1
|
Hernández M, Lima E, Magaña JJ, Ganem-Rondero A. Glycyrrhizic Acid Formulated in Hydrotalcite Nanocarriers Intended to Act as a Hepatoprotective Agent. AAPS J 2024; 27:2. [PMID: 39562487 DOI: 10.1208/s12248-024-00986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
The article focuses on preparing a nanoformulation based on hydrotalcite and glycyrrhizic acid (GA), seeking a hepatoprotective effect. For this purpose, hydrotalcite-GA formulations were prepared by varying the following conditions to obtain optimal systems in terms of size and PDI (the lowest values), and Z potential (the highest values): (i) type of hydrotalcite (obtained by co-precipitation or calcined hydrotalcite); method used (ultrasound or high shear stirring), and (iii) type of stabilizer (Tween®80 or Pluronic® F-127). The best results were obtained using hydrotalcite obtained by co-precipitation, with high shear stirring and adding a stabilizer, either Tween®80 (HT-T80-GA: mean particle size = 315 nm, PDI = 0.18, Z potential = -20.93) or Pluronic® F-127 (HT-PF127-GA: mean particle size = 307 nm; PDI = 0.27, Z potential = -21.03). After stability studies, the HT-T80-GA formulation was chosen to study antioxidant activity, cytotoxicity, and intracellular penetration capacity. Although the hepatoprotective effect of GA in solution allowed a high viability and antioxidant activity, the fact of including GA in the HT-T80-GA formulation favored its penetration into hepatocytes, with a decrease in Caspase-3/7 expression of C-9 hepatocyte cells treated with H2O2, suggesting the capacity to inhibit apoptosis.
Collapse
Affiliation(s)
- Magali Hernández
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica (L-322), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1 de Mayo S/N, Cuautitlán Izcalli, CP 54740, Edo. de Méx, México
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Cd. Universitaria, Del. Coyoacán, CP 04510, Ciudad de Mexico, México
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, Calz. México Xochimilco N° 289, CP 14389, Ciudad de Mexico, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Ciudad de México, CP 14380, Ciudad de México, México
| | - Adriana Ganem-Rondero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica (L-322), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1 de Mayo S/N, Cuautitlán Izcalli, CP 54740, Edo. de Méx, México.
| |
Collapse
|
2
|
Yu L, Wang Z, Wang DG. Factors affecting the toxicity and oxidative stress of layered double hydroxide-based nanomaterials in freshwater algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63109-63120. [PMID: 36959400 DOI: 10.1007/s11356-023-26522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/14/2023] [Indexed: 05/10/2023]
Abstract
Layered double hydroxide (LDH) nanomaterials are utilized extensively in numerous fields because of their distinctive structural properties. It is critical to understand the environmental behavior and toxicological effects of LDHs to address potential concerns caused by their release into the environment. In this work, the toxicological effects of two typical LDHs (Mg-Al-LDH and Zn-Al-LDH) on freshwater green algae (Scenedesmus obliquus) and the main affecting factors were examined. The Zn-Al-LDH exhibited a stronger growth inhibition toxicity than the Mg-Al-LDH in terms of median effect concentration. This toxicity difference was connected to the stability of particle dispersion in water and the metallic composition of LDHs. The contribution of the dissolved metal ions to the overall toxicity of the LDHs was lower than that of their particulate forms. Moreover, the joint toxic action of different dissolved metal ions in each LDH belonged to additive effects. The Mg-Al-LDH induced a stronger oxidative stress effect in algal cells than the Zn-Al-LDH, and mitochondrion was the main site of LDH-induced production of reactive oxygen species. Scanning electron microscope observation indicated that both LDHs caused severe damage to the algal cell surface. At environmentally relevant concentrations, the LDHs exhibited joint toxic actions with two co-occurring contaminants (oxytetracycline and nano-titanium dioxide) on S. obliquus in an additive manner mainly. These findings emphasize the impacts of the intrinsic nature of LDHs, the aqueous stability of LDHs, and other environmental contaminants on their ecotoxicological effects.
Collapse
Affiliation(s)
- Le Yu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China.
| | - De-Gao Wang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| |
Collapse
|
3
|
Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022; 51:6126-6176. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Against the backdrop of increased public health awareness, inorganic nanomaterials have been widely explored as promising nanoagents for various kinds of biomedical applications. Layered double hydroxides (LDHs), with versatile physicochemical advantages including excellent biocompatibility, pH-sensitive biodegradability, highly tunable chemical composition and structure, and ease of composite formation with other materials, have shown great promise in biomedical applications. In this review, we comprehensively summarize the recent advances in LDH-based nanomaterials for biomedical applications. Firstly, the material categories and advantages of LDH-based nanomaterials are discussed. The preparation and surface modification of LDH-based nanomaterials, including pristine LDHs, LDH-based nanocomposites and LDH-derived nanomaterials, are then described. Thereafter, we systematically describe the great potential of LDHs in biomedical applications including drug/gene delivery, bioimaging diagnosis, cancer therapy, biosensing, tissue engineering, and anti-bacteria. Finally, on the basis of the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Margarita Strimaite
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong. .,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
4
|
Mahlooji I, Javidi J, Dadashzadeh S. Pharmacokinetics, tissue distribution and peritoneal retention of Ag2S quantum dots following intraperitoneal administration to mice. J Pharm Pharmacol 2021; 73:1599-1608. [PMID: 34524456 DOI: 10.1093/jpp/rgab118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/31/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES To investigate the pharmacokinetics, biodistribution and peritoneal retention of Ag2S quantum dots (Qds) after intraperitoneal (IP) injection into mice and to compare the results with those reported for the intravenous (IV) injection of these particles. METHODS Ag2S Qds was prepared by a simple one-step co-precipitation method and was injected intraperitoneally into mice. Six animals were sacrificed at predetermined time points, and blood, peritoneal content and tissue samples were collected. Ag concentration that represents the concentration of Qds was analysed by atomic absorption spectrophotometry. KEY FINDINGS Detectability of Qds in the peritoneal sample up to 2 h indicated that, compared with small drug molecules, the absorption of Ag2S Qds from the peritoneal cavity occurred at a slower rate. The AUC tissue/AUC blood ratio in the liver and intestine after IP injection (0.55 and 0.98, respectively) was considerably lower than those for the bolus injection (217 and 94, respectively), while this ratio in the spleen and lungs was markedly higher than the IV route. CONCLUSIONS Overall, the obtained results suggest that IP injection of Ag2S Qds could be more effective for drug delivery to/imaging of the spleen and lungs, whereas the IV injection for the drug delivery to/imaging of the liver and intestine.
Collapse
Affiliation(s)
- Iman Mahlooji
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jaber Javidi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Figueiredo MP, Duarte A, Vendruscolo V, Thirouard R, Constantino VR, Taviot-Guého C. Investigation about iron(III) incorporation into layered double hydroxides: Compositional and structural properties of Mg2FeyAl(1−y)(OH)6-Cl and Zn2FeyAl(1−y)(OH)6-Cl. JOURNAL OF ALLOYS AND COMPOUNDS 2021; 886:161184. [DOI: 10.1016/j.jallcom.2021.161184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
6
|
Skiba E, Pietrzak M, Glińska S, Wolf WM. The Combined Effect of ZnO and CeO 2 Nanoparticles on Pisum sativum L.: A Photosynthesis and Nutrients Uptake Study. Cells 2021; 10:3105. [PMID: 34831328 PMCID: PMC8624121 DOI: 10.3390/cells10113105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
Cerium oxide nanoparticles (CeO2 NPs) and zinc oxide nanoparticles (ZnO NPs) are emerging pollutants that are likely to occur in the contemporary environment. So far, their combined effects on terrestrial plants have not been thoroughly investigated. Obviously, this subject is a challenge for modern ecotoxicology. In this study, Pisum sativum L. plants were exposed to either CeO2 NPs or ZnO NPs alone, or mixtures of these nano-oxides (at two concentrations: 100 and 200 mg/L). The plants were cultivated in hydroponic system for twelve days. The combined effect of NPs was proved by 1D ANOVA augmented by Tukey's post hoc test at p = 0.95. It affected all major plant growth and photosynthesis parameters. Additionally, HR-CS AAS and ICP-OES were used to determine concentrations of Cu, Mn, Fe, Mg, Ca, K, Zn, and Ce in roots and shoots. Treatment of the pea plants with the NPs, either alone or in combination affected the homeostasis of these metals in the plants. CeO2 NPs stimulated the photosynthesis rate, while ZnO NPs prompted stomatal and biochemical limitations. In the mixed ZnO and CeO2 treatments, the latter effects were decreased by CeO2 NPs. These results indicate that free radicals scavenging properties of CeO2 NPs mitigate the toxicity symptoms induced in the plants by ZnO NPs.
Collapse
Affiliation(s)
- Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| | - Monika Pietrzak
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| | - Sława Glińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| |
Collapse
|
7
|
Murali A, Lokhande G, Deo KA, Brokesh A, Gaharwar AK. Emerging 2D Nanomaterials for Biomedical Applications. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:276-302. [PMID: 34970073 PMCID: PMC8713997 DOI: 10.1016/j.mattod.2021.04.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two-dimensional (2D) nanomaterials are an emerging class of biomaterials with remarkable potential for biomedical applications. The planar topography of these nanomaterials confers unique physical, chemical, electronic and optical properties, making them attractive candidates for therapeutic delivery, biosensing, bioimaging, regenerative medicine, and additive manufacturing strategies. The high surface-to-volume ratio of 2D nanomaterials promotes enhanced interactions with biomolecules and cells. A range of 2D nanomaterials, including transition metal dichalcogenides (TMDs), layered double hydroxides (LDHs), layered silicates (nanoclays), 2D metal carbides and nitrides (MXenes), metal-organic framework (MOFs), covalent organic frameworks (COFs) and polymer nanosheets have been investigated for their potential in biomedical applications. Here, we will critically evaluate recent advances of 2D nanomaterial strategies in biomedical engineering and discuss emerging approaches and current limitations associated with these nanomaterials. Due to their unique physical, chemical, and biological properties, this new class of nanomaterials has the potential to become a platform technology in regenerative medicine and other biomedical applications.
Collapse
Affiliation(s)
- Aparna Murali
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Giriraj Lokhande
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kaivalya A. Deo
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Anna Brokesh
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Akhilesh K. Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Material Science and Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Graduate Program in Genetics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman HN, Chen C, Cohen BE, Conceição ALC, Cormode DP, Cui D, Dawson KA, Falkenberg G, Fan C, Feliu N, Gao M, Gargioni E, Glüer CC, Grüner F, Hassan M, Hu Y, Huang Y, Huber S, Huse N, Kang Y, Khademhosseini A, Keller TF, Körnig C, Kotov NA, Koziej D, Liang XJ, Liu B, Liu S, Liu Y, Liu Z, Liz-Marzán LM, Ma X, Machicote A, Maison W, Mancuso AP, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson JJ, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal MK, Schaak RE, Schlemmer HP, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood AK, Spiers KM, Staufer T, Stemer DM, Stierle A, Sun X, Tsakanova G, Weiss PS, Weller H, Westermeier F, Xu M, Yan H, Zeng Y, Zhao Y, Zhao Y, Zhu D, Zhu Y, Parak WJ. X-ray-Based Techniques to Study the Nano-Bio Interface. ACS NANO 2021; 15:3754-3807. [PMID: 33650433 PMCID: PMC7992135 DOI: 10.1021/acsnano.0c09563] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
X-ray-based analytics are routinely applied in many fields, including physics, chemistry, materials science, and engineering. The full potential of such techniques in the life sciences and medicine, however, has not yet been fully exploited. We highlight current and upcoming advances in this direction. We describe different X-ray-based methodologies (including those performed at synchrotron light sources and X-ray free-electron lasers) and their potentials for application to investigate the nano-bio interface. The discussion is predominantly guided by asking how such methods could better help to understand and to improve nanoparticle-based drug delivery, though the concepts also apply to nano-bio interactions in general. We discuss current limitations and how they might be overcome, particularly for future use in vivo.
Collapse
Affiliation(s)
- Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Ramon A. Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| | - John M. Abendroth
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Tobias Beck
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Robert Blick
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Cao
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Indranath Chakraborty
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Henry N. Chapman
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Centre
for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunying Chen
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Bruce E. Cohen
- The
Molecular Foundry and Division of Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - David P. Cormode
- Radiology
Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daxiang Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Gerald Falkenberg
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neus Feliu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Mingyuan Gao
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elisabetta Gargioni
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claus-C. Glüer
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Florian Grüner
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Moustapha Hassan
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yalan Huang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Samuel Huber
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nils Huse
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yanan Kang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90049, United States
| | - Thomas F. Keller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Körnig
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan
Institute for Translational Nanotechnology (MITRAN), Ypsilanti, Michigan 48198, United States
| | - Dorota Koziej
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Xing-Jie Liang
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Beibei Liu
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Yang Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ziyao Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica
en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramon 182, 20014 Donostia-San Sebastián, Spain
| | - Xiaowei Ma
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Andres Machicote
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Maison
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La
Trobe Institute for Molecular
Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Saad Megahed
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Bert Nickel
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Ferdinand Otto
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Cristina Palencia
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Arwen Pearson
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Oula Peñate-Medina
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Bing Qi
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Joachim Rädler
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Axel Rosenhahn
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rübhausen
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Raymond E. Schaak
- Department of Chemistry, Department of Chemical Engineering,
and
Materials Research Institute, The Pennsylvania
State University, University Park, Pensylvania 16802, United States
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer
Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marius Schmidt
- Department of Physics, University
of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Oliver Schmutzler
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Florian Schulz
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - A. K. Sood
- Department of Physics, Indian Institute
of Science, Bangalore 560012, India
| | - Kathryn M. Spiers
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Theresa Staufer
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik M. Stemer
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Andreas Stierle
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Xing Sun
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL) State
Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Gohar Tsakanova
- Institute of Molecular Biology of National
Academy of Sciences of
Republic of Armenia, 7 Hasratyan str., 0014 Yerevan, Armenia
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040 Yerevan, Armenia
| | - Paul S. Weiss
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Horst Weller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Huijie Yan
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Zeng
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhao
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yuliang Zhao
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Dingcheng Zhu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhu
- Bioimaging Center, Shanghai Synchrotron Radiation Facility,
Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Physical Biology, CAS Key Laboratory
of Interfacial
Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wolfgang J. Parak
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Jung SY, Kim HM, Hwang S, Jeung DG, Rhee KJ, Oh JM. Physicochemical Properties and Hematocompatibility of Layered Double Hydroxide-Based Anticancer Drug Methotrexate Delivery System. Pharmaceutics 2020; 12:E1210. [PMID: 33327415 PMCID: PMC7764879 DOI: 10.3390/pharmaceutics12121210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
A layered double hydroxide (LDH)-based anticancer delivery system was investigated in terms of crystalline phase, particle size, hydrodynamic radius, zeta potential, etc. through in vitro and in vivo study. Size controlled LDH with anticancer drug methotrexate (MTX) incorporation was successfully prepared through step-by-step hydrothermal reaction and ion-exchange reaction. The MTX-LDH was determined to have a neutral surface charge and strong agglomeration in the neutral aqueous condition due to the surface adsorbed MTX; however, the existence of proteins in the media dramatically reduced agglomeration, resulting in the hydrodynamic radius of MTX-LDH being similar to the primary particle size. The protein fluorescence quenching assay exhibited that MTX readily reduced the fluorescence of proteins, suggesting that the interaction between MTX and proteins was strong. On the other hand, MTX-LDH showed much less binding constant to proteins compared with MTX, implying that the protein interaction of MTX was effectively blocked by the LDH carrier. The in vivo hemolysis assay after intravenous injection of MTX-LDH showed neither significant reduction in red blood cell number nor membrane damage. Furthermore, the morphology of red blood cells in a mouse model did not change upon MTX-LDH injection. Scanning electron microscopy showed that the MTX-LDH particles were attached on the blood cells without serious denaturation of cellular morphology, taking advantage of the cell hitchhiking property.
Collapse
Affiliation(s)
- Sang-Yong Jung
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Jung-gu, Korea; (S.-Y.J.); (D.-G.J.)
| | - Hyoung-Mi Kim
- Department of Chemistry and Medical Chemistry, Yonsei University MIRAE Campus, College of Science and Technology, Wonju 26493, Gangwon-do, Korea;
| | - Soonjae Hwang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Gangwon-do, Korea;
| | - Do-Gak Jeung
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Jung-gu, Korea; (S.-Y.J.); (D.-G.J.)
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, Yonsei University MIRAE Campus, College of Health Sciences, Wonju 26493, Gangwon-do, Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Jung-gu, Korea; (S.-Y.J.); (D.-G.J.)
| |
Collapse
|
10
|
Figueiredo MP, Borrego-Sánchez A, García-Villén F, Miele D, Rossi S, Sandri G, Viseras C, Constantino VRL. Polymer/Iron-Based Layered Double Hydroxides as Multifunctional Wound Dressings. Pharmaceutics 2020; 12:E1130. [PMID: 33238477 PMCID: PMC7700130 DOI: 10.3390/pharmaceutics12111130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
This work presents the development of multifunctional therapeutic membranes based on a high-performance block copolymer scaffold formed by polyether (PE) and polyamide (PA) units (known as PEBA) and layered double hydroxide (LDH) biomaterials, with the aim to study their uses as wound dressings. Two LDH layer compositions were employed containing Mg2+ or Zn2+, Fe3+ and Al3+ cations, intercalated with chloride anions, abbreviated as Mg-Cl or Zn-Cl, or intercalated with naproxenate (NAP) anions, abbreviated as Mg-NAP or Zn-NAP. Membranes were structurally and physically characterized, and the in vitro drug release kinetics and cytotoxicity assessed. PEBA-loading NaNAP salt particles were also prepared for comparison. Intercalated NAP anions improved LDH-polymer interaction, resulting in membranes with greater mechanical performance compared to the polymer only or to the membranes containing the Cl-LDHs. Drug release (in saline solution) was sustained for at least 8 h for all samples and release kinetics could be modulated: a slower, an intermediate and a faster NAP release were observed from membranes containing Zn-NAP, NaNAP and Mg-NAP particles, respectively. In general, cell viability was higher in the presence of Mg-LDH and the membranes presented improved performance in comparison with the powdered samples. PEBA containing Mg-NAP sample stood out among all membranes in all the evaluated aspects, thus being considered a great candidate for application as multifunctional therapeutic dressings.
Collapse
Affiliation(s)
- Mariana Pires Figueiredo
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo—USP, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil;
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada—UGR, Campus of Cartuja s/n, 18071 Granada, Spain; (A.B.-S.); (F.G.-V.)
- Andalusian Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas-University of Granada, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Ana Borrego-Sánchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada—UGR, Campus of Cartuja s/n, 18071 Granada, Spain; (A.B.-S.); (F.G.-V.)
- Andalusian Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas-University of Granada, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada—UGR, Campus of Cartuja s/n, 18071 Granada, Spain; (A.B.-S.); (F.G.-V.)
| | - Dalila Miele
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (S.R.); (G.S.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (S.R.); (G.S.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (S.R.); (G.S.)
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada—UGR, Campus of Cartuja s/n, 18071 Granada, Spain; (A.B.-S.); (F.G.-V.)
- Andalusian Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas-University of Granada, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo—USP, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil;
| |
Collapse
|
11
|
Abstract
Biocompatible hydrotalcite nanohybrids, i.e., layered double hydroxide (LDH) based nanohybrids have attracted significant attention for biomedical functions. Benefiting from good biocompatibility, tailored drug incorporation, high drug loading capacity, targeted cellular delivery and natural pH-responsive biodegradability, hydrotalcite nanohybrids have shown great potential in drug/gene delivery, cancer therapy and bio-imaging. This review aims to summarize recent progress of hydrotalcite nanohybrids, including the history of the hydrotalcite-like compounds for application in the medical field, synthesis, functionalization, physicochemical properties, cytotoxicity, cellular uptake mechanism, as well as their related applications in biomedicine. The potential and challenges will also be discussed for further development of LDHs both as drug delivery carriers and diagnostic agents.
Collapse
|
12
|
Sánchez Juménez C, Pacheco Moisés FP, Cano ME, Nava Andrade K, Briones Torres AL, Carbajal Arízaga GG. Folate- and glucuronate-functionalization of layered double hydroxides containing dysprosium and gadolinium and the effect on oxidative stress in rat liver mitochondria. Heliyon 2020; 6:e03111. [PMID: 31909275 PMCID: PMC6940671 DOI: 10.1016/j.heliyon.2019.e03111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/20/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
Zinc/aluminum layered double hydroxide (LDH) particles were prepared by alkaline precipitation in the presence of dysprosium and dysprosium/gadolinium cations. The particles formed were stable against exchange reactions with folate or glucuronate ions since these organic ions exclusively functionalized the external surface of the layered double hydroxides. While the dysprosium derivatives reached magnetization susceptibilities between 2.06 × 10−5 and 2.20 × 10−5 cm3/g, the samples simultaneously containing dysprosium and gadolinium decreased to a range between 1.08 × 10−5 and 1.73 × 10−5 cm3/g. This last sample was tested as a magnetic resonance imaging contrast agent and demonstrated a reduction in T1 and T2 relaxation times in a linear dependence with the LDH concentration. The oxidative stress assays in rat liver mitochondria demonstrated the low toxicity of the composition simultaneously containing dysprosium and gadolinium as well as the functionalization product with glucuronate ions, suggesting the potential of these particles to design alternative MRI contrast agents.
Collapse
Affiliation(s)
- Cecilia Sánchez Juménez
- Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, colonia Olímpica, C.P. 44430, Guadalajara, Jalisco, Mexico
| | - Fermín Paul Pacheco Moisés
- Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, colonia Olímpica, C.P. 44430, Guadalajara, Jalisco, Mexico
| | - M E Cano
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Avenida Universidad 1115, colonia Linda Vista, C.P. 47820, Ocotlán, Jalisco, Mexico
| | - Karina Nava Andrade
- Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, colonia Olímpica, C.P. 44430, Guadalajara, Jalisco, Mexico
| | - Ana Laura Briones Torres
- Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, colonia Olímpica, C.P. 44430, Guadalajara, Jalisco, Mexico
| | - Gregorio Guadalupe Carbajal Arízaga
- Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, colonia Olímpica, C.P. 44430, Guadalajara, Jalisco, Mexico
| |
Collapse
|
13
|
Piao H, Kim MH, Cui M, Choi G, Choy JH. Alendronate-Anionic Clay Nanohybrid for Enhanced Osteogenic Proliferation and Differentiation. J Korean Med Sci 2019; 34:e37. [PMID: 30718990 PMCID: PMC6356027 DOI: 10.3346/jkms.2019.34.e37] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alendronate (AL), a drug for inhibiting osteoclast-mediated bone-resorption, was intercalated into an inorganic drug delivery nanovehicle, layered double hydroxide (LDH), to form a new nanohybrid, AL-LDH, with 1:1 heterostructure along the crystallographic C-axis. Based on the intercalation reaction strategy, the present AL-LDH drug delivery system (DDS) was realized with an enhanced drug efficacy of AL, which was confirmed by the improved proliferation and osteogenic differentiation of osteoblast-like cells (MG63). METHODS The AL-LDH nanohybrid was synthesized by conventional ion-exchange reaction and characterized by powder X-ray diffraction (PXRD), high-resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared (FT-IR) spectroscopy. Additionally, in vitro efficacy tests, such as cell proliferation and alkaline phosphatase (ALP) activity, were analyzed. RESULTS The AL was successfully intercalated into LDH via ion-exchange reaction, and thus prepared AL-LDH DDS was X-ray single phasic and chemically well defined. The accumulated AL content in MG63 cells treated with the AL-LDH DDS nanoparticles was determined to be 10.6-fold higher than that within those treated with the intact AL after incubation for 1 hour, suggesting that intercellular permeation of AL was facilitated thanks to the hybridization with drug delivery vehicle, LDH. Furthermore, both in vitro proliferation level and ALP activity of MG63 treated with the present hybrid drug, AL-LDH, were found to be much more enhanced than those treated with the intact AL. This is surely due to the fact that LDH could deliver AL drug very efficiently, although LDH itself does not show any effect on proliferation and osteogenic differentiation of MG63 cells. CONCLUSION The present AL-LDH could be considered as a promising DDS for improving efficacy of AL.
Collapse
Affiliation(s)
- Huiyan Piao
- Department of Chemistry and Nanoscience, Center for Intelligent Nano-Bio Materials, Ewha Womans University, Seoul, Korea
| | - Myung Hun Kim
- Department of Chemistry and Nanoscience, Center for Intelligent Nano-Bio Materials, Ewha Womans University, Seoul, Korea
| | - Meiling Cui
- Department of Chemistry and Nanoscience, Center for Intelligent Nano-Bio Materials, Ewha Womans University, Seoul, Korea
| | - Goeun Choi
- Department of Chemistry and Nanoscience, Center for Intelligent Nano-Bio Materials, Ewha Womans University, Seoul, Korea
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Korea
| | - Jin-Ho Choy
- Department of Chemistry and Nanoscience, Center for Intelligent Nano-Bio Materials, Ewha Womans University, Seoul, Korea
| |
Collapse
|
14
|
Rongere T, Langry A, Bennis K, Taviot-Gueho C, Ducki S, Leroux F. Analgesic molecules interleaved between layered double hydroxide: Exchange versus in situ reaction and release properties. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Saha S, Ray S, Acharya R, Chatterjee TK, Chakraborty J. Magnesium, zinc and calcium aluminium layered double hydroxide-drug nanohybrids: A comprehensive study. APPLIED CLAY SCIENCE 2017; 135:493-509. [DOI: 10.1016/j.clay.2016.09.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
16
|
Kim MH, Hur W, Choi G, Min HS, Choi TH, Choy YB, Choy JH. Theranostic Bioabsorbable Bone Fixation Plate with Drug-Layered Double Hydroxide Nanohybrids. Adv Healthc Mater 2016; 5:2765-2775. [PMID: 27723270 DOI: 10.1002/adhm.201600761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/21/2016] [Indexed: 01/08/2023]
Abstract
A bioabsorbable polymeric bone plate enabled with both diagnostic and therapeutic functionalities (radiopacity and sustained drug release, respectively) is proposed. To this end, a drug-inorganic nanohybrid (RS-LDH) is examined as a theranostic agent by intercalating an anti-resorptive bone remodeling drug, risedronate (RS) into a layered double hydroxide (LDH) via an ion-exchange reaction. The RS-LDH is prepared as a sheet with a biodegradable polymer, poly(lactic-co-glycolic acid), and is then attached onto the clinically approved bioabsorbable bone plate to produce the theranostic plate. Because of the presence of the metals in the LDH, the theranostic plate results in discernible in vivo X-ray images for up to four weeks after implantation. Concurrently, bone regeneration is also significantly improved compared with the other control groups, likely because of this material's sustained drug-release property. The theranostic plate is also largely biocompatible, similar to the plate already approved for clinical use. It is concluded that the combination of a biodegradable bone plate with RS-LDH nanohybrids can constitute a promising system with theranostic ability in both X-ray diagnosis and expedited bone repair.
Collapse
Affiliation(s)
- Myung Hun Kim
- Center for Intelligent Nano-Bio Materials (CINBM); Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Republic of Korea
- Interdisciplinary Program in Bioengineering; College of Engineering; Seoul National University; Seoul 08826 Republic of Korea
| | - Woojune Hur
- Biomedical Research Institute; Seoul National University Hospital; Seoul 03080 Republic of Korea
- Department of Plastic and Reconstructive Surgery; Institute of Human-Environment Interface Biology; College of Medicine; Seoul National University; Seoul 03080 Republic of Korea
| | - Goeun Choi
- Center for Intelligent Nano-Bio Materials (CINBM); Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Hye Sook Min
- Department of Preventive Medicine; Graduate School of Public Health; Seoul National University; Seoul 08826 Korea
| | - Tae Hyun Choi
- Biomedical Research Institute; Seoul National University Hospital; Seoul 03080 Republic of Korea
- Department of Plastic and Reconstructive Surgery; Institute of Human-Environment Interface Biology; College of Medicine; Seoul National University; Seoul 03080 Republic of Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering; College of Engineering; Seoul National University; Seoul 08826 Republic of Korea
- Institute of Medical and Biological Engineering; Medical Research Center and Department of Biomedical Engineering; College of Medicine; Seoul National University; Seoul 03080 Republic of Korea
| | - Jin-Ho Choy
- Center for Intelligent Nano-Bio Materials (CINBM); Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Republic of Korea
| |
Collapse
|
17
|
Cunha VRR, de Souza RB, da Fonseca Martins AMCRP, Koh IHJ, Constantino VRL. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: histological and microcirculation evaluation. Sci Rep 2016; 6:30547. [PMID: 27480483 PMCID: PMC4969587 DOI: 10.1038/srep30547] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/06/2016] [Indexed: 01/29/2023] Open
Abstract
Biocompatibility of layered double hydroxides (LDHs), also known as hydrotalcite-like materials or double metal hydroxides, was investigated by in vivo assays via intramuscular tablets implantation in rat abdominal wall. The tablets were composed by chloride ions intercalated into LDH of magnesium/aluminum (Mg2Al-Cl) and zinc/aluminum (Zn2Al-Cl). The antigenicity and tissue integration capacity of LDHs were assessed histologically after 7 and 28 days post-implantation. No fibrous capsule nearby the LDH was noticed for both materials as well any sign of inflammatory reactions. Sidestream Dark Field imaging, used to monitor in real time the microcirculation in tissues, revealed overall integrity of the microcirculatory network neighboring the tablets, with no blood flow obstruction, bleeding and/or increasing of leukocyte endothelial adhesion. After 28 days Mg2Al-Cl promoted multiple collagen invaginations (mostly collagen type-I) among its fragments while Zn2Al-Cl induced predominantly collagen type-III. This work supports previous results in the literature about LDHs compatibility with living matter, endorsing them as functional materials for biomedical applications.
Collapse
Affiliation(s)
- Vanessa Roberta Rodrigues Cunha
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo-USP, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil
| | - Rodrigo Barbosa de Souza
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo-UNIFESP, Rua Botucatu 740, CEP 04023-900, São Paulo, SP, Brazil
| | | | - Ivan Hong Jun Koh
- Departamento de Cirurgia, Universidade Federal de São Paulo-UNIFESP, Rua Botucatu 740, CEP 04023-900, São Paulo, SP, Brazil
| | - Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo-USP, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
18
|
Arratia-Quijada J, Rivas-Fuentes S, Saavedra KJP, Lamas AMM, Carbajal Arízaga GG. Layered Double Hydroxide as a Vehicle to Increase Toxicity of Gallate Ions against Adenocarcinoma Cells. Molecules 2016; 21:molecules21070928. [PMID: 27438820 PMCID: PMC6273741 DOI: 10.3390/molecules21070928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 11/16/2022] Open
Abstract
The antineoplasic activity of gallic acid has been reported. This compound induces apoptosis and inhibits the growth of several neoplasic cells. However, this molecule is easily oxidized and degraded in the body. The aim of this work was to intercalate gallate ions into layered double hydroxide (LDH) nanoparticles under controlled conditions to reduce oxidation of gallate and to evaluate its toxicity against the A549 adenocarcinoma cell line. An isopropanol medium under nitrogen atmosphere was adequate to intercalate gallate ions with a lesser oxidation degree as detected by electron spin resonance spectroscopy. Concentrations of the hybrid LDH-gallate nanoparticles between 0.39 and 25 µg/mL reduced the cell viability to 67%, while the value reached with the pure gallic acid and LDH was 90% and 78%, respectively, thus proving that the combination of gallate ions with the inorganic nanoparticles increases the toxicity potential within this dose range.
Collapse
Affiliation(s)
- Jenny Arratia-Quijada
- Departamento de Ciencias de la Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Avenida Nuevo Periférico 555, 48525 Tonalá, Jalisco, Mexico.
| | - Selma Rivas-Fuentes
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, 14080 Mexico City, Mexico.
| | - Karina J Parra Saavedra
- Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, 44430 Guadalajara, Jalisco, Mexico.
| | - Adriana M Macías Lamas
- Departamento de Farmacobiología, Universidad de Guadalajara, Marcelino García Barragán 1421, 44430 Guadalajara, Jalisco, Mexico.
| | | |
Collapse
|
19
|
Park DH, Cho J, Kwon OJ, Yun CO, Choy JH. Biodegradable Inorganic Nanovector: Passive versus Active Tumor Targeting in siRNA Transportation. Angew Chem Int Ed Engl 2016; 55:4582-6. [DOI: 10.1002/anie.201510844] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Dae-Hwan Park
- Center for Intelligent Nano-Bio Materials (CINBM); Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Republic of Korea
| | - Jaeyong Cho
- Center for Intelligent Nano-Bio Materials (CINBM); Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Republic of Korea
| | - Oh-Joon Kwon
- Department of Bioengineering; College of Engineering; Hanyang University; Seoul 133-791 Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering; College of Engineering; Hanyang University; Seoul 133-791 Republic of Korea
| | - Jin-Ho Choy
- Center for Intelligent Nano-Bio Materials (CINBM); Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Republic of Korea
| |
Collapse
|
20
|
Park DH, Cho J, Kwon OJ, Yun CO, Choy JH. Biodegradable Inorganic Nanovector: Passive versus Active Tumor Targeting in siRNA Transportation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dae-Hwan Park
- Center for Intelligent Nano-Bio Materials (CINBM); Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Republic of Korea
| | - Jaeyong Cho
- Center for Intelligent Nano-Bio Materials (CINBM); Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Republic of Korea
| | - Oh-Joon Kwon
- Department of Bioengineering; College of Engineering; Hanyang University; Seoul 133-791 Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering; College of Engineering; Hanyang University; Seoul 133-791 Republic of Korea
| | - Jin-Ho Choy
- Center for Intelligent Nano-Bio Materials (CINBM); Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Republic of Korea
| |
Collapse
|
21
|
Dai CF, Tian DY, Li SP, Li XD. Methotrexate intercalated layered double hydroxides with the mediation of surfactants: Mechanism exploration and bioassay study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:272-8. [PMID: 26354264 DOI: 10.1016/j.msec.2015.07.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/11/2015] [Accepted: 07/22/2015] [Indexed: 11/17/2022]
Abstract
Methotrexatum intercalated layered double hydroxides (MTX/LDHs) hybrids were synthesized by the co-precipitation method and three kinds of nonionic surfactants with different hydrocarbon chain lengths were used. The resulting hybrids were then characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). XRD and FTIR investigations manifest the successful intercalation of MTX anions into the interlayer of LDHs. TEM graphs indicate that the morphology of the hybrids changes with the variation of the chain length of the surfactants, i.e., the particles synthesized using polyethylene glycol (PEG-7) present regular disc morphology with good monodispersity, while samples with the mediation of alkyl polyglycoside (APG-14) are heavily aggregated and samples with the addition of polyvinylpyrrolidone (PVP-10) exhibit irregular branches. Furthermore, the release and bioassay experiments show that monodisperse MTX/LDHs present good controlled-release and are more efficient in the suppression of the tumor cells.
Collapse
Affiliation(s)
- Chao-Fan Dai
- Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, China
| | - De-Ying Tian
- Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, China
| | - Shu-Ping Li
- Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiao-Dong Li
- Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
22
|
Sánchez Lafarga AK, Pacheco Moisés FP, Gurinov A, Ortiz GG, Carbajal Arízaga GG. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:541-7. [DOI: 10.1016/j.msec.2014.12.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/13/2014] [Accepted: 12/05/2014] [Indexed: 11/16/2022]
|
23
|
Bio-Layered Double Hydroxides Nanohybrids for Theranostics Applications. PHOTOFUNCTIONAL LAYERED MATERIALS 2015. [DOI: 10.1007/978-3-319-16991-0_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Yang L, Qian L, Feng Y, Tang P, Li D. Acid Blue 129 and Salicylate Cointercalated Layered Double Hydroxides: Assembly, Characterization, and Photostability. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502893f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lan Yang
- State Key
Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Leilei Qian
- State Key
Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yongjun Feng
- State Key
Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Pinggui Tang
- State Key
Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Dianqing Li
- State Key
Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
25
|
Comparative cytotoxicity studies of carbon-encapsulated iron nanoparticles in murine glioma cells. Colloids Surf B Biointerfaces 2014; 117:135-43. [PMID: 24632386 DOI: 10.1016/j.colsurfb.2014.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 12/21/2013] [Accepted: 02/05/2014] [Indexed: 12/29/2022]
Abstract
Carbon-encapsulated iron nanoparticles (CEINs) have recently emerged as a new class of magnetic nanomaterials with a great potential for an increasing number of biomedical applications. To address the current deficient knowledge of cellular responses due to CEIN exposures, we focused on the investigation of internalization profile and resulting cytotoxic effects of CEINs (0.0001-100 μg/ml) in murine glioma cells (GL261) in vitro. The studied CEIN samples were characterized (TEM, FT-IR, Zeta potential, Boehm titration) and examined as raw and purified nanomaterials with various surface chemistry composition. Of the four type CEINs (the mean diameter 47-56 nm) studied here, the as-synthesized raw nanoparticles (Fe@C/Fe) exhibited high cytotoxic effects on the plasma cell membrane (LDH, Calcein AM/PI) and mitochondria (MTT, JC-1) causing some pro-apoptotic evens (Annexin V/PI) in glioma cells. The effects of the purified (Fe@C) and surface-modified (Fe@C-COOH and Fe@C-(CH2)2COOH) CEINs were found in quite similar patterns; however, most of these cytotoxic events were slightly diminished compared to those induced by Fe@C/Fe. The study showed that the surface-functionalized CEINs affected the cell cycle progression in both S and G2/M phases to a greater extent compared to that of the rest of nanoparticles studied to data. Taken all together, the present results highlight the importance of the rational design of CEINs as their physicochemical features such as morphology, hydrodynamic size, impurity profiles, and especially surface characteristics are critical determinants of different cytotoxic responses.
Collapse
|
26
|
Paek HJ, Lee YJ, Chung HE, Yoo NH, Lee JA, Kim MK, Lee JK, Jeong J, Choi SJ. Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo. NANOSCALE 2013; 5:11416-11427. [PMID: 23912904 DOI: 10.1039/c3nr02140h] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the present study, the effects of particle size (20 nm or 70 nm) and surface charge (negative or positive) on the pharmacokinetics, tissue distributions, and excretion of ZnO nanoparticles were examined following the administration of a single oral dose to rats. Pharmacokinetic profiles and biodistributions were not affected by particle size or gender. However, ZnO (-) particles were markedly more absorbed by the systemic circulation than ZnO (+) particles. Furthermore, the kinetic behaviors of ZnO nanoparticles differed from those of zinc ions, as evidenced by the low dissolution (13-14%) of ZnO nanoparticles under gastric conditions. The kidneys, liver, and lungs were found to be target organs. However, the major biological fate of ZnO nanoparticles in tissues was the ionic form, not the particulate form, and this was independent of exposure routes (oral and intravenous). Particle size was only found to affect excretion kinetics, and 20 nm particles were more rapidly eliminated. Most nanoparticles were excreted via the biliary and fecal routes, but a small amount of the nanoparticles was excreted via urine. The study shows that surface charge, rather than particle size or gender, is the critical modulator of the pharmacokinetic behavior of ZnO nanoparticles.
Collapse
Affiliation(s)
- Hee-Jeong Paek
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarang-ro, Nowon-gu, Seoul 139-774, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim MH, Park DH, Yang JH, Choy YB, Choy JH. Drug-inorganic-polymer nanohybrid for transdermal delivery. Int J Pharm 2013; 444:120-7. [PMID: 23357253 DOI: 10.1016/j.ijpharm.2012.12.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/11/2012] [Accepted: 12/31/2012] [Indexed: 10/27/2022]
Abstract
For transdermal drug delivery, we prepared a drug-inorganic nanohybrid (FB-LDH) by intercalating a transdermal model drug, flurbiprofen (FB), into the layered double hydroxides (LDHs) via coprecipitation reaction. The X-ray diffraction patterns and FT-IR spectra of the FB-LDH indicated that the FB molecules were successfully intercalated via electrostatic interaction within the LDH lattices. The in vitro drug release revealed that the Eudragit(®) S-100 in release media could facilitate the drug out-diffusion by effectively replacing the intercalated drug and also enlarging the lattice spacing of the FB-LDH. In this work, a hydrophobic gel suspension of the FB-LDH was suggested as a transdermal controlled delivery formulation, where the suspensions were mixed with varying amounts of Eudragit(®) S-100 aqueous solution. The Frantz diffusion cell experiments using mouse full-skins showed that a lag time and steady-state flux of the drug could be controlled from 12.8h and 3.28μgcm(-2)h(-1) to less than 1h and 14.57μgcm(-2)h(-1), respectively, by increasing the mass fraction of Eudragit(®) S-100 solution in gel suspensions from 0% to 20% (w/w), respectively. Therefore, we conclude gel formulation of the FB-LDH have a potential for transdermal controlled drug delivery.
Collapse
Affiliation(s)
- Myung Hun Kim
- Center for Intelligent Nano-Bio Materials (CINBM), Department of Bioinspired Science and Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | | | | | | | | |
Collapse
|
28
|
Nocchetti M, Donnadio A, Ambrogi V, Andreani P, Bastianini M, Pietrella D, Latterini L. Ag/AgCl nanoparticle decorated layered double hydroxides: synthesis, characterization and antimicrobial properties. J Mater Chem B 2013; 1:2383-2393. [DOI: 10.1039/c3tb00561e] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Costantino U, Leroux F, Nocchetti M, Mousty C. LDH in Physical, Chemical, Biochemical, and Life Sciences. DEVELOPMENTS IN CLAY SCIENCE 2013. [DOI: 10.1016/b978-0-08-098259-5.00026-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Chen M, Cooper HM, Zhou JZ, Bartlett PF, Xu ZP. Reduction in the size of layered double hydroxide nanoparticles enhances the efficiency of siRNA delivery. J Colloid Interface Sci 2012; 390:275-81. [PMID: 23084868 DOI: 10.1016/j.jcis.2012.09.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 11/19/2022]
Abstract
Small interfering RNAs (siRNAs) are a potentially powerful new class of pharmaceutical drugs for many disease. However, the delivery of unprotected siRNAs is ineffective due to their susceptibility to degradation by ubiquitous nucleases under physiological conditions. Layered double hydroxide nanoparticles (LDHs) have been found to be efficient carriers of anionic drugs and nucleic acids. Our previous research has shown that LDHs (with the Z-average particle size of approximately 110 nm) can mediate siRNA delivery in mammalian cells, resulting in gene silencing. However, short double-stranded nucleic acids are mostly adsorbed onto the external surface and not well protected by LDHs. In order to enhance the intercalation of siRNA into the LDH interlayer and the efficiency of subsequent siRNA delivery, we prepared smaller LDHs (with the Z-average particle size of approximately 45 nm) with an engineered non-aqueous method. We demonstrate here that dsDNA/siRNA is more effectively intercalated into these small LDH nanoparticles, more dsDNA/siRNA is transfected into HEK 293T cells, and more efficient silencing of the target gene is achieved using smaller LDHs. Thus, smaller LDH particles have greater potential as a delivery system for the application of RNA interference.
Collapse
Affiliation(s)
- Min Chen
- Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|