1
|
Ding X, Zhou Y, He J, Zhao J, Li J. Enhancement of SARS-CoV-2 mRNA Vaccine Efficacy through the Application of TMSB10 UTR for Superior Antigen Presentation and Immune Activation. Vaccines (Basel) 2024; 12:432. [PMID: 38675814 PMCID: PMC11053782 DOI: 10.3390/vaccines12040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The development of effective vaccines against SARS-CoV-2 remains a critical challenge amidst the ongoing global pandemic. This study introduces a novel approach to enhancing mRNA vaccine efficacy by leveraging the untranslated region (UTR) of TMSB10, a gene identified for its significant mRNA abundance in antigen-presenting cells. Utilizing the GEO database, we identified TMSB10 among nine genes, with the highest mRNA abundance in dendritic cell subtypes. Subsequent experiments revealed that TMSB10's UTR significantly enhances the expression of a reporter gene in both antigen-presenting and 293T cells, surpassing other candidates and a previously optimized natural UTR. A comparative analysis demonstrated that TMSB10 UTR not only facilitated a higher reporter gene expression in vitro but also showed marked superiority in vivo, leading to enhanced specific humoral and cellular immune responses against the SARS-CoV-2 Delta variant RBD antigen. Specifically, vaccines incorporating TMSB10 UTR induced significantly higher levels of specific IgG antibodies and promoted a robust T-cell immune response, characterized by the increased secretion of IFN-γ and IL-4 and the proliferation of CD4+ and CD8+ T cells. These findings underscore the potential of TMSB10 UTR as a strategic component in mRNA vaccine design, offering a promising avenue to bolster vaccine-induced immunity against SARS-CoV-2 and, potentially, other pathogens.
Collapse
Affiliation(s)
- Xiaoyan Ding
- College of Basic Medicine, Third Military Medical University, Chongqing 400038, China; (X.D.); (Y.Z.); (J.H.); (J.Z.)
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Yuxin Zhou
- College of Basic Medicine, Third Military Medical University, Chongqing 400038, China; (X.D.); (Y.Z.); (J.H.); (J.Z.)
| | - Jiuxiang He
- College of Basic Medicine, Third Military Medical University, Chongqing 400038, China; (X.D.); (Y.Z.); (J.H.); (J.Z.)
| | - Jing Zhao
- College of Basic Medicine, Third Military Medical University, Chongqing 400038, China; (X.D.); (Y.Z.); (J.H.); (J.Z.)
| | - Jintao Li
- College of Basic Medicine, Third Military Medical University, Chongqing 400038, China; (X.D.); (Y.Z.); (J.H.); (J.Z.)
| |
Collapse
|
2
|
Gibb M, Liu JY, Sayes CM. The transcriptomic signature of respiratory sensitizers using an alveolar model. Cell Biol Toxicol 2024; 40:21. [PMID: 38584208 PMCID: PMC10999393 DOI: 10.1007/s10565-024-09860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Environmental contaminants are ubiquitous in the air we breathe and can potentially cause adverse immunological outcomes such as respiratory sensitization, a type of immune-driven allergic response in the lungs. Wood dust, latex, pet dander, oils, fragrances, paints, and glues have all been implicated as possible respiratory sensitizers. With the increased incidence of exposure to chemical mixtures and the rapid production of novel materials, it is paramount that testing regimes accounting for sensitization are incorporated into development cycles. However, no validated assay exists that is universally accepted to measure a substance's respiratory sensitizing potential. The lungs comprise various cell types and regions where sensitization can occur, with the gas-exchange interface being especially important due to implications for overall lung function. As such, an assay that can mimic the alveolar compartment and assess sensitization would be an important advance for inhalation toxicology. Some such models are under development, but in-depth transcriptomic analyses have yet to be reported. Understanding the transcriptome after sensitizer exposure would greatly advance hazard assessment and sustainability. We tested two known sensitizers (i.e., isophorone diisocyanate and ethylenediamine) and two known non-sensitizers (i.e., chlorobenzene and dimethylformamide). RNA sequencing was performed in our in vitro alveolar model, consisting of a 3D co-culture of epithelial, macrophage, and dendritic cells. Sensitizers were readily distinguishable from non-sensitizers by principal component analysis. However, few differentially regulated genes were common across all pair-wise comparisons (i.e., upregulation of genes SOX9, UACA, CCDC88A, FOSL1, KIF20B). While the model utilized in this study can differentiate the sensitizers from the non-sensitizers tested, further studies will be required to robustly identify critical pathways inducing respiratory sensitization.
Collapse
Affiliation(s)
- Matthew Gibb
- Institute of Biomedical Studies (BMS), Baylor University, Waco, TX, 76798-7266, USA
| | - James Y Liu
- Department of Environmental Science (ENV), Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA
| | - Christie M Sayes
- Institute of Biomedical Studies (BMS), Baylor University, Waco, TX, 76798-7266, USA.
- Department of Environmental Science (ENV), Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA.
| |
Collapse
|
3
|
Scopelliti F, Mercurio L, Cattani C, Dimartino V, Albanesi C, Costanzo G, Mirisola C, Madonna S, Cavani A. The phosphoinositide-3-kinase (PI3K)-delta inhibitor seletalisib impairs monocyte-derived dendritic cells maturation, APC function, and promotes their migration to CCR7 and CXCR4 ligands. J Leukoc Biol 2022; 112:383-393. [PMID: 35199885 DOI: 10.1002/jlb.1a0821-413rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/05/2022] [Accepted: 02/05/2022] [Indexed: 11/08/2022] Open
Abstract
PI3K pathway plays a crucial role in dendritic cells (DCs) functions, as it regulates different cellular processes, such as maturation and cytokines production. However, the specific role of PI3K p110δ isoform in human DCs has not been thoroughly addressed. In this study, we analyze the effects of seletalisib, a potent and specific inhibitor of PI3K p110δ, on phenotype and antigen-presenting functions of monocyte-derived DCs undergone maturation via LPS. Seletalisib treatment reduced membrane HLA-DR as well as CD83 and CD40 costimulatory molecules, whereas CD80 and CD86 expression was only partially affected. Additionally, DCs cultures showed reduced TNF-α, IL-10, and IL-12 and increased IL-23 secretion levels. This resulted in a reduced capacity of DCs to prime allogeneic T cells, with a strong decrease of Th1 differentiation. On the other hand, PI3K p110δ inhibitor seletalisib increased CXCR4 and CCR7 expression and augmented the DCs migration toward CCL19 and CXCL12 ligands. At molecular level, inhibition of PI3K p110δ isoform by seletalisib significantly down-regulated the phosphorylation of AKT and other downstream signaling molecules, such as ribosomal protein S6, 4E-BP1, and NF-κB p65. In contrast, seletalisib did not affect p38 MAP kinase phosphorylation or TLR-associated adapter molecule TIRAP in DCs. Our results indicate that PI3K p110δ can serve as an important regulatory signal for DCs, and selective inhibition of PI3K p110δ isoform by seletalisib could be used for the prevention of exaggerated and harmful immune responses occurring in pathologic conditions, such as autoimmune disorders.
Collapse
Affiliation(s)
- Fernanda Scopelliti
- National Institute for Health, Migration and Poverty INMP/NIHMP, via di S. Gallicano, 25, Rome, 00153, Italy
| | - Laura Mercurio
- Laboratory of Experimental Immunology, IDI-IRCCS, via Monti di Creta, 104, Rome, Italy
| | - Caterina Cattani
- National Institute for Health, Migration and Poverty INMP/NIHMP, via di S. Gallicano, 25, Rome, 00153, Italy
| | - Valentina Dimartino
- National Institute for Health, Migration and Poverty INMP/NIHMP, via di S. Gallicano, 25, Rome, 00153, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, IDI-IRCCS, via Monti di Creta, 104, Rome, Italy
| | - Gianfranco Costanzo
- National Institute for Health, Migration and Poverty INMP/NIHMP, via di S. Gallicano, 25, Rome, 00153, Italy
| | - Concetta Mirisola
- National Institute for Health, Migration and Poverty INMP/NIHMP, via di S. Gallicano, 25, Rome, 00153, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology, IDI-IRCCS, via Monti di Creta, 104, Rome, Italy
| | - Andrea Cavani
- National Institute for Health, Migration and Poverty INMP/NIHMP, via di S. Gallicano, 25, Rome, 00153, Italy
| |
Collapse
|
4
|
Raggi F, Bosco MC. Targeting Mononuclear Phagocyte Receptors in Cancer Immunotherapy: New Perspectives of the Triggering Receptor Expressed on Myeloid Cells (TREM-1). Cancers (Basel) 2020; 12:cancers12051337. [PMID: 32456204 PMCID: PMC7281211 DOI: 10.3390/cancers12051337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory cells are major players in the onset of cancer. The degree of inflammation and type of inflammatory cells in the tumor microenvironment (TME) are responsible for tilting the balance between tumor progression and regression. Cancer-related inflammation has also been shown to influence the efficacy of conventional therapy. Mononuclear phagocytes (MPs) represent a major component of the inflammatory circuit that promotes tumor progression. Despite their potential to activate immunosurveillance and exert anti-tumor responses, MPs are subverted by the tumor to support its growth, immune evasion, and spread. MP responses in the TME are dictated by a network of stimuli integrated through the cross-talk between activatory and inhibitory receptors. Alterations in receptor expression/signaling can create excessive inflammation and, when chronic, promote tumorigenesis. Research advances have led to the development of new therapeutic strategies aimed at receptor targeting to induce a tumor-infiltrating MP switch from a cancer-supportive toward an anti-tumor phenotype, demonstrating efficacy in different human cancers. This review provides an overview of the role of MP receptors in inflammation-mediated carcinogenesis and discusses the most recent updates regarding their targeting for immunotherapeutic purposes. We focus in particular on the TREM-1 receptor, a major amplifier of MP inflammatory responses, highlighting its relevance in the development and progression of several types of inflammation-associated malignancies and the promises of its inhibition for cancer immunotherapy.
Collapse
|
5
|
Saylor J, Ma Z, Goodridge HS, Huang F, Cress AE, Pandol SJ, Shiao SL, Vidal AC, Wu L, Nickols NG, Gertych A, Knudsen BS. Spatial Mapping of Myeloid Cells and Macrophages by Multiplexed Tissue Staining. Front Immunol 2018; 9:2925. [PMID: 30619287 PMCID: PMC6302234 DOI: 10.3389/fimmu.2018.02925] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
An array of phenotypically diverse myeloid cells and macrophages (MC&M) resides in the tumor microenvironment, requiring multiplexed detection systems for visualization. Here we report an automated, multiplexed staining approach, named PLEXODY, that consists of five MC&M-related fluorescently-tagged antibodies (anti - CD68, - CD163, - CD206, - CD11b, and - CD11c), and three chromogenic antibodies, reactive with high- and low-molecular weight cytokeratins and CD3, highlighting tumor regions, benign glands and T cells. The staining prototype and image analysis methods which include a pixel/area-based quantification were developed using tissues from inflamed colon and tonsil and revealed a unique tissue-specific composition of 14 MC&M-associated pixel classes. As a proof-of-principle, PLEXODY was applied to three cases of pancreatic, prostate and renal cancers. Across digital images from these cancer types we observed 10 MC&M-associated pixel classes at frequencies greater than 3%. Cases revealed higher frequencies of single positive compared to multi-color pixels and a high abundance of CD68+/CD163+ and CD68+/CD163+/CD206+ pixels. Significantly more CD68+ and CD163+ vs. CD11b+ and CD11c+ pixels were in direct contact with tumor cells and T cells. While the greatest percentage (~70%) of CD68+ and CD163+ pixels was 0–20 microns away from tumor and T cell borders, CD11b+ and CD11c+ pixels were detected up to 240 microns away from tumor/T cell masks. Together, these data demonstrate significant differences in densities and spatial organization of MC&M-associated pixel classes, but surprising similarities between the three cancer types.
Collapse
Affiliation(s)
- Joshua Saylor
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Zhaoxuan Ma
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Helen S Goodridge
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Fangjin Huang
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Anne E Cress
- Molecular and Cellular Biology, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Stephen J Pandol
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephen L Shiao
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Adriana C Vidal
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lily Wu
- Department of Molecular and Medical Pharmacology and Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicholas G Nickols
- Department of Molecular and Medical Pharmacology and Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Arkadiusz Gertych
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Beatrice S Knudsen
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
6
|
Mechanics of antigen extraction in the B cell synapse. Mol Immunol 2018; 101:319-328. [PMID: 30036798 DOI: 10.1016/j.molimm.2018.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022]
Abstract
B cell encounter with antigen displayed on antigen-presenting cells leads to B cell immune synapse formation, internalisation of the antigen, and stimulation of antibody responses. The sensitivity with which B cells detect antigen, and the quality and quantity of antigen that B cells acquire, depend upon mechanical properties of the immune synapse including interfacial tension, the strength of intermolecular bonds, and the compliance of the molecules and membranes that participate in antigen presentation. In this review, we discuss our current understanding of how these various physical parameters influence B cell antigen extraction in the immune synapse and how a more comprehensive understanding of B cell mechanics may promote the development of new approaches to stimulate the production of desired antibodies.
Collapse
|
7
|
Optimization of Ex Vivo Murine Bone Marrow Derived Immature Dendritic Cells: A Comparative Analysis of Flask Culture Method and Mouse CD11c Positive Selection Kit Method. BONE MARROW RESEARCH 2018; 2018:3495086. [PMID: 29682352 PMCID: PMC5842714 DOI: 10.1155/2018/3495086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 11/18/2022]
Abstract
12-14 days of culturing of bone marrow (BM) cells containing various growth factors is widely used method for generating dendritic cells (DCs) from suspended cell population. Here we compared flask culture method and commercially available CD11c Positive Selection kit method. Immature BMDCs' purity of adherent as well as suspended cell population was generated in the decreasing concentration of recombinant-murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) in nontreated tissue culture flasks. The expression of CD11c, MHCII, CD40, and CD86 was measured by flow cytometry. We found significant difference (P < 0.05) between the two methods in the adherent cells population but no significant difference was observed between the suspended cell populations with respect to CD11c+ count. However, CD11c+ was significantly higher in both adhered and suspended cell population by culture method but kit method gave more CD11c+ from suspended cells population only. On the other hand, using both methods, immature DC expressed moderate level of MHC class II molecules as well as low levels of CD40 and CD86. Our findings suggest that widely used culture method gives the best results in terms of yield, viability, and purity of BMDCs from both adherent and suspended cell population whereas kit method works well for suspended cell population.
Collapse
|
8
|
The Phenotypic Characterization of the Human Renal Mononuclear Phagocytes Reveal a Co-Ordinated Response to Injury. PLoS One 2016; 11:e0151674. [PMID: 26999595 PMCID: PMC4801374 DOI: 10.1371/journal.pone.0151674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
Mammalian tissues contain networks of mononuclear phagocytes (MPh) that sense injury and orchestrate the response to it. In mice, this is affected by distinct populations of dendritic cells (DC), monocytes and macrophages and recent studies suggest the same is true for human skin and intestine but little is known about the kidney. Here we describe the analysis of MPh populations in five human kidneys and show they are highly heterogeneous and contain discrete populations of DC, monocytes and macrophages. These include: plasmacytoid DC (CD303+) and both types of conventional DC—cDC1 (CD141+ cells) and CD2 (CD1c+ cells); classical, non-classical and intermediate monocytes; and macrophages including a novel population of CD141+ macrophages clearly distinguishable from cDC1 cells. The relative size of the MPh populations differed between kidneys: the pDC population was bi-modally distributed being less than 2% of DC in two kidneys without severe injury and over 35% in the remaining three with low grade injury in the absence of morphological evidence of inflammation. There were profound differences in the other MPh populations in kidneys with high and low numbers of pDC. Thus, cDC1 cells were abundant (55 and 52.3%) when pDC were sparse and sparse (12.8–12.5%) when pDC were abundant, whereas the proportions of cDC2 cells and classical monocytes increased slightly in pDC high kidneys. We conclude that MPh are highly heterogeneous in human kidneys and that pDC infiltration indicative of low-grade injury does not occur in isolation but is part of a co-ordinated response affecting all renal DC, monocyte and macrophage populations.
Collapse
|
9
|
Ruiz-de-Angulo A, Zabaleta A, Gómez-Vallejo V, Llop J, Mareque-Rivas JC. Microdosed Lipid-Coated (67)Ga-Magnetite Enhances Antigen-Specific Immunity by Image Tracked Delivery of Antigen and CpG to Lymph Nodes. ACS NANO 2016; 10:1602-1618. [PMID: 26678549 DOI: 10.1021/acsnano.5b07253] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Development of vaccines to prevent and treat emerging new pathogens and re-emerging infections and cancer remains a major challenge. An attractive approach is to build the vaccine upon a biocompatible NP that simultaneously acts as accurate delivery vehicle and radiotracer for PET/SPECT imaging for ultrasensitive and quantitative in vivo imaging of NP delivery to target tissues/organs. Success in developing these nanovaccines will depend in part on having a "correct" NP size and accommodating and suitably displaying antigen and/or adjuvants (e.g., TLR agonists). Here we develop and evaluate a NP vaccine based on iron oxide-selective radio-gallium labeling suitable for SPECT((67)Ga)/PET((68)Ga) imaging and efficient delivery of antigen (OVA) and TLR 9 agonists (CpGs) using lipid-coated magnetite micelles. OVA, CpGs and rhodamine are easily accommodated in the hybrid micelles, and the average size of the construct can be controlled to be ca. 40 nm in diameter to target direct lymphatic delivery of the vaccine cargo to antigen presenting cells (APCs) in the lymph nodes (LNs). While the OVA/CpG-loaded construct showed effective delivery to endosomal TLR 9 in APCs, SPECT imaging demonstrated migration from the injection site to regional and nonregional LNs. In correlation with the imaging results, a range of in vitro and in vivo studies demonstrate that by using this microdosed nanosystem the cellular and humoral immune responses are greatly enhanced and provide protection against tumor challenge. These results suggest that these nanosystems have considerable potential for image-guided development of targeted vaccines that are more effective and limit toxicity.
Collapse
Affiliation(s)
- Ane Ruiz-de-Angulo
- Theranostic Nanomedicine Laboratory, Cooperative Centre for Research in Biomaterials (CIC biomaGUNE) , Paseo Miramón 182, 20009-San Sebastián, Spain
| | - Aintzane Zabaleta
- Theranostic Nanomedicine Laboratory, Cooperative Centre for Research in Biomaterials (CIC biomaGUNE) , Paseo Miramón 182, 20009-San Sebastián, Spain
| | - Vanessa Gómez-Vallejo
- Radiochemistry Platform, Cooperative Centre for Research in Biomaterials (CIC biomaGUNE) , Paseo Miramón 182, 20009-San Sebastián, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Laboratory, Cooperative Centre for Research in Biomaterials (CIC biomaGUNE) , Paseo Miramón 182, 20009-San Sebastián, Spain
| | - Juan C Mareque-Rivas
- Theranostic Nanomedicine Laboratory, Cooperative Centre for Research in Biomaterials (CIC biomaGUNE) , Paseo Miramón 182, 20009-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science , 48011-Bilbao, Spain
- School of Engineering, The University of Aberdeen , Aberdeen AB24 3UE, U.K
| |
Collapse
|
10
|
Li H, Fierens K, Zhang Z, Vanparijs N, Schuijs MJ, Van Steendam K, Feiner Gracia N, De Rycke R, De Beer T, De Beuckelaer A, De Koker S, Deforce D, Albertazzi L, Grooten J, Lambrecht BN, De Geest BG. Spontaneous Protein Adsorption on Graphene Oxide Nanosheets Allowing Efficient Intracellular Vaccine Protein Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1147-55. [PMID: 26694764 DOI: 10.1021/acsami.5b08963] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanomaterials hold potential of altering the interaction between therapeutic molecules and target cells or tissues. High aspect ratio nanomaterials in particular have been reported to possess unprecedented properties and are intensively investigated for their interaction with biological systems. Graphene oxide (GOx) is a water-soluble graphene derivative that combines high aspect ratio dimension with functional groups that can be exploited for bioconjugation. Here, we demonstrate that GOx nanosheets can spontaneously adsorb proteins by a combination of interactions. This property is then explored for intracellular protein vaccine delivery, in view of the potential of GOx nanosheets to destabilize lipid membranes such as those of intracellular vesicles. Using a series of in vitro experiments, we show that GOx nanosheet adsorbed proteins are efficiently internalized by dendritic cells (DCs: the most potent class of antigen presenting cells of the immune system) and promote antigen cross-presentation to CD8 T cells. The latter is a hallmark in the induction of potent cellular antigen-specific immune responses against intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kaat Fierens
- VIB Inflammation Research Center, Ghent University , Technologiepark 927, 9052 Zwijnaarde, Belgium
- Department of Respiratory Medicine, University Hospital Ghent , De Pintelaan 185, 9000 Ghent, Belgium
| | - Zhiyue Zhang
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Nane Vanparijs
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Martijn J Schuijs
- VIB Inflammation Research Center, Ghent University , Technologiepark 927, 9052 Zwijnaarde, Belgium
- Department of Respiratory Medicine, University Hospital Ghent , De Pintelaan 185, 9000 Ghent, Belgium
| | - Katleen Van Steendam
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Natàlia Feiner Gracia
- Institute for Bioengineering of Catalonia , Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Riet De Rycke
- Department of Respiratory Medicine, University Hospital Ghent , De Pintelaan 185, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University , Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - Thomas De Beer
- Department of Pharmaceutical Analysis, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Ans De Beuckelaer
- Department of Biomedical Molecular Biology, Ghent University , Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - Stefaan De Koker
- Department of Biomedical Molecular Biology, Ghent University , Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia , Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Johan Grooten
- Department of Biomedical Molecular Biology, Ghent University , Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - Bart N Lambrecht
- VIB Inflammation Research Center, Ghent University , Technologiepark 927, 9052 Zwijnaarde, Belgium
- Department of Respiratory Medicine, University Hospital Ghent , De Pintelaan 185, 9000 Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Clement CC, Becerra A, Yin L, Zolla V, Huang L, Merlin S, Follenzi A, Shaffer SA, Stern LJ, Santambrogio L. The Dendritic Cell Major Histocompatibility Complex II (MHC II) Peptidome Derives from a Variety of Processing Pathways and Includes Peptides with a Broad Spectrum of HLA-DM Sensitivity. J Biol Chem 2016; 291:5576-5595. [PMID: 26740625 DOI: 10.1074/jbc.m115.655738] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 12/26/2022] Open
Abstract
The repertoire of peptides displayed in vivo by MHC II molecules derives from a wide spectrum of proteins produced by different cell types. Although intracellular endosomal processing in dendritic cells and B cells has been characterized for a few antigens, the overall range of processing pathways responsible for generating the MHC II peptidome are currently unclear. To determine the contribution of non-endosomal processing pathways, we eluted and sequenced over 3000 HLA-DR1-bound peptides presented in vivo by dendritic cells. The processing enzymes were identified by reference to a database of experimentally determined cleavage sites and experimentally validated for four epitopes derived from complement 3, collagen II, thymosin β4, and gelsolin. We determined that self-antigens processed by tissue-specific proteases, including complement, matrix metalloproteases, caspases, and granzymes, and carried by lymph, contribute significantly to the MHC II self-peptidome presented by conventional dendritic cells in vivo. Additionally, the presented peptides exhibited a wide spectrum of binding affinity and HLA-DM susceptibility. The results indicate that the HLA-DR1-restricted self-peptidome presented under physiological conditions derives from a variety of processing pathways. Non-endosomal processing enzymes add to the number of epitopes cleaved by cathepsins, altogether generating a wider peptide repertoire. Taken together with HLA-DM-dependent and-independent loading pathways, this ensures that a broad self-peptidome is presented by dendritic cells. This work brings attention to the role of "self-recognition" as a dynamic interaction between dendritic cells and the metabolic/catabolic activities ongoing in every parenchymal organ as part of tissue growth, remodeling, and physiological apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Simone Merlin
- the School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Antonia Follenzi
- From the Departments of Pathology and; the School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Scott A Shaffer
- Biochemistry and Molecular Pharmacology and; the Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, Massachusetts 01655, and
| | - Lawrence J Stern
- the Departments of Pathology and; Biochemistry and Molecular Pharmacology and
| | - Laura Santambrogio
- From the Departments of Pathology and; Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York 10461,.
| |
Collapse
|
12
|
Jounai K, Sugimura T, Ohshio K, Fujiwara D. Oral administration of Lactococcus lactis subsp. lactis JCM5805 enhances lung immune response resulting in protection from murine parainfluenza virus infection. PLoS One 2015; 10:e0119055. [PMID: 25746923 PMCID: PMC4352084 DOI: 10.1371/journal.pone.0119055] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/09/2015] [Indexed: 12/24/2022] Open
Abstract
When activated by viral infection, plasmacytoid dendritic cells (pDCs) play a primary role in the immune response through secretion of IFN-α. Lactococcus lactis subsp. lactis JCM5805 (JCM5805) is a strain of lactic acid bacteria (LAB) that activates murine and human pDCs to express type I and type III interferons (IFNs). JCM5805 has also been shown to activate pDCs via a Toll-like receptor 9 (TLR9) dependent pathway. In this study, we investigated the anti-viral effects of oral administration of JCM5805 using a mouse model of murine parainfluenza virus (mPIV1) infection. JCM5805-fed mice showed a drastic improvement in survival rate, prevention of weight loss, and reduction in lung histopathology scores compared to control mice. We further examined the mechanism of anti-viral effects elicited by JCM5805 administration using naive mice. Microscopic observations showed that JCM5805 was incorporated into CD11c+ immune cells in Peyer’s patches (PP) and PP pDCs were significantly activated and the expression levels of IFNs were significantly increased. Interestingly, nevertheless resident pDCs at lung were not activated and expressions levels of IFNs at whole lung tissue were not influenced, the expressions of anti-viral factors induced by IFNs, such as Isg15, Oasl2, and Viperin, at lung were up-regulated in JCM5805-fed mice compared to control mice. Therefore expressed IFNs from intestine might be delivered to lung and IFN stimulated genes might be induced. Furthermore, elevated expressions of type I IFNs from lung lymphocytes were observed in response to mPIV1 ex vivo stimulation in JCM5805-fed mice compared to control. This might be due to increased ratio of pDCs located in lung were significantly increased in JCM5805 group. Taken together, a specific LAB strain might be able to affect anti-viral immunological profile in lung via activation of intestinal pDC leading to enhanced anti-viral phenotype in vivo.
Collapse
Affiliation(s)
- Kenta Jounai
- Technical Deveropment Center, Koiwai Dairy Products Co Ltd. Sayama, Japan
- Central Laboratories for Key Technologies, Kirin Co. Ltd., Yokohama, Japan
- * E-mail:
| | - Tetsu Sugimura
- Central Laboratories for Key Technologies, Kirin Co. Ltd., Yokohama, Japan
| | - Konomi Ohshio
- Central Laboratories for Key Technologies, Kirin Co. Ltd., Yokohama, Japan
| | - Daisuke Fujiwara
- Central Laboratories for Key Technologies, Kirin Co. Ltd., Yokohama, Japan
| |
Collapse
|
13
|
Mauf S, Penna-Martinez M, Jentzsch T, Ackermann H, Henrich D, Radeke HH, Brück P, Badenhoop K, Ramos-Lopez E. Immunomodulatory effects of 25-hydroxyvitamin D3 on monocytic cell differentiation and influence of vitamin D3 polymorphisms in type 1 diabetes. J Steroid Biochem Mol Biol 2015; 147:17-23. [PMID: 25448747 DOI: 10.1016/j.jsbmb.2014.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Preventive measures and a causal therapy for type 1 diabetes (T1D) remain elusive. An imbalance between different dendritic cells (DC) with increased immunogenic DC and decreased tolerogenic DC (tDC) may lead to T1D. Furthermore, 25(OH)D3 is associated with less adverse effects than 1,25(OH)2D3. PURPOSE The present study was performed to clarify the remaining issues about the cellular effects of 25(OH)D3 in patients with T1D and the role of genetic polymorphisms of the vitamin D3 (VD3) metabolism on a functional cellular level. MATERIALS AND METHODS Twelve patients with T1D were case-matched to twelve healthy controls (HC). Monocytes (MC) were either not supplemented or supplemented with 25(OH)D3 in vitro and phenotyped with fluorescence-activated cell sorting. In vitro synthesis and plasma levels of 25(OH)D3 and 1,25(OH)2D3 were analyzed as well as twelve gene polymorphisms of the VD3 metabolism. RESULTS 25(OH)D3 significantly inhibited differentiation of MC into DC and led to an increase of intermediate cells (IC), which show a similar phenotype as tDC. The patient with a recent onset of T1D showed a higher increase in MC and IC compared to patients with long-standing T1D. There were significant differences for the increase of IC with supplementation of 25(OH)D3 between different genotypes within the polymorphisms of VDR-BsmI-rs1544410, VDR-TaqI-rs731236 and CYP24A1-rs927650. CONCLUSION This study suggests that 25(OH)D3 shows immunomodulatory effects on a cellular level in patients with T1D and HC by inhibiting the differentiation of MC into DC and promoting the formation of IC, which are similar to tDC, thereby shifting immunity to self-tolerance. The potency of 25(OH)D3 did not differ between patients with T1D and HC. Increased plasma levels of 25(OH)D3 may inhibit a proinflammatory cell milieu. Despite of the limited patient number, this study generates the hypothesis that the immunmodulatory effects may be influenced by genotypes of the VDR and CYP24A1 illustrating their functional role in T1D susceptibility, which is worth further investigation.
Collapse
Affiliation(s)
- Sabrina Mauf
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Goethe-University Hospital, Theodor-Stern-Kai, Frankfurt am Main, Germany
| | - Marissa Penna-Martinez
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Goethe-University Hospital, Theodor-Stern-Kai, Frankfurt am Main, Germany
| | - Thorsten Jentzsch
- Division of Trauma Surgery, Department of Surgery, University Hospital Zürich, Switzerland
| | - Hanns Ackermann
- Institute of Biostatistics and Mathematical Modeling, Center of Health Sciences, Goethe-University, Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Department of Surgery, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Heinfried H Radeke
- Center for Drug Research, Development and Safety, Goethe-University, Frankfurt am Main, Germany
| | - Patrick Brück
- Division of Hematology and Oncology, Department of Internal Medicine, University Hospital Giessen and Marburg, Marburg, Germany
| | - Klaus Badenhoop
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Goethe-University Hospital, Theodor-Stern-Kai, Frankfurt am Main, Germany
| | - Elizabeth Ramos-Lopez
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Goethe-University Hospital, Theodor-Stern-Kai, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Alamino VA, Mascanfroni ID, Montesinos MM, Gigena N, Donadio AC, Blidner AG, Milotich SI, Cheng SY, Masini-Repiso AM, Rabinovich GA, Pellizas CG. Antitumor Responses Stimulated by Dendritic Cells Are Improved by Triiodothyronine Binding to the Thyroid Hormone Receptor β. Cancer Res 2015; 75:1265-74. [PMID: 25672979 DOI: 10.1158/0008-5472.can-14-1875] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/20/2015] [Indexed: 01/22/2023]
Abstract
Bidirectional cross-talk between the neuroendocrine and immune systems orchestrates immune responses in both physiologic and pathologic settings. In this study, we provide in vivo evidence of a critical role for the thyroid hormone triiodothyronine (T3) in controlling the maturation and antitumor functions of dendritic cells (DC). We used a thyroid hormone receptor (TR) β mutant mouse (TRβPV) to establish the relevance of the T3-TRβ system in vivo. In this model, TRβ signaling endowed DCs with the ability to stimulate antigen-specific cytotoxic T-cell responses during tumor development. T3 binding to TRβ increased DC viability and augmented DC migration to lymph nodes. Moreover, T3 stimulated the ability of DCs to cross-present antigens and to stimulate cytotoxic T-cell responses. In a B16-OVA mouse model of melanoma, vaccination with T3-stimulated DCs inhibited tumor growth and prolonged host survival, in part by promoting the generation of IFNγ-producing CD8(+) T cells. Overall, our results establish an adjuvant effect of T3-TRβ signaling in DCs, suggesting an immediately translatable method to empower DC vaccination approaches for cancer immunotherapy.
Collapse
Affiliation(s)
- Vanina A Alamino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Iván D Mascanfroni
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María M Montesinos
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás Gigena
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana C Donadio
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ada G Blidner
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET) and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sonia I Milotich
- Hospital Materno-Neonatal Ramón Carrillo, Sanatorio Allende, Córdoba, Argentina
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ana M Masini-Repiso
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET) and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudia G Pellizas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
15
|
Inflammation-induced lymphangiogenesis and lymphatic dysfunction. Angiogenesis 2014; 17:325-34. [PMID: 24449090 DOI: 10.1007/s10456-014-9416-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/09/2014] [Indexed: 12/27/2022]
Abstract
The lymphatic system is intimately linked to tissue fluid homeostasis and immune cell trafficking. These functions are paramount in the establishment and development of an inflammatory response. In the past decade, an increasing number of reports has revealed that marked changes, such as lymphangiogenesis and lymphatic contractile dysfunction occur in both vascular and nodal parts of the lymphatic system during inflammation, as well as other disease processes. This review provides a critical update on the role of the lymphatic system in disease process such as chronic inflammation and cancer and examines the changes in lymphatic functions the diseases cause and the influence these changes have on the progression of the diseases.
Collapse
|
16
|
Clement CC, Santambrogio L. The lymph self-antigen repertoire. Front Immunol 2013; 4:424. [PMID: 24379811 PMCID: PMC3864156 DOI: 10.3389/fimmu.2013.00424] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/20/2013] [Indexed: 01/26/2023] Open
Abstract
The lymphatic fluid originates from the interstitial fluid which bathes every parenchymal organ and reflects the “omic” composition of the tissue from which it originates in its physiological or pathological signature. Several recent proteomic analyses have mapped the proteome-degradome and peptidome of this immunologically relevant fluid pointing to the lymph as an important source of tissue-derived self-antigens. A vast array of lymph-circulating peptides have been mapped deriving from a variety of processing pathways including caspases, cathepsins, MMPs, ADAMs, kallikreins, calpains, and granzymes, among others. These self peptides can be directly loaded on circulatory dendritic cells and expand the self-antigenic repertoire available for central and peripheral tolerance.
Collapse
Affiliation(s)
- Cristina C Clement
- Department of Pathology, Albert Einstein College of Medicine , New York, NY , USA ; Department of Microbiology and Immunology, Albert Einstein College of Medicine , New York, NY , USA
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine , New York, NY , USA ; Department of Microbiology and Immunology, Albert Einstein College of Medicine , New York, NY , USA
| |
Collapse
|
17
|
Microbiomes of unreactive and pathologically altered ileocecal lymph nodes of slaughter pigs. Appl Environ Microbiol 2013; 80:193-203. [PMID: 24141125 DOI: 10.1128/aem.03089-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microbe-laden dendritic cells are shifted to ileocecal lymph nodes (ICLNs), where microbes are concentrated and an adequate immune response is triggered. Hence, ICLNs are at a crucial position in immune anatomy and control processes of the local immune system. Pathological alterations in ICLNs, such as reactive hyperplasia, lymphadenitis purulenta, or granulomatosa, can harbor a multitude of pathogens and commensals, posing a potential zoonotic risk in animal production. The aim of this study was to characterize the microbial diversity of unreactive ICLNs of slaughter pigs and to investigate community shifts in reactive ICLNs altered by enlargement, purulence, or granulomatous formations. Pyrosequencing of 16S rRNA gene amplicons from 32 ICLNs yielded 175,313 sequences, clustering into 650 operational taxonomic units (OTUs). OTUs were assigned to 239 genera and 11 phyla. Besides a highly diverse bacterial community in ICLNs, we observed significant shifts in pathologically altered ICLNs. The relative abundances of Cloacibacterium- and Novosphingobium-associated OTUs and the genus Faecalibacterium were significantly higher in unreactive ICLNs than in pathologically altered ICLNs. Enlarged ICLNs harbored significantly more Lactobacillus- and Clostridium-associated sequences. Relative abundances of Mycoplasma, Bacteroides, Veillonella, and Variovorax OTUs were significantly increased in granulomatous ICLNs, whereas abundances of Pseudomonas, Escherichia, and Acinetobacter OTUs were significantly increased in purulent ICLNs (P < 0.05). Correlation-based networks revealed interactions among OTUs in all ICLN groups, and discriminant analyses depicted discrimination in response to pathological alterations. This study is the first community-based survey in ICLNs of livestock animals and will provide a basis to broaden the knowledge of microbe-host interactions in pigs.
Collapse
|
18
|
Liao S, Padera TP. Lymphatic function and immune regulation in health and disease. Lymphat Res Biol 2013; 11:136-43. [PMID: 24024577 DOI: 10.1089/lrb.2013.0012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Shan Liao
- E. L. Steele Laboratory, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital , Boston, Massachusetts
| | | |
Collapse
|
19
|
Santambrogio L, Stern LJ. Carrying yourself: self antigen composition of the lymphatic fluid. Lymphat Res Biol 2013; 11:149-54. [PMID: 24024574 DOI: 10.1089/lrb.2013.0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Advances in proteomics methodology and instrumentation have allowed detailed characterization of the composition of lymph. Far from being a simple ultrafiltrate of blood plasma, lymph has been shown to carry a rich repertoire of proteins and peptides reflecting the tissue of origin and its physiological state. Peptides derived from lymph can be loaded on the MHCII proteins, particularly those present on immature and/or inactivated antigen presenting cells, and may play an important role in maintenance of peripheral tolerance.
Collapse
Affiliation(s)
- Laura Santambrogio
- 1 Department of Pathology, Microbiology and Immunology, Albert Einstein College of Medicine , New York, New York
| | | |
Collapse
|
20
|
Malhotra D, Fletcher AL, Turley SJ. Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity. Immunol Rev 2013; 251:160-76. [PMID: 23278748 DOI: 10.1111/imr.12023] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secondary lymphoid organs (SLOs), including lymph nodes, Peyer's patches, and the spleen, have evolved to bring cells of the immune system together. In these collaborative environments, lymphocytes scan the surfaces of antigen-presenting cells for cognate antigens, while moving along stromal networks. The cell-cell interactions between stromal and hematopoietic cells in SLOs are therefore integral to the normal functioning of these tissues. Not only do stromal cells physically construct SLO architecture but they are essential for regulating hematopoietic populations within these domains. Stromal cells interact closely with lymphocytes and dendritic cells, providing scaffolds on which these cells migrate, and recruiting them into niches by secreting chemokines. Within lymph nodes, stromal cell-ensheathed conduit networks transport small antigens deep into the SLO parenchyma. More recently, stromal cells have been found to induce peripheral CD8(+) T-cell tolerance and control the extent to which newly activated T cells proliferate within lymph nodes. Thus, stromal-hematopoietic crosstalk has important consequences for regulating immune cell function within SLOs. In addition, stromal cell interactions with hematopoietic cells, other stroma, and the inflammatory milieu have profound effects on key stromal functions. Here, we examine ways in which these interactions within the lymph node environment influence the adaptive immune response.
Collapse
Affiliation(s)
- Deepali Malhotra
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
21
|
Characterization of dendritic cell and regulatory T cell functions against Mycobacterium tuberculosis infection. BIOMED RESEARCH INTERNATIONAL 2013; 2013:402827. [PMID: 23762843 PMCID: PMC3676983 DOI: 10.1155/2013/402827] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/28/2013] [Accepted: 05/08/2013] [Indexed: 11/17/2022]
Abstract
Glutathione (GSH) is a tripeptide that regulates intracellular redox and other vital aspects of cellular functions. GSH plays a major role in enhancing the immune system. Dendritic cells (DCs) are potent antigen presenting cells that participate in both innate and acquired immune responses against microbial infections. Regulatory T cells (Tregs) play a significant role in immune homeostasis. In this study, we investigated the effects of GSH in enhancing the innate and adaptive immune functions of DCs against Mycobacterium tuberculosis (M. tb) infection. We also characterized the functions of the sub-populations of CD4+T cells such as Tregs and non-Tregs in modulating the ability of monocytes to control the intracellular M. tb infection. Our results indicate that GSH by its direct antimycobacterial activity inhibits the growth of intracellular M. tb inside DCs. GSH also increases the expressions of costimulatory molecules such as HLA-DR, CD80 and CD86 on the cell surface of DCs. Furthermore, GSH-enhanced DCs induced a higher level of T-cell proliferation. We also observed that enhancing the levels of GSH in Tregs resulted in downregulation in the levels of IL-10 and TGF- β and reduction in the fold growth of M. tb inside monocytes. Our studies demonstrate novel regulatory mechanisms that favor both innate and adaptive control of M. tb infection.
Collapse
|
22
|
Pierobon D, Bosco MC, Blengio F, Raggi F, Eva A, Filippi M, Musso T, Novelli F, Cappello P, Varesio L, Giovarelli M. Chronic hypoxia reprograms human immature dendritic cells by inducing a proinflammatory phenotype and TREM-1 expression. Eur J Immunol 2013; 43:949-66. [PMID: 23436478 DOI: 10.1002/eji.201242709] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 12/21/2012] [Accepted: 01/25/2013] [Indexed: 12/30/2022]
Abstract
DCs are powerful antigen-presenting cells central in the orchestration of innate and acquired immunity. DC development, migration, and activities are intrinsically linked to the microenvironment. DCs migrate through pathologic tissues before reaching their final destination in the lymph nodes. Hypoxia, a condition of low partial oxygen pressure, is a common feature of many pathologic situations, capable of modifying DC phenotype and functional behavior. We studied human monocyte-derived immature DCs generated under chronic hypoxic conditions (H-iDCs). We demonstrate by gene expression profiling the upregulation of a cluster of genes coding for antigen-presentation, immunoregulatory, and pattern recognition receptors, suggesting a stimulatory role for hypoxia on iDC immunoregulatory functions. In particular, we show that H-iDCs express triggering receptor expressed on myeloid cells(TREM-1), a member of the Ig superfamily of immunoreceptors and an amplifier of inflammation. This effect is reversible because H-iDC reoxygenation results in TREM-1 down-modulation. TREM-1 engagement promotes upregulation of T-cell costimulatory molecules and homing chemokine receptors, typical of mature DCs, and increases the production of proinflammatory, Th1/Th17-priming cytokines/chemokines, resulting in increased T-cell responses. These results suggest that TREM-1 induction by the hypoxic microenvironment represents a mechanism of regulation of Th1-cell trafficking and activation by iDCs differentiated at pathologic sites.
Collapse
Affiliation(s)
- Daniele Pierobon
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Prasad A, Kuzontkoski PM, Shrivastava A, Zhu W, Li DY, Groopman JE. Slit2N/Robo1 inhibit HIV-gp120-induced migration and podosome formation in immature dendritic cells by sequestering LSP1 and WASp. PLoS One 2012; 7:e48854. [PMID: 23119100 PMCID: PMC3485365 DOI: 10.1371/journal.pone.0048854] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 10/01/2012] [Indexed: 11/26/2022] Open
Abstract
Cell-mediated transmission and dissemination of sexually-acquired human immunodeficiency virus 1 (HIV-1) in the host involves the migration of immature dendritic cells (iDCs). iDCs migrate in response to the HIV-1 envelope protein, gp120, and inhibiting such migration may limit the mucosal transmission of HIV-1. In this study, we elucidated the mechanism of HIV-1-gp120-induced transendothelial migration of iDCs. We found that gp120 enhanced the binding of Wiskott-Aldrich Syndrome protein (WASp) and the Actin-Related Protein 2/3 (Arp2/3) complex with β-actin, an interaction essential for the proper formation of podosomes, specialized adhesion structures required for the migration of iDCs through different tissues. We further identified Leukocyte-Specific Protein 1 (LSP1) as a novel component of the WASp-Arp2/3-β-actin complex. Pretreating iDCs with an active fragment of the secretory glycoprotein Slit2 (Slit2N) inhibited HIV-1-gp120-mediated migration and podosome formation, by inducing the cognate receptor Roundabout 1 (Robo1) to bind to and sequester WASp and LSP1 from β-actin. Slit2N treatment also inhibited Src signaling and the activation of several downstream molecules, including Rac1, Pyk2, paxillin, and CDC42, a major regulator of podosome formation. Taken together, our results support a novel mechanism by which Slit2/Robo1 may inhibit the HIV-1-gp120-induced migration of iDCs, thereby restricting dissemination of HIV-1 from mucosal surfaces in the host.
Collapse
Affiliation(s)
- Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paula M. Kuzontkoski
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ashutosh Shrivastava
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Weiquan Zhu
- Department of Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Dean Y. Li
- Department of Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Jerome E. Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
24
|
Bosco MC, Varesio L. Dendritic cell reprogramming by the hypoxic environment. Immunobiology 2012; 217:1241-9. [PMID: 22901977 DOI: 10.1016/j.imbio.2012.07.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/06/2012] [Accepted: 07/19/2012] [Indexed: 12/17/2022]
Abstract
Myeloid dendritic cells (DCs) are professional antigen-presenting cells central to the orchestration of innate and acquired immunity and the maintenance of self-tolerance. The local microenvironment contributes to the regulation of DC development and functions, and deregulated DC responses may result in amplification of inflammation, loss of tolerance, or establishment of immune escape mechanisms. DC generation from monocytic precursors recruited at sites of inflammation, tissue damage, or neoplasia occurs under condition of low partial oxygen pressure (pO(2), hypoxia). We reviewed the literature addressing the phenotypic and functional changes triggered by hypoxia in monocyte-derived immature (i) and mature (m) DCs. The discussion will revolve around in vitro studies of gene expression profile, which give a comprehensive representation of the complexity of response of these cells to low pO(2). The gene expression pattern of hypoxic DC will be discussed to address the question of the relationship with a specific maturation stage. We will summarize data relative to the regulation of the chemotactic network, which points to a role for hypoxia in promoting a migratory phenotype in iDCs and a highly proinflammatory state in mDCs. Current knowledge of the strict regulatory control exerted by hypoxia on the expression of immune-related cell surface receptors will also be addressed, with a particular focus on a newly identified marker of hypoxic DCs endowed with proinflammatory properties. Furthermore, we discuss the literature on the transcription mechanisms underlying hypoxia-regulated gene expression in DCs, which support a major role for the HIF/HRE pathway. Finally, recent advances shedding light on the in vivo influence of the local hypoxic microenvironment on DCs infiltrating the inflamed joints of juvenile idiopathic arthritis patients are outlined.
Collapse
Affiliation(s)
- Maria Carla Bosco
- Laboratory of Molecular Biology, G. Gaslini Institute, Genova, Italy.
| | | |
Collapse
|
25
|
Pasham V, Rotte A, Yang W, Zelenak C, Bhandaru M, Föller M, Lang F. OSR1-sensitive regulation of Na+/H+ exchanger activity in dendritic cells. Am J Physiol Cell Physiol 2012; 303:C416-26. [PMID: 22648948 DOI: 10.1152/ajpcell.00420.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The oxidative stress-responsive kinase 1 (OSR1) is activated by WNK (with no K kinases) and in turn stimulates the thiazide-sensitive Na-Cl cotransporter (NCC) and the furosemide-sensitive Na-K-2Cl cotransporter (NKCC), thus contributing to transport and cell volume regulation. Little is known about extrarenal functions of OSR1. The present study analyzed the impact of decreased OSR1 activity on the function of dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. DCs were cultured from bone marrow of heterozygous WNK-resistant OSR1 knockin mice (osr(KI)) and wild-type mice (osr(WT)). Cell volume was estimated from forward scatter in FACS analysis, ROS production from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, cytosolic pH (pH(i)) from 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein fluorescence, and Na(+)/H(+) exchanger activity from Na(+)-dependent realkalinization following ammonium pulse and migration utilizing transwell chambers. DCs expressed WNK1, WNK3, NCC, NKCC1, and OSR1. Phosphorylated NKCC1 was reduced in osr(KI) DCs. Cell volume and pH(i) were similar in osr(KI) and osr(WT) DCs, but Na(+)/H(+) exchanger activity and ROS production were higher in osr(KI) than in osr(WT) DCs. Before LPS treatment, migration was similar in osr(KI) and osr(WT) DCs. LPS (1 μg/ml), however, increased migration of osr(WT) DCs but not of osr(KI) DCs. Na(+)/H(+) exchanger 1 inhibitor cariporide (10 μM) decreased cell volume, intracellular reactive oxygen species (ROS) formation, Na(+)/H(+) exchanger activity, and pH(i) to a greater extent in osr(KI) than in osr(WT) DCs. LPS increased cell volume, Na(+)/H(+) exchanger activity, and ROS formation in osr(WT) DCs but not in osr(KI) DCs and blunted the difference between osr(KI) and osr(WT) DCs. Na(+)/H(+) exchanger activity in osr(WT) DCs was increased by the NKCC1 inhibitor furosemide (100 nM) to values similar to those in osr(KI) DCs. Oxidative stress (10 μM tert-butyl-hydroperoxide) increased Na(+)/H(+) exchanger activity in osr(WT) DCs but not in osr(KI) DCs and reversed the difference between genotypes. Cariporide virtually abrogated Na(+)/H(+) exchanger activity in both genotypes and blunted LPS-induced cell swelling and ROS formation in osr(WT) mice. In conclusion, partial OSR1 deficiency influences Na(+)/H(+) exchanger activity, ROS formation, and migration of dendritic cells.
Collapse
|
26
|
DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood 2012; 119:4451-61. [PMID: 22461490 DOI: 10.1182/blood-2012-01-407098] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To migrate efficiently through the interstitium, dendritic cells (DCs) constantly adapt their shape to the given structure of the extracellular matrix and follow the path of least resistance. It is known that this amoeboid migration of DCs requires Cdc42, yet the upstream regulators critical for localization and activation of Cdc42 remain to be determined. Mutations of DOCK8, a member of the atypical guanine nucleotide exchange factor family, causes combined immunodeficiency in humans. In the present study, we show that DOCK8 is a Cdc42-specific guanine nucleotide exchange factor that is critical for interstitial DC migration. By generating the knockout mice, we found that in the absence of DOCK8, DCs failed to accumulate in the lymph node parenchyma for T-cell priming. Although DOCK8-deficient DCs migrated normally on 2-dimensional surfaces, DOCK8 was required for DCs to crawl within 3-dimensional fibrillar networks and to transmigrate through the subcapsular sinus floor. This function of DOCK8 depended on the DHR-2 domain mediating Cdc42 activation. DOCK8 deficiency did not affect global Cdc42 activity. However, Cdc42 activation at the leading edge membrane was impaired in DOCK8-deficient DCs, resulting in a severe defect in amoeboid polarization and migration. Therefore, DOCK8 regulates interstitial DC migration by controlling Cdc42 activity spatially.
Collapse
|
27
|
Singh-Jasuja H, Thiolat A, Ribon M, Boissier MC, Bessis N, Rammensee HG, Decker P. The mouse dendritic cell marker CD11c is down-regulated upon cell activation through Toll-like receptor triggering. Immunobiology 2012; 218:28-39. [PMID: 22445076 DOI: 10.1016/j.imbio.2012.01.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/22/2011] [Accepted: 01/27/2012] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DC) play a key role in regulating immune responses and are the best professional antigen-presenting cells. Two major DC populations are defined in part according to cell surface CD11c expression levels. Unexpectedly, we observed that mouse DC strongly down-regulate the typical DC marker CD11c upon activation. To better characterize DC responses, we have analyzed CD11c expression on mouse and human myeloid DC after Toll-like receptor (TLR) triggering. Here we show that mouse bone marrow-derived DC (BMDC) as well as spleen DC down-regulate cell surface CD11c upon activation by TLR3/4/9 agonists. In all cases, full DC activation was reached, as determined by cytokine secretion, cell stimulation in mixed leukocyte reactions (MLR), and CD40/CD86/major histocompatibility complex (MHC) up-regulation. Interestingly, membrane CD11c down-regulation correlated with increased cytoplasmic pools of CD11c. In contrast to the up-regulation of CD40 and MHC class II molecules, lipopolysaccharide (LPS)-induced CD11c down-regulation was MyD88-dependent. Polyinosinic-polycytidylic acid (poly I:C), which does not signal through MyD88, also induced cell surface CD11c down-regulation. Notably, CD11c down-regulation was not observed upon activation of human DC, either through TLR-dependent or -independent cell activation. Thus, activated mouse DC may be transiently CD11c-negative in vivo, hampering the identification of those cells. On the other hand, cell surface CD11c down-regulation may serve as a new activation marker for mouse DC.
Collapse
Affiliation(s)
- Harpreet Singh-Jasuja
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Tumor lymphangiogenesis as a potential therapeutic target. JOURNAL OF ONCOLOGY 2012; 2012:204946. [PMID: 22481918 PMCID: PMC3307004 DOI: 10.1155/2012/204946] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/10/2011] [Accepted: 10/31/2011] [Indexed: 12/18/2022]
Abstract
Metastasis the spread of cancer cells to distant organs, is the main cause of death for cancer patients. Metastasis is often mediated by lymphatic vessels that invade the primary tumor, and an early sign of metastasis is the presence of cancer cells in the regional lymph node (the first lymph node colonized by metastasizing cancer cells from a primary tumor). Understanding the interplay between tumorigenesis and lymphangiogenesis (the formation of lymphatic vessels associated with tumor growth) will provide us with new insights into mechanisms that modulate metastatic spread. In the long term, these insights will help to define new molecular targets that could be used to block lymphatic vessel-mediated metastasis and increase patient survival. Here, we review the molecular mechanisms of embryonic lymphangiogenesis and those that are recapitulated in tumor lymphangiogenesis, with a view to identifying potential targets for therapies designed to suppress tumor lymphangiogenesis and hence metastasis.
Collapse
|
29
|
Blengio F, Raggi F, Pierobon D, Cappello P, Eva A, Giovarelli M, Varesio L, Bosco MC. The hypoxic environment reprograms the cytokine/chemokine expression profile of human mature dendritic cells. Immunobiology 2012; 218:76-89. [PMID: 22465745 DOI: 10.1016/j.imbio.2012.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/31/2012] [Accepted: 02/04/2012] [Indexed: 12/31/2022]
Abstract
Myeloid dendritic cells (DCs) are professional antigen-presenting cells critical for the orchestration of immunity and maintenance of self-tolerance. DC development and functions are tightly regulated by a complex network of inhibitory and activating signals present in the tissue microenvironment, and dysregulated DC responses may result in amplification of inflammation, loss of tolerance, or establishment of immune escape mechanisms. Generation of mature (m)DCs from monocytic precursors recruited at pathological sites occurs under condition of low partial oxygen pressure (pO(2)). However, the way in which the hypoxic microenvironment modulates the functions of these cells is still not clear. We demonstrate that chronic hypoxia (4 days, 1% O(2)) promotes the onset of a highly proinflammatory gene expression profile in mDCs generated from primary human monocytes, characterized by the modulation of a significant cluster of genes coding for proinflammatory chemokines/cytokines and/or their receptors. Within the chemokine system, strong upregulation of genes encoding proteins chemotactic for neutrophils, such as CXCL2, CXCL3, CXCL5, CXCL6, and CXCL8, and for activated/memory T lymphocytes, monocytes, and immature (i) DCs, e.g. CCL20, CCL3 and CCL5, was observed, concomitant with decreased expression of genes coding for naive/resting T cells chemoattractants, CCL18 and CCL23. Other hypoxia-inducible genes coded for cytokines with a primary role in inflammation and angiogenesis, including osteopontin, vascular endothelial growth factor, and IL-1β. mRNA modulation was paralleled by protein secretion. These results suggest that conditions of reduced O(2) availability reprograms mDCs toward a proinflammatory direction by tuning the cytokine/chemokine repertoire, thus affecting their ability to regulate leukocyte trafficking and activation at pathological sites, with potential implications for the pathogenesis of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Fabiola Blengio
- Laboratory of Molecular Biology, G. Gaslini Institute, Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kiefer F, Siekmann AF. The role of chemokines and their receptors in angiogenesis. Cell Mol Life Sci 2011; 68:2811-30. [PMID: 21479594 PMCID: PMC11115067 DOI: 10.1007/s00018-011-0677-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/09/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
Chemokines are a vertebrate-specific group of small molecules that regulate cell migration and behaviour in diverse contexts. So far, around 50 chemokines have been identified in humans, which bind to 18 different chemokine receptors. These are members of the seven-transmembrane receptor family. Initially, chemokines were identified as modulators of the immune response. Subsequently, they were also shown to regulate cell migration during embryonic development. Here, we discuss the influence of chemokines and their receptors on angiogenesis, or the formation of new blood vessels. We highlight recent advances in our understanding of how chemokine signalling might directly influence endothelial cell migration. We furthermore examine the contributions of chemokine signalling in immune cells during this process. Finally, we explore possible implications for disease settings, such as chronic inflammation and tumour progression.
Collapse
Affiliation(s)
- Friedemann Kiefer
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| | - Arndt F. Siekmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| |
Collapse
|
31
|
Development and characterization of mouse monoclonal antibodies reactive with chicken CD80. Comp Immunol Microbiol Infect Dis 2011; 34:273-9. [DOI: 10.1016/j.cimid.2011.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 12/20/2010] [Accepted: 12/20/2010] [Indexed: 01/07/2023]
|
32
|
Koscielny A, Engel D, Maurer J, Hirner A, Kurts C, Kalff JC. Impact of CCR7 on the gastrointestinal field effect. Am J Physiol Gastrointest Liver Physiol 2011; 300:G665-75. [PMID: 21292999 DOI: 10.1152/ajpgi.00224.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Standardized intestinal manipulation (IM) leads to local bowel wall inflammation subsequently spreading over the entire gastrointestinal tract. Previously, we demonstrated that this so-called gastrointestinal field effect (FE) is immune mediated. This study aimed to investigate the role of CCR7 in IM-induced FE. Since CCR7 is expressed on activated dendritic cells and T cells and is well known to control their migration, we hypothesized that lack of CCR7 reduces or abolishes FE. Small bowel muscularis and colonic muscularis from CCR7(-/-) and wild-type (WT) mice were obtained after IM of the jejunum or sham operation. FE was analyzed by measuring gastrointestinal transit time of orally given fluorescent dextran (geometric center), colonic transit time, infiltration of MPO-positive cells, and circular smooth muscle contractility. Furthermore, mRNA levels of the inflammatory cytokine IL-6 were determined by RT-PCR. The number of dendritic cells and CD3+CD25+ T cells separately isolated from jejunum and colon was determined in mice after IM and sham operation. There was no significant difference in IL-6 mRNA upregulation in colonic muscularis between sham-operated WT and CCR7(-/-) mice after IM. Contractility of circular muscularis strips of the colon was significantly improved in CCR7(-/-) animals following IM and did not vary significantly from sham-operated animals. Additionally, inflammation of the colon determined by the number of MPO-positive cells and colonic transit time was significantly reduced in CCR7(-/-) mice. In contrast, jejunal contractility and jejunal inflammation of transgenic mice did not differ significantly from WT mice after IM. These data are supported by a significant increase of CD3+CD25+ T cells in the colonic muscularis of WT mice after IM, which could not be observed in CCR7(-/-) mice. These data demonstrate that CCR7 is required for FE and postoperative ileus. CCR7 indirectly affects FE by inhibiting migration of activated dendritic cells and of T cells from the jejunum to the colon. These findings support the critical role of the adaptive immune system in FE.
Collapse
Affiliation(s)
- A Koscielny
- Department of Surgery, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Knippertz I, Stein MF, Dörrie J, Schaft N, Müller I, Deinzer A, Steinkasserer A, Nettelbeck DM. Mild hyperthermia enhances human monocyte-derived dendritic cell functions and offers potential for applications in vaccination strategies. Int J Hyperthermia 2011; 27:591-603. [PMID: 21846195 DOI: 10.3109/02656736.2011.589234] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Dendritic cell (DC)-based immunotherapy has been shown to be a promising strategy for anti-cancer therapy. Nevertheless, only a low overall clinical response rate has been observed in vaccinated patients with advanced cancer and therefore methods to improve DC immuno-stimulatory functions are currently under intense investigation. In this respect, we exposed human monocyte-derived DCs to a physiological temperature stress of 40°C for up to 24 h followed by analysis for (i) expression of different heat shock proteins, (ii) survival, (iii) cell surface maturation markers, (iv) cytokine secretion, and (v) migratory capacity. Furthermore, we examined the ability of heat-shocked DCs to prime naïve CD8(+) T cells after loading with MelanA peptide, by transfection with MelanA RNA, or by transduction with MelanA by an adenovirus vector. The results clearly indicate that in comparison to control DCs, which remained at 37°C, heat-treated cells revealed no differences concerning the survival rate or their migratory capacity. However, DCs exposed to thermal stress showed a time-dependent enhanced expression of the immune-chaperone heat shock protein 70A and both an up-regulation of co-stimulatory molecules such as CD80, CD83, and CD86 and of the inflammatory cytokine TNF-α. Moreover, these cells had a markedly improved capacity to prime autologous naïve CD8(+) T cells in vitro in an antigen-specific manner, independent of the method of antigen-loading. Thus, our strategy of heat treatment of DCs offers a promising means to improve DC functions during immune activation which, as a physical method, facilitates straight-forward applications in clinical DC vaccination protocols.
Collapse
Affiliation(s)
- Ilka Knippertz
- Department of Immune Modulation at the Department of Dermatology, University Hospital Erlangen, Hartmannstrasse 14, Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Clement CC, Rotzschke O, Santambrogio L. The lymph as a pool of self-antigens. Trends Immunol 2011; 32:6-11. [PMID: 21123113 PMCID: PMC3052980 DOI: 10.1016/j.it.2010.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/07/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
Prenodal lymph is generated from the interstitial fluid that surrounds organs, and thus contains products of organ metabolism and catabolism. New proteomic analyses of lymph have identified proteins and peptides that are derived from capillary extravasation and tissue-specific proteins. Many of these peptides are detected at nanomolar concentrations in the lymph before passage through a regional lymph node. Before entering the node and once inside, proteins and processed peptides are filtered from the lymph by circulating immature dendritic cells (DCs) or non-activated nodal antigen-presenting cells (APCs) (macrophages, B cells and immature DCs). Here, we suggest that this process ensures organ-specific self-antigens are displayed to circulating and nodal APCs, thus contributing to the maintenance of peripheral tolerance.
Collapse
Affiliation(s)
- Cristina C. Clement
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, 10461, USA
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #04-06, Immunos, 138648 Singapore
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, 10461, USA
| |
Collapse
|
35
|
Shelburne CP, Abraham SN. The mast cell in innate and adaptive immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:162-85. [PMID: 21713657 DOI: 10.1007/978-1-4419-9533-9_10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) were once considered only as effector cells in pathogenic IgE- and IgG-mediated responses such as allergy. However, developments over the last 15 years have suggested that MCs have evolved in vertebrates as beneficial effector cells that are involved in the very first inflammatory responses generated during infection. This pro-inflammatory environment has been demonstrated to be important for initiating innate responses in many different models of infection and more recently, in the development of adaptive immunity as well. Interestingly this latter finding has led to the discovery that small MC-activating compounds can behave as adjuvants in vaccine formulations. Thus, our continued understanding of the MC in the context of infectious disease is likely to not only expand our scope of the MC in the normal processes of immunity, but provide new therapeutic targets to combat disease.
Collapse
|
36
|
Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood 2010; 117:2625-39. [PMID: 21148811 DOI: 10.1182/blood-2010-06-292136] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are a heterogeneous group of professional antigen-presenting cells functioning as sentinels of the immune system and playing a key role in the initiation and amplification of innate and adaptive immune responses. DC development and functions are acquired during a complex differentiation and maturation process influenced by several factors present in the local milieu. A common feature at pathologic sites is represented by hypoxia, a condition of low pO(2), which creates a unique microenvironment affecting cell phenotype and behavior. Little is known about the impact of hypoxia on the generation of mature DCs (mDCs). In this study, we identified by gene expression profiling a significant cluster of genes coding for immune-related cell surface receptors strongly up-regulated by hypoxia in monocyte-derived mDCs and characterized one of such receptors, TREM-1, as a new hypoxia-inducible gene in mDCs. TREM-1 associated with DAP12 in hypoxic mDCs, and its engagement elicited DAP12-linked signaling, resulting in ERK-1, Akt, and IκBα phosphorylation and proinflammatory cytokine and chemokine secretion. Finally, we provided the first evidence that TREM-1 is expressed on mDCs infiltrating the inflamed hypoxic joints of children affected by juvenile idiopathic arthritis, representing a new in vivo marker of hypoxic mDCs endowed with proinflammatory properties.
Collapse
|
37
|
Monypenny J, Chou HC, Bañón-Rodríguez I, Thrasher AJ, Antón IM, Jones GE, Calle Y. Role of WASP in cell polarity and podosome dynamics of myeloid cells. Eur J Cell Biol 2010; 90:198-204. [PMID: 20609498 PMCID: PMC3037472 DOI: 10.1016/j.ejcb.2010.05.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 11/29/2022] Open
Abstract
The integrin-dependent migration of myeloid cells requires tight coordination between actin-based cell membrane protrusion and integrin-mediated adhesion to form a stable leading edge. Under this mode of migration, polarised myeloid cells including dendritic cells, macrophages and osteoclasts develop podosomes that sustain the extending leading edge. Podosome integrity and dynamics vary in response to changes in the physical and biochemical properties of the cell environment. In the current article we discuss the role of various factors in initiation and stability of podosomes and the roles of the Wiskott Aldrich Syndrome Protein (WASP) in this process. We discuss recent data indicating that in a cellular context WASP is crucial not only for localised actin polymerisation at the leading edge and in podosome cores but also for coordination of integrin clustering and activation during podosome formation and disassembly.
Collapse
Affiliation(s)
- James Monypenny
- Randall Division of Cell & Molecular Biophysics, King's College London, London SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Johansen P, Mohanan D, Martínez-Gómez JM, Kündig TM, Gander B. Lympho-geographical concepts in vaccine delivery. J Control Release 2010; 148:56-62. [PMID: 20562028 DOI: 10.1016/j.jconrel.2010.05.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/12/2010] [Accepted: 05/17/2010] [Indexed: 12/13/2022]
Abstract
The key triggers and regulators of immune responses are antigens and their appearance in immune-privileged secondary lymphatic organs. Currently, the majority of vaccines are administered intramuscularly or subcutaneously, although neither the muscular tissue nor the subcutis is particularly rich in immuno-competent cells. Thus, introducing antigens at sites with a higher density of immune-competent cells, such as the dermis, lymph nodes, or afferent lymphatic conducts, with appropriate formulations and injection devices may induce more efficacious immune responses and protection. In this work, we first reviewed the geographical and functional map of the most important lymphatic elements that play a key role in the induction of a specific immune response, such as site of injection, choice of adjuvants and etc. In a first set of experiments, we demonstrated that short intervals of boosting (daily versus weekly) increase the production of IgG2a antibody against the injected model antigen, while increasing rather than constant booster doses increase the number of antigen-specific CD8(+) IFN-γ producing cells. Such antigen presentation patterns reflect the initially increasing amounts of antigen associated with natural infections by highly virulent and replicating pathogens. In a second set of experiments, we studied the importance of administration route (subcutaneous, intradermal, intramuscular, intralymphatic) for the induction of antigen-specific IgG2a, and of IFN-γ produced by antigen-specific lymphocytes when using PLGA microparticles for delivery of antigen. Interestingly, both IgG2a and IFN-γ production were significantly enhanced after intramuscular and intra-lymph node administration when compared to the other two routes. In conclusion, the results suggest that traditional vaccination schedules and administration routes should be reconsidered in vaccine development, particularly when using more advanced formulations and delivery systems such as micro- and nanoparticles or combinations of antigen and immune-response modifiers.
Collapse
Affiliation(s)
- Pål Johansen
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland.
| | - Deepa Mohanan
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Julia M Martínez-Gómez
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Bruno Gander
- Institute of Pharmaceutical Science, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
39
|
Choi JH, Lee YB. Nano-sized Drug Carriers and Key Factors for Lymphatic Delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2010. [DOI: 10.4333/kps.2010.40.s.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Hegde S, Fox L, Wang X, Gumperz JE. Autoreactive natural killer T cells: promoting immune protection and immune tolerance through varied interactions with myeloid antigen-presenting cells. Immunology 2010; 130:471-83. [PMID: 20465577 DOI: 10.1111/j.1365-2567.2010.03293.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Natural killer T (NKT) cells are innate T lymphocytes that are restricted by CD1d antigen-presenting molecules and recognize lipids and glycolipids as antigens. NKT cells have attracted attention for their potent immunoregulatory effects. Like other types of regulatory lymphocytes, a high proportion of NKT cells appear to be autoreactive to self antigens. Thus, as myeloid antigen-presenting cells (APCs) such as monocytes, dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) constitutively express CD1d, NKT cells are able to interact with these APCs not only during times of immune activation but also in immunologically quiescent periods. The interactions of NKT cells with myeloid APCs can have either pro-inflammatory or tolerizing outcomes, and a central question is how the ensuing response is determined. Here we bring together published results from a variety of model systems to highlight three critical factors that influence the outcome of the NKT-APC interaction: (i) the strength of the antigenic signal delivered to the NKT cell, as determined by antigen abundance and/or T-cell receptor (TCR) affinity; (ii) the presence or absence of cytokines that costimulate NKT cells [e.g. interleukin (IL)-12, IL-18 and interferon (IFN)-alpha]; (iii) APC intrinsic factors such as differentiation state (e.g. monocyte versus DC) and Toll-like receptor (TLR) stimulation. Together with recent findings that demonstrate new links between NKT cell activation and endogenous lipid metabolism, these results outline a picture in which the functions of NKT cells are closely attuned to the existing biological context. Thus, NKT cells may actively promote tolerance until a critical level of danger signals arises, at which point they switch to activating pro-inflammatory immune responses.
Collapse
Affiliation(s)
- Subramanya Hegde
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
41
|
Everts B, Adegnika AA, Kruize YCM, Smits HH, Kremsner PG, Yazdanbakhsh M. Functional impairment of human myeloid dendritic cells during Schistosoma haematobium infection. PLoS Negl Trop Dis 2010; 4:e667. [PMID: 20422029 PMCID: PMC2857749 DOI: 10.1371/journal.pntd.0000667] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 03/11/2010] [Indexed: 01/27/2023] Open
Abstract
Chronic Schistosoma infection is often characterized by a state of T cell hyporesponsiveness of the host. Suppression of dendritic cell (DC) function could be one of the mechanisms underlying this phenomenon, since Schistosoma antigens are potent modulators of dendritic cell function in vitro. Yet, it remains to be established whether DC function is modulated during chronic human Schistosoma infection in vivo. To address this question, the effect of Schistosoma haematobium infection on the function of human blood DC was evaluated. We found that plasmacytoid (pDC) and myeloid DC (mDC) from infected subjects were present at lower frequencies in peripheral blood and that mDC displayed lower expression levels of HLA-DR compared to those from uninfected individuals. Furthermore, mDC from infected subjects, but not pDC, were found to have a reduced capacity to respond to TLR ligands, as determined by MAPK signaling, cytokine production and expression of maturation markers. Moreover, the T cell activating capacity of TLR-matured mDC from infected subjects was lower, likely as a result of reduced HLA-DR expression. Collectively these data show that S. haematobium infection is associated with functional impairment of human DC function in vivo and provide new insights into the underlying mechanisms of T cell hyporesponsiveness during chronic schistosomiasis.
Collapse
Affiliation(s)
- Bart Everts
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
An expanded self-antigen peptidome is carried by the human lymph as compared to the plasma. PLoS One 2010; 5:e9863. [PMID: 20360855 PMCID: PMC2845622 DOI: 10.1371/journal.pone.0009863] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 03/03/2010] [Indexed: 12/30/2022] Open
Abstract
Background The pre-nodal afferent lymph is the fluid which directly derives from the extracellular milieu from every parenchymal organ and, as it continues to circulate between the cells, it collects products deriving from the organ metabolism/catabolism. A comprehensive qualitative and quantitative investigation of the self-antigenic repertoire transported by the human lymph is still missing. Methodology/Principal Findings A major difference between lymph and plasma could be visualized by FPLC and 2D gel in the amount of low molecular weight products corresponding to peptide fragments. Naturally processed peptides in normal pre-nodal human lymph were then fractionated by HPLC and characterized by multidimensional mass spectrometry. Analysis of more then 300 sequences identified self-peptides derived from both intracellular and extracellular proteins revealing the variety of catabolic products transported by human lymph. Quantitative analysis established that at least some of these peptides are present in the circulating lymph in nanomolar concentration. Conclusions/Significance The peptidome, generated by physiological tissue catabolism and transported by the pre-nodal lymph, is in addition to the self-peptidome generated in endosomal compartment. Unlike self antigen processed by local or nodal APC, which mostly produce epitopes constrained by the endosomal processing activity, self antigens present in the lymph could derived from a wider variety of processing pathways; including caspases, involved in cellular apoptosis, and ADAM and other metalloproteinases involved in surface receptor editing, cytokines processing and matrix remodeling. Altogether, expanding the tissue-specific self-repertoire available for the maintenance of immunological tolerance.
Collapse
|
43
|
Rehal S, Blanckaert P, Roizes S, von der Weid PY. Characterization of biosynthesis and modes of action of prostaglandin E2 and prostacyclin in guinea pig mesenteric lymphatic vessels. Br J Pharmacol 2010; 158:1961-70. [PMID: 19922540 DOI: 10.1111/j.1476-5381.2009.00493.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Rhythmical transient constrictions of the lymphatic vessels provide the means for efficient lymph drainage and interstitial tissue fluid balance. This activity is critical during inflammation, to avoid or limit oedema resulting from increased vascular permeability, mediated by the release of various inflammatory mediators. In this study, we investigated the mechanisms by which prostaglandin E(2) (PGE(2)) and prostacyclin modulate lymphatic contractility in isolated guinea pig mesenteric lymphatic vessels. EXPERIMENTAL APPROACH Quantitative RT-PCR was used to assess the expression of mRNA for enzymes and receptors involved in the production and action of PGE(2) and prostacyclin in mesenteric collecting lymphatic vessels. Frequency and amplitude of lymphatic vessel constriction were measured in the presence of these prostaglandins and the role of their respective EP and IP receptors assessed. KEY RESULTS Prostaglandin E(2) and prostacyclin decreased concentration-dependently the frequency, without affecting the amplitude, of lymphatic constriction. Data obtained in the presence of the EP(4) receptor antagonists, GW627368x (1 microM) and AH23848B (30 microM) and the IP receptor antagonist CAY10441 (0.1 microM) suggest that PGE(2) predominantly activates EP(4), whereas prostacyclin mainly stimulates IP receptors. Inhibition of responses to either prostaglandin with H89 (10 microM) or glibenclamide (1 microM) suggested a role for the activation of protein kinase A and ATP-sensitive K(+) channels. CONCLUSIONS AND IMPLICATIONS Our findings characterized the inhibition of lymphatic pumping induced by PGE(2) or prostacyclin in guinea pig mesenteric lymphatics. This action is likely to impair oedema resolution and to contribute to the pro-inflammatory actions of these prostaglandins.
Collapse
Affiliation(s)
- Sonia Rehal
- Snyder Institute of Infection, Immunity & Inflammation and Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
44
|
Van Camp K, Cools N, Stein B, Van de Velde A, Goossens H, Berneman Z, Van Tendeloo V. Efficient mRNA electroporation of peripheral blood mononuclear cells to detect memory T cell responses for immunomonitoring purposes. J Immunol Methods 2010; 354:1-10. [DOI: 10.1016/j.jim.2010.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 12/01/2009] [Accepted: 01/25/2010] [Indexed: 01/07/2023]
|
45
|
Li YG, Wang ZP, Tian JQ, Tian BQ, Rodrigues R, Shang PF, Zhang T. Dendritic cell transfected with secondary lymphoid-tissue chemokine and/or interleukin-2 gene-enhanced cytotoxicity of T-lymphocyte in human bladder tumor cell S in vitro. Cancer Invest 2009; 27:909-17. [PMID: 19832038 DOI: 10.3109/07357900802375746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The aim of this study was to investigate whether dendritic cells (DCs) transfected with human secondary lymphoid-tissue chemokine (hSLC) and human interleukin-2 (hIL-2) genes are capable of improving DC's proliferation and to produce a marked antitumor effect in vitro combined with T-lymphocyte (TC). METHODS SLC gene primer was designed based on the corresponding gene sequence in GenBank. The Kpn I site was introduced into the upstream of the primer and Xho I site into the downstream. The SLC gene was amplified with the template of pET32a(+)-SLC by polymerase chain reaction. SLC was cloned into pBudCE4.1/IL-2 (TRAIL was cut from pBudCE4.1/TRAIL- IL-2 before) to construct recombinant plasmid pBudCE4.1/SLC-IL-2(PSI). DCs were transfected with pBudCE4.1/SLC-IL-2 by gene electric transfection. Protein expression was determined with Western blot and enzyme-linked immunosorbent assays. Cytotoxicity of TC and DC against the human bladder tumor cell were examined by chromium release assay. Flow cytometric analyses were performed to determine the apoptosis of tumor cells and the percentage of Treg. RESULTS A high level of expression of SLC and IL-2 was observed in DCs transfected with SLC and IL-2 genes. The mean production of IL-2 was 19.8 +/- 2.5, 511.10 +/- 52.36, and 541.3 +/- 62.04 ng/10(6) cells/24 hours in the DC/vector, DC/IL-2, and DC/SLC-IL-2, respectively. The mean SLC production was 29.8 +/- 4.43, 506.10 +/- 42.36, and 567.34 +/- 52.05 ngs/10(6)cells/24 hours in the DC/ vector, DC/SLC, and DC/SLC-IL-2, respectively. Cytotoxicity to bladder cancer cells was increased. The mean cytotoxicity (the effector/target ratio, 40:1) of TC-DC/parental, TC-DC/IL-2, TC-DC/SLC, and TC-DC/SLC-IL-2(TDSI) to the human bladder cancer cells was 32.1 +/- 5.5%, 63.5 +/- 6.6%, 78.1 +/- 9.63%, respectively. The apoptotsis rate of bladder cancer cells treated with TDSI was 18.6% by flow cytometry. Treg cells' percentage was very small in the DC medium. CONCLUSIONS SLC and IL-2 were produced by autocrine in DCs transfected with SLC and IL-2 genes. DC/SLC-IL-2 can promote DC proliferation, while TC-DC/SLC-IL-2 and TC-DC/SLC could strongly enhance significant cytotoxicity against bladder cancer cell that was induced by the coculture of DCs (transfected with SLC and IL-2) and TC.
Collapse
Affiliation(s)
- Yong-Gang Li
- Institute of Urology, Lanzhou University Second Hospital, Lanzhou University Clinical Medical College, Lanzhou, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Bosco MC, Puppo M, Blengio F, Fraone T, Cappello P, Giovarelli M, Varesio L. Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration. Immunobiology 2008; 213:733-49. [DOI: 10.1016/j.imbio.2008.07.031] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 01/20/2023]
|
47
|
|
48
|
van Vliet SJ, Paessens LC, Broks-van den Berg VCM, Geijtenbeek TBH, van Kooyk Y. The C-type lectin macrophage galactose-type lectin impedes migration of immature APCs. THE JOURNAL OF IMMUNOLOGY 2008; 181:3148-55. [PMID: 18713985 DOI: 10.4049/jimmunol.181.5.3148] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are the most potent APCs of the immune system that seed the peripheral tissues and lymphoid organs. In an immature state, DCs sample their surroundings for incoming pathogens. Upon Ag encounter, DCs mature and migrate to the lymph node to induce adaptive immune responses. The C-type macrophage galactose-type lectin (MGL), expressed in immature DCs, mediates binding to glycoproteins carrying GalNAc moieties. In the present study, we demonstrate that MGL ligands are present on the sinusoidal and lymphatic endothelium of lymph node and thymus, respectively. MGL binding strongly correlated with the expression of the preferred MGL ligand, alpha-GalNAc-containing glycan structures, as visualized by staining with the alpha-GalNAc-specific snail lectin Helix pomatia agglutinin. MGL(+) cells were localized in close proximity of the endothelial structures that express the MGL ligand. Strikingly, instead of inducing migration, MGL mediated retention of human immature DCs, as blockade of MGL interactions enhanced DC trafficking and migration. Thus, MGL(+) DCs are hampered in their migratory responses and only upon maturation, when MGL expression is abolished; these DCs will be released from their MGL-mediated restraints.
Collapse
Affiliation(s)
- Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Lymphatic endothelium in health and disease. Cell Tissue Res 2008; 335:97-108. [DOI: 10.1007/s00441-008-0644-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 05/13/2008] [Indexed: 12/22/2022]
|
50
|
Pascale F, Pascale F, Contreras V, Bonneau M, Courbet A, Chilmonczyk S, Bevilacqua C, Epardaud M, Eparaud M, Niborski V, Riffault S, Balazuc AM, Foulon E, Guzylack-Piriou L, Riteau B, Hope J, Bertho N, Charley B, Schwartz-Cornil I. Plasmacytoid dendritic cells migrate in afferent skin lymph. THE JOURNAL OF IMMUNOLOGY 2008; 180:5963-72. [PMID: 18424716 DOI: 10.4049/jimmunol.180.9.5963] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Conventional dendritic cells enter lymph nodes by migrating from peripheral tissues via the lymphatic route, whereas plasmacytoid dendritic cells (pDC), also called IFN-producing cells (IPC), are described to gain nodes from blood via the high endothelial venules. We demonstrate here that IPC/pDC migrate in the afferent lymph of two large mammals. In sheep, injection of type A CpG oligodinucleotide (ODN) induced lymph cells to produce type I IFN. Furthermore, low-density lymph cells collected at steady state produced type I IFN after stimulation with type A CpG ODN and enveloped viruses. Sheep lymph IPC were found within a minor B(neg)CD11c(neg) subset expressing CD45RB. They presented a plasmacytoid morphology, expressed high levels of TLR-7, TLR-9, and IFN regulatory factor 7 mRNA, induced IFN-gamma production in allogeneic CD4(pos) T cells, and differentiated into dendritic cell-like cells under viral stimulation, thus fulfilling criteria of bona fide pDC. In mini-pig, a CD4(pos)SIRP(pos) subset in afferent lymph cells, corresponding to pDC homologs, produced type I IFN after type A CpG-ODN triggering. Thus, pDC can link innate and acquired immunity by migrating from tissue to draining node via lymph, similarly to conventional dendritic cells.
Collapse
Affiliation(s)
- Florentina Pascale
- Virologie et Immunologie Moléculaires, UR892 Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|