1
|
Sartor RB. Beyond Random Fecal Microbial Transplants: Next Generation Personalized Approaches to Normalize Dysbiotic Microbiota for Treating IBD. Gastroenterol Clin North Am 2025; 54:333-350. [PMID: 40348491 DOI: 10.1016/j.gtc.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
This review and commentary outline the strong rationale for normalizing the abnormal microbiota of patients with ulcerative colitis, Crohn's disease, and pouchitis and focus on strategies to improve current variable outcomes of fecal microbial transplant (FMT) in ulcerative colitis. Applying lessons from successful FMT therapy of recurrent Clostridioides difficile and insights from basic scientific understanding of host/microbial interactions provide strategies to enhance clinical outcomes in IBD. We outline promising approaches to develop novel-defined consortia of live biotherapeutic products and combination treatments to improve current results and to optimize and personalize treatment approaches in individual patients and disease subsets.
Collapse
Affiliation(s)
- R Balfour Sartor
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina - Chapel Hill, Chapel Hill, NC 27517, USA; Department of Microbiology & Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina - Chapel Hill, Chapel Hill, NC 27517, USA.
| |
Collapse
|
2
|
Tan W, Wang H, Guo H. Effects of infliximab infusion on clinical symptom scores and serum cytokines in patients with inflammatory bowel disease. Immunopharmacol Immunotoxicol 2025:1-10. [PMID: 40400059 DOI: 10.1080/08923973.2025.2504908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/06/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic relapsing gastrointestinal disorder. Infliximab (INF) has shown good efficacy in IBD treatment, but its specific impact requires further exploration. This study aimed to assess the effects of intravenous INF on clinical symptom scores and serum cytokine levels in IBD patients. METHODS A retrospective review of 126 IBD patients treated with INF was conducted. Baseline data, Mayo scores, Crohn's Disease Activity Index (CDAI) scores at 6 and 12 months, and serum levels of TNF-α, IL-6, IL-10, and CRP were recorded. Correlations between disease activity scores and inflammatory markers were analyzed, and the relationship between baseline indicators and treatment efficacy was examined. RESULTS At 12 months, Mayo and CDAI scores, TNF-α, IL-6, and CRP levels were significantly reduced, while IL-10 levels increased. Disease activity scores positively correlated with TNF-α, IL-6, and IL-1β, and negatively with IL-10. Factors such as Crohn's disease subtype, age, high baseline CDAI or Mayo scores, elevated TNF-α, IL-6, CRP, and longer disease duration were associated with poorer outcomes (p < 0.05). Multivariate analysis identified disease type, high baseline disease activity, long disease duration, and elevated inflammatory markers as independent risk factors. Adverse reactions were infrequent, with no serious adverse events reported. CONCLUSION Intravenous INF effectively improves clinical symptoms and modulates inflammatory cytokines in IBD patients, with favorable safety and increasing efficacy over time. However, the limited sample size and lack of long-term data warrant further validation in larger, prospective multicenter studies.
Collapse
Affiliation(s)
- Wei Tan
- Department of Gastroenterology, Chongqing General Hospital, Chongqing, China
| | - Hao Wang
- Department of Gastroenterology, Chongqing General Hospital, Chongqing, China
| | - Hong Guo
- Department of Gastroenterology, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
3
|
Yang QH, Zhang CN. Comparative study on the pathogenesis of Crohn’s disease and ulcerative colitis. World J Gastroenterol 2025; 31:106406. [DOI: 10.3748/wjg.v31.i19.106406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/25/2025] [Accepted: 04/25/2025] [Indexed: 05/21/2025] Open
Abstract
Inflammatory bowel disease (IBD) is an incurable disease of the digestive system; however, the therapeutic methods for IBD remain limited. The pathogenesis of IBD was systematically discussed and compared in this paper, primarily comprising Crohn’s disease and ulcerative colitis. This paper focused on six common aspects: (1) Dysregulated immune responses; (2) Gene function changes; (3) Intestinal microbes disorder and imbalance; (4) Microbial infections; (5) Associations between IBD and other inflammatory diseases; and (6) Other factors. In addition, the pathogenesis differences between these two forms of IBD were unraveled and clearly distinguished. These unique aspects of pathogenesis provide crucial insights for the precise treatment of both Crohn’s disease and ulcerative colitis. This paper illustrates the root causes and beneficial factors of resistance to IBD, which provides novel insights on early prevention, development of new therapeutic agents, and treatment options of this disease.
Collapse
Affiliation(s)
- Qi-Hang Yang
- Chinese Academy of Medical Science & Peking Union Medical College, Institute of Biomedical Engineering, Tianjin 300192, China
- University College London, Cancer Institute, London WC1E 6BT, United Kingdom
| | - Chuang-Nian Zhang
- Chinese Academy of Medical Science & Peking Union Medical College, State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Tianjin 300192, China
| |
Collapse
|
4
|
Ma Y, Jing J, Gao Y, Yu Y, Mao J, Zhang Y, Li T. MLIF inhibits inflammation and maintains intestinal flora homeostasis in a dextran sulfate sodium (DSS)-induced colitis mouse model. Food Chem Toxicol 2025; 202:115545. [PMID: 40354872 DOI: 10.1016/j.fct.2025.115545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/14/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease primarily affecting the colon, characterized by mucosal inflammation and ulceration. Monocyte locomotion inhibitory factor (MLIF), a heat-stable pentapeptide derived from Entamoeba histolytica, has demonstrated the anti-inflammatory capacity. The aim of the current work was to test the protective effects of MLIF in a dextran sulfate sodium (DSS)-induced colitis mouse model. Our findings indicated that MLIF significantly inhibition of colitis development, including body weight, DAI score, colon length, and spleen index. MLIF slowing the progression of inflammation in the colon of mice exposed to DSS, evidenced by HE staining and mRNA expression levels of Il1b, Il6, Il18 and Il10. MLIF significantly alleviated intestinal barrier dysfunction in mice exposed to DSS, evidenced by AB-PAS staining and mRNA expression levels of Tjp1, Ocln and Muc2. Importantly, the administration of MLIF in colitis mice exerted beneficial effects on the gut microbiota, enhancing microbial diversity and abundance, and promoting the restoration of gut microbiota homeostasis. Non-targeted metabolomics results suggest that the benefits of MLIF may arise from its modulation of tryptophan metabolism pathways. In conclusion, MLIF prevention inflammation induction and preserves intestinal homeostasis against colitis induced by DSS.
Collapse
Affiliation(s)
- Yulin Ma
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, 200125, China; School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jing Jing
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, 200125, China
| | - Yuan Gao
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yongsheng Yu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Junqin Mao
- Department of Clinical Pharmacy, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China
| | - Yuefan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tiejun Li
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, 200125, China.
| |
Collapse
|
5
|
Broadwater C, Guo J, Liu J, Tobin I, Whitmore MA, Kaiser MG, Lamont SJ, Zhang G. Breed-specific responses to coccidiosis in chickens: identification of intestinal bacteria linked to disease resistance. J Anim Sci Biotechnol 2025; 16:65. [PMID: 40336071 PMCID: PMC12060511 DOI: 10.1186/s40104-025-01202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Coccidiosis, caused by Eimeria parasites, is a major enteric disease in poultry, significantly impacting animal health, production performance, and welfare. This disease imposes a substantial economic burden, costing the global poultry industry up to $13 billion annually. However, effective mitigation strategies for coccidiosis remain elusive. While different chicken breeds exhibit varying resistance to coccidiosis, no commensal bacteria have been directly linked to this resistance. METHODS To assess relative resistance of different breeds to coccidiosis, 10-day-old Fayoumi M5.1, Leghorn Ghs6, and Cobb chickens were challenged with 50,000 sporulated Eimeria maxima oocysts or mock-infected. Body weight changes, small intestinal lesions, and fecal oocyst shedding were evaluated on d 17. Ileal and cecal digesta were collected from individual animals on d 17 and subjected to microbiome analysis using 16S rRNA gene sequencing. RESULTS: Fayoumi M5.1 chickens showed the lowest growth retardation, intestinal lesion score, fecal oocyst shedding, and pathobiont proliferation compared to Ghs6 and Cobb chickens. The intestinal microbiota of M5.1 chickens also differed markedly from the other two breeds under both healthy and coccidiosis conditions. Notably, group A Lactobacillus and Ligilactobacillus salivarius were the least prevalent in both the ileum and cecum of healthy M5.1 chickens, but became highly enriched and comparable to Ghs6 and Cobb chickens in response to coccidiosis. Conversely, Weissella, Staphylococcus gallinarum, and Enterococcus durans/hirae were more abundant in the ileum of healthy M5.1 chickens than in the other two breeds. Despite being reduced by Eimeria, these bacteria retained higher abundance in M5.1 chickens compared to the other breeds. CONCLUSIONS Fayoumi M5.1 chickens exhibit greater resistance to coccidiosis than Leghorn Ghs6 layers and Cobb broilers. Several commensal bacteria, including group A Lactobacillus, L. salivarius, Weissella, S. gallinarum, and E. durans/hirae, are differentially enriched in Fayoumi M5.1 chickens with strong correlation with coccidiosis resistance. These bacteria hold potential as probiotics for coccidiosis mitigation.
Collapse
Affiliation(s)
- Chace Broadwater
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jiaqing Guo
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jing Liu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Melanie A Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael G Kaiser
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
6
|
Song Y, Feng Y, Liu G, Duan Y, Zhang H. Research progress on edible mushroom polysaccharides as a novel therapeutic strategy for inflammatory bowel disease. Int J Biol Macromol 2025; 305:140994. [PMID: 39952533 DOI: 10.1016/j.ijbiomac.2025.140994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Inflammatory bowel disease (IBD) is a complex condition linked to the gut microbiota, host metabolism, and the immune system. Edible mushroom polysaccharides (EMPs) are gaining attention for their benefits, particularly as prebiotics that help balance gut microbial, a key factor in IBD. With their scalable production, diverse hydrophilic properties, and demonstrated anti-inflammatory effects in both laboratory and animal studies, EMPs show promise for easing IBD symptoms. By supporting a healthy gut microbiome through various mechanisms, EMPs can play an important role in preventing and managing IBD, ultimately benefiting overall health and opening new treatment avenues. This review examines how EMPs affect IBD, focusing on their role in shaping gut microbiota, restoring gut barriers, regulating immune function, and influencing pathways related to colitis. It also explores their impact on the microbiota-gut-multi organ axis and overall host health, as well as the relationship between EMPs preparation, structure, and bioactivity, along with their potential applications in food and medicine. This investigation provides valuable insights into the intricate connections between the gut, immune system, and systemic inflammation system, highlighting how EMPs are key players in this complex interaction.
Collapse
Affiliation(s)
- Yating Song
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China.
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Turpin W, Lee SH, Croitoru K. Gut Microbiome Signature in Predisease Phase of Inflammatory Bowel Disease: Prediction to Pathogenesis to Prevention. Gastroenterology 2025; 168:902-913. [PMID: 39914464 DOI: 10.1053/j.gastro.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 03/23/2025]
Abstract
Advances in understanding the pathogenesis of inflammatory bowel disease (IBD) point toward a key role of the gut microbiome. We review the data describing the changes in the gut microbiome from IBD case-control studies and compare these findings with emerging data from studies of the preclinical phase of IBD. What is apparent is that assessing changes in the composition and function of the gut microbiome during the preclinical phase helps address confounding factors, such as disease activity and drug therapy, which can directly influence the gut microbiome. Understanding these changes in the predisease phase provides a means of predicting IBD in high-risk populations and offers insights into possible mechanisms involved in disease pathogenesis. Finally, we discuss strategies to use this information to design interventions aimed at modulating the microbiome as a means of preventing or delaying the onset of IBD.
Collapse
Affiliation(s)
- Williams Turpin
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sun-Ho Lee
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Liu J, Xia W, Cheng J, Geng Y, Li W, Fan Y. Escherichia coli aggravates inflammatory response in mice oral mucositis through regulating Th17/Treg imbalance. Front Cell Infect Microbiol 2025; 15:1585020. [PMID: 40365536 PMCID: PMC12069327 DOI: 10.3389/fcimb.2025.1585020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Microbial dysbiosis links to mucosal immune dysregulation, but the specific bacterial contributions to oral mucosal inflammation remain unclear. Escherichia coli (E. coli), a pathogen well-characterized in mucosal immunity and immune regulation studies, has been observed to be enriched in chronic oral inflammatory lesions and was reported to modulate T helper 17 cells (Th17)/T regulatory cells (Treg) homeostasis. Here, we developed an oral mucositis mouse model via tongue scratch and E. coli topical application to investigate its role in Th17/Treg imbalance. Methods The inflammatory infiltration was evaluated by macroscopic photography and HE staining. The expression of inflammatory factors in tongue tissue and peripheral blood of mice were detected by immunohistochemical staining and enzyme-linked immunosorbent assay. The number of Th17 and Treg in mice spleen lymphocytes were evaluated with flow cytometry. Differential gene expression analysis, functional enrichment analysis and immune infiltration analysis were performed using RNA-seq data from oral lichen planus (OLP). Results E. coli stimulation aggravated inflammatory responses induced by scratching in lingual mucosa of mice, including increased local and systemic expression of interleukin 6 (IL6), interleukin 17 (IL17), chemokine receptor 6 (CCR6) and chemokine C-C motif ligand 20 (CCL20), increased proportions of Th17 cells and increased Th17/Treg ratio in spleen lymphocytes. Analysis of RNA-seq data from OLP revealed alterations in antimicrobial responses and inflammatory factors associated with upregulation of Th17/Treg balance. Conclusion This study supports the role of E. coli in promoting oral mucosal inflammation and provides an experimental basis for in vivo study of OLP from the perspective of microorganisms.
Collapse
Affiliation(s)
- Jia Liu
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wenhui Xia
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- Hefei Stomatological Hospital, Hefei Stomatology Clinical College of Anhui Medical University, Hefei, China
| | - Juehua Cheng
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yanlin Geng
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Weiping Li
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yuan Fan
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
9
|
Thapa HB, Passegger CA, Fleischhacker D, Kohl P, Chen YC, Kalawong R, Tam-Amersdorfer C, Gerstorfer MR, Strahlhofer J, Schild-Prüfert K, Zechner EL, Blesl A, Binder L, Busslinger GA, Eberl L, Gorkiewicz G, Strobl H, Högenauer C, Schild S. Enrichment of human IgA-coated bacterial vesicles in ulcerative colitis as a driver of inflammation. Nat Commun 2025; 16:3995. [PMID: 40301356 PMCID: PMC12041585 DOI: 10.1038/s41467-025-59354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/21/2025] [Indexed: 05/01/2025] Open
Abstract
The gut microbiome contributes to chronic inflammatory responses in ulcerative colitis (UC), but molecular mechanisms and disease-relevant effectors remain unclear. Here we analyze the pro-inflammatory properties of colonic fluid obtained during colonoscopy from UC and control patients. In patients with UC, we find that the pelletable effector fraction is composed mostly of bacterial extracellular vesicles (BEVs) that exhibit high IgA-levels and incite strong pro-inflammatory responses in IgA receptor-positive (CD89+) immune cells. Biopsy analyses reveal higher infiltration of CD89+ immune cells in the colonic mucosa from patients with UC than control individuals. Further studies show that IgA-coated BEVs, but not host-derived vesicles nor soluble IgA, are potent activators of pro-inflammatory responses in CD89+ cells. IgA-coated BEVs also exacerbate intestinal inflammation in a dextran sodium sulfate colitis model using transgenic mice expressing human CD89. Our data thus implicate a link between IgA-coated BEVs and intestinal inflammation via CD89+ immune cells, and also hint a potential new therapeutic target for UC.
Collapse
Affiliation(s)
- Himadri B Thapa
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Christina A Passegger
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | | | - Paul Kohl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Yi-Chi Chen
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Ratchara Kalawong
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Carmen Tam-Amersdorfer
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Michael R Gerstorfer
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Jana Strahlhofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
- Field of Excellence Biohealth - University of Graz, Graz, Austria
| | - Andreas Blesl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Lukas Binder
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Georg A Busslinger
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gregor Gorkiewicz
- BioTechMed, Graz, Austria
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Herbert Strobl
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Christoph Högenauer
- BioTechMed, Graz, Austria.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed, Graz, Austria.
- Field of Excellence Biohealth - University of Graz, Graz, Austria.
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, Graz, Austria.
| |
Collapse
|
10
|
Ye R, Guo J, Yang Z, Wang Z, Chen Y, Huang J, Dong Y. Somatostatin and Mannooligosaccharide Modified Selenium Nanoparticles with Dual-Targeting for Ulcerative Colitis Treatment. ACS NANO 2025; 19:14914-14930. [PMID: 40214514 DOI: 10.1021/acsnano.5c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Inflammatory bowel disease (IBD) is a prevalent condition worldwide, characterized by complex etiologies, limited efficacy of clinical drug treatments, and potential adverse effects. In this study, we designed 269 nm selenium nanoparticles with double-cell targeting for ulcerative colitis treatment. Somatostatin (SST) and mannooligosaccharide (MOS) were employed to functionalize an Eucommia ulmoides polysaccharide selenium nanoparticle (EUP-SeNP), resulting in the formulation of SST/MOS@EUP-SeNP. Nanoparticles were engineered to target intestinal epithelial cells and macrophages through specific cell surface receptors, enabling dual-targeted treatment. In addition, sodium alginate (SA) microspheres incorporating SST/MOS@EUP-SeNP were prepared for oral administration, protecting the nanoparticles from gastric fluid. The results showed that SA/SST/MOS@EUP-SeNP could preferentially target the inflamed colon tissue and adhere to the colon, enhance the intestinal barrier function, regulate the level of colon inflammation, enhance antioxidant capacity, and regulate the composition of intestinal microbes to effectively relieve the colitis induced by sodium glucan sulfate (DSS). Meanwhile, SA/SST/MOS@EUP-SeNP had excellent biocompatibility both in vivo and in vitro. To some extent, this study can provide a reference for the treatment of IBD.
Collapse
Affiliation(s)
- Ruihua Ye
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianying Guo
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhongjin Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Wang W, Zhao Y, Wang Z, Wang C, Bi L, Wang Y. Thlaspi arvense suppresses gut microbiota related TNF inflammatory pathway to alleviates ulcerative colitis. Front Immunol 2025; 16:1537325. [PMID: 40330488 PMCID: PMC12053237 DOI: 10.3389/fimmu.2025.1537325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/19/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction Thlaspi arvense (TA), commonly known as "Ximi" or "Subaijiang," is a traditional Chinese medicinal herb used to prevent and treat ulcerative colitis (UC). However, the precise mechanisms underlying its therapeutic effects remain unclear, necessitating further investigation to identify potential pharmaceutical applications for UC management. This study aims to elucidate the efficacy and mechanisms of TA and its active constituents in UC treatment. Methods This study first evaluated the effects of varying TA doses on 3% dextran sulfate sodium (DSS)-induced UC. Gut microbiota alterations in UC mice were analyzed via 16S rRNA sequencing, with correlation analyses to reveal the relationship between gut microbiota and cytokines. Then, network pharmacology was utilized to identified potential TA targets for UC treatment. Protein-protein interaction (PPI) networks, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were employed to explore TA's mechanisms. Molecular docking and dynamics simulations validated interactions between TA's active compounds and UC-related targets. Finally, TNF pathway modulation by TA and its active component, isovitexin, was verified in vitro and in vivo. Results TA alleviated DSS-induced weight loss in a dose-dependent manner, reduced disease activity indices, and preserved intestinal mucosal barrier integrity. Subsequently, fluorescence in situ hybridization (FISH) revealed TA suppressed microbial translocation in intestinal tissues. To further characterize inflammatory responses, ELISA demonstrated that TA modulated levels of key cytokines (TNF-α, IL-1β, IL-6, IL-10) and oxidative stress markers (SOD, MDA), indicating systemic anti-inflammatory effects. Building on these findings, 16S rRNA sequencing analyses showed that TA regulated gut microbiota alpha/beta diversity and inhibited infectious disease-related pathways. Notably, correlation heatmaps highlighted a strong association between TNF-α levels and Escherichia-Shigella abundance, with high-dose TA significantly reducing this pathogenic bacterial genus. To systematically explore molecular mechanisms, network pharmacology identified 220 potential TA targets for UC treatment. Consistent with experimental data, PPI and KEGG analyses implicated TNF-α, IL-6, and AKT as key targets, primarily through TNF signaling pathway modulation. To validate these predictions, molecular docking confirmed stable interactions between TA compounds and identified targets, while dynamics simulations specifically emphasized isovitexin's high affinity for TNF-α. Finally, experiments in vivo demonstrated TA's inhibition of TNF-α-mediated NF-κB pathway activation, and in vitro studies confirmed that isovitexin directly mitigated TNF-α-induced intestinal epithelial damage. Furthermore, TA demonstrated potent inhibition of TNF-α-mediated NF-κB inflammatory pathway activation in intestinal tissues, while its active constituent isovitexin effectively mitigated TNF-α-induced epithelial cell damage, collectively highlighting their complementary anti-inflammatory mechanisms. Discussion Collectively, Thlaspi arvense (TA) ameliorates ulcerative colitis through synergistic mechanisms involving gut microbiota modulation, inflammatory pathway suppression, and intestinal barrier preservation. By remodeling microbial communities to reduce Escherichia-Shigella colonization and microbial translocation. TA concurrently inhibits TNF-α/NF-κB-driven inflammation, and oxidative stress regulation. Furthermore, its active constituent isovitexin directly attenuates TNF-α-induced epithelial damage, demonstrating multi-scale therapeutic efficacy. These findings establish TA's multi-target pharmacology spanning host-microbe interactions and intracellular signaling, while providing a rationale for standardizing TA-based formulations and advancing isovitexin as a precision therapeutic agent for inflammatory bowel diseases.
Collapse
MESH Headings
- Animals
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/microbiology
- Colitis, Ulcerative/immunology
- Gastrointestinal Microbiome/drug effects
- Mice
- Tumor Necrosis Factor-alpha/metabolism
- Drugs, Chinese Herbal/pharmacology
- Dextran Sulfate
- Signal Transduction/drug effects
- Disease Models, Animal
- Male
- Molecular Docking Simulation
- Mice, Inbred C57BL
- Anti-Inflammatory Agents/pharmacology
- Protein Interaction Maps
- RNA, Ribosomal, 16S/genetics
Collapse
Affiliation(s)
- Wenkai Wang
- Department of Oncology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Zhao
- Department of Oncology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziwei Wang
- Department of Oncology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaowei Wang
- Department of Oncology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Bi
- Department of Oncology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Oncology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The Second Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guizhou, China
| |
Collapse
|
12
|
Dingding H, Muhammad S, Manzoor I, Ghaffar SA, Alodaini HA, Moubayed NMS, Hatamleh AA, Songxiao X. Subtractive proteomics and reverse-vaccinology approaches for novel drug targets and designing a chimeric vaccine against Ruminococcus gnavus strain RJX1120. Front Immunol 2025; 16:1555741. [PMID: 40297578 PMCID: PMC12034673 DOI: 10.3389/fimmu.2025.1555741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Mediterraneibacter gnavus, also known as Ruminococcus gnavus, is a Gram-positive anaerobic bacterium that resides in the human gut microbiota. Notably, this bacterium plays dual roles in health and disease. On one side it supports nutrient metabolism essential for bodily functions and on the other it contributes to the development of Inflammatory Bowel Disease (IBD) and other gastrointestinal disorders. R. gnavus strain RJX1120 is an encapsulated strain and has been linked to develop IBD. Despite the advances made on its role in gut homeostasis, limited information is available on strain-specific virulence factors, metabolic pathways, and regulatory mechanisms. The study of such aspects is crucial to make microbiota-targeted therapy and understand its implications in host health. A multi-epitope vaccine against R. gnavus strain RJX1120 was designed using reverse vaccinology-based subtractive proteomics approach. Among the 3,219 proteins identified in the R. gnavus strain RJX1120, two critical virulent and antigenic proteins, a Single-stranded DNA-binding protein SSB (A0A2N5PT08) and Cell division ATP-binding protein FtsE (A0A2N5NK05) were screened and identified as potential targets. The predicted B-cell and T-cell epitopes from these proteins were screened for essential immunological properties such as antigenicity, allergenicity, solubility, MHC binding affinity, and toxicity. Epitopes chosen were cross-linked using suitable spacers and an adjuvant to develop a multi-epitope vaccine. Structural refinement of the construct revealed that 95.7% of the amino acid residues were located in favored regions, indicating a high-quality structural model. Molecular docking analysis demonstrated a robust interaction between the vaccine construct and the human Toll-like receptor 4 (TLR4), with a binding energy of -1277.0 kcal/mol. The results of molecular dynamics simulations further confirmed the stability of the vaccine-receptor complex under physiological conditions. In silico cloning of the vaccine construct yielded a GC content of 48% and a Codon Adaptation Index (CAI) value of 1.0, indicating optimal expression in the host system. These results indicate the possibility of the designed vaccine construct as a candidate for the prevention of R. gnavus-associated diseases. However, experimental validation is required to confirm its immunogenicity and protective efficacy.
Collapse
Affiliation(s)
- Hou Dingding
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Sher Muhammad
- Faculty of Agriculture and Veterinary Sciences, Superior University Lahore, Lahore, Pakistan
| | - Irfan Manzoor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Sana Abdul Ghaffar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | | | - Nadine MS. Moubayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Xu Songxiao
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Park J, Wu Y, Le QV, Kim JS, Xu E, Lee J, Oh YK. Self-disassembling nanoparticles as oral nanotherapeutics targeting intestinal microenvironment. Nat Commun 2025; 16:3365. [PMID: 40204740 PMCID: PMC11982569 DOI: 10.1038/s41467-025-58513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Inspired by the survival strategies of pyomelanin-producing microbes, we synthesize pyomelanin nanoparticles (PMNPs) from homogentisic acid- γ-lactone via auto-oxidation and investigate their biomedical potential. PMNPs possess distinct physicochemical properties, including reactive oxygen species scavenging and microenvironment-responsive self-disassembly. Under intestinal conditions, PMNPs self-disassemble and penetrate the nanoscale pores of the mucin layer. In an inflammatory bowel disease model, orally administered PMNPs withstand gastric acidity and, in their solubilized form, interact with macrophages and epithelial cells. They significantly reduce reactive oxygen species levels, exert anti-inflammatory effects, and restore gut microbiota composition. Compared to conventional nanoparticles and 5-aminosalicylic acid, PMNPs exhibit greater therapeutic efficacy. Clinical symptoms and intestinal inflammation are alleviated, and the gut microbiota is restored to near-normal levels. These findings underscore the therapeutic potential of PMNPs for inflammatory bowel disease treatment and suggest broader biomedical applications.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Quoc-Viet Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Enzhen Xu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaiwoo Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Lu G, Lu S, Dai H, Zhang F, Wang X, Li W, Mei L, Tan H. Engineered Turmeric-Derived Nanovesicles for Ulcerative Colitis Therapy by Attenuating Oxidative Stress and Alleviating Inflammation. Mol Pharm 2025; 22:2159-2167. [PMID: 40134348 DOI: 10.1021/acs.molpharmaceut.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Inflammation and oxidative stress are important features of traumatic ulcerative colitis (UC). Turmeric has been used as a dietary and functional ingredient for its potent anti-inflammatory effects in UC therapy. However, its practical effectiveness is hindered by limited reactive oxygen species (ROS) elimination properties. To address this, we constructed a unique treatment agent by growing cerium oxide (CeO2) nanocrystals on the membranes of turmeric-derived nanovesicles (TNVs), named as TNV-Ce. The resulted TNV-Ce could suppress inflammation and exhibit exceptional ROS-scavenging activity, which was validated both in lipopolysaccharide-induced macrophages and dextran sulfate sodium salt-induced chronic colitis mouse model. Following oral administration, TNV-Ce significantly accumulated at inflamed sites, effectively eliminating ROS and inhibiting pro-inflammatory cytokines for synergistic action against UC.
Collapse
Affiliation(s)
- Guihong Lu
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Shanming Lu
- Department of Pathology, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, China
| | - Haibing Dai
- Department of Pathology, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, China
| | - Fan Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- Department of Pathology, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, China
| | - Xiaotian Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, Zhejiang 313201, China
| | - Weiqun Li
- Department of Pathology, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, China
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518038, China
| |
Collapse
|
15
|
Gao B, Huang X, Fu J, Chen L, Deng Z, Wang S, Zhu Y, Xu C, Zhang Y, Zhang M, Chen L, Cui M, Zhang M. Oral administration of Momordica charantia-derived extracellular vesicles alleviates ulcerative colitis through comprehensive renovation of the intestinal microenvironment. J Nanobiotechnology 2025; 23:261. [PMID: 40170075 PMCID: PMC11959773 DOI: 10.1186/s12951-025-03346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/23/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease (IBD), accompanied by intense inflammation, oxidative stress, and intestinal microbiota dysbiosis. Current treatments using chemotherapeutic drugs or immunosuppressants have limited effectiveness and side effects. Therefore, the development of safe, effective, and multi-targeting therapies for IBD is of great importance. Momordica charantia exhibits antioxidant, anti-inflammatory, and intestinal microbiota-regulating properties, suggesting that Momordica charantia-derived extracellular vesicles (MCEVs) have the potential for UC management. RESULTS We extracted MCEVs using differential centrifugation and density gradient centrifugation. The results showed that MCEVs possessed high purity, even particle size, and excellent stability. In vitro, MCEVs were shown to inhibit macrophage inflammatory responses, scavenge reactive oxygen species (ROS), and protect cells from oxidative damage. Transcriptomics analysis revealed that MCEVs may alleviate mitochondria-dependent apoptosis by safeguarding the integrity of the mitochondrial structure and regulating the expression of apoptosis-related proteins. Furthermore, all components of MCEVs contributed to their pharmacological activity. In vivo, MCEVs had better retention in the inflamed colon and significantly alleviated UC through a comprehensive renovation of the intestinal microenvironment. CONCLUSION These findings suggested that MCEVs own considerable potential as natural nanotherapeutics for UC treatment.
Collapse
Affiliation(s)
- Bowen Gao
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaoling Huang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| | - Junlong Fu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Liyuan Chen
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Shuhui Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuanyuan Zhu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chenxi Xu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Lina Chen
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Manli Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
16
|
Xu L, Shen T, Li Y, Wu X. The Role of M 6A Modification in Autoimmunity: Emerging Mechanisms and Therapeutic Implications. Clin Rev Allergy Immunol 2025; 68:29. [PMID: 40085180 DOI: 10.1007/s12016-025-09041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
N6-methyladenosine (m6A), a prevalent and essential RNA modification, serves a key function in driving autoimmune disease pathogenesis. By modulating immune cell development, activation, migration, and polarization, as well as inflammatory pathways, m6A is crucial in forming innate defenses and adaptive immunity. This article provides a comprehensive overview of m6A modification features and reveals how its dysregulation affects the intensity and persistence of immune responses, disrupts immune tolerance, exacerbates tissue damage, and promotes the development of autoimmunity. Specific examples include its contributions to systemic autoimmune disorders like lupus and rheumatoid arthritis, as well as conditions that targeting specific organs like multiple sclerosis and type 1 diabetes. Furthermore, this review explores the therapeutic promise of target m6A-related enzymes ("writers," "erasers," and "readers") and summarizes recent advances in intervention strategies. By focusing on the mechanistic and therapeutic implications of m6A modification, this review sheds light on its role as a promising tool for both diagnosis and treatment in autoimmune disorders, laying the foundation for advancements in customized medicine.
Collapse
Affiliation(s)
- Liyun Xu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tian Shen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
17
|
Iliev ID, Ananthakrishnan AN, Guo CJ. Microbiota in inflammatory bowel disease: mechanisms of disease and therapeutic opportunities. Nat Rev Microbiol 2025:10.1038/s41579-025-01163-0. [PMID: 40065181 DOI: 10.1038/s41579-025-01163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/26/2025]
Abstract
Perturbations in the intestinal microbiome are strongly linked to the pathogenesis of inflammatory bowel disease (IBD). Bacteria, fungi and viruses all make up part of a complex multi-kingdom community colonizing the gastrointestinal tract, often referred to as the gut microbiome. They can exert various effects on the host that can contribute to an inflammatory state. Advances in screening, multiomics and experimental approaches have revealed insights into host-microbiota interactions in IBD and have identified numerous mechanisms through which the microbiota and its metabolites can exert a major influence on the gastrointestinal tract. Looking into the future, the microbiome and microbiota-associated processes will be likely to provide unparalleled opportunities for novel diagnostic, therapeutic and diet-inspired solutions for the management of IBD through harnessing rationally designed microbial communities, powerful bacterial and fungal metabolites, individually or in combination, to foster intestinal health. In this Review, we examine the current understanding of the cross-kingdom gut microbiome in IBD, focusing on bacterial and fungal components and metabolites. We examine therapeutic and diagnostic opportunities, the microbial metabolism, immunity, neuroimmunology and microbiome-inspired interventions to link mechanisms of disease and identify novel research and therapeutic opportunities for IBD.
Collapse
Affiliation(s)
- Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chun-Jun Guo
- Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
18
|
Stephens M, Keane K, Roizes S, Defaye M, Altier C, von der Weid PY. Uncovering the therapeutic potential of anti-tuberculoid agent Isoniazid in a model of microbial-driven Crohn's disease. J Crohns Colitis 2025; 19:jjaf032. [PMID: 39987456 PMCID: PMC11920797 DOI: 10.1093/ecco-jcc/jjaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 02/24/2025]
Abstract
AIMS TNFα has long stood as a hallmark feature of both inflammatory bowel disease and arthritis with its therapeutic potential demonstrated in neutralizing monoclonal antibody treatments such as Infliximab. Due to the high global burden of latent Mycobacterium tuberculosis (TB) infections, prior to receiving anti-TNF therapy, patients testing positive for latent TB are given prophylactic treatment with anti-tuberculoid medications including the first described TB-selective antibiotic, Isoniazid. While this is common clinical practice to prevent the emergence of TB, little is known about whether Isoniazid modifies intestinal inflammation alone. The aim of this study, therefore, was to determine whether Isoniazid presents a novel TB-independent therapeutic option for the treatment of Crohn's disease (CD)-like ileitis and uncover new mechanisms predisposing the host to intestinal inflammation. METHODS The transgenic TNFΔARE mouse model of Crohn's-like terminal ileitis was used. The impact of Isoniazid administration (10 mg/kg/day dose in drinking water) on disease development was monitored between 8 and 12 weeks of age using a variety of behavioral and serological assays. Behavioral and motor functions were assessed using the LABORAS automated monitoring system while systemic and local tissue inflammation were determined at experimental termination using multiplex cytokine analysis. Whole-mount tissue immunofluorescence and fluorescent in situ hybridization were used to qualify changes within the host as well as the microbial compartment of the ileum and associated mesentery. Proposed cellular mechanisms of altered cytokine decay were performed on isolated primary splenocytes in vitro using selective pharmacological agents. RESULTS Compared to age-matched wild-type littermates, TNFΔARE mice display prominent progressive sickness behaviors from 8 through 12 weeks of age indicated by reduced movement, climbing, and rearing. Prophylactic administration of Isoniazid (10 mg/kg/day) is effectively able to protect TNFΔARE mice from this loss of function during the same period. Analysis revealed that Isoniazid was able to significantly reduce both systemic and intestinal inflammation compared to untreated vehicle controls impacting the epithelial colonization of known pathobiont segmented filamentous bacteria (SFB). Reduction in terminal ileal inflammation was also associated to the diminished formation of precursor-tertiary lymphoid organs within the associated ileal mesentery which were found to be associated with endospores derived SFB itself. Finally, we reveal that due to their genetic manipulation, TNFΔARE mice display accelerated posttranscriptional decay of IL-22 mRNA resulting in diminished IL-22 protein production and associated downstream antimicrobial peptide production. CONCLUSIONS Isoniazid protects against the development of intestinal and systemic inflammation in the TNFΔARE model of terminal ileitis by limiting the expansion of mucosal SFB and progression of the associated microbial-driven inflammation. This work highlights a possible mycobacterial-independent function of Isoniazid in limiting CD pathophysiology through limiting the mucosal establishment of pathobionts such as SFB and the association of such microbe-derived endospores linked to the formation of ectopic tertiary lymphoid organs seen commonly in patients.
Collapse
Affiliation(s)
- Matthew Stephens
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Inflammation Research Network Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, HS 1665, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Keith Keane
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Inflammation Research Network Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, HS 1665, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Simon Roizes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Inflammation Research Network Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, HS 1665, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Inflammation Research Network Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, HS 1665, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Inflammation Research Network Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, HS 1665, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Pierre-Yves von der Weid
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Inflammation Research Network Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, HS 1665, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| |
Collapse
|
19
|
Tadese DA, Mwangi J, Luo L, Zhang H, Huang X, Michira BB, Zhou S, Kamau PM, Lu Q, Lai R. The microbiome's influence on obesity: mechanisms and therapeutic potential. SCIENCE CHINA. LIFE SCIENCES 2025; 68:657-672. [PMID: 39617855 DOI: 10.1007/s11427-024-2759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 01/03/2025]
Abstract
In 2023, the World Obesity Atlas Federation concluded that more than 50% of the world's population would be overweight or obese within the next 12 years. At the heart of this epidemic lies the gut microbiota, a complex ecosystem that profoundly influences obesity-related metabolic health. Its multifaced role encompasses energy harvesting, inflammation, satiety signaling, gut barrier function, gut-brain communication, and adipose tissue homeostasis. Recognizing the complexities of the cross-talk between host physiology and gut microbiota is crucial for developing cutting-edge, microbiome-targeted therapies to address the global obesity crisis and its alarming health and economic repercussions. This narrative review analyzed the current state of knowledge, illuminating emerging research areas and their implications for leveraging gut microbial manipulations as therapeutic strategies to prevent and treat obesity and related disorders in humans. By elucidating the complex relationship between gut microflora and obesity, we aim to contribute to the growing body of knowledge underpinning this critical field, potentially paving the way for novel interventions to combat the worldwide obesity epidemic.
Collapse
Affiliation(s)
- Dawit Adisu Tadese
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Luo
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zhang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaoshan Huang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Brenda B Michira
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengwen Zhou
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peter Muiruri Kamau
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiumin Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Meadows V, Antonio JM, Ferraris RP, Gao N. Ruminococcus gnavus in the gut: driver, contributor, or innocent bystander in steatotic liver disease? FEBS J 2025; 292:1252-1264. [PMID: 39589934 PMCID: PMC11927045 DOI: 10.1111/febs.17327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
The human gut microbiome plays a crucial role in regulating intestinal and systemic health, impacting host immune response and metabolic function. Dysbiosis of the gut microbiome is linked to various diseases, including steatotic liver diseases. Metabolic dysfunction-associated steatotic liver disease (MASLD), a chronic liver disease characterized by excess hepatic lipid content and impaired metabolism, is the leading cause of liver disease worldwide. Among the gut microbes, Ruminococcus gnavus (R. gnavus) has garnered attention for its association with inflammatory and metabolic diseases. While R. gnavus abundance correlates to liver fat accumulation, further research is needed to identify a causal role or therapeutic intervention in steatotic liver disease. This review surveys our current understanding of R. gnavus in the development and progression of steatotic liver diseases, highlighting its potential mechanisms through metabolite secretion, and emphasizes the need for comprehensive microbiome analyses and longitudinal studies to better understand R. gnavus' impact on liver health. This knowledge could pave the way for targeted interventions aimed at modulating gut microbiota to treat and prevent MASLD and its comorbidities.
Collapse
Affiliation(s)
- Vik Meadows
- Department of Biological Sciences, School of Arts & SciencesRutgers UniversityNewarkNJUSA
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical SchoolRutgers UniversityNewarkNJUSA
| | - Jayson M. Antonio
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical SchoolRutgers UniversityNewarkNJUSA
| | - Ronaldo P. Ferraris
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical SchoolRutgers UniversityNewarkNJUSA
| | - Nan Gao
- Department of Biological Sciences, School of Arts & SciencesRutgers UniversityNewarkNJUSA
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical SchoolRutgers UniversityNewarkNJUSA
| |
Collapse
|
21
|
Ozbey D, Saribas S, Kocazeybek B. Gut microbiota in Crohn's disease pathogenesis. World J Gastroenterol 2025; 31:101266. [PMID: 39958442 PMCID: PMC11752695 DOI: 10.3748/wjg.v31.i6.101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 01/10/2025] Open
Abstract
Inflammatory bowel diseases (IBDs) are classified into two distinct types based on the area and severity of inflammation: Crohn's disease (CD) and ulcerative colitis. In CD, gut bacteria can infiltrate mesenteric fat, causing expansion known as creeping fat, which may limit bacterial spread and inflammation but can promote fibrosis. The gut bacteria composition varies depending on whether the colon or ileum is affected. Fecal microbiota transplantation (FMT) transfers feces from a healthy donor to restore gut microbiota balance, often used in IBD patients to reduce inflammation and promote mucosal repair. The use of FMT for CD remains uncertain, with insufficient evidence to fully endorse it as a definitive treatment. While some studies suggest it may improve symptoms, questions about the duration of these improvements and the need for repeated treatments persist. There is a pressing need for methods that provide long-term benefits, as highlighted by Wu et al's research.
Collapse
Affiliation(s)
- Dogukan Ozbey
- Department of Medical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul 34098, Türkiye
- Department of Medical Microbiology, Istanbul Okan University, Faculty of Medicine, Istanbul 34959, Türkiye
| | - Suat Saribas
- Department of Medical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul 34098, Türkiye
| | - Bekir Kocazeybek
- Department of Medical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul 34098, Türkiye
| |
Collapse
|
22
|
Li T, Hu G, Fu S, Qin D, Song Z. Phillyrin ameliorates DSS-induced colitis in mice via modulating the gut microbiota and inhibiting the NF-κB/MLCK pathway. Microbiol Spectr 2025; 13:e0200624. [PMID: 39699220 PMCID: PMC11792488 DOI: 10.1128/spectrum.02006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/29/2024] [Indexed: 12/20/2024] Open
Abstract
Phillyrin (PHY), also known as forsythin, is an active constituent isolated from the fruit of Forsythia suspensa (Thunb.) Vahl (Oleaceae). It exhibits anti-inflammatory, anti-viral, and antioxidant properties. However, the precise impact of PHY on colitis induced by dextran sodium sulfate (DSS) and its mechanism remain elusive. The present investigation revealed that PHY (12.5, 25.0, and 50.0 mg/kg) exhibited significant therapeutic efficacy in protecting mice against DSS-induced colitis. This effect was manifested as reduced weight loss, a shortened colon, increased secretion of inflammatory factors, increased intestinal permeability, and an enhanced disease activity index in mice with ulcerative colitis (UC). Molecular investigations have determined that PHY mitigates the nuclear translocation of nuclear factor kappa B, thereby downregulating myosin light-chain kinase-driven myosin light-chain phosphorylation. This mechanism results in the preservation of the integrity of the intestinal barrier. The outcomes of 16S rRNA sequencing suggest that PHY (50 mg/kg) augmented the relative abundance of certain probiotic strains, including Lactobacillaceae and Lachnospiraceae. Additionally, PHY supplementation elevated the short-chain fatty acid contents within the intestinal contents of mice with UC. In conclusion, pre-treatment with PHY may ameliorate the DSS-induced UC in mice by lowering the expression of inflammatory factors, protecting intestinal barrier function, and enhancing the structure of the intestinal flora.IMPORTANCEThe protective effect of phillyrin on DSS-induced colitis was explained for the first time, and the anti-inflammatory effect of phillyrin was demonstrated by fecal microbiota transplantation experiments mainly through intestinal flora.
Collapse
Affiliation(s)
- Tong Li
- College of Veterinary Medicine, Jilin University, changchun, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, changchun, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, changchun, China
| | - Di Qin
- College of Animal Science and Technology, Jilin University, changchun, China
| | - Zheyu Song
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, changchun, China
| |
Collapse
|
23
|
Chong J, Chen Z, Ma J, He L, Zhu Y, Lu Z, Qiu Z, Chen C, Chen Y, Jiang F. Mechanistic investigation and the optimal dose based on baicalin in the treatment of ulcerative colitis-A preclinical systematic review and meta-analysis. BMC Gastroenterol 2025; 25:50. [PMID: 39901089 PMCID: PMC11792396 DOI: 10.1186/s12876-025-03629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a type of inflammatory bowel disease, and current treatments often fall short, necessitating new therapeutic options. Baicalin shows therapeutic promise in UC animal models, but a systematic review is needed. METHODS A systematic search was conducted across databases including PubMed, EBSCO, Web of Science, and Science Direct, up to March 2024, identifying randomized controlled trials (RCTs) examining baicalin's impact on UC in animal models. Seventeen studies were selected through manual screening. Meta-analyses and subgroup analyses utilized Rev Man 5.3 and Stata 15.0 software to assess symptom improvement. RESULTS From 1304 citations, 17 were analyzed. Baicalin significantly modulated various biomarkers: HCS (SMD = -3.91), DAI (MD = -2.75), spleen index (MD = -12.76), MDA (SMD = -3.88), IL-6 (SMD = -10.59), IL-1β (SMD = -3.98), TNF-α (SMD = -8.05), NF-κB (SMD = -5.46), TLR4 (MD = -0.38), RORγ (MD = -0.89), MCP-1 (MD = -153.25), MPO (SMD = -7.34), Caspase-9 (MD = -0.93), Caspase-3 (MD = -0.45), FasL (MD = -1.20)) and enhanced BWC (MD = 0.06), CL (MD = 1.39), ZO-1 (MD = 0.44), SOD (SMD = 3.04), IL-10 mRNA (MD = 3.14), and FOXP3 (MD = 0.45) levels. Baicalin's actions may involve the PI3K/AKT, TLR4/NF-κB, IKK/IKB, Bcl-2/Bax, Th17/Treg, and TLRs/MyD88 pathways. Optimal therapeutic outcomes were predicted at dosages of 60-150 mg/kg over 10-14 weeks. CONCLUSION Baicalin demonstrates a multifaceted therapeutic potential in UC, attributed to its anti-inflammatory, antioxidant, anti-apoptotic, and intestinal barrier repair properties. While higher doses and longer treatments appear beneficial, further research, particularly human clinical trials, is necessary to verify its effectiveness and safety in people.
Collapse
Affiliation(s)
- Jinchen Chong
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
- Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zepeng Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Jiaze Ma
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
- Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Linhai He
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
- Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Yijia Zhu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
- Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhihua Lu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
- Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhengxi Qiu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
- Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Chen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Yugen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, PR China.
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China.
- Jiangsu Collaborative Innovation Center of Chinese Medicine in Prevention and Treatment of Tumor, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China.
| | - Feng Jiang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China.
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, PR China.
| |
Collapse
|
24
|
Pangga GM, Star-Shirko B, Psifidi A, Xia D, Corcionivoschi N, Kelly C, Hughes C, Lavery U, Richmond A, Ijaz UZ, Gundogdu O. Impact of commercial gut health interventions on caecal metagenome and broiler performance. MICROBIOME 2025; 13:30. [PMID: 39881387 PMCID: PMC11776324 DOI: 10.1186/s40168-024-02012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler production cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essential oils, and reduction of ionophore use. RESULTS Using a binning strategy, 84 (≥ 75% completeness, ≤ 5% contamination) metagenome-assembled genomes (MAGs) from 118 caecal samples were recovered and annotated for their metabolic potential. The majority of these (n = 52, 61%) had a differential response across all cohorts and are associated with the performance parameter - European poultry efficiency factor (EPEF). The control group exhibited the highest EPEF, followed closely by the cohort where probiotics are used in conjunction with vaccination. The use of probiotics B, a commercial Bacillus strain-based formulation, was determined to contribute to the superior performance of birds. GHI supplementation generally affected the abundance of microbial enzymes relating to carbohydrate and protein digestion and metabolic pathways relating to energy, nucleotide synthesis, short-chain fatty acid synthesis, and drug-transport systems. These shifts are hypothesised to differentiate performance among groups and cycles, highlighting the beneficial role of several bacteria, including Rikenella microfusus and UBA7160 species. CONCLUSIONS All GHIs are shown to be effective methods for gut microbial modulation, with varying influences on MAG diversity, composition, and microbial functions. These metagenomic insights greatly enhance our understanding of microbiota-related metabolic pathways, enabling us to devise strategies against enteric pathogens related to poultry products and presenting new opportunities to improve overall poultry performance and health. Video Abstract.
Collapse
Affiliation(s)
- Gladys Maria Pangga
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Banaz Star-Shirko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Dong Xia
- Royal Veterinary College, London, UK
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Agri-Food and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai Timișoara, Timișoara, Romania
| | - Carmel Kelly
- Bacteriology Branch, Agri-Food and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | | | | | | | - Umer Zeeshan Ijaz
- James Watt School of Engineering, University of Glasgow, Glasgow, UK.
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
25
|
Chauhan JK, Kumar P, Dubey PK, Tripathi A. Phyto-Fingerprinting of Putranjiva roxburghii Wall. Leaf Extract and its In Vitro Anti-Inflammatory Activity. Cell Biochem Biophys 2025:10.1007/s12013-025-01676-8. [PMID: 39871023 DOI: 10.1007/s12013-025-01676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2025] [Indexed: 01/29/2025]
Abstract
Putranjiva roxburghii is an important medicinal plant utilized for remedy of female reproductive ailments. Its seed extract is being used as a uterine health booster due to the presence of several pharmaceutically important phytochemicals. However, the presence of phytochemicals in its leaf is still unexplored. The present study was designed to explore phytochemical finger printing and assessment of anti-oxidant and anti-inflammatory activities of hydroalcoholic leaf extract of P. roxburghii (HALEPR). The qualitative, quantitative phytochemical of flavonoid, phenol and HRA-MS analysis of HALEPR carried out along with antioxidant and in vitro membrane stabilization and protein denaturation assay of anti-inflammatory activity were have been analyzed. Results of qualitative phytochemical screening of HALEPR denotes the existence of phenol, flavonoids, alkaloids, coumarins, steroids, saponins, tannins, anthroquinone and carbohydrates. The quantitative phytochemical of flavonoid and phenol was done which revealed the presents of total phenol and flavonoid. High resolution accurate-mass spectrometry (HRA-MS) study was also done for the identification of bioactive compounds from the HALEPR, which showed the presence of various phytochemicals such as luteolin 3'- (3″-acetylglucuronide), luteolin 4'-methyl ether 7-glucoside, quercetin-3β-D-glucoside, 8-hydroxyluteolin 4'-methyl ether 8-glucuronide, quercetin 3-xylosyl- (1- > 2) -rha mnosyl- (1- > 6) -glucoside, quercetin-3β-D-glucoside, myricetin 3- (3-6-diacetylglucosyl) - (1- > 4) - (2″,3″-diacetylrhamnoside), apigetrin, isorhamnetin, catechin 7,3'-Di-O-β-D glucopyranoside, luteolin 7-methylglucuronide, apigenin-8-C-α -l-arabinopyranoside, naringenin 7- O-β-D-glucoside 6″-acetate,ohobanin, shogaol, ginkgetin and amoritin. The HELPER is shown to have the presence of anti-oxidant and anti-inflammatory activities as demonstrated by DPPH (1, 1-diphenyl,2-picrylhydrazyl) and membrane lysis assays. Our findings reveal the presence of phytochemicals in HALEPR that have significant antioxidant and anti-inflammatory activity. The bioactivities were identified using chemical characterization like HRA/MS and biological assessments like anti-inflammatory and antioxidant assays. Future research may focus on isolating specific molecules, conducting in vivo tests, and creating HALEPR-based formulations for clinical application as anti-inflammatory drugs.
Collapse
Affiliation(s)
| | - Pradeep Kumar
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Pawan K Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Anima Tripathi
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
26
|
Zhang J, Yin YJ, Wang XW, Lu WQ, Chen ZY, Yu CH, Ren KF, Xu CF. Adhesive polyelectrolyte coating through UV-triggered polymerization on PLGA particles for enhanced drug delivery to inflammatory intestinal mucosa. J Nanobiotechnology 2025; 23:32. [PMID: 39844269 PMCID: PMC11753032 DOI: 10.1186/s12951-024-03066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
Administering medication precisely to the inflamed intestinal sites to treat ulcerative colitis (UC), with minimized side effects, is of urgent need. In UC, the inflammation damaged mucosa contains a large number of amino groups which are positively charged, providing new opportunities for drug delivery system design. Here, we report an oral drug delivery system utilizing the tacrolimus-loaded poly (lactic-co-glycolic acid) (TAC/PLGA) particles with an adhesion coating by in situ UV-triggered polymerization of polyacrylic acid and N-hydroxysuccinimide (PAA-NHS). The negatively charged carboxyl groups effectively interact with the positively charged focal mucosa, and the NHS ester groups form the covalent bonds with the amino groups, thereby synergically enhancing the adhesion of the PLGA particles to the focal mucosa. Our findings reveal that, compared to the naked particles, the PAA-NHS coating increases the adhesion of particles to the inflammatory intestine. In a dextran sulfate sodium-induced acute colitis mouse model, the TAC/PLGA particles with PAA-NHS coating exhibits substantial retention of TAC within the inflammatory intestine, enhancing drug delivery efficiency and therapeutic effects. This approach holds promise for UC management, minimizing systemic side effects and optimizing therapeutic outcomes.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yi-Jing Yin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing-Wang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei-Qi Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhao-Yang Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
| | - Chao-Hui Yu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Cheng-Fu Xu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
27
|
Zhao Z, Chen X, Xiang Q, Liu L, Li X, Qiu B. Identification of circadian rhythm-related biomarkers and development of diagnostic models for Crohn's disease using machine learning algorithms. Comput Methods Biomech Biomed Engin 2025:1-17. [PMID: 39836385 DOI: 10.1080/10255842.2025.2453922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data. Diagnostic models were constructed using machine learning algorithms, and biologic therapy efficacy was predicted with advanced regression techniques. Single-cell sequencing showed high gene expression in stem cells, immune, and endothelial cells, with validation confirming significant differences between CD patients and controls. These findings suggest circadian rhythm-related genes as promising diagnostic biomarkers for CD.
Collapse
Affiliation(s)
- Zhijing Zhao
- Department of Gastroenterolgy, Sixth People's Hospital of Chengdu, Chengdu, China
- Department of Scientific Research, Sixth People's Hospital of Chengdu, Chengdu, China
| | - Xia Chen
- Department of Gastroenterolgy, Sixth People's Hospital of Chengdu, Chengdu, China
| | - Qian Xiang
- Department of Gastroenterolgy, Sixth People's Hospital of Chengdu, Chengdu, China
| | - Liu Liu
- Department of Gastroenterolgy, Third People's Hospital of Chengdu, Chengdu, China
| | - Xiaohua Li
- Department of Respiratory and Critical Care Medicine, Sixth People's Hospital of Chengdu, Chengdu, China
| | - Boyun Qiu
- Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| |
Collapse
|
28
|
Quaglio AEV, Magro DO, Imbrizi M, De Oliveira ECS, Di Stasi LC, Sassaki LY. Creeping fat and gut microbiota in Crohn's disease. World J Gastroenterol 2025; 31:102042. [PMID: 39777251 PMCID: PMC11684179 DOI: 10.3748/wjg.v31.i1.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024] Open
Abstract
In this article, we explored the role of adipose tissue, especially mesenteric adipose tissue and creeping fat, and its association with the gut microbiota in the pathophysiology and progression of Crohn's disease (CD). CD is a form of inflammatory bowel disease characterized by chronic inflammation of the gastrointestinal tract, influenced by genetic predisposition, gut microbiota dysbiosis, and environmental factors. Gut microbiota plays a crucial role in modulating immune response and intestinal inflammation and is associated with the onset and progression of CD. Further, visceral adipose tissue, particularly creeping fat, a mesenteric adipose tissue characterized by hypertrophy and fibrosis, has been implicated in CD pathogenesis, inflammation, and fibrosis. The bacteria from the gut microbiota may translocate into mesenteric adipose tissue, contributing to the formation of creeping fat and influencing CD progression. Although creeping fat may be a protective barrier against bacterial invasion, its expansion can damage adjacent tissues, leading to complications. Modulating gut microbiota through interventions such as fecal microbiota transplantation, probiotics, and prebiotics has shown potential in managing CD. However, more research is needed to clarify the mechanisms linking gut dysbiosis, creeping fat, and CD progression and develop targeted therapies for microbiota modulation and fat-related complications in patients with CD.
Collapse
Affiliation(s)
- Ana EV Quaglio
- Verum Ingredients, Botucatu Technology Park, Botucatu 18605-525, São Paulo, Brazil
| | - Daniéla O Magro
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas, Campinas 13083-970, São Paulo, Brazil
| | - Marcello Imbrizi
- Department of Gastroenterology, Faculty of Medical Sciences, University of Campinas, Campinas 13083-970, São Paulo, Brazil
| | - Ellen CS De Oliveira
- Department of Internal Medicine, Medical School, São Paulo State University, Botucatu 18618-686, São Paulo, Brazil
| | - Luiz C Di Stasi
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu 18618-689, São Paulo, Brazil
| | - Ligia Y Sassaki
- Department of Internal Medicine, Medical School, São Paulo State University, Botucatu 18618-686, São Paulo, Brazil
| |
Collapse
|
29
|
Gong G, Xu C, Zhang Z, Zheng Y. Association between depression and anxiety with the risk and flare of inflammatory bowel disease: a systematic review and meta-analysis. Intern Emerg Med 2025; 20:35-46. [PMID: 39361221 DOI: 10.1007/s11739-024-03764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/04/2024] [Indexed: 02/06/2025]
Abstract
Inflammatory bowel disease (IBD) is a chronic condition characterized by inflammation in the gastrointestinal tract. Previous studies have suggested a potential association between mental disorders, such as depression and anxiety, and the risk and flare of IBD. However, the findings have been inconsistent. This study aimed to conduct a systematic review and meta-analysis to assess the relationship between mental disorders and IBD. A comprehensive literature search was performed to identify relevant studies. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to determine the association between mental disorders and the risk and flare of IBD. Heterogeneity between studies was assessed using the I2 statistic. Sensitivity analysis was conducted to evaluate the stability of the results. A total of seven studies met the inclusion criteria and were included in the meta-analysis. The pooled results demonstrated a significant association between symptoms of depression at baseline and an increased risk of disease activity flare during longitudinal follow-up, with an OR of 1.69 (95% CI 1.34, 2.13). However, there was high heterogeneity between studies (I2 = 82%). Furthermore, patients who underwent surgery had a higher risk of disease activity flare (OR: 1.49, 95% CI 1.13, 1.95), and hospitalization was also identified as a contributing factor (OR: 1.22, 95% CI 1.10, 1.36). This meta-analysis provides evidence for a significant association between symptoms of depression and the risk of disease activity flare in IBD. However, the high heterogeneity observed between studies suggests the need for further research to explore potential moderators and underlying mechanisms. These findings highlight the importance of addressing mental health in the management and treatment of patients with IBD.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, Guangdong, China.
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China.
| | - Cong Xu
- Department of Pathology, the University of Hong Kong, Hong Kong, 999077, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, China.
| |
Collapse
|
30
|
Su J, Wang H, Wang Z. The Multiple Roles of Heat Shock Proteins in the Development of Inflammatory Bowel Disease. Curr Mol Med 2025; 25:132-145. [PMID: 38465431 DOI: 10.2174/0115665240286793240306053111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Inflammatory bowel disease (IBD), a chronic inflammatory condition of the human intestine, comprises Crohn's disease (CD) and ulcerative colitis (UC). IBD causes severe gastrointestinal symptoms and increases the risk of developing colorectal carcinoma. Although the etiology of IBD remains ambiguous, complex interactions between genetic predisposition, microbiota, epithelial barrier, and immune factors have been implicated. The disruption of intestinal homeostasis is a cardinal characteristic of IBD. Patients with IBD exhibit intestinal microbiota dysbiosis, impaired epithelial tight junctions, and immune dysregulation; however, the relationship between them is not completely understood. As the largest body surface is exposed to the external environment, the gastrointestinal tract epithelium is continuously subjected to environmental and endogenous stressors that can disrupt cellular homeostasis and survival. Heat shock proteins (HSPs) are endogenous factors that play crucial roles in various physiological processes, such as maintaining intestinal homeostasis and influencing IBD progression. Specifically, HSPs share an intricate association with microbes, intestinal epithelium, and the immune system. In this review, we aim to elucidate the impact of HSPs on IBD development by examining their involvement in the interactions between the intestinal microbiota, epithelial barrier, and immune system. The recent clinical and animal models and cellular research delineating the relationship between HSPs and IBD are summarized. Additionally, new perspectives on IBD treatment approaches have been proposed.
Collapse
Affiliation(s)
- Jinfeng Su
- Department of Neonatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518100, China
| | - Haiyan Wang
- Department of Obstetrics and Gynecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518100, China
| | - Zun Wang
- Department of Breast and Thyroid Surgery, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518100, China
| |
Collapse
|
31
|
Liu H, Huang R, Shen B, Huang C, Zhou Q, Xu J, Chen S, Lin X, Wang J, Zhao X, Guo Y, Ai X, Liu Y, Wang Y, Zhang W, Zhi F. Live Akkermansia muciniphila boosts dendritic cell retinoic acid synthesis to modulate IL-22 activity and mitigate colitis in mice. MICROBIOME 2024; 12:275. [PMID: 39734222 PMCID: PMC11684322 DOI: 10.1186/s40168-024-01995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND The interplay between gut microbiota and immune responses is crucial in ulcerative colitis (UC). Though Akkermansia muciniphila (Akk) shows therapeutic potential, the mechanisms remain unclear. This study sought to investigate differences in therapeutic efficacy among different forms or strains of Akk and elucidate the underlying mechanisms. RESULTS Employing a dextran sulfate sodium (DSS)-induced colitis mouse model, we assessed Akk's impact on colitis using cellular cytokine analysis, immune phenotyping, proteomics, and biochemical methods. Our results suggest that treatment with live Akk effectively reduced colitis in the DSS-induced model, whereas heat-inactivated Akk did not yield the same results. Notably, Akk exhibited protective properties by promoting the secretion of IL-22 by Group 3 innate lymphoid cells (ILC3s), as evidenced by the absence of protection in IL-22 knockout mice. Additionally, Akk augmented the population of CD103+CD11b- dendritic cells (DCs) and enhanced their retinoic acid (RA) synthesis through the modulation of RALDH2, a crucial enzyme in RA metabolism. The depletion of RALDH2 in DCs diminished Akk's protective properties and impaired IL-22-mediated mucosal healing. Mechanistically, Akk activated RA production in DCs by enhancing the JAK2-STAT3 signaling pathway. Additionally, various strains of Akk may exhibit differing abilities to alleviate colitis, with the novel strain Am06 derived from breast milk showing consistent efficacy similar to the reference strain. CONCLUSIONS In summary, our findings indicate that certain strains of Akk may mitigate colitis through the promotion of RA synthesis and IL-22 secretion, underscoring the potential efficacy of Akk as a therapeutic intervention for the management of UC. Video Abstract.
Collapse
Affiliation(s)
- Hongbin Liu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruo Huang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Binhai Shen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chongyang Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Zhou
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahui Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengbo Chen
- Department of Gastroenterology, Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China
| | - Xinlong Lin
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinmei Zhao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yandong Guo
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuyun Ai
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yangyang Liu
- Guangzhou ZhiYi Biotechnology Co., Ltd, Guangzhou, China
| | - Ye Wang
- Guangzhou ZhiYi Biotechnology Co., Ltd, Guangzhou, China
| | - Wendi Zhang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Fachao Zhi
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
32
|
Bernardi F, Fanizzi F, Parigi TL, Zilli A, Allocca M, Furfaro F, Peyrin-Biroulet L, Danese S, D’Amico F. Role of Probiotics in the Management of Patients with Ulcerative Colitis and Pouchitis. Microorganisms 2024; 13:19. [PMID: 39858787 PMCID: PMC11768050 DOI: 10.3390/microorganisms13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Acute severe ulcerative colitis (ASUC) often requires surgical intervention, such as proctocolectomy with ileal pouch-anal anastomosis (IPAA). While IPAA improves patient outcomes, it can be associated with pouchitis, a common and debilitating complication characterized by inflammation of the pouch. The development of pouchitis is closely linked to dysbiosis-an imbalance in the gut microbiota. Understanding the role of the microbiota in pouch health has spurred interest in probiotics as a therapeutic strategy. Probiotics represent a promising avenue in the management of pouchitis, offering a natural and targeted approach to improving outcomes for UC patients. This review explores the role of probiotics in the management of UC patients, with a specific focus on preventing and treating pouchitis. We compare the microbiota of healthy pouches to those with pouchitis, highlighting key microbial shifts linked to disease onset and discussing the growing evidence for probiotics as a prevention and therapeutic approach. Future directions should prioritize advancing research to optimize probiotic therapies and establish personalized approaches based on individual microbiome profiles, highlighting their significant potential as a promising treatment strategy for pouchitis.
Collapse
Affiliation(s)
- Francesca Bernardi
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
- Gastroenterology and Endoscopy, Vita Salute San Raffaele University, 20132 Milano, Italy
| | - Fabrizio Fanizzi
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
- Gastroenterology and Endoscopy, Vita Salute San Raffaele University, 20132 Milano, Italy
| | - Tommaso Lorenzo Parigi
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
| | - Alessandra Zilli
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
| | - Mariangela Allocca
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
| | - Federica Furfaro
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, INFINY Institute, INSERM NGERE, CHRU Nancy, F-54500 Vandœuvre-lès-Nancy, France;
| | - Silvio Danese
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
- Gastroenterology and Endoscopy, Vita Salute San Raffaele University, 20132 Milano, Italy
| | - Ferdinando D’Amico
- Gastroenterology and Endoscopy IRCCS, Ospedale San Raffaele, 20132 Milano, Italy; (F.B.); (F.F.); (T.L.P.); (A.Z.); (M.A.); (F.F.); (S.D.)
| |
Collapse
|
33
|
Xie X, Ren W, Zhou W, Zhang X, Deng X, Wang X, Wu Y, Lu Q. Genetic prediction of the effect of gut microbiota on uveitis via blood metabolites: A mediated Mendelian randomization investigation. Medicine (Baltimore) 2024; 103:e40922. [PMID: 39686482 PMCID: PMC11651470 DOI: 10.1097/md.0000000000040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
The gut microbiota (GM) may be associated with uveitis. However, the causal relationship between the GM and uveitis and whether blood metabolites act as mediators of the GM remain unclear. We extracted the GM, blood metabolites, and uveitis data from genome-wide association study (GWAS) summary data. We used Mendelian randomization (MR) to investigate the causal relationships among GM, blood metabolites, and uveitis. The primary statistical method used was the inverse variance weighted (IVW) method. In addition, we used 2-sample MR, bidirectional MR, 2-step method and multiple MR to explore whether blood metabolites were mediators of the association between the GM and uveitis. After removing confounding factors, the abundances of the order Bacillales and the genus Holdemanella are risk factors for uveitis, and the abundances of Peptococcus and Ruminococcaceae UCG010 are protective factors. The inverse analysis revealed that uveitis affected 6 GM taxa - 4 positively and 2 negatively. In addition, N-methyl proline and 2-hydroxy sebacate were identified as risk factors for uveitis, and N-formy1 phenylalanine, 1-ribosyl-imidazole acetate, 1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4) and alpha-ketoglutarate/pyruvate were identified as protective factors for uveitis. Finally, there was a causal association between 3 GM taxa and 6 blood metabolites, with 6 positive and 2 negative effects. N-methylproline possessed the greatest mediated effect (9.41%) between Ruminococcaceae UCG010 and uveitis. These results provide new insights into the pathogenesis of uveitis and offer a new approach to uveitis prevention and treatment from GM and blood metabolites perspective.
Collapse
Affiliation(s)
- Xiaodong Xie
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weina Ren
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Weiping Zhou
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xixi Zhang
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyu Deng
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyi Wang
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yufei Wu
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qinkang Lu
- The Affiliated Peoples Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
34
|
Tang S, Feng W, Li Z, Liu X, Yang T, Wei F, Ding G. Extracellular Vesicles Derived from Lipopolysaccharide-Pretreated Periodontal Ligament Stem Cells Ameliorate Inflammatory Responses in Experimental Colitis via the PI3K/AKT Signaling Pathway. Int J Nanomedicine 2024; 19:11997-12013. [PMID: 39583323 PMCID: PMC11583767 DOI: 10.2147/ijn.s494321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Inflammatory bowel disease is a complex chronic inflammatory condition characterized by dysbiosis of the gut microbiota and dysregulation of immune system. In recent years, extracellular vesicles (EVs) derived from mesenchymal stem cells have garnered significant attention for their beneficial potentials in immune modulation and tissue repair. This study aims to evaluate the therapeutic effects and underlying mechanisms of EVs derived from lipopolysaccharide (LPS)-pretreated periodontal ligament stem cells (PDLSCs) in mice with colitis. Methods A mouse model of colitis was established using 3.0% dextran sulfate sodium (DSS). Following the induction of colitis, mice were treated via tail vein injection with either conventional PDLSC-derived EVs (P-EVs) or LPS-pretreated PDLSC-derived EVs (LPS pre-EVs). The EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot analysis. The therapeutic effects and mechanisms were evaluated through a combination of small animal live imaging, disease activity index (DAI) scoring, histopathological staining, qRT-PCR, 16S rRNA gene sequencing, and mass spectrometry analysis. Results The LPS pre-EVs exhibited typical EVs characteristics in terms of morphology, particle size distribution, and marker protein expression. Compared to P-EVs, LPS pre-EVs significantly ameliorated weight loss, DAI scores, colon length, and perianal symptoms in DSS-induced murine colitis. Additionally, LPS pre-EVs up-regulated the expression of Arginase-1, a typical M2 macrophage marker, and tight junction proteins, including ZO-1, Occludin, and Claudin-1, enhanced gut microbial diversity, and significantly regulated intestinal protein expression and activation of the PI3K/AKT signaling pathway. Conclusion LPS pre-EVs exhibit significant anti-inflammatory and tissue repair effects in a mouse model of colitis. The underlying mechanisms may involve the regulation of macrophage polarization, maintenance of intestinal barrier function, modulation of the gut microbiota, and activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Shuai Tang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Wenyu Feng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Zekun Li
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Xinjuan Liu
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Tong Yang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, People’s Republic of China
| |
Collapse
|
35
|
Liu Y, Hu J, Tian S, Zhang J, An P, Wu Y, Liu Z, Jiang C, Shi J, Wu K, Dong W. Comprehensive analysis of psychological symptoms and quality of life in early patients with IBD: a multicenter study from China. BMC Psychiatry 2024; 24:792. [PMID: 39533191 PMCID: PMC11559217 DOI: 10.1186/s12888-024-06247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE To investigate the prevalence and risk factors of psychological symptoms and quality of life (QoL) in early patients with inflammatory bowel disease (IBD). METHODS From September 2021 to May 2022, a unified questionnaire was developed to collect clinical data from early patients with IBD from 42 tertiary care hospitals. The influencing factors of psychological symptoms and poor QoL are screened by logistic regression analysis for constructing model in predicting poor QoL. The consistency index, receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration curve, and decision curve analysis (DCA) were used to evaluate the performance of the model. RESULTS A total of 939 early patients with IBD were surveyed, Among them, 20.3% exhibited anxiety, 21.7% had depression, 57.3% experienced sleep disturbance, and 41.9% reported poor QoL. The factors influencing psychological symptoms varied between ulcerative colitis (UC) and Crohn's disease (CD) patients. The QoL was primarily affected by disease activity, income level and depression. The AUC value of the model in the training group was 0.781 (95% CI: 0.748-0.814). The calibration diagram of the model closely matched the ideal curve. Compared to other prediction models, our model showed superior predictive capability, with NRI and IDI values of 0.324 (95%CI:0.196-0.4513) and 0.026 (95%CI:0.014-0.038), respectively. DCA indicated that the nomogram model could provide clinical benefits. CONCLUSION Early patients with IBD exhibit a high prevalence of psychological symptoms and poor QoL. The nomogram prediction model we constructed demonstrates high accuracy and performance in predicting QoL in early patients with IBD.
Collapse
Affiliation(s)
- Yupei Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No 99 Zhangzhidong Road, Wuhan, Hubei Province, 430060, China
| | - Jiaming Hu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No 99 Zhangzhidong Road, Wuhan, Hubei Province, 430060, China
| | - Shan Tian
- Department of Infection, Union Hospital of Tongji Medical College of Huazhong, University of Science and Technology, Wuhan, 430022, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No 99 Zhangzhidong Road, Wuhan, Hubei Province, 430060, China
| | - Ping An
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No 99 Zhangzhidong Road, Wuhan, Hubei Province, 430060, China
| | - Yanrui Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No 99 Zhangzhidong Road, Wuhan, Hubei Province, 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Changqing Jiang
- Department of Clinical Psychology, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Jie Shi
- Department of Medical Psychology, Chinese People's Liberation Army Rocket Army Characteristic Medical Center, Beijing, 100088, China
| | - Kaichun Wu
- Department of Gastroenterology, Xijing Hospital, Air Force Medical University, No. 127 West Changle Road, Xi'an, Shaanxi, 710032, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No 99 Zhangzhidong Road, Wuhan, Hubei Province, 430060, China.
| |
Collapse
|
36
|
Xu L, Wang Y, Yan D, Li M, Qiao L, Chen Z, Wu M, Zhong G. Albumin binding domain fusion improved the therapeutic efficacy of Inhibitor of Differentiation-2 protein in colitis mice. Life Sci 2024; 359:123237. [PMID: 39532259 DOI: 10.1016/j.lfs.2024.123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
AIMS The human Inhibitor of Differentiation-2 (hID2) protein is a promising candidate for the treatment of colitis. However, its relatively low molecular weight limits its clinical application. To extend the therapeutic half-life, an albumin-binding domain (ABD), known for its high affinity for human serum albumin (HSA), was fused to hID2, resulting in a recombinant ABD-hID2. The anti-colitis bioactivity of ABD-hID2 than that of hID2 was evaluated in this study. MAIN METHODS Western blotting, size-exclusion high-performance chromatography, HSA binding assay, and pharmacokinetic studies were used to characterise ABD-hID2, which was induced by dextran sulfate sodium salt (DSS), Citrobacter rodentium (CR), and ABD-hID2 and hID2. The Disease Activity Index, histological pathologies, inflammatory response, Alcian blue or tuft cell staining, and tight junction proteins were determined. Alterations in the intestinal microbiota after ABD-hID2 treatment were analysed via 16S rRNA gene sequencing. KEY FINDINGS Compared with hID2, ABD-hID2 exhibited a decreased dimer complex, bound to HSA with high affinity, and demonstrated an extended blood retention time in vivo. Consequently, ABD-hID2 exhibited increased therapeutic efficacy in both DSS- and CR-induced colitis mouse models, as evidenced by the alleviation of colitis symptoms, preservation of goblet and tuft cell functions, restoration of the intestinal mucus barrier, and suppression of abnormal immune-inflammatory responses. Additionally, the modulation of the gut microbiota may play a role in the protective effects of ABD-hID2 in mice with CR-induced ulcerative colitis. SIGNIFICANCE ABD-hID2 enhances the bioactivity of hID2 and has the potential for further development as a treatment for colitis.
Collapse
Affiliation(s)
- Lingyun Xu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, Hunan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yuxin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Dong Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Min Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Lin Qiao
- Department of Medical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Zhiguo Chen
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, Hunan, China
| | - Minna Wu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, Hunan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Genshen Zhong
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, Hunan, China.
| |
Collapse
|
37
|
Ozaka S, Sonoda A, Kudo Y, Ito K, Kamiyama N, Sachi N, Chalalai T, Kagoshima Y, Soga Y, Ekronarongchai S, Ariki S, Mizukami K, Ishizawa S, Nishiyama M, Murakami K, Takeda K, Kobayashi T. Daikenchuto, a Japanese herbal medicine, ameliorates experimental colitis in a murine model by inducing secretory leukocyte protease inhibitor and modulating the gut microbiota. Front Immunol 2024; 15:1457562. [PMID: 39524440 PMCID: PMC11543465 DOI: 10.3389/fimmu.2024.1457562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) is a refractory inflammatory disorder of the intestine, which is probably triggered by dysfunction of the intestinal epithelial barrier. Secretory leukocyte protease inhibitor (SLPI) secreted by colon epithelial cells protects against intestinal inflammation by exerting anti-protease and anti-microbial activities. Daikenchuto (DKT) is one of the most commonly prescribed Japanese traditional herbal medicines for various digestive diseases. Although several animal studies have revealed that DKT exerts anti-inflammatory effects, its detailed molecular mechanism is unclear. This study aimed to clarify the anti-inflammatory mechanism of DKT using a murine colitis model, and to evaluate its potential as a therapeutic agent for IBD. Methods Experimental colitis was induced in wild-type (WT) mice and SLPI-deficient (KO) mice by dextran sulfate sodium (DSS) after oral administration of DKT. The resultant clinical symptoms, histological changes, and pro-inflammatory cytokine levels in the colon were assessed. Expression of SLPI in the colon was detected by Western blotting and immunohistochemistry. Composition of the gut microbiota was analyzed by 16S rRNA metagenome sequencing and intestinal metabolites were measured by gas chromatography-mass spectrometry analysis. Intestinal epithelial barrier function was assessed by oral administration of FITC-dextran and immunostaining of tight junction proteins (TJPs). Results Oral administration of DKT increased the number of butyrate-producing bacteria, such as Parabacteroides, Allobaculum, and Akkermansia, enhanced the levels of short-chain fatty acids, including butyrate, in the colon, induced SLPI expression, and ameliorated DSS-induced colitis in WT mice. We found that mouse colon carcinoma cell line treatment with either DKT or butyrate significantly enhanced the expression of SLPI. Moreover, supplementation of DKT protected the intestinal epithelial barrier with augmented expression of TJPs in WT mice, but not in KO mice. Finally, the composition of the gut microbiota was changed by DKT in WT mice, but not in KO mice, suggesting that DKT alters the colonic bacterial community in an SLPI-dependent manner. Conclusion These results indicate that DKT exerts anti-inflammatory effects on the intestinal epithelial barrier by SLPI induction, due, at least in part, to increased butyrate-producing bacteria and enhanced butyrate levels in the colon. These results provide insight into the mechanism of the therapeutic effects of DKT on IBD.
Collapse
Affiliation(s)
- Sotaro Ozaka
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Akira Sonoda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoko Kudo
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kanako Ito
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Nozomi Sachi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Thanyakorn Chalalai
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yomei Kagoshima
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yasuhiro Soga
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | | | - Shimpei Ariki
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Mizukami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shiori Ishizawa
- Tsumura Advanced Technology Research Laboratories, Research and Development Division, Tsumura & Co., Inashiki, Japan
| | - Mitsue Nishiyama
- Tsumura Advanced Technology Research Laboratories, Research and Development Division, Tsumura & Co., Inashiki, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Yufu, Japan
| |
Collapse
|
38
|
Caruso R, Lo BC, Chen GY, Núñez G. Host-pathobiont interactions in Crohn's disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00997-y. [PMID: 39448837 DOI: 10.1038/s41575-024-00997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that are collectively referred to as the gut microbiota. The majority of symbionts have co-evolved with their host in a mutualistic relationship that benefits both. Under certain conditions, such as in Crohn's disease, a subtype of inflammatory bowel disease, some symbionts bloom to cause disease in genetically susceptible hosts. Although the identity and function of disease-causing microorganisms or pathobionts in Crohn's disease remain largely unknown, mounting evidence from animal models suggests that pathobionts triggering Crohn's disease-like colitis inhabit certain niches and penetrate the intestinal tissue to trigger inflammation. In this Review, we discuss the distinct niches occupied by intestinal symbionts and the evidence that pathobionts triggering Crohn's disease live in the mucus layer or near the intestinal epithelium. We also discuss how Crohn's disease-associated mutations in the host disrupt intestinal homeostasis by promoting the penetration and accumulation of pathobionts in the intestinal tissue. Finally, we discuss the potential role of microbiome-based interventions in precision therapeutic strategies for the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Huang Y, Wang Y, Huang X, Yu X. Unveiling the overlooked fungi: the vital of gut fungi in inflammatory bowel disease and colorectal cancer. Gut Pathog 2024; 16:59. [PMID: 39407244 PMCID: PMC11481806 DOI: 10.1186/s13099-024-00651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
The fungi of the human microbiota play important roles in the nutritional metabolism and immunological balance of the host. Recently, research has increasingly emphasised the role of fungi in modulating inflammation in intestinal diseases and maintaining health in this environment. It is therefore necessary to understand more clearly the interactions and mechanisms of the microbiota/pathogen/host relationship and the resulting inflammatory processes, as well as to offer new insights into the prevention, diagnosis and treatment of inflammatory bowel disease (IBD), colorectal cancer (CRC) and other intestinal pathologies. In this review, we comprehensively elucidate the fungal-associated pathogenic mechanisms of intestinal inflammation in IBD and related CRC, with an emphasis on three main aspects: the direct effects of fungi and their metabolites on the host, the indirect effects mediated by interactions with other intestinal microorganisms and the immune regulation of the host. Understanding these mechanisms will enable the development of innovative approaches based on the use of fungi from the resident human microbiota such as dietary interventions, fungal probiotics and faecal microbiota transplantation in the prevention, diagnosis and treatment of intestinal diseases.
Collapse
Affiliation(s)
- Yilin Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yang Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiaotian Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Xiaomin Yu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
40
|
Vich Vila A, Zhang J, Liu M, Faber KN, Weersma RK. Untargeted faecal metabolomics for the discovery of biomarkers and treatment targets for inflammatory bowel diseases. Gut 2024; 73:1909-1920. [PMID: 39002973 PMCID: PMC11503092 DOI: 10.1136/gutjnl-2023-329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
The gut microbiome has been recognised as a key component in the pathogenesis of inflammatory bowel diseases (IBD), and the wide range of metabolites produced by gut bacteria are an important mechanism by which the human microbiome interacts with host immunity or host metabolism. High-throughput metabolomic profiling and novel computational approaches now allow for comprehensive assessment of thousands of metabolites in diverse biomaterials, including faecal samples. Several groups of metabolites, including short-chain fatty acids, tryptophan metabolites and bile acids, have been associated with IBD. In this Recent Advances article, we describe the contribution of metabolomics research to the field of IBD, with a focus on faecal metabolomics. We discuss the latest findings on the significance of these metabolites for IBD prognosis and therapeutic interventions and offer insights into the future directions of metabolomics research.
Collapse
Affiliation(s)
- Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong (SAR), People's Republic of China
- Microbiota I-Center (MagIC), Hong Kong (SAR), People's Republic of China
| | - Moting Liu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Liu J, Guo J, Whitmore MA, Tobin I, Kim DM, Zhao Z, Zhang G. Dynamic response of the intestinal microbiome to Eimeria maxima-induced coccidiosis in chickens. Microbiol Spectr 2024; 12:e0082324. [PMID: 39248475 PMCID: PMC11448223 DOI: 10.1128/spectrum.00823-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
Eimeria maxima is a major cause of coccidiosis in chickens and a key predisposing factor for other economically significant diseases such as necrotic enteritis. However, a detailed understanding of the intestinal microbiome response to E. maxima infection is still lacking. This study aimed to comprehensively investigate the dynamic changes of the intestinal microbiome for 14 days post-infection (dpi) with E. maxima. Bacterial 16S rRNA gene sequencing was performed with the ileal and cecal digesta collected from mock and E. maxima-infected chickens at the prepatent (3 dpi), acute (5 and 7 dpi), and recovery phases (10 and 14 dpi) of infection. Although no notable changes were observed at 3 dpi, significant alterations of the microbiota occurred in both the ileum and cecum at 5 and 7 dpi. By 14 dpi, the intestinal microbiota tended to return to a healthy state. Notably, Lactobacillus was enriched in response to E. maxima infection in both the ileum and cecum, although individual Lactobacillus, Ligilactobacillus, and Limosilactobacillus species varied in the temporal pattern of response. Concurrently, major short-chain fatty acid-producing bacteria, such as Faecalibacterium, were progressively suppressed by E. maxima in the cecum. On the other hand, opportunistic pathogens such as Escherichia, Enterococcus, and Staphylococcus were significantly enriched in the ileum during acute infection. IMPORTANCE We have observed for the first time the dynamic response of the intestinal microbiota to Eimeria maxima infection, synchronized with its life cycle. Minimal changes occur in both the ileal and cecal microbiota during early infection, while significant alterations coincide with acute infection and disruption of the intestinal mucosal lining. As animals recover from coccidiosis, the intestinal microbiota largely returns to normal. E. maxima-induced intestinal inflammation likely creates an environment conducive to the growth of aerotolerant anaerobes such as Lactobacillus, as well as facultative anaerobes such as Escherichia, Enterococcus, and Staphylococcus, while suppressing the growth of obligate anaerobes such as short-chain fatty acid-producing bacteria. These findings expand our understanding of the temporal dynamics of the microbiota structure during Eimeria infection and offer insights into the pathogenesis of coccidiosis, supporting the rationale for microbiome-based strategies in the control and prevention of this condition.
Collapse
Affiliation(s)
- Jing Liu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jiaqing Guo
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Melanie A. Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Dohyung M. Kim
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Zijun Zhao
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
42
|
Li Z, Li C, Chen B, Li B, Huang G, Huang Y, Hou Y, Zhong P, Jin J, Li D, Tsim KWK, Gan L, Chen WH, Wu R. Parabacteroides goldsteinii enriched by Pericarpium Citri Reticulatae 'Chachiensis' polysaccharides improves colitis via the inhibition of lipopolysaccharide-involved PI3K-Akt signaling pathway. Int J Biol Macromol 2024; 277:133726. [PMID: 39084973 DOI: 10.1016/j.ijbiomac.2024.133726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Epidemiological and preclinical studies have indicated a factual association between gut microbiota dysbiosis and high incidence of colitis. Dietary polysaccharides can specifically shift the composition of gut microbiome response to colitis. Here we validated the preventive role of polysaccharides from Pericarpium Citri Reticulatae 'Chachiensis' (PCRCP), a well-known traditional Chinese medicine, in colitis induced by dextrose sodium sulfate (DSS) in both rats and mice. We found that treatment with PCRCP not only significantly reduced DSS-induced colitis via down-regulating colonic inflammatory signaling pathways including PI3K-Akt, NLRs and NF-κB, but also enhanced colonic barrier integrity in rats. These protective activities of PCRCP against DSS-induced injuries in rats were in part due to the modulation of the gut microbiota revealed by both broad-spectrum antibiotic (ABX)-deleted bacterial and non-oral treatments. Furthermore, the improvement of PCRCP on colitis was impaired by intestinal neomycin-sensitive bacteria in DSS-exposed mice. Specifically, in vivo and in vitro treatment with PCRCP led to a highly sensible enrichment in the gut commensal Parabacteroides goldsteinii. Administration of Parabacteroides goldsteinii significantly alleviated typical symptoms of colitis and suppressed the activation of PI3K-Akt-involved inflammatory response in DSS-exposed mice. The anti-colitic effects of Parabacteroides goldsteinii were abolished after the activation of PI3K-Akt signaling pathway by lipopolysaccharide treatment in mice exposed to DSS. This study provides new insights into an anti-colitic mechanism driven by PCRCP and highlights the potential prebiotic of Parabacteroides goldsteinii for the prevention of ulcerative colitis.
Collapse
Affiliation(s)
- Zi Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Chengguo Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Baizhong Chen
- Guangdong Xinbaotang Biotechnology Co. Ltd., Jiangmen 529100, PR China; Guangdong Xinbaotang Pharmaceutical Co. Ltd., Jiangmen 529100, PR China
| | - Bing Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Gang Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Yuhao Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Yajun Hou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Pengjun Zhong
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jingwei Jin
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Dongli Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Lishe Gan
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China.
| | - Rihui Wu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| |
Collapse
|
43
|
Nagayama M, Funayama Y, Taniguchi O, Hatano K, Oguro K, Owada J, Sakamoto H, Yano T, Longman RS, Yamamoto H. Biologic therapy for ulcerative colitis associated with immune thrombocytopenia. Clin J Gastroenterol 2024; 17:910-914. [PMID: 39085737 DOI: 10.1007/s12328-024-02022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
Ulcerative colitis (UC), a subtype of inflammatory bowel disease, occasionally manifests with extraintestinal manifestations. We present a 51-year-old male with refractory UC and immune thrombocytopenia (ITP) resistant to conventional treatments. The introduction of biologics, ustekinumab or adalimumab, resulted in clinical remission of colitis and improvements in platelet count. This case underscores the efficacy of biologics in managing refractory UC associated with ITP, emphasizing their potential to control intestinal inflammation and address concurrent thrombocytopenia, potentially avoiding surgical intervention.
Collapse
Affiliation(s)
- Manabu Nagayama
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Tochigi, Japan
- Weill Cornell Medicine, Jill Roberts Institute for Research in IBD, New York, NY, USA
| | - Yohei Funayama
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Osamu Taniguchi
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kaoru Hatano
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kunihiko Oguro
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Jun Owada
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hirotsugu Sakamoto
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Tomonori Yano
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Randy Scott Longman
- Weill Cornell Medicine, Jill Roberts Institute for Research in IBD, New York, NY, USA
- Division of Gastroenterology and Hepatology, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
| | - Hironori Yamamoto
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
44
|
He L, Chen K, Chen Z, Chen C, Zhou J, Shao Y, Ma J, Qiu Z, Chen Y, Zhang W. Abelmoschi Corolla polysaccharides and related metabolite ameliorates colitis via modulating gut microbiota and regulating the FXR/STAT3 signaling pathway. Int J Biol Macromol 2024; 277:134370. [PMID: 39094864 DOI: 10.1016/j.ijbiomac.2024.134370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/23/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Ulcerative Colitis (UC) is a chronic inflammatory disease of the intestinal tract with unknown definitive etiology. Polysaccharides are among the most important active components of Abelmoschi Corolla, exhibitings various pharmacological activities such as antioxidation and immunomodulation. However, no studies have yet reported the application of Abelmoschi Corolla Polysaccharides (ACP) in treating UC. This study aims to highlight the therapeutic efficacy of ACP in UC and reveal the underlying mechanism. The potential therapeutic effect is initially verified using a dextran sodium sulfate (DSS)-induced colitis model. 16S rRNA sequencing is performed using feces samples and untargeted metabolomics using serum samples to further reveal that ACP reprograms the dysbiosis triggered by UC progression, increases the abundance of Bacteroides spp., Blautia spp., and Parabacteroides spp. at the genus level and enriches the serum concentration of 7-ketodeoxycholic acid (7-KDA). Furthermore, using the FXR-/- mouse model, it is revealed that Farnesoid X Receptor (FXR) is a key target for ACP and the metabolite 7-KDA to block STAT3 phosphorylation by repairing the intestinal barrier to attenuate UC. Taken together, this work highlights the therapeutic potential of ACP against UC, mainly exerting its effects via modulating gut microbiota and regulating the FXR/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Linhai He
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Kaidi Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zepeng Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Chen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jing Zhou
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yifan Shao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jiaze Ma
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhengxi Qiu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yugen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicine in Prevention and Treatment of Tumor, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| | - Wei Zhang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| |
Collapse
|
45
|
Cai M, Mao Y, Gao W, Wang Z, Mao J, Sha R. Insights into diosgenin against inflammatory bowel disease as functional food based on network pharmacology and molecular docking. Heliyon 2024; 10:e37937. [PMID: 39323838 PMCID: PMC11422009 DOI: 10.1016/j.heliyon.2024.e37937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a growing global health problem. IBD is commonly prevalent in Europe and America and the incidence rate in Asia is on the rise due to altered dietary structure. Diosgenin is a natural steroidal saponin derived from Dioscorea plants. Diosgenin is the main active ingredient of some Chinese medicines which are mainly used to treat coronary heart disease, angina and hyperlipidemia. Recently, growing evidence has exhibited a crucial role of diosgenin and dioscin in alleviating IBD in multiple ways. However, the precise mechanism of diosgenin against IBD needs further exploration. In this study, network pharmacological and systematic bioinformatic analyses were performed to investigate the diosgenin's targets against IBD. 71 targets such as SRC, TNF and STAT3 were identified as overlapped genes between diosgenin and IBD. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis exhibited their involvement in the tyrosine kinase signaling pathway and its membrane receptors. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor resistance and its downstream Ras-MAPK pathway and PI3K-Akt pathway might become the mechanism of diosgenin against IBD. In addition, molecular docking analysis showed that diosgenin has the massive potential of direct binding to tyrosine kinase and its receptors such as SRC, EGFR, FGFR1 and VEGFR. The results above collectively provided evidence that diosgenin is a promising nutraceutical food against IBD.
Collapse
Affiliation(s)
- Min Cai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou, 310023, China
| | - Yangchen Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou, 310023, China
| | - Wenjing Gao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou, 310023, China
| | - Zhenzhen Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou, 310023, China
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou, 310023, China
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou, 310023, China
| |
Collapse
|
46
|
He L, Zou Q, Dai Q, Cheng S, Wang Y. Adversarial regularized autoencoder graph neural network for microbe-disease associations prediction. Brief Bioinform 2024; 25:bbae584. [PMID: 39528423 PMCID: PMC11554402 DOI: 10.1093/bib/bbae584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Microorganisms inhabit various regions of the human body and significantly contribute to numerous diseases. Predicting the associations between microbes and diseases is crucial for understanding pathogenic mechanisms and informing prevention and treatment strategies. Biological experiments to determine these associations are time-consuming and costly. Therefore, integrating deep learning with biological networks can efficiently identify potential microbe-disease associations on a large scale. METHODS We propose an adversarial regularized autoencoder graph neural network algorithm, named Stacked Adversarial Regularization for Microbe-Disease Associations Prediction (SARMDA), for predicting associations between microbes and diseases. First, we integrate topological structural similarity and functional similarity metrics of microbes and diseases to construct a heterogeneous network. Then, utilizing an autoencoder based on GraphSAGE, we learn both the topological and attribute representations of nodes within the constructed network. Finally, we introduce an adversarial regularized autoencoder graph neural network embedding model to address the inherent limitations of traditional GraphSAGE autoencoders in capturing global information. RESULTS Under the five-fold cross-validation on microbe-disease pairs, SARMDA was compared with eight advanced methods using the Human Microbe-Disease Association Database (HMDAD) and Disbiome databases. The best area under the ROC curve (AUC) achieved by SARMDA on HMDAD was 0.9891$\pm$0.0057, and the best area under the precision-recall curve (AUPR) was 0.9902$\pm$0.0128. On the Disbiome dataset, the AUC was 0.9328$\pm$0.0072, and the best AUPR was 0.9233$\pm$0.0089, outperforming the other eight MDAs prediction methods. Furthermore, the effectiveness of our model was demonstrated through a detailed analysis of asthma and inflammatory bowel disease cases.
Collapse
Affiliation(s)
- Limuxuan He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Qingshuihe Campus, 2006 Xiyuan Avenue, West District, High-tech Zone, Chengdu, Sichuan 610054, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Qingshuihe Campus, 2006 Xiyuan Avenue, West District, High-tech Zone, Chengdu, Sichuan 610054, China
- School of Information Technology and Administration, Hunan University of Finance and Economics, 139, 2nd Fenglin Road, Yuelu District, Changsha, Hunan 410205, China
| | - Qi Dai
- College of Life Science and Medicine, Zhejiang Sci-Tech University, No. 5 Second Avenue, Xiasha Higher Education Zone, Hangzhou, Zhejiang 310018, PR China
| | - Shuang Cheng
- Institute of Materials, China Academy of Engineering Physics, Huafeng Xincun No. 9, Jiangyou, Mianyang, Sichuan 621907, China
| | - Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Qingshuihe Campus, 2006 Xiyuan Avenue, West District, High-tech Zone, Chengdu, Sichuan 610054, China
| |
Collapse
|
47
|
Ismael M, Qayyum N, Gu Y, Na L, Haoyue H, Farooq M, Wang P, Zhong Q, Lü X. Functional Effects of Probiotic Lactiplantibacillus plantarum in Alleviation Multidrug-Resistant Escherichia coli-Associated Colitis in BALB/c Mice Model. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10356-7. [PMID: 39271561 DOI: 10.1007/s12602-024-10356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Multidrug-resistant Escherichia coli (MDR-E. coli) is a global health concern. Lactic acid bacteria (LAB) are important probiotics that have beneficial effects on health, and in recent years, their influences in preventing foodborne pathogens-induced colitis have attracted much attention. Therefore, this study aimed to investigate the oral administration of Lactiplantibacillus plantarum NWAFU-BIO-BS29 as an emerging approach to alleviate MDR-E. coli-induced colitis in BALB/c mice model. To illustrate the mode of action of NWAFU-BIO-BS29 interventions with the gut microbiota and immune responses, the changes on the colonic mucosal barrier, regulatory of the gene expressions of inflammatory cytokines, re-modulating the intestinal microflora, and changes in physiological parameters were studied. The results indicated that daily supplementation of 200 µL fresh bacteria for 7 days had ameliorated the associated colitis and partially prevented the infection. The modes of action by ameliorating the inflammatory response, which destructed villous and then affected the intestinal barrier integrity, reducing the secretion of interleukins (6 and β) and tumor necrosis factor (TNF-α) in serum by 87.88-89.93%, 30.73-35.98%, and 19.14-22.32%, respectively, enhancing the expressions of some epithelial integrity-related proteins in the mouse mucous layer of mucins 2 and 3, Claudin-1, and Occludin by 130.00-661.85%, 27.64-57.35%, 75.52-162.51%, and 139.36-177.73%, respectively, and 56.09-73.58% for toll-like receptor (TLR4) in colon tissues. Notably, the mouse gut microbiota analysis showed an increase in the relative abundance of beneficial bacteria, including Lactobacillus, Bacteriodales bacterium, Candidatus Saccharimonas, Enterorhabdus, and Bacilli. Furthermore, the probiotic promoted the proliferation of epithelia and goblet cells by increasing short-chain fatty acids (SCFAs) levels by 19.23-31.39%. In conclusion, L. plantarum NWAFU-BIO-BS29 has potential applications and can be considered a safe dietary supplement to ameliorate the colitis inflammation symptoms of MDR-E. coli infection.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Sudanese Standards and Metrology Organization, Khartoum, 13573, Sudan
| | - Nageena Qayyum
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Yaxin Gu
- College of Food Science, China Agricultural University, Beijing, China
| | - Li Na
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Han Haoyue
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Muhammad Farooq
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Panpan Wang
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xin Lü
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
48
|
Lin D, Jin Y, Shao X, Xu Y, Ma G, Jiang Y, Xu Y, Jiang Y, Hu D. Global, regional, and national burden of inflammatory bowel disease, 1990-2021: Insights from the global burden of disease 2021. Int J Colorectal Dis 2024; 39:139. [PMID: 39243331 PMCID: PMC11380638 DOI: 10.1007/s00384-024-04711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE The prevalence of inflammatory bowel disease (IBD) is on the rise worldwide. We utilizes data from the Global Burden of Diseases (GBD) 2021 to analyze the national-level burden of IBD, trends in disease incidence, and epidemiological characteristics. METHODS Detailed information on IBD was gathered from 204 countries and territories spanning 1990 to 2021, sourced from the GBD 2021. Calculations were performed for incidence rates, mortality rates, disease-adjusted life years (DALYs), and estimated annual percentage changes (EAPCs). These trends were analyzed based on region, nationality, age, gender, and World Bank income level stratifications. RESULTS The global age-standardised incident rate (ASIR) of IBD increased from 4.22 per 100000 in 1990 to 4.45 per 100000 in 2021. However, the age-standardised mortality rate (ASMR) decreased from 0.60 per 100000 in 1990 to 0.52 per 100000 in 2021. Similarly, the age-standardised DALYs rate decreased from 21.55 per 100000 in 1990 to 18.07 per 100000 in 2021. Gender comparisons showed negligible differences in disease burden. The greatest increase in IBD-associated ASIR and ASMR occurred in World Bank upper-middle income region (EAPCs, 1.25) and World Bank high-income region (EAPCs, 1.00), respectively. Regionally, East Asia experienced the largest increase in ASIR (EAPCs, 2.89). Among 204 countries, China had the greatest increases in ASIR (EAPCs, 2.93), Netherlands had the highest ASMR in 2021 (2.21 per 100000). CONCLUSIONS Global incidence rate of IBD have been increasing from 1990 to 2021, while the DALYs and mortality have been decreasing. The escalating incident rates in select Asian regions deserves further attention.
Collapse
Affiliation(s)
- Daopo Lin
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yang Jin
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaoxiao Shao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuan Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Guolong Ma
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yinghe Xu
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang Province, China.
| | - Yongpo Jiang
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang Province, China.
| | - Dingyuan Hu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
49
|
Lam IH, Chan CI, Han M, Li L, Yu HH. ACSL4 mediates inflammatory bowel disease and contributes to LPS-induced intestinal epithelial cell dysfunction by activating ferroptosis and inflammation. Open Med (Wars) 2024; 19:20240993. [PMID: 39247444 PMCID: PMC11377980 DOI: 10.1515/med-2024-0993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 09/10/2024] Open
Abstract
Background The pathogenesis of inflammatory bowel disease (IBD) is closely associated with the dysfunction of the intestinal epithelial barrier, leading to increased bacterial translocation, leukocyte infiltration, and mucosal injury, which may act as a pivotal or incipient event in the pathophysiology of the disorder. The primary objective of this study is to examine the key genes implicated in IBD and the perturbation of intestinal epithelial cell function. Methods The genes associated with ferroptosis were identified through the utilization of the Gene Expression Omnibus (GEO) database and the GeneCard database. Additionally, an in vitro model of IBD was established by stimulating Caco-2 cells with lipopolysaccharides (LPSs) to investigate the molecular mechanisms underlying intestinal epithelial cell dysfunction. Results We discovered evidence that establishes a connection between ferroptosis and the inflammatory responses associated with the development of IBD. This evidence suggests that IBD patients who exhibit an inflammatory response have higher expression of the acyl-CoA synthetase long-chain family member 4 (ACSL4) gene compared to IBD patients without an inflammatory response or healthy individuals. Exposure to LPS at concentrations of 1 or 10 μg/mL resulted in a significant upregulation of ferroptosis-related genes ACSL4, GPX4, and SLC7A11, as well as an increase in ferroptosis biomarkers MDA and a decrease in CAT and GSH-Px levels compared to the control group. Inhibition of ACSL4 using si-ACSL4 or rosiglitazone demonstrated protective effects against LPS-induced ferroptosis and NF-κB-mediated inflammatory response. Conclusion ACSL4 shows potential as a promising target for ferroptosis in the prevention and treatment of IBD and dysfunction of intestinal epithelial cells.
Collapse
Affiliation(s)
- Ieng-Hou Lam
- Department of Gastroenterology, Kiang Wu Hospital, Macau, SAR 999078, China
| | - Chon-In Chan
- Department of Gastroenterology, Kiang Wu Hospital, Macau, SAR 999078, China
| | - Meixia Han
- Department of Gastroenterology, Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong Province, China
| | - Lixuan Li
- Department of Gastroenterology, Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong Province, China
| | - Hon-Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau, SAR 999078, China
| |
Collapse
|
50
|
Ortiz AM, Brenchley JM. Untangling the role of the microbiome across the stages of HIV disease. Curr Opin HIV AIDS 2024; 19:221-227. [PMID: 38935047 PMCID: PMC11305932 DOI: 10.1097/coh.0000000000000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW The primate microbiome consists of bacteria, eukaryotes, and viruses that dynamically shape and respond to host health and disease. Understanding how the symbiotic relationship between the host and microbiome responds to HIV has implications for therapeutic design. RECENT FINDINGS Advances in microbiome identification technologies have expanded our ability to identify constituents of the microbiome and to infer their functional capacity. The dual use of these technologies and animal models has allowed interrogation into the role of the microbiome in lentiviral acquisition, vaccine efficacy, and the response to antiretrovirals. Lessons learned from such studies are now being harnessed to design microbiome-based interventions. SUMMARY Previous studies considering the role of the microbiome in people living with HIV largely described viral acquisition as an intrusion on the host:microbiome interface. Re-framing this view to consider HIV as a novel, albeit unwelcome, component of the microbiome may better inform the research and development of pre and postexposure prophylaxes.
Collapse
Affiliation(s)
- Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|