1
|
Stachelska MA, Karpiński P, Kruszewski B. Health-Promoting and Functional Properties of Fermented Milk Beverages with Probiotic Bacteria in the Prevention of Civilization Diseases. Nutrients 2024; 17:9. [PMID: 39796443 PMCID: PMC11722897 DOI: 10.3390/nu17010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES There is scattered information in the scientific literature regarding the characterization of probiotic bacteria found in fermented milk beverages and the beneficial effects of probiotic bacteria on human health. Our objective was to gather the available information on the use of probiotic bacteria in the prevention of civilization diseases, with a special focus on the prevention of obesity, diabetes, and cancer. METHODS We carried out a literature review including the following keywords, either individually or collectively: lactic acid bacteria; probiotic bacteria; obesity; lactose intolerance; diabetes; cancer protection; civilization diseases; intestinal microbiota; intestinal pathogens. RESULTS This review summarizes the current state of knowledge on the use of probiotic bacteria in the prevention of civilization diseases. Probiotic bacteria are a set of living microorganisms that, when administered in adequate amounts, exert a beneficial effect on the health of the host and allow for the renewal of the correct quantitative and qualitative composition of the microbiota. Probiotic bacteria favorably modify the composition of the intestinal microbiota, inhibit the development of intestinal pathogens, prevent constipation, strengthen the immune system, and reduce symptoms of lactose intolerance. As fermented milk beverages are an excellent source of probiotic bacteria, their regular consumption can be a strong point in the prevention of various types of civilization diseases. CONCLUSIONS The presence of lactic acid bacteria, including probiotic bacteria in fermented milk beverages, reduces the incidence of obesity and diabetes and serves as a tool in the prevention of cancer diseases.
Collapse
Affiliation(s)
| | - Piotr Karpiński
- Faculty of Health Sciences, University of Lomza, Akademicka 14, 18-400 Łomża, Poland;
| | - Bartosz Kruszewski
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| |
Collapse
|
2
|
Hsia CH, Su HY, Chen YH, Chuang HC, Chien YW. Effects of probiotics in elderly hospitalized tube-fed patients with antibiotics use. BMC Gastroenterol 2024; 24:467. [PMID: 39702125 DOI: 10.1186/s12876-024-03561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Several studies revealed the beneficial effects of probiotics against the incidence of antibiotic-associated diarrhea of hospitalized patients but it is rarely to assess the nutrition status. This study investigated the effects of probiotics in elderly hospitalized tube-fed patients with antibiotics use and is the first study that concerns the nutritional status among these patients. METHODS Elderly hospitalized tube-fed patients who were using antibiotics were recruited. Probiotics were given within 48 h after their first antibiotic therapy, and then twice daily 2 h after consuming antibiotics and a meal; the probiotics were continued to use for an additional 7 days after completion of antibiotics therapy. Anthropometric data, laboratory data, medication records, nutritional status, nutrition intake and data on stool form were collected. RESULTS Twenty-nine patients served as probiotic group. 11 patients completed the study in both groups. In probiotic group, the stool form was found to exhibit no significant differences between the beginning and end of antibiotics therapy (5.5 ± 0.8 vs 5.1 ± 1.1, p = 0.21), but the stool frequency significantly decreased (2.0 ± 1.0 vs 1.6 ± 0.7, p = 0.05). In control group, the stool form between the beginning and end of antibiotics therapy exhibited significant improvement (5.6 ± 1.4 vs 4.5 ± 1.4, p = 0.01), but not in the frequency (2.7 ± 2.1 vs 2.4 ± 1.5, p = 0.1). The initial NRS 2002 score of the probiotic and control groups were similar. (3.6 ± 1.7 vs 3.7 ± 1.8, p = 1.00), and their nutrition status both significantly improved during the last visit before discharged (2.6 ± 0.9 vs 2.9 ± 1.3). CONCLUSION Probiotic supplementation in elderly hospitalized tube-fed patients significantly reduced stool frequency during antibiotic treatment. Improvements in stool form were observed only during the follow-up period. Nutritional status remained stable, with patients' nutritional needs adequately met throughout the study.
Collapse
Affiliation(s)
- Chu-Hsuan Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, 11031, Taiwan, ROC
- Department of Dietetics, Taipei Medical University Hospital, Taipei, 11031, Taiwan, ROC
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan, ROC
| | - Hsiu-Yueh Su
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, 11031, Taiwan, ROC
- Department of Dietetics, Taipei Medical University Hospital, Taipei, 11031, Taiwan, ROC
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan, ROC
| | - Yue-Hwa Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, 11031, Taiwan, ROC
- School of Food Safety, Taipei Medical University, Taipei, 11031, Taiwan, ROC
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Research Center of Food Safety Inspection and Function Development, Taipei Medical University, Taipei, 11031, Taiwan, ROC
| | - Han-Chuan Chuang
- Department of Infectious Disease, Taipei Medical University Hospital, Taipei, 11031, Taiwan, ROC
| | - Yi-Wen Chien
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan, ROC.
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
| |
Collapse
|
3
|
Pasam T, Padhy HP, Dandekar MP. Lactobacillus Helveticus Improves Controlled Cortical Impact Injury-Generated Neurological Aberrations by Remodeling of Gut-Brain Axis Mediators. Neurochem Res 2024; 50:3. [PMID: 39541016 DOI: 10.1007/s11064-024-04251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Considerable studies augured the potential of gut microbiota-based interventions in brain injury-associated complications. Based on our earlier study results, we envisaged the sex-specific neuroprotective effect of Lactobacillus helveticus by remodeling of gut-brain axis. In this study, we investigated the effect of L. helveticus on neurological complications in a mouse model of controlled cortical impact (CCI). Adult, male and female, C57BL/6 mice underwent CCI surgery and received L. helveticus treatment for six weeks. Sensorimotor function was evaluated via neurological severity score and rotarod test. Long-term effects on anxiety-like behavior and cognition were assessed using the elevated-zero maze (EZM) and novel object recognition test (NORT). Brain perilesional area, blood, colon, and fecal samples were collected post-CCI for molecular biology analysis. CCI-operated mice displayed significant neurological impairments at 1-, 3-, 5-, and 7-days post-injury (dpi) and exhibited altered behavior in EZM and NORT compared to sham-operated mice. However, these behavioral changes were ameliorated in mice receiving L. helveticus. GFAP, Iba-1, TNF-α, and IL-1β expressions and corticotrophin-releasing hormone (CRH) levels were elevated in the perilesional cortex of CCI-operated male/female mice. These elevated biomarkers and decreased BDNF levels in both male/female mice were modified by L. helveticus treatment. Additionally, L. helveticus treatment restored altered short-chain fatty acids (SCFAs) levels in fecal samples and improved intestinal integrity but did not affect decreased plasma levels of progesterone and testosterone in CCI mice. These results indicate that L. helveticus exerts beneficial effects in the CCI mouse model by mitigating inflammation and remodeling of gut microbiota-brain mediators.
Collapse
Affiliation(s)
- Tulasi Pasam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
4
|
Daisley BA, Allen‐Vercoe E. Microbes as medicine. Ann N Y Acad Sci 2024; 1541:63-82. [PMID: 39392836 PMCID: PMC11580781 DOI: 10.1111/nyas.15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Over the last two decades, advancements in sequencing technologies have significantly deepened our understanding of the human microbiome's complexity, leading to increased concerns about the detrimental effects of antibiotics on these intricate microbial ecosystems. Concurrently, the rise in antimicrobial resistance has intensified the focus on how beneficial microbes can be harnessed to treat diseases and improve health and offer potentially promising alternatives to traditional antibiotic treatments. Here, we provide a comprehensive overview of both established and emerging microbe-centric therapies, from probiotics to advanced microbial ecosystem therapeutics, examine the sophisticated ways in which microbes are used medicinally, and consider their impacts on microbiome homeostasis and health outcomes through a microbial ecology lens. In addition, we explore the concept of rewilding the human microbiome by reintroducing "missing microbes" from nonindustrialized societies and personalizing microbiome modulation to fit individual microbial profiles-highlighting several promising directions for future research. Ultimately, the advancements in sequencing technologies combined with innovative microbial therapies and personalized approaches herald a new era in medicine poised to address antibiotic resistance and improve health outcomes through targeted microbiome management.
Collapse
Affiliation(s)
- Brendan A. Daisley
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | - Emma Allen‐Vercoe
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
5
|
Rao K, Garey KW. From Chaos to Clarity? The Quest for Effective Probiotics in Antibiotic-Associated Diarrhea. Open Forum Infect Dis 2024; 11:ofae616. [PMID: 39529940 PMCID: PMC11551611 DOI: 10.1093/ofid/ofae616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Antibiotic-associated diarrhea (AAD) frequently complicates treatment of infections. A recent randomized, double-blind, placebo-controlled trial tested a proprietary probiotic mixture and found that it reduced the incidence of AAD by 16%. This is encouraging for patients, but future progress on probiotics for AAD and other conditions depends on transparency around strain selection, probiotic design guided by preclinical mechanistic studies, and rigorously conducted human studies.
Collapse
Affiliation(s)
- Krishna Rao
- University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kevin W Garey
- College of Pharmacy, University of Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Choi MH, Kim D, Lee KH, Kim HJ, Sul WJ, Jeong SH. Dysbiosis of the gut microbiota is associated with in-hospital mortality in patients with antibiotic-associated diarrhoea: A metagenomic analysis. Int J Antimicrob Agents 2024; 64:107330. [PMID: 39244165 DOI: 10.1016/j.ijantimicag.2024.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND The increasing incidence of antibiotic-associated diarrhoea (AAD) is a serious health care problem. Dysbiosis of the gut microbiota is suspected to play a role in the pathogenesis of AAD, but its impact on the clinical outcomes of patients remains unclear. METHODS Between May and October 2022, 210 patients with AAD admitted to a university hospital and 100 healthy controls were recruited. DNA extraction from stool specimens and shotgun sequencing were performed. Machine learning was conducted to assess profiling at different taxonomic levels and to select variables for multivariable analyses. RESULTS Patients were classified into two groups: Clostridioides difficile infection (CDI, n = 39) and non-CDI AAD (n = 171). The in-hospital mortality rate for the patients was 20.0%, but the presence of C. difficile in the gut microbiota was not associated with mortality. Machine learning showed that taxonomic profiling at the genus level best reflected patient prognosis. The in-hospital mortality of patients was associated with the relative abundance of specific gut microbial genera rather than alpha-diversity: each of the five genera correlated either positively (Enterococcus, Klebsiella, Corynebacterium, Pseudomonas, and Anaerofustis) or negatively (Bifidobacterium, Bacteroides, Streptococcus, Faecalibacterium, and Dorea). Genes for vancomycin resistance were significantly associated with in-hospital mortality in patients with AAD (adjusted hazard ratios, 2.45; 95% CI, 1.20-4.99). CONCLUSION This study demonstrates the potential utility of metagenomic studies of the gut microbial community as a biomarker for prognosis prediction in AAD patients.
Collapse
Affiliation(s)
- Min Hyuk Choi
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Dokyun Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoung Hwa Lee
- Division of Infectious Diseases, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyeon Jin Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
7
|
Kalairaj MS, George I, George SM, Farfán SE, Lee YJ, Rivera-Tarazona LK, Wang S, Abdelrahman MK, Tasmim S, Dana A, Zimmern PE, Subashchandrabose S, Ware TH. Controlled release of microorganisms from engineered living materials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615042. [PMID: 39386653 PMCID: PMC11463585 DOI: 10.1101/2024.09.25.615042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Probiotics offer therapeutic benefits by modulating the local microbiome, the host immune response, and the proliferation of pathogens. Probiotics have the potential to treat complex diseases, but their persistence or colonization is required at the target site for effective treatment. Although probiotic persistence can be achieved by repeated delivery, no biomaterial that releases clinically relevant doses of metabolically active probiotics in a sustained manner has been previously described. Here, we encapsulate stiff probiotic microorganisms within relatively less stiff hydrogels and show a generic mechanism where these microorganisms proliferate and induce hydrogel fracture, resulting in microbial release. Importantly, this fracture-based mechanism leads to microorganism release with zero-order release kinetics. Using this mechanism, small (∼1 μL) engineered living materials (ELMs) release >10 8 colony-forming-units (CFUs) of E. coli in 2 h. This release is sustained for at least 10 days. Cell release can be varied by more than three orders of magnitude by varying initial cell loading and modulating the mechanical properties of encapsulating matrix. As the governing mechanism of microbial release is entirely mechanical, we demonstrate controlled release of model Gram-negative, Gram-positive, and fungal probiotics from multiple hydrogel matrices. SIGNIFICANCE Probiotics offer therapeutic benefits and have the potential to treat complex diseases, but their persistence at the target site is often required for effective treatment. Although probiotic persistence can be achieved by repeated delivery, no biomaterial that releases metabolically active probiotics in a sustained manner has been developed yet. This work demonstrates a generic mechanism where stiff probiotics encapsulated within relatively less stiff hydrogels proliferate and induce hydrogel fracture. This allows a zero-order release of probiotics which can be easily controlled by adjusting the properties of the encapsulating matrices. This generic mechanism is applicable for a wide range of probiotics with different synthetic matrices and has the potential to be used in the treatment of a broad range of diseases.
Collapse
|
8
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
9
|
Guarner F, Sanders ME, Szajewska H, Cohen H, Eliakim R, Herrera-deGuise C, Karakan T, Merenstein D, Piscoya A, Ramakrishna B, Salminen S, Melberg J. World Gastroenterology Organisation Global Guidelines: Probiotics and Prebiotics. J Clin Gastroenterol 2024; 58:533-553. [PMID: 38885083 DOI: 10.1097/mcg.0000000000002002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 03/03/2024] [Indexed: 06/20/2024]
Affiliation(s)
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | | | | | | - Jim Melberg
- World Gastroenterology Organisation, Milwaukee, WI
| |
Collapse
|
10
|
Nilofar F, Babu N, Kumar M, Palanisamy S, T G. From Hemorrhage to Diarrhea: The Comprehensive Clinical Journey of a Patient With Pseudomembranous Colitis. Cureus 2024; 16:e65176. [PMID: 39176325 PMCID: PMC11339720 DOI: 10.7759/cureus.65176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Pseudomembranous colitis (PC) is an inflammation of the colon primarily caused by the bacterium Clostridium difficile (C. difficile), often following antibiotic use. This case report describes the intricate clinical course of a 48-year-old male farmer with a history of chronic alcoholism, tobacco use, and seizure disorder, who presented with acute onset of left-sided weakness. CT brain revealed an intra-axial hemorrhage in the right gangliocapsular region with significant edema and midline shift. The patient's condition necessitated mechanical ventilation due to a low Glasgow Coma Scale (GCS) score. Complications ensued with the onset of ventilator-associated pneumonia (VAP) on day six, attributed to multi-drug resistant Acinetobacter baumannii, which was managed with meropenem and polymyxin. Following successful weaning from the ventilator, he experienced severe watery diarrhea, high-grade fever, and diffuse abdominal pain on day 13. Subsequent stool tests confirmed PC caused by C. difficile, characterized by diffuse colonic wall-thickening with a water target sign on contrast-enhanced CT (CECT) abdomen. Initial treatment with oral vancomycin and metronidazole was followed by symptomatic treatment. Two weeks later, the patient had a relapse of PC, presenting with multiple episodes of loose stools, which was managed with oral metronidazole alone. Colonoscopy and biopsy confirmed the relapse, showing inflamed colonic mucosa with pseudomembranes. This case highlights the importance of strict infection control, prudent antibiotic use, and close monitoring for these patients. It also suggests the potential role of fecal microbiota transplantation (FMT) for recurrent cases. The patient's recovery demonstrates the effectiveness of meticulous medical management and adherence to infection control protocols in achieving optimal outcomes.
Collapse
Affiliation(s)
- Fathima Nilofar
- General Medicine, Saveetha Medical College and Hospital, Chennai, IND
| | - Nithesh Babu
- General Medicine, Saveetha Medical College and Hospital, Chennai, IND
| | - Mahendra Kumar
- General Medicine, Saveetha Medical College and Hospital, Chennai, IND
| | | | - Gnanadeepan T
- General Medicine, Saveetha Medical College and Hospital, Chennai, IND
| |
Collapse
|
11
|
Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, Pipitone G, Luzzati R. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev 2024; 37:e0013523. [PMID: 38421181 PMCID: PMC11324037 DOI: 10.1128/cmr.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYClostridioides difficile infection (CDI) is one of the major issues in nosocomial infections. This bacterium is constantly evolving and poses complex challenges for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increasingly equipped with new therapeutic strategies, such as monoclonal antibodies and live biotherapeutic products, which need to be thoroughly understood to fully harness their benefits. Moreover, interesting options are currently under study for the future, including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and prevention strategies continue to play a pivotal role in limiting the spread of the infection. In this review, we aim to provide the reader with a comprehensive overview of epidemiological aspects, predisposing factors, clinical manifestations, diagnostic tools, and current and future prophylactic and therapeutic options for C. difficile infection.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Gianfranco Sanson
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Jacopo Monticelli
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Verena Zerbato
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Luigi Principe
- Microbiology and
Virology Unit, Great Metropolitan Hospital
“Bianchi-Melacrino-Morelli”,
Reggio Calabria, Italy
| | - Mauro Giuffrè
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
- Department of Internal
Medicine (Digestive Diseases), Yale School of Medicine, Yale
University, New Haven,
Connecticut, USA
| | - Giuseppe Pipitone
- Infectious Diseases
Unit, ARNAS Civico-Di Cristina
Hospital, Palermo,
Italy
| | - Roberto Luzzati
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| |
Collapse
|
12
|
Kucharzik T, Dignass A, Atreya R, Bokemeyer B, Esters P, Herrlinger K, Kannengiesser K, Kienle P, Langhorst J, Lügering A, Schreiber S, Stallmach A, Stein J, Sturm A, Teich N, Siegmund B. Aktualisierte S3-Leitlinie Colitis ulcerosa (Version 6.2). ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:769-858. [PMID: 38718808 DOI: 10.1055/a-2271-0994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Affiliation(s)
- T Kucharzik
- Klinik für Allgemeine Innere Medizin und Gastroenterologie, Städtisches Klinikum Lüneburg, Lüneburg, Deutschland
| | - A Dignass
- Medizinische Klinik I, Agaplesion Markus Krankenhaus, Frankfurt, Deutschland
| | - R Atreya
- Medizinische Klinik 1 Gastroent., Pneumologie, Endokrin., Universitätsklinikum Erlangen, Erlangen, Deutschland
| | - B Bokemeyer
- Interdisziplinäres Crohn Colitis Centrum Minden - ICCCM, Minden, Deutschland
| | - P Esters
- Medizinische Klinik I, Agaplesion Markus Krankenhaus, Frankfurt, Deutschland
| | - K Herrlinger
- Innere Medizin I, Asklepios Klinik Nord, Hamburg, Deutschland
| | - K Kannengiesser
- Klinik für Allgemeine Innere Medizin und Gastroenterologie, Städtisches Klinikum Lüneburg, Lüneburg, Deutschland
| | - P Kienle
- Abteilung für Allgemein- und Viszeralchirurgie, Theresienkrankenhaus, Mannheim, Deutschland
| | - J Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Sozialstiftung Bamberg Klinikum am Bruderwald, Bamberg, Deutschland
| | - A Lügering
- Medizinisches Versorgungszentrum Portal 10, Münster, Deutschland
| | - S Schreiber
- Klinik für Innere Medizin I, Universitätsklinikum Schleswig Holstein, Kiel, Deutschland
| | - A Stallmach
- Klinik für Innere Medizin IV Gastroenterologie, Hepatologie, Infektiologie, Universitätsklinikum Jena, Jena, Deutschland
| | - J Stein
- Abteilung Innere Medizin mit Schwerpunkt Gastroenterologie, Krankenhaus Sachsenhausen, Frankfurt, Deutschland
| | - A Sturm
- Klinik für Innere Medizin mit Schwerpunkt Gastroenterologie, DRK Kliniken Berlin Westend, Berlin, Deutschland
| | - N Teich
- Internistische Gemeinschaftspraxis, Leipzig, Deutschland
| | - B Siegmund
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité Campus Benjamin Franklin - Universitätsmedizin Berlin, Berlin, Deutschland
| |
Collapse
|
13
|
Belotserkovsky I, Stabryla LM, Hunter M, Allegretti J, Callahan BJ, Carlson PE, Daschner PJ, Goudarzi M, Guyard C, Jackson SA, Rao K, Servetas SL, Sokol H, Wargo JA, Novick S. Standards for fecal microbiota transplant: Tools and therapeutic advances. Biologicals 2024; 86:101758. [PMID: 38518435 DOI: 10.1016/j.biologicals.2024.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/04/2024] [Indexed: 03/24/2024] Open
Abstract
Fecal microbiota transplantation (FMT) has been demonstrated to be efficacious in preventing recurrent Clostridioides difficile (C. difficile) infections, and is being investigated for treatment of several other diseases including inflammatory bowel disease, cancer, obesity, liver disease, and diabetes. To speed up the translation of FMT into clinical practice as a safe and standardized therapeutic intervention, additional evidence-based technical and regulatory guidance is needed. To this end in May of 2022, the International Alliance for Biological Standardization (IABS) and the BIOASTER Microbiology Technology Institute hosted a second webinar to discuss key issues still impeding the advancement and standardization of FMT. The goal of this two-day webinar was to provide a forum for scientific experts to share and discuss data and key challenges with one another. Discussion included a focus on the evaluation of safety, efficacy, clinical trial design, reproducibility and accuracy in obtained microbiome measurements and data reporting, and the potential for standardization across these areas. It also focused on increasing the application potential and visibility of FMT beyond treating C. difficile infections.
Collapse
Affiliation(s)
| | - Lisa M Stabryla
- Complex Microbial Systems Group, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Monique Hunter
- Complex Microbial Systems Group, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Jessica Allegretti
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Benjamin J Callahan
- Bioinformatics Research Center, North Carolina State University, Raleigh, 27606, USA; Department of Population Health and Pathobiology, North Carolina State University, Raleigh, 27607, USA
| | - Paul E Carlson
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Phillip J Daschner
- Division of Cancer Biology, National Cancer Institute, Bethesda, MD, USA
| | | | - Cyril Guyard
- BIOSTER Technological Research Institute, Lyon, France
| | - Scott A Jackson
- Complex Microbial Systems Group, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Krishna Rao
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephanie L Servetas
- Complex Microbial Systems Group, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Harry Sokol
- Assistance Publique des Hôpitaux de Paris, Saint-Antoine Hospital, Gastroenterology Department, Paris, France
| | - Jennifer A Wargo
- Departments of Surgical Oncology and Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Shawn Novick
- BioPhia Consulting, Inc., 7307 W. Green Lake Dr. N., Seattle, WA, 98103, USA.
| |
Collapse
|
14
|
Tang M, Wang C, Xia Y, Tang J, Wang J, Shen L. Clostridioides difficile infection in inflammatory bowel disease: a clinical review. Expert Rev Anti Infect Ther 2024; 22:297-306. [PMID: 38676422 DOI: 10.1080/14787210.2024.2347955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Strong clinical data demonstrate that inflammatory bowel disease (IBD) is an independent risk factor for Clostridiodes difficile infection (CDI) and suggest a globally increased prevalence and severity of C. difficile coinfection in IBD patients (CDI-IBD). In addition to elderly individuals, children are also at higher risk of CDI-IBD. Rapid diagnosis is essential since the clinical manifestations of active IBD and CDI-IBD are indistinguishable. Antibiotics have been well established in the treatment of CDI-IBD, but they do not prevent recurrence. AREAS COVERED Herein, the authors focus on reviewing recent research advances on the new therapies of CDI-IBD. The novel therapies include gut microbiota restoration therapies (such as prebiotics, probiotics and FMT), immunotherapy (such as vaccines and monoclonal antibodies) and diet strategies (such as groningen anti-inflammatory diet and mediterranean diet). Future extensive prospective and placebo-controlled studies are required to evaluate their efficacy and long-term safety. EXPERT OPINION Available studies show that the prevalence of CDI-IBD is not optimistic. Currently, potential treatment options for CDI-IBD include a number of probiotics and novel antibiotics. This review updates the knowledge on the management of CDI in IBD patients, which is timely and important for GI doctors and scientists.
Collapse
Affiliation(s)
- Mengjun Tang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Chunhua Wang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ying Xia
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jian Tang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jiao Wang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Liang Shen
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Department of Clinical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
15
|
van Zanten GC, Madsen AL, Yde CC, Krych L, Yeung N, Saarinen MT, Kot W, Jensen HM, Rasmussen MA, Ouwehand AC, Nielsen DS. Randomised, Placebo-Controlled Investigation of the Impact of Probiotic Consumption on Gut Microbiota Diversity and the Faecal Metabolome in Seniors. Microorganisms 2024; 12:796. [PMID: 38674741 PMCID: PMC11052279 DOI: 10.3390/microorganisms12040796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Aging has been associated with a changed composition and function of the gut microbiota (GM). Here, we investigate the effects of the multi-strain probiotic HOWARU® Restore on GM composition and function in seniors. Ninety-eight healthy adult volunteers aged ≥75 years were enrolled in a randomised, double-blinded intervention (NCT02207140), where they received HOWARU Restore (1010 CFU) or the placebo daily for 24 weeks, with 45 volunteers from each group completing the intervention. Questionnaires monitoring the effects on gastro-intestinal discomfort and bowel movements were collected. Faecal samples for GM characterisation (qPCR, 16S rRNA gene amplicon sequencing) and metabolomics (GC-FID, 1H NMR) were collected at the baseline and after 24 weeks. In the probiotic group, self-reported gastro-intestinal discomfort in the form of flatulence was significantly decreased during the intervention. At the baseline, 151 'core species' (present in ≥95% of samples) were identified. Most core species belonged to the Lachnospiraceae and Ruminococcaceae families. Neither alpha diversity nor beta diversity or faecal metabolites was affected by probiotic intake. On the contrary, we observed high intra-individual GM stability, with 'individual' accounting for 72-75% of variation. In conclusion, 24 weeks of HOWARU Restore intake reduced gastro-intestinal discomfort in the form of flatulence in healthy seniors without significantly influencing GM composition or activity.
Collapse
Affiliation(s)
- Gabriella C. van Zanten
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (G.C.v.Z.); (A.L.M.); (L.K.); (M.A.R.); (D.S.N.)
| | - Anne Lundager Madsen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (G.C.v.Z.); (A.L.M.); (L.K.); (M.A.R.); (D.S.N.)
| | - Christian C. Yde
- IFF Enabling Technologies, Brabrand, 8220 Aarhus, Denmark; (C.C.Y.); (H.M.J.)
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (G.C.v.Z.); (A.L.M.); (L.K.); (M.A.R.); (D.S.N.)
| | - Nicolas Yeung
- IFF Health, 02460 Kantvik, Finland; (N.Y.); (M.T.S.)
| | | | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
| | - Henrik Max Jensen
- IFF Enabling Technologies, Brabrand, 8220 Aarhus, Denmark; (C.C.Y.); (H.M.J.)
| | - Morten A. Rasmussen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (G.C.v.Z.); (A.L.M.); (L.K.); (M.A.R.); (D.S.N.)
- Copenhagen Studies on Asthma in Childhood, University of Copenhagen, 2820 Gentofte, Denmark
| | | | - Dennis S. Nielsen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark; (G.C.v.Z.); (A.L.M.); (L.K.); (M.A.R.); (D.S.N.)
| |
Collapse
|
16
|
Leal J, Shen Y, Faris P, Dalton B, Sabuda D, Ocampo W, Bresee L, Chow B, Fletcher JR, Henderson E, Kaufman J, Kim J, Raman M, Kraft S, Lamont NC, Larios O, Missaghi B, Holroyd-Leduc J, Louie T, Conly J. Effectiveness of Bio-K+ for the prevention of Clostridioides difficile infection: Stepped-wedge cluster-randomized controlled trial. Infect Control Hosp Epidemiol 2024; 45:443-451. [PMID: 38073551 PMCID: PMC11007362 DOI: 10.1017/ice.2023.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/20/2023] [Accepted: 07/08/2023] [Indexed: 04/10/2024]
Abstract
OBJECTIVE To evaluate the impact of administering probiotics to prevent Clostridioides difficile infection (CDI) among patients receiving therapeutic antibiotics. DESIGN Stepped-wedge cluster-randomized trial between September 1, 2016, and August 31, 2019. SETTING This study was conducted in 4 acute-care hospitals across an integrated health region. PATIENTS Hospitalized patients, aged ≥55 years. METHODS Patients were given 2 probiotic capsules daily (Bio-K+, Laval, Quebec, Canada), containing 50 billion colony-forming units of Lactobacillus acidophilus CL1285, L. casei LBC80R, and L. rhamnosus CLR2. We measured hospital-acquired CDI (HA-CDI) and the number of positive C. difficile tests per 10,000 patient days as well as adherence to administration of Bio-K+ within 48 and 72 hours of antibiotic administration. Mixed-effects generalized linear models, adjusted for influenza admissions and facility characteristics, were used to evaluate the impact of the intervention on outcomes. RESULTS Overall adherence of Bio-K+ administration ranged from 76.9% to 84.6% when stratified by facility and periods. Rates of adherence to administration within 48 and 72 hours of antibiotic treatment were 60.2% -71.4% and 66.7%-75.8%, respectively. In the adjusted analysis, there was no change in HA-CDI (incidence rate ratio [IRR], 0.92; 95% confidence interval [CI], 0.68-1.23) or C. difficile positivity rate (IRR, 1.05; 95% CI, 0.89-1.24). Discharged patients may not have received a complete course of Bio-K+. Our hospitals had a low baseline incidence of HA-CDI. Patients who did not receive Bio-K+ may have differential risks of acquiring CDI, introducing selection bias. CONCLUSIONS Hospitals considering probiotics as a primary prevention strategy should consider the baseline incidence of HA-CDI in their population and timing of probiotics relative to the start of antimicrobial administration.
Collapse
Affiliation(s)
- Jenine Leal
- Infection Prevention and Control, Alberta Health Services, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
| | - Ye Shen
- Infection Prevention and Control, Alberta Health Services, Alberta, Canada
| | - Peter Faris
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Analytics, Alberta Health Services, Alberta, Canada
| | - Bruce Dalton
- Pharmacy Services, Alberta Health Services, Calgary, Alberta, Canada
| | - Deana Sabuda
- Pharmacy Services, Alberta Health Services, Calgary, Alberta, Canada
| | - Wrechelle Ocampo
- O’Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
- W21 Research and Innovation Centre, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Lauren Bresee
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
| | - Blanda Chow
- Infection Prevention and Control, Alberta Health Services, Alberta, Canada
| | - Jared R. Fletcher
- Department of Health and Physical Education, Mount Royal University, Calgary, Alberta, Canada
| | - Elizabeth Henderson
- Infection Prevention and Control, Alberta Health Services, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
| | - Jaime Kaufman
- W21 Research and Innovation Centre, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Joseph Kim
- Infection Prevention and Control, Alberta Health Services, Alberta, Canada
- Department of Medicine, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada
| | - Maitreyi Raman
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Scott Kraft
- W21 Research and Innovation Centre, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Nicole C. Lamont
- W21 Research and Innovation Centre, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Oscar Larios
- Infection Prevention and Control, Alberta Health Services, Alberta, Canada
- Department of Medicine, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Bayan Missaghi
- Infection Prevention and Control, Alberta Health Services, Alberta, Canada
- Department of Medicine, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jayna Holroyd-Leduc
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada
| | - Thomas Louie
- Infection Prevention and Control, Alberta Health Services, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada
| | - John Conly
- Infection Prevention and Control, Alberta Health Services, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Rau S, Gregg A, Yaceczko S, Limketkai B. Prebiotics and Probiotics for Gastrointestinal Disorders. Nutrients 2024; 16:778. [PMID: 38542689 PMCID: PMC10975713 DOI: 10.3390/nu16060778] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 01/03/2025] Open
Abstract
The complex role of the gut microbiome in the pathogenesis of gastrointestinal (GI) disorders is an emerging area of research, and there is considerable interest in understanding how diet can alter the composition and function of the microbiome. Prebiotics and probiotics have been shown to beneficially modulate the gut microbiome, which underlies their potential for benefit in GI conditions. Formulating specific recommendations for the public regarding these dietary supplements has been difficult due to the significant heterogeneity between strains, doses, and duration of treatment investigated across studies, as well as safety concerns with administering live organisms. This review aims to summarize the existing evidence for the use of prebiotics and probiotics in various GI disorders, paying special attention to strain-specific effects that emerged and any adverse effects noted.
Collapse
Affiliation(s)
| | | | | | - Berkeley Limketkai
- Vatche & Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA; (S.R.); (A.G.); (S.Y.)
| |
Collapse
|
18
|
Dudzicz-Gojowy S, Więcek A, Adamczak M. The Role of Probiotics in the Prevention of Clostridioides difficile Infection in Patients with Chronic Kidney Disease. Nutrients 2024; 16:671. [PMID: 38474799 DOI: 10.3390/nu16050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
In patients suffering from chronic kidney disease (CKD), substantial unfavourable alterations in the intestinal microbiota composition, i.e., dysbiosis, have been noted. The main causes of such dysbiosis among others are insufficient dietary fibre content in the diet, fluid restrictions, medications used, and physical activity limitation. One clinically important consequence of dysbiosis in CKD patients is high risk of Clostridioides difficile infection (CDI). In observational studies, it was found that CDI is more frequent in CKD patients than in the general population. This appears to be related to high hospitalization rate and more often antibiotic therapy use, leading up to the occurrence of dysbiosis. Therefore, the use of probiotics in CKD patients may avert changes in the intestinal microbiota, which is the major risk factor of CDI. The aim of this review paper is to summarize the actual knowledge concerning the use of probiotics in CDI prevention in CKD patients in the context of CDI prevention in the general population.
Collapse
Affiliation(s)
- Sylwia Dudzicz-Gojowy
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027 Katowice, Poland
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027 Katowice, Poland
| | - Marcin Adamczak
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027 Katowice, Poland
| |
Collapse
|
19
|
Gurung B, Stricklin M, Wang S. Gut Microbiota-Gut Metabolites and Clostridioides difficile Infection: Approaching Sustainable Solutions for Therapy. Metabolites 2024; 14:74. [PMID: 38276309 PMCID: PMC10819375 DOI: 10.3390/metabo14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is the most common hospital-acquired infection. With the combination of a high rate of antibiotic resistance and recurrence, it has proven to be a debilitating public health threat. Current treatments for CDI include antibiotics and fecal microbiota transplantation, which contribute to recurrent CDIs and potential risks. Therefore, there is an ongoing need to develop new preventative treatment strategies for CDI. Notably, gut microbiota dysbiosis is the primary risk factor for CDI and provides a promising target for developing novel CDI therapy approaches. Along with gut microbiota dysbiosis, a reduction in important gut metabolites like secondary bile acids and short-chain fatty acids (SCFAs) were also seen in patients suffering from CDI. In this review study, we investigated the roles and mechanisms of gut microbiota and gut microbiota-derived gut metabolites, especially secondary bile acids and SCFAs in CDI pathogenesis. Moreover, specific signatures of gut microbiota and gut metabolites, as well as different factors that can modulate the gut microbiota, were also discussed, indicating that gut microbiota modulators like probiotics and prebiotics can be a potential therapeutic strategy for CDI as they can help restore gut microbiota and produce gut metabolites necessary for a healthy gut. The understanding of the associations between gut microbiota-gut metabolites and CDI will allow for developing precise and sustainable approaches, distinct from antibiotics and fecal transplant, for mitigating CDI and other gut microbiota dysbiosis-related diseases.
Collapse
Affiliation(s)
- Bijay Gurung
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (B.G.); (M.S.)
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Maranda Stricklin
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (B.G.); (M.S.)
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA
| | - Shaohua Wang
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (B.G.); (M.S.)
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
20
|
Saviano A, Petruzziello C, Cancro C, Macerola N, Petti A, Nuzzo E, Migneco A, Ojetti V. The Efficacy of a Mix of Probiotics ( Limosilactobacillus reuteri LMG P-27481 and Lacticaseibacillus rhamnosus GG ATCC 53103) in Preventing Antibiotic-Associated Diarrhea and Clostridium difficile Infection in Hospitalized Patients: Single-Center, Open-Label, Randomized Trial. Microorganisms 2024; 12:198. [PMID: 38258024 PMCID: PMC10819176 DOI: 10.3390/microorganisms12010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Antibiotic-associated diarrhea is a condition reported in 5-35% of patients treated with antibiotics, especially in older patients with comorbidities. In most cases, antibiotic-associated diarrhea is not associated with serious complications, but it can prolong hospitalization and provoke Clostridium difficile infection. An important role in the prevention of antibiotic-associated diarrhea is carried out by some probiotic strains such as Lactobacillus GG or the yeast Saccharomyces boulardii that showed good efficacy and a significant reduction in antibiotic-associated diarrhea. Similarly, the Limosilactobacillus reuteri DSM 17938 showed significant benefits in acute diarrhea, reducing its duration and abdominal pain. AIM The aim of this study was to test the efficacy of a mix of two probiotic strains (Limosilactobacillus reuteri LMG P-27481 and Lacticaseibacillus rhamnosus GG ATCC 53103; Reuterin GG®, NOOS, Italy), in association with antibiotics (compared to antibiotics used alone), in reducing antibiotic-associated diarrhea, clostridium difficile infection, and other gastrointestinal symptoms in adult hospitalized patients. PATIENTS AND METHODS We enrolled 113 (49M/64F, mean age 69.58 ± 21.28 years) adult patients treated with antibiotics who were hospitalized at the Internal Medicine Department of the San Carlo di Nancy Hospital in Rome from January 2023 to September 2023. Patients were randomized to receive probiotics 1.4 g twice/day in addition with antibiotics (Reuterin GG® group, total: 56 patients, 37F/19M, 67.16 ± 20.5 years old) or antibiotics only (control group, total: 57 patients, 27F/30 M, 71 ± 22 years old). RESULTS Patients treated with Reuterin GG® showed a significant reduction in diarrhea and clostridium difficile infection. In particular, 28% (16/57) of patients in the control group presented with diarrhea during treatment, compared with 11% (6/56) in the probiotic group (p < 0.05). Interestingly, 7/57 (11%) of patients treated only with antibiotics developed clostridium difficile infection compared to 0% in the probiotic group (p < 0.01). Finally, 9% (5/57) of patients in the control group presented with vomiting compared with 2% (1/56) in the probiotic group (p < 0.05). CONCLUSIONS Our study showed, for the first time, the efficacy of these two specific probiotic strains in preventing antibiotic-associated diarrhea and clostridium difficile infection in adult hospitalized patients treated with antibiotic therapy. This result allows us to hypothesize that the use of specific probiotic strains during antibiotic therapy can prevent dysbiosis and subsequent antibiotic-associated diarrhea and clostridium difficile infection, thus resulting in both patient and economic health care benefits.
Collapse
Affiliation(s)
- Angela Saviano
- Emergency Medicine Department, Polyclinic A. Gemelli Hospital, 00168 Rome, Italy; (A.S.); (A.M.)
- Internal and Emergency Medicine Department, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Carmine Petruzziello
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Clelia Cancro
- Internal and Emergency Medicine Department, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Noemi Macerola
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Anna Petti
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Eugenia Nuzzo
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Alessio Migneco
- Emergency Medicine Department, Polyclinic A. Gemelli Hospital, 00168 Rome, Italy; (A.S.); (A.M.)
| | - Veronica Ojetti
- Internal and Emergency Medicine Department, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| |
Collapse
|
21
|
Valdés-Varela L, Gueimonde M, Ruas-Madiedo P. Probiotics for Prevention and Treatment of Clostridium difficile Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:101-116. [PMID: 38175473 DOI: 10.1007/978-3-031-42108-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Probiotics have been claimed as a valuable tool to restore the balance in the intestinal microbiota following a dysbiosis caused by, among other factors, antibiotic therapy. This perturbed environment could favor the overgrowth of Clostridium difficile, and in fact, the occurrence of C. difficile-associated infections (CDI) is increasing in recent years. In spite of the high number of probiotics able to in vitro inhibit the growth and/or toxicity of this pathogen, its application for treatment or prevention of CDI is still scarce since there are not enough well-defined clinical studies supporting efficacy. Only a few strains, such as Lactobacillus rhamnosus GG and Saccharomyces boulardii, have been studied in more extent. The increasing knowledge about the probiotic mechanisms of action against C. difficile, some of them reviewed here, makes promising the application of these live biotherapeutic agents against CDI. Nevertheless, more effort must be paid to standardize the clinical studies conducted to evaluate probiotic products, in combination with antibiotics, in order to select the best candidate for C. difficile infections.
Collapse
Affiliation(s)
- Lorena Valdés-Varela
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lacteos de Asturias - Consejo Superior de Investigaciones Cientıficas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lacteos de Asturias - Consejo Superior de Investigaciones Cientıficas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lacteos de Asturias - Consejo Superior de Investigaciones Cientıficas (IPLA-CSIC), Villaviciosa, Asturias, Spain.
| |
Collapse
|
22
|
Levy EI, Dinleyici M, Dinleyici E, Vandenplas Y. Clostridioides difficile Infections: Prevention and Treatment Strategies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:175-186. [PMID: 39060738 DOI: 10.1007/978-3-031-58572-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Clostridioides difficile is the most common causative agent of antibiotic-associated diarrhea. This spore forming, obligate anaerobic, gram-positive bacillus is becoming responsible for an increasing number of infections worldwide, both in community and in hospital settings, whose severity can vary widely from an asymptomatic infection to a lethal disease. While discontinuation of antimicrobial agents and antibiotic treatment of the infection remain the cornerstone of therapy, more recent fecal microbiota transplantation has also been valid as a therapy. The use of probiotics, especially Saccharomyces boulardii CNCM I-745 have become valid forms of prevention therapy. Although there are studies in adults with microbiota-targeted new generation therapies and Clostridium difficile vaccines, there are no data in the paediatric age group yet.
Collapse
Affiliation(s)
- Elvira Ingrid Levy
- Department of Pediatrics, C.H.U. Saint-Pieter, Free University of Brussels, Brussels, Belgium
| | - Meltem Dinleyici
- Eskisehir Osmangazi University Faculty of Medicine, Department of Social Pediatrics, Eskisehir, Turkey
| | - Ener Dinleyici
- Department of Pediatrics, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey
| | - Yvan Vandenplas
- Vrije Universiteit Brussel (VUB), UZ Brussel, KidZ Health Castle, Brussels, Belgium.
| |
Collapse
|
23
|
McFarland LV, Hecht G, Sanders ME, Goff DA, Goldstein EJC, Hill C, Johnson S, Kashi MR, Kullar R, Marco ML, Merenstein DJ, Millette M, Preidis GA, Quigley EMM, Reid G, Salminen S, Sniffen JC, Sokol H, Szajewska H, Tancredi DJ, Woolard K. Recommendations to Improve Quality of Probiotic Systematic Reviews With Meta-Analyses. JAMA Netw Open 2023; 6:e2346872. [PMID: 38064222 DOI: 10.1001/jamanetworkopen.2023.46872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Importance Systematic reviews and meta-analyses often report conflicting results when assessing evidence for probiotic efficacy, partially because of the lack of understanding of the unique features of probiotic trials. As a consequence, clinical decisions on the use of probiotics have been confusing. Objective To provide recommendations to improve the quality and consistency of systematic reviews with meta-analyses on probiotics, so evidence-based clinical decisions can be made with more clarity. Evidence Review For this consensus statement, an updated literature review was conducted (January 1, 2020, to June 30, 2022) to supplement a previously published 2018 literature search to identify areas where probiotic systematic reviews with meta-analyses might be improved. An expert panel of 21 scientists and physicians with experience on writing and reviewing probiotic reviews and meta-analyses was convened and used a modified Delphi method to develop recommendations for future probiotic reviews. Findings A total of 206 systematic reviews with meta-analysis components on probiotics were screened and representative examples discussed to determine areas for improvement. The expert panel initially identified 36 items that were inconsistently reported or were considered important to consider in probiotic meta-analyses. Of these, a consensus was reached for 9 recommendations to improve the quality of future probiotic meta-analyses. Conclusions and Relevance In this study, the expert panel reached a consensus on 9 recommendations that should promote improved reporting of probiotic systematic reviews with meta-analyses and, thereby, assist in clinical decisions regarding the use of probiotics.
Collapse
Affiliation(s)
- Lynne V McFarland
- McFarland Consulting, Seattle, Washington
- Public Health Reserve Corp, Seattle Washington
| | - Gail Hecht
- Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, Illinois
| | - Mary E Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, Colorado
| | - Debra A Goff
- Ohio State University Wexner Medical Center, Ohio State University College of Pharmacy, Columbus
| | | | - Colin Hill
- International Scientific Association for Probiotics and Prebiotics, University College Cork, Ireland
| | - Stuart Johnson
- Stritch School of Medicine, Loyola University Medical Center, Chicago, Illinois
- Departments of Medicine and Research, Edward Hines Jr Veterans Affairs Hospital, Hines, Illinois
| | - Maryam R Kashi
- Department of Gastroenterology, AdventHealth Medical Group, Orlando, Florida
| | | | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis
| | - Daniel J Merenstein
- Research Programs Family Medicine, Department of Human Science, Georgetown University School of Health, Washington, DC
| | - Mathieu Millette
- Bio-K Plus, a Kerry Company, Laval, Quebec, Canada
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Geoffrey A Preidis
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine and Texas Children's Hospital, Houston
| | - Eamonn M M Quigley
- Lynda K and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas
| | - Gregor Reid
- St Joseph's Hospital, Lawson Health Research Institute, London, Ontario, Canada
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Jason C Sniffen
- Infectious Disease Consultants, Altamonte Springs, Florida
- Department of Internal Medicine, Infectious Diseases and Tropical Medicine Section, University of South Florida, Tampa
| | - Harry Sokol
- Gastroenterology Department, Centre de Recherche Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Sorbonne University, INSERM, Paris, France
- Paris Centre for Microbiome Medicine FHU, Paris, France
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche, Micalis & AgroParisTech, Jouy en Josas, France
| | - Hania Szajewska
- Department of Paediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Daniel J Tancredi
- Department of Pediatrics, University of California, Davis School of Medicine, Sacramento
| | | |
Collapse
|
24
|
Yang J, Li Y, Meng L. Combination of Bifidobacterium breve and antibiotics against Clostridioides difficile: effect of the time interval of combination on antagonistic activity. Int Microbiol 2023; 26:833-840. [PMID: 36808573 DOI: 10.1007/s10123-023-00340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
Co-administration of probiotics and antibiotics has been used to prevent or treat primary Clostridioides difficile (pCDI), and the closer the interval between the combination, the more effective it is, but the reason behind this is unknown. In this study, the cell-free culture supernatant (CFCS) of Bifidobacterium breve YH68 was used in combination with vancomycin (VAN) and metronidazole (MTR) to treat C. difficile cells. The growth and biofilm production of C. difficile under different co-administration time interval treatments were determined by optical density and crystalline violet staining, respectively. The toxin production of C. difficile was determined by enzyme immunoassay, and the relative expressions of C. difficile virulence genes tcdA and tcdB were determined by real-time qPCR method. Meanwhile, the types and contents of organic acids in YH68-CFCS were investigated by LC-MS/MS. The results showed that YH68-CFCS in combination with VAN or MTR significantly inhibited the growth, biofilm production, and toxin production of C. difficile in the effective time interval range (0-12 h) but did not affect the expression level of C. difficile virulence genes. In addition, the effective antibacterial component of YH68-CFCS is lactic acid (LA).
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Lingtong Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
25
|
Yang J, Meng L, Li Y, Huang H. Strategies for applying probiotics in the antibiotic management of Clostridioides difficile infection. Food Funct 2023; 14:8711-8733. [PMID: 37725066 DOI: 10.1039/d3fo02110f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The vital role of probiotics in the food field has been widely recognized, and at the same time, probiotics are gradually exhibiting surprising effects in the field of nutraceuticals, especially in regulating gut inflammation and the nutritional environment. As a dietary supplement in clinical nutrition, the coadministration of probiotics with antibiotics model has been applied to prevent intestinal infections caused by Clostridioides difficile. However, the mechanism behind this "bacteria-drug combination" model remains unclear. In particular, the selection of specific probiotic strains, the order of probiotics or antibiotics, and the time interval of coadministration are key issues that need to be further explored and clarified. Here, we focus on the issues mentioned above and give reasonable opinions, mainly including: (1) probiotics are safer and more effective when they intervene after antibiotics have been used; (2) the choice of the time interval between coadministration should be based on the metabolism of antibiotics in the host, differences in probiotic strains, the baseline ecological environment of the host's intestine, and the host immune level; in addition, the selection of the coadministration regime should also take into account factors such as the antibiotic sensitivity of probiotics and dosage of probiotics; and (3) by encapsulating probiotics, combining probiotics with prebiotics, and developing next-generation probiotics (NGPs) and postbiotic formulations, we can provide a more reasonable reference for this type of "bacteria-drug combination" model, and also provide targeted guidance for the application of probiotic dietary supplements in the antibiotic management of C. difficile infection.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Lingtong Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| |
Collapse
|
26
|
Iancu MA, Profir M, Roşu OA, Ionescu RF, Cretoiu SM, Gaspar BS. Revisiting the Intestinal Microbiome and Its Role in Diarrhea and Constipation. Microorganisms 2023; 11:2177. [PMID: 37764021 PMCID: PMC10538221 DOI: 10.3390/microorganisms11092177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota represents a community of microorganisms (bacteria, fungi, archaea, viruses, and protozoa) that colonize the gut and are responsible for gut mucosal structural integrity and immune and metabolic homeostasis. The relationship between the gut microbiome and human health has been intensively researched in the past years. It is now widely recognized that gut microbial composition is highly responsible for the general health of the host. Among the diseases that have been linked to an altered gut microbial population are diarrheal illnesses and functional constipation. The capacity of probiotics to modulate the gut microbiome population, strengthen the intestinal barrier, and modulate the immune system together with their antioxidant properties have encouraged the research of probiotic therapy in many gastrointestinal afflictions. Dietary and lifestyle changes and the use of probiotics seem to play an important role in easing constipation and effectively alleviating diarrhea by suppressing the germs involved. This review aims to describe how probiotic bacteria and the use of specific strains could interfere and bring benefits as an associated treatment for diarrhea and constipation.
Collapse
Affiliation(s)
- Mihaela Adela Iancu
- Department of Family Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Ruxandra Florentina Ionescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Cardiology I, “Dr. Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
27
|
Ivashkin VT, Lyashenko OS, Drapkina OM, Alexeeva OP, Alekseenko SA, Andreev DN, Baranovsky AY, Goloshchapov OV, Zheleznova NV, Zolnikova OY, Kliaritskaia IL, Korochanskaya NV, Lapina TL, Maev IV, Maslennikov RV, Myazin RG, Pavlov PV, Perekalina MV, Pisarenko NA, Povtoreyko AV, Poluektova EA, Sekretareva LA, Tkachev AV, Troshkina YM, Trukhmanov AS, Ulyanin AI, Filatova SG, Tsukanov VV, Shifrin OS. Clinical Practice Guidelines of the Scientific Society for the Clinical Study of Human Microbiome, of the Russian Gastroenterological Association and the Russian Society for the Prevention of Noncommunicable Diseases on the Diagnosis and Treatment of <i>Clostridioides difficile</i> (<i>C. difficile</i>)-associated Disease in Adults. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2023; 33:85-119. [DOI: 10.22416/1382-4376-2023-33-3-85-119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Аim: the clinical practice guidelines intended for gastroenterologists, internal medicine specialists, infectious disease specialists, general practitioners (family doctors), coloproctologists, surgeons and endoscopists present modern methods of diagnosis, prevention and treatment of C. difficile-associated disease.Key points. C. difficile-associated disease is a disease that develops when the diversity of the intestinal microbiota decreases and C. difficile excessively colonizes the colon, the toxins of which damage the intestinal muco-epithelial barrier, followed by the development of inflammation in the colon wall, with diarrhea being a characteristic clinical manifestation. The clinical presentation of the disease can vary from asymptomatic carriage, mild to moderate diarrhea that resolves on its own, to profuse watery diarrhea and pseudomembranous colitis with development of life-threatening complications. The diagnosis of C. difficile-associated disease is based on an assessment of the clinical presentation, medical history, an objective examination of the patient and laboratory stool tests. The disease severity is determined by clinical symptoms and laboratory findings. Additional diagnostic methods that are used according to indications and contribute to the assessment of severity include endoscopy of the colon and abdominal cavity imaging methods. Treatment should be initiated in cases of characteristic clinical presentation of C. difficile-associated disease and positive laboratory stool testing. The choice of drug and treatment regimen depends on the severity of the episode, the presence of complications, and whether the episode is initial, recurrent, or reinfection.Conclusion. Determination of target groups of patients for the diagnosis of clostridial infection is important in preventing overdiagnosis and subsequent unnecessary treatment. Timely diagnosis and treatment of C. difficile-associated disease help avoiding the development of life-threatening complications and improve the prognosis and quality of life of patients.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State University (Sechenov University)
| | - O. S. Lyashenko
- I.M. Sechenov First Moscow State University (Sechenov University)
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| | | | | | - D. N. Andreev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | | | | | - O. Yu. Zolnikova
- I.M. Sechenov First Moscow State University (Sechenov University)
| | | | | | - T. L. Lapina
- I.M. Sechenov First Moscow State University (Sechenov University)
| | - I. V. Maev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | | | - P. V. Pavlov
- I.M. Sechenov First Moscow State University (Sechenov University)
| | | | | | | | - E. A. Poluektova
- I.M. Sechenov First Moscow State University (Sechenov University)
| | | | | | | | - A. S. Trukhmanov
- I.M. Sechenov First Moscow State University (Sechenov University)
| | - A. I. Ulyanin
- I.M. Sechenov First Moscow State University (Sechenov University)
| | | | - V. V. Tsukanov
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”
| | - O. S. Shifrin
- I.M. Sechenov First Moscow State University (Sechenov University)
| |
Collapse
|
28
|
Barbosa MLL, Albano MO, Martins CDS, Warren CA, Brito GADC. Role of probiotics in preventing Clostridioides difficile infection in older adults: an integrative review. Front Med (Lausanne) 2023; 10:1219225. [PMID: 37636573 PMCID: PMC10450140 DOI: 10.3389/fmed.2023.1219225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of healthcare-associated diarrhea. This infection can particularly affect older adults, the most susceptible to CDI. Currently, the standard therapeutic measure is antibiotic therapy, which in turn increases the risk of recurrence of the infection by its collateral damage to the patient's microbiota. Probiotics are live microorganisms capable of maintaining balance in the intestinal microbiota. This study aims to perform an integrative review of the protective benefit of probiotics in CDI and diarrhea associated with C. difficile. The PubMed, Scopus, and Web of Science databases, the 10-year time cutoff, and the Prism Flow diagram were used for data collection. We observed no consensus among the studies; however, three of the seven evaluated studies demonstrated that the use of probiotics in older adults could contribute to reducing the incidence of hospital-onset CDI. We also found that the studies evaluated a wide variety of microorganisms, particularly Saccharomyces boulardii, associated with beneficial effects. More research is needed to understand the successful use of probiotics in the prevention of CDI in hospitalized older adults receiving antibiotics.
Collapse
Affiliation(s)
| | | | | | | | - Gerly Anne de Castro Brito
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
29
|
Mazzotti A, Langone L, Arceri A, Artioli E, Zielli SO, Bonelli S, Abdi P, Faldini C. Probiotics in Orthopedics: From Preclinical Studies to Current Applications and Future Perspective. Microorganisms 2023; 11:2021. [PMID: 37630580 PMCID: PMC10458220 DOI: 10.3390/microorganisms11082021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, probiotics have been emerging as an attractive therapeutic strategy for several diseases. In orthopedics, probiotics seem to be a promising supplementation for treatment of osteoporosis, osteoarthritis, muscle loss-related disease, wound and ulcer issues, and prevention of surgical antibiotic prophylaxis side effects. Although probiotics are still not included in guidelines for these conditions, several studies have reported theoretical benefits of their administration. Further high-level clinical trials are necessary to convert research into solid clinical practice. However, probiotics represent a cost-effective future perspective and may play a role in association with traditional orthopedic therapies.
Collapse
Affiliation(s)
- Antonio Mazzotti
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40123 Bologna, Italy
| | - Laura Langone
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
| | - Alberto Arceri
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
| | - Elena Artioli
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
| | - Simone Ottavio Zielli
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
| | - Simone Bonelli
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
| | - Pejman Abdi
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
| | - Cesare Faldini
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.M.); (L.L.); (E.A.); (S.O.Z.); (S.B.); (P.A.); (C.F.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40123 Bologna, Italy
| |
Collapse
|
30
|
Kucharzik T, Dignass A, Atreya R, Bokemeyer B, Esters P, Herrlinger K, Kannengiesser K, Kienle P, Langhorst J, Lügering A, Schreiber S, Stallmach A, Stein J, Sturm A, Teich N, Siegmund B. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2023; 61:1046-1134. [PMID: 37579791 DOI: 10.1055/a-2060-0935] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Affiliation(s)
- T Kucharzik
- Klinik für Allgemeine Innere Medizin und Gastroenterologie, Städtisches Klinikum Lüneburg, Lüneburg, Deutschland
| | - A Dignass
- Medizinische Klinik I, Agaplesion Markus Krankenhaus, Frankfurt, Deutschland
| | - R Atreya
- Medizinische Klinik 1 Gastroent., Pneumologie, Endokrin., Universitätsklinikum Erlangen, Erlangen, Deutschland
| | - B Bokemeyer
- Interdisziplinäres Crohn Colitis Centrum Minden - ICCCM, Minden, Deutschland
| | - P Esters
- Medizinische Klinik I, Agaplesion Markus Krankenhaus, Frankfurt, Deutschland
| | - K Herrlinger
- Innere Medizin I, Asklepios Klinik Nord, Hamburg, Deutschland
| | - K Kannengiesser
- Klinik für Allgemeine Innere Medizin und Gastroenterologie, Städtisches Klinikum Lüneburg, Lüneburg, Deutschland
| | - P Kienle
- Abteilung für Allgemein- und Viszeralchirurgie, Theresienkrankenhaus, Mannheim, Deutschland
| | - J Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Sozialstiftung Bamberg Klinikum am Bruderwald, Bamberg, Deutschland
| | - A Lügering
- Medizinisches Versorgungszentrum Portal 10, Münster, Deutschland
| | - S Schreiber
- Klinik für Innere Medizin I, Universitätsklinikum Schleswig Holstein, Kiel, Deutschland
| | - A Stallmach
- Klinik für Innere Medizin IV Gastroenterologie, Hepatologie, Infektiologie, Universitätsklinikum Jena, Jena, Deutschland
| | - J Stein
- Abteilung Innere Medizin mit Schwerpunkt Gastroenterologie, Krankenhaus Sachsenhausen, Frankfurt, Deutschland
| | - A Sturm
- Klinik für Innere Medizin mit Schwerpunkt Gastroenterologie, DRK Kliniken Berlin Westend, Berlin, Deutschland
| | - N Teich
- Internistische Gemeinschaftspraxis, Leipzig, Deutschland
| | - B Siegmund
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité Campus Benjamin Franklin - Universitätsmedizin Berlin, Berlin, Deutschland
| |
Collapse
|
31
|
da Ponte Neto AM, Clemente ACO, Rosa PW, Ribeiro IB, Funari MP, Nunes GC, Moreira L, Sparvoli LG, Cortez R, Taddei CR, Mancini MC, de Moura EGH. Fecal microbiota transplantation in patients with metabolic syndrome and obesity: A randomized controlled trial. World J Clin Cases 2023; 11:4612-4624. [PMID: 37469721 PMCID: PMC10353513 DOI: 10.12998/wjcc.v11.i19.4612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 05/04/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Metabolic syndrome is a multifactorial disease, and the gut microbiota may play a role in its pathogenesis. Obesity, especially abdominal obesity, is associated with insulin resistance, often increasing the risk of type two diabetes mellitus, vascular endothelial dysfunction, an abnormal lipid profile, hypertension, and vascular inflammation, all of which promote the development of atherosclerotic cardiovascular disease. AIM To evaluate the outcomes of fecal microbiota transplantation (FMT) in patients with metabolic syndrome. METHODS This was a randomized, single-blind placebo-controlled trial comparing FMT and a sham procedure in patients with metabolic syndrome. We selected 32 female patients, who were divided into eight groups of four patients each. All of the patients were submitted to upper gastrointestinal endoscopy. In each group, two patients were randomly allocated to undergo FMT, and the other two patients received saline infusion. The patients were followed for one year after the procedures, during which time anthropometric, bioimpedance, and biochemical data were collected. The patients also had periodic consultations with a nutritionist and an endocrinologist. The primary end point was a change in the gut microbiota. RESULTS There was evidence of a postprocedural change in microbiota composition in the patients who underwent FMT in relation to that observed in those who underwent the sham procedure. However, we found no difference between the two groups in terms of the clinical parameters evaluated. CONCLUSION There were no significant differences in biochemical or anthropometric parameters, between the two groups evaluated. Nevertheless, there were significant postprocedural differences in the microbiota composition between the placebo group. To date, clinical outcomes related to FMT remain uncertain.
Collapse
Affiliation(s)
- Alberto Machado da Ponte Neto
- Departament of Gastroenterology, Faculdade de Medicina, Universidade de Sao Paulo, Serviço de Endoscopia Gastrointestinal do Hospital das Clínicas HCFMUSP, São Paulo 05403-010, SP, Brazil
| | - Aniele Cristine Ott Clemente
- Department of Endocrinology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo 05403-010, SP, Brazil
| | - Paula Waki Rosa
- Department of Endocrinology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo 05403-010, SP, Brazil
| | - Igor Braga Ribeiro
- Departament of Gastroenterology, Faculdade de Medicina, Universidade de Sao Paulo, Serviço de Endoscopia Gastrointestinal do Hospital das Clínicas HCFMUSP, São Paulo 05403-010, SP, Brazil
| | - Mateus Pereira Funari
- Departament of Gastroenterology, Faculdade de Medicina, Universidade de Sao Paulo, Serviço de Endoscopia Gastrointestinal do Hospital das Clínicas HCFMUSP, São Paulo 05403-010, SP, Brazil
| | - Gabriel Cairo Nunes
- Departament of Gastroenterology, Faculdade de Medicina, Universidade de Sao Paulo, Serviço de Endoscopia Gastrointestinal do Hospital das Clínicas HCFMUSP, São Paulo 05403-010, SP, Brazil
| | - Luana Moreira
- Department of Clinical and Toxicology Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05403-010, SP, Brazil
| | - Luiz Gustavo Sparvoli
- Department of Clinical and Toxicology Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05403-010, SP, Brazil
| | - Ramon Cortez
- Department of Clinical and Toxicology Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05403-010, SP, Brazil
| | - Carla Romano Taddei
- Department of Clinical and Toxicology Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05403-010, SP, Brazil
- School of Arts, Science and Humanities, University of São Paulo, São Paulo 05403-010, SP, Brazil
| | - Márcio C Mancini
- Department of Endocrinology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo 05403-010, SP, Brazil
| | - Eduardo Guimarães Hourneaux de Moura
- Departament of Gastroenterology, Faculdade de Medicina, Universidade de Sao Paulo, Serviço de Endoscopia Gastrointestinal do Hospital das Clínicas HCFMUSP, São Paulo 05403-010, SP, Brazil
| |
Collapse
|
32
|
Fajnzylber J, Patterson W, Deshpande A. Probiotics for primary prevention of Clostridioides difficile infection: revisiting the evidence. Curr Med Res Opin 2023; 39:889-891. [PMID: 37078551 DOI: 10.1080/03007995.2023.2205333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/21/2023]
Abstract
Prophylactic probiotics have been shown to be effective in preventing Clostridioides difficile infection (CDI), according to multiple meta-analyses. However, different medical societies have varying recommendations on their use for preventing CDI. In this commentary, we discuss current evidence for probiotic use in primary prevention of CDI and the issues raised by professional societies when evaluating the evidence. We highlight four areas for future improvement: considering baseline risk for CDI, timing of probiotics with antibiotics, combining efficacy data from different probiotic strains, and safety. All societies agree on the need for more high-quality and adequately powered randomized controlled trials to further strengthen the evidence.
Collapse
Affiliation(s)
- Jesse Fajnzylber
- Department of Education, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Will Patterson
- Department of Education, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Abhishek Deshpande
- Department of Education, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Cleveland Clinic, Center for Value-Based Care Research, Cleveland Clinic Community Care, Cleveland, OH, USA
- Department of Infectious Diseases, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
33
|
Mori N, Katsumata T, Takahashi T. Prescribed probiotic usage to prevent Clostridioides difficile infection among older patients receiving antibiotics: A retrospective cohort study. J Infect Chemother 2023:S1341-321X(23)00111-3. [PMID: 37211085 DOI: 10.1016/j.jiac.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 05/23/2023]
Abstract
OBJECTIVES Clostridioides difficile infection (CDI) is a leading cause of antimicrobial-associated colitis and is a global clinical concern. Probiotics are considered a CDI-preventive measure; however, highly inconsistent data have been previously reported. Thus, we evaluated the CDI-preventive effect of prescribed probiotics in high-risk older patients receiving antibiotics. METHODS Older patients (aged ≥65 years) admitted to the emergency department who received antibiotics between 2014 and 2017 were enrolled in this single-center retrospective cohort study. Propensity score-matched analysis was used to compare the CDI incidence in patients who took the prescribed probiotics within 2 days of receiving antibiotics for at least 7 days with those who did not. The rates of severe CDI and associated hospital mortality were also evaluated. RESULTS Among 6148 eligible patients, 221 were included in the prescribed probiotic group. A propensity score-matched (221 matched pairs) well-balanced for patient characteristics was obtained. The incidence of primary nosocomial CDI did not differ significantly between the prescribed and non-prescribed probiotic groups (0% [0/221] vs. 1.0% [2/221], p = 0.156). Of the 6148 eligible patients, 0.5% (30/6148) developed CDI, with a severe CDI rate of 33.3% (10/30). Furthermore, no CDI-associated in-hospital mortality was observed in the study cohort. CONCLUSIONS The evidence from this study does not support recommendations for the routine use of prescribed probiotics to prevent primary CDI in older patients receiving antibiotics in situations where the CDI is infrequent.
Collapse
Affiliation(s)
- Nobuaki Mori
- Department of General Internal Medicine and Infectious Diseases, National Hospital Organization, Tokyo Medical Center, Tokyo, Japan; Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan.
| | - Takahiro Katsumata
- Department of General Internal Medicine and Infectious Diseases, National Hospital Organization, Tokyo Medical Center, Tokyo, Japan
| | - Takashi Takahashi
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| |
Collapse
|
34
|
Airola C, Severino A, Porcari S, Fusco W, Mullish BH, Gasbarrini A, Cammarota G, Ponziani FR, Ianiro G. Future Modulation of Gut Microbiota: From Eubiotics to FMT, Engineered Bacteria, and Phage Therapy. Antibiotics (Basel) 2023; 12:antibiotics12050868. [PMID: 37237771 DOI: 10.3390/antibiotics12050868] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The human gut is inhabited by a multitude of bacteria, yeasts, and viruses. A dynamic balance among these microorganisms is associated with the well-being of the human being, and a large body of evidence supports a role of dysbiosis in the pathogenesis of several diseases. Given the importance of the gut microbiota in the preservation of human health, probiotics, prebiotics, synbiotics, and postbiotics have been classically used as strategies to modulate the gut microbiota and achieve beneficial effects for the host. Nonetheless, several molecules not typically included in these categories have demonstrated a role in restoring the equilibrium among the components of the gut microbiota. Among these, rifaximin, as well as other antimicrobial drugs, such as triclosan, or natural compounds (including evodiamine and polyphenols) have common pleiotropic characteristics. On one hand, they suppress the growth of dangerous bacteria while promoting beneficial bacteria in the gut microbiota. On the other hand, they contribute to the regulation of the immune response in the case of dysbiosis by directly influencing the immune system and epithelial cells or by inducing the gut bacteria to produce immune-modulatory compounds, such as short-chain fatty acids. Fecal microbiota transplantation (FMT) has also been investigated as a procedure to restore the equilibrium of the gut microbiota and has shown benefits in many diseases, including inflammatory bowel disease, chronic liver disorders, and extraintestinal autoimmune conditions. One of the most significant limits of the current techniques used to modulate the gut microbiota is the lack of tools that can precisely modulate specific members of complex microbial communities. Novel approaches, including the use of engineered probiotic bacteria or bacteriophage-based therapy, have recently appeared as promising strategies to provide targeted and tailored therapeutic modulation of the gut microbiota, but their role in clinical practice has yet to be clarified. The aim of this review is to discuss the most recently introduced innovations in the field of therapeutic microbiome modulation.
Collapse
Affiliation(s)
- Carlo Airola
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Severino
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Serena Porcari
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - William Fusco
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London W2 1NY, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
35
|
Pal R, Athamneh AI, Deshpande R, Ramirez JAR, Adu KT, Muthuirulan P, Pawar S, Biazzo M, Apidianakis Y, Sundekilde UK, de la Fuente-Nunez C, Martens MG, Tegos GP, Seleem MN. Probiotics: insights and new opportunities for Clostridioides difficile intervention. Crit Rev Microbiol 2023; 49:414-434. [PMID: 35574602 PMCID: PMC9743071 DOI: 10.1080/1040841x.2022.2072705] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Clostridioides difficile infection (CDI) is a life-threatening disease caused by the Gram-positive, opportunistic intestinal pathogen C. difficile. Despite the availability of antimicrobial drugs to treat CDI, such as vancomycin, metronidazole, and fidaxomicin, recurrence of infection remains a significant clinical challenge. The use of live commensal microorganisms, or probiotics, is one of the most investigated non-antibiotic therapeutic options to balance gastrointestinal (GI) microbiota and subsequently tackle dysbiosis. In this review, we will discuss major commensal probiotic strains that have the potential to prevent and/or treat CDI and its recurrence, reassess the efficacy of probiotics supplementation as a CDI intervention, delve into lessons learned from probiotic modulation of the immune system, explore avenues like genome-scale metabolic network reconstructions, genome sequencing, and multi-omics to identify novel strains and understand their functionality, and discuss the current regulatory framework, challenges, and future directions.
Collapse
Affiliation(s)
- Rusha Pal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ahmad I.M. Athamneh
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | - Jose A. R Ramirez
- ProbioWorld Consulting Group, James Cook University, 4811, Queensland, Australia
| | - Kayode T. Adu
- ProbioWorld Consulting Group, James Cook University, 4811, Queensland, Australia
- Cann Group, Walter and Eliza Hall Institute, La Trobe University, Victoria 3083, Australia
| | | | - Shrikant Pawar
- The Anlyan Center Yale Center for Genomic Analysis, Yale School of Medicine, New Haven CT USA
| | - Manuele Biazzo
- The Bioarte Ltd Laboratories at Life Science Park, San Gwann, Malta
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark G. Martens
- Reading Hospital, Tower Health, West Reading, PA 19611, USA
- Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - George P. Tegos
- Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
36
|
Ivashkin VT, Maev IV, Andreev DN, Goloshchapov OV, Derinov AA, Zolnikova OY, Ivashkin KV, Kiseleva OY, Kiryukhin AP, Lyashenko OS, Poluektova EA, Tertychnyy AS, Trukhmanov AS, Ulyanin AI, Sheptulin AA, Shifrin OS. Modern Approaches to the Diagnosis and treatment of <i>Clostridioides difficile (C. difficile)</i>-associated Disease in Adults (literature Review and Expert Council Resolution). RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2023; 33:19-33. [DOI: 10.22416/1382-4376-2023-33-2-19-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Aim: to review the modern approaches to the diagnosis and treatment ofC. difficile-associated disease in adults and present the resolution of the Expert Council held on March 25, 2023 in Moscow.General provisions.C. difficileis the most important nosocomial pathogen which spores are also commonly found in the environment. Microbiota impairment, primarily due to the use of antibacterial drugs, is a key stage in the development ofC. difficile-associated disease. A search for an infection should be carried out only in patients with diarrhea, and it is advisable to use at least 2 laboratory methods. The drug of choice for first-line treatment is vancomycin. If drug treatment is ineffective or the patient has recurrent clostridial infection, fecal microbiota transplantation should be considered. The probiotic strainSaccharomyces boulardii CNCM I-745has a direct inhibitory effect onC. difficiletoxin A, promotes normalization of the intestinal microbiota composition, and decreases the inflammatory reaction in colonic mucosa colonized with a toxigenic strain ofC. difficile.Conclusions. Addition of the probiotic strainSaccharomyces boulardii CNCM I-745to antibacterial therapy promotes both primary and secondary prevention ofC. difficile-associated disease.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. V. Maev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - D. N. Andreev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | - A. A. Derinov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. Yu. Zolnikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. V. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. Yu. Kiseleva
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. P. Kiryukhin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. S. Lyashenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. S. Tertychnyy
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. S. Trukhmanov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. I. Ulyanin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. A. Sheptulin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. S. Shifrin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
37
|
Rahman A, Alqaisi S, Nath J. A Case of Lactobacillus casei Endocarditis Associated With Probiotic Intake in an Immunocompromised Patient. Cureus 2023; 15:e38049. [PMID: 37228522 PMCID: PMC10207843 DOI: 10.7759/cureus.38049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Probiotics are microorganisms, typically bacteria, similar to beneficial microbiota found in the human gut, usually consumed as dietary supplements or fermented foods. Although probiotics are generally safe, several cases of bacteremia, sepsis, and endocarditis associated with probiotics have been reported. Here we report a rare case of Lactobacillus casei endocarditis in a 71-year-old female, immunocompromised due to chronic steroid intake, who presented with a productive cough and low-grade fever. Blood cultures grew L. casei resistant to vancomycin and meropenem. Transesophageal echocardiography showed mitral and aortic vegetations; valve replacement was done after successfully removing vegetations. She was treated with a six-week course of daptomycin and recovered.
Collapse
Affiliation(s)
- Ali Rahman
- Internal Medicine, Mather Hospital/Northwell Health, Port Jefferson, USA
| | - Sura Alqaisi
- Internal Medicine, Memorial Hospital Pembroke, Pembroke Pines, USA
| | - Jayant Nath
- Imaging Cardiology, Memorial Hospital Pembroke, Pembroke Pines, USA
| |
Collapse
|
38
|
Zhang M, Zheng Y, Sun Z, Cao C, Zhao W, Liu Y, Zhang W, Zhang H. Change in the Gut Microbiome and Immunity by Lacticaseibacillus rhamnosus Probio-M9. Microbiol Spectr 2023; 11:e0360922. [PMID: 36912650 PMCID: PMC10100958 DOI: 10.1128/spectrum.03609-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
With the exploding growth of the global market for probiotics and the rapid awakening of public awareness to manage health by probiotic intervention, there is still an active debate about whether the consumption of probiotics is beneficial for nonpatients, which is due to the lack of systematic analysis based on time series multiomics data sets. In this study, we recruited 100 adults from a college in China and performed a random case-control study by using a probiotic (Lacticaseibacillus rhamnosus Probio-M9) as an intervention for 6 weeks, aiming to achieve a comprehensive evaluation and understanding of the beneficial effect of Probio-M9 consumption. By testing advanced blood immunity indicators, sequencing the gut microbiome, and profiling the gut metabolome at baseline and the end of the study, we found that although the probiotic intervention has a limited impact on the human immunity and the gut microbiome and metabolome, the associations between the immunity indicators and multiomics data were strengthened, and further analysis of the gut microbiome's genetic variations revealed inhibited generation of single nucleotide variants (SNVs) by probiotic consumption. Taken together, our findings indicated an underestimated influence of the probiotic, not on altering the microbial composition but on strengthening the association between human immunity and commensal microbes and stabilizing the genetic variations of the gut microbiome. IMPORTANCE Although the global market for probiotics is growing explosively, there is still an active debate about whether the consumption of probiotics is beneficial for nonpatients. In this study, we recruited 100 adults from a college in China and performed 6 weeks of intervention for half of the volunteers. By analyzing the time series multiomics data in this study, we found that the probiotic intervention (i) has a limited effect on human immunity or the global structure of the gut microbiome and metabolome, (ii) can largely influence the correlation of the development between multiomics data and immunity, which was not able to be discovered by conventional differential abundance analysis, and (iii) can inhibit the generation of SNVs in the gut microbiome instead of promoting it.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yan Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Zheng Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Chenxia Cao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Wei Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yangshuo Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|
39
|
Bainum TB, Reveles KR, Hall RG, Cornell K, Alvarez CA. Controversies in the Prevention and Treatment of Clostridioides difficile Infection in Adults: A Narrative Review. Microorganisms 2023; 11:387. [PMID: 36838352 PMCID: PMC9963748 DOI: 10.3390/microorganisms11020387] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Clostridioides difficile remains a problematic pathogen resulting in significant morbidity and mortality, especially for high-risk groups that include immunocompromised patients. Both the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America (IDSA/SHEA), as well as the American College of Gastroenterology (ACG) and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) recently provided guideline updates for C. difficile infection (CDI). In this narrative review, the authors reviewed available literature regarding the prevention or treatment of CDI in adults and focused on disagreements between the IDSA/SHEA and ACG guidelines, as well as articles that have been published since the updates. Several options for primary prophylaxis are available, including probiotics and antibiotics (vancomycin, fidaxomicin). The literature supporting fidaxomicin is currently quite limited. While there are more studies evaluating probiotics and vancomycin, the optimal patient populations and regimens for their use have yet to be defined. While the IDSA/SHEA guidelines discourage metronidazole use for mild CDI episodes, evidence exists that it may remain a reasonable option for these patients. Fidaxomicin has an advantage over vancomycin in reducing recurrences, but its use is limited by cost. Despite this, recent studies suggest fidaxomicin's cost-effectiveness as a first-line therapy, though this is highly dependent on institutional contracts and payment structures. Secondary prophylaxis should focus on non-antimicrobial options to lessen the impact on the microbiome. The oral option of fecal microbiota transplantation (FMT), SER109, and the now FDA-approved RBX2660 represent exciting new options to correct dysbiosis. Bezlotoxumab is another attractive option to prevent recurrences. Further head-to-head studies of newer agents will be needed to guide selection of the optimal therapies for CDI primary and secondary prophylaxis.
Collapse
Affiliation(s)
- Taryn B. Bainum
- Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Kelly R. Reveles
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
- Pharmacotherapy Education and Research Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ronald G. Hall
- Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Kelli Cornell
- Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Carlos A. Alvarez
- Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center of Excellence in Real-World Evidence, Texas Tech University Health Sciences Center, Dallas, TX 75235, USA
| |
Collapse
|
40
|
Xie Y, Chupina Estrada A, Nelson B, Feng H, Pothoulakis C, Chesnel L, Koon HW. ADS024, a Bacillus velezensis strain, protects human colonic epithelial cells against C. difficile toxin-mediated apoptosis. Front Microbiol 2023; 13:1072534. [PMID: 36704560 PMCID: PMC9873417 DOI: 10.3389/fmicb.2022.1072534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Clostridioides difficile infection (CDI) causes intestinal injury. Toxin A and toxin B cause intestinal injury by inducing colonic epithelial cell apoptosis. ADS024 is a Bacillus velezensis strain in development as a single-strain live biotherapeutic product (SS-LBP) to prevent the recurrence of CDI following the completion of standard antibiotic treatment. We evaluated the protective effects of the sterile filtrate and ethyl acetate extract of conditioned media from ADS024 and DSM7 (control strain) against mucosal epithelial injury in toxin-treated human colonic tissues and apoptosis in toxin-treated human colonic epithelial cells. Ethyl acetate extracts were generated from conditioned culture media from DSM7 and ADS024. Toxin A and toxin B exposure caused epithelial injury in fresh human colonic explants. The sterile filtrate of ADS024, but not DSM7, prevented toxin B-mediated epithelial injury in fresh human colonic explants. Both sterile filtrate and ethyl acetate extract of ADS024 prevented toxin-mediated apoptosis in human colonic epithelial cells. The anti-apoptotic effects of ADS024 filtrate and ethyl acetate extract were dependent on the inhibition of caspase 3 cleavage. The sterile filtrate, but not ethyl acetate extract, of ADS024 partially degraded toxin B. ADS024 inhibits toxin B-mediated apoptosis in human colonic epithelial cells and colonic explants.
Collapse
Affiliation(s)
- Ying Xie
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States,Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Andrea Chupina Estrada
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Becca Nelson
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Hanping Feng
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, College Park, College Park, MD, United States
| | - Charalabos Pothoulakis
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | | | - Hon Wai Koon
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States,*Correspondence: Hon Wai Koon,
| |
Collapse
|
41
|
Senchukova MA. Microbiota of the gastrointestinal tract: Friend or foe? World J Gastroenterol 2023; 29:19-42. [PMID: 36683718 PMCID: PMC9850957 DOI: 10.3748/wjg.v29.i1.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is currently considered an external organ of the human body that provides important mechanisms of metabolic regulation and protection. The gut microbiota encodes over 3 million genes, which is approximately 150 times more than the total number of genes present in the human genome. Changes in the qualitative and quantitative composition of the microbiome lead to disruption in the synthesis of key bacterial metabolites, changes in intestinal barrier function, and inflammation and can cause the development of a wide variety of diseases, such as diabetes, obesity, gastrointestinal disorders, cardiovascular issues, neurological disorders and oncological concerns. In this review, I consider issues related to the role of the microbiome in the regulation of intestinal barrier function, its influence on physiological and pathological processes occurring in the body, and potential new therapeutic strategies aimed at restoring the gut microbiome. Herewith, it is important to understand that the gut microbiota and human body should be considered as a single biological system, where change of one element will inevitably affect its other components. Thus, the study of the impact of the intestinal microbiota on health should be considered only taking into account numerous factors, the role of which has not yet been fully elucidated.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
42
|
Rousseaux A, Brosseau C, Bodinier M. Immunomodulation of B Lymphocytes by Prebiotics, Probiotics and Synbiotics: Application in Pathologies. Nutrients 2023; 15:nu15020269. [PMID: 36678140 PMCID: PMC9863037 DOI: 10.3390/nu15020269] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Prebiotics, probiotics and synbiotics are known to have major beneficial effects on human health due to their ability to modify the composition and the function of the gut mucosa, the gut microbiota and the immune system. These components largely function in a healthy population throughout different periods of life to confer homeostasis. Indeed, they can modulate the composition of the gut microbiota by increasing bacteria strands that are beneficial for health, such as Firmicute and Bifidobacteria, and decreasing harmful bacteria, such as Enteroccocus. Their immunomodulation properties have been extensively studied in different innate cells (dendritic cells, macrophages, monocytes) and adaptive cells (Th, Treg, B cells). They can confer a protolerogenic environment but also modulate pro-inflammatory responses. Due to all these beneficial effects, these compounds have been investigated to prevent or to treat different diseases, such as cancer, diabetes, allergies, autoimmune diseases, etc. Regarding the literature, the effects of these components on dendritic cells, monocytes and T cells have been studied and presented in a number of reviews, but their impact on B-cell response has been less widely discussed. CONCLUSIONS For the first time, we propose here a review of the literature on the immunomodulation of B-lymphocytes response by prebiotics, probiotics and synbiotics, both in healthy conditions and in pathologies. DISCUSSION Promising studies have been performed in animal models, highlighting the potential of prebiotics, probiotics and synbiotics intake to treat or to prevent diseases associated with B-cell immunomodulation, but this needs to be validated in humans with a full characterization of B-cell subsets and not only the humoral response.
Collapse
|
43
|
Bishop EJ, Tiruvoipati R. Management of Clostridioides difficile infection in adults and challenges in clinical practice: review and comparison of current IDSA/SHEA, ESCMID and ASID guidelines. J Antimicrob Chemother 2022; 78:21-30. [PMID: 36441203 PMCID: PMC9780550 DOI: 10.1093/jac/dkac404] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Clostridioides difficile infection (CDI) remains a significant clinical challenge both in the management of severe and severe-complicated disease and the prevention of recurrence. Guidelines released by the Infectious Diseases Society of America and Society for Healthcare Epidemiology of America (IDSA/SHEA) and ESCMID had some consensus as well as some discrepancies in disease severity classification and treatment recommendations. We review and compare the key clinical strategies from updated IDSA/SHEA, ESCMID and current Australasian guidelines for CDI management in adults and discuss relevant issues for clinicians, particularly in the management of severe-complicated infection. Updated IDSA/SHEA and ESCMID guidelines now reflect the increased efficacy of fidaxomicin in preventing recurrence and have both promoted fidaxomicin to first-line therapy with an initial CDI episode in both non-severe and severe disease and endorsed the role of bezlotoxumab in the prevention of recurrent infection. Vancomycin remains acceptable therapy and metronidazole is not preferred. For severe-complicated infection the IDSA/SHEA recommends high-dose oral ± rectal vancomycin and IV metronidazole, whilst in an important development, ESCMID has endorsed fidaxomicin and tigecycline as part of combination anti-CDI therapy, for the first time. The role of faecal microbiota transplantation (FMT) in second CDI recurrence is now clearer, but timing and mode of FMT in severe-complicated refractory disease still requires further study.
Collapse
Affiliation(s)
- Emma Jane Bishop
- Department of Infectious Diseases, Peninsula Health, Melbourne, Victoria, Australia
- Peninsula Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ravindranath Tiruvoipati
- Peninsula Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Intensive Care Medicine, Peninsula Health, Melbourne, Victoria, Australia
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Gonzalez CA, Van Rysselberghe NL, Maschhoff C, Gardner MJ. Clostridium difficile colitis portends poor outcomes in lower extremity orthopaedic trauma surgery. Injury 2022; 53:3458-3463. [PMID: 36002345 DOI: 10.1016/j.injury.2022.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Clostridium difficile is the most common cause of healthcare-associated infectious diarrhea and colitis, and carries the potential for high morbidity, particularly in frail patient populations. The purpose of this study was to utilize a large nationally representative database in order to report 1.) the incidence of CDC in patients with operative lower extremity fractures, 2.) risk factors for the development of CDC, 3.) the association of CDC with length of stay (LOS), readmission, and 30-day mortality rates. METHODS The ACS-NSQIP (2015-2019) was queried for patients who underwent surgical fixation of lower extremity fractures. A backward elimination multivariate regression model was used to identify risk factors for CDC. Chi squared and multivariate regression that controlled for preoperative variables and comorbidities were used to compare outcomes in patients with and without CDC. RESULTS 95,532 patients were included, 681 (0.71%) of whom developed CDC. Risk factors for CDC were advanced age, ASA class ≥ 3, smoking, dialysis, anemia, hypoalbuminemia, preoperative SIRS, preoperative wound infections, preoperative sepsis, and the use of spinal anesthesia or MAC/IV sedation. Patients with CDC had significantly increased 30-day mortality rates (10.6% vs 4.4%; OR 1.80, 95% CI 1.41-2.31), readmission (34.2% vs 7.5%; OR 5.13, 95% CI 4.36-6.05, and length of stay (7.5 days vs 5.3 days) compared to patients without CDC. CONCLUSION The incidence of CDC in lower extremity orthopedic trauma patients was 0.71%. An occurrence of CDC was associated with approximately a 2.5 times increase in 30-day mortality, five times the readmission rate, and a longer hospital stay compared to patients without CDC. Mitigating the spread of c. diff through improved antibiotic stewardship and prompt treatment of CDC is paramount to decreasing the burden this infection imposes on orthopedic trauma patients and the healthcare system.
Collapse
Affiliation(s)
- Christian A Gonzalez
- University of Nevada, Reno School of Medicine, 1664N Virginia St Reno, NV 89557, USA.
| | | | | | - Michael J Gardner
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
45
|
Impact of Prebiotics, Probiotics, and Synbiotics on Stool Output, Mortality, and Recovery in the Critically Ill. TOP CLIN NUTR 2022. [DOI: 10.1097/tin.0000000000000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Chang C, Yuan X, Zhang X, Chen X, Li K. Gastrointestinal Microbiome and Multiple Health Outcomes: Umbrella Review. Nutrients 2022; 14:3726. [PMID: 36145102 PMCID: PMC9505003 DOI: 10.3390/nu14183726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, there has been growing concern about the impact of the gastrointestinal microbiome on human health outcomes. To clarify the evidence for a link between the gastrointestinal microbiome and a variety of health outcomes in humans, we conducted an all-encompassing review of meta-analyses and systematic reviews that included 195 meta-analyses containing 950 unique health outcomes. The gastrointestinal microbiome is related to mortality, gastrointestinal disease, immune and metabolic outcomes, neurological and psychiatric outcomes, maternal and infant outcomes, and other outcomes. Existing interventions for intestinal microbiota (such as probiotics, fecal microbiota transplant, etc.) are generally safe and beneficial to a variety of human health outcomes, but the quality of evidence is not high, and more detailed and well-designed randomized controlled trials are necessary.
Collapse
Affiliation(s)
- Chengting Chang
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, China
| | - Xingzhu Yuan
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, China
| | - Xingxia Zhang
- Department of Organization, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, China
| | - Xinrong Chen
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, China
| | - Ka Li
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, China
| |
Collapse
|
47
|
Romero-Rodríguez A, Martínez de la Peña C, Troncoso-Cotal S, Guzmán C, Sánchez S. Emerging alternatives against Clostridioides difficile infection. Anaerobe 2022; 78:102638. [DOI: 10.1016/j.anaerobe.2022.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
|
48
|
Shi D, Turroni S, Gong L, Wu W, Yim HCH. Editorial: Manipulation of gut microbiota as a key target to intervene on the onset and progression of digestive system diseases. Front Med (Lausanne) 2022; 9:999005. [PMID: 36106327 PMCID: PMC9465376 DOI: 10.3389/fmed.2022.999005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Ding Shi
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical Campus, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Howard Chi Ho Yim
- Microbiome Research Centre, St George and Sutherland Clinical Campus, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
49
|
Antagonistic activity of selenium-enriched Bifidobacterium breve against Clostridioides difficile. Appl Microbiol Biotechnol 2022; 106:6181-6194. [PMID: 35962282 DOI: 10.1007/s00253-022-12124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/02/2022]
Abstract
Probiotics have the potential to be used in the prevention of Clostridioides difficile infection (CDI). In this study, selenium (Se)-enriched Bifidobacterium breve YH68-Se was obtained under optimal culture conditions with single-factor and response surface optimization. The overall environmental resistance of YH68-Se was superior to that of the parental strain YH68, mainly reflected in the substantial improvement of antioxidant activity and gastrointestinal tolerance. YH68-Se dramatically inhibited C. difficile growth, spore, biofilm, toxin production, and virulence gene expression, rapidly disrupted C. difficile cell membrane permeability and integrity, and altered the membrane proton motive force (PMF), induced a large outflow of intracellular substances and eventually caused bacterial death. The main factor inducing this process originated from the lactic acid (LD) in YH68-Se. In addition, the LD production of YH68 increased with increasing selenite concentration and was accompanied by enhanced activities of thioredoxin reductase (TrxR), glutathione peroxidase (GSH-Px), and increased concentration of autoinducer-2 (AI-2), which may be the crucial factors contributing to the outstanding probiotic properties of YH68-Se and their potent antagonism of C. difficile. KEY POINTS: • Compared with the parental strain B. breve YH68, the environmental resistance of YH68-Se was improved. • YH68-Se was able to produce more lactic acid, which suppressed the important physiological activities of C. difficile and rapidly disrupted their cell membrane structures. • Sodium selenite in the suitable concentration range gradually increases the yield of lactic acid and phenylacetic acid, increased the concentration of autoinducer-2, and enhanced the activities of antioxidant enzymes TrxR and GSH-Px in YH68.
Collapse
|
50
|
Li Y, Cai H, Sussman DA, Donet J, Dholaria K, Yang J, Panara A, Croteau R, Barkin JS. Association Between Immunosuppressive Therapy and Outcome of Clostridioides difficile Infection: Systematic Review and Meta-Analysis. Dig Dis Sci 2022; 67:3890-3903. [PMID: 34554365 DOI: 10.1007/s10620-021-07229-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Patients with Clostridioides difficile infection (CDI) often have coexisting medical problems requiring immunosuppressive therapy. However, limited data are available on the association between immunosuppressive therapy and CDI outcomes. AIM To determine the association between immunosuppressive therapy and CDI outcomes. METHODS PubMed, Embase, and Cochrane Library were searched through February 2021. Two reviewers independently reviewed and included studies that compared adult CDI patients who received immunosuppressive therapy to those who did not. The primary outcome was complicated CDl, including death, surgery, shock, or ICU admission. Raw data or unadjusted odds ratios (ORs) were used to calculate pooled ORs with 95% confidence intervals (CIs). RESULTS Twenty-two studies with a total of 5759 CDI patients were selected. Immunosuppressive therapy was significantly associated with both primary outcome and death, with pooled ORs of 1.61 (95% CI 1.33-1.96) and 1.73 (95% CI 1.39-2.15) separately. The association between corticosteroids and primary outcome was also significant with OR of 1.73 (95% CI 1.41, 2.12). In subgroup analysis, the factors explaining differences in study results included study quality, patient age, and whether individual studies had adjusted for potential confounders. In a systematic review, most studies suggested a positive association between immunosuppressive therapy and complicated outcomes of CDI in patients comorbid for IBD. CONCLUSIONS Our systematic review and meta-analysis demonstrate that immunosuppressive therapy is a risk factor for complicated outcomes of CDI.
Collapse
Affiliation(s)
- Yiting Li
- Department of Internal Medicine, Saint Francis Medical Center, Trenton, NJ, USA
- Division of Gastroenterology and Hepatology, University of New Mexico, School of Medicine, Albuquerque, NM, USA
| | - Haifeng Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, 325000, Zhejiang, China
| | - Daniel A Sussman
- Division of Gastroenterology, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jean Donet
- Department of Gastroenterology and Hepatology, University of California, San Francisco, Fresno, CA, USA
| | | | - Jiajia Yang
- University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Ami Panara
- Division of Gastroenterology, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Ryan Croteau
- Department of Gastroenterology, Wellspan Digestive Health, York, PA, USA
| | - Jamie S Barkin
- Division of Gastroenterology, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|