1
|
Xu Y, Chen Y, Bai N, Su Y, Ye Y, Zhang R, Yang Y, Liu C, Hu C, Pan J. Deubiquitinating enzyme USP2 regulates brown adipose tissue thermogenesis via controlling EBF2 stabilization. Mol Metab 2025; 96:102139. [PMID: 40189098 PMCID: PMC12020889 DOI: 10.1016/j.molmet.2025.102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVE The activation of brown adipose tissue (BAT) promotes energy expenditure is recognized as a promising therapeutic strategy for combating obesity. The deubiquitinating enzyme family members are widely involved in the process of energy metabolism. However, the specific deubiquitinating enzyme member that affects the BAT thermogenesis remains largely unexplored. METHODS Adeno-associated virus, lentivirus and small molecule inhibitor were applied to generate USP2 gain- or loss-of-function both in vivo and in vitro. OxyMax comprehensive laboratory animal monitoring system, seahorse and transmission electron microscopy were used to determine the energy metabolism. Quantitative proteomics, immunofluorescence staining and co-immunoprecipitation were performed to reveal the potential substrates of USP2. RESULTS USP2 is upregulated upon thermogenic activation in adipose, and has a close correlation with UCP1 mRNA levels in human adipose tissue. BAT-specific Usp2 knockdown or systemic USP2 inhibition resulted in impaired thermogenic programs both in vivo and in vitro. Conversely, overexpression of Usp2 in BAT conferred protection against high-fat diet-induced obesity and associated metabolic disorders. Proteome-wide analysis identified EBF2 as the substrate of USP2 that mediates the thermogenic function of USP2 in BAT. CONCLUSIONS Our data demonstrated the vital role of USP2 in regulating BAT activation and systemic energy homeostasis. Activation of USP2-EBF2 interaction could be a potential therapeutic strategy against obesity.
Collapse
Affiliation(s)
- Yuejie Xu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ying Chen
- Jinzhou Medical University Graduate Training Base (Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine), Jinzhou, 121001, China
| | - Ningning Bai
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yingying Su
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yafen Ye
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Rong Zhang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Caizhi Liu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Jiemin Pan
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
2
|
Dai P, Sun Y, Huang Z, Liu YT, Gao M, Liu HM, Shi J, He C, Xiang B, Yao Y, Yu H, Xu G, Kong L, Xiao X, Wang X, Zhang X, Xiong W, Hu J, Lin D, Zhong B, Chen G, Gong Y, Xie C, Zhang J. USP2 inhibition unleashes CD47-restrained phagocytosis and enhances anti-tumor immunity. Nat Commun 2025; 16:4564. [PMID: 40379682 PMCID: PMC12084640 DOI: 10.1038/s41467-025-59621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/30/2025] [Indexed: 05/19/2025] Open
Abstract
The CD47/SIRPα axis conveys a 'don't eat me' signal, thereby thwarting the phagocytic clearance of tumor cells. Although blocking antibodies targeting CD47 have demonstrated promising anti-tumor effects in preclinical models, clinical trials involving human cancer patients have not yielded ideal results. Exploring the regulatory mechanisms of CD47 is imperative for devising more efficacious combinational therapies. Here, we report that inhibiting USP2 prompts CD47 degradation and reshapes the tumor microenvironment (TME), thereby enhancing anti-PD-1 immunotherapy. Mechanistically, USP2 interacts with CD47, stabilizing it through deubiquitination. USP2 inhibition destabilizes CD47, thereby boosting macrophage phagocytosis. Single-cell RNA sequencing shows USP2 inhibition reprograms TME, evidenced by increasing M1 macrophages and CD8+ T cells while reducing M2 macrophages. Combining ML364 with anti-PD-1 reduces tumor burden in mouse models. Clinically, low USP2 expression predicts a better response to anti-PD-1 treatment. Our findings uncover the regulatory mechanism of CD47 by USP2 and targeting this axis boosts anti-tumor immunity.
Collapse
Affiliation(s)
- Panpan Dai
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yishuang Sun
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Minling Gao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hai-Ming Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Shi
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chuan He
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Bolin Xiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yingmeng Yao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Haisheng Yu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Gaoshan Xu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lijun Kong
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiangling Xiao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiyong Wang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xue Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wenjun Xiong
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Hu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Zhong
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Yan Gong
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Jinfang Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Guo Q, Qin H, Chen Z, Zhang W, Zheng L, Qin T. Key roles of ubiquitination in regulating critical regulators of cancer stem cell functionality. Genes Dis 2025; 12:101311. [PMID: 40034124 PMCID: PMC11875185 DOI: 10.1016/j.gendis.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
The ubiquitin (Ub) system, a ubiquitous presence across eukaryotes, plays a crucial role in the precise orchestration of diverse cellular protein processes. From steering cellular signaling pathways and orchestrating cell cycle progression to guiding receptor trafficking and modulating immune responses, this process plays a crucial role in regulating various biological functions. The dysregulation of Ub-mediated signaling pathways in prevalent cancers ushers in a spectrum of clinical outcomes ranging from tumorigenesis and metastasis to recurrence and drug resistance. Ubiquitination, a linchpin process mediated by Ub, assumes a central mantle in molding cellular signaling dynamics. It navigates transitions in biological cues and ultimately shapes the destiny of proteins. Recent years have witnessed an upsurge in the momentum surrounding the development of protein-based therapeutics aimed at targeting the Ub system under the sway of cancer stem cells. The article provides a comprehensive overview of the ongoing in-depth discussions regarding the regulation of the Ub system and its impact on the development of cancer stem cells. Amidst the tapestry of insights, the article delves into the expansive roles of E3 Ub ligases, deubiquitinases, and transcription factors entwined with cancer stem cells. Furthermore, the spotlight turns to the interplay with pivotal signaling pathways the Notch, Hedgehog, Wnt/β-catenin, and Hippo-YAP signaling pathways all play crucial roles in the regulation of cancer stem cells followed by the specific modulation of Ub-proteasome.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, Henan 450008, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| |
Collapse
|
4
|
Guo Y, Lin Z, Zhou Z, Zhang W, Mao S, Shan Z, Wu P, Yao X. Oncogenic and immunological functions of USP35 in pan-cancer and its potential as a biomarker in kidney clear cell carcinoma. BMC Cancer 2025; 25:617. [PMID: 40188027 PMCID: PMC11972461 DOI: 10.1186/s12885-025-13964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Ubiquitin-specific protease 35 (USP35) has gained attention as a regulator in cancer progression. However, its specific role in kidney clear cell carcinoma (KIRC) remains unclear. METHODS USP35 expression in KIRC tumor and normal tissues was evaluated using TCGA data. Correlations between USP35 expression, clinical parameters, and survival outcomes were examined. Functional enrichment analyses were performed to explore the pathways associated with USP35 expression. Immune-related analyses were conducted to assess the effect of USP35 on immune cell recruitment and neoantigen presentation. Drug sensitivity analyses were used to identify potential therapeutic agents targeting USP35. RESULTS USP35 was significantly overexpressed in KIRC tumor tissues compared to normal tissues, and its high expression correlated with advanced disease stages and poor survival outcomes. Gene set enrichment analysis revealed that high USP35 expression was associated with oncogenic pathways, including glycerophospholipid and linoleic acid metabolism, while low expression linked to nitrogen and purine metabolism. USP35 also modulated immune responses, affecting immune cell recruitment and neoantigen presentation, suggesting a role in immune evasion. Drug sensitivity analysis showed that high USP35 expression correlated with increased sensitivity to paclitaxel, bosutinib, and lapatinib. In vitro knockdown of USP35 significantly reduced KIRC cell proliferation, migration, and epithelial-mesenchymal transition (EMT), further supporting its role in tumor progression. CONCLUSION USP35 is overexpressed in KIRC and associated with poor prognosis, likely promoting tumor progression through oncogenic pathways and immune modulation. Its correlation with drug sensitivity positions USP35 as a potential therapeutic target, warranting further investigation into its mechanistic functions and therapeutic applications.
Collapse
MESH Headings
- Humans
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/mortality
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/metabolism
- Kidney Neoplasms/immunology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Kidney Neoplasms/mortality
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/drug therapy
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Ubiquitin-Specific Proteases/genetics
- Ubiquitin-Specific Proteases/metabolism
- Gene Expression Regulation, Neoplastic
- Prognosis
- Cell Line, Tumor
- Cell Proliferation
- Epithelial-Mesenchymal Transition
Collapse
Affiliation(s)
- Yadong Guo
- Department of Urology, School of Medicine, Shanghai Tenth People'S Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Ziyou Lin
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zijing Zhou
- Laboratory of Ruijin Hospitalaffiliated to, Wuxi Branchaq, Shanghai Jiaotong University School of Medicine, Wuxi, Jiangsu, China
| | - Wentao Zhang
- Department of Urology, School of Medicine, Shanghai Tenth People'S Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shiyu Mao
- Department of Urology, School of Medicine, Shanghai Tenth People'S Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Zezhi Shan
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Pengfei Wu
- Department of Urology, School of Medicine, Shanghai Tenth People'S Hospital, Tongji University, Shanghai, China.
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Xudong Yao
- Department of Urology, School of Medicine, Shanghai Tenth People'S Hospital, Tongji University, Shanghai, China.
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Zhao S, Liu X, Luo R, Jian Z, Xu C, Hou Y, Liu X, Zhang P. USP38 functions as an oncoprotein by downregulating the p53 pathway through deubiquitination and stabilization of MDM2. Cell Death Differ 2025:10.1038/s41418-025-01462-2. [PMID: 39987355 DOI: 10.1038/s41418-025-01462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
Dysregulation of the MDM2-p53 pathway is a commonly observed phenomenon in cancer, where overexpression or amplification of MDM2 leads to increased degradation of p53. This results in reduced levels of p53, leading to the loss of its tumor-suppressive functions. The study focused on investigating the role of Ubiquitin-specific protease 38 (USP38) in cancer and its interaction with the MDM2-p53 axis. We revealed that USP38 positively correlates with MDM2 and negatively correlates with p53 expression. Mechanistically, USP38 directly binds to MDM2, functioning as a deubiquitinating enzyme (DUB) to stabilize MDM2 and suppress p53 expression. Knockout of USP38 hindered cancer cell proliferation, migration, and invasion, and enhanced apoptosis. Moreover, USP38 deficiency increased sensitivity to chemotherapy drugs and promoted ferroptosis in gastric and breast cancer cell lines. Importantly, these effects were found to be dependent on p53, as the downregulation of p53 reversed the phenotypic changes induced by USP38 knockout. These findings shed light on the oncogenic role of USP38 by modulating the MDM2-p53 axis, providing valuable insights into the molecular mechanisms of USP38 in cancer and potential therapeutic strategies for gastric and breast cancer.
Collapse
Affiliation(s)
- Shanyu Zhao
- Department of Pathology, School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Department of Pathology, School of Basic Medical Sciences, Dali University, Yunnan, China
| | - Xiaoli Liu
- Department of Pathology, School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Department of Pathology, General Hospital of Ningxia Medical University, Ningxia Hui Autonomous Region, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zitao Jian
- Department of Pathology, School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Pingzhao Zhang
- Department of Pathology, School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Wu L, Wang J, Chai L, Chen J, Jin X. Roles of deubiquitinases in urologic cancers (Review). Oncol Lett 2024; 28:609. [PMID: 39525605 PMCID: PMC11544529 DOI: 10.3892/ol.2024.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Human health is endangered by the occurrence and progression of urological cancers, including renal cell carcinoma, prostate cancer and bladder cancer, which are usually associated with the activation of oncogenic factors and inhibition of cancer suppressors. The primary mechanism for protein breakdown in cells is the ubiquitin-proteasome system, whilst deubiquitinases contribute to the reversal of this process. However, both are important for protein homeostasis. Deubiquitination may also be involved in the control of the cell cycle, proliferation and apoptosis, and dysregulated deubiquitination is associated with the malignant transformation, invasion and metastasis of urologic malignancies. Therefore, a comprehensive summary of the mechanisms underlying deubiquitination in urological cancers may provide novel strategies and insights for diagnosis and treatment. The present review aimed to methodically clarify the role of deubiquitinating enzymes in urinary system cancers as well as their prospective application prospects for clinical treatment.
Collapse
Affiliation(s)
- Liangpei Wu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jiahui Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lin Chai
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
7
|
Hernández-Carralero E, Quinet G, Freire R. ATXN3: a multifunctional protein involved in the polyglutamine disease spinocerebellar ataxia type 3. Expert Rev Mol Med 2024; 26:e19. [PMID: 39320846 PMCID: PMC11440613 DOI: 10.1017/erm.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/24/2024] [Accepted: 03/15/2024] [Indexed: 09/26/2024]
Abstract
ATXN3 is a ubiquitin hydrolase (or deubiquitinase, DUB), product of the ATXN3 gene, ubiquitously expressed in various cell types including peripheral and neuronal tissues and involved in several cellular pathways. Importantly, the expansion of the CAG trinucleotides within the ATXN3 gene leads to an expanded polyglutamine domain in the encoded protein, which has been associated with the onset of the spinocerebellar ataxia type 3, also known as Machado-Joseph disease, the most common dominantly inherited ataxia worldwide. ATXN3 has therefore been under intensive investigation for decades. In this review, we summarize the main functions of ATXN3 in proteostasis, DNA repair and transcriptional regulation, as well as the emerging role in regulating chromatin structure. The mentioned molecular functions of ATXN3 are also reviewed in the context of the pathological expanded form of ATXN3.
Collapse
Affiliation(s)
- Esperanza Hernández-Carralero
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Grégoire Quinet
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Raimundo Freire
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Faculty of Health Sciences, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
8
|
Liu R, Yang G, Guo H, Chen F, Lu S, Zhu H. Roles of naïve CD4 + T cells and their differentiated subtypes in lung adenocarcinoma and underlying potential regulatory pathways. J Transl Med 2024; 22:781. [PMID: 39175022 PMCID: PMC11340134 DOI: 10.1186/s12967-024-05530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Naïve CD4+ T cells and their differentiated counterparts play a significant regulatory role in the tumor immune microenvironment, yet their effects on lung adenocarcinoma (LUAD) are not fully understood. METHODS We utilized Mendelian randomization to assess the causal association between naïve CD4+ T cells and LUAD. Employing a modified single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm with The Cancer Genome Atlas (TCGA) database, we determined the infiltration levels of naïve CD4+ T cells and their differentiation subtypes and investigated their correlation with clinical characteristics. Potential regulatory pathways of T helper cells were identified through Mantel tests and Kyoto Encyclopedia of Genes and Genomes (KEGG) database enrichment analysis. RESULTS Mendelian randomization analysis revealed an inhibitory effect of naïve CD4+ T cells on LUAD (false discovery rate < 0.05), which was corroborated by observational experiments using TCGA database. Specifically, T helper cell type 2 demonstrated a promotive effect on LUAD in terms of overall, disease-free, and progression-free survival (p < 0.05). Moreover, regulatory T cells exhibited a protective effect on LUAD in terms of disease-specific survival (p < 0.01). Concurrently, we explored the overall impact of naïve CD4+ T cell differentiation subtypes on LUAD, revealing upregulation in pathways such as neutrophil degranulation, MAPK family signaling pathways, and platelet activation, signaling, and aggregation. CONCLUSION Naïve CD4+ T cells and their differentiated counterparts play essential regulatory roles in the tumor immune microenvironment, demonstrating bidirectionality in their effects.Thus, elucidating the mechanisms and developing novel cell differentiation-inducing agents will benefit anti-cancer therapy.
Collapse
Affiliation(s)
- Runze Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Guangjian Yang
- Department of Respiratory Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hongbo Guo
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Feihu Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Shuangqing Lu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
9
|
Tyagi A, Karapurkar JK, Colaco JC, Sarodaya N, Antao AM, Kaushal K, Haq S, Chandrasekaran AP, Das S, Singh V, Hong SH, Suresh B, Kim KS, Ramakrishna S. USP19 Negatively Regulates p53 and Promotes Cervical Cancer Progression. Mol Biotechnol 2024; 66:2032-2045. [PMID: 37572221 DOI: 10.1007/s12033-023-00814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/29/2023] [Indexed: 08/14/2023]
Abstract
p53 is a tumor suppressor gene activated in response to cellular stressors that inhibits cell cycle progression and induces pro-apoptotic signaling. The protein level of p53 is well balanced by the action of several E3 ligases and deubiquitinating enzymes (DUBs). Several DUBs have been reported to negatively regulate and promote p53 degradation in tumors. In this study, we identified USP19 as a negative regulator of p53 protein level. We demonstrate a direct interaction between USP19 and p53 by pull down assay. The overexpression of USP19 promoted ubiquitination of p53 and reduced its protein half-life. We also demonstrate that CRISPR/Cas9-mediated knockout of USP19 in cervical cancer cells elevates p53 protein levels, resulting in reduced colony formation, cell migration, and cell invasion. Overall, our results indicate that USP19 negatively regulates p53 protein levels in cervical cancer progression.
Collapse
Affiliation(s)
- Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | | | - Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, 04763, Seoul, South Korea
| | | | - Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Rajpur, Indrashil University, 382715, Mehsana, Gujarat, India
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea.
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea.
- College of Medicine, Hanyang University, 04763, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
- College of Medicine, Hanyang University, 04763, Seoul, South Korea
| |
Collapse
|
10
|
Alhasan BA, Morozov AV, Guzhova IV, Margulis BA. The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence. Biochim Biophys Acta Rev Cancer 2024; 1879:189119. [PMID: 38761982 DOI: 10.1016/j.bbcan.2024.189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.
Collapse
Affiliation(s)
- Bashar A Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia.
| | - Irina V Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Boris A Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| |
Collapse
|
11
|
Lu L, Jifu C, Xia J, Wang J. E3 ligases and DUBs target ferroptosis: A potential therapeutic strategy for neurodegenerative diseases. Biomed Pharmacother 2024; 175:116753. [PMID: 38761423 DOI: 10.1016/j.biopha.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Ferroptosis is a form of cell death mediated by iron and lipid peroxidation (LPO). Recent studies have provided compelling evidence to support the involvement of ferroptosis in the pathogenesis of various neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD). Therefore, understanding the mechanisms that regulate ferroptosis in NDDs may improve disease management. Ferroptosis is regulated by multiple mechanisms, and different degradation pathways, including autophagy and the ubiquitinproteasome system (UPS), orchestrate the complex ferroptosis response by directly or indirectly regulating iron accumulation or lipid peroxidation. Ubiquitination plays a crucial role as a protein posttranslational modification in driving ferroptosis. Notably, E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) are key enzymes in the ubiquitin system, and their dysregulation is closely linked to the progression of NDDs. A growing body of evidence highlights the role of ubiquitin system enzymes in regulating ferroptosis sensitivity. However, reports on the interaction between ferroptosis and ubiquitin signaling in NDDs are scarce. In this review, we first provide a brief overview of the biological processes and roles of the UPS, summarize the core molecular mechanisms and potential biological functions of ferroptosis, and explore the pathophysiological relevance and therapeutic implications of ferroptosis in NDDs. In addition, reviewing the roles of E3s and DUBs in regulating ferroptosis in NDDs aims to provide new insights and strategies for the treatment of NDDs. These include E3- and DUB-targeted drugs and ferroptosis inhibitors, which can be used to prevent and ameliorate the progression of NDDs.
Collapse
Affiliation(s)
- Linxia Lu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Cili Jifu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jun Xia
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jingtao Wang
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China.
| |
Collapse
|
12
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
13
|
Chen S, Zhou B, Huang W, Li Q, Yu Y, Kuang X, Huang H, Wang W, Xie P. The deubiquitinating enzyme USP44 suppresses hepatocellular carcinoma progression by inhibiting Hedgehog signaling and PDL1 expression. Cell Death Dis 2023; 14:830. [PMID: 38097536 PMCID: PMC10721641 DOI: 10.1038/s41419-023-06358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest malignancies in the world. Research into the key genes that maintain the malignant behavior of cancer cells is crucial for the treatment of HCC. Here, we identified ubiquitin-specific peptidase 44 (USP44), a member of the deubiquitinase family, as a novel regulator of HCC progression. The tumor suppressive function of USP44 was evaluated in a series of in vitro and in vivo experiments. Through quantitative proteomics examination, we demonstrated that USP44 inhibits HCC PDL1 expression by downregulating the Hedgehog (Hh) signaling pathway. Mechanistically, we found that USP44 directly interacts with Itch, an E3 ligase involved in Hh signaling, and promotes the deubiquitination and stabilization of Itch. These events result in the proteasomal degradation of Gli1 and subsequent inactivation of Hh signaling, which ultimately suppresses PDL1 expression and the progression of HCC. Furthermore, the HCC tissue microarray was analyzed by immunohistochemistry to evaluate the pathological relevance of the USP44/Itch/Gli1/PDL1 axis. Finally, the Gli1 inhibitor GANT61 was found to act in synergy with anti-PDL1 therapy. Overall, USP44 can act as a suppressive gene in HCC by modulating Hh signaling, and co-inhibition of Gli1 and PDL1 might be an effective novel combination strategy for treating HCC patients.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Binghai Zhou
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Wei Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Qing Li
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Ye Yu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Xiuqing Kuang
- Department of Physical Examination, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Huabin Huang
- Department of Medical Imaging, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Wei Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China.
| | - Peiyi Xie
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
| |
Collapse
|
14
|
Jiang Y, Ni S, Xiao B, Jia L. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Acta Pharm Sin B 2023; 13:4341-4372. [PMID: 37969742 PMCID: PMC10638515 DOI: 10.1016/j.apsb.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.
Collapse
Affiliation(s)
| | | | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
15
|
Klonisch T, Logue SE, Hombach-Klonisch S, Vriend J. DUBing Primary Tumors of the Central Nervous System: Regulatory Roles of Deubiquitinases. Biomolecules 2023; 13:1503. [PMID: 37892185 PMCID: PMC10605193 DOI: 10.3390/biom13101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The ubiquitin proteasome system (UPS) utilizes an orchestrated enzymatic cascade of E1, E2, and E3 ligases to add single or multiple ubiquitin-like molecules as post-translational modification (PTM) to proteins. Ubiquitination can alter protein functions and/or mark ubiquitinated proteins for proteasomal degradation but deubiquitinases (DUBs) can reverse protein ubiquitination. While the importance of DUBs as regulatory factors in the UPS is undisputed, many questions remain on DUB selectivity for protein targeting, their mechanism of action, and the impact of DUBs on the regulation of diverse biological processes. Furthermore, little is known about the expression and role of DUBs in tumors of the human central nervous system (CNS). In this comprehensive review, we have used publicly available transcriptional datasets to determine the gene expression profiles of 99 deubiquitinases (DUBs) from five major DUB families in seven primary pediatric and adult CNS tumor entities. Our analysis identified selected DUBs as potential new functional players and biomarkers with prognostic value in specific subtypes of primary CNS tumors. Collectively, our analysis highlights an emerging role for DUBs in regulating CNS tumor cell biology and offers a rationale for future therapeutic targeting of DUBs in CNS tumors.
Collapse
Affiliation(s)
- Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Susan E. Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jerry Vriend
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
16
|
Liu Y, Dong C, Ren J. Deubiquitination Detection of p53 Protein in Living Cells by Fluorescence Cross-Correlation Spectroscopy. ACS OMEGA 2023; 8:36588-36596. [PMID: 37810700 PMCID: PMC10552112 DOI: 10.1021/acsomega.3c06078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Deubiquitination is a reverse post-translational modification of ubiquitination and plays significant roles in various signal transduction cascades and protein stability. The p53 is a very important tumor-suppressor protein and closely implicates more than 50% of human cancers. Although extracellular studies on the deubiquitination of p53 were reported, the process of p53 deubiquitination in living cells due to the shortage of an efficient in situ method for single living cells is still not clear. In this study, we described an in situ method for studying p53 deubiquitination in living cells by combining fluorescence cross-correlation spectroscopy with a fluorescent protein labeling technique. We first constructed the stable cell line expressing EGFP-Ub-p53-mCherry as the substrate of p53 deubiquitination. Then, we established a method for in situ monitoring of the deubiquitination of p53 in living cells. Based on the amplitudes of fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy curves from living cells, we obtained the deubiquitination percentage for evaluating the level of p53 protein deubiquitination. Furthermore, we studied the effects of ubiquitin structures on p53 deubiquitination in living cells and found that the C-terminal Gly75-Gly76 motif of ubiquitin is a key location for p53 deubiquitination and the deubiquitination cannot occur when ubiquitin lacks the C-terminal Gly75-Gly76 motif. Our results documented that the developed strategy is an efficient method for in situ study of deubiquitination of proteins in living cells.
Collapse
Affiliation(s)
- Yaoqi Liu
- School of Chemistry and Chemical Engineering,
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s
Republic of China
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering,
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s
Republic of China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering,
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s
Republic of China
| |
Collapse
|
17
|
Zhang S, Guo Y, Zhang S, Wang Z, Zhang Y, Zuo S. Targeting the deubiquitinase USP2 for malignant tumor therapy (Review). Oncol Rep 2023; 50:176. [PMID: 37594087 PMCID: PMC10463009 DOI: 10.3892/or.2023.8613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The ubiquitin‑proteasome system is a major degradation pathway for >80% of proteins in vivo. Deubiquitylases, which remove ubiquitinated tags to stabilize substrate proteins, are important components involved in regulating the degradation of ubiquitinated proteins. In addition, they serve multiple roles in tumor development by participating in physiological processes such as protein metabolism, cell cycle regulation, DNA damage repair and gene transcription. The present review systematically summarized the role of ubiquitin‑specific protease 2 (USP2) in malignant tumors and the specific molecular mechanisms underlying the involvement of USP2 in tumor‑associated pathways. USP2 reverses ubiquitin‑mediated degradation of proteins and is involved in aberrant proliferation, migration, invasion, apoptosis and drug resistance of tumors. Additionally, the present review summarized studies reporting on the use of USP2 as a therapeutic target for malignancies such as breast, liver, ovarian, colorectal, bladder and prostate cancers and glioblastoma and highlights the current status of pharmacological research on USP2. The clinical significance of USP2 as a therapeutic target for malignant tumors warrants further investigation.
Collapse
Affiliation(s)
- Shilong Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yi Guo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shenjie Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zhi Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yewei Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
18
|
Tang JQ, Marchand MM, Veggiani G. Ubiquitin Engineering for Interrogating the Ubiquitin-Proteasome System and Novel Therapeutic Strategies. Cells 2023; 12:2117. [PMID: 37626927 PMCID: PMC10453149 DOI: 10.3390/cells12162117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Protein turnover, a highly regulated process governed by the ubiquitin-proteasome system (UPS), is essential for maintaining cellular homeostasis. Dysregulation of the UPS has been implicated in various diseases, including viral infections and cancer, making the proteins in the UPS attractive targets for therapeutic intervention. However, the functional and structural redundancies of UPS enzymes present challenges in identifying precise drug targets and achieving target selectivity. Consequently, only 26S proteasome inhibitors have successfully advanced to clinical use thus far. To overcome these obstacles, engineered peptides and proteins, particularly engineered ubiquitin, have emerged as promising alternatives. In this review, we examine the impact of engineered ubiquitin on UPS and non-UPS proteins, as well as on viral enzymes. Furthermore, we explore their potential to guide the development of small molecules targeting novel surfaces, thereby expanding the range of druggable targets.
Collapse
Affiliation(s)
- Jason Q. Tang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | - Mary M. Marchand
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
19
|
Lee TG, Woo SM, Seo SU, Kim S, Park JW, Chang YC, Kwon TK. Inhibition of USP2 Enhances TRAIL-Mediated Cancer Cell Death through Downregulation of Survivin. Int J Mol Sci 2023; 24:12816. [PMID: 37628997 PMCID: PMC10454696 DOI: 10.3390/ijms241612816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Ubiquitin-specific protease 2 (USP2) is a deubiquitinase belonging to the USPs subfamily. USP2 has been known to display various biological effects including tumorigenesis and inflammation. Therefore, we aimed to examine the sensitization effect of USP2 in TRAIL-mediated apoptosis. The pharmacological inhibitor (ML364) and siRNA targeting USP2 enhanced TNF-related apoptosis-inducing ligand (TRAIL)-induced cancer cell death, but not normal cells. Mechanistically, USP2 interacted with survivin, and ML364 degraded survivin protein expression by increasing the ubiquitination of survivin. Overexpression of survivin or USP2 significantly prevented apoptosis through cotreatment with ML364 and TRAIL, whereas a knockdown of USP2 increased sensitivity to TRAIL. Taken together, our data suggested that ML364 ubiquitylates and degrades survivin, thereby increasing the reactivity to TRAIL-mediated apoptosis in cancer cells.
Collapse
Affiliation(s)
- Tak Gyeom Lee
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Jong-Wook Park
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea;
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
20
|
Shi S, Pan X, Chen M, Zhang L, Zhang S, Wang X, Shi S, Chen Z, Lin W, Jiang Y. USP5 promotes lipopolysaccharide-induced apoptosis and inflammatory response by stabilizing the TXNIP protein. Hepatol Commun 2023; 7:e0193. [PMID: 37534934 PMCID: PMC10553006 DOI: 10.1097/hc9.0000000000000193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/12/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The role of thioredoxin-interacting protein (TXNIP) in lipopolysaccharide-induced liver injury in mice has been reported, but the underlying mechanisms are poorly understood. METHODS We overexpressed deubiquitinase in cells overexpressing TXNIP and then detected the level of TXNIP to screen out the deubiquitinase regulating TXNIP; the interaction between TXNIP and deubiquitinase was verified by coimmunoprecipitation. After knockdown of a deubiquitinase and overexpression of TXNIP in Huh7 and HepG2 cells, lipopolysaccharide was used to establish a cellular inflammatory model to explore the role of deubiquitinase and TXNIP in hepatocyte inflammation. RESULTS In this study, we discovered that ubiquitin-specific protease 5 (USP5) interacts with TXNIP and stabilizes it through deubiquitylation in Huh-7 and HepG2 cells after treatment with lipopolysaccharide. In lipopolysaccharide-treated Huh-7 and HepG2 cells, USP5 knockdown increased cell viability, reduced apoptosis, and decreased the expression of inflammatory factors, including NLRP3, IL-1β, IL-18, ASC, and procaspase-1. Overexpression of TXNIP reversed the phenotype induced by knockdown USP5. CONCLUSIONS In summary, USP5 promotes lipopolysaccharide-induced apoptosis and inflammatory response by stabilizing the TXNIP protein.
Collapse
Affiliation(s)
- Songchang Shi
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Xiaobin Pan
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Minyong Chen
- Department of Hepatobiliary and Pancreatic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Lihui Zhang
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Shujuan Zhang
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Xincai Wang
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Songjing Shi
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Zhixin Chen
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou, Fujian Province, China
| | - Wei Lin
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Yi Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Fuzong Clinical Medical College of Fujian Medical University, 900 Hospital of the Joint Logistics Team, PLA, Fuzhou, Fujian Province, China
| |
Collapse
|
21
|
Wang R, Liu Y, Li J, Zhao Y, An R, Ma Z. A risk signature of ubiquitin-specific protease family predict the prognosis and therapy of kidney cancer patients. BMC Nephrol 2023; 24:153. [PMID: 37259026 DOI: 10.1186/s12882-023-03215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Ubiquitin-specific proteases (USPs) are closely related to protein fate and cellular processes through various molecular signalling pathways, including DNA damage repair, p53, and transforming growth factor-β (TGF-β) pathways. In recent years, increasing evidence has revealed the pivotal role of ubiquitination in tumorigenesis of KIRC. However, USPs' molecular mechanism and clinical relevance in kidney cancer still need further exploration. Our study first determined prognosis-related ubiquitin-specific proteases (PRUSPs) in KIRC. We found these genes co-expressed with each other and might regulate different substrates. Based on the USPs' expression, the PRUSPs risk signature was constructed to predict the survival probability of KIRC patients. The patients in high-PRUSPs-risk group showed a low survival rate. ROC and calibration curve indicated a discriminate capacity of the signature, and uni-/multi-variate Cox regression analysis revealed that the PRUSPs score is an independent prognostic factor. In different KIRC clinical subgroups and external validation cohorts (including E-MTAB-1980 and TCGA-KIRP cohorts), the PRUSPs risk signature showed strong robustness and practicability. Further analysis found that high-risk group showed activation of immune-related pathways and high PD-1/CTLA4 expression, revealing that high-risk patients might be sensitive to immunotherapy. In summary, we constructed the USPs risk signature to predict kidney cancer prognosis, which provided the theoretical foundation for further clinical or pre-clinical experiments.
Collapse
Affiliation(s)
- Renjie Wang
- Department of Urology, Sixth Hospital of Shanxi Medical University, General Hospital of Tisco, Taiyuan, China
| | - Yang Liu
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jingxian Li
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yubao Zhao
- Department of Urology, Sixth Hospital of Shanxi Medical University, General Hospital of Tisco, Taiyuan, China
| | - Rui An
- Department of Urology, Sixth Hospital of Shanxi Medical University, General Hospital of Tisco, Taiyuan, China
| | - Zhifang Ma
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
22
|
Zhu H, Zhang H, Guo J, Zhang C, Zhang Q, Gao F. Up-regulated oxidized USP2a can increase Mdm2-p60-p53 to promote cell apoptosis. Exp Cell Res 2023; 427:113597. [PMID: 37044314 DOI: 10.1016/j.yexcr.2023.113597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/17/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Mdm2 promotes the ubiquitination and degradation of p53, while Mdm2-p60 can bind to p53 and reduce the Mdm2-induced p53 ubiquitination to improve its stability. USP2a can deubiquitinate and stabilize Mdm2, whether USP2a can regulate Mdm2-p60 needs to be further confirmed and elucidated. We found that oxidative stress can up-regulate USP2a at the post-transcriptional level and induce USP2a to be oxidized by forming inter-subunit disulfide bonds. The oxidized USP2a is closely related with cell apoptosis. In apoptotic cells, oxidized USP2a has enhanced protein stability and further stabilizes Mdm2-p60 through deubiquitination, and the USP2a-Mdm2-p60-p53 axis plays a role in cell apoptosis. Altogether USP2a is oxygen sensitive, oxidized USP2a exerts apoptotic effects through the Mdm2-p60-p53 axis, which provides an experimental basis for regulating p53 apoptotic signaling by targeting USP2a.
Collapse
Affiliation(s)
- Hanqing Zhu
- Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Hongliang Zhang
- Department of Blood Transfusion, Henan Provincial People's Hospital, Department of Blood Transfusion of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450053, China.
| | - Jiahui Guo
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China.
| | - Chao Zhang
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China.
| | - Quanwu Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China.
| | - Fenghou Gao
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, China.
| |
Collapse
|
23
|
Shu X, Liao QQ, Li ST, Liu L, Zhang X, Zhou L, Zhang L, Coin I, Wang L, Wu H, Yang B. Detecting Active Deconjugating Enzymes with Genetically Encoded Activity-Based Ubiquitin and Ubiquitin-like Protein Probes. Anal Chem 2023; 95:846-853. [PMID: 36595388 DOI: 10.1021/acs.analchem.2c03270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Post-translational modification of proteins by Ubiquitin (Ub) and Ubiquitin-like proteins (Ubls) can be reversed by deconjugating enzymes, which have been implicated in different pathways and associated with various human diseases. To understand the activity and dynamics of deconjugating enzymes, multiple synthetic and semi-synthetic Ub/Ubl probes have been developed, and some of them have been applied to screen inhibitors of deconjugating enzymes. Since these Ub/Ubl probes are generally not cell-permeable, different strategies have been developed to deliver Ub/Ubl probes to live cells. However, till now, no Ub/Ubl probes can be expressed in live cells to directly report on the activities of deconjugating enzymes in the most relevant cellular environment. Here, we genetically encoded cross-linkable Ub/Ubl probes in live E. coli and HEK293T cells. These probes can cross-link with deconjugating enzymes in vitro and in vivo. Using these Ub probes combined with mass spectrometry, we have successfully identified endogenous deconjugating enzymes in live cells. We believe that these genetically encoded Ub/Ubl probes are valuable for investigating biological functions of deconjugating enzymes in physiological environments.
Collapse
Affiliation(s)
- Xin Shu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qing-Qing Liao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shang-Tong Li
- Glbizzia Biosciences Company Limited, Beijing 102601, China
| | - Lu Liu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiajun Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lianqi Zhou
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Long Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig 04103, Germany
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
| | - Haifan Wu
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
24
|
USP2 Inhibits Lung Cancer Pathogenesis by Reducing ARID2 Protein Degradation via Ubiquitination. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1525216. [PMID: 36567903 PMCID: PMC9779997 DOI: 10.1155/2022/1525216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Background Ubiquitination is an important regulator in physiological and pathological conditions. Ubiquitin-specific protease 2 (USP2), as a member of the USP family, exhibits oncogenic effects in multiple malignancies. However, the exact role of USP2 has not been well clarified in lung cancer pathogenesis and progression. Therefore, we aimed to further investigate the regulatory roles of USP2 in lung cancer in this study. Methods Firstly, immunoprecipitation-Mass Spectrometry (IP-MS), Co-immunoprecipitation (Co-IP), combined with immunofluorescent colocalization method, was conducted for USP2 protein interaction analysis in lung cancer cell lines. qRT-PCR, Western blot, and immunohistochemistry assays explored the USP2 expression pattern and USP2/ARID2- (AT-rich interactive domain 2-) specific shRNAs and overexpression vectors. Co-IP assays were designed to validate USP2-ARID2 protein interaction. Further functional studies including CHX chase assay, transwell assay, and wound healing assay were subsequently applied to evaluate the impact of USP2 modulation on lung cancer cells. Results USP2 suppression was characteristic in lung cancer cell line models and lung cancer samples. USP2 and ARID2 demonstrated protein-protein interaction and overlapping localization in cancer cell models. Functional experiments suggested USP2 inhibited lung cancer cell invasion and migration by reducing ARID2 protein degradation. Subsequent ubiquitination assays indicated ARID2 protein degradation via the ubiquitination was significantly reduced by USP2 interaction. Conclusions Our study provided novel insight that USP2 might suppress lung cancer by reducing ARID2 protein degradation via ubiquitination.
Collapse
|
25
|
Kim H, Kim D, Choi H, Shin G, Lee JK. Deubiquitinase USP2 stabilizes the MRE11-RAD50-NBS1 complex at DNA double-strand break sites by counteracting the ubiquitination of NBS1. J Biol Chem 2022; 299:102752. [PMID: 36436562 PMCID: PMC9758435 DOI: 10.1016/j.jbc.2022.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) complex plays essential roles in the cellular response to DNA double-strand breaks (DSBs), which are the most cytotoxic DNA lesions, and is a target of various modifications and controls. Recently, lysine 48-linked ubiquitination of NBS1, resulting in premature disassembly of the MRN complex from DSB sites, was observed in cells lacking RECQL4 helicase activity. However, the role and control of this ubiquitination during the DSB response in cells with intact RECQL4 remain unknown. Here, we showed that USP2 counteracts this ubiquitination and stabilizes the MRN complex during the DSB response. By screening deubiquitinases that increase the stability of the MRN complex in RECQL4-deficient cells, USP2 was identified as a new deubiquitinase that acts at DSB sites to counteract NBS1 ubiquitination. We determined that USP2 is recruited to DSB sites in a manner dependent on ATM, a major checkpoint kinase against DSBs, and stably interacts with NBS1 and RECQL4 in immunoprecipitation experiments. Phosphorylation of two critical residues in the N terminus of USP2 by ATM is required for its recruitment to DSBs and its interaction with RECQL4. While inactivation of USP2 alone does not substantially influence the DSB response, we found that inactivation of USP2 and USP28, another deubiquitinase influencing NBS1 ubiquitination, results in premature disassembly of the MRN complex from DSB sites as well as defects in ATM activation and homologous recombination repair abilities. These results suggest that deubiquitinases counteracting NBS1 ubiquitination are essential for the stable maintenance of the MRN complex and proper cellular response to DSBs.
Collapse
Affiliation(s)
- Hyunsup Kim
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Korea
| | - Dongmin Kim
- Department of Biology Education, Seoul National University, Seoul, Korea
| | - Hyemin Choi
- Department of Biology Education, Seoul National University, Seoul, Korea
| | - Gwangsu Shin
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Korea
| | - Joon-Kyu Lee
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Korea; Department of Biology Education, Seoul National University, Seoul, Korea.
| |
Collapse
|
26
|
Xiao W, Wang J, Wang X, Cai S, Guo Y, Ye L, Li D, Hu A, Jin S, Yuan B, Zhou Y, Li Q, Tong Q, Zheng L. Therapeutic targeting of the USP2-E2F4 axis inhibits autophagic machinery essential for zinc homeostasis in cancer progression. Autophagy 2022; 18:2615-2635. [PMID: 35253629 PMCID: PMC9629121 DOI: 10.1080/15548627.2022.2044651] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is a conserved cellular process associated with tumorigenesis and aggressiveness, while mechanisms regulating expression of autophagic machinery genes in cancers still remain elusive. Herein, we identified E2F4 (E2F transcription factor 4) as a novel transcriptional activator of cytoprotective autophagy crucial for zinc homeostasis in cancer cells. Gain- and loss-of-function studies showed that E2F4 promoted autophagy in a cell cycle-dependent manner, resulting in facilitated degradation of MT (metallothionein) proteins, elevated distribution of Zn2+ within autophagosomes, decreased labile intracellular zinc ions, and increased growth, invasion, and metastasis of gastric cancer cells. Mechanistically, E2F4 directly regulated the transcription of ATG2A (autophagy related 2A) and ULK2 (unc-51 like autophagy activating kinase 2), leading to autophagic degradation of MT1E, MT1M, and MT1X, while USP2 (ubiquitin specific peptidase 2) stabilized E2F4 protein to induce its transactivation via physical interaction and deubiquitination in cancer cells. Rescue experiments revealed that USP2 harbored oncogenic properties via E2F4-facilitated autophagy and zinc homeostasis. Emetine, a small chemical inhibitor of autophagy, was able to block interaction between UPS2 and E2F4, increase labile intracellular zinc ions, and suppress tumorigenesis and aggressiveness. In clinical gastric cancer specimens, both USP2 and E2F4 were upregulated and associated with poor outcome of patients. These findings indicate that therapeutic targeting of the USP2-E2F4 axis inhibits autophagic machinery essential for zinc homeostasis in cancer progression.Abbreviations: 3-MA: 3-methyladenine; ANOVA: analysis of variance; ATG2A: autophagy related 2A; ATG5: autophagy related 5; ATP: adenosine triphosphate; BECN1: beclin 1; BiFC: bimolecular fluorescence complementation; CCND1: cyclin D1; CDK: cyclin dependent kinase; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; Co-IP: co-immunoprecipitation; DAPI: 4',6-diamidino-2-phenylindole; E2F4: E2F transcription factor 4; eATP: extracellular adenosine triphosphate; EBSS: Earle's balanced salt solution; FP: first progression; FRET: fluorescence resonance energy transfer; FUCCI: fluorescent ubiquitination-based cell cycle indicator; GFP: green fluorescent protein; GST: glutathione S-transferase; HA: hemagglutinin; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MDM2: MDM2 proto-oncogene; MKI67/Ki-67: marker of proliferation Ki-67; MT: metallothionein; MT1E: metallothionein 1E; MT1M: metallothionein 1M; MT1X: metallothionein 1X; MTT: 3-(4,5-dimethyltriazol-2-yl)-2,5-diphenyl tetrazolium bromide; OS: overall survival; PECAM1/CD31: platelet and endothelial cell adhesion molecule 1; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; qPCR: quantitative PCR; RFP: red fluorescent protein; SQSTM1/p62: sequestosome 1; UBXN1: UBX domain protein 1; Ub: ubiquitin; ULK2: unc-51 like autophagy activating kinase 2; USP14: ubiquitin specific peptidase 14; USP2: ubiquitin specific peptidase 2; USP5: ubiquitin specific peptidase 5; USP7: ubiquitin specific peptidase 7; ZnCl2: zinc chloride.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaojing Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuang Cai
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lin Ye
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shikai Jin
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Boling Yuan
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yi Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qilan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
27
|
Abuetabh Y, Wu HH, Chai C, Al Yousef H, Persad S, Sergi CM, Leng R. DNA damage response revisited: the p53 family and its regulators provide endless cancer therapy opportunities. Exp Mol Med 2022; 54:1658-1669. [PMID: 36207426 PMCID: PMC9636249 DOI: 10.1038/s12276-022-00863-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Antitumor therapeutic strategies that fundamentally rely on the induction of DNA damage to eradicate and inhibit the growth of cancer cells are integral approaches to cancer therapy. Although DNA-damaging therapies advance the battle with cancer, resistance, and recurrence following treatment are common. Thus, searching for vulnerabilities that facilitate the action of DNA-damaging agents by sensitizing cancer cells is an active research area. Therefore, it is crucial to decipher the detailed molecular events involved in DNA damage responses (DDRs) to DNA-damaging agents in cancer. The tumor suppressor p53 is active at the hub of the DDR. Researchers have identified an increasing number of genes regulated by p53 transcriptional functions that have been shown to be critical direct or indirect mediators of cell fate, cell cycle regulation, and DNA repair. Posttranslational modifications (PTMs) primarily orchestrate and direct the activity of p53 in response to DNA damage. Many molecules mediating PTMs on p53 have been identified. The anticancer potential realized by targeting these molecules has been shown through experiments and clinical trials to sensitize cancer cells to DNA-damaging agents. This review briefly acknowledges the complexity of DDR pathways/networks. We specifically focus on p53 regulators, protein kinases, and E3/E4 ubiquitin ligases and their anticancer potential.
Collapse
Affiliation(s)
- Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Chengsen Chai
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Habib Al Yousef
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Sujata Persad
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Consolato M Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada.
| |
Collapse
|
28
|
Pal A, Das S, Basu S, Kundu R. Apoptotic and autophagic death union by Thuja occidentalis homeopathic drug in cervical cancer cells with thujone as the bioactive principle. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:463-472. [PMID: 35752587 DOI: 10.1016/j.joim.2022.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE "Multi-targeting" drugs can prove fruitful to combat drug-resistance of multifactorial disease-cervical cancer. This study envisioned to reveal if Thuja homeopathic mother tincture (MT) and its bioactive component could combat human papillomavirus (HPV)-16-infected SiHa cervical cancer cells since it is globally acclaimed for HPV-mediated warts. METHODS Thuja MT was studied for its antiproliferative and antimigratory properties in SiHa cells followed by microscopic determination of reactive oxygen species (ROS) generation by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) staining and loss in mitochondrial membrane potential (MtMP) by rhodamine 123 (Rh123) staining. Apoptosis and autophagy inductions were studied by acridine orange/ethidium bromide (AO/EB) staining and immunoblot analyses of marker proteins. The bioactive component of Thuja MT detected by gas chromatography-mass spectrometry was studied for antiproliferative and antimigratory properties along with in silico prediction of its cellular targets by molecular docking and oral drug forming competency. RESULTS Thuja MT showed significant antiproliferative and antimigratory potential in SiHa cells at a 50% inhibitory concentration (IC50) of 17.3 µL/mL. An increase in DCFDA fluorescence and loss in Rh123 fluorescence prove that Thuja MT acted through the burst of ROS and loss in MtMP respectively. AO/EB-stained cells under the microscope and immunoblot analyses supported Thuja-induced cellular demise via dual pathways-apoptosis and autophagy. Immunoblots showed cleavage of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) along with upregulation of Beclin-1, microtubule-associated protein 1 light chain 3B (LC3B)-II, and p62 proteins. Hence, the apoptotic cascade followed a caspase-3-dependent pathway supported by PARP-1 cleavage, while autophagic death was Beclin-1-dependent and mediated by accumulation of LC3BII and p62 proteins. Thujone, detected as the bioactive principle of Thuja MT, showed greater anti-proliferative and anti-migratory potential at an IC50 of 77 µg/mL, along with excellent oral drug competency with the ability for gastrointestinal absorption and blood-brain-barrier permeation with nil toxicity. Molecular docking depicted thujone with the strongest affinity for mammalian target of rapamycin, phosphoinositide 3-kinase, and protein kinase B followed by B-cell lymphoma 2, murine double minute 2 and adenosine monophosphate-activated protein kinase, which might act as upstream triggers of apoptotic-autophagic crosstalk. CONCLUSION Robust "multi-targeting" anticancer potential of Thuja drug and thujone for HPV-infected cervical cancer ascertained its therapeutic efficacy for HPV infections.
Collapse
Affiliation(s)
- Asmita Pal
- Department of Botany, University of Calcutta, Kolkata, West Bengal 700019, India
| | - Sucharita Das
- Department of Microbiology, University of Calcutta, Kolkata, West Bengal 700019, India
| | - Soumalee Basu
- Department of Microbiology, University of Calcutta, Kolkata, West Bengal 700019, India
| | - Rita Kundu
- Department of Botany, University of Calcutta, Kolkata, West Bengal 700019, India.
| |
Collapse
|
29
|
Validation of catalytic site residues of Ubiquitin Specific Protease 2 (USP2) by molecular dynamic simulation and novel kinetics assay for rational drug design. Mol Divers 2022:10.1007/s11030-022-10499-1. [PMID: 35932436 DOI: 10.1007/s11030-022-10499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 10/15/2022]
Abstract
Post-translational modifications of proteins such as protein ubiquitination are crucial for regulating conformation, stability and localization of the modified protein. Ubiquitin-specific protease 2 (USP2), a multifunctional cysteine protease is reported to be a key regulator of ubiquitylation events in numerous oncogenic proteins e.g., fatty acid synthetase, Mdm2, EGFR, cyclin A1, and cyclin-D1, etc. Thus targeting USP2 is a promising strategy for cancer therapy. USP2 is characterized by a catalytic triad comprising of cysteine, histidine and aspartic acid residues. Five residues including three from the catalytic triad and two from outside of the catalytic triad have been reported as a catalytic site of USP2 that catalyze hydrolysis and stabilizes the oxyanion formed in the intermediate step of catalysis. Here, we report two more novel residues (L269 and Y558) on USP2 involved in the catalysis of Ubiquitin using computational alanine scanning (CAS) followed by molecular dynamic simulation studies. The results obtained from CAS were further validated by a highly reliable, time- and cost-effective SDS-PAGE-based kinetics assay using UBA52 which is a natural substrate of USP2. Our results showed that mutating L269 and Y558 significantly compromised the catalytic efficiency of USP2 in hydrolyzing UBA52 which can further be extended to rational drug design of USP2 selective inhibitors and to explore the catalytic sites of other USPs. Two novel residues take part in catalytic activity of USP2 which were depicted by MD Simulations and were further validated by novel SDS-PAGE-based reliable time- and cost-effective kinetics assay.
Collapse
|
30
|
An R, Wang P, Guo H, Liuyu T, Zhong B, Zhang ZD. USP2 promotes experimental colitis and bacterial infections by inhibiting the proliferation of myeloid cells and remodeling the extracellular matrix network. CELL INSIGHT 2022; 1:100047. [PMID: 37192862 PMCID: PMC10120320 DOI: 10.1016/j.cellin.2022.100047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 05/18/2023]
Abstract
Inflammatory bowel disease (IBD) is closely associated with dysregulation of genetic factors and microbial environment. Here, we report a susceptible role of ubiquitin-specific protease 2 (USP2) in experimental colitis and bacterial infections. USP2 is upregulated in the inflamed mucosa of IBD patients and in the colon of mice treated with dextran sulfate sodium salt (DSS). Knockout or pharmacologic inhibition of USP2 promotes the proliferation of myeloid cells to activate IL-22 and IFNγ production of T cells. In addition, knockout of USP2 in myeloid cells inhibits the production of pro-inflammatory cytokines to relieve the dysregulation of extracellular matrix (ECM) network and promote the gut epithelial integrity after DSS treatment. Consistently, Lyz2-Cre;Usp2fl/fl mice exhibit hyper-resistance to DSS-induced colitis and Citrobacter rodentium infections compared to Usp2fl/fl mice. These findings highlight an indispensable role of USP2 in myeloid cells to modulate T cell activation and epithelial ECM network and repair, indicating USP2 as a potential target for therapeutic intervention of IBD and bacterial infections in the gastrointestinal system.
Collapse
Affiliation(s)
- Ran An
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Peng Wang
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Hao Guo
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Tianzi Liuyu
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Bo Zhong
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Zhi-Dong Zhang
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| |
Collapse
|
31
|
LIU J, LEUNG CT, LIANG L, WANG Y, CHEN J, LAI KP, TSE WKF. Deubiquitinases in Cancers: Aspects of Proliferation, Metastasis, and Apoptosis. Cancers (Basel) 2022; 14:cancers14143547. [PMID: 35884607 PMCID: PMC9323628 DOI: 10.3390/cancers14143547] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This review summarizes the current DUBs findings that correlate with the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The DUBs were further classified by their biological functions in terms of proliferation, metastasis, and apoptosis. The work provides an updated of the current findings, and could be used as a quick guide for researchers to identify target DUBs in cancers. Abstract Deubiquitinases (DUBs) deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate its activity and stability. They are involved in several cellular functions. In addition to the general biological regulation of normal cells, studies have demonstrated their critical roles in various cancers. In this review, we evaluated and grouped the biological roles of DUBs, including proliferation, metastasis, and apoptosis, in the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The current findings in these cancers are summarized, and the relevant mechanisms and relationship between DUBs and cancers are discussed. In addition to highlighting the importance of DUBs in cancer biology, this study also provides updated information on the roles of DUBs in different types of cancers.
Collapse
Affiliation(s)
- Jiaqi LIU
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Chi Tim LEUNG
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China;
| | - Luyun LIANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Yuqin WANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Jian CHEN
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - Keng Po LAI
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - William Ka Fai TSE
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
32
|
Guo J, Zhao J, Sun L, Yang C. Role of ubiquitin specific proteases in the immune microenvironment of prostate cancer: A new direction. Front Oncol 2022; 12:955718. [PMID: 35924159 PMCID: PMC9339679 DOI: 10.3389/fonc.2022.955718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Regulation of ubiquitination is associated with multiple processes of tumorigenesis and development, including regulation of the tumor immune microenvironment. Deubiquitinating enzymes (DUBs) can remove ubiquitin chains from substrates, thereby stabilizing target proteins and altering and remodeling biological processes. During tumorigenesis, deubiquitination-altered biological processes are closely related to tumor metabolism, stemness, and the immune microenvironment. Recently, tumor microenvironment (TME) modulation strategies have attracted considerable attention in cancer immunotherapy. Targeting immunosuppressive mechanisms in the TME has revolutionized cancer therapy. Prostate cancer (PC) is one of the most common cancers and the second most common cause of cancer-related death in men worldwide. While immune checkpoint inhibition has produced meaningful therapeutic effects in many cancer types, clinical trials of anti-CTLA4 or anti-PD1 have not shown a clear advantage in PC patients. TME affects PC progression and also enables tumor cell immune evasion by activating the PD-1/PD-L1 axis. Over the past few decades, an increasing number of studies have demonstrated that deubiquitination in PC immune microenvironment may modulate the host immune system’s response to the tumor. As the largest and most diverse group of DUBs, ubiquitin-specific proteases (USPs) play an important role in regulating T cell development and function. According to current studies, USPs exhibit a high expression signature in PC and may promote tumorigenesis. Elevated expression of USPs often indicates poor tumor prognosis, suggesting that USPs are expected to develop as the markers of tumor prognosis and even potential drug targets for anti-tumor therapy. Herein, we first summarized recent advances of USPs in PC and focused on the relationship between USPs and immunity. Additionally, we clarified the resistance mechanisms of USPs to targeted drugs in PC. Finally, we reviewed the major achievement of targeting USPs in cancers.
Collapse
Affiliation(s)
- Jinhui Guo
- Cancer Center, Institute of clinical medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Litao Sun
- Cancer Center, Department of Ultrasound, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Litao Sun, ; Chen Yang,
| | - Chen Yang
- Cancer Center, Department of Ultrasound, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Litao Sun, ; Chen Yang,
| |
Collapse
|
33
|
Li K, Wang Q, Bian H, Chen Z, He H, Zhao X, Gong P. Comprehensive Analysis Reveals USP45 as a Novel Putative Oncogene in Pan-Cancer. Front Mol Biosci 2022; 9:886904. [PMID: 35836933 PMCID: PMC9273912 DOI: 10.3389/fmolb.2022.886904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Deubiquitinating enzymes specifically removes ubiquitin molecules from ubiquitin-tagged target proteins, thereby inhibiting the degradation of target proteins and playing an important role in tumor. However, the mechanism of deubiquitinating enzyme USP45 in tumors remains unclear. Methods: Based on the RNA-seq data of tissues and cell lines in The Cancer Genome Atlas (TCGA) database, GTEx and CCLE database, the pan-cancer analysis of USP45 expression and survival outcome were performed using R software and Kaplan-Meier Plotter. The structural variants, gene mutations and gene copy number alteration of USP45 were analyzed using the TCGA Pan-Cancer Atlas Studies dataset in the cBioPortal database. The relationships between USP45 and mRNA methylation, tumor heterogeneity, tumor stemness, and tumor immunity were performed by Sangerbox platform and TIMER2.0 using Pearson correlation analysis. Through the ENCORI database and string database, we constructed the ceRNA regulatory mechanism and protein-protein interaction network for USP45. Based on the RNA-seq data in TCGA and GTEx databases, we also constructed the downstream regulatory network for USP45 using the Limma and ClusterProfiler packages of R software. At last, the protein expression levels of USP45 were detected by immunohistochemistry in tumor tissue microarrays. Results: USP45 is upregulated in most types of tumors and negatively correlated with the overall survival and recurrence-free survival of patient. Furthermore, the structural variation, gene mutations and gene copy number variation of USP45 were identified in different types of tumors. The pan-cancer analysis showed that USP45 was closely related to mRNA methylation, tumor heterogeneity and tumor stemness. In most types of tumors, the expression of USP45 was positively correlated with many immune checkpoint molecules and immune regulators such as PD-L1, while negatively correlated with the infiltration levels of NK cells, Th1 cells, macrophages, and dendritic cells in the tumor microenvironment. Finally, we constructed the ceRNA regulatory network, protein-protein interaction network and downstream regulatory network for USP45 in different types of tumors. Conclusion: Our study firstly explored the putative oncogenic role of USP45 in pan-cancer, and provided insights for further investigation of USP45.
Collapse
Affiliation(s)
- Kai Li
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Qian Wang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Hua Bian
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Zhiguo Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Haifa He
- Department of Pathology, Central Hospital of Nanyang City, Nanyang, China
| | - Xulin Zhao
- Department of Oncology, The First People’s Hospital of Nanyang, Nanyang, China
| | - Pengju Gong
- The University of Texas MD Anderson Cancer Center UThealth Graduate School of Biomedical Sciences, Houston, TX, United States
- *Correspondence: Pengju Gong,
| |
Collapse
|
34
|
Dunlap KR, Laskin GR, Waddell DS, Black AJ, Steiner JL, Vied C, Gordon BS. Aerobic exercise-mediated changes in the expression of glucocorticoid responsive genes in skeletal muscle differ across the day. Mol Cell Endocrinol 2022; 550:111652. [PMID: 35461977 DOI: 10.1016/j.mce.2022.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Glucocorticoids are released in response to acute aerobic exercise. The objective was to define changes in the expression of glucocorticoid target genes in skeletal muscle in response to acute aerobic exercise at different times of day. We identified glucocorticoid target genes altered in skeletal muscle by acute exercise by comparing data sets from rodents subjected to acute aerobic exercise in the light or dark cycles to data sets from C2C12 myotubes treated with glucocorticoids. The role of glucocorticoid receptor signaling and REDD1 protein in mediating gene expression was assessed in exercised mice. Changes to expression of glucocorticoid genes were greater when exercise occurred in the dark cycle. REDD1 was required for the induction of genes induced at both times of day. In all, the time of day at which aerobic exercise is conducted dictates changes to the expression of glucocorticoid target genes in skeletal muscle with REDD1 contributing to those changes.
Collapse
Affiliation(s)
- Kirsten R Dunlap
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA
| | - Grant R Laskin
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA
| | - David S Waddell
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Adam J Black
- Department of Cell Biology and Physiology, University of North Carolina, 111 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Jennifer L Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. Cottage Ave, Tallahassee, FL, 32306, USA
| | - Cynthia Vied
- Translational Sciences Laboratory, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306, USA
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. Cottage Ave, Tallahassee, FL, 32306, USA.
| |
Collapse
|
35
|
Drula R, Iluta S, Gulei D, Iuga C, Dima D, Ghiaur G, Buzoianu AD, Ciechanover A, Tomuleasa C. Exploiting the ubiquitin system in myeloid malignancies. From basic research to drug discovery in MDS and AML. Blood Rev 2022; 56:100971. [PMID: 35595613 DOI: 10.1016/j.blre.2022.100971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system is the crucial homeostatic mechanism responsible for the degradation and turnover of proteins. As such, alterations at this level are often associated with oncogenic processes, either through accumulation of undegraded pathway effectors or, conversely, excessive degradation of tumor-suppressing factors. Therefore, investigation of the ubiquitin- proteasome system has gained much attraction in recent years, especially in the context of hematological malignancies, giving rise to efficient therapeutics such as bortezomib for multiple myeloma. Current investigations are now focused on manipulating protein degradation via fine-tuning of the ubiquitination process through inhibition of deubiquitinating enzymes or development of PROTAC systems for stimulation of ubiquitination and protein degradation. On the other hand, the efficiency of Thalidomide derivates in myelodysplastic syndromes (MDS), such as Lenalidomide, acted as the starting point for the development of targeted leukemia-associated protein degradation molecules. These novel molecules display high efficiency in overcoming the limitations of current therapeutic regimens, such as refractory diseases. Therefore, in this manuscript we will address the therapeutic opportunities and strategies based on the ubiquitin-proteasome system, ranging from the modulation of deubiquitinating enzymes and, conversely, describing the potential of modern targeted protein degrading molecules and their progress into clinical implementation.
Collapse
Affiliation(s)
- Rares Drula
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Cristina Iuga
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Aaron Ciechanover
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Rappaport Technion Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Ciprian Tomuleasa
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
| |
Collapse
|
36
|
Xie K, Tan K, Naylor MJ. Transcription Factors as Novel Therapeutic Targets and Drivers of Prostate Cancer Progression. Front Oncol 2022; 12:854151. [PMID: 35547880 PMCID: PMC9082354 DOI: 10.3389/fonc.2022.854151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
Prostate cancer is the second most diagnosed cancer among men worldwide. Androgen deprivation therapy, the most common targeted therapeutic option, is circumvented as prostate cancer progresses from androgen dependent to castrate-resistant disease. Whilst the nuclear receptor transcription factor, androgen receptor, drives the growth of prostate tumor during initial stage of the disease, androgen resistance is associated with poorly differentiated prostate cancer. In the recent years, increased research has highlighted the aberrant transcriptional activities of a small number of transcription factors. Along with androgen receptors, dysregulation of these transcription factors contributes to both the poorly differentiated phenotypes of prostate cancer cells and the initiation and progression of prostate carcinoma. As master regulators of cell fate decisions, these transcription factors may provide opportunity for the development of novel therapeutic targets for the management of prostate cancer. Whilst some transcriptional regulators have previously been notoriously difficult to directly target, technological advances offer potential for the indirect therapeutic targeting of these transcription factors and the capacity to reprogram cancer cell phenotype. This mini review will discuss how recent advances in our understanding of transcriptional regulators and material science pave the way to utilize these regulatory molecules as therapeutic targets in prostate cancer.
Collapse
Affiliation(s)
- Kangzhe Xie
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
| | - Keely Tan
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
| | - Matthew J Naylor
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
37
|
Zhu M, Wang H, Ding Y, Yang Y, Xu Z, Shi L, Zhang N. Ribonucleotide reductase holoenzyme inhibitor COH29 interacts with deubiquitinase ubiquitin-specific protease 2 and downregulates its substrate protein cyclin D1. FASEB J 2022; 36:e22329. [PMID: 35476303 DOI: 10.1096/fj.202101914rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/11/2022]
Abstract
USP2 contributes to the quality control of multiple oncogenic proteins including cyclin D1, Mdm2, Aurora-A, etc., and it is a potential target for anti-cancer drug development. However, currently only a few inhibitors with moderate inhibition activities against USP2 have been discovered. USP2-targeted active compounds with either new scaffolds or enhanced activities are in need. Here in this study, Ub-AMC hydrolysis assay-based screening against ~4000 commercially available drugs and drug candidates was performed to identify USP2-targeted inhibitors. COH29, which was originally developed as an anti-cancer agent by blocking the function of human ribonucleotide reductase (RNR, IC50 = 16 µM), was found to exhibit an inhibition activity against USP2 with the IC50 value at 2.02 ± 0.16 µM. The following conducted biophysical and biochemical experiments demonstrated that COH29 could specifically interact with USP2 and inhibit its enzymatic activity in a noncompetitive inhibition mode (Ki = 1.73 ± 0.14 µM). Since COH29 shows similar inhibitory potencies against RNR (RRM2) and USP2, USP2 inhibition-dependent cellular consequences of COH29 are expected. The results of cellular assays confirmed that the application of COH29 could downregulate the level of cyclin D1 by enhancing its degradation via ubiquitin-proteasome system (UPS), and the modulation effect of COH29 on cyclin D1 is independent of RRM2. Since cyclin D1 acts as an oncogenic driver in human cancer, our findings suggest that USP2 might be a promising therapeutic target for cyclin D1-addicted cancers, and COH29 could serve as a starting compound for high selectivity inhibitor development against USP2.
Collapse
Affiliation(s)
- Mengying Zhu
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yiluan Ding
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Yang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhuo Xu
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Shi
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Naixia Zhang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
High Ubiquitin-Specific Protease 2a Expression Level Predicts Poor Prognosis in Upper Tract Urothelial Carcinoma. Appl Immunohistochem Mol Morphol 2022; 30:304-310. [PMID: 35384881 DOI: 10.1097/pai.0000000000001014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ubiquitin-mediated protein degradation has been reported to be involved in regulating the activity of oncoproteins and tumor suppressors. Dysfunction or dysregulation of the ubiquitin-proteasome system may induce tumorigenesis. Deubiquitinase ubiquitin-specific protease 2a (USP2a) has been reported to regulate cell growth or death and is involved in the pathogenesis of various diseases, including cancers. However, the role of USP2a in upper tract urothelial carcinoma (UTUC) has not been investigated yet. The goal of this study was to evaluate the clinical significance of USP2a expression in UTUC. MATERIALS AND METHODS A total of 110 UTUC cases were included in this study. USP2a expression level was evaluated through immunohistochemistry staining, and the correlation of USP2a expression level with both clinical and pathologic variables was analyzed. RESULTS High USP2a expression level was observed in 48 (43.6%) cancer specimens. USP2a expression level was significantly correlated with tumor stage (P=0.001), grade (P=0.033), and tumor recurrence (P=0.008). High USP2a expression level was correlated with poor disease-free survival (P=0.005) and cancer-specific survival (P<0.001). In addition, high USP2a expression level was an independent predictor of poor disease-free survival (hazard ratio=2.31; P=0.007) and cancer-specific survival (hazard ratio=5.49; P=0.009). CONCLUSIONS This study indicated that USP2a protein expression level may be a potential biomarker for predicting UTUC patient survival. Further prospective studies are needed to investigate the role of USP2a in UTUC progression.
Collapse
|
39
|
Cheng CP, Liu ST, Chiu YL, Huang SM, Ho CL. The Inhibitory Effects of 6-Thioguanine and 6-Mercaptopurine on the USP2a Target Fatty Acid Synthase in Human Submaxillary Carcinoma Cells. Front Oncol 2021; 11:749661. [PMID: 34956872 PMCID: PMC8702617 DOI: 10.3389/fonc.2021.749661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022] Open
Abstract
Overexpression of the deubiquitinase USP2a leads to stabilization of fatty acid synthase (FAS), the levels of which are often elevated in aggressive human cancers. Consequently, there is an urgent need for inhibitors to suppress the deubiquitination activity of USP2a so as to upregulate FAS protein degradation. We first analyzed the relationship between the expression level of USP2a and survival using The Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (HNSC) data collection. Our results suggested survival rates were lower among HNSC patients expressing higher levels of USP2a. We then investigated two thiopurine drugs, 6-thioguanine (6-TG) and 6-mercaptopurine (6-MP), to determine whether they could potentially serve as inhibitors of USP2a. Western blot analysis showed that levels of two USP2a target proteins, FAS and Mdm2, were dose-dependently decreased in A253 submaxillary carcinoma cells treated with 6-TG or 6‐MP. Responding to the degradation of Mdm2, levels of p53 were increased. We found that 6-TG and 6-MP also suppressed levels of both USP2a mRNA and protein, suggesting these two thiopurines do not act solely through direct inhibition of USP2a. The effects of 6-TG and 6-MP were not cell type-specific, as they elicited similar decreases in FAS protein in leukemia, prostate and cervical cancer cell lines. 6-TG and 6-MP had effects on several cell cycle proteins, including another USP2a target protein, cyclin D1. The populations of cells in subG1 and S phase were increased by 6-TG and 6-MP, which was accompanied by reductions in G1 phase cells. In untreated cells, USP2a transfection increased FAS and cyclin D1 levels compared to an enzyme-dead USP2a C276A mutant, which lacked deubiquitinating activity. However, USP2a transfection failed to reverse the suppressive effects of 6‐TG and 6-MP on FAS levels. In summary, these findings suggest 6-TG and 6-MP reduce the stability of some USP2a targets, including FAS and Mdm2, by inhibiting USP2a-catalyzed deubiquitination in some cancer cells. Our work also provides repurposing evidence supporting 6‐TG and 6-MP as target therapeutic drugs, such as USP2a/FAS in this study.
Collapse
Affiliation(s)
- Chiao-Pei Cheng
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Ching-Liang Ho
- Division of Hematology and Oncology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
40
|
Tyagi A, Haq S, Ramakrishna S. Redox regulation of DUBs and its therapeutic implications in cancer. Redox Biol 2021; 48:102194. [PMID: 34814083 PMCID: PMC8608616 DOI: 10.1016/j.redox.2021.102194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) act as a double-edged sword in cancer, where low levels of ROS are beneficial but excessive accumulation leads to cancer progression. Elevated levels of ROS in cancer are counteracted by the antioxidant defense system. An imbalance between ROS generation and the antioxidant system alters gene expression and cellular signaling, leading to cancer progression or death. Post-translational modifications, such as ubiquitination, phosphorylation, and SUMOylation, play a critical role in the maintenance of ROS homeostasis by controlling ROS production and clearance. Recent evidence suggests that deubiquitinating enzymes (DUBs)-mediated ubiquitin removal from substrates is regulated by ROS. ROS-mediated oxidation of the catalytic cysteine (Cys) of DUBs, leading to their reversible inactivation, has emerged as a key mechanism regulating DUB-controlled cellular events. A better understanding of the mechanism by which DUBs are susceptible to ROS and exploring the ways to utilize ROS to pharmacologically modulate DUB-mediated signaling pathways might provide new insight for anticancer therapeutics. This review assesses the recent findings regarding ROS-mediated signaling in cancers, emphasizes DUB regulation by oxidation, highlights the relevant recent findings, and proposes directions of future research based on the ROS-induced modifications of DUB activity.
Collapse
Affiliation(s)
- Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
41
|
Mullard M, Lavaud M, Regnier L, Tesfaye R, Ory B, Rédini F, Verrecchia F. Ubiquitin-specific proteases as therapeutic targets in paediatric primary bone tumours? Biochem Pharmacol 2021; 194:114797. [PMID: 34678225 DOI: 10.1016/j.bcp.2021.114797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023]
Abstract
In children and young adults, primary malignant bone tumours are mainly composed of osteosarcoma and Ewing's sarcoma. Despite advances in treatments, nearly 40% of patients succumb to these diseases. In particular, the clinical outcome of metastatic osteosarcoma or Ewing's sarcoma remains poor, with less than 30% of patients who develop metastases surviving five years after initial diagnosis. Over the last decade, the cancer research community has shown considerable interest in the processes of protein ubiquitination and deubiquitination. In particular, a growing number of studies show the relevance to target the ubiquitin-specific protease (USP) family in various cancers. This review provides an update on the current knowledge regarding the implication of these USPs in the progression of bone sarcoma: osteosarcoma and Ewing's sarcoma.
Collapse
Affiliation(s)
- Mathilde Mullard
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Mélanie Lavaud
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Laura Regnier
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Robel Tesfaye
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Benjamin Ory
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Françoise Rédini
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Franck Verrecchia
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France.
| |
Collapse
|
42
|
EVs delivery of miR-1915-3p improves the chemotherapeutic efficacy of oxaliplatin in colorectal cancer. Cancer Chemother Pharmacol 2021; 88:1021-1031. [PMID: 34599680 DOI: 10.1007/s00280-021-04348-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Oxaliplatin is a crucial component of the combinatorial chemotherapeutic standard of care for advanced colorectal cancer (CRC). Unfortunately, a serious barrier to effective oxaliplatin treatment is drug resistance due to epithelial-mesenchymal transitioning (EMT). Interestingly, stable oxaliplatin-resistant CRC cell lines show differential expression of miR-1915-3p; thus, this microRNA may represent a potential modifier of oxaliplatin resistance in CRC cells. METHODS miR-1915-3p was over-expressed in oxaliplatin-resistant CRC cells and a non-tumorigenic intestinal cell line (FHC) via lentiviral transduction. Extracellular vesicles (EVs) were purified from transduced FHC cells and co-incubated with CRC cells. Expression levels of miR-1915-3p and other RNA species were assessed by RT-qPCR, while protein expression levels were assessed by Western blotting. The effects of miR-1915-3p on CRC viability were evaluated by proliferation, apoptosis assays, and Transwell assays. Effects of miR-1915-3p over-expression on in vivo oxaliplatin sensitivity was tested via murine xenograft models. RESULTS miRNA-1915-3p decreased EMT marker expression in oxaliplatin-resistant CRC cell lines and in vivo. FHC cells were able to produce and secrete miR-1915-3p-containing EVs, which we employed to mediate miR-1915-3p delivery to oxaliplatin-resistant CRC cells and increase their oxaliplatin sensitivity in vivo and in vitro. Mechanistically, miR-1915-3p overexpression downregulated the EMT-promoting oncogenes 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and ubiquitin carboxyl-terminal hydrolase 2 (USP2) as well as upregulated E-cadherin (a cell adhesion mediator). miR-1915-3p's effects on chemosensitivity and EMT were mediated by its regulation of PFKFB3 and USP2. CONCLUSION Exosomal delivery of miR-1915-3p can improve the chemotherapeutic efficacy of oxaliplatin in CRC cells by suppressing the EMT-promoting oncogenes PFKFB3 and USP2.
Collapse
|
43
|
Lee K, Yu H, Shouse S, Kong B, Lee J, Lee SH, Ko KS. RNA-Seq Reveals Different Gene Expression in Liver-Specific Prohibitin 1 Knock-Out Mice. Front Physiol 2021; 12:717911. [PMID: 34539442 PMCID: PMC8446661 DOI: 10.3389/fphys.2021.717911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
Prohibitin 1 (PHB1) is an evolutionarily conserved and ubiquitously expressed protein that stabilizes mitochondrial chaperone. Our previous studies showed that liver-specific Phb1 deficiency induced liver injuries and aggravated lipopolysaccharide (LPS)-induced innate immune responses. In this study, we performed RNA-sequencing (RNA-seq) analysis with liver tissues to investigate global gene expression among liver-specific Phb1−/−, Phb1+/−, and WT mice, focusing on the differentially expressed (DE) genes between Phb1+/− and WT. When 78 DE genes were analyzed for biological functions, using ingenuity pathway analysis (IPA) tool, lipid metabolism-related genes, including insulin receptor (Insr), sterol regulatory element-binding transcription factor 1 (Srebf1), Srebf2, and SREBP cleavage-activating protein (Scap) appeared to be downregulated in liver-specific Phb1+/− compared with WT. Diseases and biofunctions analyses conducted by IPA verified that hepatic system diseases, including liver fibrosis, liver hyperplasia/hyperproliferation, and liver necrosis/cell death, which may be caused by hepatotoxicity, were highly associated with liver-specific Phb1 deficiency in mice. Interestingly, of liver disease-related 5 DE genes between Phb1+/− and WT, the mRNA expressions of forkhead box M1 (Foxm1) and TIMP inhibitor of metalloproteinase (Timp1) were matched with validation for RNA-seq in liver tissues and AML12 cells transfected with Phb1 siRNA. The results in this study provide additional insights into molecular mechanisms responsible for increasing susceptibility of liver injuries associated with hepatic Phb1.
Collapse
Affiliation(s)
- Kyuwon Lee
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, Seoul, South Korea
| | - Hyeonju Yu
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, Seoul, South Korea
| | - Stephanie Shouse
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, United States
| | - Byungwhi Kong
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, United States
| | - Jihye Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Kwang Suk Ko
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, Seoul, South Korea.,Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Beverly Hills, CA, United States
| |
Collapse
|
44
|
Wang J, Ding J, Zhang S, Chen X, Yan S, Zhang Y, Yin T. Decreased USP2a Expression Inhibits Trophoblast Invasion and Associates With Recurrent Miscarriage. Front Immunol 2021; 12:717370. [PMID: 34489969 PMCID: PMC8416978 DOI: 10.3389/fimmu.2021.717370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
An appropriate development of the placenta consisting of trophoblast cell migration, invasion, proliferation, and apoptosis, is essential to establishing and maintaining a successful pregnancy. Ubiquitin‐specific protease 2a (USP2a) regulates the processes of metastasis in multiple tumor cells. Yet, no known research has focused on exploring the effect of USP2a on trophoblasts and its possible mechanism in the pathogenies of recurrent miscarriage (RM). In this study, we first detected the decreased mRNA levels and the protein levels of USP2a in placental villous tissue samples from the RM patients. In vitro assays verified that overexpression of USP2a promoted human trophoblast proliferation, migration, invasion, whereas knockdown of USP2a inhibited these processes. Mechanistically, USP2a activated PI3K/Akt/GSK3β signaling pathway to promote nuclear translocation of β‐catenin and further activated epithelial-mesenchymal transition (EMT) in the trophoblasts. Moreover, transforming growth factor-beta (TGF-β) up-regulated USP2a expression in trophoblasts. Interestingly, M2 macrophage secreted TGF-β induced trophoblast migration and invasion, and an anti-TGF-β antibody alleviated this effect. Collectively, this study indicated that USP2a regulated trophoblast invasion and that abnormal USP2a expression might lead to aberrant trophoblast invasion, thus contributing to RM.
Collapse
Affiliation(s)
- Jiayu Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinli Ding
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sainan Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Chen
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sisi Yan
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Cruz L, Soares P, Correia M. Ubiquitin-Specific Proteases: Players in Cancer Cellular Processes. Pharmaceuticals (Basel) 2021; 14:ph14090848. [PMID: 34577547 PMCID: PMC8469789 DOI: 10.3390/ph14090848] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination represents a post-translational modification (PTM) essential for the maintenance of cellular homeostasis. Ubiquitination is involved in the regulation of protein function, localization and turnover through the attachment of a ubiquitin molecule(s) to a target protein. Ubiquitination can be reversed through the action of deubiquitinating enzymes (DUBs). The DUB enzymes have the ability to remove the mono- or poly-ubiquitination signals and are involved in the maturation, recycling, editing and rearrangement of ubiquitin(s). Ubiquitin-specific proteases (USPs) are the biggest family of DUBs, responsible for numerous cellular functions through interactions with different cellular targets. Over the past few years, several studies have focused on the role of USPs in carcinogenesis, which has led to an increasing development of therapies based on USP inhibitors. In this review, we intend to describe different cellular functions, such as the cell cycle, DNA damage repair, chromatin remodeling and several signaling pathways, in which USPs are involved in the development or progression of cancer. In addition, we describe existing therapies that target the inhibition of USPs.
Collapse
Affiliation(s)
- Lucas Cruz
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Departamento de Patologia, Faculdade de Medicina da Universidade Do Porto, 4200-139 Porto, Portugal
| | - Marcelo Correia
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- Correspondence:
| |
Collapse
|
46
|
Zhang F, Zhao Y, Sun Y. USP2 is an SKP2 deubiquitylase that stabilizes both SKP2 and its substrates. J Biol Chem 2021; 297:101109. [PMID: 34425107 PMCID: PMC8446802 DOI: 10.1016/j.jbc.2021.101109] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
The stability of a protein is regulated by a balance between its ubiquitylation and deubiquitylation. S-phase kinase-associated protein 2 (SKP2) is an oncogenic F-box protein that recognizes tumor suppressor substrates for targeted ubiquitylation by the E3 ligase SKP1-Cullin1-F-box and degradation by proteasome. SKP2 is itself ubiquitylated by the E3 ligases APC/CCDH1 and SCFFBXW2, and deubiquitylated by deubiquitylases (DUBs) USP10 and USP13. Given the biological significance of SKP2, it is likely that the other E3s or DUBs may also regulate its stability. Here, we report the identification and characterization of USP2 as a new DUB. We first screened a panel of DUBs and found that both USP2 and USP21 bound to endogenous SKP2, but only USP2 deubiquitylated and stabilized SKP2 protein. USP2 inactivation via siRNA knockdown or small-molecule inhibitor treatment remarkably shortened SKP2 protein half-life by enhancing its ubiquitylation and subsequent degradation. Unexpectedly, USP2-stabilized SKP2 did not destabilize its substrates p21 and p27. Mechanistically, USP2 bound to SKP2 via the leucine-rich repeat substrate-binding domain on SKP2 to disrupt the SKP2-substrate binding, leading to stabilization of both SKP2 and these substrates. Biologically, growth suppression induced by USP2 knockdown or USP2 inhibitor is partially mediated via modulation of SKP2 and its substrates. Our study revealed a new mechanism of the cross-talk among the E3–DUB substrates and its potential implication in targeting the USP2–SKP2 axis for cancer therapy.
Collapse
Affiliation(s)
- Fengwu Zhang
- Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
47
|
Xu D, Wu J, Chen J, Jiang L, Chen J, Bao W, Chen X, Yang Q, Zhang X, Yao L, Su H, Liu J. Cullin 2-RBX1 E3 ligase and USP2 regulate antithrombin ubiquitination and stability. FASEB J 2021; 35:e21800. [PMID: 34324733 DOI: 10.1096/fj.202001146rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 11/11/2022]
Abstract
Hemophilia A and B are congenital bleeding disorders caused by a deficiency in pro-coagulant factor VIII or IX that is treated by downregulation of antithrombin. However, the molecular mechanisms that regulate antithrombin expression remain poorly understood. Here, we identified Cullin 2 and USP2 (ubiquitin-specific peptidase-2) as novel regulators of antithrombin expression that act by modulating antithrombin ubiquitination. Inhibition of the proteasome caused accumulation of antithrombin and its ubiquitinated forms in HepG2 and SMMC7721 cells. Notably, inhibition of neddylation with MLN4924 suppressed both ubiquitination and degradation of antithrombin, which is recapitulated by silencing of the neddylation enzymes, NAE1, UBA3, and UBE2M, with small interfering RNA (siRNA). We identified Cullin 2 as the interaction partner of antithrombin, and siRNA-mediated Cullin 2 knockdown reduced antithrombin ubiquitination and increased antithrombin protein. We further found that USP2 interacted with antithrombin and regulated antithrombin expression, showing that overexpression of USP2 inhibits the ubiquitination and proteasomal clearance of antithrombin, whereas pharmacological inhibition or siRNA-mediated knockdown of USP2 downregulates antithrombin. Collectively, these results suggest that Cullin 2 E3 ubiquitin ligase and USP2 coordinately regulate antithrombin ubiquitination and degradation. Thus, targeting Cullin 2 and USP2 could be a potential strategy for treatment of hemophilia.
Collapse
Affiliation(s)
- Dacai Xu
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiawen Wu
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinghong Chen
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liling Jiang
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juan Chen
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhao Bao
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianqian Yang
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaolan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Leyi Yao
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
48
|
Zhang S, Lou J, Li Y, Zhou F, Yan Z, Lyu X, Zhao Y. Recent Progress and Clinical Development of Inhibitors that Block MDM4/p53 Protein-Protein Interactions. J Med Chem 2021; 64:10621-10640. [PMID: 34286973 DOI: 10.1021/acs.jmedchem.1c00940] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MDM4 is a homologue of MDM2, serving cooperatively as the negative regulator of tumor suppressor p53. Under the shadow of MDM2 inhibitors, limited efforts had been put into the discovery of MDM4 modulators. Recent studies of the experimental drug ALRN-6924, a dual MDM4 and MDM2 inhibitor, suggest that concurrent inhibition of MDM4 and MDM2 might be beneficial over only MDM2 inhibition. In view of the present research progress, we summarized published inhibitors of MDM4/p53 interactions including both peptide-based compounds and small molecules. Cocrystal structures of ligand/MDM4 complexes have been examined, and their structural features were compiled and compared in order to show the molecular basis required for high MDM4 binding affinities. Representative examples of small-molecule MDM4 inhibitors were discussed, followed by clinical results of ALRN-6924, together, providing a consolidated reference for further development of MDM4 inhibitors, either dual or selective.
Collapse
Affiliation(s)
- Shiyan Zhang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jianfeng Lou
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yafang Li
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Feilong Zhou
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yujun Zhao
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.,State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
49
|
The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. Int J Mol Sci 2021; 22:ijms22115754. [PMID: 34072267 PMCID: PMC8198665 DOI: 10.3390/ijms22115754] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs.
Collapse
|
50
|
Advances in the Development Ubiquitin-Specific Peptidase (USP) Inhibitors. Int J Mol Sci 2021; 22:ijms22094546. [PMID: 33925279 PMCID: PMC8123678 DOI: 10.3390/ijms22094546] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Ubiquitylation and deubiquitylation are reversible protein post-translational modification (PTM) processes involving the regulation of protein degradation under physiological conditions. Loss of balance in this regulatory system can lead to a wide range of diseases, such as cancer and inflammation. As the main members of the deubiquitinases (DUBs) family, ubiquitin-specific peptidases (USPs) are closely related to biological processes through a variety of molecular signaling pathways, including DNA damage repair, p53 and transforming growth factor-β (TGF-β) pathways. Over the past decade, increasing attention has been drawn to USPs as potential targets for the development of therapeutics across diverse therapeutic areas. In this review, we summarize the crucial roles of USPs in different signaling pathways and focus on advances in the development of USP inhibitors, as well as the methods of screening and identifying USP inhibitors.
Collapse
|