1
|
Sanie-Jahromi F, Ravankhah M, Shafi Khani H, Razavizadegan SA, Nowroozzadeh MH. Effect of methotrexate/dexamethasone combination on epithelial-mesenchymal transition and inflammation gene expression of human RPE cells in-vitro. Front Pharmacol 2025; 16:1569703. [PMID: 40371355 PMCID: PMC12075955 DOI: 10.3389/fphar.2025.1569703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction RPE cells serve as an experimental model for studying a retinal disease called proliferative vitreoretinopathy (PVR). The pathological background of PVR involves uncontrolled cell proliferation, increased inflammation, and enhanced epithelial-mesenchymal transition (EMT), which have been the focus of various research studies. The present study aimed to explore the effects of combination therapy using methotrexate (MTX) and dexamethasone (DEXA) on the expression of genes involved in apoptosis, inflammation and EMT in retinal pigment epithelial (RPE) cells. Methods Our study design comprised two sets of experiments. First, we assessed the effect of MTX serial dilutions (0.5x, x, 2x, and 4x, where x = 100 μg/mL) on RPE cells to determine the optimal concentration of MTX that promotes apoptosis-related gene expression without altering inflammatory-related gene expression. Second, we investigated the influence of MTX (at the selected dose) alone or in combination with DEXA (50 μg/mL) on apoptosis, inflammation, and EMT-related gene expression in RPE cells at the transcriptional level. Results Treatment with 100 μg/mL MTX demonstrated a pro-apoptotic effect according to the expression level of BAX and BCL-2 in RPE cells. The combination of MTX (100 μg/mL) and DEXA significantly reduced the expression of inflammation-related genes (IL-1b, IL-6), indicating a synergistic anti-inflammatory effect. However, there was no significant effect on the expression of genes related to EMT (TGF-β, CD90, β-Catenin, Snail), except for a partial neutralization of the reducing effect of MTX on ZEB1 and α-SMA genes. Discussion Our study highlighted the potential pro-apoptotic effect of MTX (at 100 μg/mL) on RPE cells and the synergistic anti-inflammatory impact of MTX/DEXA combination therapy. Nevertheless, this combination did not significantly affect genes associated with EMT. Further research is required to elucidate the clinical implications of these findings in the management of PVR.
Collapse
Affiliation(s)
| | | | | | | | - M. Hossein Nowroozzadeh
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Peng Y, Hu L, Xu H, Fang J, Zhong H. Resveratrol alleviates reactive oxygen species and inflammation in diabetic retinopathy via SIRT1/HMGB1 pathway-mediated ferroptosis. Toxicol Appl Pharmacol 2025; 495:117214. [PMID: 39719253 DOI: 10.1016/j.taap.2024.117214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
This study aims to explore the potential of using resveratrol (RES) to treat diabetic retinopathy (DR), as well as the involved molecular mechanisms underlying RES-mediated protection against DR. High concentration of glucose (HG)-induced Human retinal capillary endothelial cells (HRCECs) cell model and streptozotocin (STZ)-induced DR mice model were established. Then, cell viability, apoptosis, reactive oxygen species (ROS) levels, pro-inflammatory factors, and expression of the related proteins SIRT1, HMGB1, VEGF, and CD31 were assayed by a series of cell biology methods. Also, the ferroptosis-related indicators were also explored, including contents of Fe2+, glutathione (GSH), malondialdehyde (MDA), SLC7A11 and GPX4 protein expression. Results showed that RES could alleviate inflammation and oxidative stress in HG-induced HRCECs. In addition, the mRNA and protein expression of SIRT1 and HMGB1 were significantly changed in HG-induced HRCECs and STZ-induced DR mice, while RES treatment could reverse this alteration. In addition, the HMGB1 acetylation level was enhanced after downregulation of SIRT1. Moreover, the ROS generation, expression of inflammatory cytokines (IL-1β, IL-6, and TNF-α), CD31, and VEGF changed by RES administration were reversed by SIRT1-silence. Besides, HG implement could dramatically up-regulated the Fe2+ and MDA contents, and down-regulated the content of GSH and SLC7A11 and GPX4 protein expression in HRCECs, as well as STZ-induced DR mice. RES implement could reverse the above alterations, while SIRT1-silence dramatically reversed these alterations changed by RES treatment. In conclusion, RES suppresses inflammation in DR, as well as inhibit retinal angiogenesis and oxidative stress, and inhibits ferroptosis to alleviate DR via SIRT1/HMGB1 pathway.
Collapse
Affiliation(s)
- Ye Peng
- Department of Ophthalmology, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, Zhejiang, China
| | - Long Hu
- Department of Ophthalmology, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, Zhejiang, China
| | - Huilei Xu
- Department of Ophthalmology, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, Zhejiang, China
| | - Jian Fang
- Haiyan Bang'er Hospital, Jiaxing, Zhejiang, China
| | - Hongliang Zhong
- Department of Ophthalmology, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an 325200, Zhejiang, China.
| |
Collapse
|
3
|
Liu Y, Dong X, Wu B, Cheng Z, Zhang J, Wang J. Promising Pharmacological Interventions for Posterior Capsule Opacification: A Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400181. [PMID: 39679290 PMCID: PMC11637782 DOI: 10.1002/gch2.202400181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/18/2024] [Indexed: 12/17/2024]
Abstract
Phacoemulsification combined with intraocular lens implantation is the primary treatment for cataract. Although this treatment strategy benefits patients with cataracts, posterior capsule opacification (PCO) remains a common complication that impairs vision and affects treatment outcomes. The pathogenesis of PCO is associated with the proliferation, migration, and fibrogenesis activity of residual lens epithelial cells, with epithelial-mesenchymal transition (EMT) serving as a key mechanism underlying the condition. Transforming growth factor-beta 2 (TGF-β2) is a major promotor of EMT, thereby driving PCO development. Most studies have shown that drugs and miRNAs mitigate EMT by inhibiting, clearing, or eliminating LECs. In addition, targeting EMT-related signaling pathways in TGF-β2-stimulated LECs has garnered attention as a research focus. This review highlights potential treatments for PCO and details the mechanisms by which drugs and miRNAs counter EMT.
Collapse
Affiliation(s)
- Yuxuan Liu
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
| | - Xiaoming Dong
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
| | - Bin Wu
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Shenyang Aier Excellent Eye HospitalShenyangLiaoning Province110000China
| | - Zhigang Cheng
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Chaoyang Aier Eye HospitalChaoyangLiaoning Province122000China
| | - Jinsong Zhang
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
- Shenyang Aier Excellent Eye HospitalShenyangLiaoning Province110000China
| | - Jing Wang
- AIER Cataract InstituteShenyangLiaoning Province110000China
- Shenyang Aier Ophthalmology Institute of Precision MedicineShenyangLiaoning Province110000China
- Liaoning Aier Eye HospitalShenyangLiaoning Province110000China
- Shenyang Aier Excellent Eye HospitalShenyangLiaoning Province110000China
- Aier Academy of OphthalmologyCentral South UniversityNo. 188, Furong South Road, Tianxin DistrictChangshaHunan410004P. R. China
| |
Collapse
|
4
|
Zingale E, Weaver E, Bertelli PM, Lengyel I, Pignatello R, Lamprou DA. Development of dual drug loaded-hydrogel scaffold combining microfluidics and coaxial 3D-printing for intravitreal implantation. Int J Pharm 2024; 665:124700. [PMID: 39278290 DOI: 10.1016/j.ijpharm.2024.124700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Treating diabetic retinopathy (DR) effectively is challenging, aiming for high efficacy with minimal discomfort. While intravitreal injection is the current standard, it has several disadvantages. Implantable systems offer an alternative, less invasive, with long-lasting effects drug delivery system (DDS). The current study aims to develop a soft, minimally invasive, biodegradable, and bioadhesive material-based hydrogel scaffold to prevent common issues with implants. A grid-shaped scaffold was created using coaxial 3D printing (3DP) to extrude two bioinks in a single filament. The scaffold comprises an inner core of curcumin-loaded liposomes (CUR-LPs) that prepared by microfluidics (MFs) embedded in a hydrogel of hydroxyethyl cellulose (HEC), and an outer layer of hyaluronic acid-chitosan matrix with free resveratrol (RSV), delivering two Sirt1 agonists synergistically activating Sirt1 downregulated in DR. Optimized liposomes, prepared via MFs, exhibit suitable properties for retinal delivery in terms of size (<200 nm), polydispersity index (PDI) (<0.3), neutral zeta potential (ZP), encapsulation efficiency (∼97 %), and stability up to 4 weeks. Mechanical studies confirm scaffold elasticity for easy implantation. The release profiles show sustained release of both molecules, with different patterns related to different localization of the molecules. RSV released initially after 30 min with a total release more than 90 % at 336 h. CUR release starts after 24 h with only 4.78 % of CUR released before and gradually released thanks to its internal localization in the scaffold. Liposomes and hydrogels can generate dual drug-loaded 3D structures with sustained release. Microscopic analysis confirms optimal distribution of liposomes within the hydrogel scaffold. The latter resulted compatible in vitro with human retinal microvascular endothelial cells up to 72 h of exposition. The hydrogel scaffold, composed of hyaluronic acid and chitosan, shows promise for prolonged treatment and minimally invasive surgery.
Collapse
Affiliation(s)
- Elide Zingale
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Edward Weaver
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Pietro Maria Bertelli
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6, 95125 Catania, Italy.
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
5
|
Zingale E, Bonaccorso A, D’Amico AG, Lombardo R, D’Agata V, Rautio J, Pignatello R. Formulating Resveratrol and Melatonin Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for Ocular Administration Using Design of Experiments. Pharmaceutics 2024; 16:125. [PMID: 38258134 PMCID: PMC10819881 DOI: 10.3390/pharmaceutics16010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Recent studies have demonstrated that Sirtuin-1 (SIRT-1)-activating molecules exert a protective role in degenerative ocular diseases. However, these molecules hardly reach the back of the eye due to poor solubility in aqueous environments and low bioavailability after topical application on the eye's surface. Such hindrances, combined with stability issues, call for the need for innovative delivery strategies. Within this context, the development of self-nanoemulsifying drug delivery systems (SNEDDS) for SIRT-1 delivery can represent a promising approach. The aim of the work was to design and optimize SNEDDS for the ocular delivery of two natural SIRT-1 agonists, resveratrol (RSV) and melatonin (MEL), with potential implications for treating diabetic retinopathy. Pre-formulation studies were performed by a Design of Experiment (DoE) approach to construct the ternary phase diagram. The optimization phase was carried out using Response Surface Methodology (RSM). Four types of SNEDDS consisting of different surfactants (Tween® 80, Tween® 20, Solutol® HS15, and Cremophor® EL) were optimized to achieve the best physico-chemical parameters for ocular application. Stability tests indicated that SNEDDS produced with Tween® 80 was the formulation that best preserved the stability of molecules, and so it was, therefore, selected for further technological studies. The optimized formulation was prepared with Capryol® PGMC, Tween® 80, and Transcutol® P and loaded with RSV or MEL. The SNEDDS were evaluated for other parameters, such as the mean size (found to be ˂50 nm), size homogeneity (PDI < 0.2), emulsion time (around 40 s), transparency, drug content (>90%), mucoadhesion strength, in vitro drug release, pH and osmolarity, stability to dilution, and cloud point. Finally, an in vitro evaluation was performed on a rabbit corneal epithelial cell line (SIRC) to assess their cytocompatibility. The overall results suggest that SNEDDS can be used as promising nanocarriers for the ocular drug delivery of RSV and MEL.
Collapse
Affiliation(s)
- Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
- NANOMED—Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
- NANOMED—Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Agata Grazia D’Amico
- Department of Drug and Health Sciences, Section of Systems Biology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Rosamaria Lombardo
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy;
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland;
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
- NANOMED—Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
6
|
Jiang H, Chen Y, He Z, Li J, Gao Q, Li W, Wei W, Zhang Y. Targeting non-muscle myosin II inhibits proliferative vitreoretinopathy through regulating epithelial-mesenchymal transition. Biochem Biophys Res Commun 2023; 686:149149. [PMID: 37918204 DOI: 10.1016/j.bbrc.2023.149149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Proliferative vitreoretinopathy (PVR) is a common complication of rhegmatogenous retinal detachment, eventually leading to vision loss. To date, there are no effective drugs for the treatment of this disease. In this study, we investigated the effect of blebbistatin, a non-muscle myosin II inhibitor, on the ARPE-19 cell line and in a rabbit model of proliferative vitreoretinopathy. In vitro, we found that blebbistatin inhibited the epithelial-mesenchymal transition of retinal pigment epithelial (RPE) cells and inhibited the ability of RPE cells to migrate, proliferate, generate extracellular matrix, and affect contractility. In vivo the PVR model showed that blebbistatin significantly delayed PVR progression. It also partially prevents the loss of retinal function caused by PVR. Our results suggest that blebbistatin is a potential drug with clinical applications for the treatment of PVR.
Collapse
Affiliation(s)
- Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuning Chen
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhengquan He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingqin Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Hanazaki H, Yokota H, Yamagami S, Nakamura Y, Nagaoka T. The Effect of Anti-Autotaxin Aptamers on the Development of Proliferative Vitreoretinopathy. Int J Mol Sci 2023; 24:15926. [PMID: 37958909 PMCID: PMC10647324 DOI: 10.3390/ijms242115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
This study investigated the effect of anti-autotaxin (ATX) aptamers on the development of proliferative vitreoretinopathy (PVR) in both in vivo and in vitro PVR swine models. For the in vitro study, primary retinal pigment epithelial (RPE) cells were obtained from porcine eyes and cultured for cell proliferation and migration assays. For the in vivo study, a swine PVR model was established by inducing retinal detachment and injecting cultured RPE cells (2.0 × 106). Concurrently, 1 week after RPE cell injection, the anti-ATX aptamer, RBM-006 (10 mg/mL, 0.1 mL), was injected twice into the vitreous cavity. Post-injection effects of the anti-ATX aptamer on PVR development in the in vivo swine PVR model were investigated. For the in vitro evaluation, the cultured RPE cell proliferation and migration were significantly reduced at anti-ATX aptamer concentrations of 0.5-0.05 mg and at only 0.5 mg, respectively. Intravitreal administration of the anti-ATX aptamer also prevented tractional retinal detachment caused by PVR in the in vivo PVR model. We observed that the anti-ATX aptamer, RBM-006, inhibited PVR-related RPE cell proliferation and migration in vitro and inhibited the progression of PVR in the in vivo model, suggesting that the anti-ATX aptamer may be effective in preventing PVR.
Collapse
Affiliation(s)
- Hirotsugu Hanazaki
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (H.H.); (H.Y.); (S.Y.)
| | - Harumasa Yokota
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (H.H.); (H.Y.); (S.Y.)
| | - Satoru Yamagami
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (H.H.); (H.Y.); (S.Y.)
| | - Yoshikazu Nakamura
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- RIBOMIC Inc., Minato-ku, Tokyo 108-0071, Japan
| | - Taiji Nagaoka
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (H.H.); (H.Y.); (S.Y.)
| |
Collapse
|
8
|
Ma X, Xie Y, Gong Y, Hu C, Qiu K, Yang Y, Shen H, Zhou X, Long C, Lin X. Silibinin Prevents TGFβ-Induced EMT of RPE in Proliferative Vitreoretinopathy by Inhibiting Stat3 and Smad3 Phosphorylation. Invest Ophthalmol Vis Sci 2023; 64:47. [PMID: 37906058 PMCID: PMC10619698 DOI: 10.1167/iovs.64.13.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/23/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose The purpose of this study was to investigate the effects of silibinin on epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) and proliferative vitreoretinopathy (PVR) formation, as well as its underlying molecular mechanism. Methods Cellular morphological change and EMT molecular markers were evaluated by using phase contrast imaging, qPCR, and Western blot (WB) to investigate the impact of silibinin on the EMT of ARPE-19 cells. Scratch assay and transwell assay were used to study the effect of silibinin on cell migration. An intravitreally injected RPE-induced rat PVR model was used to assess the effect of silibinin on PVR in vivo. RNA-seq was applied to study the molecular mechanism of silibinin-mediated PVR prevention. Results Silibinin inhibited TGFβ1-induced EMT and migration of RPE in a dose-dependent manner in vitro. Moreover, silibinin prevented proliferative membrane formation in an intravitreal injected RPE-induced rat PVR model. In line with these findings, RNA-seq revealed a global suppression of TGFβ1-induced EMT and migration-related genes by silibinin in RPEs. Mechanistically, silibinin reduced TGFβ1-induced phosphorylation levels of Smad3 and Stat3, and Smad3 nuclear translocation in RPE. Conclusions Silibinin inhibits the EMT of RPE cells in vitro and prevents the formation of PVR membranes in vivo. Mechanistically, silibinin inhibits Smad3 phosphorylation and suppresses Smad3 nuclear translocation through the inhibition of Stat3 phosphorylation. These findings suggest that silibinin may serve as a potential treatment for PVR.
Collapse
Affiliation(s)
- Xinqi Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yiyu Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yajun Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Chuxuan Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Kairui Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolai Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
9
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
10
|
Sripathi SR, Hu MW, Turaga RC, Mikeasky R, Satyanarayana G, Cheng J, Duan Y, Maruotti J, Wahlin KJ, Berlinicke CA, Qian J, Esumi N, Zack DJ. IKKβ Inhibition Attenuates Epithelial Mesenchymal Transition of Human Stem Cell-Derived Retinal Pigment Epithelium. Cells 2023; 12:1155. [PMID: 37190063 PMCID: PMC10136838 DOI: 10.3390/cells12081155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), which is well known for its role in embryonic development, malignant transformation, and tumor progression, has also been implicated in a variety of retinal diseases, including proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), and diabetic retinopathy. EMT of the retinal pigment epithelium (RPE), although important in the pathogenesis of these retinal conditions, is not well understood at the molecular level. We and others have shown that a variety of molecules, including the co-treatment of human stem cell-derived RPE monolayer cultures with transforming growth factor beta (TGF-β) and the inflammatory cytokine tumor necrosis factor alpha (TNF-α), can induce RPE-EMT; however, small molecule inhibitors of RPE-EMT have been less well studied. Here, we demonstrate that BAY651942, a small molecule inhibitor of nuclear factor kapa-B kinase subunit beta (IKKβ) that selectively targets NF-κB signaling, can modulate TGF-β/TNF-α-induced RPE-EMT. Next, we performed RNA-seq studies on BAY651942 treated hRPE monolayers to dissect altered biological pathways and signaling events. Further, we validated the effect of IKKβ inhibition on RPE-EMT-associated factors using a second IKKβ inhibitor, BMS345541, with RPE monolayers derived from an independent stem cell line. Our data highlights the fact that pharmacological inhibition of RPE-EMT restores RPE identity and may provide a promising approach for treating retinal diseases that involve RPE dedifferentiation and EMT.
Collapse
Affiliation(s)
- Srinivasa R. Sripathi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Henderson Ocular Stem Cell Laboratory, Retina Foundation of the Southwest, Dallas, TX 75231, USA
| | - Ming-Wen Hu
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ravi Chakra Turaga
- Caris Life Sciences, 350 W Washington St., Tempe, AZ 85281, USA
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Rebekah Mikeasky
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ganesh Satyanarayana
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
- Emory Eye Center, Department of Ophthalmology, Emory University, Atlanta, GA 30322, USA
| | - Jie Cheng
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yukan Duan
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Karl J. Wahlin
- Shiley Eye Institute, University of California, San Diego, CA 92093, USA
| | - Cynthia A. Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Noriko Esumi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Whiting School of Engineering, Baltimore, MD 21218, USA
| |
Collapse
|
11
|
Tersi N, Kassumeh S, Ohlmann A, Strehle L, Priglinger SG, Hartmann D, Wolf A, Wertheimer CM. Pharmacological Therapy of Proliferative Vitreoretinopathy: Systematic In Vitro Comparison of 36 Pharmacological Agents. J Ocul Pharmacol Ther 2023; 39:148-158. [PMID: 36867160 DOI: 10.1089/jop.2022.0078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Purpose: Proliferative vitreoretinopathy (PVR) is currently treated surgically. Reliable pharmaceutical options would be desirable, and numerous drugs have been proposed. This in vitro study is intended to systematically compare and determine the most promising candidates for the treatment of PVR. Methods: A structured literature review was conducted in the "PubMed" database to identify previously published agents proposed for medical treatment of PVR -36 substances that met the inclusion criteria. Toxicity and antiproliferative effects were evaluated on primary human retinal pigment epithelial (hRPE) using colorimetric viability assays. The seven substances with the widest therapeutic range between toxicity and no longer detectable antiproliferative effect were then validated with a bromodeoxyuridine assay and a scratch wound healing assay using primary cells derived from surgically excised human PVR membranes (hPVR). Results: Among 36 substances, 12 showed no effect on hRPE at all. Seventeen substances had a significant (P < 0.05) toxic effect of which nine did not have an antiproliferative effect. Fifteen substances significantly reduced hRPE proliferation (P < 0.05). The seven most promising drugs with the highest difference between toxicity and antiproliferative effects on hRPE were dasatinib, methotrexate, resveratrol, retinoic acid, simvastatin, tacrolimus, and tranilast. Whereof resveratrol, simvastatin, and tranilast additionally showed antiproliferative and dasatinib, resveratrol, and tranilast antimigratory effects on hPVR (P < 0.05). Conclusion: This study presents a systematic comparison of drugs that have been proposed for PVR treatment in a human disease model. Dasatinib, resveratrol, simvastatin, and tranilast seem to be promising and are well-characterized in human use.
Collapse
Affiliation(s)
- Natalie Tersi
- Department of Ophthalmology and University Hospital, LMU Munich, Munich, Germany
| | - Stefan Kassumeh
- Department of Ophthalmology and University Hospital, LMU Munich, Munich, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology and University Hospital, LMU Munich, Munich, Germany
| | - Laura Strehle
- Department of Ophthalmology, University Hospital, Ulm University, Ulm, Germany
| | | | - Daniela Hartmann
- Department of Dermatology and Allergology, University Hospital, LMU Munich, Munich, Germany
| | - Armin Wolf
- Department of Ophthalmology and University Hospital, LMU Munich, Munich, Germany
- Department of Ophthalmology, University Hospital, Ulm University, Ulm, Germany
| | - Christian M Wertheimer
- Department of Ophthalmology and University Hospital, LMU Munich, Munich, Germany
- Department of Ophthalmology, University Hospital, Ulm University, Ulm, Germany
| |
Collapse
|
12
|
Mechanisms of Epithelial-Mesenchymal Transition and Prevention of Dispase-Induced PVR by Delivery of an Antioxidant αB Crystallin Peptide. Antioxidants (Basel) 2022; 11:antiox11102080. [PMID: 36290802 PMCID: PMC9598590 DOI: 10.3390/antiox11102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022] Open
Abstract
Proliferative Vitreoretinopathy (PVR) is a refractory retinal disease whose primary pathogenesis involves the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells. At present, there is no effective treatment other than surgery for PVR. The purpose of this study was to investigate the effect of αB crystallin peptide (αBC-P) on EMT in PVR. We have previously shown that this peptide is antiapoptotic and regulates RPE redox status. Subconfluent primary human RPE (hRPE) cells were stimulated by TGFβ2 (10 ng/mL) with or without αBC-P (50 or 75 μg/mL) for 48 h and expression of EMT/mesenchymal to epithelial transition (MET) markers was determined. Mitochondrial ROS (mtROS) generation in hRPE cells treated with TGFβ2 was analyzed. The effect of TGFβ2 and αBC-P on oxidative phosphorylation (OXPHOS) and glycolysis in hRPE was studied. RPE cell migration was also assessed. A PVR-like phenotype was induced by intravitreal dispase injection in C57BL/6J mice. PVR progression and potential therapeutic efficiency of αBC-Elastin-like polypeptides (ELP) was studied using fundus photography, OCT imaging, ERG, and histologic analysis of the retina. αSMA, E-cadherin, Vimentin, Fibronectin and, RPE65, and CTGF were analyzed on Day 28. Additionally, the amount of VEGF-A in retinal cell lysates was measured. The EMT-associated αSMA, Vimentin, SNAIL and SLUG showed a significant upregulation with TGFβ2, and their expression was significantly suppressed by cotreatment with αBC-P. The MET-associated markers, E-cadherin and Sirt1, were significantly downregulated by TGFβ2 and were restored by αBC-P. Incubation of hRPE with TGFβ2 for 24 h showed a marked increase in mitochondrial ROS which was noticeably inhibited by αBC-ELP. We also showed that after TGFβ2 treatment, SMAD4 translocated to mitochondria which was blocked by αBC-ELP. Mitochondrial oxygen consumption rate increased with TGFβ2 treatment for 48 h, and αBC-P co-treatment caused a further increase in OCR. Glycolytic functions of RPE were significantly suppressed with αBC-P (75 μg/mL). In addition, αBC-P significantly inhibited the migration from TGFβ2 treatment in hRPE cells. The formation of proliferative membranes was suppressed in the αBC-ELP-treated group, as evidenced by fundus, OCT, and H&E staining in dispase-induced PVR in mice. Furthermore, ERG showed an improvement in c-wave amplitude. In addition, immunostaining showed significant suppression of αSMA and RPE65 expression. It was also observed that αBC-ELP significantly reduced the expression level of vimentin, fibronectin, and CTGF. Our findings suggest that the antioxidant αBC-P may have therapeutic potential in preventing PVR by reversing the phenotype of EMT/MET and improving the mitochondrial function in RPE cells.
Collapse
|
13
|
Rodriguez-Iturbe B, Johnson RJ, Lanaspa MA, Nakagawa T, Garcia-Arroyo FE, Sánchez-Lozada LG. Sirtuin deficiency and the adverse effects of fructose and uric acid synthesis. Am J Physiol Regul Integr Comp Physiol 2022; 322:R347-R359. [PMID: 35271385 PMCID: PMC8993531 DOI: 10.1152/ajpregu.00238.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
Fructose metabolism and hyperuricemia have been shown to drive insulin resistance, metabolic syndrome, hepatic steatosis, hypertension, inflammation, and innate immune reactivity in experimental studies. We suggest that these adverse effects are at least in part the result of suppressed activity of sirtuins, particularly Sirtuin1. Deficiency of sirtuin deacetylations is a consequence of reduced bioavailability of its cofactor nicotinamide adenine dinucleotide (NAD+). Uric acid-induced inflammation and oxidative stress consume NAD+ and activation of the polyol pathway of fructose and uric acid synthesis also reduces the NAD+-to-NADH ratio. Variability in the compensatory regeneration of NAD+ could result in variable recovery of sirtuin activity that may explain the inconsistent benefits of treatments directed to reduce uric acid in clinical trials. Here, we review the pathogenesis of the metabolic dysregulation driven by hyperuricemia and their potential relationship with sirtuin deficiency. In addition, we discuss therapeutic options directed to increase NAD+ and sirtuins activity that may improve the adverse effects resulting from fructose and uric acid synthesis.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán," Mexico City, Mexico
- Departments of Cardio-Renal Physiopathology Instituto Nacional de Cardiología "Ignacio Chavez," Mexico City, Mexico
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Denver, Colorado
- Kidney Disease Division, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, Colorado
| | - Miguel A Lanaspa
- Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, Oregon
| | | | - Fernando E Garcia-Arroyo
- Departments of Cardio-Renal Physiopathology Instituto Nacional de Cardiología "Ignacio Chavez," Mexico City, Mexico
| | - Laura G Sánchez-Lozada
- Departments of Cardio-Renal Physiopathology Instituto Nacional de Cardiología "Ignacio Chavez," Mexico City, Mexico
| |
Collapse
|
14
|
Wang ZY, Zhang Y, Chen J, Wu LD, Chen ML, Chen CM, Xu QH. Artesunate inhibits the development of PVR by suppressing the TGF-β/Smad signaling pathway. Exp Eye Res 2021; 213:108859. [PMID: 34822854 DOI: 10.1016/j.exer.2021.108859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is the main cause of retinal detachment surgery failure. The epithelial-mesenchymal transition (EMT) induced by transforming growth factor (TGF-β2) plays an important role in the development of PVR. Artesunate has been widely studied as a treatment for ophthalmic diseases because of its antioxidant, anti-inflammatory, antiapoptotic and antiproliferative properties. The purpose of this study was to investigate the effects of artesunate on the TGF-β2-induced EMT in ARPE-19 cells and PVR development. We found that artesunate inhibited the proliferation and contraction of ARPE-19 cells after the EMT and the autocrine effects of TGF-β2 on ARPE-19 cells. Additionally, the levels of Smad3 and p-Smad3 were increased in clinical samples, and artesunate decreased the levels of Smad3 and p-Smad3 in ARPE-19 cells treated with TGF-β2. Artesunate also inhibited the occurrence and development of PVR in vivo. In summary, artesunate inhibits the occurrence and development of PVR by inhibiting the EMT in ARPE-19 cells.
Collapse
Affiliation(s)
- Zi-Yi Wang
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Yu Zhang
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Jie Chen
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Ling-Dan Wu
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Mei-Ling Chen
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Ci-Min Chen
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Qi-Hua Xu
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China.
| |
Collapse
|
15
|
Zhang W, Li J. Yes-associated protein is essential for proliferative vitreoretinopathy development via the epithelial-mesenchymal transition in retinal pigment epithelial fibrosis. J Cell Mol Med 2021; 25:10213-10223. [PMID: 34598306 PMCID: PMC8572794 DOI: 10.1111/jcmm.16958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022] Open
Abstract
This study was aim to investigate whether the progression of proliferative vitreoretinopathy (PVR) depended on the activation of Yes‐associated protein (YAP) and the subsequent epithelial‐mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cell. The effect of YAP activation on retinal fibrosis in a PVR mouse model and in human ARPE‐19 cells in vitro was studied. After treated with transforming growth factor‐β2(TGF‐β2), the expressions of fibrogenic molecules, YAP activation and the TGF‐β2‐Smad signalling pathway in ARPE‐19 cells were detected by Western blot and immunocytochemical analyses. The effect of YAP on change in fibrosis and EMT was tested by knockdown experiment using verteporfin (YAP inhibitor). YAP was upregulated in the PVR mouse model and during TGF‐β2–induced RPE cell EMT. In an in vivo study, verteporfin attenuated PVR progression in a mouse model. Additionally, YAP knockdown retained phenotype of RPE cells and ameliorated TGF‐β2–induced migration, gel contraction and EMT in vitro. YAP knockdown inhibited the TGF‐β2–induced upregulation of connective tissue growth factor (CTGF), smooth muscle actin (SMA‐α) and fibronectin. YAP was essential for the TGF‐β2–induced nuclear translocation and phosphorylation of Smad2/3. Our work provides direct evidence that YAP is an essential regulator of EMT and profibrotic responses in PVR and indicates that YAP inhibition could be a potential target in PVR therapeutic intervention.
Collapse
Affiliation(s)
- Wei Zhang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Li
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Dong H, Wang M, Li Q. Exosomal miR-4488 and miR-1273g-5p inhibit the epithelial-mesenchymal transition of transforming growth factor β2-mediated retinal pigment epithelial cells by targeting ATP-binding cassette A4. Bioengineered 2021; 12:9693-9706. [PMID: 34592902 PMCID: PMC8810054 DOI: 10.1080/21655979.2021.1987068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Exosomal microRNAs (miRNAs) have been shown to be involved in the regulation of many disease progression, including proliferative vitreoretinopathy (PVR). However, the roles of exosomal miR-4488 and miR-1273g-5p in PVR progression have not been demonstrated. Transforming growth factor β2 (TGF-β2)-induced ARPE-19 cells were used to stimulate the epithelial-mesenchymal transition (EMT) of cells. Exosomes derived from TGF-β2-induced ARPE-19 cells were identified by transmission electron microscopy and nanoparticle tracking analysis. The expression levels of miR-4488, miR-1273g-5p and ATP-binding cassette A4 (ABCA4) were measured by quantitative real-time PCR. The promotion levels of exosomes markers, EMT markers, apoptosis markers and ABCA4 were determined by western blot analysis. The migration, invasion and apoptosis of cells were determined by transwell assay, wound healing assay and flow cytometry. Our data showed that miR-4488 and miR-1273g-5p were lowly expressed in TGF-β2-induced ARPE-19 cells. Overexpressed exosomal miR-4488 and miR-1273g-5p could inhibit the EMT, migration, invasion, and promote apoptosis in TGF-β2-induced ARPE-19 cells. In addition, ABCA4 was a target of miR-4488 and miR-1273g-5p. Overexpressed ABCA4 also could reverse the negatively regulation of exosomal miR-4488 and miR-1273g-5p on the EMT, migration, and invasion of TGF-β2-induced ARPE-19 cells. In conclusion, our data showed that exosomal miR-4488 and miR-1273g-5p could inhibit TGF-β2-stimulated EMT in ARPE-19 cells through targeting ABCA4.
Collapse
Affiliation(s)
- Hongtao Dong
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan, China
| | - Menghua Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan, China
| | - Qiuming Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan, China
| |
Collapse
|
17
|
Khateb S, Aweidah H, Halpert M, Jaouni T. Postoperative Macular Proliferative Vitreoretinopathy: A Case Series and Literature Review. Case Rep Ophthalmol 2021; 12:464-472. [PMID: 34177543 PMCID: PMC8215993 DOI: 10.1159/000512285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/10/2020] [Indexed: 12/02/2022] Open
Abstract
Premacular membranes developing following pars plana vitrectomy (PPV) can cause significant anatomical and functional deficits to the macula. Recent reports showed that postoperative premacular membranes are a localized presentation of macular proliferative vitreoretinopathy (mPVR). Here, we report retrospectively a case series of 5 patients with severe mPVR which developed following uneventful PPV and were followed up to 32 months in the Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, between October 2016 and February 2020. All patients underwent primary repair of rhegmatogenous retinal detachment (RRD) before mPVR developed. Mean best-corrected visual acuity (BCVA) at presentation was 20/76 Snellen (0.58 LogMAR). Median duration of the retinal detachment time until surgery was 1.5 days (range 1–21 days). Mean interval time from last normal follow-up exam to diagnosis of mPVR was 19 days (range 10–28). BCVA dropped from a mean of 20/38 Snellen (0.28 LogMAR) prior to mPVR development to 20/166 Snellen (0.92 LogMAR) following its development, recovering to 20/57 Snellen (0.45 LogMAR) after peeling of membranes. Mean central macular thickness measured by optical coherence tomography decreased from 711 to 354 μm postsurgery. In conclusion, short-term mPVR is a different entity from macular pucker in terms of rapid development, structural distortion, and visual compromise. Surgical treatment significantly restores macular function and anatomy.
Collapse
Affiliation(s)
- Samer Khateb
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hamzah Aweidah
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michael Halpert
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tareq Jaouni
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
18
|
Suppression of PGC-1α Drives Metabolic Dysfunction in TGFβ2-Induced EMT of Retinal Pigment Epithelial Cells. Int J Mol Sci 2021; 22:ijms22094701. [PMID: 33946753 PMCID: PMC8124188 DOI: 10.3390/ijms22094701] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
PGC-1α, a key orchestrator of mitochondrial metabolism, plays a crucial role in governing the energetically demanding needs of retinal pigment epithelial cells (RPE). We previously showed that silencing PGC-1α induced RPE to undergo an epithelial-mesenchymal-transition (EMT). Here, we show that induction of EMT in RPE using transforming growth factor-beta 2 (TGFβ2) suppressed PGC-1α expression. Correspondingly, TGFβ2 induced defects in mitochondrial network integrity with increased sphericity and fragmentation. TGFβ2 reduced expression of genes regulating mitochondrial dynamics, reduced citrate synthase activity and intracellular ATP content. High-resolution respirometry showed that TGFβ2 reduced mitochondrial OXPHOS levels consistent with reduced expression of NDUFB5. The reduced mitochondrial respiration was associated with a compensatory increase in glycolytic reserve, glucose uptake and gene expression of glycolytic enzymes (PFKFB3, PKM2, LDHA). Treatment with ZLN005, a selective small molecule activator of PGC-1α, blocked TGFβ2-induced upregulation of mesenchymal genes (αSMA, Snai1, CTGF, COL1A1) and TGFβ2-induced migration using the scratch wound assay. Our data show that EMT is accompanied by mitochondrial dysfunction and a metabolic shift towards reduced OXPHOS and increased glycolysis that may be driven by PGC-1α suppression. ZLN005 effectively blocks EMT in RPE and thus serves as a novel therapeutic avenue for treatment of subretinal fibrosis.
Collapse
|
19
|
Delmas D, Cornebise C, Courtaut F, Xiao J, Aires V. New Highlights of Resveratrol: A Review of Properties against Ocular Diseases. Int J Mol Sci 2021; 22:1295. [PMID: 33525499 PMCID: PMC7865717 DOI: 10.3390/ijms22031295] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Eye diseases are currently a major public health concern due to the growing number of cases resulting from both an aging of populations and exogenous factors linked to our lifestyles. Thus, many treatments including surgical pharmacological approaches have emerged, and special attention has been paid to prevention, where diet plays a preponderant role. Recently, potential antioxidants such as resveratrol have received much attention as potential tools against various ocular diseases. In this review, we focus on the mechanisms of resveratrol against ocular diseases, in particular age-related macular degeneration, glaucoma, cataract, diabetic retinopathy, and vitreoretinopathy. We analyze, in relation to the different steps of each disease, the resveratrol properties at multiple levels, such as cellular and molecular signaling as well as physiological effects. We show and discuss the relationship to reactive oxygen species, the regulation of inflammatory process, and how resveratrol can prevent ocular diseases through a potential epigenetic action by the activation of sirtuin-1. Lastly, various new forms of resveratrol delivery are emerging at the same time as some clinical trials are raising more questions about the future of resveratrol as a potential tool for prevention or in therapeutic strategies against ocular diseases. More preclinical studies are required to provide further insights into RSV's potential adjuvant activity.
Collapse
Affiliation(s)
- Dominique Delmas
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
- Centre Anticancéreux Georges François Leclerc, F-21000 Dijon, France
| | - Clarisse Cornebise
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| | - Flavie Courtaut
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain;
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Virginie Aires
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| |
Collapse
|
20
|
Zhang ZY, Sun YJ, Song JY, Fan B, Li GY. Experimental models and examination methods of retinal detachment. Brain Res Bull 2021; 169:51-62. [PMID: 33434623 DOI: 10.1016/j.brainresbull.2021.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Retinal detachment refers to the separation of the retinal neuroepithelium and pigment epithelium, usually involving the death of photoreceptor cells. Severe detachment may lead to permanent visual impairment if not treated properly and promptly. According to the underlying causes, retinal detachment falls into one of three categories: exudative retinal detachment, traction detachment, and rhegmatogenous retinal detachment. Like many other diseases, it is difficult to study the pathophysiology of retinal detachment directly in humans, because the human retinal tissues are precious, scarce and non-regenerative; thus, establishing experimental models that better mimic the disease is necessary. In this review, we summarize the existing models of the three categories of retinal detachment both in vivo and in vitro, along with an overview of their examination methods and the major strengths and weaknesses of each model.
Collapse
Affiliation(s)
- Zi-Yuan Zhang
- Second Hosp Jilin Univ, Dept Ophthalmol, 218 Zi Qiang St, Changchun, 130041, PR China.
| | - Ying-Jian Sun
- Second Hosp Jilin Univ, Dept Ophthalmol, 218 Zi Qiang St, Changchun, 130041, PR China.
| | - Jing-Yao Song
- Second Hosp Shandong Univ, Dept Ophthalmol, 247 Bei Yuan St, Jinan, 250031, PR China.
| | - Bin Fan
- Second Hosp Jilin Univ, Dept Ophthalmol, 218 Zi Qiang St, Changchun, 130041, PR China.
| | - Guang-Yu Li
- Second Hosp Jilin Univ, Dept Ophthalmol, 218 Zi Qiang St, Changchun, 130041, PR China.
| |
Collapse
|
21
|
Zou H, Shan C, Ma L, Liu J, Yang N, Zhao J. Polarity and epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy. PeerJ 2020; 8:e10136. [PMID: 33150072 PMCID: PMC7583629 DOI: 10.7717/peerj.10136] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions, retinal pigment epithelium (RPE) is a cellular monolayer composed of mitotically quiescent cells. Tight junctions and adherens junctions maintain the polarity of RPE cells, and are required for cellular functions. In proliferative vitreoretinopathy (PVR), upon retinal tear, RPE cells lose cell-cell contact, undergo epithelial-mesenchymal transition (EMT), and ultimately transform into myofibroblasts, leading to the formation of fibrocellular membranes on both surfaces of the detached retina and on the posterior hyaloids, which causes tractional retinal detachment. In PVR, RPE cells are crucial contributors, and multiple signaling pathways, including the SMAD-dependent pathway, Rho pathway, MAPK pathways, Jagged/Notch pathway, and the Wnt/β-catenin pathway are activated. These pathways mediate the EMT of RPE cells, which play a key role in the pathogenesis of PVR. This review summarizes the current body of knowledge on the polarized phenotype of RPE, the role of cell-cell contact, and the molecular mechanisms underlying the RPE EMT in PVR, emphasizing key insights into potential approaches to prevent PVR.
Collapse
Affiliation(s)
- Hui Zou
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Chenli Shan
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Linlin Ma
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Ning Yang
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Jinsong Zhao
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Wong CW, Busoy JMF, Cheung N, Barathi VA, Storm G, Wong TT. Endogenous or Exogenous Retinal Pigment Epithelial Cells: A Comparison of Two Experimental Animal Models of Proliferative Vitreoretinopathy. Transl Vis Sci Technol 2020; 9:46. [PMID: 32934896 PMCID: PMC7463202 DOI: 10.1167/tvst.9.9.46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/08/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Proliferative vitreoretinopathy (PVR) is a blinding condition that can occur following ocular penetrating injury and retinal detachment. To develop effective therapeutics for PVR, it is imperative to establish an animal model that is reproducible, closest in anatomy to the human eye, and most representative of the human disease. We compared two in vivo models of PVR in minipig eyes to assess reproducibility and consistency. Methods Six minipigs underwent PVR induction with procedure A and six underwent procedure B. In both procedures, PVR was induced with vitrectomy, bleb retinal detachment, retinotomy, and injection of platelet-rich plasma. In procedure A, retinal pigment epithelial (RPE) cells were harvested from cadaveric pig eyes and injected at the end of surgery. In procedure B, native RPE cells were released into the vitreous cavity by creating a RPE detachment and scraping the RPE layer. PVR severity was graded on fundoscopic examination with a modified Silicone Study Classification System for PVR. Severe PVR was defined as stages 2 to 5. Results Three eyes (50%) and five eyes (83.3%) developed re-detachment of the retina from severe PVR in procedures A and B, respectively (P = 0.55). Median PVR stage was higher in eyes that underwent procedure B compared to eyes that underwent procedure A, although the difference was not statistically significant (2.5 vs. 1.5, P = 0.26). Conclusions This new model utilizing native RPE cells achieved a high consistency in inducing severe PVR in the minipig. Translational Relevance Our model closely follows pathogenic events in human PVR, making it ideal for preclinical testing of novel therapeutics for PVR.
Collapse
Affiliation(s)
- Chee Wai Wong
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS Graduate Medical School, Singapore
| | | | - Ning Cheung
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS Graduate Medical School, Singapore
| | | | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Tina T Wong
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
23
|
Ashrafizadeh M, Najafi M, Orouei S, Zabolian A, Saleki H, Azami N, Sharifi N, Hushmandi K, Zarrabi A, Ahn KS. Resveratrol Modulates Transforming Growth Factor-Beta (TGF-β) Signaling Pathway for Disease Therapy: A New Insight into Its Pharmacological Activities. Biomedicines 2020; 8:E261. [PMID: 32752069 PMCID: PMC7460084 DOI: 10.3390/biomedicines8080261] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (Res) is a well-known natural product that can exhibit important pharmacological activities such as antioxidant, anti-diabetes, anti-tumor, and anti-inflammatory. An evaluation of its therapeutic effects demonstrates that this naturally occurring bioactive compound can target different molecular pathways to exert its pharmacological actions. Transforming growth factor-beta (TGF-β) is an important molecular pathway that is capable of regulating different cellular mechanisms such as proliferation, migration, and angiogenesis. TGF-β has been reported to be involved in the development of disorders such as diabetes, cancer, inflammatory disorders, fibrosis, cardiovascular disorders, etc. In the present review, the relationship between Res and TGF-β has been investigated. It was noticed that Res can inhibit TGF-β to suppress the proliferation and migration of cancer cells. In addition, Res can improve fibrosis by reducing inflammation via promoting TGF-β down-regulation. Res has been reported to be also beneficial in the amelioration of diabetic complications via targeting the TGF-β signaling pathway. These topics are discussed in detail in this review to shed light on the protective effects of Res mediated via the modulation of TGF-β signaling.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Sima Orouei
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Negin Sharifi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
24
|
Chtcheglova LA, Ohlmann A, Boytsov D, Hinterdorfer P, Priglinger SG, Priglinger CS. Nanoscopic Approach to Study the Early Stages of Epithelial to Mesenchymal Transition (EMT) of Human Retinal Pigment Epithelial (RPE) Cells In Vitro. Life (Basel) 2020; 10:E128. [PMID: 32751632 PMCID: PMC7460373 DOI: 10.3390/life10080128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
The maintenance of visual function is supported by the proper functioning of the retinal pigment epithelium (RPE), representing a mosaic of polarized cuboidal postmitotic cells. Damage factors such as inflammation, aging, or injury can initiate the migration and proliferation of RPE cells, whereas they undergo a pseudo-metastatic transformation or an epithelial to mesenchymal transition (EMT) from cuboidal epithelioid into fibroblast-like or macrophage-like cells. This process is recognized as a key feature in several severe ocular pathologies, and is mimicked by placing RPE cells in culture, which provides a reasonable and well-characterized in vitro model for a type 2 EMT. The most obvious characteristic of EMT is the cell phenotype switching, accompanied by the cytoskeletal reorganization with changes in size, shape, and geometry. Atomic force microscopy (AFM) has the salient ability to label-free explore these characteristics. Based on our AFM results supported by the genetic analysis of specific RPE differentiation markers, we elucidate a scheme for gradual transformation from the cobblestone to fibroblast-like phenotype. Structural changes in the actin cytoskeletal reorganization at the early stages of EMT lead to the development of characteristic geodomes, a finding that may reflect an increased propensity of RPE cells to undergo further EMT and thus become of diagnostic significance.
Collapse
Affiliation(s)
- Lilia A. Chtcheglova
- Institute of Biophysics, Johannes Kepler University (JKU) Linz, Gruberstrasse 40, 4020 Linz, Austria; (D.B.); (P.H.)
| | - Andreas Ohlmann
- Department of Ophthalmology, Munich University Hospital, Ludwig-Maximilians-University (LMU) Munich, Mathildenstrasse 8, 80336 Munich, Germany; (A.O.); (S.G.P.); (C.S.P.)
| | - Danila Boytsov
- Institute of Biophysics, Johannes Kepler University (JKU) Linz, Gruberstrasse 40, 4020 Linz, Austria; (D.B.); (P.H.)
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University (JKU) Linz, Gruberstrasse 40, 4020 Linz, Austria; (D.B.); (P.H.)
| | - Siegfried G. Priglinger
- Department of Ophthalmology, Munich University Hospital, Ludwig-Maximilians-University (LMU) Munich, Mathildenstrasse 8, 80336 Munich, Germany; (A.O.); (S.G.P.); (C.S.P.)
| | - Claudia S. Priglinger
- Department of Ophthalmology, Munich University Hospital, Ludwig-Maximilians-University (LMU) Munich, Mathildenstrasse 8, 80336 Munich, Germany; (A.O.); (S.G.P.); (C.S.P.)
| |
Collapse
|
25
|
Li X, Li X, He S, Zhao M. MeCP2-421-mediated RPE epithelial-mesenchymal transition and its relevance to the pathogenesis of proliferative vitreoretinopathy. J Cell Mol Med 2020; 24:9420-9427. [PMID: 32638535 PMCID: PMC7417696 DOI: 10.1111/jcmm.15602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/13/2020] [Indexed: 12/17/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a blinding eye disease. Epithelial‐mesenchymal transition (EMT) of RPE cells plays an important role in the pathogenesis of PVR. In the current study, we sought to investigate the role of the methyl‐CpG‐binding protein 2 (MeCP2), especially P‐MeCP2‐421 in the pathogenesis of PVR. The expressions of P‐MeCP2‐421, P‐MeCP2‐80, PPAR‐γ and the double labelling of P‐MeCP2‐421 with α‐SMA, cytokeratin, TGF‐β and PPAR‐γ in human PVR membranes were analysed by immunohistochemistry. The effect of knocking down MeCP2 using siRNA on the expressions of α‐SMA, phospho‐Smad2/3, collagen I, fibronectin and PPAR‐γ; the expression of α‐SMA stimulated by recombinant MeCP2 in ARPE‐19; and the effect of TGF‐β and 5‐AZA treatment on PPAR‐γ expression were analysed by Western blot. Chromatin immunoprecipitation was used to determine the binding of MeCP2 to TGF‐β. Our results showed that P‐MeCP2‐421 was highly expressed in PVR membranes and was double labelled with α‐SMA, cytokeratin and TGF‐β, knocking down MeCP2 inhibited the activation of Smad2/3 and the expression of collagen I and fibronectin induced by TGF‐β. TGF‐β inhibited the expression of PPAR‐γ, silence of MeCP2 by siRNA or using MeCP2 inhibitor (5‐AZA) increased the expression of PPAR‐γ. α‐SMA was up‐regulated by the treatment of recombinant MeCP2. Importantly, we found that MeCP2 bound to TGF‐β as demonstrated by Chip assay. The results suggest that MeCP2 especially P‐MeCP2‐421 may play a significant role in the pathogenesis of PVR and targeting MeCP2 may be a potential therapeutic approach for the treatment of PVR.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People's Hospital, Zhengzhou, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China.,People's Hospital of Zhengzhou University, Zhengzhou, China.,People's Hospital of Henan University, Zhengzhou, China
| | - Xue Li
- Henan Provincial People's Hospital, Zhengzhou, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China.,People's Hospital of Zhengzhou University, Zhengzhou, China.,People's Hospital of Henan University, Zhengzhou, China
| | - Shikun He
- Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China.,Departments of Pathology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mingwei Zhao
- Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| |
Collapse
|
26
|
Fan J, Shen W, Lee SR, Mathai AE, Zhang R, Xu G, Gillies MC. Targeting the Notch and TGF-β signaling pathways to prevent retinal fibrosis in vitro and in vivo. Am J Cancer Res 2020; 10:7956-7973. [PMID: 32724452 PMCID: PMC7381727 DOI: 10.7150/thno.45192] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: The Notch and transforming growth factor-β (TGFβ) signaling pathways are two intracellular mechanisms that control fibrosis in general but whether they play a major role in retinal fibrosis is less clear. Here we study how these two signaling pathways regulate Müller cell-dominated retinal fibrosis in vitro and in vivo. Methods: Human MIO-M1 Müller cells were treated with Notch ligands and TGFβ1, either alone or in combination. Western blots were performed to study changes in γ-secretase proteases, Notch downstream effectors, endogenous TGFβ1, phosphorylated Smad3 (p-Smad3) and extracellular matrix (ECM) proteins. We also studied the effects of RO4929097, a selective γ-secretase inhibitor, on expression of ECM proteins after ligand stimulation. Müller cell viability was studied by AlamarBlue and cytotoxicity by lactate cytotoxicity assays. Finally, we studied changes in Notch and TGFβ signaling and tested the effect of intravitreal injections of the Notch pathway inhibitor RO4929097 on retinal fibrosis resulted from Sodium iodate (NaIO3)-induced retinal injury in mice. We also studied the safety of intravitreal injections of RO4929097 in normal mice. Results: Treatment of Müller cells with Notch ligands upregulated γ-secretase proteases and Notch downstream effectors, with increased expression of endogenous TGFβ1, TGFβ receptors and p-Smad3. TGFβ1 upregulated the expression of proteins associated with both signaling pathways in a similar manner. Notch ligands and TGFβ1 had additive effects on overexpression of ECM proteins in Müller cells which were inhibited by RO4929097. Notch and TGFβ ligands stimulated Müller cell proliferation which was inhibited by RO4929097 without damaging the cells. NaIO3-induced retinal injury activated both Notch and TGFβ signaling pathways in vivo. Intravitreal injection of RO4929097 prevented Müller cell gliosis and inhibited overexpression of ECM proteins in this murine model. We found no safety concerns for up to 17 days after an intravitreal injection of RO4929097. Conclusions: Inhibiting Notch signaling might be an effective way to prevent retinal fibrosis. This study is of clinical significance in developing a treatment for preventing fibrosis in proliferative vitreoretinopathy, proliferative diabetic retinopathy and wet age-related macular degeneration.
Collapse
|
27
|
Zhou M, Geathers JS, Grillo SL, Weber SR, Wang W, Zhao Y, Sundstrom JM. Role of Epithelial-Mesenchymal Transition in Retinal Pigment Epithelium Dysfunction. Front Cell Dev Biol 2020; 8:501. [PMID: 32671066 PMCID: PMC7329994 DOI: 10.3389/fcell.2020.00501] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal pigment epithelial (RPE) cells maintain the health and functional integrity of both photoreceptors and the choroidal vasculature. Loss of RPE differentiation has long been known to play a critical role in numerous retinal diseases, including inherited rod-cone degenerations, inherited macular degeneration, age-related macular degeneration, and proliferative vitreoretinopathy. Recent studies in post-mortem eyes have found upregulation of critical epithelial-mesenchymal transition (EMT) drivers such as TGF-β, Wnt, and Hippo. As RPE cells become less differentiated, they begin to exhibit the defining characteristics of mesenchymal cells, namely, the capacity to migrate and proliferate. A number of preclinical studies, including animal and cell culture experiments, also have shown that RPE cells undergo EMT. Taken together, these data suggest that RPE cells retain the reprogramming capacity to move along a continuum between polarized epithelial cells and mesenchymal cells. We propose that movement along this continuum toward a mesenchymal phenotype be defined as RPE Dysfunction. Potential mechanisms include impaired tight junctions, accumulation of misfolded proteins and dysregulation of several key pathways and molecules, such as TGF-β pathway, Wnt pathway, nicotinamide, microRNA 204/211 and extracellular vesicles. This review synthesizes the evidence implicating EMT of RPE cells in post-mortem eyes, animal studies, primary RPE, iPSC-RPE and ARPE-19 cell lines.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| | - Jasmine S Geathers
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| | - Stephanie L Grillo
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| | - Sarah R Weber
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| | - Weiwei Wang
- Department of Medicine, The University of Texas Health Science Center at San Antonio, Houston, TX, United States
| | - Yuanjun Zhao
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| | - Jeffrey M Sundstrom
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
28
|
EMT and EndMT: Emerging Roles in Age-Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21124271. [PMID: 32560057 PMCID: PMC7349630 DOI: 10.3390/ijms21124271] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) and endothelial–mesenchymal transition (EndMT) are physiological processes required for normal embryogenesis. However, these processes can be hijacked in pathological conditions to facilitate tissue fibrosis and cancer metastasis. In the eye, EMT and EndMT play key roles in the pathogenesis of subretinal fibrosis, the end-stage of age-related macular degeneration (AMD) that leads to profound and permanent vision loss. Predominant in subretinal fibrotic lesions are matrix-producing mesenchymal cells believed to originate from the retinal pigment epithelium (RPE) and/or choroidal endothelial cells (CECs) through EMT and EndMT, respectively. Recent evidence suggests that EMT of RPE may also be implicated during the early stages of AMD. Transforming growth factor-beta (TGFβ) is a key cytokine orchestrating both EMT and EndMT. Investigations in the molecular mechanisms underpinning EMT and EndMT in AMD have implicated a myriad of contributing factors including signaling pathways, extracellular matrix remodelling, oxidative stress, inflammation, autophagy, metabolism and mitochondrial dysfunction. Questions arise as to differences in the mesenchymal cells derived from these two processes and their distinct mechanistic contributions to the pathogenesis of AMD. Detailed discussion on the AMD microenvironment highlights the synergistic interactions between RPE and CECs that may augment the EMT and EndMT processes in vivo. Understanding the differential regulatory networks of EMT and EndMT and their contributions to both the dry and wet forms of AMD can aid the development of therapeutic strategies targeting both RPE and CECs to potentially reverse the aberrant cellular transdifferentiation processes, regenerate the retina and thus restore vision.
Collapse
|
29
|
Rajić J, Dinić S, Uskoković A, Arambašić Jovanović J, Tolić A, Đorđević M, Đorđević M, Poznanović G, Mihailović M, Inic-Kanada A, Barisani-Asenbauer T, Grdović N, Vidaković M. DNA methylation of miR-200 clusters promotes epithelial to mesenchymal transition in human conjunctival epithelial cells. Exp Eye Res 2020; 197:108047. [PMID: 32387379 DOI: 10.1016/j.exer.2020.108047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023]
Abstract
Epithelial to mesenchymal transition (EMT) contributes to fibrosis associated pathologies including scarring of different ocular tissues. Recently targeting EMT is seen as an appropriate therapeutic approach for different fibrosis related eye diseases such as macular degeneration or glaucoma surgery related fibrosis. Nevertheless, for ocular surface diseases, target genes specific for particular cell type or condition are still undefined. This study aimed to expose the complex regulatory mechanisms that trigger EMT in human conjunctival epithelial (HCjE) cells. EMT was induced by prolonged treatment with two TGF-β isoforms, TGF-β1 and TGF-β2, and their combination. TGF-β1 showed the strongest potential for initiating EMT in HCjE cells, reflected on morphological changes, cell migration and the levels of mRNA expression of different epithelial (CDH1, OCLN, DSP) and mesenchymal (CDH2, FN1, VIM, SNAI1, ZEB2, TWIST1) marker genes. Co-treatment with the DNA demethylating agent 5-Azacytidine (5-AzaC) was capable of stopping the transition of HCjE cells towards a mesenchymal phenotype, based on morphological features, reduced cell mobility and mRNA and protein expression levels of epithelial and mesenchymal marker genes. An EMT qRT-PCR-based array revealed that EMT induced considerable alterations in gene expression, with downregulation of the majority of epithelial marker genes and upregulation of genes specific for the mesenchymal state. The major effect of 5-AzaC treatment was observed as a suppression of mesenchymal marker genes, suggesting the involvement of upstream negative regulator(s) whose promoter demethylation and subsequent expression will in turn promote EMT switch off. The expression level of miRNAs potentially important for EMT induction was determined using qRT-PCR-based array which pointed at members of miR-200 family as main regulators of EMT process in HCjE cells. 5-AzaC treatment induced increased expression of miR-200a, -200b, -200c and miR-141 towards the control level, indicating important role of DNA methylation in their regulation. The DNA methylation status of both miR-200 family clusters, analyzed with high-resolution melting (HRM) and bisulfite sequencing (Bis-Seq), revealed that TGF-β1-induced EMT was accompanied by increase in promoter CpG methylation of both miR-200 loci, which was reverted after 5-AzaC treatment. In conclusion, our results indicate that DNA demethylation of promoters of miR-200 loci is critically important for stopping and reverting the EMT in human conjunctival epithelial cells, suggesting the potential for the development of novel epigenetic-based therapeutic strategies for treating conjunctival conditions associated with EMT.
Collapse
Affiliation(s)
- Jovana Rajić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Aleksandra Uskoković
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Jelena Arambašić Jovanović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Anja Tolić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Marija Đorđević
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Miloš Đorđević
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Goran Poznanović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Aleksandra Inic-Kanada
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Talin Barisani-Asenbauer
- OCUVAC - Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| | - Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| |
Collapse
|
30
|
Li X, Zhao M, He S. RPE epithelial-mesenchymal transition plays a critical role in the pathogenesis of proliferative vitreoretinopathy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:263. [PMID: 32355707 PMCID: PMC7186684 DOI: 10.21037/atm.2020.03.86] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Xiaohua Li
- Department of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou 450003, China.,Department of Ophthalmology, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.,People's Hospital of Henan University, Zhengzhou 450003, China
| | - Mingwei Zhao
- Ophthalmology Optometry Center, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing 100044, China
| | - Shikun He
- Ophthalmology Optometry Center, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing 100044, China.,Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
31
|
Smith AJO, Eldred JA, Wormstone IM. Resveratrol Inhibits Wound Healing and Lens Fibrosis: A Putative Candidate for Posterior Capsule Opacification Prevention. Invest Ophthalmol Vis Sci 2020; 60:3863-3877. [PMID: 31529119 DOI: 10.1167/iovs.18-26248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Posterior capsule opacification (PCO) is a common complication of cataract surgery. In addition to improved surgical methods and IOL designs, it is likely additional agents will be needed to improve patient outcomes. Presently no pharmacological agent is in clinical use to prevent PCO. Here we investigate the putative ability of resveratrol (RESV), a naturally occurring polyphenol, as a therapeutic agent. Methods The human lens epithelial cell line FHL124, a human lens capsular bag model, and central anterior epithelium were used as experimental systems. Standard culture was in 5% fetal calf serum Eagle's minimum essential medium; 10 ng/mL transforming growth factor-β2 (TGFβ2) was used to induce fibrotic changes. A scratch wound assay was used to measure cell migration and the patch assay was used to assess matrix contraction by FHL124 cells. Protein expression was assessed by immunocytochemistry and Western blot and gene expression by quantitative RT-PCR. In capsular bags, cell growth across the posterior lens capsule, capsular wrinkling, and epithelial-to-mesenchymal transition were determined by image analysis. Results In FHL124 cells, addition of 30 μM RESV significantly impeded cell migration in a wound-healing assay. RESV significantly inhibited TGFβ2-induced expression of the myofibroblast marker alpha-smooth muscle actin (α-SMA) at both the message and protein levels, as well as significantly inhibiting matrix contraction induced by TGFβ2. In human capsular bags, 30 μM RESV significantly inhibited cell growth. TGFβ2-induced α-SMA expression and capsular wrinkling were also significantly inhibited by RESV treatment. RESV significantly suppressed expression of TGFβ2-induced genes associated with fibrotic disease, including matrix metalloproteinase-2 in FHL124 cells, capsular bags, and central anterior epithelium. Conclusions RESV can counter PCO-related physiological events in two human lens model systems. RESV therefore has the potential to be used as a candidate agent for the prevention of PCO, which in turn could benefit millions of cataract patients.
Collapse
Affiliation(s)
- Andrew J O Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Julie A Eldred
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - I Michael Wormstone
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
32
|
Loss of NAMPT in aging retinal pigment epithelium reduces NAD + availability and promotes cellular senescence. Aging (Albany NY) 2019; 10:1306-1323. [PMID: 29905535 PMCID: PMC6046249 DOI: 10.18632/aging.101469] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022]
Abstract
Retinal pigment epithelium (RPE) performs numerous functions critical to retinal health and visual function. RPE senescence is a hallmark of aging and degenerative retinal disease development. Here, we evaluated the temporal expression of key nicotinamide adenine dinucleotide (NAD+)-biosynthetic genes and associated levels of NAD+, a principal regulator of energy metabolism and cellular fate, in mouse RPE. NAD+ levels declined with age and correlated directly with decreased nicotinamide phosphoribosyltransferase (NAMPT) expression, increased expression of senescence markers (p16INK4a, p21Waf/Cip1, ApoJ, CTGF and β-galactosidase) and significant reductions in SIRT1 expression and activity. We simulated in vitro the age-dependent decline in NAD+ and the related increase in RPE senescence in human (ARPE-19) and mouse primary RPE using the NAMPT inhibitor FK866 and demonstrated the positive impact of NAD+-enhancing therapies on RPE cell viability. This, we confirmed in vivo in the RPE of mice injected sub-retinally with FK866 in the presence or absence of nicotinamide mononucleotide. Our data confirm the importance of NAD+ to RPE cell biology normally and in aging and demonstrate the potential utility of therapies targeting NAMPT and NAD+ biosynthesis to prevent or alleviate consequences of RPE senescence in aging and/or degenerative retinal diseases in which RPE dysfunction is a crucial element.
Collapse
|
33
|
Qin D, Jiang Y, Jin X. Effect of macrophage migration inhibitory factor on inflammatory cytokines and fibrogenic gene expression in human RPE cells. Mol Med Rep 2019; 20:830-836. [PMID: 31180524 DOI: 10.3892/mmr.2019.10277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 04/24/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Dong Qin
- Henan Eye Institute, Henan Provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, Henan 450003, P.R. China
| | - Yanrong Jiang
- Department of Ophthalmology, People's Hospital of Peking University, Beijing 100044, P.R. China
| | - Xuemin Jin
- Henan Eye Institute, Henan Provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
34
|
Han Y, Jo H, Cho JH, Dhanasekaran DN, Song YS. Resveratrol as a Tumor-Suppressive Nutraceutical Modulating Tumor Microenvironment and Malignant Behaviors of Cancer. Int J Mol Sci 2019; 20:925. [PMID: 30791624 PMCID: PMC6412705 DOI: 10.3390/ijms20040925] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor-suppressive effects of resveratrol have been shown in various types of cancer. However, regulation of tumor microenvironment by resveratrol is still unclear. Recent findings suggest resveratrol can potentiate its tumor-suppressive effect through modulation of the signaling pathways of cellular components (fibroblasts, macrophages and T cells). Also, studies have shown that resveratrol can suppress malignant phenotypes of cancer cells acquired in response to stresses of the tumor microenvironment, such as hypoxia, oxidative stress and inflammation. We discuss the effects of resveratrol on cancer cells in stress environment of tumors as well as interactions between cancer cells and non-cancer cells in this review.
Collapse
Affiliation(s)
- Youngjin Han
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - HyunA Jo
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - Jae Hyun Cho
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma city, OK 73012, USA.
| | - Yong Sang Song
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea.
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea.
| |
Collapse
|
35
|
Safety, pharmacokinetics, and prevention effect of intraocular crocetin in proliferative vitreoretinopathy. Biomed Pharmacother 2019; 109:1211-1220. [DOI: 10.1016/j.biopha.2018.10.193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
|
36
|
Cai W, Yu D, Fan J, Liang X, Jin H, Liu C, Zhu M, Shen T, Zhang R, Hu W, Wei Q, Yu J. Quercetin inhibits transforming growth factor β1-induced epithelial-mesenchymal transition in human retinal pigment epithelial cells via the Smad pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4149-4161. [PMID: 30584279 PMCID: PMC6287523 DOI: 10.2147/dddt.s185618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose The purpose of this study was to evaluate the effect and mechanism of quercetin on TGF-β1-induced retinal pigment epithelial (RPE) cell proliferation, migration, and extracellular matrix secretion. Materials and methods Cell counting kit-8, transwell, wound-healing assays, and ELISA were used to assess viability, migration, and collagen I secretion, respectively. Western blot analysis and qPCR were employed to detect mRNA and protein expression levels, respectively. Results Quercetin suppressed TGF-β1-induced cell proliferation, migration, and collagen I secretion. The results also showed that mRNA and protein expression of epithelial–mesenchymal transition (EMT)-related markers such as alpha-smooth muscle actin and N-cadherin was downregulated by quercetin in TGF-β1-treated RPE cells; conversely, quercetin upregulated the expression of E-cadherin and tight junction protein 1 (ZO-1). In addition, quercetin could inhibit mRNA and protein expression of matrix metalloproteinases. Quercetin may reverse the progression of EMT via the Smad2/3 pathway. Conclusion Our results demonstrate the protective effects of quercetin on RPE cell EMT, revealing a potential therapeutic agent for proliferative vitreoretinopathy treatment.
Collapse
Affiliation(s)
- Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Jiaqi Fan
- Department of Ophthalmology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiuwei Liang
- Department of Ophthalmology, Nanchang University, Nanchang, People's Republic of China
| | - Huizi Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Chang Liu
- Department of Ophthalmology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Meijiang Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Tianyi Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Ruiling Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Weinan Hu
- Department of Ophthalmology, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Qingquan Wei
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, .,Department of Ophthalmology, Ninghai First Hospital, Zhejiang, People's Republic of China,
| |
Collapse
|
37
|
Krishna L, Dhamodaran K, Subramani M, Ponnulagu M, Jeyabalan N, Krishna Meka SR, Jayadev C, Shetty R, Chatterjee K, Khora SS, Das D. Protective Role of Decellularized Human Amniotic Membrane from Oxidative Stress-Induced Damage on Retinal Pigment Epithelial Cells. ACS Biomater Sci Eng 2018; 5:357-372. [DOI: 10.1021/acsbiomaterials.8b00769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lekshmi Krishna
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
- School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Kamesh Dhamodaran
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Murali Subramani
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Murugeswari Ponnulagu
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Nallathambi Jeyabalan
- Grow Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Sai Rama Krishna Meka
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Chaitra Jayadev
- Department of Vitreo-retinal Services, Narayana Nethralaya Eye Institute, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Debashish Das
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| |
Collapse
|
38
|
Yamashita K, Hatou S, Inagaki E, Higa K, Tsubota K, Shimmura S. A Rabbit Corneal Endothelial Dysfunction Model Using Endothelial-Mesenchymal Transformed Cells. Sci Rep 2018; 8:16868. [PMID: 30442918 PMCID: PMC6237874 DOI: 10.1038/s41598-018-35110-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Unlike humans, rabbit corneal endothelial wounds are known to spontaneously heal. The current study was aimed to develop a new rabbit bullous keratopathy model using corneal endothelial cells that were induced to undergo endothelial-mesenchymal transformation (EMT). EMT was induced in rabbit corneal endothelial cells (RCECs) by culturing with TGFβ and basic FGF Supplemented Medium. The corneal endothelia in recipient rabbits were mechanically scraped from the corneal endothelial surface inside an 8 mm mark. Then, a suspension of EMT-induced RCECs (EMT-RCECs) was injected into the anterior chamber. Eyes injected with freshly isolated RCECs (Fresh RCECs group) and eyes that were scraped without injection of cells (Scrape group) were used as controls. Immediately following operation, subepithelial and stromal edema was observed with increased central corneal thickness and corneal opacity in all groups. In the EMT-RCECs group, bullous keratopathy persisted for 42 days up to the end of the study. In the Fresh-RCECs and Scrape groups, corneal transparency and thickness recovered by 7 days after treatment and was maintained up to 42 days. The activated fibroblast marker, α-SMA, was observed spanning from corneal endothelium to corneal stroma in the EMT-RCECs group. Interestingly, α-SMA was upregulated in the Scrape-group as well. In all groups, there was no damage to other intraocular structures, and intraocular pressure was normal throughout the observation period. Transplanting a fresh donor cornea effectively treated corneal edema due to bullous keratopathy. This model is a promising tool for pre-clinical trials in the development of new therapies against corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Kazuya Yamashita
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Hatou
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Emi Inagaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Higa
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
39
|
Yao H, Ge T, Zhang Y, Li M, Yang S, Li H, Wang F. BMP7 antagonizes proliferative vitreoretinopathy through retinal pigment epithelial fibrosis in vivo and in vitro. FASEB J 2018; 33:3212-3224. [PMID: 30383450 DOI: 10.1096/fj.201800858rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The major pathogenesis of proliferative vitreoretinopathy (PVR) is that retinal pigment epithelial (RPE) cells undergo epithelial-mesenchymal transition (EMT) because of disordered growth factors, such as TGF-β, in the vitreous humor. Bone morphogenetic proteins (BMPs) are pluripotent growth factors. In this study, we identified the antifibrotic activity of BMP7 in a PVR model both in vivo and in vitro. BMP7 expression was confirmed on the PVR proliferative membranes. BMP7 was down-regulated in the PVR vitreous humor and TGF-β-induced RPE cell EMT. In the in vivo studies, BMP7 injection attenuated PVR progression in the eyes of the rabbit model. Additionally, BMP7 treatment maintained RPE cell phenotypes and relieved TGF-β2-induced EMT, migration, and gel contraction in vitro. BMP7 inhibited the TGF-β2-induced up-regulation of fibronectin and α-smooth muscle actin and the down-regulation of E-cadherin and zona occludens-1 by balancing the TGF-β2/Smad2/3 and BMP7/Smad1/5/9 pathways. These findings provide direct evidence of the ability of BMP7 in PVR inhibition and the potential of BMP7 for use in PVR therapeutic intervention.-Yao, H., Ge, T., Zhang, Y., Li, M., Yang, S., Li, H., Wang, F. BMP7 antagonizes proliferative vitreoretinopathy through retinal pigment epithelial fibrosis in vivo and in vitro.
Collapse
Affiliation(s)
- Haipei Yao
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Tandi Ge
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuai Yang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Hui Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
London NJS, Kaiser RS, Khan MA, Alshareef RA, Khuthaila M, Shahlaee A, Obeid A, London VA, DeCroos FC, Gupta OP, Hsu J, Vander JF, Spirn MJ, Regillo CD. Determining the effect of low-dose isotretinoin on proliferative vitreoretinopathy: the DELIVER trial. Br J Ophthalmol 2018; 103:1306-1313. [PMID: 30381390 DOI: 10.1136/bjophthalmol-2018-312839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 11/04/2022]
Abstract
PURPOSE To examine the effect of low-dose, oral isotretinoin in lowering the risk of proliferative vitreoretinopathy (PVR) following rhegmatogenous retinal detachment (RRD) repair. METHODS Prospective, open label, dual-cohort study with pathology-matched historical controls. The prospective experimental arms included two cohorts, composed of 51 eyes with recurrent PVR-related RRD and 58 eyes with primary RRD associated with high-risk features for developing PVR. Eyes in the experimental arms received 20 mg of isotretinoin by mouth once daily for 12 weeks starting the day after surgical repair. The primary outcome measure was single surgery anatomical success rate at 3 months following the study surgery. RESULTS The single surgery anatomic success rate was 78.4% versus 70.0% (p=0.358) in eyes with recurrent PVR-related retinal detachment exposed to isotretinoin versus historical controls, respectively. In eyes with RRD at high risk for developing PVR, the single surgery success rate was 84.5% versus 61.1% (p=0.005) for eyes exposed to isotretinoin versus historical controls, respectively. For eyes enrolled in the experimental arms, the most common isotretinoin-related side effects were dry skin/mucus membranes in 106 patients (97.2%), abnormal sleep/dreams in 4 patients (3.7%) and fatigue in 3 patients (2.8%). CONCLUSION The management and prevention of PVR is challenging and complex. At the dose and duration given in this study, oral istotretinoin may reduce the risk of PVR-associated recurrent retinal detachment in eyes with primary RRD at high risk of developing PVR.
Collapse
Affiliation(s)
- Nikolas J S London
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA .,Retina Consultants San Diego, San Diego, California, USA
| | - Richard S Kaiser
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Mohammed Ali Khan
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Rayan A Alshareef
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA.,Department of Ophthalmology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Khuthaila
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Abtin Shahlaee
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA.,Department of Ophthalmology, University of California San Francisco, San Francisco, USA
| | - Anthony Obeid
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | | | - Francis Char DeCroos
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Omesh P Gupta
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Jason Hsu
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - James F Vander
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Marc J Spirn
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Carl D Regillo
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Shanmuganathan S, Sumantran VN, Angayarkanni N. Epigallocatechin gallate & curcumin prevent transforming growth factor beta 1-induced epithelial to mesenchymal transition in ARPE-19 cells. Indian J Med Res 2018; 146:S85-S96. [PMID: 29578200 PMCID: PMC5890602 DOI: 10.4103/ijmr.ijmr_1583_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background & objectives Proliferative vitreoretinopathy (PVR) is characterized by the presence of epiretinal membrane (ERM), which exerts traction and detaches the retina. Epithelial to mesenchymal transition (EMT) of the retinal pigment epithelial (RPE) cells underlies ERM formation. Adjuvant therapies aimed at preventing recurrence of PVR after surgery mostly failed in clinical trials. This study was aimed to evaluate the anti-EMT properties of bio-active compounds epigallocatechin gallate (EGCG), curcumin and lycopene as inhibitors of EMT induced by transforming growth factor beta 1 (TGF-β1) in cultured ARPE-19 cells. Methods ARPE-19 cells were treated with TGF-β1 alone or co-treated with EGCG (1-50 μM), lycopene (1-10 μM) and curcumin (1-10 μM). The mRNA and protein expression of EMT markers, alpha-smooth muscle actin, vimentin, zonula occludens-1 and matrix metalloproteinase-2 (MMP-2), were assessed by reverse transcription polymerase chain reaction/quantitative polymerase chain reaction and immunofluorescence/enzyme linked immunosorbent assay. Activity of MMP-2 was assessed by zymography. Functional implications of EMT were assessed by proliferation assay (MTT assay) and migration assay (scratch assay). Western-blot for phosphorylated Smad-3 and total Smad-3 was done to delineate the mechanism. Results EGCG and curcumin at 10 μM concentration reversed EMT, inhibited proliferation and migration through Smad-3 phosphorylation, when induced by TGF-β1 in ARPE-19 cells. Lycopene did not prevent EMT in ARPE-19 cells. Interpretation & conclusions EGCG and curcumin are potent in preventing EMT induced by TGF-β1 in ARPE-19 cells and therefore, proposed as potential molecules for further pre-clinical evaluation in PVR management.
Collapse
Affiliation(s)
- Sivasankar Shanmuganathan
- R.S. Mehta Jain Department of Biochemistry & Cell Biology, Vision Research Foundation, Chennai; School of Chemical & Biotechnology, SASTRA University, Thanjavur, India
| | - Venil N Sumantran
- R.S. Mehta Jain Department of Biochemistry & Cell Biology, Vision Research Foundation, Chennai, India
| | - Narayanasamy Angayarkanni
- R.S. Mehta Jain Department of Biochemistry & Cell Biology, Vision Research Foundation, Chennai, India
| |
Collapse
|
42
|
Loukovaara S, Sahanne S, Takala A, Haukka J. Statin use and vitreoretinal surgery: Findings from a Finnish population-based cohort study. Acta Ophthalmol 2018; 96:442-451. [PMID: 29338115 DOI: 10.1111/aos.13641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/12/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE Vitreoretinal (VR) surgery is the third most common intraocular surgery after refractive and cataract surgery. The impact of statin therapy on VR surgery outcomes remains unclear, despite a potentially beneficial effect. We explored the association of preoperative statin therapy and the need for revitrectomy after primary vitrectomy. METHODS Our historical, population-based, register-based, VR surgery cohort consisted of 5709 patients operated in a tertiary, academic referral hospital in Finland, during 2008-2014, covering 6.5 years. Subgroup analysis was performed as follows: eyes operated due to (i) rhegmatogenous retinal detachment (RRD), (ii) VR interface diseases (macular pucker/hole), (iii) diabetic maculopathy or proliferative retinopathy, (iv) vitreous haemorrhage, (v) lens subluxation, (vi) vitreous opacities or (vii) other VR indication. The primary end-point event was revitrectomy during a postoperative follow-up period of 1 year due to retinal redetachment, vitreous rehaemorrhage, postoperative endophthalmitis, recurrent pucker or unclosed macular hole. RESULTS Rhegmatogenous retinal detachment (RRD) was the second most frequent indication of VR surgery, including 1916 patients, with 305 re-operations with rate 0.20 (95% CI 0.18-0.23) per person-year. Statin treatment in time of operation was associated with lower risk of re-operation according to relative scale (incidence rate ratio 0.72, 95% CI 0.53-0.97), but not in absolute scale (incidence rate difference -0.58, 95% CI -4.30 to 3.15 for 100 person-years). No association with statin therapy and vitrectomy outcome was observed in the other VR subgroups. CONCLUSION Use of statin treatment was associated with a 28% lower risk of revitrectomy in patients operated due to RRD. Further randomized clinical trials are highly warranted.
Collapse
Affiliation(s)
- Sirpa Loukovaara
- Unit of Vitreoretinal Surgery; Department of Ophthalmology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Sari Sahanne
- Department of Anesthesiology and Intensive Care Medicine; Helsinki University Hospital; Helsinki Finland
| | - Annika Takala
- Department of Anesthesiology and Intensive Care Medicine; Helsinki University Hospital; Helsinki Finland
| | - Jari Haukka
- Department of Public Health; University of Helsinki; Helsinki Finland
| |
Collapse
|
43
|
Hou H, Nudleman E, Weinreb R. Animal Models of Proliferative Vitreoretinopathy and Their Use in Pharmaceutical Investigations. Ophthalmic Res 2018; 60:195-204. [DOI: 10.1159/000488492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
|
44
|
Yang J, Li J, Wang Q, Xing Y, Tan Z, Kang Q. Novel NADPH oxidase inhibitor VAS2870 suppresses TGF‑β‑dependent epithelial‑to‑mesenchymal transition in retinal pigment epithelial cells. Int J Mol Med 2018; 42:123-130. [PMID: 29620174 PMCID: PMC5979836 DOI: 10.3892/ijmm.2018.3612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/27/2018] [Indexed: 01/10/2023] Open
Abstract
NADPH oxidases (NOXs) are important in the pathophysiology of fibrotic diseases. The expression and activity of NOXs are regulated by growth factors, including transforming growth factor (TGF-β). The proliferation of retinal pigment epithelial (RPE) cells following epithelial- to-mesenchymal transition (EMT) is a major pathological change involved in proliferative vitreoretinopathy (PVR). The aim of the present study was to determine the effects of the novel NOX inhibitor VAS2870 on the TGF-β-dependent expression of NOX4 and associated cellular events in RPE cells. Cell viability was examined using a Cell Counting Kit-8 assay and cell cycle progression was detected by flow cytometric analysis. Immunofluorescence analysis and western blot analysis were performed to assess EMT. It was found that TGF-β increased the expression of NOX4 and that pre-incubation with VAS2870 eliminated this effect. Additionally, TGF-β promoted RPE migration and increased EMT. Pre-incubation with VAS2870 significantly prevented TGF-β2-induced EMT by decreasing the levels of α-smooth muscle actin and E-cadherin, and also inhibited the migratory ability of the RPE cells, as demonstrated by scratch assays. Finally, VAS2870 suppressed the proliferation of RPE cells, and led to G1-phase cell cycle arrest and a significant downregulation of the expression of cyclin D1. In conclusion, the pharmacological inhibition of NOX may be a promising tool for the treatment of PVR.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Li
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Qun Wang
- Department of Ophthalmology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yao Xing
- Department of Ophthalmology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zizhu Tan
- Department of Ophthalmology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qianyan Kang
- Department of Ophthalmology, The First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
45
|
Yang H, Chen Q, Sun F, Zhao N, Wen L, Li L, Ran G. Down-regulation of the klf5-c-Myc interaction due to klf5 phosphorylation mediates resveratrol repressing the caveolin-1 transcription through the PI3K/PKD1/Akt pathway. PLoS One 2017; 12:e0189156. [PMID: 29211809 PMCID: PMC5718516 DOI: 10.1371/journal.pone.0189156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/06/2017] [Indexed: 12/05/2022] Open
Abstract
Resveratrol (RSV), a natural polyphenol, has been reported to produce effect on genes transcription in lipid metabolism. In this study, we aim to explore the novel mechanisms of RSV on the regulation of caveolin-1 (Cav-1) transcription. Via body weight, blood glucose, serum lipid, and liver pathology detection, we found that RSV decreased body weight, blood glucose and lipid accumulation in rats fed high-fat diet. Based on co-immunoprecipitation (Co-IP) and western blotting assay, we found that RSV up-regulated klf5 phosphorylation and decreased the interaction of klf5 with c-Myc, which were accompanied by down-regulation of Cav-1 expression in livers of rats fed with high-fat diet. Moreover, in HEK293 cells, we observed RSV enhanced klf5 phosphorylation and separated the interaction of klf5 with c-Myc through inhibiting the activation of PI3K/PKD1/Akt pathway, which maybe promoted c-Myc binding to the promoter to inhibit Cav-1 expression. The results of the present study demonstrated that RSV activated klf5 phosphorylation by inhibiting PI3K/PKD1/Akt pathway, and then attenuated the interaction of klf5 with c-Myc, subsequently probably promoted the c-Myc binding to the promoter to repress Cav-1 expression.
Collapse
Affiliation(s)
- Hui Yang
- Department of Clinical Nutrition, Kecheng People's Hospital, Quzhou, Zhejiang Province, China
| | - Qiuxia Chen
- Department of Clinical Nutrition, Kecheng People's Hospital, Quzhou, Zhejiang Province, China
| | - Fangyun Sun
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Nana Zhao
- School of Basic Medical Sciences, Shandong Medical College, Linyi, Shandong Province, China
| | - Lirong Wen
- School of Economics, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lin Li
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Gai Ran
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
46
|
Resveratrol reverses the adverse effects of bevacizumab on cultured ARPE-19 cells. Sci Rep 2017; 7:12242. [PMID: 28947815 PMCID: PMC5612947 DOI: 10.1038/s41598-017-12496-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration (AMD) and proliferative diabetic retinopathy (PDR) are one of the major causes of blindness caused by neo-vascular changes in the retina. Intravitreal anti-VEGF injections are widely used in the treatment of wet-AMD and PDR. A significant percentage of treated patients have complications of repeated injections. Resveratrol (RES) is a polyphenol phytoalexin with anti-oxidative, anti-inflammatory and anti-proliferative properties. Hence, we hypothesized that if RES is used in combination with bevacizumab (BEV, anti-VEGF), it could reverse the adverse effects that precipitate fibrotic changes, drusen formation, tractional retinal detachment and so on. Human retinal pigment epithelial cells were treated with various combinations of BEV and RES. There was partial reduction in secreted VEGF levels compared to untreated controls. Epithelial-mesenchymal transition was lower in BEV + RES treated cultures compared to BEV treated cultures. The proliferation status was similar in BEV + RES as well as BEV treated cultures both groups. Phagocytosis was enhanced in the presence of BEV + RES compared to BEV. Furthermore, we observed that notch signaling was involved in reversing the adverse effects of BEV. This study paves way for a combinatorial strategy to treat as well as prevent adverse effects of therapy in patients with wet AMD and PDR.
Collapse
|
47
|
Qin D, Zhang L, Jin X, Zhao Z, Jiang Y, Meng Z. Effect of Endothelin-1 on proliferation, migration and fibrogenic gene expression in human RPE cells. Peptides 2017. [PMID: 28634054 DOI: 10.1016/j.peptides.2017.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The pathology of the fibrotic proliferative vitreoretinopathy (PVR) membrane represents an excessive wound healing response characterised by cells' proliferation, migration and secretion of extracellular matrix molecules (ECMs). Retinal pigment epithelial (RPE) cells are a major cellular component of the fibrotic membrane. Endothelin-1 (ET-1) has been reported to be involved in the development of PVR in vivo research. However, little is known about the role of ET-1 in RPE cells in vitro. In the present study, we investigated the role of ET-1 in the proliferation, migration and secretion of ECMs (such as type I collagen and fibronectin) in RPE cells in vitro. Our results illustrated that ET-1 promoted the proliferation, migration and secretion of ECMs through the protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) signaling pathways in RPE cells in vitro. These findings strongly suggested that ET-1 may play a vital role in the development of PVR.
Collapse
Affiliation(s)
- Dong Qin
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Li Zhang
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Xuemin Jin
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Zhaoxia Zhao
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Yanrong Jiang
- Department of Ophthalmology, People's Hospital, Peking University, Beijing, China.
| | - Zijun Meng
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China.
| |
Collapse
|
48
|
|
49
|
Kim YJ, Chung SO, Kim JK, Park SU. Recent studies on resveratrol and its biological and pharmacological activity. EXCLI JOURNAL 2017; 16:602-608. [PMID: 28694761 PMCID: PMC5491918 DOI: 10.17179/excli2017-253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/11/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Yong Joo Kim
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Sun Ok Chung
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jae Kwang Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Sang Un Park
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
50
|
Resveratrol limits epithelial to mesenchymal transition through modulation of KHSRP/hnRNPA1-dependent alternative splicing in mammary gland cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:291-298. [PMID: 28088441 DOI: 10.1016/j.bbagrm.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/29/2022]
Abstract
Resveratrol (RESV) is a natural polyphenolic compound endowed with anti-inflammatory, anti-proliferative, as well as pro-apoptotic activities that make it a potential anti-tumor compound. Here we show that RESV counteracts the TGF-β-induced Epithelial to Mesenchymal Transition (EMT) phenotype in mammary gland cells and affects the alternative exon usage of pre-mRNAs that encode crucial factors in adhesion and migration -including CD44, ENAH, and FGFR2- in a panel of immortalized and transformed mammary gland cells. RESV causes a shift from the mesenchymal-specific forms of these factors to the respective epithelial forms and increases the expression of the RNA-binding proteins KHSRP and hnRNPA1. From a mechanistic point of view, we show that the combined silencing of KHSRP and hnRNPA1 prevents the RESV-dependent inclusion of the epithelial-type exons in the Cd44 pre-mRNA. Our findings support an unexpected regulatory mechanism where RESV limits EMT by controlling gene expression at post-transcriptional level.
Collapse
|