clinical Benefits, Cure, and Challenges. BIOMED 2023; 3:59-76. [DOI: 10.3390/biomed3010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In today’s world, the outbreak of the coronavirus disease 2019 (COVID-19) has spread throughout the world, causing severe acute respiratory syndrome (SARS) and several associated complications in various organs (heart, liver, kidney, and gastrointestinal tract), as well as significant multiple organ dysfunction, shock, and even death. In order to overcome the serious complications associated with this pandemic virus and to prevent SARS-CoV-2 entry into the host cell, it is necessary to repurpose currently available drugs with a broad medicinal application as soon as they become available. There are several therapeutics under investigation for improving the overall prognosis of COVID-19 patients, but none of them has demonstrated clinical efficacy to date, which is disappointing. It is in this pattern that Nigella sativa seeds manifest their extensive therapeutic effects, which have been reported to be particularly effective in the treatment of skin diseases, jaundice, and gastrointestinal problems. One important component of these seeds is thymoquinone (TQ), which has a wide range of beneficial properties, including antioxidant and anti-inflammatory properties, as well as antibacterial and parasitic properties, in addition to anticarcinogenic, antiallergic, and antiviral properties. This comprehensive review discussed the possibility of an emerging natural drug with a wide range of medical applications; the use of TQ to overcome the complications of COVID-19 infection; and the challenges that are impeding the commercialization of this promising phytochemical compound. TQ is recommended as a highly effective weapon in the fight against the novel coronavirus because of its dual antiviral action, in addition to its capacity to lessen the possibility of SARS-CoV-2 penetration into cells. However, future clinical trials are required to confirm the role of TQ in overcoming the complications of COVID-19 infection.
Collapse
|
13
|
Albakry Z, Karrar E, Mohamed Ahmed IA, Ali AA, Al-Maqtari QA, Zhang H, Wu G, Wang X. A comparative study of black cumin seed (Nigella sativa L.) oils extracted with supercritical fluids and conventional extraction methods. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Darwish MH, Hassan MM, Maria OM. Evaluation of differential white blood cell count and cheek pouch epithelium in 7,12-dimethylbenza[a]anthracene hamster carcinogenesis model, managed with three phytochemicals. JOURNAL OF ORAL MEDICINE AND ORAL SURGERY 2023. [DOI: 10.1051/mbcb/2023005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objectives: Nigella sativa (NS), thymoquinone (TQ), and epigallocatechin-3-gallate (EGCG) are phytochemicals that might have antioxidant protective potentials on the hamster cheek pouch epithelium (HCPE). We aimed at evaluating and comparing the potential therapeutic outcomes of these 3 phytochemicals by analysis of peripheral white blood cells (WBCs) counts. Materials and Methods: NS whole oil, TQ and EGCG were administered before, with or after 7,12-dimethylbenza[a]anthracene (DMBA) painting the hamster left cheek pouch. Before sacrificing each animal, 2 ml of blood was withdrawn into a fine heparin-containing tube to estimate the total WBCs, lymphocytes, MID cells, and granulocytes counts by an automatic count system. All cheek pouches were surgically excised and examined with light microscope. Results: Severe epithelial dysplasia was evident after 6 weeks of DMBA administration, and when NS was given for 2 weeks followed by DMBA for 6 weeks. When NS or EGCG were given for 2 weeks then continued with DMBA for 6 weeks, mild dysplasia was seen. When DMBA was given for 6 weeks followed by NS or TQ for 6 weeks, mild dysplasia was noted. Administration of DMBA for 6 weeks resulted in significant reduction in total WBCs and lymphocytes counts compared to healthy controls. Administration of NS or TQ for 2 weeks resulted in significant elevation in lymphocytes count compared to healthy controls. Significant elevation in total WBCS and lymphocytes counts was noted when EGCG was given for 2 weeks and continued with DMBA for other 6 weeks. Similar results were noted when DMBA was given for 6 weeks followed by TQ for 6 weeks when compared to NS, DMBA or healthy controls. Discussion: The three phytochemicals showed different levels of protection against DMBA carcinogenic activity, more specifically, TQ and NS had higher therapeutic potential and might be used for treatment and/or preventive management of oral cancer in the future. Conclusion: However, further investigations are required to address the mechanism of action and feasibility of clinical application of each phytochemical.
Collapse
|
15
|
Protective effects of nigella sativa oil against gentamicin-induced ototoxicity in rats: A dose-ranging study. Int J Pediatr Otorhinolaryngol 2023; 164:111405. [PMID: 36481814 DOI: 10.1016/j.ijporl.2022.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Aminoglycosides are relatively potent antibiotics used against some life-threatening infections but contribute to ototoxicity. Although the beneficial effects of high-dose nigella sativa oil (NSO) on ototoxicity in the form of intratympanic or oral use have been demonstrated, no variable-dose studies have been conducted on this subject. We aimed to investigate the potential protective effect of different doses of intraperitoneal (i.p.) NSO on Gentamicin (GM)-induced ototoxicity with auditory brainstem responses (ABR) testing. METHODS Thirty adult male Sprague-Dawley rats (300-400 gr) were used in this study. Rats were randomly divided into 5 groups, with six animals in each group: All the groups received GM (120 mg/kg i.p) for ten days. Group 1: 0.9% saline solution (0.3 ml/kg i.p.), Group 2: NSOL (low dose 0.1 ml/kg i.p.), Group 3: NSOM (median dose 0.3 ml/kg i.p.), Group 4: NSOH (high dose 3 ml/kg i.p.), Group 5: NSOML (late onset median dose 0.3 ml/kg i.p) were given for fifteen days. But death occurred in 3 rats in group 4 and they were excluded from the study. The pretreatment and posttreatment ABR testings were performed. RESULTS The posttreatment ABR results were compared with the pretreatment values. A significant difference was found in group 1 (p:0,002), group 2 (p: 0,040), and group 4 (p: 0,027). When the posttreatment tests were compared with each other, there was a significant difference between groups 1 and 2 (p < 0,001), groups 1 and 3 (p < 0,001), and groups 1 and 5 (p < 0,001). CONCLUSIONS The administration of 0.1 ml/kg and 3 ml/kg dose of NSO does not prevent ototoxicity. The 0.3 ml/kg dose of NSO effectively prevents GM-induced ototoxicity within both prophylactic and therapeutic use.
Collapse
|
16
|
AlSheddi M, Rahman I, Mohammed A, Algazlan A, Alwably A, Hebbal M, Omar M. Nigella sativa oil as a treatment for gingivitis: A randomized active–control trial. ASIAN PAC J TROP MED 2023. [DOI: 10.4103/1995-7645.372290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
17
|
Magnetite-Based Nanostructured Coatings Functionalized with Nigella sativa and Dicloxacillin for Improved Wound Dressings. Antibiotics (Basel) 2022; 12:antibiotics12010059. [PMID: 36671260 PMCID: PMC9854499 DOI: 10.3390/antibiotics12010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
In this study, we report the performance improvement of wound dressings by covering them with magnetite-based nanostructured coatings. The magnetite nanoparticles (Fe3O4 NPs) were functionalized with Nigella sativa (N. sativa) powder/essential oil and dicloxacillin and were synthesized as coatings by matrix assisted pulsed laser evaporation (MAPLE). The expected effects of this combination of materials are: (i) to reduce microbial contamination, and (ii) to promote rapid wound healing. The crystalline nature of core/shell Fe3O4 NPs and coatings was determined by X-ray diffraction (XRD). Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) have been coupled to investigate the stability and thermal degradation of core/shell nanoparticle components. The coatings' morphology was examined by scanning electron microscopy (SEM). The distribution of chemical elements and functional groups in the resulting coatings was evidenced by Fourier transform infrared (FTIR) spectrometry. In order to simulate the interaction between wound dressings and epithelial tissues and to evaluate the drug release in time, the samples were immersed in simulated body fluid (SBF) and investigated after different durations of time. The antimicrobial effect was evaluated in planktonic (free-floating) and attached (biofilms) bacteria models. The biocompatibility and regenerative properties of the nanostructured coatings were evaluated in vitro, at cellular, biochemical, and the molecular level. The obtained results show that magnetite-based nanostructured coatings functionalized with N. sativa and dicloxacillin are biocompatible and show an enhanced antimicrobial effect against Gram positive and Gram negative opportunistic bacteria.
Collapse
|
18
|
Nasiri N, Ilaghi Nezhad M, Sharififar F, Khazaneha M, Najafzadeh MJ, Mohamadi N. The Therapeutic Effects of Nigella sativa on Skin Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7993579. [PMID: 36518853 PMCID: PMC9744621 DOI: 10.1155/2022/7993579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2023]
Abstract
The aim of this systematic review was to identify randomized controlled trials that looked at the effects of Nigella sativa in any form on different skin diseases. Up to March 2022, the online databases of Scopus, Web of Science, PubMed, Embase, Google Scholar, and Cochrane trials were searched. This study included 14 records of people who had experienced different types of skin disease including atopic dermatitis, vulgaris, arsenical keratosis, psoriasis, vitiligo, acute cutaneous leishmaniasis, warts, eczema, and acne. The mean SD age of the patients was 28.86 (4.49); [range: 18.3-51.4], with females accounting for 69% (506 out of 732) of the total. The follow-up mean SD was 8.16 (1.3) (ranged: 4 days to 24 weeks). The odds ratio (OR) was found to be 4.59 in a meta-analysis (95% CI: 2.02, 10.39). Whereas the null hypothesis in this systematic review was that lotion had no impact, OR 4.59 indicated that lotion could be effective. The efficacy of N. sativa essential oil and extract has been demonstrated in most clinical studies. However, more research is needed to completely evaluate and validate the efficacy or inadequacy of therapy with N. sativa, although it appears that it can be used as an alternative treatment to help people cope with skin problems.
Collapse
Affiliation(s)
- Naser Nasiri
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mozhde Ilaghi Nezhad
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Khazaneha
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Neda Mohamadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
19
|
Ahmad J, Albarqi HA, Ahmad MZ, Orabi MAA, Md S, Bandopadhyay R, Ahmed F, Khan MA, Ahamad J, Mishra A. Utilization of Nanotechnology to Improve Bone Health in Osteoporosis Exploiting Nigella sativa and Its Active Constituent Thymoquinone. Bioengineering (Basel) 2022; 9:631. [PMID: 36354542 PMCID: PMC9687452 DOI: 10.3390/bioengineering9110631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 09/08/2024] Open
Abstract
Osteoporosis, a chronic bone disorder, is one of the leading causes of fracture and morbidity risk. Numerous medicinally important herbs have been evaluated for their efficacy in improving bone mass density in exhaustive preclinical and limited clinical studies. Nigella sativa L. has been used as local folk medicine, and traditional healers have used it to manage various ailments. Its reported beneficial effects include controlling bone and joint diseases. The present manuscript aimed to provide a sound discussion on the pharmacological evidence of N. sativa and its active constituent, thymoquinone, for its utility in the effective management of osteoporosis. N. sativa is reported to possess anti-IL-1 and anti-TNF-α-mediated anti-inflammatory effects, leading to positive effects on bone turnover markers, such as alkaline phosphatase and tartrate-resistant acid phosphatase. It is reported to stimulate bone regeneration by prompting osteoblast proliferation, ossification, and decreasing osteoclast cells. Thymoquinone from N. sativa has exhibited an antioxidant effect on bone tissue by reducing the FeNTA-induced oxidative stress. The present manuscript highlights phytochemistry, pharmacological effect, and the important mechanistic perspective of N. sativa and its active constituents for the management of osteoporosis. Further, it also provides sound discussion on the utilization of a nanotechnology-mediated drug delivery approach as a promising strategy to improve the therapeutic performance of N. sativa and its active constituent, thymoquinone, in the effective management of osteoporosis.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Hassan A. Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Faraha Ahmed
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar 110062, New Delhi, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar 110062, New Delhi, India
| | - Javed Ahamad
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil 44001, Iraq
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)–Guwahati, Changsari, Kamrup 781101, Assam, India
| |
Collapse
|
20
|
Huseini HF, Mohtashami R, Sadeghzadeh E, Shadmanfar S, Hashem-Dabaghian F, Kianbakht S. Efficacy and safety of oral Nigella sativa oil for symptomatic treatment of knee osteoarthritis: A double-blind, randomized, placebo-controlled clinical trial. Complement Ther Clin Pract 2022; 49:101666. [PMID: 36150238 DOI: 10.1016/j.ctcp.2022.101666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND PURPOSE The oil of Nigella sativa (NS) seeds has analgesic and anti-inflammatory effects. Therefore, the efficacy and safety of NS oil in the treatment of knee osteoarthritis were evaluated. MATERIALS AND METHODS One hundred and sixteen patients aged 50-70 years were randomly assigned to take 2.5 mL NS oil (N = 58) or placebo (N = 58) orally every 8 h for 1 month. WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) was the primary outcome measure and Visual Analog Scale (VAS) for pain, number of 500 mg acetaminophen tablets taken per day during the trial, patients' satisfaction with the interventions, complete blood count and the blood levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, creatinine and blood urea nitrogen were the secondary outcome measures. RESULTS Fifty two and 54 patients respectively in the NS oil and placebo groups completed the study. The VAS scores were decreased by 33.96 ± 17.04% (NS oil group) and 9.21 ± 0.32% (placebo group) (p < 0.001), and WOMAC total scores were decreased by 27.72 ± 18.61% (NS oil group) and 1.34 ± 2.31% (placebo group) (p < 0.001) compared to baseline. The NS oil reduced the dose of acetaminophen significantly compared with the placebo (p = 0.001). The patients were significantly more satisfied with the NS oil than the placebo (p < 0.001). The NS oil had no significant effect on the other variables. There was no side effect. CONCLUSION Oral NS oil safely reduces the osteoarthritis symptoms and analgesic dose in the knee osteoarthritis patients.
Collapse
Affiliation(s)
- Hasan Fallah Huseini
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Reza Mohtashami
- Medicine, Quran and Hadith Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Elaheh Sadeghzadeh
- Department of Internal Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Soraya Shadmanfar
- Department of Internal Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fataneh Hashem-Dabaghian
- Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Kianbakht
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
21
|
Black Seed (Nigella sativa): A Favourable Alternative Therapy for Inflammatory and Immune System Disorders. Inflammopharmacology 2022; 30:1623-1643. [PMID: 35972596 DOI: 10.1007/s10787-022-01035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022]
Abstract
In the recent years, various food additives, medicinal plants, and their bioactive components have been utilized in anti-inflammatory and immunomodulatory therapy. Nigella sativa is a key dietary supplement and food additive which has a strong traditional background. It is also one of the most broadly studied seeds in the global pharmaceutical and nutraceutical sector. N. sativa seeds are potential sources of natural metabolite such as phenolic compounds and alkaloids. The anti-inflammatory and immunomodulatory abilities of these seeds, most peculiarly with reference to some inflammatory and immune mediators, are reviewed. N. sativa and its bioactive compounds modulate inflammatory and immunomodulatory mediators including tumor necrosis factor-alpha (TNF-α), interferon gamma (IFN-γ), nuclear factor kappa B (NF-kB) cyclooxygenase (COX), lipoxygenase (LOX), transforming growth factor beta (TGF-β), interleukins, and immunoglobulin levels. This paper comprehensively describes the biomarkers and signaling pathways underlying the anti-inflammatory and immunomodulatory potential of N. sativa. This review also explains the scientific basis and the pharmacological properties of core bioactive ingredients of N. sativa responsible for these biological activities which indicates that their bioactive components could be possibly regarded as favorable therapy for disorders linked to inflammation and immune-dysregulation.
Collapse
|
22
|
Alshehri A, Ahmad A, Tiwari RK, Ahmad I, Alkhathami AG, Alshahrani MY, Asiri MA, Almeleebia TM, Saeed M, Yadav DK, Ansari IA. In Vitro Evaluation of Antioxidant, Anticancer, and Anti-Inflammatory Activities of Ethanolic Leaf Extract of Adenium obesum. Front Pharmacol 2022; 13:847534. [PMID: 35928278 PMCID: PMC9343940 DOI: 10.3389/fphar.2022.847534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Adenium obesum commonly known as “desert rose” belongs to the family Apopcynaceae and has previously been reported for its anti-influenza, antimicrobial, and cytotoxic efficacies and well-known for their ethno-medicinal applications. In the present study, ethanolic extracts of A. obesum (AOE) were analyzed by gas chromatography-mass spectrometry (GC–MS) to identify the important phytochemical compounds. The GC–MS analysis of AOE detected the presence of 26 phytochemical compounds. This plant is traditionally used for the treatment of various diseases. In this report, the antioxidant, anti-inflammatory, and anticancer activities of ethanolic leaf extract from A. obesum (AOE) were studied. The antioxidant potential of ethanolic extract of AOE was examined by different antioxidant assays, such as antioxidant capacity by the DPPH, ABTS, superoxide, hydroxyl radical scavenging, and lipid peroxidation inhibition assays. The antioxidant activities of various reaction mixtures of AOE were compared with a reference or standard antioxidant (ascorbic acid). In addition, we also evaluated the anticancer activity of AOE, and it was observed that AOE was found to be cytotoxic against A549 lung cancer cells. It was found that AOE inhibited the viability of A549 lung cancer cells by inducing nuclear condensation and fragmentation. Furthermore, ethanolic AOE demonstrated the anti-inflammatory potential of AOE in murine alveolar macrophages (J774A.1) as an in vitro model system. AOE showed its potential in reducing the levels of inflammatory mediators including the proinflammatory cytokines and TNF-α. The results obtained in the present investigation established the antioxidant, anticancer, and anti-inflammatory potency of AOE, which may account for subsequent studies in the formulation of herbal-based medicine.
Collapse
Affiliation(s)
- Ahmad Alshehri
- College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Afza Ahmad
- Department of Biosciences, Integral University, Luknow, India
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ali G. Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Tahani M. Almeleebia
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea
- *Correspondence: Irfan Ahmad Ansari, ; Dharmendra Kumar Yadav,
| | - Irfan Ahmad Ansari
- Department of Biosciences, Integral University, Luknow, India
- *Correspondence: Irfan Ahmad Ansari, ; Dharmendra Kumar Yadav,
| |
Collapse
|
23
|
Abd-Elkareem M, Soliman M, Abd El-Rahman MAM, Abou Khalil NS. Effect of Nigella sativa L. Seed on the Kidney of Monosodium Glutamate Challenged Rats. Front Pharmacol 2022; 13:789988. [PMID: 35814230 PMCID: PMC9257379 DOI: 10.3389/fphar.2022.789988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Monosodium glutamate (MSG) consumption is responsible for a wide spectrum of health hazards including nephrotoxicity. The search for phytochemical strategies having broad safety profile to counter MSG toxicity is worthwhile. Nigella sativa L. seed (NSS) is very promising in this regard owing to its antioxidant and cytoprotective nature. Therefore, we attempted to investigate the potential protective effect of NSS on MSG-induced renal toxicity in rats. To accomplish this objective, fifteen adult Wistar albino rats were randomly and equally divided into three groups for 21 days: the control group received no treatment, MSG group supplemented with MSG at a dose of 30 g/kg feed, and MSG + NSS group supplemented with MSG at the same previous dose in conjugation with NSS at a dose of 30 g/kg feed. MSG and its combination with NSS failed to cause any significant difference in the kidney function parameters in comparison with the control. A significant elevation in lipid peroxides (LPO) level, glutathione-S-transferase activity and total antioxidant capacity (TAC) and a significant reduction in superoxide dismutase activity were found in MSG group. LPO level and TAC in MSG intoxicated rats significantly normalized by NSS ingestion. NO level showed absence of significant difference among all experimental groups. MSG elicited histopathological lesions such as decreased glycoprotein content and fibrosis however, NSS succeeded in enhancing all these features. MSG group showed positive glutathione reductase and superoxide dismutase 2 immuno-expression whereas, MSG + NSS group showed weak immunostaining. A significant increase in the number of apoptotic cells was observed in MSG group compared to the control. On the other hand, MSG + NSS group exhibited a significant decrease in the number of apoptotic cells. NSS mitigated MSG-induced renal impairments by ameliorating oxidative stress and exerting anti-apoptotic effect.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Department of Cell and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- *Correspondence: Mahmoud Abd-Elkareem, ,
| | - Mahmoud Soliman
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | | | - Nasser S. Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
24
|
Nigella sativa Oil Reduces LPS-Induced Microglial Inflammation: An Evaluation on M1/M2 Balance. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5639226. [PMID: 35747373 PMCID: PMC9213141 DOI: 10.1155/2022/5639226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
Abstract
Objectives The immune system plays a critical defence role against infections, injuries, and carcinogenic stimuli. As the macrophages of the brain resides in the innate immune system, microglia and their polarisation (M1/M2) play regulatory roles in inflammation in CNS, such as Parkinson's, Alzheimer's, dementia complex, and multiple sclerosis. Nigella sativa belongs to the Ranunculaceae family and has different anti-inflammatory and antioxidant effects. We conducted this study to evaluate the anti-inflammatory and protective properties of N. sativa oil (NSO) on the microglial cells and their polarisation (M1/M2) in the presence of LPS as a model of neuroinflammation. Methods The protective effects of NSO (10–40 µg/ml) were studied on the LPS-induced microglial cells, and the levels of tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, prostaglandin E2 (PGE2), and IL-10 were evaluated using both ELISA and gene expression methods. The levels of cyclooxygenase-2 (COX-2), inducible NOS (iNOS), and arginase-1 (Arg1) were also evaluated using the real-time PCR method. In addition, nitrite oxide (NO) and urea were measured using biochemical methods. Results NSO decreased LPS-induced toxicity at all doses (P < 0.001). NSO (10–40 μg/ml) also significantly reduced the levels of TNF-α, PGE2, IL-1β, and IL-6 in the presence of LPS (P < 0.01 to 0.001). Pretreatment with NSO attenuated the levels of iNOS but increased Arg1 (P < 0.001). The ratio of iNOS/Arg1 was also decreased in the presence of NSO (P < 0.001) than that of the LPS group (P < 0.001). Conclusion NSO attenuated LPS-induced inflammation and increased microglia's anti-inflammatory status. These results may prove that NSO is potentially an immunomodulator for various neurodegenerative diseases by M1 phenotype dominancy, such as Alzheimer's and Parkinson's diseases.
Collapse
|
25
|
Abd Ellatif SA, Bouqellah NA, Abu-Serie MM, Razik ESA, Al-Surhanee AA, Askary AE, Daigham GE, Mahfouz AY. Assessment of probiotic efficacy and anticancer activities of Lactiplantibacillus plantarum ESSG1 (MZ683194.1) and Lactiplantibacillus pentosus ESSG2 (MZ683195.1) isolated from dairy products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39684-39701. [PMID: 35112259 DOI: 10.1007/s11356-022-18537-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Resistance to antibiotics is on the rise, and its indiscriminate usage has resulted in human and animal management constraints. In the research for an innovative treatment to diminish antimicrobial resistance, lactic acid bacteria (LAB) throw light on diminishing this problem in public health. As a result, this paper looked at the efficacy of LAB isolates and their active metabolites to combat pathogens, reduce antibiotic use in clinical settings, and explore the anticancer potential of 8 strains of LAB isolated from dairy products. Antifungal and antibacterial potential of LAB isolates against selected crop pathogenic fungi and food pathogenic bacteria had been estimated. Results revealed that all isolates exert antioxidant efficacy relating to DPPH, NO scavenging ability, reducing power, superoxide anion, hydroxyl radical, and anti-lipid peroxidation potential. Additionally, 12B isolate exert the highest anticancer upshot with IC50 values of 43.98 ± 0.4; 36.7 ± 0.6, 43.1 ± 0.8, and 35.1 ± 0.3 μg/ml, versus Caco-2, MCF-7, HepG-2, and PC3 cell lines respectively, whereas 13B isolate significantly had the highest selectivity index between peripheral blood mononuclear cells (PBMCs) and the tested human cancer cell lines compared to 5-fluorouracil. 13B was the most apoptosis-dependent death inducer for all human cancer cell lines besides exerting the lowest percentage of apoptosis against PBMCs suggesting its safety against PBMCs. The most promising strains 12B and 13B were identified by 16S rRNA sequencing as Lactiplantibacillus plantarum ESSG1 (MZ683194.1) and Lactiplantibacillus pentosus ESSG2 (MZ683195.1). LAB and their extracts are superb substitutive, safe, and efficient antimicrobial, antioxidant, and antitumor curative agents.
Collapse
Affiliation(s)
- Sawsan A Abd Ellatif
- Bioprocess development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Nahla Alsayed Bouqellah
- Science College, Biology Department, Taibah University, 42317- 8599, Al-Madinah Al-Munawara, Kingdom of Saudi Arabia
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), the City of Scientific Research and Technology Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Elsayed S Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Ameena A Al-Surhanee
- Biology Department, College of Science, Jouf University, Sakaka, 2014, Kingdom of Saudi Arabia
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ghadir E Daigham
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Amira Y Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt.
| |
Collapse
|
26
|
Akindele AJ, Sowemimo A, Agunbiade FO, Sofidiya MO, Awodele O, Ade-Ademilua O, Orabueze I, Ishola IO, Ayolabi CI, Salu OB, Akinleye MO, Oreagba IA. Bioprospecting for Anti-COVID-19 Interventions From African Medicinal Plants: A Review. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221096968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The emergence of the novel coronavirus (SARS-CoV-2) that emanated from Wuhan in China in 2019 has become a global concern. The current situation warrants ethnomedicinal drug discovery and development for delivery of phytomedicines with potential for the treatment of COVID-19. The aim of this review is to provide a detailed evaluation of available information on plant species used in African traditional medicines with antiviral, anti-inflammatory, immunomodulatory, and COVID-19 symptoms relieving effects. Literature from scientific databases such as Scopus, PubMed, Google scholar, African Journals OnLine (AJOL), Science Direct, and Web of Science were used for this review. A total of 35 of the 38 reviewed plants demonstrated a wide range of antiviral activities. Bryophyllum pinnatum, Aframomum melegueta, Garcinia kola, Sphenocentrum jollyanum, Adansonia digitata, Sutherlandia frutescens, Hibiscus sabdariffa, Moringa oleifera, and Nigella sativa possess a combination of antiviral, immunomodulatory, anti-inflammatory, and COVID-19 symptoms relieving activities. Nine, 13, and 10 of the plants representing 23.7%, 34.2%, and 26.3% of the plants studied had antiviral activity with 3 other activities, antiviral activity with 2 other activities, and antiviral with one pharmacological activity alone, respectively. The plants studied were reported to be relatively safe at the subchronic toxicity level, except for 2. The study provides baseline information on the pharmacological activities, toxicity, and chemical components of 9 African medicinal plants with antiviral, immunomodulatory, anti-inflammatory, and symptoms relieving activities, thereby making the plants candidates for further investigation for effectiveness against COVID-19.
Collapse
Affiliation(s)
- Abidemi J. Akindele
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abimbola Sowemimo
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Foluso O. Agunbiade
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Chemistry, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Margaret O. Sofidiya
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Olufunsho Awodele
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Omobolanle Ade-Ademilua
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Botany, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Ifeoma Orabueze
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Ismail O. Ishola
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Christianah I. Ayolabi
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Microbiology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Olumuyiwa B. Salu
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Medical Microbiology & Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Moshood O. Akinleye
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Ibrahim A. Oreagba
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | | |
Collapse
|
27
|
Mervić M, Bival Štefan M, Kindl M, Blažeković B, Marijan M, Vladimir-Knežević S. Comparative Antioxidant, Anti-Acetylcholinesterase and Anti-α-Glucosidase Activities of Mediterranean Salvia Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050625. [PMID: 35270095 PMCID: PMC8912324 DOI: 10.3390/plants11050625] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 05/03/2023]
Abstract
Salvia species have a cosmopolitan distribution and comprise several well-known plants valuable for pharmaceutical and food industries due to their recognized medicinal, food flavouring, and preservative properties. The present study aimed to evaluate and compare the biological activities of seven wild-growing Salvia species from the Mediterranean area (S. fruticosa, S. glutinosa, S. nemorosa, S. officinalis, S. pratensis, S. sclarea, S. verticillata). All studied ethanolic leaf extracts exhibited significant DPPH and NO radical scavenging ability, lipid peroxidation inhibition, and reducing power, as well as moderate iron-chelating properties. Together with S. officinalis and S. fruticosa, S. verticillata showed anti-acetylcholinesterase activity, while S. glutinosa was also found to possess the ability to inhibit α-glucosidase. Total flavonoid (0.37-0.90%), phenolic acid (3.55-12.44%), tannin (1.22-2.60%), and anthocyanin contents (0.03-0.08%) were determined in Salvia leaves. Rosmarinic acid was the predominant hydroxycinnamic acid in all studied sage plants, ranging from 9400 to 38,800 μg/g. The correlation study showed a strong relationship between biological activities and contents of total phenolic acids, total tannins, and rosmarinic acid, indicating their significant contribution to the efficiency of tested Salvia species. Our results highlighted Mediterranean sage plants as rich sources of potent antioxidant, neuroprotective, and hypoglycemic agents which are worthy of further research.
Collapse
|
28
|
The effect of Nigella sativa on TAC and MDA in obese and overweight women: secondary analysis of a crossover, double blind, randomized clinical trial. J Diabetes Metab Disord 2022; 21:171-179. [PMID: 35673509 PMCID: PMC9167332 DOI: 10.1007/s40200-021-00954-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Purpose Since obesity is a risk factor for various diseases and is associated with increased oxidative stress conditions, some herbs are considered to be effective in reducing obesity and its complications. Methods This secondary analysis investigates the effect of Nigella sativa (N.S) oil supplement on total antioxidant capacity (TAC) and malondialdehyde (MDA) levels in obese/overweight women. Obese and overweight healthy women were randomized to receive 2,000 mg/d of N.S supplement and placebo. The intervention periods lasted 8 weeks and were separated by a 4-week washout period. Also, each participant was given an iso-calorie diet. Baseline characteristics and TAC and MDA levels were measured. Pkcross analysis was performed for statistical analysis using Stata software. Also, Cohen's d was estimated as effect size for all results to assess the magnitude of the effects. Results 39 women completed the study. N.S oil supplementation at a dose of 2000 mg/d significantly increased serum TAC (P effect = 0.017, Cohen's d = 1.81) and reduced serum MDA (P effect < 0/001, Cohen's d = - 0.32). Conclusion Based on our findings taking N.S supplementation for 8 weeks can improve antioxidant conditions in obese and overweight adults. However, more studies with a larger population and the presence of both genders need to be done to confirm the results.Registration number: IRCT20180430039475N1.
Collapse
|
29
|
Tiji S, Lakrat M, Rokni Y, Mejdoubi EM, Hano C, Addi M, Asehraou A, Mimouni M. Characterization and Antimicrobial Activity of Nigella sativa Extracts Encapsulated in Hydroxyapatite Sodium Silicate Glass Composite. Antibiotics (Basel) 2022; 11:170. [PMID: 35203773 PMCID: PMC8868394 DOI: 10.3390/antibiotics11020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
N. sativa is an interesting source of bioactive compounds commonly used for various therapeutic purposes. Associate its seeds extracts with biomaterials to improve their antimicrobial properties are highly demanded. This study aims to investigate the encapsulation of NS extracts in hydroxyapatite nanoparticle sodium silicate glass (nHap/SSG) scaffold. NS essential oil (HS) was extracted by hydrodistillation, while hexane (FH) and acetone extracts (FA) were obtained using Soxhlet extraction. (FH) was the most abundant (34%) followed by (FA) (2.02%) and (HS) (1.2%). GC-MS chromatography showed that the (HS) contained beta cymene, alpha thujene, β-pinene and thymoquinone, while (FH) had mostly fatty acids and (FA) decane, 2.9-dimethyl, benzene 1,3,3-trimethylnonyl and beta cymene. Loaded nHap/SGG scaffolds with various amount of (FH), (HS) and (FA) at 1.5, 3, and 6 wt%; were elaborated then characterized by ATR-FTIR, X-ray and SEM techniques and their antimicrobial activity was studied. Samples loaded with 1.5 wt% HE was highly active against C. albicans (19 mm), and at 3 wt% on M. luteus (20 mm) and S. aureus (20 mm). Additionally, loaded scaffolds with 1.5 wt% AE had an important activity against M. luteus (18.9 mm) and S. aureus (19 mm), while the EO had low activities on all bacterial strains. The outcome of this finding indicated that loaded scaffolds demonstrated an important antimicrobial effect that make them promising materials for a wide range of medical applications.
Collapse
Affiliation(s)
- Salima Tiji
- Applied Chemistry and Environment Laboratory, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Mohammed Lakrat
- Solid Mineral Chemistry Laboratory, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.L.); (E.M.M.)
- High Institute of Biological and Paramedical Sciences, ISSB-P, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
| | - Yahya Rokni
- Bio-Resources, Biotechnology, Ethno-Pharmacology and Health Laboratory, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (Y.R.); (A.A.)
- Research Unit Bioprocess and Biointerfaces, Laboratory of Industrial Engineering and Surface Engineering, National School of Applied Sciences, Sultan Moulay Slimane University, 17 Mghila, Beni Mellal 23000, Morocco
| | - El Miloud Mejdoubi
- Solid Mineral Chemistry Laboratory, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.L.); (E.M.M.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, CEDEX 2, 45067 Orléans, France
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco;
| | - Abdeslam Asehraou
- Bio-Resources, Biotechnology, Ethno-Pharmacology and Health Laboratory, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (Y.R.); (A.A.)
| | - Mostafa Mimouni
- Applied Chemistry and Environment Laboratory, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| |
Collapse
|
30
|
Taysi S, Algburi FS, Mohammed Z, Ali OA, Taysi ME. Thymoquinone: A Review of Pharmacological Importance, Oxidative Stress, COVID-19, and Radiotherapy. Mini Rev Med Chem 2022; 22:1847-1875. [PMID: 34983346 DOI: 10.2174/1389557522666220104151225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
Widely consumed worldwide, Nigella sativa (NS) is a medicinal herb commonly used in various alternative medicine systems such as Unani and Tibb, Ayurveda, and Siddha. Recommended for regular use in Tibb-e-Nabwi (Prophetic Medicine), NS is considered one of the most notable forms of healing medicine in Islamic literature. Thymoquinone (TQ), the main component of the essential oil of NS, has been reported to have many properties such as antioxidant, anti-inflammatory, antiviral, and antineoplastic. Its chemical structure indicates antiviral potential against many viruses, including the hepatitis C virus, human immunodeficiency virus, and other coronavirus diseases. Interestingly, molecular docking studies have demonstrated that TQ can potentially inhibit the development of the coronavirus disease 2019 (COVID-19) by binding to the receptor site on the transmembrane serine proteinase 2 (the activator enzyme that attaches the virus to the cell). In addition, TQ has been shown to be effective against cancer cells due to its inhibitory effect by binding to the different regions of MDM2, according to the proposed molecular docking study. Detailed in this review is the origin of TQ, its significance in alternative medicine, pharmacological value, potential as a cancer anti-proliferative agent, use against the coronavirus disease 2019 (COVID-19), and treatment of other diseases.
Collapse
Affiliation(s)
- Seyithan Taysi
- Department of Medical Biochemistry, Medical School, Gaziantep University, Gaziantep
| | - Firas Shawqi Algburi
- Department of Medical Biochemistry, Medical School, Gaziantep University, Gaziantep
- Department of Biology, College of Science, Tikrit University, Iraq
| | - Zaid Mohammed
- Department of Biochemistry and Technology, Gaziantep University, Gaziantep
| | - Omeed Akbar Ali
- Department of Medical Biochemistry, Medical School, Gaziantep University, Gaziantep
| | - Muhammed Enes Taysi
- Department of Emergency Medicine, Medical School, Bolu Izzet Baysal University- Bolu-Turkey
| |
Collapse
|
31
|
Mehraj T, Elkanayati RM, Farooq I, Mir TM. A review of Nigella sativa and its active principles as anticancer agents. BLACK SEEDS (NIGELLA SATIVA) 2022:91-118. [DOI: 10.1016/b978-0-12-824462-3.00012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Atif M, Naz F, Akhtar J, Imran M, Saleem S, Akram J, Imran M, Ullah MI. From Molecular Pathology of COVID 19 to Nigella Sativum as a Treatment Option: Scientific Based Evidence of Its Myth or Reality. Chin J Integr Med 2022; 28:88-95. [PMID: 34586557 PMCID: PMC8479716 DOI: 10.1007/s11655-021-3311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 11/06/2022]
Abstract
COVID-19 virus is a causative agent of viral pandemic in human beings which specifically targets respiratory system of humans and causes viral pneumonia. This unusual viral pneumonia is rapidly spreading to all parts of the world, currently affecting about 105 million people with 2.3 million deaths. Current review described history, genomic characteristics, replication, and pathogenesis of COVID-19 with special emphasis on Nigella sativum (N. sativum) as a treatment option. N. sativum seeds are historically and religiously used over the centuries, both for prevention and treatment of different diseases. This review summarizes the potential role of N. sativum seeds against COVID-19 infection at levels of in silico, cell lines and animal models.
Collapse
Affiliation(s)
- Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 75471, Saudi Arabia
| | - Farrah Naz
- Department of Microbiology, Government College University, Faisalabad, 38000, Pakistan
| | - Junaid Akhtar
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Imran
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Sidrah Saleem
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Javed Akram
- University of Health Sciences, Lahore, 54600, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 75471, Saudi Arabia
| |
Collapse
|
33
|
Katirci Y, Yilmaz I, Kaya E. Effects of thymoquinone on alpha-amanitin induced hepatotoxicity in human C3A hepatocytes. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Ismail Yilmaz
- Izmir Kâtip Celebi University School of Medicine, Turkey
| | | |
Collapse
|
34
|
Turgut R, Kartal M, Akkol EK, Demirbolat İ, Taştan H. Development of Cholesterol-Lowering and Detox Formulations Using Bentonite and Herbal Ingredients. Front Pharmacol 2021; 12:775789. [PMID: 34938189 PMCID: PMC8685422 DOI: 10.3389/fphar.2021.775789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Detoxification enzymes involved in human metabolism works to minimize the potential xenobiotic-induced damage constantly. Studies have revealed that toxin accumulation plays an important role in the etiology of cardiovascular disease. This study has been designed to provide evidence of medicinal use of bentonite, turmeric (Curcuma longa L.), grape (Vitis vinifera L.) seed, flaxseed (Linum usitatissimum L.), and psyllium (Plantago ovata L.) as detoxification and cholesterol-lowering agents using a hypercholesterolemic model in mice. The potential hypocholesterolemic effects and detoxification ability of these ingredients were evaluated at the same time: Total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglyceride, glucose, aspartate aminotransferase, alanine aminotransferase, malondialdehyde, plasma total antioxidant activity, nitric acid, leptin levels and glutathione, glutathione peroxidase, lipid peroxidation, superoxide dismutase and catalase values were measured. It was determined that GBTF group (grape seed extract, bentonite, turmeric, and flaxseed), GBTP group (grape seed extract, bentonite, turmeric, and psyllium), and GBT group (grape seed extract, bentonite, and turmeric) of the tested materials decreased the serum total cholesterol concentration by 64.8, 57.5, and 48.9%, respectively, in mice fed a high cholesterol diet. In addition, it was determined that some detoxification parameters such as superoxide dismutase, catalase, glutathione, and glutathione peroxidase were statistically significantly reversed in GBTF, GBTP, and GBT groups. Flaxseed, psyllium, and bentonite clay did not show significant effects in reducing total cholesterol; however, GBTF, GBTP, and GBT groups interventions had a significant effect in reducing total cholesterol levels. Moreover, it was observed that adding flaxseed or psyllium to the GBT group increased the cholesterol-lowering effect. Therefore, it can be thought that this significant effect is due to the synergistic effect of the raw materials. When the results obtained were evaluated, it was seen that the cholesterol-lowering and detoxification effects of the combinations were higher than from the effect of natural material used alone. As a result, combinations of some of these ingredients have a positive effect on reducing the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Rana Turgut
- Department of Pharmacognosy, Health Sciences Institute, Bezmialem Vakif University, Istanbul, Turkey
| | - Murat Kartal
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - İlker Demirbolat
- Bezmialem Center of Education, Practice, and Research in Phytotherapy, Bezmialem Vakif University, Istanbul, Turkey
| | - Hakkı Taştan
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| |
Collapse
|
35
|
Burdock GA. Assessment of black cumin (Nigella sativa L.) as a food ingredient and putative therapeutic agent. Regul Toxicol Pharmacol 2021; 128:105088. [PMID: 34838871 DOI: 10.1016/j.yrtph.2021.105088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/28/2021] [Accepted: 11/23/2021] [Indexed: 01/09/2023]
Abstract
The whole or ground seeds of the food ingredient Nigella sativa L., known in Western culture as "black cumin" or "black caraway", has a three-millennial history of use in Middle- and Far-Eastern cultures as a food ingredient. The seed and its extracts have also been increasingly reported as a successful therapeutic agent with efficacy often attributed to the presence of the powerful antioxidant, thymoquinone. However, quantitative analysis of the seed (especially the volatile fraction) yields widely variable results, which may be due to one or a combination of different crop origins or possible varietal differences, contamination/adulteration, method of extraction, stage of maturation of the extracted seed and other factors. Nonetheless, despite the reported wide variability in bioactive constituents, many publications cite quantifiable outcomes in in vitro and in vivo toxicity testing and in clinical trials. There are a few reports describing allergic reactions in humans when N. sativa extracts are applied to the skin. Notwithstanding the foregoing, N. sativa seeds, used as a food ingredient at historical levels of consumption and as traditionally practiced are safe and Generally Recognized As Safe.
Collapse
|
36
|
Salam SA, Mostafa F, Alnamshan MM, Elshewemi SS, Sorour JM. Thymoquinone ameliorates age-related hearing loss in C57BL/6J mice by modulating Sirt1 activity and Bak1 expression. Biomed Pharmacother 2021; 143:112149. [PMID: 34507120 DOI: 10.1016/j.biopha.2021.112149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Age-related hearing loss (AHL) is the most common sensory disorder of aged population. Currently, one of the most important sources of experimental medicine for AHL is medicinal plants. This study performed the first investigation of the effect of thymoquinone (TQ), a potent antioxidant, on AHL. Here, we used inbred C57BL/6J mice (B6 mice) as a successful experimental model of the early onset of AHL. The behavioral assessment of hearing revealed that the injection of a high dose of TQ (40 mg/kg; TQ40) significantly improved the auditory sensitivity of B6 mice at all tested frequencies (8, 16 and 22 kHz). Histological sections of cochlea from B6 mice injected with a low dose (20 mg/kg; TQ20) and high dose showed relatively less degenerative signs in the modiolus, hair cells and spiral ligaments, the main constituents of the cochlea. In addition, TQ40 completely restored the normal pattern of hair cells in B6 mice, as shown in scanning electron micrographs. Our data indicated that TQ20 and TQ40 reduced levels of Bak1-mediated apoptosis in the cochlea of B6 mice. Interestingly, the level of Sirt1, a positive regulator of autophagy, was significantly increased in B6 mice administered TQ40. In conclusion, TQ relieves the symptoms of AHL by downregulating Bak1 and activating Sirt1 in the cochlea of B6 mice.
Collapse
Affiliation(s)
- Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Fatma Mostafa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Mashael M Alnamshan
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Salma S Elshewemi
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Jehan M Sorour
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|
37
|
Zielińska M, Dereń K, Polak-Szczybyło E, Stępień AE. The Role of Bioactive Compounds of Nigella sativa in Rheumatoid Arthritis Therapy-Current Reports. Nutrients 2021; 13:3369. [PMID: 34684370 PMCID: PMC8539759 DOI: 10.3390/nu13103369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Black cumin (Nigella sativa, NS) is included in the Ranunculaceae family and is classified as a medicinal plant due to very high levels of various bioactive compounds. They determine its therapeutic effects, including anti-inflammatory, anti-allergic, anti-cancer, hypoglycemic, antioxidant, hypotensive, hypolipidemic, and immunomodulating properties. The results of scientific studies indicate a supporting role of black cumin in the treatment of autoimmune diseases, including rheumatoid arthritis, due to the health-promoting properties of its bioactive ingredients. The aim of the current article is to analyze the results of scientific publications on the role of bioactive ingredients contained in black cumin in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
| | | | - Ewelina Polak-Szczybyło
- Department of Dietetics, Institute of Health Sciences, College for Medical Sciences, University of Rzeszow, al/Mjr. W. Kopisto 2a, 35-310 Rzeszow, Poland; (M.Z.); (K.D.); (A.E.S.)
| | | |
Collapse
|
38
|
Rahman MM, Rahaman MS, Islam MR, Hossain ME, Mannan Mithi F, Ahmed M, Saldías M, Akkol EK, Sobarzo-Sánchez E. Multifunctional Therapeutic Potential of Phytocomplexes and Natural Extracts for Antimicrobial Properties. Antibiotics (Basel) 2021; 10:1076. [PMID: 34572660 PMCID: PMC8468069 DOI: 10.3390/antibiotics10091076] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Natural products have been known for their antimicrobial factors since time immemorial. Infectious diseases are a worldwide burden that have been deteriorating because of the improvement of species impervious to various anti-infection agents. Hence, the distinguishing proof of antimicrobial specialists with high-power dynamic against MDR microorganisms is central to conquer this issue. Successful treatment of infection involves the improvement of new drugs or some common source of novel medications. Numerous naturally occurring antimicrobial agents can be of plant origin, animal origin, microbial origin, etc. Many plant and animal products have antimicrobial activities due to various active principles, secondary metabolites, or phytochemicals like alkaloids, tannins, terpenoids, essential oils, flavonoids, lectins, phagocytic cells, and many other organic constituents. Phytocomplexes' antimicrobial movement frequently results from a few particles acting in cooperative energy, and the clinical impacts might be because of the direct effects against microorganisms. The restorative plants that may furnish novel medication lead the antimicrobial movement. The purpose of this study is to investigate the antimicrobial properties of the phytocomplexes and natural extracts of the plants that are ordinarily being utilized as conventional medications and then recommended the chance of utilizing them in drugs for the treatment of multiple drug-resistant disease.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Faria Mannan Mithi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Marianela Saldías
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
39
|
Hannan MA, Zahan MS, Sarker PP, Moni A, Ha H, Uddin MJ. Protective Effects of Black Cumin ( Nigella sativa) and Its Bioactive Constituent, Thymoquinone against Kidney Injury: An Aspect on Pharmacological Insights. Int J Mol Sci 2021; 22:ijms22169078. [PMID: 34445781 PMCID: PMC8396533 DOI: 10.3390/ijms22169078] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of chronic kidney disease (CKD) is increasing worldwide, and a close association between acute kidney injury (AKI) and CKD has recently been identified. Black cumin (Nigella sativa) has been shown to be effective in treating various kidney diseases. Accumulating evidence shows that black cumin and its vital compound, thymoquinone (TQ), can protect against kidney injury caused by various xenobiotics, namely chemotherapeutic agents, heavy metals, pesticides, and other environmental chemicals. Black cumin can also protect the kidneys from ischemic shock. The mechanisms underlying the kidney protective potential of black cumin and TQ include antioxidation, anti-inflammation, anti-apoptosis, and antifibrosis which are manifested in their regulatory role in the antioxidant defense system, NF-κB signaling, caspase pathways, and TGF-β signaling. In clinical trials, black seed oil was shown to normalize blood and urine parameters and improve disease outcomes in advanced CKD patients. While black cumin and its products have shown promising kidney protective effects, information on nanoparticle-guided targeted delivery into kidney is still lacking. Moreover, the clinical evidence on this natural product is not sufficient to recommend it to CKD patients. This review provides insightful information on the pharmacological benefits of black cumin and TQ against kidney damage.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Sarwar Zahan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
| | - Partha Protim Sarker
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea;
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.A.H.); (M.S.Z.); (P.P.S.); (A.M.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea;
- Correspondence: ; Tel.: +82-2-3277-4075; Fax: +82-2-3277-2851
| |
Collapse
|
40
|
Khazdair MR, Gholamnezhad Z, Rezaee R, Boskabady MH. A qualitative and quantitative comparison of Crocus sativus and Nigella sativa immunomodulatory effects. Biomed Pharmacother 2021; 140:111774. [PMID: 34062409 DOI: 10.1016/j.biopha.2021.111774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
The present article reviews and compares the immunomodulatory activities of Crocus sativus (C. sativus) and Nigella sativa (N. sativa) and their main bioactive compounds. Immunomodulatory effects of these plants, especially with respect to Th1 and Th2 cytokines, are discussed based on relevant articles, books, and conference papers published in English until the end of April 2020, that were retrieved from Web of Science, PubMed, Scopus and Google Scholar databases. C. sativus and its constituents increase immunoglobulin (Ig-)G, interleukin 2 (IL)-2, interferon gamma (IFN-γ), and IFN-γ/IL-4 ratio, but decreased IgM, IL-10 and IL-4 secretion. N. sativa extract and thymoquinone reduce the levels of IL-2, -4, -10, and -12, while enhance IFN-γ and serum IgG1 and 2a. The reviewed articles indicate that C. sativus and N. sativa and their constituents could be potentially considered promising treatments for disorders associated with immune-dysregulation such as asthma and cancer.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Gholamnezhad
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Farag MM, Khalifa AA, Elhadidy WF, Rashad RM. Thymoquinone dose-dependently attenuates myocardial injury induced by isoproterenol in rats via integrated modulations of oxidative stress, inflammation, apoptosis, autophagy, and fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1787-1801. [PMID: 34216225 DOI: 10.1007/s00210-021-02087-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022]
Abstract
As rats develop myocardial infarction (MI) like lesions when injected with large doses of isoproterenol (ISO), this investigation was designed to evaluate the dose-dependent effects of thymoquinone (TQ) on ISO-induced myocardial injury in rats. Adult male rats were divided into negative control, TQ20 (20 mg/kg/day), TQ50 (50 mg/kg/day), ISO positive control, TQ20 + ISO, and TQ50 + ISO groups. In these rats, biochemical, immunobiochemical, and histopathological studies were carried out to evaluate myocardial oxidative stress, inflammation, apoptosis, fibrosis, and autophagy, and the changes in serum cardiac biomarkers. The results showed that TQ pretreatment in ISO-administered rats produced a dose-dependent significant reduction of the myocardial infarct size, markedly reduced the ISO-induced elevation in serum cardiac markers and demonstrated several other important findings related to the cardioprotective efficacy of TQ. First, this study is the first reported research work showing that TQ treatment could increase the myocardial reduced glutathione baseline level, adding an indirect antioxidant effect to its known direct free radical scavenging effect. Second, pretreatment with TQ significantly reduced the markers of myocardial oxidative stress, inflammation, fibrosis, and apoptosis. Third, TQ acted as an autophagy enhancer ameliorating myocardial cell damage and dysfunction. Thus, the morphological and biochemical changes associated with ISO-induced myocardial injury were ameliorated with TQ pretreatment. The extent of this improvement was significantly greater in the TQ50 + ISO group than in the TQ20 + ISO group. The present study, for the first time, demonstrates these dose-dependent effects of TQ in experimentally induced myocardial injury. These findings raise the possibility that TQ may serve as a promising prophylactic cardioprotective therapy for patients who are at risk of developing myocardial injury and against the progression of existent myocardial injury as in cases of MI.
Collapse
Affiliation(s)
- Mahmoud M Farag
- Department of Pharmacology, Medical Research Institute, Alexandria University, 165 El-Horria Avenue, P.O. El-Hadara 21561, Alexandria, Egypt.
| | - Asmaa A Khalifa
- Department of Pharmacology, Medical Research Institute, Alexandria University, 165 El-Horria Avenue, P.O. El-Hadara 21561, Alexandria, Egypt
| | - Wessam F Elhadidy
- Department of Pharmacology, Medical Research Institute, Alexandria University, 165 El-Horria Avenue, P.O. El-Hadara 21561, Alexandria, Egypt
| | - Radwa M Rashad
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
42
|
Badary OA, Hamza MS, Tikamdas R. Thymoquinone: A Promising Natural Compound with Potential Benefits for COVID-19 Prevention and Cure. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1819-1833. [PMID: 33976534 PMCID: PMC8106451 DOI: 10.2147/dddt.s308863] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 has caused a major global health crisis, as excessive inflammation, oxidation, and exaggerated immune response in some sufferers can lead to a condition known as cytokine storm, which may progress to acute respiratory distress syndrome (ARDs), which can be fatal. So far, few effective drugs have emerged to assist in the treatment of patients with COVID-19, though some herbal medicine candidates may assist in the fight against COVID-19 deaths. Thymoquinone (TQ), the main active ingredient of black seed oil, possesses antioxidant, anti-inflammatory, antiviral, antimicrobial, immunomodulatory and anticoagulant activities. TQ also increases the activity and number of cytokine suppressors, lymphocytes, natural killer cells, and macrophages, and it has demonstrated antiviral potential against a number of viruses, including murine cytomegalovirus, Epstein-Barr virus, hepatitis C virus, human immunodeficiency virus, and other coronaviruses. Recently, TQ has demonstrated notable antiviral activity against a SARSCoV-2 strain isolated from Egyptian patients and, interestingly, molecular docking studies have also shown that TQ could potentially inhibit COVID-19 development through binding to the receptor-binding domain on the spike and envelope proteins of SARS-CoV-2, which may hinder virus entry into the host cell and inhibit its ion channel and pore forming activity. Other studies have shown that TQ may have an inhibitory effect on SARS CoV2 proteases, which could diminish viral replication, and it has also demonstrated good antagonism to angiotensin-converting enzyme 2 receptors, allowing it to interfere with virus uptake into the host cell. Several studies have also noted its potential protective capability against numerous chronic diseases and conditions, including diabetes, hypertension, dyslipidemia, asthma, renal dysfunction and malignancy. TQ has recently been tested in clinical trials for the treatment of several different diseases, and this review thus aims to highlight the potential therapeutic effects of TQ in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Osama A Badary
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa S Hamza
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Rajiv Tikamdas
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
43
|
Attah AF, Fagbemi AA, Olubiyi O, Dada-Adegbola H, Oluwadotun A, Elujoba A, Babalola CP. Therapeutic Potentials of Antiviral Plants Used in Traditional African Medicine With COVID-19 in Focus: A Nigerian Perspective. Front Pharmacol 2021; 12:596855. [PMID: 33981214 PMCID: PMC8108136 DOI: 10.3389/fphar.2021.596855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by an infectious novel strain of coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which was earlier referred to as 2019-nCoV. The respiratory disease is the most consequential global public health crisis of the 21st century whose level of negative impact increasingly experienced globally has not been recorded since World War II. Up till now, there has been no specific globally authorized antiviral drug, vaccines, supplement or herbal remedy available for the treatment of this lethal disease except preventive measures, supportive care and non-specific treatment options adopted in different countries via divergent approaches to halt the pandemic. However, many of these interventions have been documented to show some level of success particularly the Traditional Chinese Medicine while there is paucity of well reported studies on the impact of the widely embraced Traditional African Medicines (TAM) adopted so far for the prevention, management and treatment of COVID-19. We carried out a detailed review of publicly available data, information and claims on the potentials of indigenous plants used in Sub-Saharan Africa as antiviral remedies with potentials for the prevention and management of COVID-19. In this review, we have provided a holistic report on evidence-based antiviral and promising anti-SARS-CoV-2 properties of African medicinal plants based on in silico evidence, in vitro assays and in vivo experiments alongside the available data on their mechanistic pharmacology. In addition, we have unveiled knowledge gaps, provided an update on the effort of African Scientific community toward demystifying the dreadful SARS-CoV-2 micro-enemy of man and have documented popular anti-COVID-19 herbal claims emanating from the continent for the management of COVID-19 while the risk potentials of herb-drug interaction of antiviral phytomedicines when used in combination with orthodox drugs have also been highlighted. This review exercise may lend enough credence to the potential value of African medicinal plants as possible leads in anti-COVID-19 drug discovery through research and development.
Collapse
Affiliation(s)
- Alfred Francis Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adeshola Adebayo Fagbemi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Olujide Olubiyi
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
| | - Hannah Dada-Adegbola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Anthony Elujoba
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Chinedum Peace Babalola
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
- Centre for Drug Discovery, Development and Production, University of Ibadan, Ibadan, Nigeria
- College of Basic Medical Sciences, Chrisland University, Abeokuta, Nigeria
| |
Collapse
|
44
|
Bargi R, Hosseini M, Asgharzadeh F, Khazaei M, Shafei MN, Beheshti F. Protection Against Blood-Brain Barrier Permeability as a Possible Mechanism for Protective Effects of Thymoquinone Against Sickness Behaviors Induced by Lipopolysaccharide in Rats. Jundishapur J Nat Pharm Prod 2021; 16. [DOI: 10.5812/jjnpp.67765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Background: Blood-brain barrier (BBB), as well-known protection for the brain, plays an active role in normal homeostasis. It might be changed by a range of inflammatory mediators to have a role in sickness behaviors. Objectives: Regarding the anti-inflammatory effects of thymoquinone (TQ), its protection against BBB permeability, as a possible mechanism for protective effects against sickness behaviors elicited by lipopolysaccharide (LPS), was evaluated in rats. Methods: The animals were grouped as follows and treated (n = 10 in each): (1) control (saline); (2) LPS 1 mg/kg, was injected two hours before behavioral tests for two weeks; (3-5) 2, 5, and 10 mg/kg TQ, respectively was injected 30 min before LPS injection. Open-field (OF), elevated plus-maze (EPM) and Forced Swimming test (FST) were done. Finally, the animals were anesthetized to evaluate for BBB permeability using Evans blue (EB) dye method. Results: Compared with control, LPS decreased the peripheral distance and crossing and also total crossing and distance in OF, (P < 0.01 - P < 0.001). The central crossing and distance and central time in all three treatment groups were more than LPS (P < 0.05 - P < 0.001). LPS also reduced the entries and the time spent in the open arm while increased the time spent in the closed arm in EPM (P < 0.05 - P < 0.001). The effects of LPS were reversed by TQ (P < 0.05 - P < 0.001). In FST, the immobility time and active time were increased and decreased by LPS compared with control (P < 0.001), respectively. In all three TQ-treated groups, the active and climbing times were more while the immobility time was fewer than the LPS (P < 0.05 - P < 0.001). The animals of the LPS group showed more EB dye content in their brain tissue than the control group (P < 0.05 - P < 0.001). TQ significantly reduced EB dye content of the brain tissues (P < 0.05 - P < 0.001). Conclusions: According to this study, protection against BBB permeability as a possible mechanism for the protective effects of TQ against sickness behaviors induced by LPS might be suggested.
Collapse
|
45
|
Landucci E, Mazzantini C, Buonvicino D, Pellegrini-Giampietro DE, Bergonzi MC. Neuroprotective Effects of Thymoquinone by the Modulation of ER Stress and Apoptotic Pathway in In Vitro Model of Excitotoxicity. Molecules 2021; 26:molecules26061592. [PMID: 33805696 PMCID: PMC7998420 DOI: 10.3390/molecules26061592] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Experimental evidence indicates that the activation of ionotropic glutamate receptors plays an important role in neurological disorders’ models such as epilepsy, cerebral ischemia and trauma. The glutamate receptor agonist kainic acid (KA) induces seizures and excitotoxic cell death in the CA3 region of the hippocampus. Thymoquinone (TQ) is the most important component of the essential oil obtained from black cumin (Nigella sativa L.) seeds. It has many pharmacological actions including antioxidant, anti-inflammatory, and anti-apoptotic effects. TQ was used in an in vitro experimental model of primary cultures where excitotoxicity was induced. Briefly, rat organotypic hippocampal slices were exposed to 5 µM KA for 24 h. Cell death in the CA3 subregions of slices was quantified by measuring propidium iodide fluorescence. The cross-talk between TQ, ER stress and apoptotic pathways was investigated by Western blot. In untreated slices TQ (10 µM) induced a significant increase on the PSD95 levels and it decreased the excitotoxic injury induced by KA. Additionally, TQ was able to ameliorate the KA-induced increase in unfolded proteins GRP78 and GRP94 expression. Finally, TQ was able to partially rescue the reduction of the KA-induced apoptotic pathway activation. Our results suggest that TQ modulates the processes leading to post-kainate neuronal death in the CA3 hippocampal area.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.B.); (D.E.P.-G.)
- Correspondence: (E.L.); (M.C.B.); Tel.: +39-055-2758378 (E.L.); +39-055-455-3678 (M.C.B.)
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.B.); (D.E.P.-G.)
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.B.); (D.E.P.-G.)
| | - Domenico E. Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.B.); (D.E.P.-G.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
- Correspondence: (E.L.); (M.C.B.); Tel.: +39-055-2758378 (E.L.); +39-055-455-3678 (M.C.B.)
| |
Collapse
|
46
|
Nigella sativa (Black Seed) as a Natural Remedy against Viruses. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The currently available antiviral agents are associated with serious adverse effects, coupled with the increasing rate of viral resistance to the existing antiviral drugs. Hence, the search for alternative natural remedies is gaining momentum across the globe. Nigella sativa Linnen, also called Black seed, is a medicinal plant that is gaining worldwide recognition and has been extensively investigated. The present work is aimed to review the existing literature on the antiviral efficacy of Nigella sativa extracts (oil & bioactive compounds). The findings reveal that numerous articles have been published on Nigella sativa and its beneficial effects against different kinds of diseases. However, the antiviral efficacy of Nigella sativa is yet to be given the proper research attention it deserves.
Collapse
|
47
|
Elgohary S, Elkhodiry AA, Amin NS, Stein U, El Tayebi HM. Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients? Cells 2021; 10:302. [PMID: 33540625 PMCID: PMC7912962 DOI: 10.3390/cells10020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Since the beginning of the SARS-CoV-2(severe acute respiratory syndrome-coronavirus-2) pandemic, arace to develop a vaccine has been initiated, considering the massive and rather significant economic and healthcare hits that this virus has caused. The pathophysiology occurring following COVID-19(coronavirus disease-2019) infection has givenhints regarding the supportive and symptomatic treatments to establish for patients, as no specific anti-SARS-CoV-2 is available yet. Patient symptoms vary greatly and range from mild symptoms to severe fatal complications. Supportive treatments include antipyretics, antiviral therapies, different combinations of broad-spectrum antibiotics, hydroxychloroquine and plasma transfusion. Unfortunately, cancer patients are at higher risk of viral infection and more likely to develop serious complications due to their immunocompromised state, the fact that they are already administering multiple medications, as well as combined comorbidity compared to the general population. It may seem impossible to find a drug that possesses both potent antiviral and anticancer effects specifically against COVID-19 infection and its complications and the existing malignancy, respectively. Thymoquinone (TQ) is the most pharmacologically active ingredient in Nigella sativa seeds (black seeds); it is reported to have anticancer, anti-inflammatory and antioxidant effects in various settings. In this review, we will discuss the multiple effects of TQ specifically against COVID-19, its beneficial effects against COVID-19 pathophysiology and multiple-organ complications, its use as an adjuvant for supportive COVID-19 therapy and cancer therapy, and finally, its anticancer effects.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Aya A. Elkhodiry
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Nada S. Amin
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| |
Collapse
|
48
|
Ali MY, Akter Z, Mei Z, Zheng M, Tania M, Khan MA. Thymoquinone in autoimmune diseases: Therapeutic potential and molecular mechanisms. Biomed Pharmacother 2021; 134:111157. [PMID: 33370631 DOI: 10.1016/j.biopha.2020.111157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases (AUDs) are a multifactorial disease, among which rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis are more prevalent. Several anti-inflammatory, biologics, and AUD-modifying drugs are found effective against them, but their repeated use are associated with various adverse effects. In this review article, we have focused on the regulation of inflammatory molecules, molecular signaling pathways, immune cells, and epigenetics by natural product thymoquinone on AUDs. Studies indicate that thymoquinone can regulate inflammatory molecules including interferons, interleukins, tumor necrosis factor-α (TNF-α), oxidative stress, regulatory T cells, and various signaling pathways such as nuclear factor kappa beta (NF-κβ), janus kinase/signal transduction and activator of transcription (JAK-STAT), mitogen-activated protein kinase (MAPK) at the molecular level and epigenetic alteration. As these molecules and signaling pathways with defective immune function play an important role in AUD development, controlling these molecules and deregulated molecular mechanism is a significant feature of AUD therapeutics. Interestingly thymoquinone is reported to possess all these potential. This article reviewed the deregulated mechanism of AUDs, and the action of thymoquinone on inflammatory molecules, immune cells, signaling pathways, and epigenetic machinery. Thymoquinone can be regarded as a potential drug candidate for AUD treatment.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka, Bangladesh
| | - Zakia Akter
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka, Bangladesh
| | - Zhiqiang Mei
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Mousumi Tania
- Research Division, Nature Study Society of Bangladesh, Dhaka, Bangladesh; Division of Molecular Cancer Biology, Red Green Research Center, Dhaka, Bangladesh
| | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
49
|
Ahmad MF, Ahmad FA, Ashraf SA, Saad HH, Wahab S, Khan MI, Ali M, Mohan S, Hakeem KR, Athar MT. An updated knowledge of Black seed ( Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. J Herb Med 2021; 25:100404. [PMID: 32983848 PMCID: PMC7501064 DOI: 10.1016/j.hermed.2020.100404] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/08/2019] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
N. sativa (N. sativa) has been used since ancient times, when a scientific concept about the use of medicinal plants for the treatment of human illnesses and alleviation of their sufferings was yet to be developed. It has a strong religious significance as it is mentioned in the religious books of Islam and Christianity. In addition to its historical and religious significance, it is also mentioned in ancient medicine. It is widely used in traditional systems of medicine for a number of diseases including asthma, fever, bronchitis, cough, chest congestion, dizziness, paralysis, chronic headache, back pain and inflammation. The importance of this plant led the scientific community to carry out extensive phytochemical and biological investigations on N. sativa. Pharmacological studies on N. sativa have confirmed its antidiabetic, antitussive, anticancer, antioxidant, hepatoprotective, neuro-protective, gastroprotective, immunomodulator, analgesic, antimicrobial, anti-inflammatory, spasmolytic, and bronchodilator activity. The present review is an effort to explore the reported chemical composition and pharmacological activity of this plant. It will help as a reference for scientists, researchers, and other health professionals who are working with this plant and who need up to date knowledge about it.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Laboratory Medicine Al-Hada and Taif Military Hospital, Saudi Arabia
| | - Syed Amir Ashraf
- Dept. of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Hisham H Saad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Saudi Arabia
| | - Shadma Wahab
- College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Saudi Arabia
| | - M Ali
- College of pharmacy, Dept. of Pharmacognosy, Jazan University, Saudi Arabia
| | - Syam Mohan
- Medical Research Center, Jazan University, Jazan, Saudi Arabia
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Md Tanwir Athar
- Bioactive Natural Product Laboratory, Hamdard University, India.,Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
50
|
Saadat S, Aslani MR, Ghorani V, Keyhanmanesh R, Boskabady MH. The effects of Nigella sativa on respiratory, allergic and immunologic disorders, evidence from experimental and clinical studies, a comprehensive and updated review. Phytother Res 2021; 35:2968-2996. [PMID: 33455047 DOI: 10.1002/ptr.7003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/28/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022]
Abstract
Nigella sativa (N. sativa) seed had been used traditionally due to several pharmacological effects. The updated experimental and clinical effects of N. sativa and its constituents on respiratory, allergic and immunologic disorders are provided in this comprehensive review article. Various databases including PubMed, Science Direct and Scopus were used. The preventive effects of N. sativa on pulmonary diseases were mainly due to its constituents such as thymoquinone, thymol, carvacrol and alpha-hederin. Extracts and constituents of N. sativa showed the relaxant effect, with possible mechanisms indicating its bronchodilatory effect in obstructive pulmonary diseases. In experimental animal models of different respiratory diseases, the preventive effect of various extracts and constituents of N. sativa was demonstrated by mechanisms such as antioxidant, immunomodulatory and antiinflammatory effects. Bronchodilatory and preventive effects of the plant and its components on asthma, COPD and lung disorders due to exposure to noxious agents as well as on allergic and immunologic disorders were also shown in the clinical studies. Various extracts and constituents of N. sativa showed pharmacological and therapeutic effects on respiratory, allergic and immunologic disorders indicating possible remedy effect of that the plant and its effective substances in treating respiratory, allergic and immunologic diseases.
Collapse
Affiliation(s)
- Saeideh Saadat
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Aslani
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahideh Ghorani
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rana Keyhanmanesh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|