1
|
Wei L, Ji L, Rico C, He C, Shakoor I, Fakunle M, Lu X, Xia Y, Hou Y, Hong J. Transcriptomics Reveals the Pathway for Increasing Brassica chinensis L. Yield under Foliar Application of Titanium Oxide Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18957-18970. [PMID: 39137250 DOI: 10.1021/acs.jafc.4c04075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this study, Brassica chinensis L seedlings after 6 weeks of soil cultivation were treated with foliar application of TiO2 NPs (20 mg/L) for different times. Transcriptomics analysis was employed to investigate the impact of TiO2 NPs on the physiology, growth, and yield of B. chinensis L. Results showed that TiO2 NPs' exposure significantly increased the biomass, total phosphorus, and catalase enzyme activity by 23.60, 23.72, and 44.01%, respectively, compared to the untreated ones (not bulk or ion).TiO2 NPs increased the leaf chlorophyll content by 4.9% and photosynthetic rate by 16.62%, which was attributed to the upregulated expression of seven genes (PetH, PetF, PsaF, PsbA, PsbB, PsbD, and Lhcb) associated with electron transport in photosystem I and light-harvesting in leaves. The water balance of B. chinensis was improved correlating with the altered expressions of 19 aquaporin genes (e.g., PIP2;1 and NIP6;1). The expressions of 58 genes related to plant hormone signaling and growth were dysregulated, with notable downregulations in GA20, SnRK2, and PP2C and upregulations of DELLAs, SAM, and ETR. Moreover, the 11 tricarboxylic acid cycle genes and 13 glycolysis genes appear to stimulate pathways involved in promoting the growth and physiology of B. chinensis. This research contributes valuable insights into new strategies for increasing the yield of B. chinensis.
Collapse
Affiliation(s)
- Lan Wei
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Wuxi Public Utilities Environment Testing Research Institute, Wuxi, Jiangsu 214026, China
| | - Lei Ji
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Cyren Rico
- Chemistry Department, Missouri State University, Springfield, Missouri 65897, United States
| | - Changyu He
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Iqra Shakoor
- Chemistry Department, Missouri State University, Springfield, Missouri 65897, United States
| | - Mary Fakunle
- Chemistry Department, Missouri State University, Springfield, Missouri 65897, United States
| | - Xiaohua Lu
- Wuxi Public Utilities Environment Testing Research Institute, Wuxi, Jiangsu 214026, China
| | - Yuhong Xia
- Wuxi Public Utilities Environment Testing Research Institute, Wuxi, Jiangsu 214026, China
| | - Ying Hou
- Wuxi Public Utilities Environment Testing Research Institute, Wuxi, Jiangsu 214026, China
| | - Jie Hong
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
2
|
Ghafoor A, Shafiq F, Anwar S, Zhang L, Ashraf M. Comparative assessment of pantothenic, aspartic, ascorbic and tartaric acids assisted Pb-phytoextraction by sunflower (Helianthus annuus L.). Biometals 2024:10.1007/s10534-024-00619-9. [PMID: 39073690 DOI: 10.1007/s10534-024-00619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/06/2024] [Indexed: 07/30/2024]
Abstract
Phytoextraction of lead (Pb) is a challenging task due to its extremely low mobility within soil and plant systems. In this study, we tested the influence of some novel chelating agents for Pb-phytoextraction using sunflower. The Pb was applied at control (0.0278 mM) and 4.826 mM Pb as Pb(NO3)2 through soil-spiking. After 10 days of Pb addition, four different organic ligands (aspartic, ascorbic, tartaric, and pantothenic acids) were added to the soil at 1 mM concentration each. respectively. In the absence of any chelate, sunflower plants grown at 4.826 mM Pb level accumulated Pb concentrations up to 104 µg g-1 DW in roots, whereas 64 µg g-1 DW in shoot. By contrast, tartaric acid promoted significantly Pb accumulation in roots (191 µg g-1 DW; + 45.5%) and shoot (131.6 µg g-1 DW; + 51.3%). Pantothenic acid also resulted in a significant Pb-uptake in the sunflower shoots (123 µg g-1 DW; + 47.9%) and in roots (177.3 µg g-1 DW; + 41.3%). The least effective amongst the chelates tested was aspartic acid, but it still contributed to + 40.1% more Pb accumulation in the sunflower root and shoots. In addition, plant growth, biochemical, and ionomic parameters were positively regulated by the organic chelates used. Especially, an increase in leaf Ca, P, and S was evident in Pb-stressed plants in response to chelates. These results highlight that the use of biocompatible organic chelates positively alters plant physio-biochemical traits contributing to higher Pb-sequestration in sunflower plant parts.
Collapse
Affiliation(s)
- Asif Ghafoor
- Institue of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan
| | - Fahad Shafiq
- Deaprtment of Botany, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Sumera Anwar
- Department of Botany, Government College Women University Faisalabad, Faisalabad, 38000, Pakistan
| | - Lixin Zhang
- Northwest Agricultural and Forestry University, Yangling, 712100, China
| | - Muhammad Ashraf
- Institue of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan
- School of Agriculture, University of Jordan, Amman, Jordan
| |
Collapse
|
3
|
Anjitha KS, Sarath NG, Sameena PP, Janeeshma E, Shackira AM, Puthur JT. Plant response to heavy metal stress toxicity: the role of metabolomics and other omics tools. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:965-982. [PMID: 37995340 DOI: 10.1071/fp23145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Metabolomic investigations offers a significant foundation for improved comprehension of the adaptability of plants to reconfigure the key metabolic pathways and their response to changing climatic conditions. Their application to ecophysiology and ecotoxicology help to assess potential risks caused by the contaminants, their modes of action and the elucidation of metabolic pathways associated with stress responses. Heavy metal stress is one of the most significant environmental hazards affecting the physiological and biochemical processes in plants. Metabolomic tools have been widely utilised in the massive characterisation of the molecular structure of plants at various stages for understanding the diverse aspects of the cellular functioning underlying heavy metal stress-responsive mechanisms. This review emphasises on the recent progressions in metabolomics in plants subjected to heavy metal stresses. Also, it discusses the possibility of facilitating effective management strategies concerning metabolites for mitigating the negative impacts of heavy metal contaminants on the growth and productivity of plants.
Collapse
Affiliation(s)
- K S Anjitha
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O., Malappuram, Kerala 673635, India
| | - Nair G Sarath
- Department of Botany, Mar Athanasius College, Kothamangalam, Ernakulam, Kerala 686666, India
| | - P P Sameena
- Department of Botany, PSMO College, Tirurangadi, Malappuram, Kerala 676306, India
| | - Edappayil Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala 676552, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Kannur University, Kannur, Kerala 670142, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O., Malappuram, Kerala 673635, India
| |
Collapse
|
4
|
Mi Z, Liu P, Du L, Han T, Wang C, Fan X, Liu H, He S, Wu J. The Influence of Cadmium on Fountain Grass Performance Correlates Closely with Metabolite Profiles. PLANTS (BASEL, SWITZERLAND) 2023; 12:3713. [PMID: 37960069 PMCID: PMC10649124 DOI: 10.3390/plants12213713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
The relationship between metabolite changes and biological endpoints in response to cadmium (Cd) stress remains unclear. Fountain grass has good Cd enrichment and tolerance abilities and is widely used in agriculture and landscaping. We analyzed the metabolic responses by detecting the metabolites through UPLC-MS and examined the relationships between metabolite changes and the characteristics of morphology and physiology to different Cd stress in fountain grass. Our results showed that under Cd stress, 102 differential metabolites in roots and 48 differential metabolites in leaves were detected, with 20 shared metabolites. Under Cd stress, most of the carbohydrates in leaves and roots decreased, which contributed to the lowered leaf/root length and fresh weight. In comparison, most of the differential amino acids and lipids decreased in the leaves but increased in the roots. Almost all the differential amino acids in the roots were negatively correlated with root length and root fresh weight, while they were positively correlated with malondialdehyde content. However, most of the differential amino acids in the leaves were positively correlated with leaf length and leaf fresh weight but negatively correlated with malondialdehyde content. Metabolic pathway analysis showed that Cd significantly affects seven and eight metabolic pathways in the leaves and roots, respectively, with only purine metabolism co-existing in the roots and leaves. Our study is the first statement on metabolic responses to Cd stress and the relationships between differential metabolites and biological endpoints in fountain grass. The coordination between various metabolic pathways in fountain grass enables plants to adapt to Cd stress. This study provides a comprehensive framework by explaining the metabolic plasticity and Cd tolerance mechanisms of plants.
Collapse
Affiliation(s)
- Zhaorong Mi
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.M.)
- Henan Provincial Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Pinlin Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.M.)
- Henan Provincial Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Lin Du
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.M.)
- Henan Provincial Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Tao Han
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.M.)
- Henan Provincial Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Chao Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xifeng Fan
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Huichao Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.M.)
- Henan Provincial Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Songlin He
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; (Z.M.)
- Henan Provincial Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Juying Wu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
5
|
Shiriaev A, Brizzolara S, Sorce C, Meoni G, Vergata C, Martinelli F, Maza E, Djari A, Pirrello J, Pezzarossa B, Malorgio F, Tonutti P. Selenium Biofortification Impacts the Tomato Fruit Metabolome and Transcriptional Profile at Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13554-13565. [PMID: 37638888 PMCID: PMC10510400 DOI: 10.1021/acs.jafc.3c02031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
In the present work, the effects of enriching tomatoes with selenium were studied in terms of physiological, metabolic, and molecular processes in the last stages of fruit development, particularly during ripening. A selenium concentration of 10 mg L-1 with sodium selenate and selenium nanoparticles was used in the spray treatments on the whole plants. No significant effects of selenium enrichment were detected in terms of ethylene production or color changes in the ripening fruit. However, selenium enrichment had an influence on both the primary and secondary metabolic processes and thus the biochemical composition of ripe tomatoes. Selenium decreased the amount of β-carotene, increased the accumulation of naringenin and chlorogenic acid, and decreased the coumaric acid level. Selenium also affected the volatile organic compound profile, with changes in the level of specific apocarotenoid compounds, such as β-ionone. These metabolomic changes may, to some extent, be due to the impact of selenium treatment on the transcription of genes involved in the metabolism of these compounds. RNA-seq analysis showed that the selenium application mostly impacted the expression of the genes involved in hormonal signaling, secondary metabolism, flavonoid biosynthesis, and glycosaminoglycan degradation.
Collapse
Affiliation(s)
- Anton Shiriaev
- Crop
Science Research Center, Sant’Anna
School of Advanced Studies, 56127 Pisa, Italy
- Research
Institute on Terrestrial Ecosystems, CNR, 56124 Pisa, Italy
| | - Stefano Brizzolara
- Crop
Science Research Center, Sant’Anna
School of Advanced Studies, 56127 Pisa, Italy
| | - Carlo Sorce
- Department
of Biology, University of Pisa, 56126 Pisa, Italy
| | - Gaia Meoni
- Magnetic
Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Chiara Vergata
- Department
of Biology, University of Florence, 50122 Florence, Italy
| | | | - Elie Maza
- Laboratoire
de Recherche en Sciences Végétales-Génomique
et Biotechnologie des Fruits − UMR 5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, 31062 Toulouse, France
| | - Anis Djari
- Laboratoire
de Recherche en Sciences Végétales-Génomique
et Biotechnologie des Fruits − UMR 5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, 31062 Toulouse, France
| | - Julien Pirrello
- Laboratoire
de Recherche en Sciences Végétales-Génomique
et Biotechnologie des Fruits − UMR 5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, 31062 Toulouse, France
| | | | - Fernando Malorgio
- Department
of Agriculture, Food and Environment, University
of Pisa, 56124 Pisa, Italy
| | - Pietro Tonutti
- Crop
Science Research Center, Sant’Anna
School of Advanced Studies, 56127 Pisa, Italy
| |
Collapse
|
6
|
Cheng S, Li S, Liang Z, Huang F, Wu X, Han Z, Huang X, Huang X, Ren Y. Effect of application of iron (Fe) and α-ketoglutaric acid on growth, photosynthesis, and Fe content in fragrant rice seedlings. PHOTOSYNTHETICA 2022; 60:293-303. [PMID: 39650768 PMCID: PMC11558503 DOI: 10.32615/ps.2022.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2024]
Abstract
At a three-leaf stage, two Fe treatments [0 mg kg-1 (Fe-) and 20 mg·kg-1 (Fe+) in the form of FeCl3] were used in the soil of the pot and then two concentrations of α-ketoglutaric acid [0 mg L-1 (A-) and 50 mg L-1 (A+)] were sprayed to the rice plants of Meixiangzhan and Yuxiangyouzhan cultivars. We showed that seedlings exhibited an increased length and fresh and dry mass of shoots and roots with treatments Fe+A- and Fe-A+, as well as the Fe content increased greatly. Both treatments increased the morphological characteristic values of roots and promoted photosynthesis. Interestingly, Fe+A+ notably affected the photosynthesis of fragrant rice seedlings; however, it exerted no significant differences on other parameters. Overall, Fe and α-ketoglutaric acid had the potential for improving the growth of fragrant rice seedlings. The interaction between Fe and α-ketoglutaric acid regulated photosynthesis in seedling leaves, which provided evidence for further improvement of rice cultivation.
Collapse
Affiliation(s)
- S.R. Cheng
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - S.S. Li
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - Z.W. Liang
- Research Office of Yulin Normal University, Yulin, China
| | - F.C. Huang
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - X.Q. Wu
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - Z.Y. Han
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - X.B. Huang
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - X.M. Huang
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - Y. Ren
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| |
Collapse
|
7
|
Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Khan RSA, Barbosa F, Zhang C, Chen H, Zhuang W, Varshney RK. Advances in "Omics" Approaches for Improving Toxic Metals/Metalloids Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:794373. [PMID: 35058954 PMCID: PMC8764127 DOI: 10.3389/fpls.2021.794373] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/22/2021] [Indexed: 05/17/2023]
Abstract
Food safety has emerged as a high-urgency matter for sustainable agricultural production. Toxic metal contamination of soil and water significantly affects agricultural productivity, which is further aggravated by extreme anthropogenic activities and modern agricultural practices, leaving food safety and human health at risk. In addition to reducing crop production, increased metals/metalloids toxicity also disturbs plants' demand and supply equilibrium. Counterbalancing toxic metals/metalloids toxicity demands a better understanding of the complex mechanisms at physiological, biochemical, molecular, cellular, and plant level that may result in increased crop productivity. Consequently, plants have established different internal defense mechanisms to cope with the adverse effects of toxic metals/metalloids. Nevertheless, these internal defense mechanisms are not adequate to overwhelm the metals/metalloids toxicity. Plants produce several secondary messengers to trigger cell signaling, activating the numerous transcriptional responses correlated with plant defense. Therefore, the recent advances in omics approaches such as genomics, transcriptomics, proteomics, metabolomics, ionomics, miRNAomics, and phenomics have enabled the characterization of molecular regulators associated with toxic metal tolerance, which can be deployed for developing toxic metal tolerant plants. This review highlights various response strategies adopted by plants to tolerate toxic metals/metalloids toxicity, including physiological, biochemical, and molecular responses. A seven-(omics)-based design is summarized with scientific clues to reveal the stress-responsive genes, proteins, metabolites, miRNAs, trace elements, stress-inducible phenotypes, and metabolic pathways that could potentially help plants to cope up with metals/metalloids toxicity in the face of fluctuating environmental conditions. Finally, some bottlenecks and future directions have also been highlighted, which could enable sustainable agricultural production.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Zainab Zahid
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shanza Bashir
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rutwik Barmukh
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rao Sohail Ahmad Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Fernando Barbosa
- Department of Clinical Analysis, Toxicology and Food Sciences, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|