1
|
Pradhan S, Banda OA, Farino CJ, Sperduto JL, Keller KA, Taitano R, Slater JH. Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology. Adv Healthc Mater 2020; 9:e1901255. [PMID: 32100473 PMCID: PMC8579513 DOI: 10.1002/adhm.201901255] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/24/2020] [Indexed: 12/17/2022]
Abstract
The vascular system is integral for maintaining organ-specific functions and homeostasis. Dysregulation in vascular architecture and function can lead to various chronic or acute disorders. Investigation of the role of the vascular system in health and disease has been accelerated through the development of tissue-engineered constructs and microphysiological on-chip platforms. These in vitro systems permit studies of biochemical regulation of vascular networks and parenchymal tissue and provide mechanistic insights into the biophysical and hemodynamic forces acting in organ-specific niches. Detailed understanding of these forces and the mechanotransductory pathways involved is necessary to develop preventative and therapeutic strategies targeting the vascular system. This review describes vascular structure and function, the role of hemodynamic forces in maintaining vascular homeostasis, and measurement approaches for cell and tissue level mechanical properties influencing vascular phenomena. State-of-the-art techniques for fabricating in vitro microvascular systems, with varying degrees of biological and engineering complexity, are summarized. Finally, the role of vascular mechanobiology in organ-specific niches and pathophysiological states, and efforts to recapitulate these events using in vitro microphysiological systems, are explored. It is hoped that this review will help readers appreciate the important, but understudied, role of vascular-parenchymal mechanotransduction in health and disease toward developing mechanotherapeutics for treatment strategies.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Omar A. Banda
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Cindy J. Farino
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John L. Sperduto
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Keely A. Keller
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Ryan Taitano
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
2
|
Takamatsu Y, Hori T, Machimoto T, Hata T, Kadokawa Y, Ito T, Kato S, Yasukawa D, Aisu Y, Kimura Y, Kitano T, Yoshimura T. Intentional Modulation of Portal Venous Pressure by Splenectomy Saves the Patient with Liver Failure and Portal Hypertension After Major Hepatectomy: Is Delayed Splenectomy an Acceptable Therapeutic Option for Secondary Portal Hypertension? AMERICAN JOURNAL OF CASE REPORTS 2018; 19:137-144. [PMID: 29410393 PMCID: PMC5810619 DOI: 10.12659/ajcr.907178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Major or aggressively-extended hepatectomy (MAEH) may cause secondary portal hypertension (PH), and postoperative liver failure (POLF) and is often fatal. Challenges to prevent secondary PH and subsequent POLF, such as shunt creation and splenic arterial ligation, have been reported. However, these procedures have been performed simultaneously only during the initial MAEH. CASE REPORT A 58-year-old female with chronic hepatitis C developed a solitary hepatic cellular carcinoma with portal tumor thrombosis. Blood examination and imaging revealed a decreased platelet count and splenomegaly. Her liver viability was preserved, and collaterals did not develop, and her tumor thrombosis forced us to perform a right hepatectomy from an oncological standpoint. The estimated volume of her liver remnant was 51.8%. A large volume of ascites and pleural effusion were observed on post-operative day (POD) 3, and ascetic infection occurred on POD 14. Hepatic encephalopathy was observed on POD 16. According to the post-operative development of collaterals due to secondary PH, submucosal bleeding in the stomach occurred on POD 37. Though it is unclear whether delayed portal venous pressure (PVP) modulation after MAEH is effective, a therapeutic strategy for recovery from POLF may involve PVP modulation to resolve intractable PH. We performed a splenectomy on POD 41 to reduce PVP. The initial PVP value was 32 mm Hg, and splenectomy decreased PVP to 23 mm Hg. Thereafter, she had a complete recovery from POLF. CONCLUSIONS Our thought-provoking case is the first successfully-treated case of secondary PH and POLF after MAEH, achieved by delayed splenectomy for PVP modulation.
Collapse
|
3
|
Pasarín M, Abraldes JG, Liguori E, Kok B, La Mura V. Intrahepatic vascular changes in non-alcoholic fatty liver disease: Potential role of insulin-resistance and endothelial dysfunction. World J Gastroenterol 2017; 23:6777-6787. [PMID: 29085222 PMCID: PMC5645612 DOI: 10.3748/wjg.v23.i37.6777] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/31/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome is a cluster of several clinical conditions characterized by insulin-resistance and high cardiovascular risk. Non-alcoholic fatty liver disease is the liver expression of the metabolic syndrome, and insulin resistance can be a frequent comorbidity in several chronic liver diseases, in particular hepatitis C virus infection and/or cirrhosis. Several studies have demonstrated that insulin action is not only relevant for glucose control, but also for vascular homeostasis. Insulin regulates nitric oxide production, which mediates to a large degree the vasodilating, anti-inflammatory and antithrombotic properties of a healthy endothelium, guaranteeing organ perfusion. The effects of insulin on the liver microvasculature and the effects of IR on sinusoidal endothelial cells have been studied in animal models of non-alcoholic fatty liver disease. The hypotheses derived from these studies and the potential translation of these results into humans are critically discussed in this review.
Collapse
Affiliation(s)
- Marcos Pasarín
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, IDIBAPS (Institut d’Investigacions Biomèdiques August Pi i Sunyer), University of Barcelona, 08036 Barcelona, Spain
| | - Juan G Abraldes
- Cirrhosis Care Clinic, Division of Gastroenterology (Liver Unit), CEGIIR, University of Alberta, AB T6G 2R3 Edmonton, Canada
| | - Eleonora Liguori
- Internal Medicine, IRCCS San Donato, Department of Biomedical Sciences for Health, University of Milan, 20097 San Donato Milanese, Italy
| | - Beverley Kok
- Cirrhosis Care Clinic, Division of Gastroenterology (Liver Unit), CEGIIR, University of Alberta, AB T6G 2R3 Edmonton, Canada
| | - Vincenzo La Mura
- Internal Medicine, IRCCS San Donato, Department of Biomedical Sciences for Health, University of Milan, 20097 San Donato Milanese, Italy
| |
Collapse
|
4
|
Tarquini R, Masini E, La Villa G, Mazzoccoli G, Mastroianni R, Romanelli RG, Vizzutti F, Arena U, Santosuosso U, Laffi G. Hepato-systemic gradient of carbon monoxide in cirrhosis. Eur J Intern Med 2012; 23:e14-8. [PMID: 22153542 DOI: 10.1016/j.ejim.2011.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/25/2011] [Accepted: 10/10/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Experimental data suggest that in liver cirrhosis splanchnic and systemic vasculature exhibit marked endothelial Carbon monoxide (CO) overproduction, while recent data demonstrated heme oxygenase (HO) hyperactivity in the liver of rats with cirrhosis. No data are so far available on CO levels in the hepatic veins of cirrhotic patients. We aimed at evaluating whether plasma CO levels differ between systemic (peripheral vein) and hepatic (hepatic vein) circulation in patients with viral cirrhosis with and without ascites. METHODS We enrolled 31 consecutive non-smoking in- or outpatients with liver cirrhosis. We measured wedge (occluded, WHVP) and free hepatic venous pressures (FHVP) and hepatic-vein pressure gradient (HVPG) was the calculated. Plasma level of NO and plasma CO concentration were determined both in peripheral vein and in the hepatic vein in cirrhotics. RESULTS In cirrhotic patients plasma CO levels were significantly higher in the hepatic vein (16.66±10.71 p.p.m.) than in the peripheral vein (11.71±7.00 p.p.m). Plasma NO levels were significantly higher in peripheral vein (97.02±21.11 μmol/ml) than in the hepatic vein (60.76±22.93 μmol/ml). CONCLUSIONS In patients with liver cirrhosis we documented a hepato-systemic CO gradient as inferred by the higher CO values in the hepatic vein than in the peripheral vein. In cirrhotic patients, CO and NO exhibit opposite behavior in the liver, while both molecules show increased values in the systemic circulation. It can be speculated that increased intra-hepatic CO levels might represent a counterbalancing response to reduced NO intra-hepatic levels in human liver cirrhosis.
Collapse
Affiliation(s)
- Roberto Tarquini
- Department of Internal Medicine, University of Florence, School of Medicine, 50134 Florence, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Van Steenkiste C, Trachet B, Casteleyn C, van Loo D, Van Hoorebeke L, Segers P, Geerts A, Van Vlierberghe H, Colle I. Vascular corrosion casting: analyzing wall shear stress in the portal vein and vascular abnormalities in portal hypertensive and cirrhotic rodents. J Transl Med 2010; 90:1558-72. [PMID: 20714322 DOI: 10.1038/labinvest.2010.138] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vascular corrosion casting is an established method of anatomical preparation that has recently been revived and has proven to be an excellent tool for detailed three-dimensional (3D) morphological examination of normal and pathological microcirculation. In addition, the geometry provided by vascular casts can be further used to calculate wall shear stress (WSS) in a vascular bed using computational techniques. In the first part of this study, the microvascular morphological changes associated with portal hypertension (PHT) and cirrhosis in vascular casts are described. The second part of this study consists of a quantitative analysis of the WSS in the portal vein in casts of different animal models of PHT and cirrhosis using computational fluid dynamics (CFD). Microvascular changes in the splanchnic, hepatic and pulmonary territory of portal hypertensive and cirrhotic mice are described in detail with stereomicroscopic examination and scanning electron microscopy. To our knowledge, our results are the first to report the vascular changes in the common bile duct ligation cirrhotic model. Calculating WSS using CFD methods is a feasible technique in PHT and cirrhosis, enabling the differentiation between different animal models. First, a dimensional analysis was performed, followed by a CFD calculation describing the spatial and temporal WSS distributions in the portal vein. WSS was significantly different between sham/cirrhotic/pure PHT animals with the highest values in the latter. Up till now, no techniques have been developed to quantify WSS in the portal vein in laboratory animals. This study showed for the first time that vascular casting has an important role not only in the morphological evaluation of animal models of PHT and cirrhosis, but also in defining the biological response of the portal vein wall to hemodynamic changes. CFD in 3D geometries can be used to describe the spatial and temporal variations in WSS in the portal vein and to better understand the forces affecting mechanotransduction in the endothelium.
Collapse
|
6
|
Abstract
Increased intrahepatic resistance is the initial event to the increased portal pressure and development portal hypertension in cirrhosis. Narrowing of the sinusoids due to anatomic changes is the main component of the increased intrahepatic resistance. However, a dynamic component is also involved in the increased vascular tone in cirrhosis. The imbalance between the hyperresponsiveness and overproduction of vasoconstrictors (mainly endothelin-1 and cyclooxygenase-derived prostaglandins) and the hyporesponsiveness and impaired production of vasodilators [mainly nitric oxide (NO)] are the mechanisms responsible of the increased vascular tone in the sinusoidal/postsinusoidal area. In contrast, the vascular resistance in the hepatic artery, which is determined in the presinusoidal area, is decreased due to increased vasodilators (NO and adenosine). This suggests different availabilities of NO in the intrahepatic circulation with preserved production in the presinusoidal area and impaired production in the sinusoidal/postsinusoidal area.
Collapse
|
7
|
Frossard JL, Schiffer E, Cikirikcioglu B, Bourquin J, Morel DR, Pastor CM. Opposite regulation of endothelial NO synthase by HSP90 and caveolin in liver and lungs of rats with hepatopulmonary syndrome. Am J Physiol Gastrointest Liver Physiol 2007; 293:G864-70. [PMID: 17921448 DOI: 10.1152/ajpgi.00136.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hepatopulmonary syndrome is a complication of cirrhosis that associates an overproduction of nitric oxide (NO) in lungs and a NO defect in the liver. Because endothelial NO synthase (eNOS) is regulated by caveolin that decreases and heat shock protein 90 (HSP90) that increases NO production, we hypothesized that an opposite regulation of eNOS by caveolin and HSP90 might explain the opposite NO production in both organs. Cirrhosis was induced by a chronic bile duct ligation (CBDL) performed 15, 30, and 60 days before sample collection and pharmacological tests. eNOS, caveolin, and HSP90 expression were measured in hepatic and lung tissues. Pharmacological tests to assess NO released by shear stress and by acetylcholine were performed in livers (n = 28) and lungs (n = 28) isolated from normal and CBDL rats. In lungs from CBDL rats, indirect evidence of high NO production induced by shear stress was associated with a high binding of HSP90 and a low binding of caveolin to eNOS. Opposite results were observed in livers from CBDL rats. Our study shows an opposite posttranslational regulation of eNOS by HSP90 and caveolin in lungs and liver from rats with CBDL. Such opposite posttranslational regulation of eNOS by regulatory proteins may explain in part the pulmonary overproduction of NO and the hepatic NO defect in rats with hepatopulmonary syndrome.
Collapse
Affiliation(s)
- Jean-Louis Frossard
- Laboratoire de Physiopathologie Hépatique et Imagerie Moléculaire, Hôpitaux Universitaires de Genève, Rue Micheli-du-Crest, 24, 1205 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
8
|
Schuett H, Eipel C, Maletzki C, Menger MD, Vollmar B. NO counterbalances HO-1 overexpression-induced acceleration of hepatocyte proliferation in mice. J Transl Med 2007; 87:602-12. [PMID: 17401437 DOI: 10.1038/labinvest.3700548] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The trigger for liver regeneration, including shear stress, has been the subject of ongoing debate. Blood vessel-derived gaseous molecules carbon monoxide (CO) and nitric oxide (NO) regulate vascular tone and play an important role in liver regeneration. In heme oxygenase-1 (HO-1) transgenic mice, it has been shown that CO-mediated impairment of vasorelaxation is an NO-dependent event. We therefore studied liver regeneration in HO-1 overexpressing animals in dependency of NO availability. Mice were subjected to (2/3) hepatectomy and were treated with either cobalt protoporphyrin-IX for induction of CO-liberating HO-1, N(omega)-nitro-L-arginine methyl ester (L-NAME) for blockade of NO synthase (NOS) or both. Application of molsidomine in L-NAME treated animals served for resubstitution of NO. Vehicle-treated animals served as respective control animals. We examined 5-bromo-2'-deoxyuridine incorporation and proliferating cell nuclear antigen expression as well as HO-1 and NOS-2 protein levels. Intrahepatic red blood cell velocity and volumetric blood flow were evaluated by in vivo fluorescence microscopy as indicators for microvascular shear stress. Hepatic regeneration remained unaffected by L-NAME application for NOS blockade. However, NOS blockade in HO-1 induced animals caused increased 5-bromo-2'-deoxyuridine and proliferating cell nuclear antigen measures of liver regeneration. In parallel, these animals revealed increased velocities and volumetric blood flow in the terminal afferent vessels and postsinusoidal venules. These local hemodynamic changes including enhanced hepatocyte proliferation could be reversed by NO liberation via molsidomine. The present findings stress the role of NO to counterbalance vascular tone in HO-1 overexpressing animals for maintenance of adequate perfusion and salutary shear force within the hepatic microvasculature upon liver resection.
Collapse
Affiliation(s)
- Harald Schuett
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | | | | | | | | |
Collapse
|
9
|
Shibamoto T, Ruan Z, Cui S, Kurata Y, Koizumi T, Kubo K. ANAPHYLACTIC HEPATIC VENOCONSTRICTION IS ATTENUATED BY NITRIC OXIDE RELEASED VIA SHEAR STRESS-DEPENDENT AND -INDEPENDENT MECHANISMS IN GUINEA PIG. Clin Exp Pharmacol Physiol 2005; 32:288-93. [PMID: 15810993 DOI: 10.1111/j.0305-1870.2005.04186.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. The role of shear stress in nitric oxide (NO)-mediated attenuation of anaphylactic venoconstriction was studied using an isolated ovalbumin-sensitized guinea pig liver. 2. Guinea pigs were actively sensitized by a subcutaneous injection of 1 mg ovalbumin. Two weeks after sensitization, the livers were perfused with diluted blood under constant flow or constant perfusion pressure. The constant flow could result in increased shear stress during constriction, while the constant perfusion pressure could prevent changes in shear stress. Using the double occlusion technique to estimate the hepatic sinusoidal pressure, pre- and postsinusoidal constriction was evaluated. Hepatic anaphylaxis was induced by an injection of ovalbumin (4 microg) into the perfusate, the volume of which was 40 mL. 3. Under either constant flow or pressure, anaphylaxis caused venoconstriction of predominantly presinusoids over postsinusoids, although anaphylactic venoconstriction under constant pressure was significantly greater than that under constant flow. When shear stress was held constant by maintaining constant perfusion pressure, a NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME, 100 micromol/L), potentiated similarly both pre- and postsinusoidal constriction induced by anaphylaxis. This suggests that hepatic anaphylaxis shear stress-independently generates NO, resulting in dilatation of both pre- and postsinusoidal vessels in a similar magnitude. In contrast, when shear stress was allowed to rise under constant flow, anaphylactic presinusoidal constriction was preferentially potentiated by L-NAME. 4. Hepatic anaphylaxis can increase NO production in a shear stress-independent manner and dilates similarly both pre- and postsinusoids, while NO produced in a shear stress-dependent manner attenuates predominantly venoconstriction of the presinusoids where shear stress is preferentially increased.
Collapse
|
10
|
Piscaglia F, Donati G, Gaiani S, Gramantieri L, Leoni S, Mancini M, Bolondi L. Different haemodynamic effects of a single dose of long-acting isosorbide-5-mononitrate in healthy subjects and patients with cirrhotic portal hypertension. Dig Liver Dis 2004; 36:594-602. [PMID: 15460844 DOI: 10.1016/j.dld.2004.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The action pathways of nitrates are hypothesised to be deranged in cirrhosis. AIM In order to confirm it, the acute haemodynamic effects of isosorbide-5-mononitrate in cirrhotic patients and controls was investigated. PATIENT Nine cirrhotics and nine healthy controls. METHODS Evaluation in the fasting state, 90 min after isosorbide-5-mononitrate or placebo (double-blind on two different days) and then 30 and 120 min after eating a standard meal. Various systemic and splanchnic haemodynamic parameters, including arterial impedance, assessed as Doppler pulsatility index, were measured. RESULTS isosorbide-5-mononitrate reduced arterial pressure and increased heart rate and mesenteric pulsatility index both in controls and in cirrhotics, whereas the following parameters behaved differently in the two groups (P < 0.05): hepatic pulsatility index decreased (-9%) and the portal velocity increased (+13%) in controls, whereas hepatic pulsatility increased (+18%) and portal velocity decreased (-18%) in cirrhotics. The two groups presented a similar pattern of changes in most variables under placebo after a meal. In controls, the administration of isosorbide-5-mononitrate blunted the postprandial mesenteric vasodilation and related changes in splanchnic and systemic circulation, expected at 30 min, in comparison to those observed under placebo. In cirrhotics, instead, the postprandial pattern was similar under placebo and isosorbide-5-mononitrate. CONCLUSIONS The acute administration of isosorbide-5-mononitrate produces different haemodynamic effects in healthy and diseased livers, both in the fasting state and after a meal, consistent with the hypothesis of a deranged response of the intrahepatic microcirculation to nitrates in cirrhosis.
Collapse
Affiliation(s)
- F Piscaglia
- Division of Internal Medicine, Department of Internal Medicine and Gastroenterology, University of Bologna, Azienda S Orsola-Malpighi, via Albertoni 15, 40138 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
11
|
Qi K, Qiu H, Rutherford J, Zhao Y, Nance DM, Orr FW. Direct visualization of nitric oxide release by liver cells after the arrest of metastatic tumor cells in the hepatic microvasculature1. J Surg Res 2004; 119:29-35. [PMID: 15126078 DOI: 10.1016/j.jss.2003.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Indexed: 11/27/2022]
Abstract
BACKGROUND Our previous studies have shown that the injection of B16F1 melanoma cells into the mesenteric vein can induce the rapid local release of nitric oxide (NO) in the liver, causing apoptosis of the melanoma cells in the liver sinusoids and inhibiting the subsequent formation of hepatic metastases. In this study, we have investigated the distribution and cellular source of NO in this model. MATERIALS AND METHODS In situ liver perfusion was established in both wild-type (wt) and endothelial nitric oxide synthase knockout (eNOS KO) C57BL/6 mice. A specific fluorescent NO probe, 4,5-diaminofluorescein diacetate (DAF-2 DA) (5 micromol/L), was perfused into the portal venous system to label the liver tissue. Then, a MitoTracker Orange labeled B16F1 melanoma cell suspension (2 x 10(6) cells/ml) was injected through a portal vein catheter by a peristaltic pump. Images of the liver tissue were taken by confocal microscopy from a selected area to determine the cellular source of NO. For quantification, the fluorescence intensity of this area was measured over time by Fluoview software. RESULTS Diaminotriazolofluorescein (DAF-2T) fluorescence (indicating NO generation) was detected in hepatic parenchymal cells located in the periportal region in both wt C57BL/6 and eNOS KO C57BL/6 mice and was intensified by increased flow rate in the portal venous system. The B16F1 cells arrested in the periportal sinusoids, corresponding to zone 1 of the hepatic acinus. DAF-2T fluorescence was expressed by both sinusoidal lining cells and hepatocytes at the site of tumor cell arrest. The fluorescence intensity of these cells increased approximately 2-fold over a time of 500 s. In contrast, there was no increase in the fluorescence intensity of the sinusoidal lining cells and hepatocytes in mice perfused with buffer or in eNOS KO mice perfused with B16F1 cells. CONCLUSION This study demonstrates that NO is produced by hepatic parenchymal cells mainly located in the periportal zones and that the arrest of the B16F1 melanoma cells causes an eNOS-dependent local burst of NO by the sinusoidal lining cells and hepatocytes in the periportal areas.
Collapse
Affiliation(s)
- Ke Qi
- Department of Pathology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
In liver cirrhosis, an increase in hepatic resistance is the initial phenomenon leading to portal hypertension. This is primarily due to the structural distortion of the intrahepatic microcirculation caused by cirrhosis. However, similar to other vascular conditions, architectural changes in the liver are associated with a deficient nitric oxide (NO) production, which results in an increased vascular tone with a further increase in hepatic resistance and portal pressure. New therapeutic strategies are being developed to selectively provide the liver with NO, overcoming the deleterious effects of systemic vasodilators. On the other hand, a strikingly opposite process occurs in splanchnic arterial circulation, where NO production is increased. This results in splanchnic vasodilatation and subsequent increase in portal inflow, which contributes to portal hypertension. Systemic blockade of NO in portal hypertension attenuates the hyperdynamic circulation, but its effects increasing hepatic resistance may offset the benefit of reducing portal inflow, thus preventing an effective reduction of portal pressure. Moreover, it cannot be ruled out that NO blockade may have a deleterious action on cirrhosis progression, which raises caution about their use in patients with cirrhosis.
Collapse
Affiliation(s)
- Juan González-Abraldes
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, IDIBAPS, University of Barcelona, Spain
| | | | | |
Collapse
|
13
|
Abstract
The molecular basis of the vascular wall abnormalities that contribute to development of portal hypertension are an area of active investigation. Studies to date suggest that diminution in eNOS-derived NO production in liver contributes to this process by causing increased intrahepatic resistance. This process seems to be mediated through inhibitory posttranslational regulatory mechanisms of eNOS. Endothelin-1 signaling is also increased in the intrahepatic vasculature. The mechanisms responsible for increased ET-1 signaling include increased ET-1 production and increased ET-A receptor expression, particularly within hepatic stellate cells, although the stimulus responsible for activation of the ET-1 system remains uncertain. In the splanchnic circulation, increases in eNOS-derived NO contribute to increased portal venous inflow through transcriptional and posttranslational regulation of eNOS. Development of the porto-systemic collateral circulation characteristic of portal hypertension occurs through a combination of NO-dependent dilation of preexisting vessels and through growth factor-mediated angiogenesis and neovascularization (Fig. 3). Further studies in vascular wall biology are continuing to elucidate more clearly the molecular mechanisms of portal hypertension. The [figure: see text] mechanism by which eNOS-derived NO production is increased in the splanchnic arteriolar endothelial cell but decreased in the liver endothelial cell and the role of specific ET receptor subtypes in the mechanism of activation of the ET-1 system and its effect on contractile cells in liver cirrhosis are areas that require further investigation. Further studies are needed to determine the intrahepatic site of pressure and perfusion regulation, be it the hepatic sinusoid and its unique, specialized cell types or the endothelial and smooth muscle cells in the hepatic and portal venules. The role of more recently delineated vasoactive pathways such as urotensin-II/GPR 14 and anandamide/CB1 receptor in portal hypertension must be examined. Most importantly, future studies must focus on novel experimental therapies, using pharmacologic and genetic approaches to modulate these vascular biologic systems and thereby to ameliorate complications and symptoms relating to portal hypertension in patients with cirrhosis.
Collapse
Affiliation(s)
- V Shah
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|