1
|
Yang JH, Seong KY, Kang M, Jang S, Yang SY, Hahn YK. Turbulence-enhanced microneedle immunoassay platform (TMIP) for high-precision biomarker detection from skin interstitial fluid. Biosens Bioelectron 2025; 282:117480. [PMID: 40279736 DOI: 10.1016/j.bios.2025.117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/22/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Conventional diagnostic methods for biomarker detection often require invasive procedures and exhibit limited reproducibility and sensitivity. In this study, the turbulence-enhanced microneedle immunoassay platform (TMIP) was designed to enhance the performance and accuracy of biomarker detection in skin interstitial fluid (ISF). TMIP combines a bullet-shaped microneedle (MN) array for minimally invasive biomarker capture, a microfluidic device for MN-mediated immunoassay process simplification, and a star-shaped magnetic stirrer tool (MST) to facilitate efficient washing. By targeting S100 calcium-binding protein B (S100B), a diagnostic biomarker for melanoma, TMIP demonstrated substantial improvements in reproducibility, reducing signal deviations by up to 55 % compared to manual operation. The application of nanoporous MNs (NPMNs) achieved a low detection limit of 20 pg/mL with a high linearity (R2 = 0.9758). Validation using a gelatin phantom mimicking human skin confirmed TMIP's ability to achieve improved reproducibility and sensitivity. Furthermore, TMIP successfully detected S100B with high reproducibility in both the phantom (R2 = 0.97523) and melanoma-expressing mice within a rapid incubation time of 1 min. TMIP enables the detection of biomarkers with remarkable reproducibility and sub-nanogram sensitivity by simplifying the analysis process and enhancing reagent washing through turbulence. These features suggest that TMIP has the potential to serve as an efficient and reliable tool for biomarker detection in skin ISF.
Collapse
Affiliation(s)
- Ju-Hong Yang
- Department of Biomedical Convergence Science and Technology, Advanced Institute of Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Mingi Kang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sangsoo Jang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea.
| | - Young Ki Hahn
- Department of Biomedical Convergence Science and Technology, Advanced Institute of Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Advanced Bioconvergence (BK21 Four Program), Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
2
|
Senapati D, Sahoo SK, Nayak BS, Senapati S, Kundu GC, Bhattamisra SK. Targeting and engineering biomarkers for prostate cancer therapy. Mol Aspects Med 2025; 103:101359. [PMID: 40043463 DOI: 10.1016/j.mam.2025.101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 06/01/2025]
Abstract
Prostate cancer (PCa) is the second most commonly occurring cancer among men worldwide. Although the clinical management of PCa has significantly improved, a number of limitations have been identified in both early diagnosis and therapeutic treatment. Because multiple studies show that prostate-specific antigen (PSA) screening frequently results in overdiagnosis and overtreatment, the use of PSA alone as a diagnostic marker for PCa screening has been controversial. For individuals with locally advanced or metastatic PCa, androgen deprivation therapy (ADT) is the standard initially successful treatment; nonetheless, the majority of patients will eventually develop lethal metastatic castration-resistant prostate cancer (CRPC). Alternative treatment options, including chemo-, immuno-,or radio-therapy, can only prolong the survival of CRPC patients for several months with the most developing resistance. Considering this background, there is an urgent need to discuss about selective prostate-specific biomarkers that can predict clinically relevant PCa diagnosis and to develop biomarker-driven treatments to counteract CRPC. This review addresses several PCa-specific biomarkers that will assist physicians in determining which patients are at risk of having high-grade PCa, focusing on the clinical relevance of these biomarker-based tests among PCa patients. Secondly, this review highlights the effective use of these markers as drug targets to develop precision medicine or targeted therapies to counteract CRPC. Altogether, translating this biomarker-based research into the clinic will pave the way for the effective execution of personalized therapies for the benefit of healthcare providers, the biopharmaceutical industry, and patients.
Collapse
Affiliation(s)
- Dhirodatta Senapati
- KIIT School of Pharmacy, KIIT (Deemed to be University), Bhubaneswar, Odisha, India.
| | - Santosh Kumar Sahoo
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | | | - Satyanarayan Senapati
- KIMS Super Specialty & Cancer Centre, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Gopal C Kundu
- Kalinga Institute of Medical Sciences (KIMS), KIIT (Deemed to be University), Bhubaneswar, 751024, India; School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, 751024, India
| | - Subrat Kumar Bhattamisra
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Bihar, India
| |
Collapse
|
3
|
Yuan H, Yang R, Lian Z. Analytical approaches for forensic paper comparison and differentiation: A critical review. Forensic Sci Int 2025; 371:112490. [PMID: 40311265 DOI: 10.1016/j.forsciint.2025.112490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/31/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
This review provides a comprehensive overview of advanced analytical techniques employed in forensic science for paper comparison and differentiation, encompassing spectroscopic, chromatographic, mass spectrometric, and various complementary methods. It examines the principles, potential applications, and discriminatory potential of these diverse approaches, including the application of chemometrics and machine learning for data analysis and interpretation. However, the review critically highlights persistent challenges-such as substrate variability, environmental influences, database deficiencies, and validation gaps-which impede reliable forensic application. Enhancing scientific robustness and practical utility through focused efforts in validation, database creation, standardization, and interpretive methods is underscored as essential for advancing the field.
Collapse
Affiliation(s)
- Haohan Yuan
- School of Criminal Investigation, People's Public Security University of China, Beijing 100038, China
| | - Ruiqin Yang
- School of Criminal Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Zhe Lian
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| |
Collapse
|
4
|
Jang H, Setty S, Ahn C. A New Chemiluminescence-Based Rapid Diagnostic Testing Platform with Sequential Dual-Flow Strips for Cardiac Troponin I ( cTnI). Anal Chem 2025; 97:7138-7147. [PMID: 40152334 DOI: 10.1021/acs.analchem.4c06427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Although the most commonly used method for enhancing a limit of detection (LoD) in immunoassay is adopting chemiluminescence (CL), the liquid form of CL substrates has hindered its use for rapid diagnostic testing (RDT). In order to use the CL-based immunoassay in RDT with minimal user intervention, the liquid CL substrate should be converted to a dry form. In addition, a new RDT platform that is able to perform two sequential flows needs to be developed for the sequential flow control of the CL substrate. In this work, we have successfully developed a new dry form of CL substrate on the strip using a lyophilization process, as well as new lateral flow strips using an additional membrane pad for a time delay to achieve the desired sequential dual flows. Thus, on the dual-flow RDT strips, first the detection antibody conjugated with an enzyme flows over the test and control lines, and then the reconstituted CL substrate flows later. A hydrophilic PVDF membrane was selected as a pad material for the time delay to achieve the sequential dual flows through two flow paths, and flow introduction timing was functionally controlled to secure the time delay of approximately 5 minutes desired between the two flows. A CL-based cardiac troponin I (cTnI) assay was successfully performed on the new dual-flow RDT platform with a sample volume of 120 μL, achieving a LoD of 100 pg/mL. The achieved LoD is better than those possible with most of the currently available RDTs on the market. The new CL-based RDT platform with the capability of dual flows developed in this work can be used for numerous other immunodiagnostic platforms which need further high-sensitivity detection, envisaging a new RDT platform for point-of-care testing with further quantitative analysis.
Collapse
Affiliation(s)
- Heeyeong Jang
- Department of Electrical and Computer Engineering, Microsystems and BioMEMS Laboratory, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Supreeth Setty
- Department of Electrical and Computer Engineering, Microsystems and BioMEMS Laboratory, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Chong Ahn
- Department of Electrical and Computer Engineering, Microsystems and BioMEMS Laboratory, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
5
|
Yadav SK, Yadav AK, Kaushik A, Solanki PR. Functionalized graphitic carbon nitride as an efficient electro-analytical platform for the label-free electrochemical sensing of interleukin-8 in saliva samples. NANOSCALE 2025; 17:7926-7944. [PMID: 40017315 DOI: 10.1039/d4nr02039a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A correlation between the emerging high case fatality rate of head and neck cancer and its propensity to migrate metastatically to other parts of the body makes it a significant global danger. It raises the demand for low-level detection, which is useful for early-stage diagnostics. Graphitic carbon nitride (g-C3N4) has recently garnered considerable attention as a promising nanomaterials for biosensor due to its exceptional redox behavior, electrochemical activity, and abundance of electroactive sites. The current study presents research outcomes regarding the development of an ultra-sensitive platform for detecting interleukin-8 (IL8), a cytokine associated with oral cancer. This investigation involves fabricating the platform using 3-aminopropyl trimethoxysilane (APTES)-functionalized g-C3N4 and assessing its efficacy in both laboratory-made and real samples. The process of g-C3N4 synthesis involved the thermal pyrolysis of urea without any add-on material. Moreover, the APTES@g-C3N4 nanomaterial was subjected to electrophoretic deposition onto an ITO-coated glass electrode. The fabricated APTES@g-C3N4/ITO electrode was covalently immobilized by the EDC and NHS chemical reaction in conjunction with anti-interleukin-8 (anti-IL8) antibodies. Before using these sensors for interleukin-8 (IL8) sensing, the anti-IL8/APTES@g-C3N4/ITO electrode was treated with bovine serum albumin (BSA) molecules utilized to obstruct non-targeted areas. Such a fabricated BSA/anti-IL8/APTES@g-C3N4/ITO electrochemical immunosensing bioelectrode was characterized by various analytical, morphological, and electrochemical techniques to confirm the stepwise fabrication of the sensor. BSA/anti-IL8/APTES@g-C3N4/ITO demonstrates a noticeable DPV based electrochemical response as a function of IL8 in the concentration ranging from 500 fg mL-1 to 160 ng mL-1. This BSA/anti-IL8/APTES@g-C3N4/ITO also exhibits a lower limit of detection (LOD) of 0.04 ng mL-1, a sensitivity of 0.015 mA log10 [ng mL-1] cm-2, and stability for up to 10 weeks. The biosensor demonstrates excellent performance in analyzing real samples, indicating its practical utility. This efficacy can be attributed to the abundance of electroactive sites, confined electronic structures, and strong interactions among the active g-C3N4 matrix, anti-IL8 molecules, and IL8 molecules. Our findings are essential for advancing early and point-of-care diagnostics, where quick turnaround times and great sensitivity are critical.
Collapse
Affiliation(s)
- Sumit K Yadav
- NanoBio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
- University Department of Biotechnology, Vinoba Bhave University, Hazaribagh, Jharkhand 825301, India
| | - Amit K Yadav
- NanoBio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland 33805, FL, USA
| | - Pratima R Solanki
- NanoBio Laboratory, Special Center for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
6
|
Tanaka A, Kiguchi Y, Takegami S. Electrochemiluminescence immunoassay using ionic-liquid submicron particles for prostate-specific antigen determination. ANAL SCI 2025:10.1007/s44211-025-00734-8. [PMID: 39979534 DOI: 10.1007/s44211-025-00734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
In this study, ionic-liquid submicron particles (ILSPs) encapsulating the luminophore tris(2',2-bipyridyl)ruthenium (II) ([Ru(bpy)3]2+) were developed as a carrier for an electrochemiluminescence immunoassay (ECLIA). The ILSPs were applied to quantitative determination of the model analyte prostate-specific antigen (PSA). The electrochemiluminescence of [Ru(bpy)3]2+ was measured with 2-(dibutylamino)ethanol as a co-reactant in nine ionic liquids (ILs). The electrochemiluminescence intensity was higher in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([BMIM][TFSA]) and N-(2-methoxyethyl)-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide ([MEMP][TFSA]) than the other ILs. ILSPs were prepared using polyoxyethylene sorbitan monolaurate and sorbitan monooleate as surfactants and either [BMIM][TFSA] or [MEMP][TFSA]. The [BMIM][TFSA] ILSPs had a mean particle size of 244 nm and zeta potential of - 21.0 mV, and the [MEMP][TFSA] ILSPs had a mean particle size of 293 nm and zeta potential of - 17.9 mV. Microscope images showed that ILSPs were IL-in-water emulsions that completely encapsulated [Ru(bpy)3]2+. The ILSPs with [BMIM][TFSA] were more stable than those with [MEMP][TFSA], and [BMIM][TFSA] ILSPs was selected as a carrier in ECLIA for PSA determination. The calibration curve of PSA for ECLIA using the [BMIM][TFSA] ILSPs showed a good linear relationship (y = 0.29x + 4.02, r = 0.95) for the PSA concentration range of 100 pg/mL-100 μg/mL. The limit of detection and limit of quantification were 544 pg/mL and 35 ng/mL, respectively. Our results demonstrate that ECLIA using ILSPs can be used to easily determine the PSA concentration even with ILSPs in the particle state.
Collapse
Affiliation(s)
- Aki Tanaka
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yuki Kiguchi
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Shigehiko Takegami
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
7
|
Wellhausen J, Röhl L, Berszin M, Krücken I, Zebralla V, Pirlich M, Stoehr M, Wiegand S, Dietz A, Wald T, Wichmann G. Suppression of MCP-1, IFN-γ and IL-6 production of HNSCC ex vivo by pembrolizumab added to docetaxel and cisplatin (TP) exceeding those of TP alone is linked to improved survival. Front Immunol 2025; 15:1473897. [PMID: 39882242 PMCID: PMC11774711 DOI: 10.3389/fimmu.2024.1473897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Background Adding pembrolizumab, an anti-PD-1 antibody approved for treatment of head and neck squamous cell carcinoma (HNSCC) to neoadjuvant (induction-) chemotherapy utilizing docetaxel and cisplatin (TP) followed by radiotherapy may improve outcome in larynx organ-preservation (LOP) that is investigated in the European Larynx-Organ preservation Study (ELOS). As biomarkers for response to TP and pembrolizumab +TP are missing but may include cytokines, this work aims on determining cytokines potentially linked to outcome as prognostic markers sufficient to predict and/or monitor response to successful LOP. Methods Collagenase IV digests were generated from 47 histopathological confirmed HNSCC tumor samples and seeded in 96-well plates containing pembrolizumab, docetaxel, cisplatin either solely or in binary or ternary combination. According to the FLAVINO protocol, supernatants were collected after 3 days, adherent cells fixed using ethanol, air-dried and pan-cytokeratin positive epithelial cells counted using fluorescence microscopy. The cytokines IL-6, IL-8, IFN-γ, IP-10, MCP-1, TNF-α, and VEGF in the supernatant were quantified by sandwich ELISA. Results The mode of interaction between pembrolizumab and TP was assessed and correlated to outcome (overall, disease-specific and progression-free survival of patients). Suppression of MCP-1, IFN-γ and IL-6 production by pembrolizumab + TP exceeding the suppressive effect of TP was detected in the majority of samples and linked to improved survival. Multivariate Cox proportional hazard regression modeling revealed MCP-1, IFN-γ and IL-6 as independent outcome predictors. Conclusions Comparing response to TP vs. pembrolizumab vs. TP + pembrolizumab may allow for identification of patients with superior outcome independent from treatment applied.
Collapse
Affiliation(s)
- Jana Wellhausen
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Louisa Röhl
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Michael Berszin
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Irene Krücken
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Veit Zebralla
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Markus Pirlich
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Matthaeus Stoehr
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Susanne Wiegand
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Andreas Dietz
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Theresa Wald
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Gunnar Wichmann
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| |
Collapse
|
8
|
Tanaka A, Konishi A, Takegami S. Preparation and application of multiple particle binding-liposomes for electrochemiluminescent signal amplification in bioassays. Anal Bioanal Chem 2024; 416:6451-6461. [PMID: 39276213 DOI: 10.1007/s00216-024-05532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
In this study, multiple particle binding-liposomes (MPB-Lips), encapsulating the luminophore tris(2',2-bipyridyl)ruthenium (II) complex ([Ru(bpy)3]2+), were developed as an electrochemiluminescence (ECL) signal amplifier and were applied to detect the model analyte streptavidin (SA) using the indirect competitive ECL method. The MPB-Lips were prepared by mixing various ratios of two different liposomes-one containing a phospholipid with a primary amine group and a biotinyl group (BIO/NH2-Lip) and one containing a phospholipid with an N-hydroxysuccinimide group (NHS-Lip) to allow binding between particles via amide bonds. Quartz crystal microbalance analysis using SA-modified gold-coated quartz crystals showed that the frequency shift values of MPB-Lips gradually decreased in the order BIO/NH2-Lip:NHS-Lip = 1:0 < 1:1 < 1:3 < 1:5. This indicated that MPB-Lips were successfully formed. The indirect competitive ECL method using SA-modified gold electrodes showed that the 1:5-Lip system had greater sensitivity than the 1:0-Lip system-the limit of detection and quantification values for the systems were 1.84 and 6.30 μg mL-1 for 1:0-Lip, and 1.20 and 1.74 μg mL-1 for 1:5-Lip. Finally, the recovery of SA spiked in fetal bovine serum samples using the 1:5-Lip system showed good accuracy and precision with a recovery rate of 83-106% and relative standard deviation of 4-14%. Our study demonstrated that the MPB-Lips system was an effective and useful ECL amplifier and the ECL method using MPB-Lips could be applied to detect an analyte in a real sample.
Collapse
Affiliation(s)
- Aki Tanaka
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Atsuko Konishi
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Shigehiko Takegami
- Laboratory of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
9
|
Wright AJ, Nasralla HH, Deshmukh R, Jamalzadeh M, Hannigan M, Patera A, Li Y, Manzo-Perez M, Parashar N, Huang Z, Udumulla T, Chen W, De Forni D, Weck M, de Peppo GM, Riedo E, Shahrjerdi D. Nanoscale-localized multiplexed biological activation of field effect transistors for biosensing applications. NANOSCALE 2024; 16:19620-19632. [PMID: 39324869 DOI: 10.1039/d4nr02535k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The rise in antibiotic-resistant pathogens, highly infectious viruses, and chronic diseases has prompted the search for rapid and versatile medical tests that can be performed by the patient. Field-effect transistor (FET)-based electronic biosensing platforms are particularly attractive due to their sensitivity, fast turn-around time, potential for parallel detection of multiple pathogens, and compatibility with semiconductor manufacturing. However, an unmet critical need is a scalable, site-selective multiplexed biofunctionalization method with nanoscale precision for immobilizing different types of pathogen-specific bioreceptors on individual FETs, preventing parallel detection of multiple targets. Here, we propose a paradigm shift in FET biofunctionalization using thermal scanning probe lithography (tSPL) with a thermochemically sensitive polymer. This polymer can be spin-coated on fully-fabricated FET chips, making this approach applicable to any FET sensor material and technology. Crucially, we demonstrate the spatially selective multiplexed functionalization capability of this method by immobilizing different types of bioreceptors at prescribed locations on a chip with sub-20 nm resolution, paving the way for massively parallel FET detection of multiple pathogens. Antibody- and aptamer-modified graphene FET sensors are then realized, achieving ultra-sensitive detection of a minimum measured concentrations of 3 aM of SARS-CoV-2 spike proteins and 10 human SARS-CoV-2 infectious live virus particles per ml, and selectivity against human influenza A (H1N1) live virus.
Collapse
Affiliation(s)
- Alexander James Wright
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Hashem Hassan Nasralla
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Rahul Deshmukh
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Moeid Jamalzadeh
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Matthew Hannigan
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Andrew Patera
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Mirimus, Inc, 760 Parkside Ave, Brooklyn, NY, 11226, USA
| | - Yanxiao Li
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Miguel Manzo-Perez
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Nitika Parashar
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Zhujun Huang
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | | | - Weiqiang Chen
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Davide De Forni
- ViroStatics S.r.l., Viale Umberto I, 46, 07100 Sassari, Italy
| | - Marcus Weck
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | | | - Elisa Riedo
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Davood Shahrjerdi
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| |
Collapse
|
10
|
Zhang S, Jiang M, Lai W, Ren H, Hong C, Li H. Quenching study of Cu 2S-MPA/NGODs composites in electrochemiluminescence detection by modulating resonance energy transfer and adsorption process. Bioelectrochemistry 2024; 159:108729. [PMID: 38772096 DOI: 10.1016/j.bioelechem.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
This study explores the principles of resonance energy transfer and adsorption modulation using composites of Cu2S-MPA/NGODs. These composites can efficiently control the quenching process of electrochemiluminescence (ECL). Mercaptopropionic acid (MPA) was added during the synthesis of Cu2S-MPA to enhance its attachment to nitrogen-doped graphene quantum dots (NGODs). The UV absorption peaks of NGODs coincided with the emission peaks of luminol ECL, enabling resonance energy transfer and enhancing the quenching capability of Cu2S-MPA. Meanwhile, there is another quenching strategy. When the readily reducible Cu+ ions underwent partial reduction to Cu when they were bound to NGODs. This weakened the electrocatalytic effect on reactive oxygen species (ROS) and had a detrimental impact on electron transfer. Under optimal conditions, the immunosensor ECL intensity decreased linearly with the logarithm of carcinoembryonic antigen (CEA) concentration in the range of 0.00001-40 ng/mL, with a detection limit of 0.269 fg/mL. The sensor was effectively utilized for the identification of CEA in actual serum samples.
Collapse
Affiliation(s)
- Shaopeng Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China
| | - Mingzhe Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China
| | - Wenjing Lai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China
| | - Haoyi Ren
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China.
| | - Hongling Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, China.
| |
Collapse
|
11
|
Utzinger B, Dixit DD, Lillehoj PB. Microfluidic finger-actuated mixer for ultrasensitive electrochemical measurements of protein biomarkers for point-of-care testing. LAB ON A CHIP 2024; 24:3802-3809. [PMID: 38979726 DOI: 10.1039/d4lc00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Current diagnostic tests for high sensitivity detection of protein biomarkers involve long incubation times or require bulky/expensive instrumentation, hindering their use for point-of-care testing. Here, we report a microfluidic electrochemical immunosensor that employs a unique finger-actuated mixer for rapid, ultrasensitive measurements of protein biomarkers. Mixing was implemented during the incubation steps, which accelerated biomolecular transport and promoted immunocomplex formation, leading to enhanced analytical sensitivity and a shortened detection time. Electrochemical measurements were performed using a handheld diagnostic device consisting of a smartphone and miniature potentiostat. Proof of principle was demonstrated by using this platform for quantitative measurements of C-X-C motif chemokine ligand 9 (CXCL9), a serological biomarker for autoimmune and inflammatory diseases, which could be detected in human plasma at concentrations as low as 4.7 pg mL-1 in <25 min. The ability to rapidly detect protein biomarkers with high sensitivity in a point-of-care format makes this device a promising tool for diagnostic testing, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Benjamin Utzinger
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
| | - Desh Deepak Dixit
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
12
|
Asadi M, Ghorbani SH, Mahdavian L, Aghamohammadi M. Graphene-based hybrid composites for cancer diagnostic and therapy. J Transl Med 2024; 22:611. [PMID: 38956651 PMCID: PMC11218089 DOI: 10.1186/s12967-024-05438-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
The application of graphene-based nanocomposites for therapeutic and diagnostic reasons has advanced considerably in recent years due to advancements in the synthesis and design of graphene-based nanocomposites, giving rise to a new field of nano-cancer diagnosis and treatment. Nano-graphene is being utilized more often in the field of cancer therapy, where it is employed in conjunction with diagnostics and treatment to address the complex clinical obstacles and problems associated with this life-threatening illness. When compared to other nanomaterials, graphene derivatives stand out due to their remarkable structural, mechanical, electrical, optical, and thermal capabilities. The high specific surface area of these materials makes them useful as carriers in controlled release systems that respond to external stimuli; these compounds include drugs and biomolecules like nucleic acid sequences (DNA and RNA). Furthermore, the presence of distinctive sheet-like nanostructures and the capacity for photothermal conversion have rendered graphene-based nanocomposites highly favorable for optical therapeutic applications, including photothermal treatment (PTT), photodynamic therapy (PDT), and theranostics. This review highlights the current state and benefits of using graphene-based nanocomposites in cancer diagnosis and therapy and discusses the obstacles and prospects of their future development. Then we focus on graphene-based nanocomposites applications in cancer treatment, including smart drug delivery systems, PTT, and PDT. Lastly, the biocompatibility of graphene-based nanocomposites is also discussed to provide a unique overview of the topic.
Collapse
Affiliation(s)
- Mahnaz Asadi
- Department of Chemistry, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | | | - Leila Mahdavian
- Department of Chemistry, Doroud Branch, Islamic Azad University, Doroud, Iran.
| | | |
Collapse
|
13
|
Weaver C, Nam A, Settle C, Overton M, Giddens M, Richardson KP, Piver R, Mysona DP, Rungruang B, Ghamande S, McIndoe R, Purohit S. Serum Proteomic Signatures in Cervical Cancer: Current Status and Future Directions. Cancers (Basel) 2024; 16:1629. [PMID: 38730581 PMCID: PMC11083044 DOI: 10.3390/cancers16091629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
In 2020, the World Health Organization (WHO) reported 604,000 new diagnoses of cervical cancer (CC) worldwide, and over 300,000 CC-related fatalities. The vast majority of CC cases are caused by persistent human papillomavirus (HPV) infections. HPV-related CC incidence and mortality rates have declined worldwide because of increased HPV vaccination and CC screening with the Papanicolaou test (PAP test). Despite these significant improvements, developing countries face difficulty implementing these programs, while developed nations are challenged with identifying HPV-independent cases. Molecular and proteomic information obtained from blood or tumor samples have a strong potential to provide information on malignancy progression and response to therapy in CC. There is a large amount of published biomarker data related to CC available but the extensive validation required by the FDA approval for clinical use is lacking. The ability of researchers to use the big data obtained from clinical studies and to draw meaningful relationships from these data are two obstacles that must be overcome for implementation into clinical practice. We report on identified multimarker panels of serum proteomic studies in CC for the past 5 years, the potential for modern computational biology efforts, and the utilization of nationwide biobanks to bridge the gap between multivariate protein signature development and the prediction of clinically relevant CC patient outcomes.
Collapse
Affiliation(s)
- Chaston Weaver
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
| | - Alisha Nam
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA; (A.N.); (C.S.); (M.O.); (M.G.)
| | - Caitlin Settle
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA; (A.N.); (C.S.); (M.O.); (M.G.)
| | - Madelyn Overton
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA; (A.N.); (C.S.); (M.O.); (M.G.)
| | - Maya Giddens
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA; (A.N.); (C.S.); (M.O.); (M.G.)
| | - Katherine P. Richardson
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
| | - Rachael Piver
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| | - David P. Mysona
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| | - Bunja Rungruang
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| | - Sharad Ghamande
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| | - Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA; (A.N.); (C.S.); (M.O.); (M.G.)
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| |
Collapse
|
14
|
Wang Y, Zhu L, Guo P, Zhang Y, Lan X, Xu W. Research progress of All-in-One PCR tube biosensors based on functional modification and intelligent fabrication. Biosens Bioelectron 2024; 246:115824. [PMID: 38029707 DOI: 10.1016/j.bios.2023.115824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
PCR amplification technology is the cornerstone of molecular biology. All-in-One PCR tube, as an emerging integrated device, is booming in biosensors application. All-in-One PCR tube biosensors are integrated PCR tubes designed for signal recognition, signal amplification or signal output. They enable "one-pot" detection within functionally modified and intelligently fabricated PCR tubes, effectively overcoming the limitations of conventional PCR applications, like complex procedural steps, risk of contamination and so on. Based on this, the review article summarizes the recent advance of All-in-One PCR tube biosensors for the first time as well as systematically categorizes five approaches of functional modification, three types of intelligent fabrication and relevant property characterization techniques. More emphasis is placed on the review of five ways of functional modification, including physical modification, chemical modification, UV photografting surface treatment, plasma surface modification, and layer-by-layer assembly coating. Moreover, All-in-One PCR tube biosensors covering different recognition elements range from small molecules to protein are detailed discussed on principle of sensing, providing a deeper understanding of the design and application of All-in-One-tube biosensor. Last, the future opportunities and challenges in this fascinating field are also deliberated.
Collapse
Affiliation(s)
- Yanhui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Peijin Guo
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Xinyue Lan
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China.
| |
Collapse
|
15
|
Fattahi M, Rahdan F, Shaterabadi D, Zamani Sani M, Alizadeh M, Khatami SH, Taheri-Anganeh M, Movahedpour A, Ghasemi H. MicroRNA biosensors for the detection of liver cancer. Clin Chim Acta 2024; 554:117796. [PMID: 38272250 DOI: 10.1016/j.cca.2024.117796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Liver cancer is one of the deadliest types worldwide and early diagnosis is highly important for successful treatment. Therefore, it is necessary to develop rapid, sensitive, simple, and inexpensive analytical tools for its detection. MicroRNAs (miRNA) represent unique biomarkers whose expression in biofluids is strongly associated with cancer in general and miR-21, -31, -122, -145, -146a, -200c, -221, -222, and -223 in liver cancer, specifically. Various biosensors for miRNA detection have been developed. These include electrochemical biosensors based on amperometric, potentiometric, conductometric and impedimetric technology. Furthermore, the use of advanced nanomaterials with enhanced chemical stability, conductivity and electrocatalytic activity have greatly increased the sensitivity and specificity of these devices. The present review focuses on recent advances in electrochemical biosensors for miRNA detection in liver cancer.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Donya Shaterabadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamani Sani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | | |
Collapse
|
16
|
Azadmousavi T, Ghafar-Zadeh E. Design and Analysis of a Low-Voltage VCO: Reliability and Variability Performance. MICROMACHINES 2023; 14:2118. [PMID: 38004976 PMCID: PMC10673083 DOI: 10.3390/mi14112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
This paper investigates an adaptive body biasing (ABB) circuit to improve the reliability and variability of a low-voltage inductor-capacitor (LC) voltage-controlled oscillator (VCO). The ABB circuit provides VCO resilience to process variability and reliability variation through the threshold voltage adjustment of VCO's transistors. Analytical equations considering the body bias effect are derived for the most important relations of the VCO and then the performance is verified using the post-layout simulation results. Under a 0.16% threshold voltage shift, the sensitivity of the normalized phase noise and transconductance of the VCO with the ABB circuit compared to the constant body bias (CBB) decreases by around 8.4 times and 3.1 times, respectively. Also, the sensitivity of the normalized phase noise and transconductance of the proposed VCO under 0.16% mobility variations decreases by around 1.5 times and 1.7 times compared to the CBB, respectively. The robustness of the VCO is also examined using process variation analysis through Monte Carlo and corner case simulations. The post-layout results in the 180 nm CMOS process indicate that the proposed VCO draws a power consumption of only 398 µW from a 0.6 V supply when the VCO frequency is 2.4 GHz. It achieves a phase noise of -123.19 dBc/Hz at a 1 MHz offset and provides a figure of merit (FoM) of -194.82 dBc/Hz.
Collapse
Affiliation(s)
- Tayebeh Azadmousavi
- Department of Electrical Engineering, University of Bonab, Bonab 55517-61167, Iran;
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA), Department of Electrical Engineering and Computer Science (EECS), Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
17
|
Zorzi F, Bonfadini S, Aloisio L, Moschetta M, Storti F, Simoni F, Lanzani G, Criante L. Optofluidic Flow Cytometer with In-Plane Spherical Mirror for Signal Enhancement. SENSORS (BASEL, SWITZERLAND) 2023; 23:9191. [PMID: 38005576 PMCID: PMC10675696 DOI: 10.3390/s23229191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Statistical analysis of the properties of single microparticles, such as cells, bacteria or plastic slivers, has attracted increasing interest in recent years. In this regard, field flow cytometry is considered the gold standard technique, but commercially available instruments are bulky, expensive, and not suitable for use in point-of-care (PoC) testing. Microfluidic flow cytometers, on the other hand, are small, cheap and can be used for on-site analyses. However, in order to detect small particles, they require complex geometries and the aid of external optical components. To overcome these limitations, here, we present an opto-fluidic flow cytometer with an integrated 3D in-plane spherical mirror for enhanced optical signal collection. As a result, the signal-to-noise ratio is increased by a factor of six, enabling the detection of particle sizes down to 1.5 µm. The proposed optofluidic detection scheme enables the simultaneous collection of particle fluorescence and scattering using a single optical fiber, which is crucial to easily distinguishing particle populations with different optical properties. The devices have been fully characterized using fluorescent polystyrene beads of different sizes. As a proof of concept for potential real-world applications, signals from fluorescent HEK cells and Escherichia coli bacteria were analyzed.
Collapse
Affiliation(s)
- Filippo Zorzi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy; (F.Z.); (S.B.); (L.A.); (M.M.); (F.S.); (G.L.)
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Silvio Bonfadini
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy; (F.Z.); (S.B.); (L.A.); (M.M.); (F.S.); (G.L.)
| | - Ludovico Aloisio
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy; (F.Z.); (S.B.); (L.A.); (M.M.); (F.S.); (G.L.)
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Matteo Moschetta
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy; (F.Z.); (S.B.); (L.A.); (M.M.); (F.S.); (G.L.)
| | - Filippo Storti
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy; (F.Z.); (S.B.); (L.A.); (M.M.); (F.S.); (G.L.)
| | - Francesco Simoni
- Università Politecnica delle Marche, 60131 Ancona, Italy;
- Institute of Applied Sciences and Intelligent Systems, Consiglio Nazionale delle Ricerche (CNR), 80072 Pozzuoli, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy; (F.Z.); (S.B.); (L.A.); (M.M.); (F.S.); (G.L.)
| | - Luigino Criante
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy; (F.Z.); (S.B.); (L.A.); (M.M.); (F.S.); (G.L.)
| |
Collapse
|
18
|
Farnesi E, Rinaldi S, Liu C, Ballmaier J, Guntinas-Lichius O, Schmitt M, Cialla-May D, Popp J. Label-Free SERS and MD Analysis of Biomarkers for Rapid Point-of-Care Sensors Detecting Head and Neck Cancer and Infections. SENSORS (BASEL, SWITZERLAND) 2023; 23:8915. [PMID: 37960614 PMCID: PMC10648186 DOI: 10.3390/s23218915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
For the progress of point-of-care medicine, where individual health status can be easily and quickly monitored using a handheld sensor, saliva serves as one of the best-suited body fluids thanks to its availability and abundance of physiological indicators. Salivary biomarkers, combined with rapid and highly sensitive detection tools, may pave the way to new real-time health monitoring and personalized preventative therapy branches using saliva as a target matrix. Saliva is increasing in importance in liquid biopsy, a non-invasive approach that helps physicians diagnose and characterize specific diseases in patients. Here, we propose a proof-of-concept study combining the unique specificity in biomolecular recognition provided by surface-enhanced Raman spectroscopy (SERS) in combination with molecular dynamics (MD) simulations, which give leave to explore the biomolecular absorption mechanism on nanoparticle surfaces, in order to verify the traceability of two validated salivary indicators, i.e., interleukin-8 (IL-8) and lysozyme (LYZ), implicated in oropharyngeal squamous cell carcinoma (OSCC) and oral infection. This strategy simultaneously assures the detection and interpretation of protein biomarkers in saliva, ultimately opening a new route for the evolution of fast and accurate point-of-care SERS-based sensors of interest in precision medicine diagnostics.
Collapse
Affiliation(s)
- Edoardo Farnesi
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany; (E.F.); (C.L.); (M.S.); (J.P.)
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Silvia Rinaldi
- Institute for the Chemistry of Organo Metallic Compounds, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy;
| | - Chen Liu
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany; (E.F.); (C.L.); (M.S.); (J.P.)
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Jonas Ballmaier
- Department of Otorhinolaryngology-Head and Neck Surgery, Jena University Hospital, 07747 Jena, Germany; (J.B.); (O.G.-L.)
| | - Orlando Guntinas-Lichius
- Department of Otorhinolaryngology-Head and Neck Surgery, Jena University Hospital, 07747 Jena, Germany; (J.B.); (O.G.-L.)
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany; (E.F.); (C.L.); (M.S.); (J.P.)
| | - Dana Cialla-May
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany; (E.F.); (C.L.); (M.S.); (J.P.)
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Juergen Popp
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany; (E.F.); (C.L.); (M.S.); (J.P.)
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
19
|
Saleh RI, Kim S, Lee SH, Kwon H, Jeong HE, Cha C. Manipulating Physicochemical Properties of Biosensor Platform with Polysuccinimide-Silica Nanocomposite for Enhanced Protein Detection. Adv Healthc Mater 2023; 12:e2301774. [PMID: 37485740 DOI: 10.1002/adhm.202301774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Indexed: 07/25/2023]
Abstract
As point-of-care testing (POCT) is becoming the new paradigm of medical diagnostics, there is a growing need to develop reliable POCT devices that can be conveniently operated in a minimally invasive manner. However, the clinical potential of POCT diagnostics is yet to be realized, mainly due to the limited and inconsistent amount of collected samples on these devices, undermining their accuracy. This study proposes a new biosensing platform modified with a functional polysuccinimide (PSI)-silica nanoparticle (SNP) composite system that can substantially increase the protein conjugation efficiency by modulating physicochemical interaction with proteins by several hundred percent from an unmodified device. The efficacy of this PSI-SNP system is further validated by applying it on the surface of a microneedle array (MN), which has emerged as a promising POCT device capable of accessing interstitial fluid through minimal penetration of the skin. This PSI-SNP MN is demonstrated to detect a wide array of proteins with high sensitivity on par with conventional whole serum analysis, validated by in vivo animal testing, effectively displaying broad applicability in biomedical engineering.
Collapse
Affiliation(s)
- Rabi Ibrahim Saleh
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Suntae Kim
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sang-Hyeon Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyukjoo Kwon
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
20
|
Röhl L, Wellhausen J, Berszin M, Krücken I, Zebralla V, Pirlich M, Wiegand S, Dietz A, Wald T, Wichmann G. Immune checkpoint blockade induced shifts in cytokine expression patterns in peripheral blood of head and neck cancer patients are linked to outcome. Front Immunol 2023; 14:1237623. [PMID: 37849764 PMCID: PMC10577218 DOI: 10.3389/fimmu.2023.1237623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Background Immune-checkpoint blockade (ICB) of programmed-death-1 (PD-1) with pembrolizumab or nivolumab is approved for treating recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC). NadiHN and ADRISK are phase IIB trials investigating in locally advanced (LA) HNSCC having low or high risk of recurrence the potential benefits from adding nivolumab to post-operative radiotherapy or pembrolizumab to cisplatin-based radio-chemotherapy. Methods Along five randomized controlled ICB trials including NadiHN and ADRISK, blood samples were taken before and after starting ICB in n=25 patients. Concentrations of vascular endothelial growth factor A (VEGF), CCL2 (MCP-1), interleukin-6 (IL-6), IL-8, interferon-gamma (IFN-γ), and CXCL10 (IP-10) pre- and post-ICB in EDTA-anticoagulated plasma and serum were compared. We used receiver operating characteristic (ROC) curves to identify optimal cutoff for defining subgroups before analyzing overall survival (OS) applying Kaplan-Meier plots and multivariate Cox regression. Results We detected huge heterogeneity between cytokine patterns in pre-and post-ICB plasma and serum. We observed high correlation between concentrations of some cytokines. Despite absent systematic OS differences after ICB with pembrolizumab or nivolumab or between LA-HNSCC versus R/M HNSCC patients, we noticed improved outcome of patients having lower IFN-γ concentrations pre- and post-ICB and following ICB reduced concentrations of VEGF, IL-6, and IL-8 but not MCP-1. Contrarily, increases in IL-6, IL-8, and VEGF levels correlated with impaired outcome. Multivariate Cox regression revealed five independent OS predictors among cytokines; using natural logarithms of their hazard ratios to estimate an individual's risk of dying, three cytokine-expression pattern (CEP)-risk groups with no death within mean (95% confidence interval) follow-up of 29.2 (22.1-36.2) months and median OS of 11.3 (8.8-13.8) and 2.9 (0.4-5.4) months were found. Conclusion Whereas individual pre- or post-ICB cytokine concentrations in serum or plasma alone failed to predict the survivor group, CEP-risk groups may support the identification of individual patients with long-lasting benefit from ICB.
Collapse
Affiliation(s)
- Louisa Röhl
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Jana Wellhausen
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Michael Berszin
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Irene Krücken
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Veit Zebralla
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Markus Pirlich
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Susanne Wiegand
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Andreas Dietz
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Theresa Wald
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Gunnar Wichmann
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Chang Y, Chen Y, Wu M, Liu L, Song Q. Electrochemical detection of glycoproteins using boronic acid-modified metal-organic frameworks as dual-functional signal reporters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4452-4458. [PMID: 37641924 DOI: 10.1039/d3ay01164j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The sensitive analysis of glycoproteins is of great importance for early diagnosis and prognosis of diseases. In this work, a sandwich-type electrochemical aptasensor was developed for the detection of glycoproteins using 4-formylphenylboric acid (FPBA)-modified Cu-based metal-organic frameworks (FPBA-Cu-MOFs) as dual-functional signal probes. The target captured by the aptamer-modified electrode allowed the attachment of FPBA-Cu-MOFs based on the interaction between boronic acid and glycan on glycoproteins. Large numbers of Cu2+ ions in FPBA-Cu-MOFs produced an amplified signal for the direct voltammetric detection of glycoproteins. The electrochemical aptasensor showed a detection limit as low as 6.5 pg mL-1 for prostate specific antigen detection. The method obviates the use of antibody and enzymes for molecular recognition and signal output. The dual-functional MOFs can be extended to the design of other biosensors for the determination of diol-containing biomolecules in clinical diagnosis.
Collapse
Affiliation(s)
- Yong Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Jiangsu 214122, P. R. China.
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Yixuan Chen
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Mian Wu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Jiangsu 214122, P. R. China.
| |
Collapse
|
22
|
Battalapalli D, Chakraborty P, Jain D, Obaro SK, Gurkan UA, Bonomo RA, Draz MS. Polyethylene Glycol-Mediated Directional Conjugation of Biological Molecules for Enhanced Immunoassays at the Point-of-Care. Polymers (Basel) 2023; 15:3316. [PMID: 37571209 PMCID: PMC10422345 DOI: 10.3390/polym15153316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Rapid and reliable point-of-care (POC) diagnostic tests can have a significant impact on global health. One of the most common approaches for developing POC systems is the use of target-specific biomolecules. However, the conjugation of biomolecules can result in decreased activity, which may compromise the analytical performance and accuracy of the developed systems. To overcome this challenge, we present a polymer-based cross-linking protocol for controlled and directed conjugation of biological molecules. Our protocol utilizes a bifunctional thiol-polyethylene glycol (PEG)-hydrazide polymer to enable site-directed conjugation of IgG antibodies to the surface of screen-printed metal electrodes. The metal surface of the electrodes is first modified with thiolated PEG molecules, leaving the hydrazide groups available to react with the aldehyde group in the Fc fragments of the oxidized IgG antibodies. Using anti-Klebsiella pneumoniae carbapenemase-2 (KPC-2) antibody as a model antibody used for antimicrobial resistance (AMR) testing, our results demonstrate a ~10-fold increase in antibody coupling compared with the standard N-hydroxysuccinimide (NHS)-based conjugation chemistry and effective capture (>94%) of the target KPC-2 enzyme antigen on the surface of modified electrodes. This straightforward and easy-to-perform strategy of site-directed antibody conjugation can be engineered for coupling other protein- and non-protein-based biological molecules commonly used in POC testing and development, thus enhancing the potential for improved diagnostic accuracy and performance.
Collapse
Affiliation(s)
| | - Purbali Chakraborty
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Disha Jain
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Stephen K. Obaro
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Umut A. Gurkan
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, OH 44106, USA
| | - Mohamed S. Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
23
|
Liu L, Ma X, Chang Y, Guo H, Wang W. Biosensors with Boronic Acid-Based Materials as the Recognition Elements and Signal Labels. BIOSENSORS 2023; 13:785. [PMID: 37622871 PMCID: PMC10452607 DOI: 10.3390/bios13080785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
It is of great importance to have sensitive and accurate detection of cis-diol-containing biologically related substances because of their important functions in the research fields of metabolomics, glycomics, and proteomics. Boronic acids can specifically and reversibly interact with 1,2- or 1,3-diols to form five or six cyclic esters. Based on this unique property, boronic acid-based materials have been used as synthetic receptors for the specific recognition and detection of cis-diol-containing species. This review critically summarizes the recent advances with boronic acid-based materials as recognition elements and signal labels for the detection of cis-diol-containing biological species, including ribonucleic acids, glycans, glycoproteins, bacteria, exosomes, and tumor cells. We also address the challenges and future perspectives for developing versatile boronic acid-based materials with various promising applications.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Hang Guo
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenqing Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
24
|
Zhou Y, Liu Z. Saliva biomarkers in oral disease. Clin Chim Acta 2023; 548:117503. [PMID: 37536520 DOI: 10.1016/j.cca.2023.117503] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Saliva is a versatile biofluid that contains a wide variety of biomarkers reflecting both physiologic and pathophysiologic states. Saliva collection is noninvasive and highly applicable for tests requiring serial sampling. Furthermore, advances in test accuracy, sensitivity and precision for saliva has improved diagnostic performance as well as the identification of novel markers especially in oral disease processes. These include dental caries, periodontitis, oral squamous cell carcinoma (OSCC) and Sjögren's syndrome (SS). Numerous growth factors, enzymes, interleukins and cytokines have been identified and are the subject of much research investigation. This review highlights current procedures for successful determination of saliva biomarkers including preanalytical factors associated with sampling, storage and pretreatment as well as subsequent analysis. Moreover, it provides an overview of the diagnostic applications of these salivary biomarkers in common oral diseases.
Collapse
Affiliation(s)
- Yuehong Zhou
- Wenzhou Medical University Renji College, Wenzhou, China
| | - Zhenqi Liu
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Jiang T, Su W, Li Y, Jiang M, Zhang Y, Xian CJ, Zhai Y. Research Progress on Nanomaterials for Tissue Engineering in Oral Diseases. J Funct Biomater 2023; 14:404. [PMID: 37623649 PMCID: PMC10455101 DOI: 10.3390/jfb14080404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Due to their superior antibacterial properties, biocompatibility and high conductivity, nanomaterials have shown a broad prospect in the biomedical field and have been widely used in the prevention and treatment of oral diseases. Also due to their small particle sizes and biodegradability, nanomaterials can provide solutions for tissue engineering, especially for oral tissue rehabilitation and regeneration. At present, research on nanomaterials in the field of dentistry focuses on the biological effects of various types of nanomaterials on different oral diseases and tissue engineering applications. In the current review, we have summarized the biological effects of nanoparticles on oral diseases, their potential action mechanisms and influencing factors. We have focused on the opportunities and challenges to various nanomaterial therapy strategies, with specific emphasis on overcoming the challenges through the development of biocompatible and smart nanomaterials. This review will provide references for potential clinical applications of novel nanomaterials in the field of oral medicine for the prevention, diagnosis and treatment of oral diseases.
Collapse
Affiliation(s)
- Tong Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Wen Su
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yan Li
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Mingyuan Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yonghong Zhang
- Department of Orthopaedics, The 2nd Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Cory J. Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| |
Collapse
|
26
|
Kim S, Choi BH, Shin H, Kwon K, Lee SY, Yoon HB, Kim HK, Choi Y. Plasma Exosome Analysis for Protein Mutation Identification Using a Combination of Raman Spectroscopy and Deep Learning. ACS Sens 2023; 8:2391-2400. [PMID: 37279515 DOI: 10.1021/acssensors.3c00681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein mutation detection using liquid biopsy can be simply performed periodically, making it easy to detect the occurrence of newly emerging mutations rapidly. However, it has low diagnostic accuracy since there are more normal proteins than mutated proteins in body fluids. To increase the diagnostic accuracy, we analyzed plasma exosomes using nanoplasmonic spectra and deep learning. Exosomes, a promising biomarker, are abundant in plasma and stably carry intact proteins originating from mother cells. However, the mutated exosomal proteins cannot be detected sensitively because of the subtle changes in their structure. Therefore, we obtained Raman spectra that provide molecular information about structural changes in mutated proteins. To extract the unique features of the protein from complex Raman spectra, we developed a deep-learning classification algorithm with two deep-learning models. Consequently, controls with wild-type proteins and patients with mutated proteins were classified with high accuracy. As a proof of concept, we discriminated the lung cancer patients with mutations in the epidermal growth factor receptor (EGFR), L858R, E19del, L858R + T790M, and E19del + T790M, from controls with an accuracy of 0.93. Moreover, the protein mutation status of the patients with primary (E19del, L858R) and secondary (+T790M) mutations was clearly monitored. Overall, our technique is expected to be applied as a novel method for companion diagnostic and treatment monitoring.
Collapse
Affiliation(s)
- Seungmin Kim
- Department of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Byeong Hyeon Choi
- Korea Artificial Organ Center, Korea University, Seoul 02841, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Korea University, Seoul 08308, Republic of Korea
| | - Hyunku Shin
- Exopert Corporation, Seoul 02580, Republic of Korea
| | - Kihun Kwon
- Exopert Corporation, Seoul 02580, Republic of Korea
| | - Sung Yong Lee
- Division of Respiratory and Critical Care, Department of Internal Medicine, Guro Hospital, Korea University, Seoul 08308, Republic of Korea
| | - Hyun Bin Yoon
- Department of Chemical Engineering, Kyonggi University, Suwon 16227, Republic of Korea
| | - Hyun Koo Kim
- Korea Artificial Organ Center, Korea University, Seoul 02841, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Korea University, Seoul 08308, Republic of Korea
| | - Yeonho Choi
- Department of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
- Exopert Corporation, Seoul 02580, Republic of Korea
| |
Collapse
|
27
|
Park J, Ban C. Development of a one-shot dual aptamer-based fluorescence nanosensor for rapid, sensitive, and label-free detection of periostin. Sci Rep 2023; 13:10224. [PMID: 37353600 PMCID: PMC10290134 DOI: 10.1038/s41598-023-37418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023] Open
Abstract
Periostin is associated with several diseases, including cancers. Therefore, monitoring blood periostin levels is a powerful tool for diagnosing various diseases and identifying their severity. However, conventional detection methods pose several challenges, including high costs. To address these issues, we developed a novel one-shot dual aptamer-based fluorescence nanosensor for detecting periostin. The proposed nanosensor facilitates rapid, label-free, and sensitive detection of periostin using gold nanoprobes constructed by rhodamine-b isothiocyanate, PL2trunc aptamer, and gold nanoparticles and silver nanoprobes fabricated by the PL5trunc aptamer and silver nanoparticles. The two nanoprobes form a core-satellite structure by interacting with periostin, and the nanosensor detects periostin through the fluorescence regenerated by the increased proximity between them. The nanosensor successfully detected periostin with remarkable detection limits of 106.68 pM in buffer and 463.3 pM in serum-spiked conditions within 30 min without additional washing or signal amplification processes. Considering serum periostin levels in various diseases, the proposed nanosensor provides a suitable method for identifying patients with various diseases and determining disease severity. Moreover, the platform can be helpful as a practical method for on-site medical diagnosis because it can be adapted to detect other biomarkers simply by replacing the aptamer with other detection probes.
Collapse
Affiliation(s)
- Jonghoon Park
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Changill Ban
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
28
|
Li B, Li Y, Li C, Yang J, Liu D, Wang H, Xu R, Zhang Y, Wei Q. An ultrasensitive split-type electrochemical immunosensor based on controlled-release strategy for detection of CA19-9. Biosens Bioelectron 2023; 227:115180. [PMID: 36858021 DOI: 10.1016/j.bios.2023.115180] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023]
Abstract
In this study, a novel split-type electrochemical immunosensor based on controlled release strategy was proposed for sensitive analysis and detection of tumor marker carbohydrate antigen 199 (CA19-9). Specifically, glucose (Glu) was encapsulated in carrier mesoporous silica (MSN) with encapsulation technology, and surface functionalized Zinc sulfide (ZnS) caps were used as "gatekeepers". The complex is formed by encapsulating Glu within MSN with ZnS (ZnS@MSN-Glu) as a signal amplifier labeled on the signal antibody (Ab2). And the Ab2 can detect the presence of antibodies. To reduce the interference of biological analysis, the immune recognition process of ZnS@MSN-Glu-Ab2 bioconjugate and antigen was carried out in 96-well microplate, which did not interfere with the electrochemical analysis process. Therefore, the low sensitivity detection caused by biofouling of nanomaterials and immunoreaction on the testing platform is eliminated. Subsequently, the opening and timed release of mesopores were controlled by external stimuli, the disulfide bond cleavage by dithiothreitol (DTT), and glucose was effectively released. Then nickel cobalt layered double hydroxide (NiCo-LDH) were directly hydrothermally grown on carbon cloth (CC) electrodeposited with copper selenide (CuSe) nanosheets to construct three-dimensional (3D) cactus-like NiCo-LDH/CuSe/CC sensing platform. It can realize the catalytic oxidation of released glucose, triggering glucose-mediated signal amplification. The synergistic effect of the 3D cactus structure and active nanomaterials promotes electron conduction. Taking the detection of carbohydrate antigen CA19-9 as an example, the immunosensor shows a wide linear concentration range (0.001-100 U/mL) with the limit of detection of 0.0005 U/mL, realizing highly sensitive detection of CA19-9. This biosensing technique has considerable advantages and provides an innovative approach for trace detection of other biomarkers.
Collapse
Affiliation(s)
- Bing Li
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, PR China; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yunxiao Li
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, PR China
| | - Chenchen Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jinghui Yang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, PR China
| | - Deling Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huabin Wang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, PR China
| | - Rui Xu
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, PR China
| | - Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming, 650500, PR China; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
29
|
Ekwujuru EU, Olatunde AM, Klink MJ, Ssemakalu CC, Chili MM, Peleyeju MG. Electrochemical and Photoelectrochemical Immunosensors for the Detection of Ovarian Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:4106. [PMID: 37112447 PMCID: PMC10142013 DOI: 10.3390/s23084106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Photoelectrochemical (PEC) sensing is an emerging technological innovation for monitoring small substances/molecules in biological or non-biological systems. In particular, there has been a surge of interest in developing PEC devices for determining molecules of clinical significance. This is especially the case for molecules that are markers for serious and deadly medical conditions. The increased interest in PEC sensors to monitor such biomarkers can be attributed to the many apparent advantages of the PEC system, including an enhanced measurable signal, high potential for miniaturization, rapid testing, and low cost, amongst others. The growing number of published research reports on the subject calls for a comprehensive review of the various findings. This article is a review of studies on electrochemical (EC) and PEC sensors for ovarian cancer biomarkers in the last seven years (2016-2022). EC sensors were included because PEC is an improved EC; and a comparison of both systems has, expectedly, been carried out in many studies. Specific attention was given to the different markers of ovarian cancer and the EC/PEC sensing platforms developed for their detection/quantification. Relevant articles were sourced from the following databases: Scopus, PubMed Central, Web of Science, Science Direct, Academic Search Complete, EBSCO, CORE, Directory of open Access Journals (DOAJ), Public Library of Science (PLOS), BioMed Central (BMC), Semantic Scholar, Research Gate, SciELO, Wiley Online Library, Elsevier and SpringerLink.
Collapse
Affiliation(s)
- Ezinne U. Ekwujuru
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | | | - Michael J. Klink
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Cornelius C. Ssemakalu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Muntuwenkosi M. Chili
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Moses G. Peleyeju
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| |
Collapse
|
30
|
Vetrivel C, Sivarasan G, Durairaj K, Ragavendran C, Kamaraj C, Karthika S, Lo HM. MoS 2-ZnO Nanocomposite Mediated Immunosensor for Non-Invasive Electrochemical Detection of IL8 Oral Tumor Biomarker. Diagnostics (Basel) 2023; 13:diagnostics13081464. [PMID: 37189565 DOI: 10.3390/diagnostics13081464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
In order to support biomolecule attachment, an effective electrochemical transducer matrix for biosensing devices needs to have many specialized properties, including quick electron transfer, stability, high surface area, biocompatibility, and the presence of particular functional groups. Enzyme-linked immunosorbent assays, gel electrophoresis, mass spectrometry, fluorescence spectroscopy, and surface-enhanced Raman spectroscopy are common techniques used to assess biomarkers. Even though these techniques provide precise and trustworthy results, they cannot replace clinical applications because of factors such as detection time, sample amount, sensitivity, equipment expense, and the need for highly skilled individuals. For the very sensitive and targeted electrochemical detection of the salivary oral cancer biomarker IL8, we have created a flower-structured molybdenum disulfide-decorated zinc oxide composite on GCE (interleu-kin-8). This immunosensor shows very fast detection; the limit of detection (LOD) for interleukin-8 (IL8) detection in a 0.1 M phosphate buffer solution (PBS) was discovered to be 11.6 fM, while the MoS2/ZnO nanocomposite modified glassy carbon electrode (GCE) demonstrated a high catalytic current linearly from 500 pg to 4500 pg mL-1 interleukin-8 (IL8). Therefore, the proposed biosensor exhibits excellent stability, high accuracy sensitivity, repeatability, and reproducibility and shows the acceptable fabrication of the electrochemical biosensors to detect the ACh in real sample analysis.
Collapse
Affiliation(s)
- Cittrarasu Vetrivel
- Carbon Capture Lab, Department of Chemical Engineering, SSN College of Engineering Kalavakkam, Chennai 603110, Tamil Nadu, India
- Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Ganesan Sivarasan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 41349, Taiwan
| | - Kaliannan Durairaj
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Sankar Karthika
- Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Namakkal 637501, Tamil Nadu, India
| | - Huang-Mu Lo
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 41349, Taiwan
| |
Collapse
|
31
|
Krishnan SK, Nataraj N, Meyyappan M, Pal U. Graphene-Based Field-Effect Transistors in Biosensing and Neural Interfacing Applications: Recent Advances and Prospects. Anal Chem 2023; 95:2590-2622. [PMID: 36693046 PMCID: PMC11386440 DOI: 10.1021/acs.analchem.2c03399] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei106, Taiwan
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati781039, Assam, India
| | - Umapada Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| |
Collapse
|
32
|
Innovations in the synthesis of graphene nanostructures for bio and gas sensors. BIOMATERIALS ADVANCES 2023; 145:213234. [PMID: 36502548 DOI: 10.1016/j.bioadv.2022.213234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Sensors play a significant role in modern technologies and devices used in industries, hospitals, healthcare, nanotechnology, astronomy, and meteorology. Sensors based upon nanostructured materials have gained special attention due to their high sensitivity, precision accuracy, and feasibility. This review discusses the fabrication of graphene-based biosensors and gas sensors, which have highly efficient performance. Significant developments in the synthesis routes to fabricate graphene-based materials with improved structural and surface properties have boosted their utilization in sensing applications. The higher surface area, better conductivity, tunable structure, and atom-thick morphology of these hybrid materials have made them highly desirable for the fabrication of flexible and stable sensors. Many publications have reported various modification approaches to improve the selectivity of these materials. In the current work, a compact and informative review focusing on the most recent developments in graphene-based biosensors and gas sensors has been designed and delivered. The research community has provided a complete critical analysis of the most robust case studies from the latest fabrication routes to the most complex challenges. Some significant ideas and solutions have been proposed to overcome the limitations regarding the field of biosensors and hazardous gas sensors.
Collapse
|
33
|
Lim JM, Supianto M, Kim TY, Kim BS, Park JW, Jang HH, Lee HJ. Fluorescent Lateral Flow Assay with Carbon Nanodot Conjugates for Carcinoembryonic Antigen. BIOCHIP JOURNAL 2023. [DOI: 10.1007/s13206-022-00093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Siddique A, Bashir S, Abbas M. Pharmacogenetics of Anticancer Drugs: Clinical Response and Toxicity. Cancer Treat Res 2023; 185:141-175. [PMID: 37306909 DOI: 10.1007/978-3-031-27156-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cancer is the most challenging disease for medical professionals to treat. The factors underlying the complicated situation include anticancer drug-associated toxicity, non-specific response, low therapeutic window, variable treatment outcomes, development of drug resistance, treatment complications, and cancer recurrence. The remarkable advancement in biomedical sciences and genetics, over the past few decades, however, is changing the dire situation. The discovery of gene polymorphism, gene expression, biomarkers, particular molecular targets and pathways, and drug-metabolizing enzymes have paved the way for the development and provision of targeted and individualized anticancer treatment. Pharmacogenetics is the study of genetic factors having the potential to affect clinical responses and pharmacokinetic and pharmacodynamic behaviors of drugs. This chapter emphasizes pharmacogenetics of anticancer drugs and its applications in improving treatment outcomes, selectivity, toxicity of the drugs, and discovering and developing personalized anticancer drugs and genetic methods for prediction of drug response and toxicity.
Collapse
Affiliation(s)
- Ammara Siddique
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Samra Bashir
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan.
| | - Mateen Abbas
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
35
|
Chen C, Wang K, Luo L. AuNPs and 2D functional nanomaterial-assisted SPR development for the cancer detection: a critical review. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCancer ranks as a leading cause of death and a huge obstacle to rising life expectancy. If cancers are spotted early there's a high chance of survival. The conventional methods relying on the phenotypic features of the tumor are not powerful to the early screening of cancer. Cancer biomarkers are capable of indicating specific cancer states. Current biochemical assay suffers from time and reagents consuming and discontinuous monitoring. Surface plasmon resonance (SPR) technology, a refractive index-based optical biosensor, has significant promise in biomarker detection because of its outstanding features of label-free, sensitivity, and reliability. The nanomaterial features exotic physical and chemical property work on the process of transferring biorecognition event into SPR signal and hence is functioned as signal enhancer. In this review, we mainly discussed the mechanism of gold nanoparticles (AuNPs) and two-dimensional (2D) functional nanomaterial for improving the SPR signal. We also introduced AuNPs and 2D nanomaterial assisted SPR technology in determining cancer biomarker. Last but not least, we discussed the challenges and outlooks of the aforementioned reformative SPR technology for cancer biomarker determination in the clinical trial.
Collapse
|
36
|
Rahman M, Niu J, Cui X, Zhou C, Tang N, Jin H, Cui D. Electrochemical Biosensor Based on l-Arginine and rGO-AuNSs Deposited on the Electrode Combined with DNA Probes for Ultrasensitive Detection of the Gastric Cancer-Related PIK3CA Gene of ctDNA. ACS APPLIED BIO MATERIALS 2022; 5:5094-5103. [PMID: 36315410 DOI: 10.1021/acsabm.2c00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene biomarkers of circulating tumor DNA (ctDNA) in liquid biopsies have been explored for use in the precise diagnosis of tumors. There is a great clinical need to realize the ultrasensitive detection of gene biomarkers in ctDNA. Here we reported that an ultrasensitive label-free biosensor was developed for the detection of the gastric cancer-related PIK3CA gene of ctDNA in peripheral blood. The polymeric l-arginine and graphene oxide-wrapped gold nanostars (rGO-AuNSs) were prepared and deposited on the glass electrode. The capturing DNA probes for the PIK3CA gene were prepared and successfully immobilized on the rGO-AuNS-modified electrode surface via π-π interaction among the rGO-AuNS composites and DNA probes. The resultant electrochemical sensor was effectively applied to detect the PIK3CA gene of ctDNA via the hybridization between the capturing DNA probe and ctDNA, the result of which showed that the biosensor exhibited desirable sensitivity, stability, and a wider dynamic response in a ctDNA concentration range from 1.0 × 10-20 to 1.0 × 10-10 M (R2 = 0.997). Moreover, the low limit of detection of 1.0 × 10-20 M (S/N = 3) indicates the biosensor owns satisfactory detection sensitivity. Fourteen PIK3CA genes and two PIK3CA gene mutations were detected in 60 clinical ctDNA samples of gastric cancer patients by using the developed biosensor. In conclusion, this ultrasensitive label-free electrochemical biosensor possesses a significant application prospect in the detection of the PIK3CA gene in ctDNA and in early screening for gastric cancer in the near future.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,Department of General Educational Development, Faculty of Science and Information Technology (FSIT), Daffodil International University, Daffodil Smart City, Ashulia, Savar, Dhaka1341, Bangladesh
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China
| | - Xinyuan Cui
- Medical Imaging Department of Tong Ji Hospital Affiliated to Tongji University, Shanghai200065, PR China
| | - Cheng Zhou
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,National Engineering Center for Nanotechnology, Shanghai200241, PR China
| | - Ning Tang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China
| | - Han Jin
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,National Engineering Center for Nanotechnology, Shanghai200241, PR China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,National Engineering Center for Nanotechnology, Shanghai200241, PR China
| |
Collapse
|
37
|
Song D, Yuan D, Tan X, Li L, He H, Zhao L, Yang G, Pan S, Dai H, Song X, Zhao Y. Allosteric aptasensor-initiated target cycling and transcription amplification of light-up RNA aptamer for sensitive detection of protein. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 371:132526. [PMID: 35996600 PMCID: PMC9385276 DOI: 10.1016/j.snb.2022.132526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 06/10/2023]
Abstract
The early detection of biomarker proteins in clinical samples is of great significance for the diagnosis of diseases. However, it is still a challenge to detect low-concentration protein. Herein, a label-free aptamer-based amplification assay, termed the ATC-TA system, that allows fluorescence detection of very low numbers of protein without time-consuming washing steps and pre-treatment was developed. The target induces a conformational change in the allosteric aptasensor, triggers the target cycling and transcription amplification, and ultimately converts the input of the target protein into the output of the light-up aptamer (R-Pepper). It exhibits ultrahigh sensitivity with a detection limit of 5.62 fM at 37 ℃ and the accuracy is comparable to conventional ELISA. ATC-TA has potential application for the detection of endogenous PDGF-BB in serum samples to distinguish tumor mice from healthy mice at an early stage. It also successfully detects exogenous SARS-CoV-2 spike proteins in human serum. Therefore, this high-sensitive, universality, easy-to-operate and cost-effective biosensing platform holds great clinical application potential in early clinical diagnosis.
Collapse
Affiliation(s)
- Danxia Song
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Deyu Yuan
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Xuemei Tan
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Ling Li
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Huan He
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Liang Zhao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Gang Yang
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Sirui Pan
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Hongyuan Dai
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Xu Song
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Yongyun Zhao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, PR China
| |
Collapse
|
38
|
Wang T, Zhu Y, Weng S, Lin X, Kong KV, Weng Y, Jia X, Chen R, Lin D, Feng S. Optical biosensor based on SERS with signal calibration function for quantitative detection of carcinoembryonic antigen. BIOMEDICAL OPTICS EXPRESS 2022; 13:5962-5970. [PMID: 36733726 PMCID: PMC9872900 DOI: 10.1364/boe.474273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 06/18/2023]
Abstract
Monitoring the levels of cancer biomarkers is essential for cancer diagnosis and evaluation. In this study, a novel sandwich type sensing platform based on surface-enhanced Raman scattering (SERS) technology was developed for the detection of carcinoembryonic antigen (CEA), with a limit of detection (LOD) of 0.258 ng/mL. In order to achieve sensitive detection of CEA in complex samples, gold nanoparticle monolayer modified with CEA antibodies and with aptamer-functionalized probes was fabricated to target CEA. Two gold layers were integrated into the SERS platform, which greatly enhanced the signal of the probe by generating tremendous "hot spots". Meanwhile, the intensity ratio of Raman probes and the second-order peak of the silicon wafer was used to achieve dynamic calibration of the Raman probe signal. Excitingly, this sensing platform was capable of distinguishing cancer patients from healthy individuals via CEA concentrations in blood samples with the accuracy of 100%. This sandwich structure SERS sensing platform presented promising potential to be an alternative tool for clinical biomarker detection in the field of cancer diagnosis.
Collapse
Affiliation(s)
- Tingyin Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
- These authors contributed equally to this work
| | - Youzhi Zhu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
- These authors contributed equally to this work
| | - Shuyun Weng
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xueliang Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Research Center for Photonics Technology, Quanzhou Normal University, Quanzhou, China
| | - Kien Voon Kong
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Youliang Weng
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Xianggang Jia
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Rong Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
39
|
Urs AB, Augustine J, Khurana N, Uniyal A, Passey JC, Meher R. Preoperative platelet-lymphocyte ratio and neutrophil-lymphocyte ratio as predictors of occult lymph node metastasis detected using Desmoglein 3 and Cytokeratin in Indian population. J Oral Maxillofac Pathol 2022; 26:596. [PMID: 37082044 PMCID: PMC10112119 DOI: 10.4103/jomfp.jomfp_49_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 04/22/2023] Open
Abstract
Aim This study aims to assess whether preoperative platelet-lymphocyte ratio (PLR) and neutrophil-lymphocyte ratio (NLR) can predict occult metastasis in oral squamous cell carcinoma (OSCC). Materials and Methods Thirty-five OSCC cases were analyzed for clinicopathological and hematological data. Cases without metastasis (pN0) were checked for micrometastasis immunohistochemically using Desmoglein 3 (DSG3) and Cytokeratin (CK). Mean PLR and NLR were compared and analyzed between the study groups. Results Metastatic deposits were detected in 9 out of 26 pN0 cases (34.6%) accounting for 11 out of 62 (17%) lymph nodes subjected to immunohistochemistry. The mean PLR was higher in OSCC cases with or without occult metastasis in comparison to controls (P < 0.001). No significant difference was found in the mean PLR and NLR between OSCC cases with and without occult metastasis. Furthermore, we found DSG3+ sinus histiocytes within the lymph nodes in majority of cases which is least reported in literature. Conclusion A significant percentage of cases showed occult metastasis in this study which led to upstaging of tumor. Although PLR was elevated in OSCC cases, it did not have a positive correlation with the presence of occult metastasis but was able to successfully distinguish OSCC patients from healthy individuals.
Collapse
Affiliation(s)
- Aadithya B Urs
- Department of Oral Pathology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Jeyaseelan Augustine
- Department of Oral Pathology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Nita Khurana
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| | - Akanksha Uniyal
- Department of Oral Pathology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - J C Passey
- Department of ENT, Lok Nayak Hospital, New Delhi, India
| | - Ravi Meher
- Department of ENT, Lok Nayak Hospital, New Delhi, India
| |
Collapse
|
40
|
Zhang S, Sun M, Wang X, Wang J, Jia Z, Lv X, Huang X. Spectral-Free Double Light Detection of DNA Based on a Porous Silicon Bragg Mirror. SENSORS (BASEL, SWITZERLAND) 2022; 22:7048. [PMID: 36146395 PMCID: PMC9503906 DOI: 10.3390/s22187048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
To improve the detection sensitivity of a porous silicon optical biosensor in the real-time detection of biomolecules, a non-spectral porous silicon optical biosensor technology, based on dual-signal light detection, is proposed. Double-light detection is a combination of refractive index change detection and fluorescence change detection. It uses quantum dots to label probe molecules to detect target molecules. In the double-signal-light detection method, the first detection-signal light is the detection light that is reflected from the surface of the porous silicon Bragg mirror. The wavelength of the detection light is the same as the wavelength of the photonic band gap edge of the porous silicon Bragg mirror. CdSe/ZnS quantum dots are used to label the probe DNA and hybridize it with the target DNA molecules in the pores of porous silicon to improve its effective refractive index and enhance the detection-reflection light. The second detection-signal light is fluorescence, which is generated by the quantum dots in the reactant that are excited by light of a certain wavelength. The Bragg mirror structure further enhances the fluorescence signal. A digital microscope is used to simultaneously receive the digital image of two kinds of signal light superimposed on the surface of porous silicon, and the corresponding algorithm is used to calculate the change in the average grey value before and after the hybridization reaction to calculate the concentration of the DNA molecules. The detection limit of the DNA molecules was 0.42 pM. This method can not only detect target DNA by hybridization, but also detect antigen by immune reaction or parallel biochip detection for a porous silicon biosensor.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
- School of Energy Engineering, Xinjiang Institute of Engineering, Urumqi 830000, China
| | - Miao Sun
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xinli Wang
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jiajia Wang
- School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
- The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China
| | - Zhenhong Jia
- School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
- The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China
| | - Xiaoyi Lv
- School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
- The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China
| | - Xiaohui Huang
- School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
- The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
41
|
Dhanapala L, Joseph S, Jones AL, Moghaddam S, Lee N, Kremer RB, Rusling JF. Immunoarray Measurements of Parathyroid Hormone-Related Peptides Combined with Other Biomarkers to Diagnose Aggressive Prostate Cancer. Anal Chem 2022; 94:12788-12797. [PMID: 36074029 DOI: 10.1021/acs.analchem.2c02648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) is related to bone metastasis and hypercalcemia in prostate and breast cancers and should be an excellent biomarker for aggressive forms of these cancers. Current clinical detection protocols for PTHrP are immunoradiometric assay and radioimmunoassay but are not sensitive enough to detect PTHrPs at early stages. We recently evaluated a prostate cancer biomarker panel, including serum monocyte differentiation antigen (CD-14), ETS-related gene protein, pigment epithelial-derived factor, and insulin-like growth factor-1, with promise for identifying aggressive prostate cancers. This panel predicted the need for patient biopsy better than PSA alone. In the present paper, we report an ultrasensitive microfluidic assay for PTHrPs and evaluate their diagnostic value and the value of including them with our prior biomarker panel to diagnose aggressive forms of prostate cancer. The immunoarray features screen-printed carbon sensor electrodes coated with 5 nm glutathione gold nanoparticles with capture antibodies attached. PTHrPs are bound to a secondary antibody attached to a polyhorseradish peroxidase label and delivered to the sensors to provide high sensitivity when activated by H2O2 and a mediator. We obtained an unprecedented 0.3 fg mL-1 limit of detection for PTHrP bioactive moieties PTHrP 1-173 and PTHrP 1-86. We also report the first study of PTHrPs in a large serum pool to identify aggressive malignancies. In assays of 130 human patient serum samples, PTHrP levels distinguished between aggressive and indolent prostate cancers with 83-91% clinical sensitivity and 78-96% specificity. Logistic regression identified the best predictive model as a combination of PTHrP 1-86 and vascular endothelial growth factor-D. PTHrP 1-173 alone also showed a high ability to differentiate aggressive and indolent cancers.
Collapse
Affiliation(s)
- Lasangi Dhanapala
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Sophie Joseph
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Abby L Jones
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shirin Moghaddam
- Department of Mathematics and Statistics (MACSI), University of Limerick, Limerick V94 T9PX, Ireland
| | - Norman Lee
- Department of Pharmacology and Physiology, George Washington University, 2300 I Street, NW, Washington, Washington, District of Columbia 20037, United States.,George Washington University Cancer Center, 800 22nd Street, NW, Washington, Washington, District of Columbia 20052, United States
| | - Richard B Kremer
- Department of Medicine, McGill University Health Centre, 1001 Decarie Blvd., Montreal QC H4A, Canada
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Surgery and Neag Cancer Center, UConn Health, Farmington, Connecticut 06232, United States.,School of Chemistry, National University of Ireland Galway, Galway H91 TK33, Ireland.,Institute of Materials Science, University of Connecticut, 97 N. Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
42
|
Wang Y, Zhao P, Zhang S, Zhu K, Shangguan X, Liu L, Zhang S. Application of Janus Particles in Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090689. [PMID: 36140074 PMCID: PMC9496037 DOI: 10.3390/bios12090689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
Janus particles (JPs), named after the two-faced Roman god, are asymmetric particles with different chemical properties or polarities. JPs have been widely used in the biomedical field in recent years, including as drug carriers for targeted controlled drug release and as biosensors for biological imaging and biomarker detection, which is crucial in the early detection and treatment of diseases. In this review, we highlight the most recent advancements made with regard to Janus particles in point-of-care testing (POCT). Firstly, we introduce several commonly used methods for preparing Janus particles. Secondly, we present biomarker detection using JPs based on various detection methods to achieve the goal of POCT. Finally, we discuss the challenges and opportunities for developing Janus particles in POCT. This review will facilitate the development of POCT biosensing devices based on the unique properties of Janus particles.
Collapse
|
43
|
Sun P, Niu K, Du H, Li R, Chen J, Lu X. Sensitive Electrochemical Biosensor for Rapid Screening of Tumor Biomarker TP53 Gene Mutation Hotspot. BIOSENSORS 2022; 12:658. [PMID: 36005054 PMCID: PMC9406039 DOI: 10.3390/bios12080658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Rapid and sensitive detection of cancer biomarkers is crucial for cancer screening, early detection, and improving patient survival rate. The present study proposes an electrochemical gene-sensor capable of detecting tumor related TP53 gene mutation hotspots by self-assembly of sulfhydryl ended hairpin DNA probes tagged with methylene blue (MB) onto a gold electrode. By performing a hybridization reaction with the target DNA sequence, the gene-sensor can rearrange the probe's structure, resulting in significant electrochemical signal differences by differential pulse voltammetry. When the DNA biosensor is hybridized with 1 μM target DNA, the peak current response signal can decrease more than 60%, displaying high sensitivity and specificity for the TP53 gene. The biosensor achieved rapid and sensitive detection of the TP53 gene with a detection limit of 10 nmol L-1, and showed good specific recognition ability for single nucleotide polymorphism (SNP) and base sequence mismatches in the TP53 gene affecting residue 248 of the P53 protein. Moreover, the biosensor demonstrated good reproducibility, repeatability, operational stability, and anti-interference ability for target DNA molecule in the complex system of 50% fetal bovine serum. The proposed biosensor provides a powerful tool for the sensitive and specific detection of TP53 gene mutation hotspot sequences and could be used in clinical samples for early diagnosis and detection of cancer.
Collapse
Affiliation(s)
- Pengcheng Sun
- College of Mechanical and Electronic Engineering, Dalian Minzu University, Dalian 116600, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Kai Niu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haiying Du
- College of Mechanical and Electronic Engineering, Dalian Minzu University, Dalian 116600, China
| | - Ruixin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
44
|
Barrientos K, Arango JP, Moncada MS, Placido J, Patiño J, Macías SL, Maldonado C, Torijano S, Bustamante S, Londoño ME, Jaramillo M. Carbon dot-based biosensors for the detection of communicable and non -communicable diseases. Talanta 2022; 251:123791. [DOI: 10.1016/j.talanta.2022.123791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|
45
|
Wang Q, Han N, Shen Z, Li X, Chen Z, Cao Y, Si W, Wang F, Ni BJ, Thakur VK. MXene-based electrochemical (bio) sensors for sustainable applications: Roadmap for future advanced materials. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
46
|
Systematic analysis of IL-6 as a predictive biomarker and desensitizer of immunotherapy responses in patients with non-small cell lung cancer. BMC Med 2022; 20:187. [PMID: 35550592 PMCID: PMC9102328 DOI: 10.1186/s12916-022-02356-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cytokines have been reported to alter the response to immune checkpoint inhibitors (ICIs) in patients with the tumor in accordance with their plasma concentrations. Here, we aimed to identify the key cytokines which influenced the responses and stimulated resistance to ICIs and tried to improve immunological response and develop novel clinical treatments in non-small cell lung cancer (NSCLC). METHODS The promising predictive cytokines were analyzed via the multi-analyte flow assay. Next, we explored the correlation baseline level of plasma cytokines and clinical outcomes in 45 NSCLC patients treated with ICIs. The mechanism of the potential candidate cytokine in predicting response and inducing resistance to ICIs was then investigated. RESULTS We found NSCLC with a low baseline concentration of IL-6 in plasma specimens or tumor tissues could derive more benefit from ICIs based on the patient cohort. Further analyses revealed that a favorable relationship between PD-L1 and IL-6 expression was seen in NSCLC specimens. Results in vitro showed that PD-L1 expression in the tumor was enhanced by IL-6 via the JAK1/Stat3 pathway, which induced immune evasion. Notably, an adverse correlation was found between IL-6 levels and CD8+ T cells. And a positive association between IL-6 levels and myeloid-derived suppressor cells, M2 macrophages and regulator T cells was also seen in tumor samples, which may result in an inferior response to ICIs. Results of murine models of NSCLC suggested that the dual blockade of IL-6 and PD-L1 attenuated tumor growth. Further analyses detected that the inhibitor of IL-6 stimulated the infiltration of CD8+ T cells and yielded the inflammatory phenotype. CONCLUSIONS This study elucidated the role of baseline IL-6 levels in predicting the responses and promoting resistance to immunotherapy in patients with NSCLC. Our results indicated that the treatment targeting IL-6 may be beneficial for ICIs in NSCLC.
Collapse
|
47
|
Within-person reproducibility of proteoforms related to inflammation and renal dysfunction. Sci Rep 2022; 12:7426. [PMID: 35523986 PMCID: PMC9076635 DOI: 10.1038/s41598-022-11520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
Protein biomarkers and microheterogeneity have attracted increasing attention in epidemiological and clinical research. Knowledge of within-person reproducibility over time is paramount to determine whether a single measurement accurately reflects an individual's long-term exposure. Yet, research investigating within-person reproducibility for proteoforms is limited. We investigated the reproducibility of the inflammatory markers C-reactive protein (CRP), serum amyloid A (SAA), and calprotectin (S100A8/9), and the renal function marker cystatin C (CnC) using a novel immuno-MALDI-TOF MS assay. Reproducibility, expressed as intraclass correlation coefficient (ICC), was calculated for 16 proteoforms using plasma samples of the Western Norway B Vitamin Intervention Trial (WENBIT) cohort collected 1-3 y apart from 295 stable angina pectoris (SAP) patients and 16 weeks apart from 38 subjects of the Intervention with Omega Fatty Acids in High-risk Patients with Hypertriglyceridemic Waist (OMEGA) trial with abdominal obesity but no other documented co-morbidities. ICCs for inflammatory markers were lower in WENBIT (CRP: 0.51, SAAt: 0.38, S100At: 0.31) compared to OMEGA subjects (CRP: 0.71, SAAt: 0.73, S100At: 0.48), while comparable for CnCt (WENBIT: 0.69, OMEGA: 0.67). Excluding SAP patients with elevated inflammation (CRP > 10 µg/ml) increased the ICC of SAAt to 0.55. Reduction of the time interval from 3 to 1 y in WENBIT group increased ICCs for all proteoforms. With a few exceptions ICCs did not differ between proteoforms of the same biomarker. ICCs were highest in OMEGA subjects with fair-to-good reproducibility for all markers. Reproducibility of SAA and S100A8/9 proteoforms in the WENBIT cohort was related to inflammation. This work will inform future clinical and epidemiological research which relies on single time point biomarker assessment to investigate inflammation and renal function.
Collapse
|
48
|
Frudd K, Sivaprasad S, Raman R, Krishnakumar S, Revathy YR, Turowski P. Diagnostic circulating biomarkers to detect vision-threatening diabetic retinopathy: Potential screening tool of the future? Acta Ophthalmol 2022; 100:e648-e668. [PMID: 34269526 PMCID: PMC12086770 DOI: 10.1111/aos.14954] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
With the increasing prevalence of diabetes in developing and developed countries, the socio-economic burden of diabetic retinopathy (DR), the leading complication of diabetes, is growing. Diabetic retinopathy (DR) is currently one of the leading causes of blindness in working-age adults worldwide. Robust methodologies exist to detect and monitor DR; however, these rely on specialist imaging techniques and qualified practitioners. This makes detecting and monitoring DR expensive and time-consuming, which is particularly problematic in developing countries where many patients will be remote and have little contact with specialist medical centres. Diabetic retinopathy (DR) is largely asymptomatic until late in the pathology. Therefore, early identification and stratification of vision-threatening DR (VTDR) is highly desirable and will ameliorate the global impact of this disease. A simple, reliable and more cost-effective test would greatly assist in decreasing the burden of DR around the world. Here, we evaluate and review data on circulating protein biomarkers, which have been verified in the context of DR. We also discuss the challenges and developments necessary to translate these promising data into clinically useful assays, to detect VTDR, and their potential integration into simple point-of-care testing devices.
Collapse
Affiliation(s)
- Karen Frudd
- Institute of OphthalmologyUniversity College LondonLondonUK
| | - Sobha Sivaprasad
- Institute of OphthalmologyUniversity College LondonLondonUK
- NIHR Moorfields Biomedical Research CentreMoorfields Eye HospitalLondonUK
| | - Rajiv Raman
- Vision Research FoundationSankara NethralayaChennaiTamil NaduIndia
| | | | | | | |
Collapse
|
49
|
Tabb JS, Rapoport E, Han I, Lombardi J, Green O. An antigen-targeting assay for Lyme disease: Combining aptamers and SERS to detect the OspA protein. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 41:102528. [PMID: 35104673 DOI: 10.1016/j.nano.2022.102528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022]
Abstract
Lyme disease is the fastest growing vector-borne disease in the United States. However, current testing modalities are ill suited to detection of Lyme disease, leading to the diagnosis of many cases after treatment is effective. We present an improved, direct method Lyme disease diagnosis, where the Lyme specific biomarker Outer Surface Protein A (OspA) in clinical serum samples is identified using a diagnostic platform combining surface enhanced Raman scattering (SERS) and aptamers. Employing orthogonal projections to latent structures discriminant analysis, the system accurately identified 91% of serum samples from Lyme patients, and 96% of serum samples from symptomatic controls. In addition, the OspA limit-of-detection, determined to be 1 × 10-4 ng/mL, is greater than four orders of magnitude lower than that found in serum samples from early Lyme disease patients. The application of this platform to detect this difficult-to-diagnose disease suggests its potential for detecting other diseases that present similar difficulties.
Collapse
Affiliation(s)
| | | | - Il Han
- Ionica Sciences, Ithaca, NY, USA
| | - John Lombardi
- Department of Chemistry, The City College of New York, New York, NY, USA
| | | |
Collapse
|
50
|
Jiang M, Chattopadhyay AN, Rotello VM. Cell-Based Chemical Safety Assessment and Therapeutic Discovery Using Array-Based Sensors. Int J Mol Sci 2022; 23:3672. [PMID: 35409032 PMCID: PMC8998465 DOI: 10.3390/ijms23073672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Synthetic chemicals are widely used in food, agriculture, and medicine, making chemical safety assessments necessary for environmental exposure. In addition, the rapid determination of chemical drug efficacy and safety is a key step in therapeutic discoveries. Cell-based screening methods are non-invasive as compared with animal studies. Cellular phenotypic changes can also provide more sensitive indicators of chemical effects than conventional cell viability. Array-based cell sensors can be engineered to maximize sensitivity to changes in cell phenotypes, lowering the threshold for detecting cellular responses under external stimuli. Overall, array-based sensing can provide a robust strategy for both cell-based chemical risk assessments and therapeutics discovery.
Collapse
Affiliation(s)
| | | | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA; (M.J.); (A.N.C.)
| |
Collapse
|