1
|
Xu C, Du D, Han Z, Si H, Li W, Li L, Tang B. Separation and Analysis of Rare Tumor Cells in Various Body Fluids Based on Microfluidic Technology for Clinical Applications. Anal Chem 2025; 97:7567-7588. [PMID: 40186540 DOI: 10.1021/acs.analchem.4c06925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Affiliation(s)
- Chang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Dexin Du
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Zhaojun Han
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
2
|
Alqosiri HM, Alqasiri HM, Alqasire SE, Nava VE, Bandyopadhyay BC, Raub CB. Breast cancer extracellular matrix invasion depends on local mechanical loading of the collagen network. J Mater Chem B 2025. [PMID: 40135428 DOI: 10.1039/d4tb01474j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Active mechanical stresses in and around tumors affect cancer cell behavior and independently regulate cancer progression. To investigate the role of mechanical stress in breast cancer cell invasion, magnetic alginate beads loaded with iron oxide nanoparticles were coated with MDA-MB-231 breast cancer cells and embedded in a three-dimensional extracellular matrix (ECM) model subjected to an external magnetic field during culture. Bead displacement, cell shape and patterns of invasion of the collagen gel, and cell proliferation were assessed over 7 days of culture. The alginate beads swelled over the first 24 h in culture, creating circumferential stress akin to that created by tumor growth, while bead magnetic properties enabled local mechanical loading (compression, tension, and relaxation) and motion within the in vitro tissue constructs upon exposure to an external magnetic field. Beads displaced 0.2-1.6 mm through the collagen gels, depending on magnet size and distance, compressing the collagen network microstructure without gel mechanical failure. Invading cells formed a spatulate pattern as they moved into the compressed ECM region, with individual cells aligned parallel to the bead surface. During the first 24 hours of compressive magnetic force loading, invading cancer cells became round, losing elongation and ability to invade out from the bead surface, while still actively dividing. In contrast, cell invasion in unloaded constructs and in loaded constructs away from the compression region invaded as single cells, transversely outward from the bead surface. Finally, cell proliferation was 1.3× higher only after external magnet removal, which caused relaxation of mechanical stress in the collagen network. These findings indicate effects on breast cancer invasion of mechanical loading of ECM, both from compressive loading and from load relaxation. Findings point to the influence of mechanical stress on cancer cell behavior and suggest that relaxing mechanical stress in and around a tumor may promote cancer progression through higher proliferation and invasion.
Collapse
Affiliation(s)
- Hanadi M Alqosiri
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| | - Hadeel M Alqasiri
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| | - Sara E Alqasire
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| | - Victor E Nava
- Veterans Affairs Medical Center, Washington, DC, 20422, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Bidhan C Bandyopadhyay
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
- Veterans Affairs Medical Center, Washington, DC, 20422, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Christopher B Raub
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, Washington, DC, 20064, USA.
| |
Collapse
|
3
|
Salomon R, Razavi Bazaz S, Mutafopulos K, Gallego-Ortega D, Warkiani M, Weitz D, Jin D. Challenges in blood fractionation for cancer liquid biopsy: how can microfluidics assist? LAB ON A CHIP 2025; 25:1097-1127. [PMID: 39775440 DOI: 10.1039/d4lc00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Liquid biopsy provides a minimally invasive approach to characterise the molecular and phenotypic characteristics of a patient's individual tumour by detecting evidence of cancerous change in readily available body fluids, usually the blood. When applied at multiple points during the disease journey, it can be used to monitor a patient's response to treatment and to personalise clinical management based on changes in disease burden and molecular findings. Traditional liquid biopsy approaches such as quantitative PCR, have tended to look at only a few biomarkers, and are aimed at early detection of disease or disease relapse using predefined markers. With advances in the next generation sequencing (NGS) and single-cell genomics, simultaneous analysis of both circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) is now a real possibility. To realise this, however, we need to overcome issues with current blood collection and fractionation processes. These include overcoming the need to add a preservative to the collection tube or the need to rapidly send blood tubes to a centralised processing lab with the infrastructure required to fractionate and process the blood samples. This review focuses on outlining the current state of liquid biopsy and how microfluidic blood fractionation tools can be used in cancer liquid biopsy. We describe microfluidic devices that can separate plasma for ctDNA analysis, and devices that are important in isolating the cellular component(s) in liquid biopsy, i.e., individual CTCs and CTC clusters. To facilitate a better understanding of these devices, we propose a new categorisation system based on how these devices operate. The three categories being 1) solid Interaction devices, 2) fluid Interaction devices and 3) external force/active devices. Finally, we conclude that whilst some assays and some cancers are well suited to current microfluidic techniques, new tools are necessary to support broader, clinically relevant multiomic workflows in cancer liquid biopsy.
Collapse
Affiliation(s)
- Robert Salomon
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| | - Sajad Razavi Bazaz
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
| | - Kirk Mutafopulos
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - David Gallego-Ortega
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Majid Warkiani
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - David Weitz
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| |
Collapse
|
4
|
Abusamra SM, Barber R, Sharafeldin M, Edwards CM, Davis JJ. The integrated on-chip isolation and detection of circulating tumour cells. SENSORS & DIAGNOSTICS 2024; 3:562-584. [PMID: 38646187 PMCID: PMC11025039 DOI: 10.1039/d3sd00302g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024]
Abstract
Circulating tumour cells (CTCs) are cancer cells shed from a primary tumour which intravasate into the blood stream and have the potential to extravasate into distant tissues, seeding metastatic lesions. As such, they can offer important insight into cancer progression with their presence generally associated with a poor prognosis. The detection and enumeration of CTCs is, therefore, critical to guiding clinical decisions during treatment and providing information on disease state. CTC isolation has been investigated using a plethora of methodologies, of which immunomagnetic capture and microfluidic size-based filtration are the most impactful to date. However, the isolation and detection of CTCs from whole blood comes with many technical barriers, such as those presented by the phenotypic heterogeneity of cell surface markers, with morphological similarity to healthy blood cells, and their low relative abundance (∼1 CTC/1 billion blood cells). At present, the majority of reported methods dissociate CTC isolation from detection, a workflow which undoubtedly contributes to loss from an already sparse population. This review focuses on developments wherein isolation and detection have been integrated into a single-step, microfluidic configuration, reducing CTC loss, increasing throughput, and enabling an on-chip CTC analysis with minimal operator intervention. Particular attention is given to immune-affinity, microfluidic CTC isolation, coupled to optical, physical, and electrochemical CTC detection (quantitative or otherwise).
Collapse
Affiliation(s)
- Sophia M Abusamra
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
| | - Robert Barber
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| | | | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Systems, University of Oxford Oxford UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| |
Collapse
|
5
|
Yang J, Qiu L, Wang X, Chen X, Cao P, Yang Z, Wen Q. Liquid biopsy biomarkers to guide immunotherapy in breast cancer. Front Immunol 2023; 14:1303491. [PMID: 38077355 PMCID: PMC10701691 DOI: 10.3389/fimmu.2023.1303491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) therapy has emerged as a promising treatment strategy for breast cancer (BC). However, current reliance on immunohistochemical (IHC) detection of PD-L1 expression alone has limited predictive capability, resulting in suboptimal efficacy of ICIs for some BC patients. Hence, developing novel predictive biomarkers is indispensable to enhance patient selection for immunotherapy. In this context, utilizing liquid biopsy (LB) can provide supplementary or alternative value to PD-L1 IHC testing for identifying patients most likely to benefit from immunotherapy and exhibit favorable responses. This review discusses the predictive and prognostic value of LB in breast cancer immunotherapy, as well as its limitations and future directions. We aim to promote the individualization and precision of immunotherapy in BC by elucidating the role of LB in clinical practice.
Collapse
Affiliation(s)
- Jinghan Yang
- Department of Biological Science, Vanderbilt University, Nashville, TN, United States
| | - Liang Qiu
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, United States
| | - Xi Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xi Chen
- Department of Human Resource, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pingdong Cao
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhe Yang
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wen
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
7
|
Pei H, Han Z, Du D, Fan Y, Si H, Chang W, Wang Y, Li L, Tang B. Combined Molecular and Morphological Imaging of CTCs for HER2-Targeted Chemotherapy Guidance. Anal Chem 2023; 95:13235-13241. [PMID: 37606014 DOI: 10.1021/acs.analchem.3c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Since biomolecules change dynamically with tumor evolution and drug treatment, it is necessary to confirm target molecule expression in real time for effective guidance of subsequent chemotherapy treatment. However, current methods to confirm target proteins require complex processing steps and invasive tissue biopsies, limiting their clinical utility for targeted treatment monitoring. Here, CTCs, as a promising liquid biopsy source, were used to molecularly characterize the target protein HER2. To accurately identify CTCs, we specifically proposed a combined molecular and morphological imaging method, rather than using specific biomarker alone or morphology analysis, we identified CTCs as CK19+/CD45-/HE+. On the basis of the accurate identification of CTCs, we further analyzed the target protein HER2 in clinical patients at the single-CTC level. Comparative analysis of the clinical results of patient pathological tissue and paired blood samples showed that CTCs had a heterogeneous HER2 expression at the single-cell level and showed results inconsistent with the immunohistochemistry results in some cases. CTC-based analysis could help clinicians have a more comprehensive understanding of patient target protein expression. We believe that CTC-based target protein studies are of great significance for the precise management of targeted therapy.
Collapse
Affiliation(s)
- Haimeng Pei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhaojun Han
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Dexin Du
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yuanyuan Fan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wendi Chang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yiguo Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, People's Republic of China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, People's Republic of China
- Laoshan Laboratory,168 Wenhai Middle Road, Aoshanwei Jimo, Qingdao 266237, People's Republic of China
| |
Collapse
|
8
|
Surappa S, Multani P, Parlatan U, Sinawang PD, Kaifi J, Akin D, Demirci U. Integrated "lab-on-a-chip" microfluidic systems for isolation, enrichment, and analysis of cancer biomarkers. LAB ON A CHIP 2023; 23:2942-2958. [PMID: 37314731 PMCID: PMC10834032 DOI: 10.1039/d2lc01076c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liquid biopsy has garnered considerable attention as a complementary clinical tool for the early detection, molecular characterization and monitoring of cancer over the past decade. In contrast to traditional solid biopsy techniques, liquid biopsy offers a less invasive and safer alternative for routine cancer screening. Recent advances in microfluidic technologies have enabled handling of liquid biopsy-derived biomarkers with high sensitivity, throughput, and convenience. The integration of these multi-functional microfluidic technologies into a 'lab-on-a-chip' offers a powerful solution for processing and analyzing samples on a single platform, thereby reducing the complexity, bio-analyte loss and cross-contamination associated with multiple handling and transfer steps in more conventional benchtop workflows. This review critically addresses recent developments in integrated microfluidic technologies for cancer detection, highlighting isolation, enrichment, and analysis strategies for three important sub-types of cancer biomarkers: circulating tumor cells, circulating tumor DNA and exosomes. We first discuss the unique characteristics and advantages of the various lab-on-a-chip technologies developed to operate on each biomarker subtype. This is then followed by a discussion on the challenges and opportunities in the field of integrated systems for cancer detection. Ultimately, integrated microfluidic platforms form the core of a new class of point-of-care diagnostic tools by virtue of their ease-of-operation, portability and high sensitivity. Widespread availability of such tools could potentially result in more frequent and convenient screening for early signs of cancer at clinical labs or primary care offices.
Collapse
Affiliation(s)
- Sushruta Surappa
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Priyanka Multani
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Ugur Parlatan
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Prima Dewi Sinawang
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jussuf Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
9
|
Smejkal J, Aubrecht P, Semerádtová A, Štofik M, Liegertová M, Malý J. Immunocapturing rare cells from blood: A simple and robust microsystem approach. Biosens Bioelectron 2023; 227:115155. [PMID: 36821992 DOI: 10.1016/j.bios.2023.115155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
Cell immunocapture microsystems are a fast-emerging field with several potential medical diagnostic applications. Isolation and quantification of circulating rare cells (CRCs) show great importance in the early stages of disease diagnostics and prognostics. Here, we present a simple and robust stop-flow microsystem (fabricated by a combination of glass microblasting and 3D printing) based on a planar antibody-coated surface that is effective in the immunocapture of the model as well as naturally occurring rare cells. A chip with a planar immunocapture channel working in the so-called stop-flow dynamic regime was designed to enable monitoring the efficiency of the cell capture by fluorescence microscopy. Up to 90% immunocapture efficiency of MCF-7 cells spiked into whole blood on CD326 antibody-coated planar surfaces was achieved. We discuss the role of the planar surface modifications, the influence of the set stop-flow dynamic conditions, and medium complexity on the efficiency of cell immunocapture. The presented results could be further employed in the design of microsystems for cell-size-independent isolation and identification of rare cells from blood.
Collapse
Affiliation(s)
- Jiří Smejkal
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic.
| | - Petr Aubrecht
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic
| | - Alena Semerádtová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic
| | - Marcel Štofik
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic
| | - Michaela Liegertová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic
| | - Jan Malý
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic
| |
Collapse
|
10
|
Comparative application of microfluidic systems in circulating tumor cells and extracellular vesicles isolation; a review. Biomed Microdevices 2022; 25:4. [PMID: 36574057 DOI: 10.1007/s10544-022-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/28/2022]
Abstract
Cancer is a prevalent cause of mortality globally, where early diagnosis leads to a reduced death rate. Many researchers' common strategies are based on personalized diagnostic methods with rapid response and high accuracy. This technology was developed by applying liquid biopsy instead of tissue biopsies in the case of tumor cell analysis that facilitates point-of-care testing for cancer diagnosis and treatment. In recent years, significant progress in microfluidic technology led to the successful isolation, analysis, and monitoring of cancer biomarkers in body liquid biopsy with merits like high sensitivity and flexibility, low sample usage, cost effective, and the ability of automation. The most critical and informative markers in body liquid refer to circulating tumor cells (CTCs) and extracellular vesicles derived from tumors (EVs) that carry various biomarkers in their structure (DNAs, proteins, and RNAs) as compared to ctDNA. The released ctDNA has a low half-life and decreased sensitivity due to large amounts of nucleic acid in serum. This review intends to highlight different cancer screening tests with a particular focus on the details regarding the only FDA-approved and awaiting technologies for FDA clearance to isolate CTCs and EVs based on microfluidics systems.
Collapse
|
11
|
Tretyakova MS, Menyailo ME, Schegoleva AA, Bokova UA, Larionova IV, Denisov EV. Technologies for Viable Circulating Tumor Cell Isolation. Int J Mol Sci 2022; 23:ijms232415979. [PMID: 36555625 PMCID: PMC9788311 DOI: 10.3390/ijms232415979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The spread of tumor cells throughout the body by traveling through the bloodstream is a critical step in metastasis, which continues to be the main cause of cancer-related death. The detection and analysis of circulating tumor cells (CTCs) is important for understanding the biology of metastasis and the development of antimetastatic therapy. However, the isolation of CTCs is challenging due to their high heterogeneity and low representation in the bloodstream. Different isolation methods have been suggested, but most of them lead to CTC damage. However, viable CTCs are an effective source for developing preclinical models to perform drug screening and model the metastatic cascade. In this review, we summarize the available literature on methods for isolating viable CTCs based on different properties of cells. Particular attention is paid to the importance of in vitro and in vivo models obtained from CTCs. Finally, we emphasize the current limitations in CTC isolation and suggest potential solutions to overcome them.
Collapse
Affiliation(s)
- Maria S. Tretyakova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Maxim E. Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anastasia A. Schegoleva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ustinia A. Bokova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Irina V. Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Evgeny V. Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Correspondence: ; Tel./Fax: +7-3822-282676 (ext. 3375)
| |
Collapse
|
12
|
Fridrichova I, Kalinkova L, Ciernikova S. Clinical Relevancy of Circulating Tumor Cells in Breast Cancer: Epithelial or Mesenchymal Characteristics, Single Cells or Clusters? Int J Mol Sci 2022; 23:12141. [PMID: 36292996 PMCID: PMC9603393 DOI: 10.3390/ijms232012141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 07/30/2023] Open
Abstract
Metastatic breast cancer (MBC) is typically an incurable disease with high mortality rates; thus, early identification of metastatic features and disease recurrence through precise biomarkers is crucial. Circulating tumor cells (CTCs) consisting of heterogeneous subpopulations with different morphology and genetic, epigenetic, and gene expression profiles represent promising candidate biomarkers for metastatic potential. The experimentally verified role of epithelial-to-mesenchymal transition in cancer dissemination has not been clearly described in BC patients, but the stemness features of CTCs strongly contributes to metastatic potency. Single CTCs have been shown to be protected in the bloodstream against recognition by the immune system through impaired interactions with T lymphocytes and NK cells, while associations of heterotypic CTC clusters with platelets, leucocytes, neutrophils, tumor-associated macrophages, and fibroblasts improve their tumorigenic behavior. In addition to single CTC and CTC cluster characteristics, we reviewed CTC evaluation methods and clinical studies in early and metastatic BCs. The variable CTC tests were developed based on specific principles and strategies. However, CTC count and the presence of CTC clusters were shown to be most clinically relevant in existing clinical trials. Despite the known progress in CTC research and sampling of BC patients, implementation of CTCs and CTC clusters in routine diagnostic and treatment strategies still requires improvement in detection sensitivity and precise molecular characterizations, focused predominantly on the role of CTC clusters for their higher metastatic potency.
Collapse
|
13
|
Molecular and Circulating Biomarkers of Gastric Cancer. Int J Mol Sci 2022; 23:ijms23147588. [PMID: 35886934 PMCID: PMC9322632 DOI: 10.3390/ijms23147588] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Gastric cancer (GC)—a common tumor that affects humans worldwide—is highly malignant with a poor prognosis. GC is frequently not diagnosed until a relatively advanced stage. Early detection and efficient monitoring of tumor dynamics are prerequisites for reducing disease burden and mortality. Minimally invasive methods are needed to establish a diagnosis or monitoring the response to treatment of gastric cancer. Blood-based biomarker assays for the detection of early-stage GC could be of great relevance both for the risk group or for population-wide based screening programs, The currently used tumor marker assays for detecting GC are simple and rapid, but their use is limited by their low sensitivity and specificity. In recent years, several markers have been identified and tested for their clinical relevance in the management of gastric cancer. Here we review the available literature on plasma classical tumor markers, circulating free microRNAs (cfmiRNAs), circulating cell-free DNA (cfDNA), circulating tumor cells (CTCs), autoantibodies against tumor associated antigens (TAAs), and circulating extracellular vesicles (EVs) for diagnosis and monitoring of gastric cancer. This review summarizes the present status and approaches for these biomarkers, which could be potentially used for early diagnosis and accurate prediction of therapeutic approaches. We also discuss the future perspective and challenges in the search for new biomarkers of gastric cancer.
Collapse
|
14
|
Ahmad E, Ali A, Nimisha, Kumar Sharma A, Apurva, Kumar A, Dar GM, Sumayya Abdul Sattar R, Verma R, Mahajan B, Singh Saluja S. Molecular markers in cancer. Clin Chim Acta 2022; 532:95-114. [DOI: https:/doi.org/10.1016/j.cca.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
|
15
|
Ahmad E, Ali A, Nimisha, Kumar Sharma A, Apurva, Kumar A, Mehdi G, Sumayya Abdul Sattar R, Verma R, Mahajan B, Singh Saluja S. Molecular markers in cancer. Clin Chim Acta 2022; 532:95-114. [DOI: 10.1016/j.cca.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
|
16
|
Shi J, Zhao C, Shen M, Chen Z, Liu J, Zhang S, Zhang Z. Combination of microfluidic chips and biosensing for the enrichment of circulating tumor cells. Biosens Bioelectron 2022; 202:114025. [DOI: 10.1016/j.bios.2022.114025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022]
|
17
|
Topa J, Grešner P, Żaczek AJ, Markiewicz A. Breast cancer circulating tumor cells with mesenchymal features-an unreachable target? Cell Mol Life Sci 2022; 79:81. [PMID: 35048186 PMCID: PMC8770434 DOI: 10.1007/s00018-021-04064-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) mediate dissemination of solid tumors and can be an early sign of disease progression. Moreover, they show a great potential in terms of non-invasive, longitudinal monitoring of cancer patients. CTCs have been extensively studied in breast cancer (BC) and were shown to present a significant phenotypic plasticity connected with initiation of epithelial-mesenchymal transition (EMT). Apart from conferring malignant properties, EMT affects CTCs recovery rate, making a significant portion of CTCs from patients’ samples undetected. Wider application of methods and markers designed to isolate and identify mesenchymal CTCs is required to expand our knowledge about the clinical impact of mesenchymal CTCs. Therefore, here we provide a comprehensive review of clinical significance of mesenchymal CTCs in BC together with statistical analysis of previously published data, in which we assessed the suitability of a number of methods/markers used for isolation of CTCs with different EMT phenotypes, both in in vitro spike-in tests with BC cell lines, as well as clinical samples. Results of spiked-in cell lines indicate that, in general, methods not based on epithelial enrichment only, capture mesenchymal CTCs much more efficiently that CellSearch® (golden standard in CTCs detection), but at the same time are not much inferior to Cell Search®, though large variation in recovery rates of added cells among the methods is observed. In clinical samples, where additional CTCs detection markers are needed, positive epithelial-based CTCs enrichment was the most efficient in isolating CTCs with mesenchymal features from non-metastatic BC patients. From the marker side, PI3K and VIM were contributing the most to detection of CTCs with mesenchymal features (in comparison to SNAIL) in non-metastatic and metastatic BC patients, respectively. However, additional data are needed for more robust identification of markers for efficient detection of CTCs with mesenchymal features.
Collapse
Affiliation(s)
- Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland
| | - Peter Grešner
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland
| | - Anna J Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|
18
|
Chícharo A, Caetano DM, Cardoso S, Freitas P. Evolution in Automatized Detection of Cells: Advances in Magnetic Microcytometers for Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:413-444. [DOI: 10.1007/978-3-031-04039-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Tsai WS, Hung TF, Chen JY, Huang SH, Chang YC. Early Detection and Dynamic Changes of Circulating Tumor Cells in Transgenic NeuN Transgenic (NTTg) Mice with Spontaneous Breast Tumor Development. Cancers (Basel) 2021; 13:cancers13133294. [PMID: 34209279 PMCID: PMC8267737 DOI: 10.3390/cancers13133294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This study aimed to prove the early presence of circulating tumor cells (CTCs) with viability and tumorigenesis in a murine model that spontaneously develops breast cancer. Serial CTC examinations were performed on NeuN transgenic mice, starting from the age of 8 weeks and continuing after palpable tumor formation. Prior to the detection of palpable tumors, the CTC counts rose over time from 1 ± 1.6 to 16 ± 9.5 per 75 μL; this number continued to grow with tumor development. The viability and tumorigenesis of the collected CTCs were confirmed by re-implanting the cells into a non-cancer-bearing mouse. Ultrasonography with Doppler showed a significant correlation between CTCs and tumor vascular density (p-value < 0.01), rather than tumor volume (p-value 0.076). Abstract Background: This study used NeuN transgenic (NTTg) mice with spontaneous breast tumor development to evaluate the dynamic changes of circulating tumor cells (CTCs) prior to and during tumor development. Methods: In this longitudinal, clinically uninterrupted study, we collected 75 μL of peripheral blood at the age of 8, 12, 16, and 20 weeks in the first group of five mice, and at the age of 32 weeks, the time of tumor palpability, and one week after tumor palpability in the second group of four mice. Diluted blood samples were run through a modified mouse-CMx chip to isolate the CTCs. Results: The CTC counts of the first group of mice were low (1 ± 1.6) initially. The average CTC counts were 16 ± 9.5, 29.0 ± 18.2, and 70.0 ± 30.3 cells per 75 μL blood at the age of 32 weeks, the time of tumor palpability, and one week after tumor palpability, respectively. There was a significant positive correlation between an increase in CTC levels and tumor vascular density (p-value < 0.01). This correlation was stronger than that between CTC levels and tumor size (p-value = 0.076). The captured CTCs were implanted into a non-tumor-bearing NTTg mouse for xenografting, confirming their viability and tumorigenesis. Conclusion: Serial CTCs during an early stage of tumor progression were quantified and found to be positively correlated with the later tumor vascular density and size. Furthermore, the successful generation of CTC-derived xenografts indicates the tumorigenicity of this early onset CTC population.
Collapse
Affiliation(s)
- Wen-Sy Tsai
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (W.-S.T.); (S.-H.H.)
| | - Tsung-Fu Hung
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan; (T.-F.H.); (J.-Y.C.)
| | - Jia-Yang Chen
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan; (T.-F.H.); (J.-Y.C.)
- National Laboratory Animal Center, National Research Laboratories, Taipei 115, Taiwan
| | - Shu-Huan Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan; (W.-S.T.); (S.-H.H.)
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan; (T.-F.H.); (J.-Y.C.)
- National Laboratory Animal Center, National Research Laboratories, Taipei 115, Taiwan
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Biomedical Translational Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: ; Tel.: +886-227899930
| |
Collapse
|
20
|
Yang CS, Kim IH, Chae HD, Kim DD, Jeon CH. Detection of Circulating Gastrointestinal Cancer Cells in Conditionally Reprogrammed Cell Culture. In Vivo 2021; 35:1515-1520. [PMID: 33910829 DOI: 10.21873/invivo.12404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM The aim of this study was to detect circulating tumor cells (CTC) in the peripheral blood of gastrointestinal cancer patients using conditionally reprogrammed cell (CRC) culture. MATERIALS AND METHODS We confirmed the sensitivity of the CRC culture method. Five ml of blood were obtained from 81 cancer patients (56 colorectal and 25 gastric). The collected mononuclear cells were cultured for 4 weeks in the CRC condition. Finally, cultured cells were characterized by RT-PCR for the expression of hTERT and MAGE A1-6 mRNA. RESULTS The CRC method had a CTC detection limit of 6 cells for gastric cancer cells. After culture of 81 blood specimens, 38 formed visible cells, including 5 colonies. Among the 38 cells, 13 were hTERT positive and 4 were MAGE A1-6 positive. The final CTC detection rate was 16.0%. CONCLUSION The CRC culture may potentially be used to evaluate the metastatic cancer cells in the circulation.
Collapse
Affiliation(s)
- Chun-Seok Yang
- Department of General Surgery, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| | - In-Hwan Kim
- Department of General Surgery, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| | - Hyun-Dong Chae
- Department of General Surgery, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| | - Dae-Dong Kim
- Department of General Surgery, Medical School, Yonsei University, Seoul, Republic of Korea
| | - Chang-Ho Jeon
- Department of Laboratory Medicine, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
21
|
Rushton AJ, Nteliopoulos G, Shaw JA, Coombes RC. A Review of Circulating Tumour Cell Enrichment Technologies. Cancers (Basel) 2021; 13:cancers13050970. [PMID: 33652649 PMCID: PMC7956528 DOI: 10.3390/cancers13050970] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Circulating tumour cells (CTCs) are cancer cells shed into the bloodstream from tumours and their analysis can provide important insights into cancer detection and monitoring, with the potential to direct personalised therapies for the patient. These CTCs are rare in the blood, which makes their detection and enrichment challenging and to date, only one technology (the CellSearch) has gained FDA approval for determining the prognosis of patients with advanced breast, prostate and colorectal cancers. Here, we review the wide range of enrichment technologies available to isolate CTCs from other blood components and highlight the important characteristics that new technologies should possess for routine clinical use. Abstract Circulating tumour cells (CTCs) are the precursor cells for the formation of metastatic disease. With a simple blood draw, liquid biopsies enable the non-invasive sampling of CTCs from the blood, which have the potential to provide important insights into cancer detection and monitoring. Since gaining FDA approval in 2004, the CellSearch system has been used to determine the prognosis of patients with metastatic breast, prostate and colorectal cancers. This utilises the cell surface marker Epithelial Cell Adhesion Molecule (EpCAM), to enrich CTCs, and many other technologies have adopted this approach. More recently, the role of mesenchymal-like CTCs in metastasis formation has come to light. It has been suggested that these cells are more aggressive metastatic precursors than their epithelial counterparts; however, mesenchymal CTCs remain undetected by EpCAM-based enrichment methods. This has prompted the development of a variety of ‘label free’ enrichment technologies, which exploit the unique physical properties of CTCs (such as size and deformability) compared to other blood components. Here, we review a wide range of both immunocapture and label free CTC enrichment technologies, summarising the most significant advantages and disadvantages of each. We also highlight the important characteristics that technologies should possess for routine clinical use, since future developments could have important clinical implications, with the potential to direct personalised therapies for patients with cancer.
Collapse
Affiliation(s)
- Amelia J. Rushton
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (G.N.); (R.C.C.)
- Correspondence:
| | - Georgios Nteliopoulos
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (G.N.); (R.C.C.)
| | - Jacqueline A. Shaw
- Leicester Cancer Research Centre, University of Leicester, Leicester LE2 7LX, UK;
| | - R. Charles Coombes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (G.N.); (R.C.C.)
| |
Collapse
|
22
|
Cell immunocapture microfluidic chip based on high-affinity recombinant protein binders. Biosens Bioelectron 2021; 172:112784. [PMID: 33161292 DOI: 10.1016/j.bios.2020.112784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022]
Abstract
Cell immunocapture microfluidic devices represent a rapidly developing field with many potential applications in medical diagnostics. The core of such approach lies in the cell binding to antibody coated surfaces through their surface receptors. Here we show, that the small recombinant protein binders (PBs) can be used for this purpose as well, with the advantage of their constructional flexibility, possibility of fusion with range of tags and cheap mass production. For this purpose, two different PBs derived from Albumin Binding Domain (ABDwt) of streptococcal protein G, so called REX and ARS ligands with proved high affinity and selectivity to the human interleukin-23 (IL-23R) and IL-17 receptor A were used. Four PBs variants recognizing two different epitopes on two different receptors and two PBs variants binding to the same epitope on one receptor but having different peptide spacer with Avitag sequence necessary for their immobilization on sensor surface were tested for cell-capture efficiency. The glass microfluidic Y-system with planar immunocapture channel working in so-called stop-flow dynamic regime was designed. Up to 60-74% immunocapture efficiency of model THP-1 cells on REX/ARS surfaces and practically no cell binding on control ABDwt surfaces was achieved. Moreover, the specific immunocapture of THP-1 cells from mixture with IL-17RA negative DU-145 cells was demonstrated. We discuss the role of the epitope, affinity and immobilization spacer of PBs as well as the influence of stop-flow dynamic regime on the effectivity of THP-1 cell immunocapture. Results can be further exploited in design of microfluidic devices for rare cells immunocapture.
Collapse
|
23
|
Liu P, Jonkheijm P, Terstappen LWMM, Stevens M. Magnetic Particles for CTC Enrichment. Cancers (Basel) 2020; 12:cancers12123525. [PMID: 33255978 PMCID: PMC7760229 DOI: 10.3390/cancers12123525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary For the enrichment of very rare cells, such as Circulating Tumor Cells (CTCs), immunomagnetic enrichment is frequently used. For this purpose, magnetic nanoparticles (MNPs) coated with specific antibodies directed against cancer cells are used. In this review, we look at the properties such a particle needs to have in order to be used successfully, and describe the different methods used in the production of such a particle as well as the methods for their separation. Additionally, an overview is given of the antibodies that could potentially be used for this purpose. Abstract Here, we review the characteristics and synthesis of magnetic nanoparticles (MNPs) and place these in the context of their usage in the immunomagnetic enrichment of Circulating Tumor Cells (CTCs). The importance of the different characteristics is explained, the need for a very specific enrichment is emphasized and different (commercial) magnetic separation techniques are shown. As the specificity of an MNP is in a large part dependent on the antibody coated onto the particle, different strategies in the coupling of specific antibodies as well as an overview of the available antibodies is given.
Collapse
Affiliation(s)
- Peng Liu
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlnds; (P.L.); (L.W.M.M.T.)
- Department of Molecular Nanofabrication, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Pascal Jonkheijm
- Department of Molecular Nanofabrication, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Leon W. M. M. Terstappen
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlnds; (P.L.); (L.W.M.M.T.)
| | - Michiel Stevens
- Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlnds; (P.L.); (L.W.M.M.T.)
- Correspondence: ; Tel.: +31-53-489-4101
| |
Collapse
|
24
|
Pei H, Li L, Han Z, Wang Y, Tang B. Recent advances in microfluidic technologies for circulating tumor cells: enrichment, single-cell analysis, and liquid biopsy for clinical applications. LAB ON A CHIP 2020; 20:3854-3875. [PMID: 33107879 DOI: 10.1039/d0lc00577k] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Circulating tumor cells (CTCs) detach from primary or metastatic lesions and circulate in the peripheral blood, which is considered to be the cause of distant metastases. CTC analysis in the form of liquid biopsy, enumeration and molecular analysis provide significant clinical information for cancer diagnosis, prognosis and therapeutic strategies. Despite the great clinical value, CTC analysis has not yet entered routine clinical practice due to lack of efficient technologies to perform CTC isolation and single-cell analysis. Taking the rarity and inherent heterogeneity of CTCs into account, reliable methods for CTC isolation and detection are in urgent demand for obtaining valuable information on cancer metastasis and progression from CTCs. Microfluidic technology, featuring microfabricated structures, can precisely control fluids and cells at the micrometer scale, thus making itself a particularly suitable method for rare CTC manipulation. Besides the enrichment function, microfluidic chips can also realize the analysis function by integrating multiple detection technologies. In this review, we have summarized the recent progress in CTC isolation and detection using microfluidic technologies, with special attention to emerging direct enrichment and enumeration in vivo. Further, few insights into single CTC molecular analysis are also demonstrated. We have provided a review of potential clinical applications of CTCs, ranging from early screening and diagnosis, tumor progression and prognosis, treatment and resistance monitoring, to therapeutic evaluation. Through this review, we conclude that the clinical utility of CTCs will be expanded as the isolation and analysis techniques are constantly improving.
Collapse
Affiliation(s)
- Haimeng Pei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | |
Collapse
|
25
|
Kumar T, Soares RRG, Ali Dholey L, Ramachandraiah H, Aval NA, Aljadi Z, Pettersson T, Russom A. Multi-layer assembly of cellulose nanofibrils in a microfluidic device for the selective capture and release of viable tumor cells from whole blood. NANOSCALE 2020; 12:21788-21797. [PMID: 33103175 DOI: 10.1039/d0nr05375a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
According to reports by the World Health Organization (WHO), cancer-related deaths reached almost 10 million in 2018. Nearly 65% of these deaths occurred in low- to middle-income countries, a trend that is bound to increase since cancer diagnostics are not currently considered a priority in resource-limited settings (RLS). Thus, cost-effective and specific cancer screening and diagnostics tools are in high demand, particularly in RLS. The selective isolation and up-concentration of rare cells while maintaining cell viability and preventing phenotypic changes is a powerful tool to allow accurate and sensitive downstream analysis. Here, multi-layer cellulose nanofibril-based coatings functionalized with anti-EpCAM antibodies on the surface of disposable microfluidic devices were optimized for specific capture of target cells, followed by efficient release without significant adverse effects. HCT 116 colon cancer cells were captured in a single step with >97% efficiency at 41.25 μL min-1 and, when spiked in whole blood, an average enrichment factor of ∼200-fold relative to white blood cells was achieved. The release of cells was performed by enzymatic digestion of the cellulose nanofibrils which had a negligible impact on cell viability. In particular, >80% of the cells were recovered with at least 97% viability in less than 30 min. Such performance paves the way to expand and improve clinical diagnostic applications by simplifying the isolation of circulating tumor cells (CTCs) and other rare cells directly from whole blood.
Collapse
Affiliation(s)
- Tharagan Kumar
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Solna, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Vafaei S, Roudi R, Madjd Z, Aref AR, Ebrahimi M. Potential theranostics of circulating tumor cells and tumor-derived exosomes application in colorectal cancer. Cancer Cell Int 2020; 20:288. [PMID: 32655320 PMCID: PMC7339440 DOI: 10.1186/s12935-020-01389-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND At the present time, colorectal cancer (CRC) is still known as a disease with a high mortality rate. Theranostics are flawless scenarios that link diagnosis with therapy, including precision medicine as a critical platform that relies on the development of biomarkers particularly "liquid biopsy". Circulating tumor cells (CTCs) and tumor-derived exosomes (TDEs) in a liquid biopsy approach are of substantial importance in comparison with traditional ones, which cannot generally be performed to determine the dynamics of the tumor due to its wide restriction of range. Thus, recent attempts has shifted towards minimally noninvasive methods. MAIN TEXT CTCs and TDEs, as significant signals emitted from the tumor microenvironment, which are also detectable in the blood, prove themselves to be promising novel biomarkers for cancer diagnosis, prognosis, and treatment response prediction. The therapeutic potential of them is still limited, and studies are at its infancy. One of the major challenges for the implementation of CTCs and TDEs which are new trends in translational medicine is the development of isolation and characterization; a standardizable approach. This review highlights and discusses the current challenges to find the bio fluids application in CRC early detection and clinical management. CONCLUSION Taken together, CTCs and TDEs as silent drivers of metastasis can serve in the management of cancer patient treatment and it is of the upmost importance to expand our insight into this subject. However, due to the limited data available from clinical trials, further validations are required before addressing their putative application in oncology.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
27
|
Genna A, Vanwynsberghe AM, Villard AV, Pottier C, Ancel J, Polette M, Gilles C. EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers (Basel) 2020; 12:E1632. [PMID: 32575608 PMCID: PMC7352430 DOI: 10.3390/cancers12061632] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) generate hybrid phenotypes with an enhanced ability to adapt to diverse microenvironments encountered during the metastatic spread. Accordingly, EMTs play a crucial role in the biology of circulating tumor cells (CTCs) and contribute to their heterogeneity. Here, we review major EMT-driven properties that may help hybrid Epithelial/Mesenchymal CTCs to survive in the bloodstream and accomplish early phases of metastatic colonization. We then discuss how interrogating EMT in CTCs as a companion biomarker could help refine cancer patient management, further supporting the relevance of CTCs in personalized medicine.
Collapse
Affiliation(s)
- Anthony Genna
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Aline M. Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Amélie V. Villard
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Charles Pottier
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium
| | - Julien Ancel
- CHU (Centre Hopitalier Universitaire) de Reims, Hôpital Maison Blanche, Service de Pneumologie, 51092 Reims, France;
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
| | - Myriam Polette
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
- CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, 51092 Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| |
Collapse
|
28
|
Enrichment of Circulating Tumor Cells from Whole Blood Using a Microfluidic Device for Sequential Physical and Magnetophoretic Separations. MICROMACHINES 2020; 11:mi11050481. [PMID: 32384825 PMCID: PMC7281227 DOI: 10.3390/mi11050481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Based on their high clinical potential, the isolation and enrichment of rare circulating tumor cells (CTCs) from peripheral blood cells has been widely investigated. There have been technical challenges with CTC separation methods using solely cancer-specific surface molecules or just using physical properties of CTCs, as they may suffer from heterogeneity or lack of specificity from overlapping physical characteristics with leukocytes. Here, we integrated an immunomagnetic-based negative enrichment method that utilizes magnetic beads attached to leukocyte-specific surface antigens, with a physical separation method that utilizes the distinct size and deformability of CTCs. By manipulating the pressure distribution throughout the device and balancing the drag and magnetic forces acting on the magnetically labeled white blood cells (WBCs), the sequential physical and magnetophoretic separations were optimized to isolate intact cancer cells, regardless of heterogeneity from whole blood. Using a breast cancer cell line in whole blood, we achieved 100% separation efficiency for cancer cells and an average of 97.2% for WBCs, which resulted in a 93.3% average separation purity. The experimental results demonstrated that our microfluidic device can be a promising candidate for liquid biopsy and can be a vital tool for aiding future cancer research.
Collapse
|
29
|
Thanh Huong P, Gurshaney S, Thanh Binh N, Gia Pham A, Hoang Nguyen H, Thanh Nguyen X, Pham-The H, Tran PT, Truong Vu K, Xuan Duong N, Pelucchi C, La Vecchia C, Boffetta P, Nguyen HD, Luu HN. Emerging Role of Circulating Tumor Cells in Gastric Cancer. Cancers (Basel) 2020; 12:E695. [PMID: 32183503 PMCID: PMC7140068 DOI: 10.3390/cancers12030695] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
With over 1 million incidence cases and more than 780,000 deaths in 2018, gastric cancer (GC) was ranked as the 5th most common cancer and the 3rd leading cause of cancer deaths worldwide. Though several biomarkers, including carcinoembryonic antigen (CEA), cancer antigen 19-9 (CA19-9), and cancer antigen 72-4 (CA72-4), have been identified, their diagnostic accuracies were modest. Circulating tumor cells (CTCs), cells derived from tumors and present in body fluids, have recently emerged as promising biomarkers, diagnostically and prognostically, of cancers, including GC. In this review, we present the landscape of CTCs from migration, to the presence in circulation, biologic properties, and morphologic heterogeneities. We evaluated clinical implications of CTCs in GC patients, including diagnosis, prognosis, and therapeutic management, as well as their application in immunotherapy. On the one hand, major challenges in using CTCs in GC were analyzed, from the differences of cut-off values of CTC positivity, to techniques used for sampling, storage conditions, and CTC molecular markers, as well as the unavailability of relevant enrichment and detection techniques. On the other hand, we discussed future perspectives of using CTCs in GC management and research, including the use of circulating tumor microembolies; of CTC checkpoint blockade in immunotherapy; and of organoid models. Despite the fact that there are remaining challenges in techniques, CTCs have potential as novel biomarkers and/or a non-invasive method for diagnostics, prognostics, and treatment monitoring of GC, particularly in the era of precision medicine.
Collapse
Affiliation(s)
- Phung Thanh Huong
- Department of Biochemistry, Hanoi University of Pharmacy, Hanoi 10000, Vietnam;
| | - Sanjeev Gurshaney
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Nguyen Thanh Binh
- Department of Pharmaceutical Management and Economics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam;
| | - Anh Gia Pham
- Department of Surgical Oncology, Viet-Duc University Hospital, Hanoi 10000, Vietnam; (A.G.P.); (H.H.N.); (X.T.N.)
| | - Huy Hoang Nguyen
- Department of Surgical Oncology, Viet-Duc University Hospital, Hanoi 10000, Vietnam; (A.G.P.); (H.H.N.); (X.T.N.)
| | - Xuan Thanh Nguyen
- Department of Surgical Oncology, Viet-Duc University Hospital, Hanoi 10000, Vietnam; (A.G.P.); (H.H.N.); (X.T.N.)
| | - Hai Pham-The
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi 10000, Vietnam; (H.P.-T.); (P.-T.T.)
| | - Phuong-Thao Tran
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi 10000, Vietnam; (H.P.-T.); (P.-T.T.)
| | - Khanh Truong Vu
- Department of Gastroenterology, Bach Mai Hospital, Hanoi 10000, Vietnam;
| | | | - Claudio Pelucchi
- Department of Clinical, Sciences and Community Health, University of Milan, 20133 Milan, Italy; (C.P.); (C.L.V.)
| | - Carlo La Vecchia
- Department of Clinical, Sciences and Community Health, University of Milan, 20133 Milan, Italy; (C.P.); (C.L.V.)
| | - Paolo Boffetta
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Division of Hematology and Medical Oncology, New York, NY 10029, USA;
| | - Hung D. Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Hung N. Luu
- Department of Epidemiology, University of Pittsburg Graduate School of Public Health, Pittsburg, PA 15261, USA
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
30
|
Davaran S, Sadeghinia M, Jamalpoor Z, Raeisdasteh Hokmabad V, Doosti-Telgerd M, Karimian A, Sadeghinia Z, Khalilifard J, Keramt A, Moradikhah F, Sadeghinia A. Multiple functions of microfluidic platforms: Characterization and applications in tissue engineering and diagnosis of cancer. Electrophoresis 2020; 41:1081-1094. [PMID: 32103511 DOI: 10.1002/elps.201900341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
Microfluidic system, or lab-on-a-chip, has grown explosively. This system has been used in research for the first time and then entered in the clinical section. Due to economic reasons, this technique has been used for screening of laboratory and clinical indices. The microfluidic system solves some difficulties accompanied by clinical and biological applications. In this review, the interpretation and analysis of some recent developments in microfluidic systems in biomedical applications with more emphasis on tissue engineering and cancer will be discussed. Moreover, we try to discuss the features and functions of microfluidic systems.
Collapse
Affiliation(s)
- Soodabeh Davaran
- Department of Pharmaceutical Chemistry, Faculty of pharmacy, Tabriz University of Medical Science, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Sadeghinia
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, Aja University of Medical Science, Tehran, Iran
| | - Vahideh Raeisdasteh Hokmabad
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Doosti-Telgerd
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Sadeghinia
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Khalilifard
- Hepatitis Research Center, Lorestan University of Medical Sciences, Kohorramabad, Iran
| | - Akram Keramt
- Department of Pharmaceutical Chemistry, Faculty of pharmacy, Tabriz University of Medical Science, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Farzad Moradikhah
- Department of Biomedical Engineering, Amirkabir, University of Technology, Tehran, Iran
| | - Ali Sadeghinia
- Department of Pharmaceutical Chemistry, Faculty of pharmacy, Tabriz University of Medical Science, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Using the polymeric circulating tumor cell chip to capture circulating tumor cells in blood samples of patients with colorectal cancer. Oncol Lett 2020; 19:2286-2294. [PMID: 32194728 PMCID: PMC7041365 DOI: 10.3892/ol.2020.11335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The current study clarified the accuracy of a circulating tumor cell (CTC) detection system to diagnose colorectal cancer using blood samples. The system uses the 'polymeric CTC-chip,' (CTC-chip), which is a microfluidic device that is used for CTC isolation. CTCs are considered sensitive diagnostic biomarkers. However, their concentration in the peripheral blood is low and requires highly sensitive and specific capturing techniques. The capture efficiency of the polymeric CTC-chip was first assessed using cell suspensions of the colorectal cancer cell line HCT-116, which was reported as 90.9% in a phosphate-buffered saline suspension and 65.0% in the blood. The CTC-chip was then used to detect CTCs in blood samples obtained from 13 patients with stage II-IV colorectal cancer. On average, the CTCs/ml was lower in patients with stages II and III colorectal cancer (3.3±2.3) than in those with stage IV (7.0±6.2). In patients with stages II-IV, 92% had ≥1 CTC per ml, which was significantly higher than the positive rate (15%) detected using the carbohydrate antigen 19-9 test (CA19-9). Furthermore, CTCs were detected in all patients with stage II and III colorectal cancer, including a number of patients with negative results for the carcinoembryonic antigen (CEA) and CA19-9 tests. With the polymeric CTC-chip detection system, CTCs can be effective cancer markers, particularly for patients with stage II and III colorectal cancer who often exhibit negative conventional serum marker test results. The CTC-chip system may also facilitate the detection of cancer progression based on CTC concentration.
Collapse
|
32
|
Yang C, Chen F, Wang S, Xiong B. Circulating Tumor Cells in Gastrointestinal Cancers: Current Status and Future Perspectives. Front Oncol 2019; 9:1427. [PMID: 31921680 PMCID: PMC6923205 DOI: 10.3389/fonc.2019.01427] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
Circulating tumor cells (CTCs), which are now defined as the "break away" cancer cells that derive from primary- or metastatic-tumor sites and present in the bloodstream, are considered to be the precursors of metastases. Considering the key role of CTCs in cancer progression, researchers are committed to analyze them in the past decades and many technologies have been proposed for achieving CTCs isolation and characterization with highly sensitivity and specificity until now. On this basis, clinicians gradually realize the clinical values of CTCs' detection through various clinical studies. As a "liquid biopsy," CTCs' detection and measurement can supply important information for predicting patient's survival, monitoring of response/resistance, assessment of minimal residual disease, evaluating distant metastasis, and sometimes, customizing therapy choices. Nowadays, eliminating CTCs of the blood circulation has been regarded as a promising method to prevent tumor metastasis. However, research on CTCs still faces many challenges. Herein, we present an overview to discuss the current concept of CTCs, summarize the available techniques for CTCs detection, and provide an update on the clinical significance of CTCs in gastrointestinal malignancies, especially focus on gastric and colorectal cancer.
Collapse
Affiliation(s)
- Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Fangfang Chen
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China.,Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| |
Collapse
|
33
|
Zhao Y, Xiong J, Shi X, Ko F. Capturing cancer cells using hyaluronic acid-immobilized electrospun random or aligned PLA nanofibers. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Yin J, Mou L, Yang M, Zou W, Du C, Zhang W, Jiang X. Highly efficient capture of circulating tumor cells with low background signals by using pyramidal microcavity array. Anal Chim Acta 2019; 1060:133-141. [DOI: 10.1016/j.aca.2019.01.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
|
35
|
Lopresti A, Malergue F, Bertucci F, Liberatoscioli ML, Garnier S, DaCosta Q, Finetti P, Gilabert M, Raoul JL, Birnbaum D, Acquaviva C, Mamessier E. Sensitive and easy screening for circulating tumor cells by flow cytometry. JCI Insight 2019; 5:128180. [PMID: 31194699 DOI: 10.1172/jci.insight.128180] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circulating Tumor Cells (CTCs) represent an easy, repeatable and representative access to information regarding solid tumors. However, their detection remains difficult because of their paucity, their short half-life, and the lack of reliable surface biomarkers. Flow cytometry (FC) is a fast, sensitive and affordable technique, ideal for rare cells detection. Adapted to CTCs detection (i.e. extremely rare cells), most FC-based techniques require a time-consuming pre-enrichment step, followed by a 2-hours staining procedure, impeding on the efficiency of CTCs detection. We overcame these caveats and reduced the procedure to less than one hour, with minimal manipulation. First, cells were simultaneously fixed, permeabilized, then stained. Second, using low-speed FC acquisition conditions and two discriminators (cell size and pan-cytokeratin expression), we suppressed the pre-enrichment step. Applied to blood from donors with or without known malignant diseases, this protocol ensures a high recovery of the cells of interest independently of their epithelial-mesenchymal plasticity and can predict which samples are derived from cancer donors. This proof-of-concept study lays the bases of a sensitive tool to detect CTCs from a small amount of blood upstream of in-depth analyses.
Collapse
Affiliation(s)
- Alexia Lopresti
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Fabrice Malergue
- Research, Beckman Coulter Life Sciences, Marseille, Marseille, France
| | - François Bertucci
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France.,Service d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Maria Lucia Liberatoscioli
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Severine Garnier
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Quentin DaCosta
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Marine Gilabert
- Service d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Jean Luc Raoul
- Service d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Claire Acquaviva
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Emilie Mamessier
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| |
Collapse
|
36
|
Insights on CTC Biology and Clinical Impact Emerging from Advances in Capture Technology. Cells 2019; 8:cells8060553. [PMID: 31174404 PMCID: PMC6627072 DOI: 10.3390/cells8060553] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023] Open
Abstract
Circulating tumor cells (CTCs) and circulating tumor microemboli (CTM) have been shown to correlate negatively with patient survival. Actual CTC counts before and after treatment can be used to aid in the prognosis of patient outcomes. The presence of circulating tumor materials (CTMat) can advertise the presence of metastasis before clinical presentation, enabling the early detection of relapse. Importantly, emerging evidence is indicating that cancer treatments can actually increase the incidence of CTCs and metastasis in pre-clinical models. Subsequently, the study of CTCs, their biology and function are of vital importance. Emerging technologies for the capture of CTC/CTMs and CTMat are elucidating vitally important biological and functional information that can lead to important alterations in how therapies are administered. This paves the way for the development of a "liquid biopsy" where treatment decisions can be informed by information gleaned from tumor cells and tumor cell debris in the blood.
Collapse
|
37
|
Bankó P, Lee SY, Nagygyörgy V, Zrínyi M, Chae CH, Cho DH, Telekes A. Technologies for circulating tumor cell separation from whole blood. J Hematol Oncol 2019; 12:48. [PMID: 31088479 PMCID: PMC6518774 DOI: 10.1186/s13045-019-0735-4] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
The importance of early cancer diagnosis and improved cancer therapy has been clear for years and has initiated worldwide research towards new possibilities in the care strategy of patients with cancer using technological innovations. One of the key research fields involves the separation and detection of circulating tumor cells (CTC) because of their suggested important role in early cancer diagnosis and prognosis, namely, providing easy access by a liquid biopsy from blood to identify metastatic cells before clinically detectable metastasis occurs and to study the molecular and genetic profile of these metastatic cells. Provided the opportunity to further progress the development of technology for treating cancer, several CTC technologies have been proposed in recent years by various research groups and companies. Despite their potential role in cancer healthcare, CTC methods are currently mainly used for research purposes, and only a few methods have been accepted for clinical application because of the difficulties caused by CTC heterogeneity, CTC separation from the blood, and a lack of thorough clinical validation. Therefore, the standardization and clinical application of various developed CTC technologies remain important subsequent necessary steps. Because of their suggested future clinical benefits, we focus on describing technologies using whole blood samples without any pretreatment and discuss their advantages, use, and significance. Technologies using whole blood samples utilize size-based, immunoaffinity-based, and density-based methods or combinations of these methods as well as positive and negative enrichment during separation. Although current CTC technologies have not been truly implemented yet, they possess high potential as future clinical diagnostic techniques for the individualized therapy of patients with cancer. Thus, a detailed discussion of the clinical suitability of these new advanced technologies could help prepare clinicians for the future and can be a foundation for technologies that would be used to eliminate CTCs in vivo.
Collapse
Affiliation(s)
- Petra Bankó
- Department of Biochemical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Sun Young Lee
- Department of Radiation Oncology, Chonbuk National University Hospital, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | | | - Miklós Zrínyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Chang Hoon Chae
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Dong Hyu Cho
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
- Department of Obstetrics and Gynecology, Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - András Telekes
- Department of Oncology, St. Lazarus Hospital, Salgótarján, Hungary
| |
Collapse
|
38
|
Wang X, Sun L, Zhang H, Wei L, Qu W, Zeng Z, Liu Y, Zhu Z. Microfluidic chip combined with magnetic-activated cell sorting technology for tumor antigen-independent sorting of circulating hepatocellular carcinoma cells. PeerJ 2019; 7:e6681. [PMID: 30972256 PMCID: PMC6448555 DOI: 10.7717/peerj.6681] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/25/2019] [Indexed: 12/29/2022] Open
Abstract
Purpose We aimed to generate a capture platform that integrates a deterministic lateral displacement (DLD) microfluidic structure with magnetic-activated cell sorting (MACS) technology for miniaturized, efficient, tumor antigen-independent circulating tumor cell (CTC) separation. Methods The microfluidic structure was based on the theory of DLD and was designed to remove most red blood cells and platelets. Whole Blood CD45 MicroBeads and a MACS separator were then used to remove bead-labeled white blood cells. We established HepG2 human liver cancer cells overexpressing green fluorescent protein by lentiviral transfection to simulate CTCs in blood, and these cells were then used to determine the CTC isolation efficiency of the device. The performance and clinical value of our platform were evaluated by comparison with the Abnova CytoQuest™ CR system in the separating of blood samples from 12 hepatocellular carcinoma patients undergoing liver transplantation in a clinical follow-up experiment. The isolated cells were stained and analyzed by confocal laser scanning microscopy. Results Using our integrated platform at the optimal flow rates for the specimen (60 µl/min) and buffer (100 µl/min per chip), we achieved an CTC yield of 85.1% ± 3.2%. In our follow-up of metastatic patients, CTCs that underwent epithelial–mesenchymal transition were found. These CTCs were missed by the CytoQuest™ CR bulk sorting approach, whereas our platform displayed increased sensitivity to EpCAMlow CTCs. Conclusions Our platform, which integrates microfluidic and MACS technology, is an attractive method for high-efficiency CTC isolation regardless of surface epitopes.
Collapse
Affiliation(s)
- Xuebin Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Liying Sun
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China.,Liver Transplantation Center, National Clinical Research Center for Digestive Diseases (NCRC-DD), Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Haiming Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Lin Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China.,Liver Transplantation Center, National Clinical Research Center for Digestive Diseases (NCRC-DD), Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Wei Qu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China.,Liver Transplantation Center, National Clinical Research Center for Digestive Diseases (NCRC-DD), Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Zhigui Zeng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China.,Liver Transplantation Center, National Clinical Research Center for Digestive Diseases (NCRC-DD), Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Ying Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China.,Liver Transplantation Center, National Clinical Research Center for Digestive Diseases (NCRC-DD), Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Zhijun Zhu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China.,Liver Transplantation Center, National Clinical Research Center for Digestive Diseases (NCRC-DD), Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
39
|
Abstract
Circulating tumor cells (CTCs) play a central role in tumor dissemination and metastases, which are ultimately responsible for most cancer deaths. Technologies that allow for identification and enumeration of rare CTC from cancer patients' blood have already established CTC as an important clinical biomarker for cancer diagnosis and prognosis. Indeed, current efforts to robustly characterize CTC as well as the associated cells of the tumor microenvironment such as circulating cancer associated fibroblasts (cCAF), are poised to unmask key insights into the metastatic process. Ultimately, the clinical utility of CTC will be fully realized once CTC can be reliably cultured and proliferated as a biospecimen for precision management of cancer patients, and for discovery of novel therapeutics. In this review, we highlight the latest CTC capture and analyses technologies, and discuss in vitro strategies for culturing and propagating CTC.
Collapse
Affiliation(s)
- Ashutosh Agarwal
- Assistant Professor, Department of Biomedical Engineering, Department of Pathology & Laboratory Medicine, University of Miami
| | - Marija Balic
- Associate Professor, Division of Oncology, Department of Internal Medicine, Research Unit Circulating Tumor Cells and Cancer Stem Cells, Medical University of Graz, Austria
| | - Dorraya El-Ashry
- Associate Professor, Department of Laboratory Medicine and Pathology, University of Minnesota
| | - Richard J. Cote
- Professor and Joseph R. Coulter Jr. Chair, Department of Pathology & Laboratory Medicine, Director, John T. Macdonald Foundation Biomedical Nanotechnology Institute (BioNIUM), University of Miami Miller School of Medicine
| |
Collapse
|
40
|
Pirozzi I, Snider A, Kraus M, Schönbrunner ER, Tripathi A. Microfluidic Immiscible Phase Filtration System for the Isolation of Small Numbers of Cells from Whole Blood. Cytometry A 2019; 95:885-897. [PMID: 30852843 DOI: 10.1002/cyto.a.23736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/24/2018] [Accepted: 02/05/2019] [Indexed: 11/09/2022]
Abstract
Isolation of circulating tumor cells (CTCs) has generated clinical and academic interest due to the important role that CTCs play in cancer metastasis and diagnosis. Here, we present a PDMS and glass prototype of a microfluidic device for the immunomagnetic, immiscible phase filtration based capture, and isolation of MCF-7 breast cancer cells, from various sample matrices including PBS-based buffer, blood plasma, and unprocessed whole blood. Following optimization of surface energy of an oil-water interface, microfluidic geometry, and bead-binding kinematics, our microfluidic device achieved 95 ± 4% recovery of target cells from PBS-based buffer with 95% purity, 90 ± 3% recovery of target cells from blood plasma and recovery of ~70 ± 5% from unprocessed whole blood with purity >99% with 1 ml blood samples with 1,000 spiked target cells. From quantitative studies to assess the nonspecific carryover of contaminants from whole blood, we found that our system accomplishes a >175 fold depletion in platelets, >900 fold depletion in erythrocytes, and >1,700 fold depletion in leukocytes with respect to unprocessed whole blood, enabling us to avoid sample pre-processing. In addition, we found that ~95% of the isolated target cells were viable, making them suitable for subsequent molecular and cellular studies. We quantify and propose mechanisms for the carryover of platelet, erythrocyte, and leukocyte contamination in purified samples, rather than relying on sample pre-processing. These results validate the continued study of our platform for extraction of CTCs from patient samples and other rare cell isolation applications. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ileana Pirozzi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island
| | - Adam Snider
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island
| | - Morey Kraus
- PerkinElmer, 940 Winter St, Waltham, Massachusetts
| | | | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island
| |
Collapse
|
41
|
Rostami P, Kashaninejad N, Moshksayan K, Saidi MS, Firoozabadi B, Nguyen NT. Novel approaches in cancer management with circulating tumor cell clusters. JOURNAL OF SCIENCE: ADVANCED MATERIALS AND DEVICES 2019; 4:1-18. [DOI: 10.1016/j.jsamd.2019.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
42
|
Thege FI, Gruber CN, Cardle II, Cong SH, Lannin TB, Kirby BJ. anti-EGFR capture mitigates EMT- and chemoresistance-associated heterogeneity in a resistance-profiling CTC platform. Anal Biochem 2019; 577:26-33. [PMID: 30790546 DOI: 10.1016/j.ab.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 12/19/2022]
Abstract
Capture and analysis of circulating tumor cells (CTCs) holds promise for diagnosing and guiding treatment of pancreatic cancer. To accurately monitor disease progression, capture platforms must be robust to processes that increase the phenotypic heterogeneity of CTCs. Most CTC-analysis technologies rely on the recognition of epithelial-specific markers for capture and identification, in particular the epithelial cell-adhesion molecule (EpCAM) and cytokeratin. As the epithelial-to-mesenchymal transition (EMT) and the acquisition of chemoresistance are both associated with loss of epithelial markers and characteristics, the effect of these processes on the expression of commonly used CTC markers, specifically EpCAM, EGFR and cytokeratin, requires further exploration. To determine this effect, we developed an in vitro model of EMT and acquired gemcitabine resistance in human pancreatic cancer cell lines. Using this model, we show that EMT-induction and acquired chemoresistance decrease EpCAM expression and microfluidic anti-EpCAM capture performance. Furthermore, we find that EGFR capture is more robust to these processes. By measuring the expression of known mediators of chemoresistance in captured cells using automated imaging and image processing, we demonstrate the ability to resistance-profile cells on-chip. We expect that this approach will allow for the development of improved non-invasive biomarkers of pancreatic cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Brian J Kirby
- Cornell University, Ithaca, USA; Weill Cornell Medicine, New York, USA.
| |
Collapse
|
43
|
Yoon Y, Lee J, Ra M, Gwon H, Lee S, Kim MY, Yoo KC, Sul O, Kim CG, Kim WY, Park JG, Lee SJ, Lee YY, Choi HS, Lee SB. Continuous Separation of Circulating Tumor Cells from Whole Blood Using a Slanted Weir Microfluidic Device. Cancers (Basel) 2019; 11:200. [PMID: 30744156 PMCID: PMC6406949 DOI: 10.3390/cancers11020200] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 01/03/2023] Open
Abstract
The separation of circulating tumor cells (CTCs) from the peripheral blood is an important issue that has been highlighted because of their high clinical potential. However, techniques that depend solely on tumor-specific surface molecules or just the larger size of CTCs are limited by tumor heterogeneity. Here, we present a slanted weir microfluidic device that utilizes the size and deformability of CTCs to separate them from the unprocessed whole blood. By testing its ability using a highly invasive breast cancer cell line, our device achieved a 97% separation efficiency, while showing an 8-log depletion of erythrocytes and 5.6-log depletion of leukocytes. We also developed an image analysis tool that was able to characterize the various morphologies and differing deformability of the separating cells. From the results, we believe our system possesses a high potential for liquid biopsy, aiding future cancer research.
Collapse
Affiliation(s)
- Yousang Yoon
- Department of Electronic Engineering, Hanyang University College of Engineering, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Jusin Lee
- Department of Electronic Engineering, Hanyang University College of Engineering, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Moonsoo Ra
- Department of Electronic Engineering, Hanyang University College of Engineering, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Hyeokshin Gwon
- Department of Electronic Engineering, Hanyang University College of Engineering, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Seungwon Lee
- Department of Electronic Engineering, Hanyang University College of Engineering, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University College of Natural Sciences, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Ki-Chun Yoo
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University College of Natural Sciences, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Onejae Sul
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University College of Natural Sciences, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Whoi-Yul Kim
- Department of Electronic Engineering, Hanyang University College of Engineering, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Jea-Gun Park
- Department of Electronic Engineering, Hanyang University College of Engineering, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Su-Jae Lee
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University College of Natural Sciences, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Young Yiul Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Medical Center, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Ho Soon Choi
- Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Medical Center, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Seung-Beck Lee
- Department of Electronic Engineering, Hanyang University College of Engineering, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| |
Collapse
|
44
|
S Iliescu F, Sim WJ, Heidari H, P Poenar D, Miao J, Taylor HK, Iliescu C. Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells. Electrophoresis 2019; 40:1457-1477. [PMID: 30676660 DOI: 10.1002/elps.201800446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/19/2019] [Accepted: 01/20/2019] [Indexed: 12/14/2022]
Abstract
Circulating tumor cells (CTCs) play an essential role in the metastasis of tumors, and thus can serve as a valuable prognostic factor for malignant diseases. As a result, the ability to isolate and characterize CTCs is essential. This review underlines the potential of dielectrophoresis for CTCs enrichment. It begins by summarizing the key performance parameters and challenges of CTCs isolation using microfluidics. The two main categories of CTCs enrichment-affinity-based and label-free methods-are analysed, emphasising the advantages and disadvantages of each as well as their clinical potential. While the main argument in favour of affinity-based methods is the strong specificity of CTCs isolation, the major advantage of the label-free technologies is in preserving the integrity of the cellular membrane, an essential requirement for downstream characterization. Moving forward, we try to answer the main question: "What makes dielectrophoresis a method of choice in CTCs isolation?" The uniqueness of dielectrophoretic CTCs enrichment resides in coupling the specificity of the isolation process with the conservation of the membrane surface. The specificity of the dielectrophoretic method stems from the differences in the dielectric properties between CTCs and other cells in the blood: the capacitances of the malignantly transformed cellular membranes of CTCs differ from those of other cells. Examples of dielectrophoretic devices are described and their performance evaluated. Critical requirements for using dielectrophoresis to isolate CTCs are highlighted. Finally, we consider that DEP has the potential of becoming a cytometric method for large-scale sorting and characterization of cells.
Collapse
Affiliation(s)
| | - Wen Jing Sim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
| | - Hossein Heidari
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Daniel P Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, Nanyang Technological University, Singapore
| | - Jianmin Miao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Hayden K Taylor
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Ciprian Iliescu
- Biomedical Institute for Global Health Research & Technology (BIGHEART), National University of Singapore, Singapore
| |
Collapse
|
45
|
Tellez-Gabriel M, Cochonneau D, Cadé M, Jubellin C, Heymann MF, Heymann D. Circulating Tumor Cell-Derived Pre-Clinical Models for Personalized Medicine. Cancers (Basel) 2018; 11:cancers11010019. [PMID: 30586936 PMCID: PMC6356998 DOI: 10.3390/cancers11010019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022] Open
Abstract
The main cause of death from cancer is associated with the development of metastases, resulting from the inability of current therapies to cure patients at metastatic stages. Generating preclinical models to better characterize the evolution of the disease is thus of utmost importance, in order to implement effective new cancer biomarkers and therapies. Circulating Tumor Cells (CTCs) are good candidates for generating preclinical models, making it possible to follow up the spatial and temporal heterogeneity of tumor tissues. This method is a non-invasive liquid biopsy that can be obtained at any stage of the disease. It partially summarizes the molecular heterogeneity of the corresponding tumors at a given time. Here, we discuss the CTC-derived models that have been generated so far, from simplified 2D cultures to the most complex CTC-derived explants (CDX models). We highlight the challenges and strengths of these preclinical tools, as well as some of the recent studies published using these models.
Collapse
Affiliation(s)
- Marta Tellez-Gabriel
- RNA and Molecular Pathology Research Group, Department of Medical Biology, The Artic University of Norway, N-9037 Tromsø, Norway.
| | - Denis Cochonneau
- LabCT, Institut de Cancérologie de l'Ouest, CRCINA, Université d'Angers, 44805 Saint Herblain CEDEX, France.
| | - Marie Cadé
- INSERM, European Associated Laboratory "Sarcoma Research Unit", University of Nantes, 44035 Nantes, France.
| | - Camille Jubellin
- INSERM, European Associated Laboratory "Sarcoma Research Unit", University of Nantes, 44035 Nantes, France.
| | - Marie-Françoise Heymann
- LabCT, Institut de Cancérologie de l'Ouest, CRCINA, Université d'Angers, 44805 Saint Herblain CEDEX, France.
| | - Dominique Heymann
- LabCT, Institut de Cancérologie de l'Ouest, CRCINA, Université d'Angers, 44805 Saint Herblain CEDEX, France.
- INSERM, European Associated Laboratory "Sarcoma Research Unit", University of Nantes, 44035 Nantes, France.
- Department of Oncology & Metabolism, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK.
| |
Collapse
|
46
|
Tang W, Jiang D, Li Z, Zhu L, Shi J, Yang J, Xiang N. Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles. Electrophoresis 2018; 40:930-954. [DOI: 10.1002/elps.201800361] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Wenlai Tang
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
- Nanjing Institute of Intelligent High-end Equipment Industry Co., Ltd.; P. R. China
| | - Di Jiang
- School of Mechanical and Electronic Engineering; Nanjing Forestry University; P. R. China
| | - Zongan Li
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Liya Zhu
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Jianping Shi
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Jiquan Yang
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
- Nanjing Institute of Intelligent High-end Equipment Industry Co., Ltd.; P. R. China
| | - Nan Xiang
- School of Mechanical Engineering; Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; P. R. China
| |
Collapse
|
47
|
Huang X, Tang J, Hu L, Bian R, Liu M, Cao W, Zhang H. Arrayed microfluidic chip for detection of circulating tumor cells and evaluation of drug potency. Anal Biochem 2018; 564-565:64-71. [PMID: 30312620 DOI: 10.1016/j.ab.2018.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 01/22/2023]
Abstract
Circulating tumor cells (CTCs) from peripheral blood of cancer patients are considered as one of the most promising pharmacodynamic (PD) biomarkers due to its non-invasive property in disease diagnosis and prognosis. However, the detection of extremely low number of CTCs in patient blood requires methods with high sensitivity and accuracy. We fabricated an arrayed geometrically enhanced mixing (GEM) chip with a "dislocation herringbone" layout based on cell immunoaffinity. By optimizing the injection and rinsing flow rate, an average cell capture rate of 87.02% and an average capture purity of 99.58% were achieved using the human lung adenocarcinoma cell lines H1975. In addition, we determined the specificity, precision, accuracy, and detection limit of our chip. The results demonstrated the chip was stable, accurate and reliable for the "liquid biopsy" of lung cancer cells using the peripheral blood of patients. Our chip can also be used to evaluate the potency of different drugs against tumor cells in parallel due to the presence of four independent microchannels.
Collapse
Affiliation(s)
- Xuejia Huang
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Jianlin Tang
- Center for Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lanlan Hu
- Center for Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ruyu Bian
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Ming Liu
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Wenxuan Cao
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Huijing Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
48
|
Salahandish R, Ghaffarinejad A, Naghib SM, Majidzadeh-A K, Zargartalebi H, Sanati-Nezhad A. Nano-biosensor for highly sensitive detection of HER2 positive breast cancer. Biosens Bioelectron 2018; 117:104-111. [DOI: 10.1016/j.bios.2018.05.043] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/10/2018] [Accepted: 05/24/2018] [Indexed: 01/26/2023]
|
49
|
Neves M, Azevedo R, Lima L, Oliveira MI, Peixoto A, Ferreira D, Soares J, Fernandes E, Gaiteiro C, Palmeira C, Cotton S, Mereiter S, Campos D, Afonso LP, Ribeiro R, Fraga A, Tavares A, Mansinho H, Monteiro E, Videira PA, Freitas PP, Reis CA, Santos LL, Dieguez L, Ferreira JA. Exploring sialyl-Tn expression in microfluidic-isolated circulating tumour cells: A novel biomarker and an analytical tool for precision oncology applications. N Biotechnol 2018; 49:77-87. [PMID: 30273682 DOI: 10.1016/j.nbt.2018.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Circulating tumour cells (CTCs) originating from a primary tumour, lymph nodes and distant metastases hold great potential for liquid biopsies by providing a molecular fingerprint for disease dissemination and its temporal evolution through the course of disease management. CTC enumeration, classically defined on the basis of surface expression of Epithelial Cell Adhesion Molecule (EpCAM) and absence of the pan-leukocyte marker CD45, has been shown to correlate with clinical outcome. However, existing approaches introduce bias into the subsets of captured CTCs, which may exclude biologically and clinically relevant subpopulations. Here we explore the overexpression of the membrane protein O-glycan sialyl-Tn (STn) antigen in advanced bladder and colorectal tumours, but not in blood cells, to propose a novel CTC isolation technology. Using a size-based microfluidic device, we show that the majority (>90%) of CTCs isolated from the blood of patients with metastatic bladder and colorectal cancers express the STn antigen, supporting a link with metastasis. STn+ CTC counts were significantly higher than EpCAM-based detection in colorectal cancer, providing a more efficient cell-surface biomarker for CTC isolation. Exploring this concept, we constructed a glycan affinity-based microfluidic device for selective isolation of STn+ CTCs and propose an enzyme-based strategy for the recovery of viable cancer cells for downstream investigations. Finally, clinically relevant cancer biomarkers (transcripts and mutations) in bladder and colorectal tumours, were identified in cells isolated by microfluidics, confirming their malignant origin and highlighting the potential of this technology in the context of precision oncology.
Collapse
Affiliation(s)
- Manuel Neves
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Rita Azevedo
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Luís Lima
- Portuguese Institute of Oncology, Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal
| | - Marta I Oliveira
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Andreia Peixoto
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; INEB-Institute for Biomedical Engineering of Porto, Portugal
| | | | - Janine Soares
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Elisabete Fernandes
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; INEB-Institute for Biomedical Engineering of Porto, Portugal
| | - Cristiana Gaiteiro
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | | | - Sofia Cotton
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Stefan Mereiter
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal
| | - Diana Campos
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal
| | | | - Ricardo Ribeiro
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; INEB-Institute for Biomedical Engineering of Porto, Portugal
| | - Avelino Fraga
- Hospital Centre- Hospital of Santo António of Porto, Portugal
| | - Ana Tavares
- Portuguese Institute of Oncology, Porto, Portugal
| | - Hélder Mansinho
- Hemato-Oncology Clinic, Hospital Garcia de Orta, EPE, Almada, Portugal; Gupo de Investigação do Cancro Digestivo-GICD, Portugal
| | | | - Paula A Videira
- Glycoimmunology Group, UCIBIO, Departamento Ciências da Vida, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paulo P Freitas
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal; INESC - Microsistemas e Nanotecnologias, Lisboa, Lisbon, Portugal
| | - Celso A Reis
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; Faculty of Medicine, University of Porto, Portugal
| | - Lúcio Lara Santos
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; UFP: School of Health Sciences, Fernando Pessoa University of Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| | - Lorena Dieguez
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - José Alexandre Ferreira
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; International Iberian Nanotechnology Laboratory (INL), Braga, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal.
| |
Collapse
|
50
|
Zhang Y, Wang Z, Wu L, Zong S, Yun B, Cui Y. Combining Multiplex SERS Nanovectors and Multivariate Analysis for In Situ Profiling of Circulating Tumor Cell Phenotype Using a Microfluidic Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704433. [PMID: 29665274 DOI: 10.1002/smll.201704433] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/17/2018] [Indexed: 05/22/2023]
Abstract
Isolating and in situ profiling the heterogeneous molecular phenotype of circulating tumor cells are of great significance for clinical cancer diagnosis and personalized therapy. Herein, an on-chip strategy is proposed that combines size-based microfluidic cell isolation with multiple spectrally orthogonal surface-enhanced Raman spectroscopy (SERS) analysis for in situ profiling of cell membrane proteins and identification of cancer subpopulations. With the developed microfluidic chip, tumor cells are sieved from blood on the basis of size discrepancy. To enable multiplex phenotypic analysis, three kinds of spectrally orthogonal SERS aptamer nanovectors are designed, providing individual cells with composite spectral signatures in accordance with surface protein expression. Next, to statistically demultiplex the complex SERS signature and profile the cellular proteomic phenotype, a revised classic least square algorithm is employed to obtain the 3D phenotypic information at single-cell resolution. Combined with categorization algorithm partial least square discriminate analysis, cells from different human breast cancer subtypes can be reliably classified with high sensitivity and selectivity. The results demonstrate that this platform can identify cancer subtypes with the spectral information correlated to the clinically relevant surface receptors, which holds great potential for clinical cancer diagnosis and precision medicine.
Collapse
Affiliation(s)
- Yizhi Zhang
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Binfeng Yun
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| |
Collapse
|