1
|
Zhao L, Liu P, Sauvat A, Carnet Le Provost K, Liu J, Checcoli A, Pol J, Kepp O, Kroemer G, Bezu L. Dexmedetomidine induces immunogenic cancer cell death and sensitizes tumors to PD-1 blockade. J Immunother Cancer 2025; 13:e010714. [PMID: 40480656 PMCID: PMC12142037 DOI: 10.1136/jitc-2024-010714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 05/14/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Local anesthetics promote anticancer immune responses. A machine learning-based algorithm trained with information on the biological effects and molecular descriptors of analgesics, anesthetics, hypnotics and opioids predicted antitumor effects for dexmedetomidine (DEX). DEX is a sedative acting as an alpha2-adrenoceptor (ADRA2) agonist. Based on these premises, we investigated the putative antineoplastic effects of DEX. RESULTS In vitro, DEX promoted premortem stresses such as autophagy and partial endoplasmic reticulum stress with the phosphorylation of eukaryotic initiation factor 2 alpha and the inhibition of the splicing of X-box binding protein 1. DEX elicited the biomarkers of immunogenic cell death, including the release of ATP and high-mobility group box 1 protein, and the cell surface exposure of calreticulin, enhancing the engulfment of malignant cells by dendritic cells. In immunocompetent mice, DEX decreased the progression of colorectal cancers, fibrosarcomas, mammary carcinomas and melanomas, as it improved overall survival. These effects were inhibited by the ADRA2 antagonist yohimbine, suggesting that DEX mediates its anticancer effects at least in part on-target. Depending on the specific tumor model, DEX also enhanced the cytotoxic T cell/regulatory T cell ratio in the tumor bed and draining lymph nodes. Programmed cell death protein 1 blockade tended to improve DEX effects. After rechallenge with antigenically identical cells, no tumor appeared, indicating the formation of immunological memory. CONCLUSIONS These results confirm the machine learning-predicted anticancer activity of DEX. Beyond its utility as a sedative agent in oncological intensive care, DEX may improve anticancer immunosurveillance and sensitize tumors to immune checkpoint blockade.
Collapse
Affiliation(s)
- Liwei Zhao
- INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Peng Liu
- INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Allan Sauvat
- INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Killian Carnet Le Provost
- INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Jiani Liu
- INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Andrea Checcoli
- INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Jonathan Pol
- INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Oliver Kepp
- INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Lucillia Bezu
- INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| |
Collapse
|
2
|
Xia J, Chen H, Wang Y, Hu W, Guo K, Linghu Q, Guo P, Wang X, Xia Q, Nezis IP, Zhao P, Dong Z, Zhang Y. Defective autophagy in a fibroin secretion-deficient silkworm mutant. Autophagy 2025. [PMID: 40413758 DOI: 10.1080/15548627.2025.2510843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 05/17/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025] Open
Abstract
The silkworm Bombyx mori is an economically important insect for silk production. Its silk glands are responsible for the synthesis and secretion of silk proteins. The naked pupa (Nd), a fibroin heavy chain mutant strain of silkworm, was found to exhibit severe atrophy, degeneration of the posterior silk gland (PSG), and abnormal secretion of fibroin proteins, thereby producing little or no silk. Here, we found that the autophagic marker Atg8-PE was upregulated through the target of rapamycin complex 1 signaling pathway in Nd. However, as autophagy substrates, SQSTM1/p62 and ubiquitinated protein levels increased in Nd. Furthermore, treatment with BafA1 showed no effect on the protein levels of SQSTM1/p62, indicating impaired autophagic flux in Nd. Abnormal acidification of lysosomes was further detected, which resulted in a decreased proportion of matured CtsL1 (cathepsin L1). Thus, the substrate in autolysosomes cannot be degraded within a rapid time frame, resulting in the accumulation of protein aggregates, which cause atrophy and degeneration of the PSG. We also found that acidic nanoparticles rescued lysosomal acidification and relieved the degenerative changes of Nd-PSG. The findings of this study suggest that the Nd mutant silkworm can be used as an animal model for studying protein aggregation diseases.
Collapse
Affiliation(s)
- Jianhua Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Haiqin Chen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yuying Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Wenbo Hu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Kaiyu Guo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingqing Linghu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Pengchao Guo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xin Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ioannis P Nezis
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhaoming Dong
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yan Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Zhang X, Xu C, Ji L, Zhang H. Endoplasmic reticulum stress in acute pancreatitis: Exploring the molecular mechanisms and therapeutic targets. Cell Stress Chaperones 2025; 30:119-129. [PMID: 40107566 PMCID: PMC11995708 DOI: 10.1016/j.cstres.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
Acute pancreatitis (AP) is associated with multiple cellular mechanisms that trigger and or are triggered by the inflammatory injury and death of the acinar cells. One of the key mechanisms is the endoplasmic reticulum (ER) stress, which manifests as an accumulation of misfolded proteins within ER, an event that has proinflammatory and proapoptotic consequences. Hence, the degree of cell insult during AP could considerably depend on the signaling pathways that are upregulated during ER stress and its resulting dyshomeostasis such as C/EBP homologous protein (CHOP), cJUN NH2-terminal kinase (JNK), nuclear factor kappa B (NF-κB), and NOD-like receptor protein 3 (NLRP3) inflammasome. Exploring these molecular pathways is an interesting area for translational medicine as it may lead to identifying new therapeutic targets in AP. This review of the literature aims to shed light on the different roles of ER stress in the etiopathogenesis and pathogenesis of AP. Then, it specifically focuses on the therapeutic implications of ER stress in this context.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- Department of Gastroenterology, Weifang People's Hospital, Weifang, Shandong, China
| | - Chenchen Xu
- Department of Pediatrics, Weifang People's Hospital, Weifang, Shandong, China
| | - LiJuan Ji
- Department of Internal Medicine, Weicheng People's Hospital, Weifang, Shandong, China
| | - Haiwei Zhang
- Department of Gastroenterology, Weifang People's Hospital, Weifang, Shandong, China.
| |
Collapse
|
4
|
Sanchez-Guerrero G, Umbaugh DS, Smith SH, Akakpo JY, Jaeschke H, Ramachandran A. Mixed lineage kinase domain-like protein deficiency exacerbates early injury in a mouse model of acetaminophen hepatotoxicity. Toxicol Sci 2025; 205:220-232. [PMID: 39985503 PMCID: PMC12038254 DOI: 10.1093/toxsci/kfaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
An overdose of acetaminophen (APAP) is the leading cause of drug-induced hepatotoxicity and acute liver failure in the United States. It is established that the predominant mode of hepatocyte cell death after an APAP overdose is through necrosis, and it is now recognized that this occurs through regulated pathways involving RIP kinases. These kinases, along with the pseudo-kinase MLKL, are central players in classical necroptotic cell death. Despite the skepticism regarding the role of necroptosis in APAP-induced liver injury, recent research demonstrating necroptosis-independent roles for MLKL led us to re-examine the role of this pseudo-kinase in APAP pathophysiology. Treatment of Mlkl-/- mice with a moderate (300 mg/kg) overdose of APAP resulted in an exacerbation of liver injury at 6- and 12-h post-APAP as evidenced by elevated plasma alanine aminotransferase activities, and extensive necrosis accompanied by diminished glutathione levels. Interestingly, these differences between Mlkl-/- and wild-type mice were negated at the 24-h mark, previously scrutinized by others. At 6 and 12 h post-APAP, Mlkl-/- mice exhibited augmented translocation of AIF and Endonuclease G without affecting JNK activation, suggesting enhanced mitochondrial permeability transition in the absence of MLKL. Lack of MLKL also impacted autophagy, the unfolded protein response and endoplasmic reticulum stress, with decreased levels of p62 and LC3B and increased expression of CHOP and GRP78 at 6 h post-APAP. In essence, our findings illuminate a noncanonical role for MLKL in the early phases of APAP-induced liver injury, warranting further exploration of its influence on APAP pathophysiology.
Collapse
Affiliation(s)
- Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - David S Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Sawyer H Smith
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
5
|
Li X, Lu D, Zou L, Ma L, Yang Y, Quan X, Song W, Ye Q, Lu HL, Brockmeier U, Zhou Y, Huang G, Wang YC. Activation of the PERK Branch of the UPR as a Strategy for Improving Outcomes in Acute Ischemic Stroke. ACS OMEGA 2025; 10:15461-15470. [PMID: 40290914 PMCID: PMC12019423 DOI: 10.1021/acsomega.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025]
Abstract
Brain ischemia disrupts endoplasmic reticulum (ER) dynamics, causes ER stress, and triggers the unfolded protein response (UPR). During the UPR, protein kinase RNA-like ER kinase (PERK) phosphorylates eIF2α, shutting down global protein synthesis, inhibits protein synthesis, and provides neuroprotection during acute ischemic stroke. Herein, middle cerebral artery occlusion/reperfusion (MCAO/R) and PERK neuron-specific deletion conditional knockout mice were employed to observe the function and mechanisms of PERK. CCT020312, a novel selective PERK activator, specifically activates PERK and provides neuroprotection both in vivo and in vitro stroke models. Additionally, CCT020312 enhanced neuronal survival and cerebral microvessels and decreased the level of astrogliosis in acute ischemic stroke mice. Furthermore, in vivo experiments demonstrated that CCT020312 not only prevented apoptosis but also enhanced the PERK/p-eIF2α/LC3-II autophagy signaling pathway in MCAO/R mice. In conclusion, our study supports the potential therapeutic value of targeting PERK in acute ischemic stroke, offering a promising strategy for enhancing stroke outcomes through the modulation of protein synthesis and the autophagy pathway.
Collapse
Affiliation(s)
- Xiangzhu Li
- Department
of Neurosurgery, The Institute Translational
Medicine, Shenzhen Second People’s Hospital/The First Affiliated
Hospital of Shenzhen University, Shenzhen 518035, China
- Shenzhen
Traditional Chinese Medicine Hospital, No. 1, Fuhua Road, Futian District, Shenzhen 518033, Guangdong, China
| | - Dongting Lu
- Department
of Neurology, Guangxi University of Chinese
Medicine, Nanning 530200, China
| | - Lei Zou
- Department
of Neurosurgery, The Institute Translational
Medicine, Shenzhen Second People’s Hospital/The First Affiliated
Hospital of Shenzhen University, Shenzhen 518035, China
| | - Lijuan Ma
- The
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University
and Shandong Provincial Qianfoshan Hospital, Key Laboratory of Laparoscopic
Technology, the First Affiliated Hospital of Shandong First Medical
University, Shandong 250014, China
- Hisense
Postdoctoral Research Station, No. 399 Songling Road, Laoshan District, Qingdao 266100, Shandong, China
| | - Yukun Yang
- Department
of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Xingyun Quan
- Department
of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Wei Song
- Nanophotonics
Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information
Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Qinlian Ye
- Department
of Neurosurgery, The Institute Translational
Medicine, Shenzhen Second People’s Hospital/The First Affiliated
Hospital of Shenzhen University, Shenzhen 518035, China
| | - Hui-lun Lu
- Department
of Respiratory Medicine, The Second Peoples
Hospital of Longgang District, Shenzhen 518112, China
| | - Ulf Brockmeier
- Department
of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Yanxia Zhou
- Department
of Neurology, Shenzhen Second People’s
Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Guodong Huang
- Department
of Neurosurgery, The Institute Translational
Medicine, Shenzhen Second People’s Hospital/The First Affiliated
Hospital of Shenzhen University, Shenzhen 518035, China
| | - Ya-chao Wang
- Department
of Neurosurgery, The Institute Translational
Medicine, Shenzhen Second People’s Hospital/The First Affiliated
Hospital of Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
6
|
Moreews M, Karlsson MCI. Endoplasmic reticulum stress: A key player in immune cell regulation and autoimmune disorders. Semin Immunol 2025; 78:101954. [PMID: 40267701 DOI: 10.1016/j.smim.2025.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
The endoplasmic reticulum (ER) is a large organelle, found in all eukaryotes, that is essential for normal cellular function. This function encompasses protein folding and quality control, post-translational modifications, lipid regulation, and the storage of intracellular calcium, among others. These diverse processes are essential for maintaining proteome stability. Therefore, a robust surveillance system is established under stress to ensure cell homeostasis. Sources of stress can originate from the cellular environment, including nutrient deprivation, hypoxia, and low pH, as well as from endogenous signals within the cell, such as metabolic challenges and increased demands for protein production. When cellular homeostasis is altered by one of these triggers, ER primary functions are altered which leads to the accumulation of misfolded proteins. These impaired proteins trigger the activation of the Unfolded Protein Response (UPR) pathway. This response aims at reducing ER stress by implementing the induction of complex programs to restore cell homeostasis. However, extended ER stress can modify the UPR response, shifting its signals from promoting survival to triggering pathways that reprogram or eliminate affected cells.
Collapse
Affiliation(s)
- Marion Moreews
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden.
| |
Collapse
|
7
|
Chen B, Lyssiotis CA, Shah YM. Mitochondria-organelle crosstalk in establishing compartmentalized metabolic homeostasis. Mol Cell 2025; 85:1487-1508. [PMID: 40250411 DOI: 10.1016/j.molcel.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 04/20/2025]
Abstract
Mitochondria serve as central hubs in cellular metabolism by sensing, integrating, and responding to metabolic demands. This integrative function is achieved through inter-organellar communication, involving the exchange of metabolites, lipids, and signaling molecules. The functional diversity of metabolite exchange and pathway interactions is enabled by compartmentalization within organelle membranes. Membrane contact sites (MCSs) are critical for facilitating mitochondria-organelle communication, creating specialized microdomains that enhance the efficiency of metabolite and lipid exchange. MCS dynamics, regulated by tethering proteins, adapt to changing cellular conditions. Dysregulation of mitochondrial-organelle interactions at MCSs is increasingly recognized as a contributing factor in the pathogenesis of multiple diseases. Emerging technologies, such as advanced microscopy, biosensors, chemical-biology tools, and functional genomics, are revolutionizing our understanding of inter-organellar communication. These approaches provide novel insights into the role of these interactions in both normal cellular physiology and disease states. This review will highlight the roles of metabolite transporters, lipid-transfer proteins, and mitochondria-organelle interfaces in the coordination of metabolism and transport.
Collapse
Affiliation(s)
- Brandon Chen
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Yatrik M Shah
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Samanta S, Roy J, Debnath B, Ljungman M, Neamati N. PSP205, a Novel Phenyl Sulfonyl Piperidine, Induces Apoptotic Cell Death in Colon Cancer by Modulating Coat Protein Complex-Mediated Vesicle Trafficking. ACS Pharmacol Transl Sci 2025; 8:1072-1086. [PMID: 40242573 PMCID: PMC11997887 DOI: 10.1021/acsptsci.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 04/18/2025]
Abstract
The endoplasmic reticulum (ER) stress and autophagic pathways offer attractive targets for the development of new cancer drugs. Here, we identified a novel phenyl sulfonyl piperidine, PSP205, that induces prolonged ER-stress-mediated autophagy and apoptosis in colon cancer cells. Transcriptome analysis of cells exposed to PSP205 unveiled transcriptional upregulation of genes associated with the ER stress response or unfolded protein response (UPR), in addition to vesicle transport. Among the top upregulated genes, DNAJB9, XBP1, PDIA4, HSPA5, SEC24D, and SEC11C are implicated in ER stress. Gene set enrichment analysis revealed the enrichment of gene sets involved in the UPR, mTORC1 signaling, hypoxia, the P53 pathway, apoptosis, and the ER-Golgi-vesicle-mediated transport pathway. Mechanistic studies showed that PSP205 acts on the IRE1-TRAF2-JNK pathway to modulate autophagic flux, leading to macroautophagy, ER-phagy, and deformation of Golgi. Our study also demonstrated that PSP205 decreases the expression of the COPI coat complex subunit beta 2 (COPB2) in the presence of COPB2 siRNA. Furthermore, PSP205 synergistically killed colon cancer cells in combination with proteasome and topoisomerase inhibitors. Cumulatively, our findings suggest that PSP205 targets cancer cells via a novel mechanism, specifically by decreasing the level of COPB2, which has not been extensively studied in the context of cancer therapy development and warrants further investigation.
Collapse
Affiliation(s)
- Soma Samanta
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joyeeta Roy
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bikash Debnath
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mats Ljungman
- Department
of Radiation Oncology, Rogel Cancer Center, and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Semeradtova A, Liegertova M, Herma R, Capkova M, Brignole C, Del Zotto G. Extracellular vesicles in cancer´s communication: messages we can read and how to answer. Mol Cancer 2025; 24:86. [PMID: 40108630 PMCID: PMC11921637 DOI: 10.1186/s12943-025-02282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Extracellular vesicles (EVs) are emerging as critical mediators of intercellular communication in the tumor microenvironment (TME), profoundly influencing cancer progression. These nano-sized vesicles, released by both tumor and stromal cells, carry a diverse cargo of proteins, nucleic acids, and lipids, reflecting the dynamic cellular landscape and mediating intricate interactions between cells. This review provides a comprehensive overview of the biogenesis, composition, and functional roles of EVs in cancer, highlighting their significance in both basic research and clinical applications. We discuss how cancer cells manipulate EV biogenesis pathways to produce vesicles enriched with pro-tumorigenic molecules, explore the specific contributions of EVs to key hallmarks of cancer, such as angiogenesis, metastasis, and immune evasion, emphasizing their role in shaping TME and driving therapeutic resistance. Concurrently, we submit recent knowledge on how the cargo of EVs can serve as a valuable source of biomarkers for minimally invasive liquid biopsies, and its therapeutic potential, particularly as targeted drug delivery vehicles and immunomodulatory agents, showcasing their promise for enhancing the efficacy and safety of cancer treatments. By deciphering the intricate messages carried by EVs, we can gain a deeper understanding of cancer biology and develop more effective strategies for early detection, targeted therapy, and immunotherapy, paving the way for a new era of personalized and precise cancer medicine with the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Alena Semeradtova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic.
| | - Michaela Liegertova
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Regina Herma
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Magdalena Capkova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| | - Genny Del Zotto
- Core Facilities, Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.
| |
Collapse
|
10
|
Stilkerich A, Schicht G, Seidemann L, Hänsel R, Friebel A, Hoehme S, Seehofer D, Damm G. Cell Homeostasis or Cell Death-The Balancing Act Between Autophagy and Apoptosis Caused by Steatosis-Induced Endoplasmic Reticulum (ER) Stress. Cells 2025; 14:449. [PMID: 40136698 PMCID: PMC11941029 DOI: 10.3390/cells14060449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver condition with potential progression to cirrhosis and impaired regeneration post-resection. A key mechanism underlying lipotoxicity is endoplasmic reticulum (ER) stress, particularly the activation of the unfolded protein response (UPR). This study investigates the interplay between lipid accumulation, endoplasmic reticulum (ER) stress, and cellular outcomes, focusing on the balance between autophagy and apoptosis. We cultured primary human hepatocytes (PHH) in a free fatty acid (FFA)-enriched medium for 120 h, assessing lipid accumulation, metabolism, and the expression of selected UPR markers. Additionally, we investigated the effects of lipid load on cell activity and growth in proliferating HepG2 cells. We observed that FFA uptake consistently induced ER stress, shifting cellular responses toward apoptosis under high lipid loads. Donor-specific differences were evident, particularly in lipid storage, excretion, and sensitivity to lipotoxicity. Some donors exhibited limited triglyceride (TAG) storage and excretion, leading to an excess of FFA whose metabolic fate remains unclear. Proliferation was more sensitive to lipid accumulation than overall cell activity, with even low FFA concentrations impairing growth, highlighting the vulnerability of regenerative processes to steatosis. The study elucidates how ER stress pathways, such as PERK-CHOP and IRE1α-JNK, are differentially activated in response to lipid overload, tipping the balance toward apoptosis in severe cases. The limited activation of repair mechanisms, such as autophagy, further emphasizes the critical role of ER stress in determining hepatocyte fate. The donor-dependent variability highlights the need for personalized strategies to mitigate lipotoxic effects and enhance liver regeneration in steatosis-related conditions.
Collapse
Affiliation(s)
- Anna Stilkerich
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.S.); (G.S.); (L.S.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany; (R.H.); (A.F.); (S.H.)
| | - Gerda Schicht
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.S.); (G.S.); (L.S.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany; (R.H.); (A.F.); (S.H.)
| | - Lena Seidemann
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.S.); (G.S.); (L.S.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany; (R.H.); (A.F.); (S.H.)
| | - René Hänsel
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany; (R.H.); (A.F.); (S.H.)
| | - Adrian Friebel
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany; (R.H.); (A.F.); (S.H.)
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), 04105 Leipzig, Germany
| | - Stefan Hoehme
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany; (R.H.); (A.F.); (S.H.)
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), 04105 Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.S.); (G.S.); (L.S.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany; (R.H.); (A.F.); (S.H.)
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (A.S.); (G.S.); (L.S.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany; (R.H.); (A.F.); (S.H.)
| |
Collapse
|
11
|
Cocchiararo I, Castets P. Recent advances in the clinical spectrum and pathomechanisms associated with X-linked myopathy with excessive autophagy and other VMA21-related disorders. J Neuromuscul Dis 2025:22143602251314767. [PMID: 40033998 DOI: 10.1177/22143602251314767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
X-linked myopathy with excessive autophagy (XMEA) is a rare neuromuscular disorder caused by mutations in the VMA21 gene, encoding a chaperone protein present in the endoplasmic reticulum (ER). In yeast and human, VMA21 has been shown to chaperone the assembly of the vacuolar (v)-ATPase proton pump required for the acidification of lysosomes and other organelles. In line with this, VMA21 deficiency in XMEA impairs autophagic degradation steps, which would be key in XMEA pathogenesis. Recent years have witnessed a surge of interest in VMA21, with the identification of novel mutations causing a congenital disorder of glycosylation (CDG) with liver affection, and its potent implication in cancer predisposition. With this, VMA21 deficiency has been further linked to defective glycosylation, lipid metabolism dysregulation and ER stress. Moreover, the identification of two VMA21 isoforms, namely VMA21-101 and VMA21-120, has opened novel avenues regarding the pathomechanisms leading to XMEA and VMA21-CDG. In this review, we discuss recent advances on the clinical spectrum associated with VMA21 deficiency and on the pathophysiological roles of VMA21.
Collapse
Affiliation(s)
- Ilaria Cocchiararo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Perrine Castets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Lin M, Mo Y, Li CM, Liu YZ, Feng XP. GRP78 as a potential therapeutic target in cancer treatment: an updated review of its role in chemoradiotherapy resistance of cancer cells. Med Oncol 2025; 42:49. [PMID: 39827214 DOI: 10.1007/s12032-024-02586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
GRP78 (Glucose-related protein 78, BiP/HSPA5) is commonly overexpressed in cancer cells. Acting as an activator of endoplasmic reticulum stress, GRP78 is involved in the resistance of cancer cells to injury. Current evidence suggests that GRP78 plays a significant role in the radiotherapy resistance and chemotherapy resistance of cancers, which is accomplished through a variety of complex pathways. These include the promotion of tumor stemness, inhibition of apoptosis, regulation of autophagy, maintenance of tumor microenvironment homeostasis, protection of dormant cells, evasion of senescence, counteraction of autoantibodies against GRP78, facilitation of DNA damage repair, suppression of ferroptosis, and modulation of metabolic reprogramming in tumor cells. Importantly, chemoradiotherapy resistance in cancers are the main reasons for treatment failure in patients, severely affecting their survival. Investigating the mechanisms of GRP78 in tumor therapeutic resistance is essential. In this article, we review the mechanisms by which GRP78 mediates cell survival and chemoradiotherapy resistance in cancers and provide an overview of clinical trials targeting GRP78 therapy.
Collapse
Affiliation(s)
- Min Lin
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yan Mo
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Cheng-Min Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ying-Zhe Liu
- Xiangya International Medical Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Xue-Ping Feng
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
13
|
Markov AV, Moralev AD, Odarenko KV. Sesquiterpene Lactones as Promising Anti-Glioblastoma Drug Candidates Exerting Complex Effects on Glioblastoma Cell Viability and Proneural-Mesenchymal Transition. Biomedicines 2025; 13:133. [PMID: 39857717 PMCID: PMC11761231 DOI: 10.3390/biomedicines13010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Glioblastoma is one of the most aggressive brain cancers, characterized by active infiltrative growth and high resistance to radiotherapy and chemotherapy. Sesquiterpene triterpenoids (STLs) and their semi-synthetic analogs are considered as a promising source of novel anti-tumor agents due to their low systemic toxicity and multi-target pharmacological effects on key processes associated with tumor progression. The current review aims to systematize the knowledge on the anti-glioblastoma potential of STLs accumulated over the last decade and to identify key processes in glioblastoma cells that are most susceptible to the action of STLs. An analysis of published data clearly demonstrated that STLs, which can successfully cross the blood-brain barrier, exert a complex inhibitory effect on glioblastoma cells through the induction of the "mitochondrial dysfunction-oxidative stress-apoptosis" axis, the inhibition of glucose metabolism and cell cycle phase transition, and the suppression of glioblastoma cell motility and invasion through the blockade of proneural-mesenchymal transition. Taken together, this review highlights the promising anti-glioblastoma potential of STLs, which are not only able to induce glioblastoma cell death, but also effectively affect their diffusive spread, and suggests the possible directions for further investigation of STLs in the context of glioblastoma to better understand their mechanism of action.
Collapse
Affiliation(s)
- Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev Avenue 8, 630090 Novosibirsk, Russia; (A.D.M.); (K.V.O.)
| | | | | |
Collapse
|
14
|
Meng X, Du W, Sun Z. Fine particulate matter‑induced cardiac developmental toxicity (Review). Exp Ther Med 2025; 29:6. [PMID: 39534282 PMCID: PMC11552469 DOI: 10.3892/etm.2024.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Fine particulate matter (PM2.5) has become an important risk factor threatening human health. Epidemiological and toxicological investigations have revealed that PM2.5 not only leads to cardiovascular dysfunction, but it also gives rise to various adverse health effects on the human body, such as cardiovascular and cerebrovascular diseases, cancers, neurodevelopmental disorders, depression and autism. PM2.5 is able to penetrate both respiratory and placental barriers, thereby resulting in negative effects on fetal development. A large body of epidemiological evidences has suggested that gestational exposure to PM2.5 increases the incidence of congenital diseases in offspring, including congenital heart defects. In addition, animal model studies have revealed that gestational exposure to PM2.5 can disrupt normal heart development in offspring, although the potential molecular mechanisms have yet to be fully elucidated. The aim of the present review was to provide a brief overview of what is currently known regarding the molecular mechanisms underlying cardiac developmental toxicity in offspring induced by gestational exposure to PM2.5.
Collapse
Affiliation(s)
- Xiangjiang Meng
- Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China
| | - Weiyuan Du
- Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China
| | - Zongli Sun
- Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China
| |
Collapse
|
15
|
Lu Y, Zhou J, Wang H, Gao H, Ning E, Shao Z, Hao Y, Yang X. Endoplasmic reticulum stress-mediated apoptosis and autophagy in osteoarthritis: From molecular mechanisms to therapeutic applications. Cell Stress Chaperones 2024; 29:805-830. [PMID: 39571722 DOI: 10.1016/j.cstres.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024] Open
Abstract
Osteoarthritis (OA) is characterized primarily by the degeneration of articular cartilage, with a high prevalence and disability rate. The functional phenotype of chondrocytes, as the sole cell type within cartilage, is vital for OA progression. Due to the avascular nature of cartilage and its limited regenerative capacity, repair following injury poses significant challenges. Various cellular stressors, including hypoxia, nutrient deprivation, oxidative stress, and collagen mutations, can lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), resulting in ER stress (ERS). In response to restore ER homeostasis as well as cellular vitality and function, a series of adaptive mechanisms are triggered, including the unfolded protein response, ER-associated degradation, and ER-phagy. Prolonged or severe ERS may exceed the adaptive capacity of cells, leading to dysregulation in apoptosis and autophagy-key pathogenic factors contributing to chondrocyte damage and OA progression. This review examines the relationship between ERS in OA chondrocytes and both apoptosis and autophagy in order to identify potential therapeutic targets and strategies for prevention and treatment of OA.
Collapse
Affiliation(s)
- Yifan Lu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Hong Wang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Hua Gao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Eryu Ning
- Gusu School, Nanjing Medical University, Suzhou, PR China; Department of Sports Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China
| | - Zhiqiang Shao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China.
| | - Xing Yang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China.
| |
Collapse
|
16
|
Lindner K, Gavin AC. Isoform- and cell-state-specific APOE homeostasis and function. Neural Regen Res 2024; 19:2456-2466. [PMID: 38526282 PMCID: PMC11090418 DOI: 10.4103/nrr.nrr-d-23-01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 12/26/2023] [Indexed: 03/26/2024] Open
Abstract
Apolipoprotein E is the major lipid transporter in the brain and an important player in neuron-astrocyte metabolic coupling. It ensures the survival of neurons under stressful conditions and hyperactivity by nourishing and detoxifying them. Apolipoprotein E polymorphism, combined with environmental stresses and/or age-related alterations, influences the risk of developing late-onset Alzheimer's disease. In this review, we discuss our current knowledge of how apolipoprotein E homeostasis, i.e. its synthesis, secretion, degradation, and lipidation, is affected in Alzheimer's disease.
Collapse
Affiliation(s)
- Karina Lindner
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anne-Claude Gavin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Zhang C, Sun X, Wu D, Wang G, Lan H, Zheng X, Li S. IP 3R1 is required for meiotic progression and embryonic development by regulating mitochondrial calcium and oxidative damage. Theriogenology 2024; 229:147-157. [PMID: 39178616 DOI: 10.1016/j.theriogenology.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Calcium ions (Ca2+) regulate cell proliferation and differentiation and participate in various physiological activities of cells. The calcium transfer protein inositol 1,4,5-triphosphate receptor (IP3R), located between the endoplasmic reticulum (ER) and mitochondria, plays an important role in regulating Ca2+ levels. However, the mechanism by which IP3R1 affects porcine meiotic progression and embryonic development remains unclear. We established a model in porcine oocytes using siRNA-mediated knockdown of IP3R1 to investigate the effects of IP3R1 on porcine oocyte meiotic progression and embryonic development. The results indicated that a decrease in IP3R1 expression significantly enhanced the interaction between the ER and mitochondria. Additionally, the interaction between the ER and the mitochondrial Ca2+ ([Ca2+]m) transport network protein IP3R1-GRP75-VDAC1 was disrupted. The results of the Duolink II in situ proximity ligation assay (PLA) revealed a weakened pairwise interaction between IP3R1-GRP75 and VDAC1 and a significantly increased interaction between GRP75 and VDAC1 after IP3R1 interference, resulting in the accumulation of large amounts of [Ca2+]m. These changes led to mitochondrial oxidative stress, increased the levels of reactive oxygen species (ROS) and reduced ATP production, which hindered the maturation and late development of porcine oocytes and induced apoptosis. Nevertheless, after treat with [Ca2+]m chelating agent ruthenium red (RR) or ROS scavenger N-acetylcysteine (NAC), the oocytes developmental abnormalities, oxidative stress and apoptosis caused by Ca2+ overload were improved. In conclusion, our results indicated IP3R1 is required for meiotic progression and embryonic development by regulating mitochondrial calcium and oxidative damage.
Collapse
Affiliation(s)
- Chang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Xiaoqing Sun
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Deyi Wu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Suo Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China.
| |
Collapse
|
18
|
Abolfazli S, Butler AE, Kesharwani P, Sahebkar A. The beneficial impact of curcumin on cardiac lipotoxicity. J Pharm Pharmacol 2024; 76:1269-1283. [PMID: 39180454 DOI: 10.1093/jpp/rgae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/02/2024] [Indexed: 08/26/2024]
Abstract
Lipotoxicity is defined as a prolonged metabolic imbalance of lipids that results in ectopic fat distribution in peripheral organs such as the liver, heart, and kidney. The harmful consequences of excessive lipid accumulation in cardiomyocytes cause cardiac lipotoxicity, which alters the structure and function of the heart. Obesity and diabetes are linked to lipotoxic cardiomyopathy. These anomalies might be caused by a harmful metabolic shift that accumulates toxic lipids and shifts glucose oxidation to less fatty acid oxidation. Research has linked fatty acids, fatty acyl coenzyme A, diacylglycerol, and ceramide to lipotoxic stress in cells. This stress can be brought on by apoptosis, impaired insulin signaling, endoplasmic reticulum stress, protein kinase C activation, p38 Ras-mitogen-activated protein kinase (MAPK) activation, or modification of peroxisome proliferator-activated receptors (PPARs) family members. Curcuma longa is used to extract curcumin, a hydrophobic polyphenol derivative with a variety of pharmacological characteristics. Throughout the years, curcumin has been utilized as an anti-inflammatory, antioxidant, anticancer, hepatoprotective, cardioprotective, anti-diabetic, and anti-obesity drug. Curcumin reduces cardiac lipotoxicity by inhibiting apoptosis and decreasing the expression of apoptosis-related proteins, reducing the expression of inflammatory cytokines, activating the autophagy signaling pathway, and inhibiting the expression of endoplasmic reticulum stress marker proteins.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University Medical Science, Sari, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Hou M, Zhang Z, Fan Z, Huang L, Wang L. The mechanisms of Ca2+ regulating autophagy and its research progress in neurodegenerative diseases: A review. Medicine (Baltimore) 2024; 103:e39405. [PMID: 39183424 PMCID: PMC11346841 DOI: 10.1097/md.0000000000039405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Neurodegenerative diseases are complex disorders that significantly challenge human health, with their incidence increasing with age. A key pathological feature of these diseases is the accumulation of misfolded proteins. The underlying mechanisms involve an imbalance in calcium homeostasis and disturbances in autophagy, indicating a likely correlation between them. As the most important second messenger, Ca2+ plays a vital role in regulating various cell activities, including autophagy. Different organelles within cells serve as Ca2+ storage chambers and regulate Ca2+ levels under different conditions. Ca2+ in these compartments can affect autophagy via Ca2+ channels or other related signaling proteins. Researchers propose that Ca2+ regulates autophagy through distinct signal transduction mechanisms, under normal or stressful conditions, and thereby contributing to the occurrence and development of neurodegenerative diseases. This review provides a systematic examination of the regulatory mechanisms of Ca2+ in cell membranes and different organelles, as well as its downstream pathways that influence autophagy and its implications for neurodegenerative diseases. This comprehensive analysis may facilitate the development of new drugs and provide more precise treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Meng Hou
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhixiao Zhang
- Department of Neurology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China
| | - Zexin Fan
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lei Huang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Wang
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
20
|
Peng P, Chavel C, Liu W, Carlson LM, Cao S, Utley A, Olejniczak SH, Lee KP. Pro-survival signaling regulates lipophagy essential for multiple myeloma resistance to stress-induced death. Cell Rep 2024; 43:114445. [PMID: 38968073 PMCID: PMC11318075 DOI: 10.1016/j.celrep.2024.114445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024] Open
Abstract
Pro-survival metabolic adaptations to stress in tumorigenesis remain less well defined. We find that multiple myeloma (MM) is unexpectedly dependent on beta-oxidation of long-chain fatty acids (FAs) for survival under both basal and stress conditions. However, under stress conditions, a second pro-survival signal is required to sustain FA oxidation (FAO). We previously found that CD28 is expressed on MM cells and transduces a significant pro-survival/chemotherapy resistance signal. We now find that CD28 signaling regulates autophagy/lipophagy that involves activation of the Ca2+→AMPK→ULK1 axis and regulates the translation of ATG5 through HuR, resulting in sustained lipophagy, increased FAO, and enhanced MM survival. Conversely, blocking autophagy/lipophagy sensitizes MM to chemotherapy in vivo. Our findings link a pro-survival signal to FA availability needed to sustain the FAO required for cancer cell survival under stress conditions and identify lipophagy as a therapeutic target to overcome treatment resistance in MM.
Collapse
Affiliation(s)
- Peng Peng
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Colin Chavel
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Wensheng Liu
- Department of Pediatrics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Louise M Carlson
- Indiana University Simon Comprehensive Cancer Center, and the Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sha Cao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adam Utley
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Scott H Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kelvin P Lee
- Indiana University Simon Comprehensive Cancer Center, and the Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
21
|
Cheney L, Barbaro JM, McDermott G, Berman JW. Antiretroviral Drugs Impact Autophagy: Opportunities for Drug Repurposing. FRONT BIOSCI-LANDMRK 2024; 29:242. [PMID: 39082334 PMCID: PMC11837255 DOI: 10.31083/j.fbl2907242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 01/04/2025]
Abstract
Autophagy is an evolutionarily conserved process in which intracellular macromolecules are degraded in a lysosomal-dependent manner. It is central to cellular energy homeostasis and to quality control of intracellular components. A decline in autophagic activity is associated with aging, and contributes to the development of various age-associated pathologies, including cancer. There is an ongoing need to develop chemotherapeutic agents to improve morbidity and mortality for those diagnosed with cancer, as well as to decrease the cost of cancer care. Autophagic programs are altered in cancer cells to support survival in genetically and metabolically unstable environments, making autophagy an attractive target for new chemotherapy. Antiretroviral drugs, which have dramatically increased the life- and health spans of people with human immunodeficiency virus (HIV) (PWH), have offered promise in the treatment of cancer. One mechanism underlying the antineoplastic effects of antiretroviral drugs is the alteration of cancer cell autophagy that can potentiate cell death. Antiretroviral drugs could be repurposed into the cancer chemotherapy arsenal. A more complete understanding of the impact of antiretroviral drugs on autophagy is essential for effective repurposing. This review summarizes our knowledge of the effects of antiretroviral drugs on autophagy as potential adjunctive chemotherapeutic agents, and highlights gaps to be addressed to reposition antiretroviral drugs into the antineoplastic arsenal successfully.
Collapse
Affiliation(s)
- Laura Cheney
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John M. Barbaro
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
22
|
Helgoe J, Davy SK, Weis VM, Rodriguez-Lanetty M. Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biol Rev Camb Philos Soc 2024; 99:715-752. [PMID: 38217089 DOI: 10.1111/brv.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
The intracellular coral-dinoflagellate symbiosis is the engine that underpins the success of coral reefs, one of the most diverse ecosystems on the planet. However, the breakdown of the symbiosis and the loss of the microalgal symbiont (i.e. coral bleaching) due to environmental changes are resulting in the rapid degradation of coral reefs globally. There is an urgent need to understand the cellular physiology of coral bleaching at the mechanistic level to help develop solutions to mitigate the coral reef crisis. Here, at an unprecedented scope, we present novel models that integrate putative mechanisms of coral bleaching within a common framework according to the triggers (initiators of bleaching, e.g. heat, cold, light stress, hypoxia, hyposalinity), cascades (cellular pathways, e.g. photoinhibition, unfolded protein response, nitric oxide), and endpoints (mechanisms of symbiont loss, e.g. apoptosis, necrosis, exocytosis/vomocytosis). The models are supported by direct evidence from cnidarian systems, and indirectly through comparative evolutionary analyses from non-cnidarian systems. With this approach, new putative mechanisms have been established within and between cascades initiated by different bleaching triggers. In particular, the models provide new insights into the poorly understood connections between bleaching cascades and endpoints and highlight the role of a new mechanism of symbiont loss, i.e. 'symbiolysosomal digestion', which is different from symbiophagy. This review also increases the approachability of bleaching physiology for specialists and non-specialists by mapping the vast landscape of bleaching mechanisms in an atlas of comprehensible and detailed mechanistic models. We then discuss major knowledge gaps and how future research may improve the understanding of the connections between the diverse cascade of cellular pathways and the mechanisms of symbiont loss (endpoints).
Collapse
Affiliation(s)
- Joshua Helgoe
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 2701 SW Campus Way, 2403 Cordley Hall, Corvallis, OR, USA
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, USA
| |
Collapse
|
23
|
Shao Y, Zheng L, Jiang Y. Cadmium toxicity and autophagy: a review. Biometals 2024; 37:609-629. [PMID: 38277035 DOI: 10.1007/s10534-023-00581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024]
Abstract
Cadmium (Cd) is an important environmental pollutant that poses a threat to human health and represents a critical component of air pollutants, food sources, and cigarette smoke. Cd is a known carcinogen and has toxic effects on the environment and various organs in humans. Heavy metals within an organism are difficult to biodegrade, and those that enter the respiratory tract are difficult to remove. Autophagy is a key mechanism for counteracting extracellular (microorganisms and foreign bodies) or intracellular (damaged organelles and proteins that cannot be degraded by the proteasome) stress and represents a self-protective mechanism for eukaryotes against heavy metal toxicity. Autophagy maintains cellular homeostasis by isolating and gathering information about foreign chemicals associated with other molecular events. However, autophagy may trigger cell death under certain pathological conditions, including cancer. Autophagy dysfunction is one of the main mechanisms underlying Cd-induced cytotoxicity. In this review, the toxic effects of Cd-induced autophagy on different human organ systems were evaluated, with a focus on hepatotoxicity, nephrotoxicity, respiratory toxicity, and neurotoxicity. This review also highlighted the classical molecular pathways of Cd-induced autophagy, including the ROS-dependent signaling pathways, endoplasmic reticulum (ER) stress pathway, Mammalian target of rapamycin (mTOR) pathway, Beclin-1 and Bcl-2 family, and recently identified molecules associated with Cd. Moreover, research directions for Cd toxicity regarding autophagic function were proposed. This review presents the latest theories to comprehensively reveal autophagy behavior in response to Cd toxicity and proposes novel potential autophagy-targeted prevention and treatment strategies for Cd toxicity and Cd-associated diseases in humans.
Collapse
Affiliation(s)
- Yueting Shao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liting Zheng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
24
|
Cortez N, Villegas C, Burgos V, Ortiz L, Cabrera-Pardo JR, Paz C. Therapeutic Potential of Chlorogenic Acid in Chemoresistance and Chemoprotection in Cancer Treatment. Int J Mol Sci 2024; 25:5189. [PMID: 38791228 PMCID: PMC11121551 DOI: 10.3390/ijms25105189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Chemotherapeutic drugs are indispensable in cancer treatment, but their effectiveness is often lessened because of non-selective toxicity to healthy tissues, which triggers inflammatory pathways that are harmful to vital organs. In addition, tumors' resistance to drugs causes failures in treatment. Chlorogenic acid (5-caffeoylquinic acid, CGA), found in plants and vegetables, is promising in anticancer mechanisms. In vitro and animal studies have indicated that CGA can overcome resistance to conventional chemotherapeutics and alleviate chemotherapy-induced toxicity by scavenging free radicals effectively. This review is a summary of current information about CGA, including its natural sources, biosynthesis, metabolism, toxicology, role in combatting chemoresistance, and protective effects against chemotherapy-induced toxicity. It also emphasizes the potential of CGA as a pharmacological adjuvant in cancer treatment with drugs such as 5-fluorouracil, cisplatin, oxaliplatin, doxorubicin, regorafenib, and radiotherapy. By analyzing more than 140 papers from PubMed, Google Scholar, and SciFinder, we hope to find the therapeutic potential of CGA in improving cancer therapy.
Collapse
Affiliation(s)
- Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000000, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| |
Collapse
|
25
|
Kapuy O. Mechanism of Decision Making between Autophagy and Apoptosis Induction upon Endoplasmic Reticulum Stress. Int J Mol Sci 2024; 25:4368. [PMID: 38673953 PMCID: PMC11050573 DOI: 10.3390/ijms25084368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Dynamic regulation of the cellular proteome is mainly controlled in the endoplasmic reticulum (ER). Accumulation of misfolded proteins due to ER stress leads to the activation of unfolded protein response (UPR). The primary role of UPR is to reduce the bulk of damages and try to drive back the system to the former or a new homeostatic state by autophagy, while an excessive level of stress results in apoptosis. It has already been proven that the proper order and characteristic features of both surviving and self-killing mechanisms are controlled by negative and positive feedback loops, respectively. The new results suggest that these feedback loops are found not only within but also between branches of the UPR, fine-tuning the response to ER stress. In this review, we summarize the recent knowledge of the dynamical characteristic of endoplasmic reticulum stress response mechanism by using both theoretical and molecular biological techniques. In addition, this review pays special attention to describing the mechanism of action of the dynamical features of the feedback loops controlling cellular life-and-death decision upon ER stress. Since ER stress appears in diseases that are common worldwide, a more detailed understanding of the behaviour of the stress response is of medical importance.
Collapse
Affiliation(s)
- Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
26
|
Chen P, Zhong X, Song Y, Zhong W, Wang S, Wang J, Huang P, Niu Y, Yang W, Ding Z, Luo Q, Yang C, Wang J, Zhang W. Triptolide induces apoptosis and cytoprotective autophagy by ROS accumulation via directly targeting peroxiredoxin 2 in gastric cancer cells. Cancer Lett 2024; 587:216622. [PMID: 38246224 DOI: 10.1016/j.canlet.2024.216622] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
Triptolide, a natural bioactive compound derived from herbal medicine Tripterygium wilfordii, has multiple biological activities including anti-cancer effect, which is being tested in clinical trials for treating cancers. However, the exact mechanism by which Triptolide exerts its cytotoxic effects, particularly its specific protein targets, remains unclear. Here, we show that Triptolide effectively induces cytotoxicity in gastric cancer cells by increasing reactive oxygen species (ROS) levels. Further investigations reveal that ROS accumulation contributes to the induction of Endoplasmic Reticulum (ER) stress, and subsequently autophagy induction in response to Triptolide. Meanwhile, this autophagy is cytoprotective. Interestingly, through activity-based protein profiling (ABPP) approach, we identify peroxiredoxins-2 (PRDX2), a component of the key enzyme systems that act in the defense against oxidative stress and protect cells against hydroperoxides, as direct binding target of Triptolide. By covalently binding to PRDX2 to inhibit its antioxidant activity, Triptolide increases ROS levels. Moreover, overexpression of PRDX2 inhibits and knockdown of the expression of PRDX2 increases Triptolide-induced apoptosis. Collectively, these results indicate PRDX2 as a direct target of Triptolides for inducing apoptosis. Our results not only provide novel insight into the underlying mechanisms of Triptolide-induced cytotoxic effects, but also indicate PRDX2 as a promising potential therapeutic target for developing anti-gastric cancer agents.
Collapse
Affiliation(s)
- Pengchen Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology; Second Clinical Medical College of Jinan University, Shenzhen, 518020, China; Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Xiaoru Zhong
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology; Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Yali Song
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Wenbin Zhong
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Sisi Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology; Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Jinyan Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology; Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Pan Huang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology; Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Yaping Niu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology; Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Wenyue Yang
- Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Ziyang Ding
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology; Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Qingming Luo
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China.
| | - Chuanbin Yang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology; Second Clinical Medical College of Jinan University, Shenzhen, 518020, China.
| | - Jigang Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology; Second Clinical Medical College of Jinan University, Shenzhen, 518020, China; Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China; Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Wei Zhang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology; Second Clinical Medical College of Jinan University, Shenzhen, 518020, China.
| |
Collapse
|
27
|
Guo W, Kang C, Wang X, Zhang H, Yuan L, Wei X, Xiao Q, Hao W. Chlorocholine chloride exposure induced spermatogenic dysfunction via iron overload caused by AhR/PERK axis-dependent ferritinophagy activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116193. [PMID: 38460407 DOI: 10.1016/j.ecoenv.2024.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.
Collapse
Affiliation(s)
- Wanqian Guo
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Haoran Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Lilan Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
28
|
Ke PY. Molecular Mechanism of Autophagosome-Lysosome Fusion in Mammalian Cells. Cells 2024; 13:500. [PMID: 38534345 PMCID: PMC10968809 DOI: 10.3390/cells13060500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
In eukaryotes, targeting intracellular components for lysosomal degradation by autophagy represents a catabolic process that evolutionarily regulates cellular homeostasis. The successful completion of autophagy initiates the engulfment of cytoplasmic materials within double-membrane autophagosomes and subsequent delivery to autolysosomes for degradation by acidic proteases. The formation of autolysosomes relies on the precise fusion of autophagosomes with lysosomes. In recent decades, numerous studies have provided insights into the molecular regulation of autophagosome-lysosome fusion. In this review, an overview of the molecules that function in the fusion of autophagosomes with lysosomes is provided. Moreover, the molecular mechanism underlying how these functional molecules regulate autophagosome-lysosome fusion is summarized.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-3-211-8800 (ext. 5115); Fax: +886-3-211-8700
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
29
|
Qiu L, Liu H, Chen S, Wu Y, Yan J. Inhibition of the endoplasmic reticulum stress-associated IRE-1 pathway alleviates preterm birth. Am J Reprod Immunol 2024; 91:e13826. [PMID: 38531818 DOI: 10.1111/aji.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Premature birth (PTB) remains a major global health concern due to its association with neonatal morbidity and mortality. The unfolded protein response (UPR) within the endoplasmic reticulum (ER) is tightly regulated by Inositol-requiring enzyme type 1 (IRE-1), a pivotal cellular modulator. This study seeks to elucidate the role of the ER stress (ERS)-related IRE-1 pathway in PTB. METHODS Human placental trophoblast cells HTR8/Svneo were exposed to the ER-stress inducer tunicamycin (TM). The expression of IRE-1 and ERS-associated proteins ATF6, GRP78, and XBP-1 was assessed in placental tissues and TM-treated cells. Cellular viability, migration, invasion, and apoptosis were evaluated through a series of experimental assays. Additionally, various methods were employed to assess and verify the activation of autophagy, using the autophagy marker, microtubule-associated protein 1A/1B-light chain 3 (LC3). Additionally, TUDCA (an ERS inhibitor) was used to assess its potential to counteract the TM-induced cell effects. RESULTS Elevated levels of ATF6, GRP78, and XBP-1 were observed in PTB tissues and cells. TM treatment substantially reduced cell viability, migration, and invasion while promoting apoptosis. Treatment with TUDCA (an ERS inhibitor) counteracted the effects of TM on the cells. Furthermore, we identified an overexpression of IRE-1 in PTB tissues and cells and its knockdown enhanced cell viability, migration, and invasion while suppressed apoptosis and autophagy under TM stimulation. Notably, IRE-1 was found to modulate the activity of the IRE-1/XBP1/CHOP signaling pathway in TM-treated cells. CONCLUSION The upregulation of IRE-1 in PTB placental tissues is implicated in the pathogenesis of PTB. Importantly, inhibiting the ERS-associated IRE-1/XBP1/CHOP pathway may be a good strategy in mitigating PTB.
Collapse
Affiliation(s)
- Liyin Qiu
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Hui Liu
- Department of Histology and Embryology, Fujian Medical University, Fuzhou, Fujian, China
| | - Shali Chen
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Yiting Wu
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianying Yan
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
30
|
Yilmaz E. Endoplasmic Reticulum Stress and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:373-390. [PMID: 39287859 DOI: 10.1007/978-3-031-63657-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent years, the world has seen an alarming increase in obesity and is closely associated with insulin resistance, which is a state of low-grade inflammation, the latter characterized by elevated levels of proinflammatory cytokines in blood and tissues. A shift in energy balance alters systemic metabolic regulation and the important role that chronic inflammation, endoplasmic reticulum (ER) dysfunction, and activation of the unfolded protein response (UPR) plays in this process.Why obesity is so closely associated with insulin resistance and inflammation is not understood well. This suggests that there are probably many causes for obesity-related insulin resistance and inflammation. One of the faulty mechanisms is protein homeostasis, protein quality control system included protein folding, chaperone activity, and ER-associated degradation leading to endoplasmic reticulum (ER) stress.The ER is a vast membranous network responsible for the trafficking of a wide range of proteins and plays a central role in integrating multiple metabolic signals critical in cellular homeostasis. Conditions that may trigger unfolded protein response activation include increased protein synthesis, the presence of mutant or misfolded proteins, inhibition of protein glycosylation, imbalance of ER calcium levels, glucose and energy deprivation, hypoxia, pathogens, or pathogen-associated components and toxins. Thus, characterizing the mechanisms contributing to obesity and identifying potential targets for its prevention and treatment will have a great impact on the control of associated conditions, particularly T2D.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Biotechnology Institute, Ankara University, Kecioren, Ankara, Turkey.
| |
Collapse
|
31
|
Yazdanpanah N, Sedikides C, Ochs HD, Camargo CA, Darmstadt GL, Cerda A, Cauda V, Peters GJ, Sellke F, Wong ND, Comini E, Jimeno AR, Glover V, Hatziargyriou N, Vincenot CE, Bordas SPA, Rao IM, Abolhassani H, Gharehpetian GB, Weiskirchen R, Gupta M, Chandel SS, Olusanya BO, Cheson B, Pomponio A, Tanzer M, Myles PS, Ma WX, Bella F, Ghavami S, Moein Moghimi S, Pratico D, Hernandez AM, Martinez-Urbistondo M, Urbistondo DM, Fereshtehnejad SM, Ali I, Kimura S, Wallace Hayes A, Cai W, Ernest CKJ, Thomas S, Rahimi K, Sorooshian A, Schreiber M, Kato K, Luong JHT, Pluchino S, Lozano AM, Seymour JF, Kosik KS, Hofmann SG, McIntyre RS, Perc M, Leemans A, Klein RS, Ogino S, Wlezien C, Perry G, Nieto JJ, Levin L, Klionsky DJ, Mobasher B, Dorigo T, Rezaei N. Global Challenges After a Global Challenge: Lessons Learned from the COVID-19 Pandemic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1457:1-31. [PMID: 39283418 DOI: 10.1007/978-3-031-61939-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Coronavirus disease 2019 (COVID-19) has affected not only individual lives but also the world and global systems, both natural and human-made. Besides millions of deaths and environmental challenges, the rapid spread of the infection and its very high socioeconomic impact have affected healthcare, economic status and wealth, and mental health across the globe. To better appreciate the pandemic's influence, multidisciplinary and interdisciplinary approaches are needed. In this chapter, world-leading scientists from different backgrounds share collectively their views about the pandemic's footprint and discuss challenges that face the international community.
Collapse
Affiliation(s)
- Niloufar Yazdanpanah
- , Houston, USA
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hans D Ochs
- , Houston, USA
- Department of Pediatrics, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, WA, USA
| | - Carlos A Camargo
- , Houston, USA
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gary L Darmstadt
- , Houston, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Artemi Cerda
- , Houston, USA
- Soil Erosion and Degradation Research Group, Department of Geography, Valencia University, Blasco Ibàñez, Valencia, Spain
| | - Valentina Cauda
- , Houston, USA
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, Turin, Italy
| | - Godefridus J Peters
- , Houston, USA
- Laboratory Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Amsterdam, the Netherlands
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Frank Sellke
- , Houston, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Providence, RI, USA
| | - Nathan D Wong
- , Houston, USA
- Heart Disease Prevention Program, Division of Cardiology, University of California Irvine, C-240 Medical Sciences, Irvine, CA, USA
| | - Elisabetta Comini
- , Houston, USA
- SENSOR Laboratory, University of Brescia, Brescia, Italy
| | - Alberto Ruiz Jimeno
- , Houston, USA
- Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
| | - Vivette Glover
- , Houston, USA
- Department of Metabolism, Digestion and Reproduction Hammersmith Hospital Campus, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Nikos Hatziargyriou
- , Houston, USA
- School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), Athens, Greece
| | - Christian E Vincenot
- , Houston, USA
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Grand Duchy of Luxembourg
| | - Stéphane P A Bordas
- , Houston, USA
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Grand Duchy of Luxembourg
| | - Idupulapati M Rao
- , Houston, USA
- Alliance of Bioversity International, International Center for Tropical Agriculture, Cali, Colombia
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Hassan Abolhassani
- , Houston, USA
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | - Ralf Weiskirchen
- , Houston, USA
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Manoj Gupta
- , Houston, USA
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Shyam Singh Chandel
- , Houston, USA
- Photovoltaics Research Group, Centre of Excellence in Energy Science and Technology, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | | | - Bruce Cheson
- , Houston, USA
- Center for Cancer and Blood Disorders, Bethesda, MD, USA
| | - Alessio Pomponio
- , Houston, USA
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
| | - Michael Tanzer
- , Houston, USA
- Division of Orthopedic Surgery, McGill University, Montreal, QC, Canada
| | - Paul S Myles
- , Houston, USA
- Alfred Hospital and Monash University, Melbourne, Australia
| | - Wen-Xiu Ma
- , Houston, USA
- Department of Mathematics and Statistics, University of South Florida, Tampa, FL, USA
- Department of Mathematics, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Material Science Innovation and Modelling, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Federico Bella
- , Houston, USA
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, Turin, Italy
| | - Saeid Ghavami
- , Houston, USA
- Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - S Moein Moghimi
- , Houston, USA
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Faculty of Health and Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Domenico Pratico
- , Houston, USA
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alfredo M Hernandez
- , Houston, USA
- Medicine and Endocrinology Department, Universidad de Valladolid and IMDEA, Madrid, Spain
| | | | | | - Seyed-Mohammad Fereshtehnejad
- , Houston, USA
- Division of Neurology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| | - Imran Ali
- , Houston, USA
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Shinya Kimura
- , Houston, USA
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - A Wallace Hayes
- , Houston, USA
- Center for Environmental/Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
- Michigan State University, East Lansing, MI, USA
| | - Wenju Cai
- , Houston, USA
- CSIRO Environment, Hobart, TAS, Australia
| | - Chua K J Ernest
- , Houston, USA
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Sabu Thomas
- , Houston, USA
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Kazem Rahimi
- , Houston, USA
- Deep Medicine, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Armin Sorooshian
- , Houston, USA
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Michael Schreiber
- , Houston, USA
- Institut für Physik, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Koichi Kato
- , Houston, USA
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - John H T Luong
- , Houston, USA
- School of Chemistry, University College Cork, Cork, T12 YN60, Ireland
| | - Stefano Pluchino
- , Houston, USA
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andres M Lozano
- , Houston, USA
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | - John F Seymour
- , Houston, USA
- Clinical Haematology, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Kenneth S Kosik
- , Houston, USA
- Department of Molecular Cellular Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Stefan G Hofmann
- , Houston, USA
- Department of Psychology, Philipps-University Marburg, Marburg, Germany
| | - Roger S McIntyre
- , Houston, USA
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Matjaz Perc
- , Houston, USA
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404332, Taiwan
- Alma Mater Europaea, Slovenska ulica 17, 2000, Maribor, Slovenia
- Complexity Science Hub Vienna, Josefstädterstraße 39, 1080, Vienna, Austria
- Department of Physics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Alexander Leemans
- , Houston, USA
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robyn S Klein
- , Houston, USA
- Center for Neuroimmunology and Neuroinfectious Diseases, St. Louis, MO, USA
- Departments of Medicine, Pathology and Immunology, and Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Shuji Ogino
- , Houston, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher Wlezien
- , Houston, USA
- Department of Government, University of Texas at Austin, Austin, TX, USA
| | - George Perry
- , Houston, USA
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Juan J Nieto
- , Houston, USA
- CITMAga, University of Santiago de Compostela, A Coruña, Spain
| | - Lisa Levin
- , Houston, USA
- Center for Marine Biodiversity and Conservation, Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Daniel J Klionsky
- , Houston, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bahram Mobasher
- , Houston, USA
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Tommaso Dorigo
- , Houston, USA
- Lulea University of Technology, Laboratorievagen 14, Lulea, Sweden
- Istituto Nazionale di Fisica Nucleare (INFN), Via Francesco Marzolo, Sezione di Padova, Italy
| | - Nima Rezaei
- , Houston, USA.
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Yang H, Yin H, Wang Y, Liu J, Guo L, Zhao H, Bai X, Li J, Yang Q. FAM134B-induced endoplasmic reticulum (ER)-phagy exacerbates cisplatin-insulted hair cell apoptosis :Possible relation to excessive ER stress. Arch Biochem Biophys 2023; 748:109766. [PMID: 37813237 DOI: 10.1016/j.abb.2023.109766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
AIMS FAM134B, the initial endoplasmic reticulum (ER)-phagy receptor identified, facilitates ER-phagy during ER stress. The malfunction of FAM134B has been demonstrated to have a crucial role in the pathological mechanisms of diverse human ailments. However, the role of FAM134B-mediated ER-phagy in ototoxicity, particularly in cisplatin-induced ototoxicity, remains unclear. The present study endeavors to investigate whether FAM134B is expressed in House Ear Institute-Organ of Corti 1 (HEI-OC1) and C57BL/6 murine cochlear hair cells (HCs), and to explore its potential function in cisplatin-mediated ototoxicity, with the aim of discovering new insights that can mitigate or forestall the irreversible adverse effect of cisplatin. METHODS Immunofluorescence (IF) staining was used to test the expression pattern of FAM134B, levels of C/EBP-homologous protein (CHOP), autophagy, and co-localization ratio of lysosomes and ER. Western blotting was employed to measure changes in expression levels of FAM134B, LC3B, ER stress-related proteins, LAMP1 and apoptotic mediators. Cell apoptosis was examined using transferase dUTP nick end labeling (TUNEL) assay and flow cytometry. RESULTS In the present investigation, it was observed that FAM134B exhibited a diffuse expression pattern in the cytoplasm and nuclei of control HEI-OC1 cells. Following cisplatin administration, FAM134B was found to accumulate and form distinct dots around the nuclei, concomitant with increased levels of ER-phagy, ER stress, unfolded protein response (UPR), and cell apoptosis. Additionally, knockdown of FAM134B resulted in reduced ER-phagy, mitigated ER stress and UPR, and decreased apoptotic activity in HEI-OC1 cells following cisplatin exposure. CONCLUSIONS Collectively, the findings of this study demonstrate that FAM134B-mediated ER-phagy enhances the susceptibility of HCs to ER stress and apoptosis in response to cisplatin-induced stress. This suggests a sequential progression of ER-phagy, ER stress and apoptosis following cisplatin stimulus, and implies the potential therapeutic benefit of inhibiting of FAM134B-mediated ER-phagy in the prevention of cisplatin-related ototoxicity.
Collapse
Affiliation(s)
- Huiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Haiyan Yin
- School of Basic Medical Science, Jining Medical University, Jining, Shandong, China
| | - Yue Wang
- Department of Otolaryngology Head and Neck Surgery, Ningbo First Hospital, Ningbo, Zhejiang, 315000, China
| | - Jisheng Liu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hao Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohui Bai
- Institute of Eye and ENT, Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China; Institute of Eye and ENT, Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Qianqian Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
33
|
Zhang C, Gao L, Wu D, Wang G, Lan H, Li L, Zheng X, Li S. IP 3R1 regulates calcium balance in porcine oocyte maturation and early embryonic development. Theriogenology 2023; 209:151-161. [PMID: 37393745 DOI: 10.1016/j.theriogenology.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
The dynamic balance of Ca2+ in oocytes promotes the recovery of the meiotic arrest phase, consequently promoting oocyte maturation. Hence, the analysis of the maintenance and role of calcium homeostasis in oocytes has important guiding significance for obtaining high-quality eggs and maintaining the development of preimplantation embryos. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are calcium channel proteins that regulate the dynamic balance between the endoplasmic reticulum (ER) and mitochondrial Ca2+. Nevertheless, the expression and role of IP3R in normal pig oocytes have not been reported, and other studies have focused on the role of IP3R in damaged cells. The purpose of this study was to investigate the potential role of IP3R in regulating calcium homeostasis in oocyte maturation and early embryonic development. Our results showed that IP3R1 is stably expressed at different stages of porcine oocyte meiosis, IP3R1 gradually converges to the cortex, and cortical clusters are formed in MII stages. The loss of IP3R1 activity contributeds to the failure of porcine oocyte maturation and cumulus cell expansion, as well as the obstruction of polar body excretion. Further analysis showed that IP3R1 plays an important role in affecting calcium balance by regulating the IP3R1-GRP75-VDAC1 channel between mitochondria and the endoplasmic reticulum (ER) during porcine oocyte maturation. Inhibiting IP3R1 expression-induced ER dysfunction, contributeding to ER calcium concentration ([Ca2+]ER) release outwards into mitochondria and causing mitochondrial free calcium concentration ([Ca2+]m) overload and mitochondrial oxidative stress, which was confirmed by the increase in the level of reactive oxygen species (ROS) and apoptosis. Thereby, IP3R1 plays an important role in affecting calcium balance by regulating the IP3R1-GRP75 -VDAC1 channel between mitochondria and the ER during porcine oocyte maturation, inhibiting IP3R1 expression-induced calcium overload and mitochondrial oxidative stress, and increasing ROS levels and apoptosis.
Collapse
Affiliation(s)
- Chang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Lepeng Gao
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Deyi Wu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Liu Li
- The Department of Frensic Medicine, College of Basic Medical Sciences, Jilin University, Changchun, 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Suo Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China.
| |
Collapse
|
34
|
Nagar P, Sharma P, Dhapola R, Kumari S, Medhi B, HariKrishnaReddy D. Endoplasmic reticulum stress in Alzheimer's disease: Molecular mechanisms and therapeutic prospects. Life Sci 2023; 330:121983. [PMID: 37524162 DOI: 10.1016/j.lfs.2023.121983] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that leads to memory loss and cognitive impairment over time. It is characterized by protein misfolding as well as prolonged cellular stress, such as perturbing calcium homeostasis and redox management. Numerous investigations have proven that endoplasmic reticulum failure may exhibit exacerbation of AD pathogenesis in AD patients, in-vivo and in-vitro models. The endoplasmic reticulum (ER) participates in a variety of biological functions including folding of protein, quality control, cholesterol production, and maintenance of calcium balance. A diverse range of physiological, pathological and pharmacological substances can interfere with ER activity and thus lead to exaggeration of ER stress. The unfolded protein response (UPR), an intracellular signaling network is stimulated due to ER stress. Three stress sensors found in the endoplasmic reticulum, the PERK, ATF6, and IRE1 transducers detect protein misfolding in the ER and trigger UPR, a complex system to maintain homeostasis. ER stress is linked to many of the major pathological processes that are seen in AD, including presenilin1 and 2 (PS1 and PS2) gene mutation, tau phosphorylation and β-amyloid formation. The role of ER stress and UPR in the pathophysiology of AD implies that they can be employed as potent therapeutic target. This study shows the relationship between ER and AD and how the pathogenesis of AD is influenced by the impact of ER stress. An effective method for the prevention or treatment of AD may involve therapeutic strategies that modify ER stress pathways.
Collapse
Affiliation(s)
- Pushank Nagar
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Prajjwal Sharma
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Dibbanti HariKrishnaReddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India.
| |
Collapse
|
35
|
Zhang L, Lu X, Xu Y, La X, Tian J, Li A, Li H, Wu C, Xi Y, Song G, Zhou Z, Bai W, An L, Li Z. Tumor-associated macrophages confer colorectal cancer 5-fluorouracil resistance by promoting MRP1 membrane translocation via an intercellular CXCL17/CXCL22-CCR4-ATF6-GRP78 axis. Cell Death Dis 2023; 14:582. [PMID: 37658050 PMCID: PMC10474093 DOI: 10.1038/s41419-023-06108-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Chemotherapy represents a major type of clinical treatment against colorectal cancer (CRC). Aberrant drug efflux mediated by transporters acts as a key approach for tumor cells to acquire chemotherapy resistance. Increasing evidence implies that tumor-associated macrophages (TAMs) play a pivotal role in both tumorigenesis and drug resistance. Nevertheless, the specific mechanism through which TAMs regulate drug efflux remains elusive. Here, we discovered that TAMs endow CRC cells with resistance to 5-fluorouracil (5-FU) treatment via a cell-cell interaction-mediated MRP1-dependent drug efflux process. Mechanistically, TAM-secreted C-C motif chemokine ligand 17 (CCL17) and CCL22, via membrane receptor CCR4, activated the PI3K/AKT pathway in CRC tumor cells. Specifically, phosphorylation of AKT inactivated IP3R and induced calcium aggregation in the ER, resulting in the activation of ATF6 and upregulation of GRP78. Accordingly, excessive GRP78 can interact with MRP1 and promote its translocation to the cell membrane, causing TAM-induced 5-FU efflux. Taken together, our results demonstrated that TAMs promote CRC chemotherapy resistance via elevating the expression of GRP78 to promote the membrane translocation of MRP1 and drug efflux, providing direct proof for TAM-induced drug resistance.
Collapse
Affiliation(s)
- Lichao Zhang
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Xiaoqing Lu
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital of Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 200072, Shanghai, China
| | - Xiaoqin La
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Jinmiao Tian
- Institute of Biotechnology, Shanxi University, 030006, Taiyuan, China
| | - Aiping Li
- Modern Research Center for traditional Chinese medicine, Shanxi University, 030006, Taiyuan, China
| | - Hanqing Li
- School of Life Science, Shanxi University, 030006, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Yanfeng Xi
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital of Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Guisheng Song
- Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Wenqi Bai
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital of Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, 200072, Shanghai, China.
| | - Zhuoyu Li
- Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China.
- Institute of Biotechnology, Shanxi University, 030006, Taiyuan, China.
| |
Collapse
|
36
|
Lee H, Jung S, Gong G, Lim B, Lee HJ. Association of cyclooxygenase-2 expression with endoplasmic reticulum stress and autophagy in triple-negative breast cancer. PLoS One 2023; 18:e0289627. [PMID: 37540709 PMCID: PMC10403079 DOI: 10.1371/journal.pone.0289627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023] Open
Abstract
Cyclooxygenase-2 plays a role in oncogenesis and its overexpression is associated with triple-negative breast cancer. However, the mechanisms whereby cyclooxygenase-2 contribute to breast cancer are complex and not well understood. Cyclooxygenase-2 overexpression causes hypoxia, oxidative stress, and endoplasmic reticulum stress. The aim of this study is to investigate the correlations among cyclooxygenase-2 expression, endoplasmic reticulum stress-associated molecules, and autophagy-associated molecules in triple-negative breast cancer. Surgical specimens from two cohorts of triple-negative breast cancer patients without neoadjuvant systemic therapy were analyzed: cohorts 1 and 2 consisted of 218 cases from 2004 to 2006 and 221 cases from 2007 to 2009, respectively. Specimens were evaluated by immunohistochemical examination of cyclooxygenase-2, endoplasmic reticulum stress markers, and autophagy markers expression using tissue microarrays. Cyclooxygenase-2 was overexpressed in 29.8% and 23.9% of cases in cohorts 1 and 2, respectively; and it was positively correlated with two out of three endoplasmic reticulum stress-associated molecules (XBP1, p = 0.025 and p = 0.003 in cohort 1 and cohort 2, respectively; PERK, p < 0.001 in both cohorts). Cyclooxygenase-2 was also positively correlated with two out of three autophagy markers (p62, p = 0.002 and p = 0.003 in cohort 1 and cohort 2, respectively; beclin1, p < 0.001 in both cohorts). Although cyclooxygenase-2 was not an independent prognostic factor for distant metastasis free survival and overall survival, its expression was associated with the expression of endoplasmic reticulum stress and autophagy molecules in triple-negative breast cancer.
Collapse
Affiliation(s)
- Haechan Lee
- University of Ulsan College of Medicine, Seoul, Korea
| | - SungWook Jung
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bora Lim
- Department of Hematology and Oncology, Baylor College of Medicine, Houston, TX, United States of America
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Wu D, Huang LF, Chen XC, Huang XR, Li HY, An N, Tang JX, Liu HF, Yang C. Research progress on endoplasmic reticulum homeostasis in kidney diseases. Cell Death Dis 2023; 14:473. [PMID: 37500613 PMCID: PMC10374544 DOI: 10.1038/s41419-023-05905-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The endoplasmic reticulum (ER) plays important roles in biosynthetic and metabolic processes, including protein and lipid synthesis, Ca2+ homeostasis regulation, and subcellular organelle crosstalk. Dysregulation of ER homeostasis can cause toxic protein accumulation, lipid accumulation, and Ca2+ homeostasis disturbance, leading to cell injury and even death. Accumulating evidence indicates that the dysregulation of ER homeostasis promotes the onset and progression of kidney diseases. However, maintaining ER homeostasis through unfolded protein response, ER-associated protein degradation, autophagy or ER-phagy, and crosstalk with other organelles may be potential therapeutic strategies for kidney disorders. In this review, we summarize the recent research progress on the relationship and molecular mechanisms of ER dysfunction in kidney pathologies. In addition, the endogenous protective strategies for ER homeostasis and their potential application for kidney diseases have been discussed.
Collapse
Affiliation(s)
- Dan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Li-Feng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Xiao-Cui Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Xiao-Rong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Hui-Yuan Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China.
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China.
| |
Collapse
|
38
|
Rickard BP, Overchuk M, Chappell VA, Kemal Ruhi M, Sinawang PD, Nguyen Hoang TT, Akin D, Demirci U, Franco W, Fenton SE, Santos JH, Rizvi I. Methods to Evaluate Changes in Mitochondrial Structure and Function in Cancer. Cancers (Basel) 2023; 15:2564. [PMID: 37174030 PMCID: PMC10177605 DOI: 10.3390/cancers15092564] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria are regulators of key cellular processes, including energy production and redox homeostasis. Mitochondrial dysfunction is associated with various human diseases, including cancer. Importantly, both structural and functional changes can alter mitochondrial function. Morphologic and quantifiable changes in mitochondria can affect their function and contribute to disease. Structural mitochondrial changes include alterations in cristae morphology, mitochondrial DNA integrity and quantity, and dynamics, such as fission and fusion. Functional parameters related to mitochondrial biology include the production of reactive oxygen species, bioenergetic capacity, calcium retention, and membrane potential. Although these parameters can occur independently of one another, changes in mitochondrial structure and function are often interrelated. Thus, evaluating changes in both mitochondrial structure and function is crucial to understanding the molecular events involved in disease onset and progression. This review focuses on the relationship between alterations in mitochondrial structure and function and cancer, with a particular emphasis on gynecologic malignancies. Selecting methods with tractable parameters may be critical to identifying and targeting mitochondria-related therapeutic options. Methods to measure changes in mitochondrial structure and function, with the associated benefits and limitations, are summarized.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27695, USA
| | - Vesna A. Chappell
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Mustafa Kemal Ruhi
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
| | - Prima Dewi Sinawang
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tina Thuy Nguyen Hoang
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Palo Alto, CA 94304, USA
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Palo Alto, CA 94304, USA
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Suzanne E. Fenton
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Janine H. Santos
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27695, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
39
|
Ben Salem I, Boussabbeh M, Pires Da Silva J, Saidi NE, Abid-Essefi S, Lemaire C. Effects of Dichlorvos on cardiac cells: Toxicity and molecular mechanism of action. CHEMOSPHERE 2023; 330:138714. [PMID: 37080471 DOI: 10.1016/j.chemosphere.2023.138714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
In this study we aimed to understand the underlying mechanism of Dichlorvos-induced toxicity in cardiac cells. For this end, cells were treated by 170 μM of Dichlorvos (DDVP) (corresponding to the IC50) and molecular events were monitored by flow cytometry and western blotting. We have first demonstrated that cell exposure to DDVP for 24 h induced cell death by necroptosis. In fact, cell treatment with DDVP upregulated RIP1 expression and we have shown that chemical inhibition of RIP1 kinase activity by necrostatin-1 (Nec-1) greatly prevented from the induced cell death. Besides, we have demonstrated that, while there was no observed cell death following short exposure to DDVP (6 h), autophagy was enhanced, as proven by the increase in the level of both Beclin-1 and LC3-II and the accumulation of the CytoID® autophagy detection probe. Besides, when autophagy was inhibited by chloroquine (CQ) the percentage of necroptosis was significantly increased, suggesting that autophagy acts to protect cardiac cells against the toxicity induced by this pesticide. Concurrently, we have shown that the inhibition of the deacetylase sirtuin 1 (SIRT1) by EX527 or its knockdown by siRNA significantly increased DDVP-induced necroptosis, whereas when SIRT1 was activated by resveratrol (RSV) a significant decrease in DDVP-induced cell death was observed. In addition, we revealed that when the autophagy was inhibited by CQ, we can't reveal the protective effect of RSV anymore. Altogether, these results suggest that activation of SIRT1 protects cardiac cells from the toxicity of DDVP through an autophagy-dependent pathway.
Collapse
Affiliation(s)
- Intidhar Ben Salem
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia; Université de Sousse, Faculté de Médecine de Sousse, 4000, Sousse, Tunisia.
| | - Manel Boussabbeh
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia; Reproductive Biology Department of the Center of Maternity and Neonatology of Monastir, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | | | - Nour Elhouda Saidi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
| | - Christophe Lemaire
- Université Versailles St-Quentin, Université Paris-Saclay, Inserm, UMR-S 1180, 91400, Orsay, France
| |
Collapse
|
40
|
Sun J, Mai K, Ai Q. Effects of GRP78 on Endoplasmic Reticulum Stress and Inflammatory Response in Macrophages of Large Yellow Croaker ( Larimichthys crocea). Int J Mol Sci 2023; 24:ijms24065855. [PMID: 36982929 PMCID: PMC10054070 DOI: 10.3390/ijms24065855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Endoplasmic reticulum (ER) homeostasis plays a vital role in cell physiological functions. Various factors can destroy the homeostasis of the ER and cause ER stress. Moreover, ER stress is often related to inflammation. Glucose-regulated protein 78 (GRP78) is an ER chaperone, which plays a vital role in maintaining cellular homeostasis. Nevertheless, the potential effects of GRP78 on ER stress and inflammation is still not fully elucidated in fish. In the present study, ER stress and inflammation was induced by tunicamycin (TM) or palmitic acid (PA) in the macrophages of large yellow croakers. GRP78 was treated with an agonist/inhibitor before or after the TM/PA treatment. The results showed that the TM/PA treatment could significantly induce ER stress and an inflammatory response in the macrophages of large yellow croakers whereas the incubation of the GRP78 agonist could reduce TM/PA-induced ER stress and an inflammatory response. Moreover, the incubation of the GRP78 inhibitor could further induce TM/PA-induced ER stress and an inflammatory response. These results provide an innovative idea to explain the relationship between GRP78 and TM/PA-induced ER stress or inflammation in large yellow croakers.
Collapse
Affiliation(s)
- Jie Sun
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
41
|
Song G, Zhang J, Wang Y, Ji Y, Fang Z, Cai Q, Xu B. Overexpression of PvBiP2 improved biomass yield and cadmium tolerance in switchgrass (Panicum virgatum L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130648. [PMID: 36580780 DOI: 10.1016/j.jhazmat.2022.130648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Switchgrass (Panicum virgatum L.), the prime bioenergy feedstock crop, is one ideal candidate for phytoremediation of cadmium (Cd). The absorption of Cd imposes severe endoplasmic reticulum (ER)-stress in plants. ER chaperone binding proteins (BiPs) are important modulators in ER-stress responses. The objective of this study was to characterize one Cd-responsive BiP gene, PvBiP2, in switchgrass for its roles in Cd tolerance and plant growth. PvBiP2 was up-regulated by Cd and the ER-stress inducer, dithiothreitol (DTT) and could be trans-activated by one Cd-responsive heat shock transcription factor PvHsfA4. Overexpression of PvBiP2 in switchgrass significantly increased its plant growth with higher height, stem diameter, leaf width, internode length, and tiller numbers than those of the wildtype (WT) plants under non-stress conditions. After 30 days of Cd treatment, the PvBiP2 over-expression transgenic lines showed 40-45% higher dry biomass accumulation with net photosynthesis rate (Pn), but lower electrolyte leakage (EL), malondialdehyde (MDA), and glutathione (GSH) levels than WT. Moreover, over-expressing PvBiP2 led to ∼90-140% Cd accumulation in plants but 46-57% lower Cd translocation rates to shoots. Together, the PvHSFA4-PvBiP2 module acted as positive regulators in plant Cd tolerance, and over-expressing PvBiP2 promoted plant vegetative growth as well as Cd tolerance making it an ideal molecular target for genetic improvement in switchgrass in the future.
Collapse
Affiliation(s)
- Gang Song
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Vocational College of Agriculture and Forestry, Jvrong 212400, China.
| | - Jing Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yulong Wang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yanling Ji
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhigang Fang
- College of Life and Geographic Sciences, Kashi University, Kashi 844006, China.
| | - Qingsheng Cai
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Bin Xu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
42
|
Aria H, Rezaei M. Immunogenic cell death inducer peptides: A new approach for cancer therapy, current status and future perspectives. Biomed Pharmacother 2023; 161:114503. [PMID: 36921539 DOI: 10.1016/j.biopha.2023.114503] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Immunogenic Cell Death (ICD) is a type of cell death that kills tumor cells by stimulating the adaptive immune response against other tumor cells. ICD depends on the endoplasmic reticulum (ER) stress and the secretion of Damage-Associated Molecular Patterns (DAMP) by the dying tumor cell. DAMPs recruit innate immune cells such as Dendritic Cells (DC), triggering a cancer-specific immune response such as cytotoxic T lymphocytes (CTLs) to eliminate remaining cancer cells. ICD is accompanied by several hallmarks in dying cells, such as surface translocation of ER chaperones, calreticulin (CALR), and extracellular secretion of DAMPs such as high mobility group protein B1 (HMGB1) and adenosine triphosphate (ATP). Therapeutic peptides can kill bacteria and tumor cells thus affecting the immune system. They have high specificity and affinity for their targets, small size, appropriate cell membrane penetration, short half-life, and simple production processes. Peptides are interesting agents for immunomodulation since they may overcome the limitations of other therapeutics. Thus, the development of peptides affecting the TME and active antitumoral immunity has been actively pursued. On the other hand, several peptides have been recently identified to trigger ICD and anti-cancer responses. In the present review, we review previous studies on peptide-induced ICD, their mechanism, their targets, and markers. They include anti-microbial peptides (AMPs), cationic or mitochondrial targeting, checkpoint inhibitors, antiapoptotic inhibitors, and "don't eat me" inhibitor peptides. Also, peptides will be investigated potentially inducing ICD that is divided into ER stressors, ATPase inhibitors, and anti-microbial peptides.
Collapse
Affiliation(s)
- Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
43
|
Zhang R, Wang X, Xie Z, Cao T, Jiang S, Huang L. Lipoxin A4 methyl ester attenuated ketamine-induced neurotoxicity in SH-SY5Y cells via regulating leptin pathway. Toxicol In Vitro 2023; 89:105581. [PMID: 36907275 DOI: 10.1016/j.tiv.2023.105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/18/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Ketamine, the widely used intravenous anesthetic, has been reported to cause neurotoxicity and disturbs normal neurogenesis. However, the efficacy of current treatment strategies targeting ketamine's neurotoxicity remains limited. Lipoxin A4 methyl ester (LXA4 ME) is relatively stable lipoxin analog, which serves an important role in protecting against early brain injury. The purpose of this study was to investigate the protective effect of LXA4 ME on ketamine-caused cytotoxicity in SH-SY5Y cells, as well as the underlying mechanisms. Cell viability, apoptosis and endoplasmic reticulum stress (ER stress) were detected by adopting experimental techniques including CCK-8 assay, flow cytometry, western blotting and transmission electron microscope. Furthermore, examining the expression of leptin and its receptor (LepRb), we also measured the levels of activation of the leptin signaling pathway. Our results showed that LXA4 ME intervention promoted the cell viability, inhibited cell apoptosis, and reduced the expression of ER stress related protein and morphological changes induced by ketamine. In addition, inhibition of leptin signaling pathway caused by ketamine could be reversed by LXA4 ME. However, as the specific inhibitor of leptin pathway, leptin antagonist triple mutant human recombinant (leptin tA) attenuated the cytoprotective effect of LXA4 ME against ketamine-induced neurotoxicity. In conclusion, our findings demonstrated LXA4 ME could exert a neuroprotective effect on ketamine-induced neuronal injury via activation of the leptin signaling pathway.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No 215 Heping west road, Shijiazhuang, Hebei, China; Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People's Hospital), No. 1166, Dongfanghong West Road, Decheng District, Dezhou City, Shandong Province, China
| | - Xueji Wang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No 215 Heping west road, Shijiazhuang, Hebei, China; Hebei Medical University, No.48, Donggang Road, Shijiazhuang, Hebei, China
| | - Ziyu Xie
- Hebei Medical University, No.48, Donggang Road, Shijiazhuang, Hebei, China
| | - Tianyu Cao
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No 215 Heping west road, Shijiazhuang, Hebei, China
| | - Sufang Jiang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No 215 Heping west road, Shijiazhuang, Hebei, China
| | - Lining Huang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, No 215 Heping west road, Shijiazhuang, Hebei, China.
| |
Collapse
|
44
|
Shi D, Zhou L, Shi H, Zhang J, Zhang J, Zhang L, Liu D, Feng T, Zeng M, Chen J, Zhang X, Xue M, Jing Z, Liu J, Ji Z, He H, Guo L, Wu Y, Ma J, Feng L. Autophagy is induced by swine acute diarrhea syndrome coronavirus through the cellular IRE1-JNK-Beclin 1 signaling pathway after an interaction of viral membrane-associated papain-like protease and GRP78. PLoS Pathog 2023; 19:e1011201. [PMID: 36888569 PMCID: PMC9994726 DOI: 10.1371/journal.ppat.1011201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Autophagy plays an important role in the infectious processes of diverse pathogens. For instance, cellular autophagy could be harnessed by viruses to facilitate replication. However, it is still uncertain about the interplay of autophagy and swine acute diarrhea syndrome coronavirus (SADS-CoV) in cells. In this study, we reported that SADS-CoV infection could induce a complete autophagy process both in vitro and in vivo, and an inhibition of autophagy significantly decreased SADS-CoV production, thus suggesting that autophagy facilitated the replication of SADS-CoV. We found that ER stress and its downstream IRE1 pathway were indispensable in the processes of SADS-CoV-induced autophagy. We also demonstrated that IRE1-JNK-Beclin 1 signaling pathway, neither PERK-EIF2S1 nor ATF6 pathways, was essential during SADS-CoV-induced autophagy. Importantly, our work provided the first evidence that expression of SADS-CoV PLP2-TM protein induced autophagy through the IRE1-JNK-Beclin 1 signaling pathway. Furthermore, the interaction of viral PLP2-TMF451-L490 domain and substrate-binding domain of GRP78 was identified to activate the IRE1-JNK-Beclin 1 signaling pathway, and thus resulting in autophagy, and in turn, enhancing SADS-CoV replication. Collectively, these results not only showed that autophagy promoted SADS-CoV replication in cultured cells, but also revealed that the molecular mechanism underlying SADS-CoV-induced autophagy in cells.
Collapse
Affiliation(s)
- Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Ling Zhou
- College of Animal Science, South China Agricultural University, Tianhe District, China
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jiyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jialin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Liaoyuan Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Dakai Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Tingshuai Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Miaomiao Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Mei Xue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Zhaoyang Jing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jianbo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Zhaoyang Ji
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Haojie He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Longjun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Yang Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Tianhe District, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| |
Collapse
|
45
|
Niu H, Liu J, O'Connor HM, Gunnlaugsson T, James TD, Zhang H. Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chem Soc Rev 2023; 52:2322-2357. [PMID: 36811891 DOI: 10.1039/d1cs01097b] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Typical PeT-based fluorescent probes are multi-component systems where a fluorophore is connected to a recognition/activating group by an unconjugated linker. PeT-based fluorescent probes are powerful tools for cell imaging and disease diagnosis due to their low fluorescence background and significant fluorescence enhancement towards the target. This review provides research progress towards PeT-based fluorescent probes that target cell polarity, pH and biological species (reactive oxygen species, biothiols, biomacromolecules, etc.) over the last five years. In particular, we emphasise the molecular design strategies, mechanisms, and application of these probes. As such, this review aims to provide guidance and to enable researchers to develop new and improved PeT-based fluorescent probes, as well as promoting the use of PeT-based systems for sensing, imaging, and disease therapy.
Collapse
Affiliation(s)
- Huiyu Niu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Junwei Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Helen M O'Connor
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China. .,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| |
Collapse
|
46
|
Chen Z, Zhang R, Qin H, Jiang H, Wang A, Zhang X, Huang S, Sun M, Fan X, Lu Z, Li Y, Liu S, Liu M. The pulse light mode enhances the effect of photobiomodulation on B16F10 melanoma cells through autophagy pathway. Lasers Med Sci 2023; 38:71. [PMID: 36790539 DOI: 10.1007/s10103-023-03733-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Photobiomodulation (PBM) is the use of low irradiance light of specific wavelengths to generate physiological changes and therapeutic effects. However, there are few studies on the effects of PBM of different LED light modes on cells. Here, we investigated the difference of influence between continuous wave (CW) and pulse-PBM on B16F10 melanoma cells. Our results suggested that the pulse mode had a more significant PBM than the CW mode on B16F10 melanoma cells. Our study confirmed that ROS and Ca2+ levels in B16F10 melanoma cells treated with pulse-PBM were significantly higher than those in the control and CW-PBM groups. One mechanism that causes the difference in CW and pulse-PBM action is that pulse-PBM activates autophagy of melanoma cells through the ROS/OPN3/Ca2+ signaling pathway, and excessive autophagy activation inhibits proliferation and apoptosis of melanoma cells. Autophagy may be one of the reasons for the difference between pulse- and CW-PBM on melanoma cells. More importantly, melanoma cells responded to brief PBM pulses by increasing intracellular Ca2+ levels.
Collapse
Affiliation(s)
- Zeqing Chen
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, China
- Qingdao Municipal Health Commission, Qingdao, 266071, China
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Ruixiao Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Haokuan Qin
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Hui Jiang
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Aixia Wang
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Xiaolin Zhang
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Shijie Huang
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Miao Sun
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Xuewei Fan
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Zhicheng Lu
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Yinghua Li
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
| | - Shangfeng Liu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China.
| | - Muqing Liu
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, 220th Handan Road, Shanghai, 200433, China.
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China.
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan City, 528403, China.
| |
Collapse
|
47
|
Sposito S, Secondo A, Romanelli AM, Montefusco A, Nanayakkara M, Auricchio S, Barone MV, Caputo I, Paolella G. Peculiar Ca 2+ Homeostasis, ER Stress, Autophagy, and TG2 Modulation in Celiac Disease Patient-Derived Cells. Int J Mol Sci 2023; 24:ijms24021495. [PMID: 36675008 PMCID: PMC9866799 DOI: 10.3390/ijms24021495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Celiac disease (CD) is an inflammatory intestinal disease caused by the ingestion of gluten-containing cereals by genetically predisposed individuals. Constitutive differences between cells from CD patients and control subjects, including levels of protein phosphorylation, alterations of vesicular trafficking, and regulation of type 2 transglutaminase (TG2), have been reported. In the present work, we investigated how skin-derived fibroblasts from CD and control subjects responded to thapsigargin, an endoplasmic reticulum ER stress inducer, in an attempt to contribute to the comprehension of molecular features of the CD cellular phenotype. We analyzed Ca2+ levels by single-cell video-imaging and TG2 activity by a microplate assay. Western blots and PCR analyses were employed to monitor TG2 levels and markers of ER stress and autophagy. We found that the cytosolic and ER Ca2+ level of CD cells was lower than in control cells. Treatments with thapsigargin differently activated TG2 in control and CD cells, as well as caused slightly different responses regarding the activation of ER stress and the expression of autophagic markers. On the whole, our findings identified further molecular features of the celiac cellular phenotype and highlighted that CD cells appeared less capable of adapting to a stress condition and responding in a physiological way.
Collapse
Affiliation(s)
- Silvia Sposito
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University Federico II, 80138 Naples, Italy
| | | | - Antonio Montefusco
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| | - Merlin Nanayakkara
- Department of Translational Medical Science, University Federico II, 80138 Naples, Italy
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, 80138 Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science, University Federico II, 80138 Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, 80138 Naples, Italy
| | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, 80138 Naples, Italy
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
- Correspondence:
| |
Collapse
|
48
|
Irnaten M, O’Brien CJ. Calcium-Signalling in Human Glaucoma Lamina Cribrosa Myofibroblasts. Int J Mol Sci 2023; 24:ijms24021287. [PMID: 36674805 PMCID: PMC9862249 DOI: 10.3390/ijms24021287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
Glaucoma is one of the most common causes of treatable visual impairment in the developed world, affecting approximately 64 million people worldwide, some of whom will be bilaterally blind from irreversible optic nerve damage. The optic nerve head is a key site of damage in glaucoma where there is fibrosis of the connective tissue in the lamina cribrosa (LC) extracellular matrix. As a ubiquitous second messenger, calcium (Ca2+) can interact with various cellular proteins to regulate multiple physiological processes and contribute to a wide range of diseases, including cancer, fibrosis, and glaucoma. Our research has shown evidence of oxidative stress, mitochondrial dysfunction, an elevated expression of Ca2+ entry channels, Ca2+-dependent pumps and exchangers, and an abnormal rise in cytosolic Ca2+ in human glaucomatous LC fibroblast cells. We have evidence that this increase is dependent on Ca2+ entry channels located in the plasma membrane, and its release is from internal stores in the endoplasmic reticulum (ER), as well as from the mitochondria. Here, we summarize some of the molecular Ca2+-dependent mechanisms related to this abnormal Ca2+-signalling in human glaucoma LC cells, with a view toward identifying potential therapeutic targets for ongoing optic neuropathy.
Collapse
|
49
|
Ulbricht C, Cao Y, Niesner RA, Hauser AE. In good times and in bad: How plasma cells resolve stress for a life-long union with the bone marrow. Front Immunol 2023; 14:1112922. [PMID: 37033993 PMCID: PMC10080396 DOI: 10.3389/fimmu.2023.1112922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Carolin Ulbricht
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Yu Cao
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Raluca A. Niesner
- Biophysical Analysis, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja E. Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
- *Correspondence: Anja E. Hauser,
| |
Collapse
|
50
|
Urbanczyk M, Jeyagaran A, Zbinden A, Lu CE, Marzi J, Kuhlburger L, Nahnsen S, Layland SL, Duffy G, Schenke-Layland K. Decorin improves human pancreatic β-cell function and regulates ECM expression in vitro. Matrix Biol 2023; 115:160-183. [PMID: 36592738 DOI: 10.1016/j.matbio.2022.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Transplantation of islets of Langerhans is a promising alternative treatment strategy in severe cases of type 1 diabetes mellitus; however, the success rate is limited by the survival rate of the cells post-transplantation. Restoration of the native pancreatic niche during transplantation potentially can help to improve cell viability and function. Here, we assessed for the first time the regulatory role of the small leucine-rich proteoglycan decorin (DCN) in insulin secretion in human β-cells, and its impact on pancreatic extracellular matrix (ECM) protein expression in vitro. In depth analyses utilizing next-generation sequencing as well as Raman microspectroscopy and Raman imaging identified pathways related to glucose metabolism to be upregulated in DCN-treated cells, including oxidative phosphorylation within the mitochondria as well as proteins and lipids of the endoplasmic reticulum. We further showed the effectiveness of DCN in a transplantation setting by treating collagen type 1-encapsulated β-cell-containing pseudo-islets with DCN. Taken together, in this study, we demonstrate the potential of DCN to improve the function of insulin-secreting β-cells while reducing the expression of ECM proteins affiliated with fibrotic capsule formation, making DCN a highly promising therapeutic agent for islet transplantation.
Collapse
Affiliation(s)
- Max Urbanczyk
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany
| | - Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Aline Zbinden
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; Department of Immunology, Leiden University Medical Center Leiden, ZA 2333, the Netherlands
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, Germany
| | - Laurence Kuhlburger
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany; Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany; Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; Department of Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Garry Duffy
- Discipline of Anatomy and the Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Advanced Materials for Biomedical Engineering (AMBER), Trinity College Dublin & National University of Ireland Galway, Galway, Ireland
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|