1
|
Chen F, Guo S, Li Y, Lu Y, Liu L, Chen S, An J, Zhang G. Fusobacterium nucleatum-driven CX3CR1 + PD-L1 + phagocytes route to tumor tissues and reshape tumor microenvironment. Gut Microbes 2025; 17:2442037. [PMID: 39710592 DOI: 10.1080/19490976.2024.2442037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
The intracellular bacterium Fusobacterium nucleatum (Fn) mediates tumorigenesis and progression in colorectal cancer (CRC). However, the origin of intratumoral Fn and the role of Fn-infected immunocytes in the tumor microenvironment remain unclear. Here, we observed that Fn-infected neutrophils/macrophages (PMNs/MΦs), especially PMNs, accumulate in tumor tissues and fecal Fn abundance correlates positively with an abundance of blood PD-L1+ PMNs in CRC patients. Moreover, Fn accumulates in tumor tissues of tumor-bearing mice via intragingival infection and intravenous injection. Mechanistically, Fn can survive inside PMNs by reducing intracellular ROS levels and producing H2S. Specifically, the lysozyme inhibitor Fn1792 as a novel virulence factor of Fn suppressed apoptosis of phagocytes by inducing CX3CR1 expression. Furthermore, Fn-driven CX3CR1+PD-L1+ phagocytes transfer intracellular Fn to tumor cells, which recruit PMNs/MΦs through the CXCL2/8-CXCR2 and CCL5/CCR5 axes. Consequently, CX3CR1+PD-L1+ PMNs infiltration promotes CRC metastasis and weakens the efficacy of immunotherapy. Treatment with the doxycycline eradicated intracellular Fn, thereby reducing the CX3CR1+PD-L1+ PMNs populations and slowing Fn-promoted tumor growth and metastasis in mice. These results suggest phagocytes as Fn-presenting cells use mutualistic strategies to home to tumor tissues and induce immunosuppression, and treatment with ROS-enhanced antibiotics can inhibit Fn-positive tumor progression.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Songhe Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yiqiu Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongfan Lu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Le Liu
- Department of Gastroenterology, Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shengxin Chen
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Jun An
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Wang H, Han J, Zhang XA. Interplay of m6A RNA methylation and gut microbiota in modulating gut injury. Gut Microbes 2025; 17:2467213. [PMID: 39960310 PMCID: PMC11834532 DOI: 10.1080/19490976.2025.2467213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
The gut microbiota undergoes continuous variations among individuals and across their lifespan, shaped by diverse factors encompassing diet, age, lifestyle choices, medication intake, and disease states. These microbial inhabitants play a pivotal role in orchestrating physiological metabolic pathways through the production of metabolites like bile acids, choline, short-chain fatty acids, and neurotransmitters, thereby establishing a dynamic "gut-organ axis" with the host. The intricate interplay between the gut microbiota and the host is indispensable for gut health, and RNA N6-methyladenosine modification, a pivotal epigenetic mark on RNA, emerges as a key player in this process. M6A modification, the most prevalent internal modification of eukaryotic RNA, has garnered significant attention in the realm of RNA epigenetics. Recent findings underscore its potential to influence gut microbiota diversity and intestinal barrier function by modulating host gene expression patterns. Conversely, the gut microbiota, through its impact on the epigenetic landscape of host cells, may indirectly regulate the recruitment and activity of RNA m6A-modifying enzymes. This review endeavors to delve into the biological functions of m6A modification and its consequences on intestinal injury and disease pathogenesis, elucidating the partial possible mechanisms by which the gut microbiota and its metabolites maintain host intestinal health and homeostasis. Furthermore, it also explores the intricate crosstalk between them in intestinal injury, offering a novel perspective that deepens our understanding of the mechanisms underlying intestinal diseases.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
3
|
Moskal K, Khurana N, Siegert L, Lee YS, Clevers H, Elinav E, Puschhof J. Modeling cancer-microbiome interactions in vitro: A guide to co-culture platforms. Int J Cancer 2025; 156:2053-2067. [PMID: 39716471 PMCID: PMC11970552 DOI: 10.1002/ijc.35298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 12/25/2024]
Abstract
The biology of cancer is characterized by an intricate interplay of cells originating not only from the tumor mass, but also its surrounding environment. Different microbial species have been suggested to be enriched in tumors and the impacts of these on tumor phenotypes is subject to intensive investigation. For these efforts, model systems that accurately reflect human-microbe interactions are rapidly gaining importance. Here we present a guide for selecting a suitable in vitro co-culture platform used to model different cancer-microbiome interactions. Our discussion spans a variety of in vitro models, including 2D cultures, tumor spheroids, organoids, and organ-on-a-chip platforms, where we delineate their respective advantages, limitations, and applicability in cancer microbiome research. Particular focus is placed on methodologies that facilitate the exposure of cancer cells to microbes, such as organoid microinjections and co-culture on microfluidic devices. We highlight studies offering critical insights into possible cancer-microbe interactions and underscore the importance of in vitro models in those discoveries. We anticipate the integration of more complex microbial communities and the inclusion of immune cells into co-culture systems to more accurately simulate the tumor microenvironment. The advent of ever more sophisticated co-culture models will aid in unraveling the mechanisms of cancer-microbiome interplay and contribute to exploiting their potential in novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Kamil Moskal
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- DKFZ Hector Cancer Institute at the University Medical CenterMannheimGermany
| | - Nimisha Khurana
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Luisa Siegert
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
| | - Ye Seul Lee
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Hans Clevers
- Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC UtrechtHubrecht InstituteUtrechtThe Netherlands
- Present address:
Roche Pharmaceutical Research and Early DevelopmentBaselSwitzerland
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Jens Puschhof
- Junior Research Group Epithelium Microbiome Interactions (EMIL), German Cancer Research CenterHeidelbergGermany
- Microbiome and Cancer Division, German Cancer Research CenterHeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- DKFZ Hector Cancer Institute at the University Medical CenterMannheimGermany
| |
Collapse
|
4
|
Jing Z, Yinhang W, Jian C, Zhanbo Q, Xinyue W, Shuwen H. Interaction between gut microbiota and T cell immunity in colorectal cancer. Autoimmun Rev 2025; 24:103807. [PMID: 40139455 DOI: 10.1016/j.autrev.2025.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/26/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
This review delves into the complex and multi-layered mechanisms that govern the interaction between gut microbiota and T cells in the context of colorectal cancer (CRC), revealing a novel "microbiota-immune regulatory landscape" within the tumor microenvironment. As CRC progresses, the gut microbiota experiences a significant transformation in both its composition and metabolic patterns. On one hand, specific microbial entities within the gut microbiota can directly engage with T cells, functioning as "immunological triggers" that shape T-cell behavior. Simultaneously, microbial metabolites, such as short-chain fatty acids and bile acids, serve as "molecular regulators" that intricately govern T-cell function and differentiation, fine-tuning the immune response. On the other hand, the quorum-sensing mechanism, a recently recognized communication network among bacteria, also plays a pivotal role in orchestrating T-cell immunity. Additionally, the gut microbiota forms an intriguing connection with the neuro-immune regulatory axis, a largely unexplored "territory" in CRC research. Regarding treatment strategies, a diverse array of intervention approaches-including dietary modifications, the utilization of probiotics, bacteriophages, and targeted antibiotic therapies-offer promising prospects for restoring the equilibrium of the gut microbiota, thereby acting as "ecosystem renovators" that impede tumor initiation and progression. Nevertheless, the current research landscape in this field is fraught with challenges. These include significant variations in microbial composition, dietary preferences, and tumor microenvironments among individuals, a lack of large-scale cohort studies, and insufficient research that integrates tumor mutation analysis, gut microbiota investigations, and immune microenvironment evaluations. This review emphasizes the necessity for future research efforts to seamlessly incorporate multiple factors and utilize bioinformatics analysis to construct a more comprehensive "interactive map" of the gut microbiota-T cell relationship in CRC. The aim is to establish a solid theoretical basis for the development of highly effective and personalized treatment regimens, ultimately transforming the therapeutic approach to CRC.
Collapse
Affiliation(s)
- Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China
| | - Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China
| | - Chu Jian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China
| | - Qu Zhanbo
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China
| | - Wu Xinyue
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; Zhejiang-France United Laboratory of Integrated Traditional Chinese and Modern Medicine in Colorectal Cancer, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, People's Republic of China; ASIR (Institute - Association of intelligent systems and robotics), 14B rue Henri Sainte Claire Deville, 92500 Rueil-Malmaison, France.
| |
Collapse
|
5
|
Cai J, Zhang W, Zhu S, Lin T, Mao R, Wu N, Zhang P, Kang M. Gut and Intratumoral microbiota: Key to lung Cancer development and immunotherapy. Int Immunopharmacol 2025; 156:114677. [PMID: 40279944 DOI: 10.1016/j.intimp.2025.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Lung cancer is a common malignant tumor worldwide with high incidence and mortality rates. Previous studies have claimed that the microbial community plays an integral role in the development and progression of lung cancer. Emerging evidence reveals that gut flora plays a key role in cancer formation and evolution by participating in mechanisms such as metabolism, regulation of inflammation and immune response. Not only the gut flora, but also the presence of intratumoral microbiota may influence lung cancer progression through multiple mechanisms. These research advances suggest that intestinal flora and intratumoral microbiota may not only serve as potential biomarkers for lung cancer, but may also be targets for therapy. However, current studies on both in lung cancer are still limited. Given this, this study aimed to systematically review the latest findings on the major bacterial species of the intestinal flora and their possible protective or harmful roles in the formation, progression, and metastasis of lung cancer. In addition, we analyzed the potential mechanisms by which the intratumoral microbiota affected lung cancer and elaborated on the potential roles of the gut flora and its metabolites, as well as the intratumoral microbiota, in modulating the efficacy of immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Junlan Cai
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Shujing Zhu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tianxin Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Renyan Mao
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ningzi Wu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China.
| |
Collapse
|
6
|
Plewa P, Kiełbowski K, Mentel O, Figiel K, Bakinowska E, Becht R, Banach B, Pawlik A. Bacteria and Carcinogenesis and the Management of Cancer: A Narrative Review. Pathogens 2025; 14:509. [PMID: 40430828 PMCID: PMC12114594 DOI: 10.3390/pathogens14050509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/17/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
There is a widely known relationship between certain microbes and cancer progression. For instance, Helicobacter pylori is associated with the occurrence of gastric cancer, while HPV is associated with cervical and head and neck cancers. Recent studies have uncovered novel and important associations between bacterial presence and tumor formation and treatment response. Apart from the influence of the intestinal microbiome on cancer, the local activity of bacteria affects disease properties as well. Bacteria can localize within tumors in less vascularized niches. Their presence mediates the activity of signaling pathways, which contribute to tumorigenesis. Furthermore, they affect the composition of the tumor microenvironment, a highly complex structure composed of immunoregulatory cells and secreted inflammatory mediators. Recently, researchers have analyzed the properties of bacteria to develop novel anticancer strategies. The aim of this review is to discuss the latest findings regarding the relationships between bacteria and cancer and the properties of bacteria that could be used to kill cancer cells.
Collapse
Affiliation(s)
- Paulina Plewa
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Oliwia Mentel
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| | - Karolina Figiel
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| | - Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Bolesław Banach
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| |
Collapse
|
7
|
Zhang T, Li Y, Zhai E, Zhao R, Qian Y, Huang Z, Liu Y, Zhao Z, Xu X, Liu J, Li Z, Liang Z, Wei R, Ye L, Ma J, Wu Q, Chen J, Cai S. Intratumoral Fusobacterium nucleatum Recruits Tumor-Associated Neutrophils to Promote Gastric Cancer Progression and Immune Evasion. Cancer Res 2025; 85:1819-1841. [PMID: 39992708 PMCID: PMC12079103 DOI: 10.1158/0008-5472.can-24-2580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/07/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Intratumoral microbiota can affect the development and progression of many types of cancer, including gastric cancer. A better understanding of the precise mechanisms by which microbiota support gastric cancer could lead to improved therapeutic approaches. In this study, we investigated the effect of intratumoral microbiota on the tumor immune microenvironment during gastric cancer malignant progression. Analysis of human gastric cancer tissues with 16S rRNA amplicon sequencing revealed that Fusobacterium nucleatum was significantly enriched in gastric cancer tissues with lymph node metastasis and correlated with a poor prognosis. F. nucleatum infection spontaneously induced chronic gastritis and promoted gastric mucosa dysplasia in mice. Furthermore, gastric cancer cells infected with F. nucleatum showed accelerated growth in immunocompetent mice compared with immunodeficient mice. Single-cell RNA sequencing uncovered that F. nucleatum recruited tumor-associated neutrophils (TAN) to reshape the tumor immune microenvironment. Mechanistically, F. nucleatum invaded gastric cancer cells and activated IL17/NF-κB/RelB signaling, inducing TAN recruitment. F. nucleatum also stimulated TAN differentiation into the protumoral subtype and subsequent promotion of PD-L1 expression, further facilitating gastric cancer immune evasion while also enhancing the efficacy of anti-PD-L1 antibody therapy. Together, these data uncover mechanisms by which F. nucleatum affects gastric cancer immune evasion and immunotherapy efficacy, providing insights for developing effective treatment strategies. Significance: Intratumoral F. nucleatum activates NF-κB signaling to facilitate gastric cancer immune evasion by promoting tumor-associated neutrophil recruitment that sensitizes tumors to immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Tianhao Zhang
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ertao Zhai
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Risheng Zhao
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Qian
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhixin Huang
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yinan Liu
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zeyu Zhao
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiang Xu
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianqiu Liu
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zikang Li
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi Liang
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ran Wei
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linying Ye
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- Laboratory of General Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinping Ma
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianhui Chen
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, Guangxi, China
| | - Shirong Cai
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Zhang X, Fam KT, Dai T, Hang HC. Microbiota mechanisms in cancer progression and therapy. Cell Chem Biol 2025; 32:653-677. [PMID: 40334660 DOI: 10.1016/j.chembiol.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/19/2025] [Accepted: 04/13/2025] [Indexed: 05/09/2025]
Abstract
The composition of the microbiota in patients has been shown to correlate with cancer progression and response to therapy, highlighting unique opportunities to improve patient outcomes. In this review, we discuss the challenges and advancements in understanding the chemical mechanisms of specific microbiota species, pathways, and molecules involved in cancer progression and treatment. We also describe the modulation of cancer and immunotherapy by the microbiota, along with approaches for investigating microbiota enzymes and metabolites. Elucidating these specific microbiota mechanisms and molecules should offer new opportunities for developing enhanced diagnostics and therapeutics to improve outcomes for cancer patients. Nonetheless, many microbiota mechanisms remain to be determined and require innovative chemical genetic approaches.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Kyong Tkhe Fam
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tingting Dai
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Ramzy A, Abdelmoneim TK, Arafat M, Mokhtar M, Bakkar A, Mokhtar A, Anwar W, Magdeldin S, Enany S. Metabolomic analysis reveals key changes in amino acid metabolism in colorectal cancer patients. Amino Acids 2025; 57:22. [PMID: 40314699 PMCID: PMC12048468 DOI: 10.1007/s00726-025-03448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/05/2025] [Indexed: 05/03/2025]
Abstract
The number of colorectal cancer (CRC) patients is steadily growing worldwide, particularly in developing nations. Nonetheless, recent advances in early detection studies and therapy alternatives have reduced CRC mortality in affluent countries, despite rising incidence. Gut microbiota and their metabolites may contribute to tumor growth and reduced therapeutic efficacy. This preliminary study sought to uncover metabolic fingerprints in colorectal cancer patients. It also emphasizes the correlation between the gut microbiome, microbial metabolism, and altered metabolites in CRC. In this study, stool samples from 20 CRC patients and matched healthy controls were enrolled. Untargeted metabolomics approach based on an ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-MS/MS) were applied. Statistical approaches, pathway enrichment analysis, and network analysis were employed to unleash CRC perturbed metabolic pathways and putative biomarkers. The study identified a distinct manually curated metabolite profile that is substantially linked to CRC. The steroidogenesis, aspartate, tryptophan (Trp), and urea cycle were the most significant pathways that concurrently contributed to CRC.Prominently, among other pathways, Trp metabolism was identified as a critical pathway, indicating a possible connection between the development of CRC and gut microbiota. In a nutshell the notable resulted metabolites reveal auspicious biomarkers for the initial diagnosis as well as surveilling of CRC progression. This preliminary study highlights the potential involvement that gut bacteria may contribute in CRC patients. Further investigation into the composition of the gut microbiome associated with this metabolic profile may lead to the identification of novel biomarkers for early detection and possible targets for treatment.
Collapse
Grants
- (AI 42547) The work presented here is funded by the Armed Force College of Medicine, Cairo, Egypt, and it is partially supported by Science, Technology & Innovation Funding Authority (STDF) under grant (AI 42547).
- (AI 42547) The work presented here is funded by the Armed Force College of Medicine, Cairo, Egypt, and it is partially supported by Science, Technology & Innovation Funding Authority (STDF) under grant (AI 42547).
- The work presented here is funded by the Armed Force College of Medicine, Cairo, Egypt, and it is partially supported by Science, Technology & Innovation Funding Authority (STDF) under grant (AI 42547).
Collapse
Affiliation(s)
- Asmaa Ramzy
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Taghreed Khaled Abdelmoneim
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Menna Arafat
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maha Mokhtar
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Ashraf Bakkar
- Faculty of Biotechnology, October for Modern Sciences and Arts, Giza, Egypt
| | - Amany Mokhtar
- Biomedical Research Department, Armed Force College of Medicine (AFCM), Cairo, Egypt
- Community Medicine Department, Ain Shams University, Cairo, Egypt
| | - Wagida Anwar
- Biomedical Research Department, Armed Force College of Medicine (AFCM), Cairo, Egypt
- Community Medicine Department, Ain Shams University, Cairo, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
- Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Shymaa Enany
- Biomedical Research Department, Armed Force College of Medicine (AFCM), Cairo, Egypt.
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
10
|
Mukherjee SD, Batagello C, Adler A, Agudelo J, Zampini A, Suryavanshi M, Nguyen A, Orr T, Dearing D, Monga M, Miller AW. Complex system modeling reveals oxalate homeostasis is driven by diverse oxalate-degrading bacteria. eLife 2025; 14:RP104121. [PMID: 40310467 PMCID: PMC12045624 DOI: 10.7554/elife.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Decades of research have made clear that host-associated microbiomes touch all facets of health. However, effective therapies that target the microbiome have been elusive given its inherent complexity. Here, we experimentally examined diet-microbe-host interactions through a complex systems framework, centered on dietary oxalate. Using multiple, independent molecular, rodent, and in vitro experimental models, we found that microbiome composition influenced multiple oxalate-microbe-host interfaces. Importantly, the administration of the oxalate-degrading specialist, Oxalobacter formigenes, was only effective against a poor oxalate-degrading microbiota background and gives critical new insights into why clinical intervention trials with this species exhibit variable outcomes. Data suggest that, while heterogeneity in the microbiome impacts multiple diet-host-microbe interfaces, metabolic redundancy among diverse microorganisms in specific diet-microbe axes is a critical variable that may impact the efficacy of bacteriotherapies, which can help guide patient and probiotic selection criteria in probiotic clinical trials.
Collapse
Affiliation(s)
- Sromona D Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland ClinicClevelandUnited States
| | - Carlos Batagello
- Division of Urology, Hospital das Clínicas, University of Sao Paulo Medical SchoolSao PauloBrazil
| | - Ava Adler
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland ClinicClevelandUnited States
| | - Jose Agudelo
- Department of Cardiovascular and Metabolic Sciences, Cleveland ClinicClevelandUnited States
| | - Anna Zampini
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland ClinicClevelandUnited States
| | - Mangesh Suryavanshi
- Department of Cardiovascular and Metabolic Sciences, Cleveland ClinicClevelandUnited States
| | - Andrew Nguyen
- M Health Fairview Southdale HospitalEdinaUnited States
| | - Terry Orr
- Department of Biology, New Mexico State UniversityLas CrucesUnited States
| | - Denise Dearing
- School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Manoj Monga
- Department of Urology, University of California San DiegoSan DiegoUnited States
| | - Aaron W Miller
- Department of Cardiovascular and Metabolic Sciences, Cleveland ClinicClevelandUnited States
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland ClinicClevelandUnited States
| |
Collapse
|
11
|
Torshizi Esfahani A, Zafarjafarzadeh N, Vakili F, Bizhanpour A, Mashaollahi A, Karimi Kordestani B, Baratinamin M, Mohammadpour S. Gut microbiome in colorectal cancer: metagenomics from bench to bedside. JNCI Cancer Spectr 2025; 9:pkaf026. [PMID: 40045177 DOI: 10.1093/jncics/pkaf026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/27/2024] [Accepted: 02/27/2025] [Indexed: 05/27/2025] Open
Abstract
Colorectal cancer (CRC) is a major global health challenge. Emerging research highlights the pivotal role of the gut microbiota in influencing CRC risk, progression, and treatment response. Metagenomic approaches, especially high-throughput shotgun sequencing, have provided unprecedented insights into the intricate connections between the gut microbiome and CRC. By enabling comprehensive taxonomic and functional profiling, metagenomics has revealed microbial signatures, activities, and biomarkers associated with colorectal tumorigenesis. Furthermore, metagenomics has shown a potential to guide patient stratification, predict treatment outcomes, and inform microbiome-targeted interventions. Despite remaining challenges in multi-omics data integration, taxonomic gaps, and validation across diverse cohorts, metagenomics has propelled our comprehension of the intricate gut microbiome-CRC interplay. This review underscores the clinical relevance of microbial signatures as potential diagnostic and prognostic tools in CRC. Furthermore, it discusses personalized treatment strategies guided by this omics' approach.
Collapse
Affiliation(s)
- Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Fatemeh Vakili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Anahita Bizhanpour
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Amirhesam Mashaollahi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Bita Karimi Kordestani
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Mahdieh Baratinamin
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University Tehran, Tehran, Iran
| | - Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Cui X, Li C, Zhong J, Liu Y, Xiao P, Liu C, Zhao M, Yang W. Gut microbiota - bidirectional modulator: role in inflammatory bowel disease and colorectal cancer. Front Immunol 2025; 16:1523584. [PMID: 40370465 PMCID: PMC12075242 DOI: 10.3389/fimmu.2025.1523584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
The gut microbiota is a diverse ecosystem that significantly impacts human health and disease. This article focuses on how the gut microbiota interacts with inflammatory bowel diseases and colorectal tumors, especially through immune regulation. The gut microbiota plays a role in immune system development and regulation, while the body's immune status can also affect the composition of the microbiota. These microorganisms exert pathogenic effects or correct disease states in gastrointestinal diseases through the actions of toxins and secretions, inhibition of immune responses, DNA damage, regulation of gene expression, and protein synthesis. The microbiota and its metabolites are essential in the development and progression of inflammatory bowel diseases and colorectal tumors. The complexity and bidirectionality of this connection with tumors and inflammation might render it a new therapeutic target. Hence, we explore therapeutic strategies for the gut microbiota, highlighting the potential of probiotics and fecal microbiota transplantation to restore or adjust the microbial community. Additionally, we address the challenges and future research directions in this area concerning inflammatory bowel diseases and colorectal tumors.
Collapse
Affiliation(s)
- Xilun Cui
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jing Zhong
- Department of Medical Imaging, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mengwei Zhao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
13
|
Abdeen SK, Mastandrea I, Stinchcombe N, Puschhof J, Elinav E. Diet-microbiome interactions in cancer. Cancer Cell 2025; 43:680-707. [PMID: 40185096 DOI: 10.1016/j.ccell.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Diet impacts cancer in diverse manners. Multiple nutritional effects on tumors are mediated by dietary modulation of commensals, residing in mucosal surfaces and possibly also within the tumor microenvironment. Mechanistically understanding such diet-microbiome-host interactions may enable to develop precision nutritional interventions impacting cancer development, dissemination, and treatment responses. However, data-driven nutritional strategies integrating diet-microbiome interactions are infrequently incorporated into cancer prevention and treatment schemes. Herein, we discuss how dietary composition affects cancer-related processes through alterations exerted by specific nutrients and complex foods on the microbiome. We highlight how dietary timing, including time-restricted feeding, impacts microbial function in modulating cancer and its therapy. We review existing and experimental nutritional approaches aimed at enhancing microbiome-mediated cancer treatment responsiveness while minimizing adverse effects, and address challenges and prospects in integrating diet-microbiome interactions into precision oncology. Collectively, mechanistically understanding diet-microbiome-host interactomes may enable to achieve a personalized and microbiome-informed optimization of nutritional cancer interventions.
Collapse
Affiliation(s)
- Suhaib K Abdeen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Nina Stinchcombe
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Junior Research Group Epithelium Microbiome Interactions, DKFZ, Heidelberg, Germany
| | - Jens Puschhof
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Junior Research Group Epithelium Microbiome Interactions, DKFZ, Heidelberg, Germany.
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany.
| |
Collapse
|
14
|
Lu J, Wei W, Zheng D. Fusobacterium nucleatum in Colorectal Cancer: Ally Mechanism and Targeted Therapy Strategies. RESEARCH (WASHINGTON, D.C.) 2025; 8:0640. [PMID: 40207017 PMCID: PMC11979337 DOI: 10.34133/research.0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
Fusobacterium nucleatum (Fn), an oral anaerobic commensal, has recently been identified as a crucial oncogenic contributor to colorectal cancer pathogenesis through its ectopic colonization in the gastrointestinal tract. Accumulating evidence reveals its multifaceted involvement in colorectal cancer initiation, progression, metastasis, and therapeutic resistance to conventional treatments, including chemotherapy, radiotherapy, and immunotherapy. This perspective highlights recent advances in anti-Fn strategies, including small-molecule inhibitors, nanomedicines, and biopharmaceuticals, while critically analyzing the translational barriers in developing targeted antimicrobial interventions. We further propose potential strategies to overcome current challenges in Fn modulation, aiming to pave the way for more effective therapeutic interventions and better clinical outcomes.
Collapse
Affiliation(s)
- Junna Lu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Wei
- State Key Laboratory of Biopharmaceutical Preparation and Delivery,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diwei Zheng
- State Key Laboratory of Biopharmaceutical Preparation and Delivery,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Greco L, Rubbino F, Ferrari C, Cameletti M, Grizzi F, Bonelli F, Malesci A, Mazzone M, Ricciardiello L, Laghi L. Association of Fusobacterium nucleatum with colorectal cancer molecular subtypes and its outcome: a systematic review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2025; 6:e5. [PMID: 40297307 PMCID: PMC12035788 DOI: 10.1017/gmb.2025.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Colorectal cancer (CRC) represents a relevant public health problem, with high incidence and mortality in Western countries. CRC can occur as sporadic (65%-75%), common familial (25%), or as a consequence of an inherited predisposition (up to 10%). While unravelling its genetic basis has been a long trip leading to relevant clinical implementation over more than 30 years, other contributing factors remain to be clarified. Among these, micro-organisms have emerged as critical players in the development and progression of the disease, as well as for CRC treatment response. Fusobacterium nucleatum (Fn) has been associated with CRC development in both pre-clinical models and clinical settings. Fusobacteria are core members of the human oral microbiome, while being less prevalent in the healthy gut, prompting questions about their localization in CRC and its precursor lesions. This review aims to critically discuss the evidence connecting Fn with CRC pathogenesis, its molecular subtypes and clinical outcomes.
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Clarissa Ferrari
- Research and Clinical Trials Office, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Fabio Grizzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | - Massimiliano Mazzone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Macrophage Dynamics Lab, IRCCS Humanitas Research Hospital, Milan, Italy
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Luigi Ricciardiello
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Zhang H, Zhou Y, Jiang YH, Hu WP, Huang LL, Lin HX, Zuo ZG, Du JM, Lou YL. Altered microbiota of rectal mucosa in rectal cancer patients. World J Gastroenterol 2025; 31:105248. [PMID: 40248061 PMCID: PMC12001164 DOI: 10.3748/wjg.v31.i13.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND With advances in sequencing techniques, microbiota dysbiosis and pathogenic microbes that accelerate colorectal cancer progression have been identified and widely reported. However, few studies have focused on the microbiota taxa of rectal mucus in rectal cancer (RC) patients. Here, we analyzed the composition and characteristics of the rectal mucosa microbiota of RC patients from Wenzhou city, China, and compared the results with those of healthy controls. AIM To explore the changes in the characteristics of the rectal mucosal flora associated with RC, and identify biomarkers of microbe taxa for RC. METHODS Rectal mucosa samples from a Chinese cohort of 72 recently diagnosed RC patients and 71 healthy controls were obtained. A validation cohort, which included 22 RC patients and 60 healthy controls, was also established. Changes in the rectal mucosal flora were observed by cultivation, 16S ribosomal DNA gene sequencing analysis and quantitative polymerase chain reaction analysis. RESULTS The 16S ribosomal DNA results demonstrated that RC patients presented increased bacterial community richness and alpha diversity as well as an altered rectal mucosal microbiota, with depletion of Proteobacteria and Thermi and enrichment of Bacteroidetes and Fusobacteria in cancerous mucosal tissues (CM) and enrichment of Firmicutes and Cyanobacteria in adjacent noncancerous mucosal tissues (AM). The culture results showed that the mean loads of Escherichia coli, Bifidobacterium, Enterococcus, and Lactobacillus were significantly reduced in RC patients. The ratios of Prevotella to Ruminococcus [areas under the receiver operating curve: 0.795 in AM vs normal control mucosa (NM), 0.77 in CM vs NM] and of Prevotella stercorea to Propionibacterium acnes (areas under the receiver operating curve: 0.808 in AM vs NM, 0.843 in CM vs NM) exhibited excellent abilities to differentiate between healthy controls and RC patients. CONCLUSION RC patients have an altered rectal mucosal microbiota, and the ratio of Prevotella to Ruminococcus or the ratio of Prevotella stercorea to Propionibacterium acnes may serve as a marker for RC diagnosis.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Laboratory Medicine, Hangzhou Geriatric Hospital, Hangzhou 310022, Zhejiang Province, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yan Zhou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - You-Heng Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
| | - Wan-Ping Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Lu-Lu Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Hai-Xia Lin
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Zhi-Gui Zuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Ji-Mei Du
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yong-Liang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| |
Collapse
|
17
|
Zheng Z, Jin W, Guo W, Jin Z, Zuo Y. Oral Fusobacterium nucleatum exacerbates ulcerative colitis via the oral-gut axis: mechanisms and therapeutic implications. Front Cell Infect Microbiol 2025; 15:1564169. [PMID: 40260115 PMCID: PMC12009839 DOI: 10.3389/fcimb.2025.1564169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Background Fusobacterium nucleatum (F. nucleatum) is an anaerobic bacterium known for its association with periodontal disease and oral infections. It has been implicated in the development of gastrointestinal diseases such as inflammatory bowel disease and colorectal cancer. Ulcerative colitis (UC), which is characterized by chronic inflammation of the colon, is a condition of unknown etiology with a rising incidence rate, significantly affecting the quality of life for patients. The increased intestinal permeability during UC may facilitate the adherence or invasion of F. nucleatum into the damaged intestinal barrier, leading to exacerbated inflammation. Methods This article introduces the concept of the oral-gut axis, reviewing existing literature to analyze the role of F. nucleatum in the pathogenesis of UC and exploring its potential pathogenic mechanisms. It also summarizes the latest advances in treating patients with UC who have F. nucleatum and looks forward to prospective therapeutic strategies and the translational prospects of F. nucleatum within the oral-gut axis. Results F. nucleatum may be a key player in the pathogenesis of UC, likely due to its invasiveness during periods of increased intestinal permeability. The paper also discusses innovative approaches for the prevention and management of UC exacerbated by F. nucleatum, paving the way for more effective treatment of UC. Conclusion The review offers new insights into the complex relationship between the oral microbiome and intestinal diseases, enhancing our understanding of their dynamic interactions. There is a paucity of literature on therapeutic approaches, indicating a need for further clinical research.
Collapse
Affiliation(s)
- Zhaoyu Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenqin Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weiwei Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuling Zuo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Gilbert JA, Azad MB, Bäckhed F, Blaser MJ, Byndloss M, Chiu CY, Chu H, Dugas LR, Elinav E, Gibbons SM, Gilbert KE, Henn MR, Ishaq SL, Ley RE, Lynch SV, Segal E, Spector TD, Strandwitz P, Suez J, Tropini C, Whiteson K, Knight R. Clinical translation of microbiome research. Nat Med 2025; 31:1099-1113. [PMID: 40217076 DOI: 10.1038/s41591-025-03615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/26/2025] [Indexed: 04/18/2025]
Abstract
The landscape of clinical microbiome research has dramatically evolved over the past decade. By leveraging in vivo and in vitro experimentation, multiomic approaches and computational biology, we have uncovered mechanisms of action and microbial metrics of association and identified effective ways to modify the microbiome in many diseases and treatment modalities. This Review explores recent advances in the clinical application of microbiome research over the past 5 years, while acknowledging existing barriers and highlighting opportunities. We focus on the translation of microbiome research into clinical practice, spearheaded by Food and Drug Administration (FDA)-approved microbiome therapies for recurrent Clostridioides difficile infections and the emerging fields of microbiome-based diagnostics and therapeutics. We highlight key examples of studies demonstrating how microbiome mechanisms, metrics and modifiers can advance clinical practice. We also discuss forward-looking perspectives on key challenges and opportunities toward integrating microbiome data into routine clinical practice, precision medicine and personalized healthcare and nutrition.
Collapse
Affiliation(s)
- Jack A Gilbert
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- CIFAR Humans & the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin J Blaser
- CIFAR Humans & the Microbiome Program, CIFAR, Toronto, Ontario, Canada
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Mariana Byndloss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Fransisco, San Francisco, CA, USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Fransisco, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Hiutung Chu
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines, La Jolla, CA, USA
| | - Lara R Dugas
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Microbiome and Cancer Division, DKFZ, Heidelberg, Germany
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Katharine E Gilbert
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | | | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, ME, USA
- Microbes and Social Equity working group, Orono, ME, USA
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Susan V Lynch
- Benioff Center for Microbiome Medicine, Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- ZOE Ltd, London, UK
| | | | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Carolina Tropini
- CIFAR Humans & the Microbiome Program, CIFAR, Toronto, Ontario, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
19
|
Wang S, Wu M. Decoding the link between microbial secondary metabolites and colorectal cancer. Comput Biol Chem 2025; 115:108372. [PMID: 39923290 DOI: 10.1016/j.compbiolchem.2025.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/29/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Colorectal cancer (CRC) is a prevalent form of cancer in humans, with the gut microbiota playing a significant role in its pathogenesis. Although previous research has primarily focused on the role of primary metabolites produced by gut microbes in CRC development, the role of secondary metabolites remains largely unexplored. Secondary metabolites are known to mediate crucial interactions between the microbiota and the host, potentially influencing CRC progression. However, their specific relationship to CRC pathogenesis is poorly understood. To address this gap, we performed a meta-analysis using fecal metagenomic data from a cohort of CRC patients and healthy controls, aiming to identify CRC-associated microbial secondary metabolite biosynthetic gene clusters (BGCs). Our findings not only provide valuable insights into the pathogenicity and carcinogenicity of CRC but also shed light on the potential mechanisms underlying its development.
Collapse
Affiliation(s)
- Shengqin Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Mingjiang Wu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
20
|
Boyanova L, Gergova R, Markovska R. Coculture systems to study interactions between anaerobic bacteria and intestinal epithelium. Anaerobe 2025; 92:102949. [PMID: 40010487 DOI: 10.1016/j.anaerobe.2025.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/04/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Coculture systems (CCSs) are experimental tools used to study the interactions of anaerobic bacteria among themselves and the gut epithelial cells under conditions simulating the human gut, unlike those in animal models. Although the studies on animal models are useful in determining the relationship between the causative agents of infections and human infections, they have disadvantages, such as ethical issues, in addition to the differences in the microbiota of the animal and humans. Therefore, the results obtained using animal models cannot be directly extrapolated to humans. CCSs can more completely reflect in vivo gut homeostasis and contribute to better understanding of the interplay between the intestinal cells and anaerobes, prevalent among the gut bacteria. Moreover, they provide new insights on the pathogenesis of infections and aid in assessing the usefulness of new probiotics and antibacterials. Therefore, CCSs, including the gut-on-a-chip models, can significantly improve microbiota-based therapy. Moreover, they can also be used to detect microbiota-derived metabolites such as those with mutagenic properties. The aim of this review was to explore selected CCS models of anaerobes with intestinal epithelium and their application in investigating intestinal homeostasis. The focus was to highlight the application of different CCSs and important data obtained from their implementation.
Collapse
Affiliation(s)
- Lyudmila Boyanova
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria.
| | - Raina Gergova
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria
| |
Collapse
|
21
|
Pérez Escriva P, Correia Tavares Bernardino C, Letellier E. De-coding the complex role of microbial metabolites in cancer. Cell Rep 2025; 44:115358. [PMID: 40023841 DOI: 10.1016/j.celrep.2025.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
The human microbiome, an intricate ecosystem of trillions of microbes residing across various body sites, significantly influences cancer, a leading cause of morbidity and mortality worldwide. Recent studies have illuminated the microbiome's pivotal role in cancer development, either through direct cellular interactions or by secreting bioactive compounds such as metabolites. Microbial metabolites contribute to cancer initiation through mechanisms such as DNA damage, epithelial barrier dysfunction, and chronic inflammation. Furthermore, microbial metabolites exert dual roles on cancer progression and response to therapy by modulating cellular metabolism, gene expression, and signaling pathways. Understanding these complex interactions is vital for devising new therapeutic strategies. This review highlights microbial metabolites as promising targets for cancer prevention and treatment, emphasizing their impact on therapy responses and underscoring the need for further research into their roles in metastasis and therapy resistance.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Correia Tavares Bernardino
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
22
|
Xu W, Bradstreet TR, Zou Z, Hickerson S, Zhou Y, He H, Edelson BT, Caparon MG. Reprogramming aerobic metabolism mitigates Streptococcus pyogenes tissue damage in a mouse necrotizing skin infection model. Nat Commun 2025; 16:2559. [PMID: 40089471 PMCID: PMC11910614 DOI: 10.1038/s41467-025-57348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/20/2025] [Indexed: 03/17/2025] Open
Abstract
Disease tolerance is a host response to infection that limits collateral damage to host tissues while having a neutral effect on pathogen fitness. Previously, we found that the pathogenic lactic acid bacterium Streptococcus pyogenes manipulates disease tolerance using its aerobic mixed-acid fermentation pathway via the enzyme pyruvate dehydrogenase, but the microbe-derived molecules that mediate communication with the host's disease tolerance pathways remain elusive. Here we show in a murine model that aerobic mixed-acid fermentation inhibits the accumulation of inflammatory cells including neutrophils and macrophages, reduces the immunosuppressive cytokine interleukin-10, and delays bacterial clearance and wound healing. In infected macrophages, the aerobic mixed-acid fermentation end-products acetate and formate from streptococcal upregulate host acetyl-CoA metabolism and reduce interleukin-10 expression. Inhibiting aerobic mixed-acid fermentation using a bacterial-specific pyruvate dehydrogenase inhibitor reduces tissue damage during murine infection, correlating with increased interleukin-10 expression. Our results thus suggest that reprogramming carbon flow provides a therapeutic strategy to mitigate tissue damage during infection.
Collapse
Affiliation(s)
- Wei Xu
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Tara R Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zongsen Zou
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne Hickerson
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuan Zhou
- Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, PR China
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Central China Normal University, Wuhan, PR China
| | - Hongwu He
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Central China Normal University, Wuhan, PR China
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
23
|
Liu QL, Zhou H, Wang Z, Chen Y. Exploring the role of gut microbiota in colorectal liver metastasis through the gut-liver axis. Front Cell Dev Biol 2025; 13:1563184. [PMID: 40181829 PMCID: PMC11965903 DOI: 10.3389/fcell.2025.1563184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Colorectal liver metastasis (CRLM) represents a major therapeutic challenge in colorectal cancer (CRC), with complex interactions between the gut microbiota and the liver tumor microenvironment (TME) playing a crucial role in disease progression via the gut-liver axis. The gut barrier serves as a gatekeeper, regulating microbial translocation, which influences liver colonization and metastasis. Through the gut-liver axis, the microbiota actively shapes the TME, where specific microbial species and their metabolites exert dual roles in immune modulation. The immunologically "cold" nature of the liver, combined with the influence of the gut microbiota on liver immunity, complicates effective immunotherapy. However, microbiota-targeted interventions present promising strategies to enhance immunotherapy outcomes by modulating the gut-liver axis. Overall, this review highlights the emerging evidence on the role of the gut microbiota in CRLM and provides insights into the molecular mechanisms driving the dynamic interactions within the gut-liver axis.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute of Digestive Surgery, Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Health Management Center, General Practice Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Chen
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
24
|
Zhou H, Fan Z, Da Y, Liu X, Wang C, Zhang T, Zhang J, Wu T, Liang J. Causal Relationships Between Iron Deficiency Anemia, Gut Microbiota, and Metabolites: Insights from Mendelian Randomization and In Vivo Data. Biomedicines 2025; 13:677. [PMID: 40149653 PMCID: PMC11940133 DOI: 10.3390/biomedicines13030677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Iron deficiency anemia (IDA) is a common type of anemia in children and pregnant women. The effects of iron deficiency on gut microbiota and metabolic profiles are not fully understood. Methods: Mendelian randomization (MR) analysis was conducted to explore associations among IDA, gut microbiota, and metabolites. MR analysis was conducted using computational methods, utilizing human genetic data. Data were obtained from genome-wide association studies (GWAS), with inverse-variance-weighted (IVW) as the primary method. Animal models evaluated the effects of IDA on gut microbiota and metabolic profiles. Results: IVW analysis revealed significant associations between gut microbial taxa and IDA. The genus Desulfovibrio was protective (OR = 0.85, 95% CI: 0.77-0.93, p = 0.001), while Actinomyces (OR = 1.12, 95% CI: 1.01-1.23, p = 0.025) and family XIII (OR = 1.16, 95% CI: 1.01-1.32, p = 0.035) increased IDA risk. Glycine was protective (OR = 0.95, 95% CI: 0.91-0.99, p = 0.011), whereas medium low density lipoprotein (LDL) phospholipids increased risk (OR = 1.07, 95% CI: 1.00-1.15, p = 0.040). Animal models confirmed reduced Desulfovibrio, increased Actinomyces, and altered metabolites, including amino acids and phospholipids. Conclusions: IDA significantly impacts gut microbiota and metabolic profiles, offering insights for therapeutic strategies targeting microbiota and metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tong Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China; (H.Z.); (Z.F.); (Y.D.); (X.L.); (C.W.); (T.Z.); (J.Z.)
| | - Jie Liang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China; (H.Z.); (Z.F.); (Y.D.); (X.L.); (C.W.); (T.Z.); (J.Z.)
| |
Collapse
|
25
|
Cui B, Luo H, He B, Liu X, Lv D, Zhang X, Su K, Zheng S, Lu J, Wang C, Yang Y, Zhao Z, Liu X, Wang X, Zhao Y, Nie X, Jiang Y, Zhang Z, Liu C, Chen X, Cai A, Lv Z, Liu Z, An F, Zhang Y, Yan Q, Kelley KW, Xu G, Xu L, Liu Q, Peng F. Gut dysbiosis conveys psychological stress to activate LRP5/β-catenin pathway promoting cancer stemness. Signal Transduct Target Ther 2025; 10:79. [PMID: 40038255 PMCID: PMC11880501 DOI: 10.1038/s41392-025-02159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Psychological stress causes gut microbial dysbiosis and cancer progression, yet how gut microbiota determines psychological stress-induced tumor development remains unclear. Here we showed that psychological stress promotes breast tumor growth and cancer stemness, an outcome that depends on gut microbiota in germ-free and antibiotic-treated mice. Metagenomic and metabolomic analyses revealed that psychological stress markedly alters the composition and abundance of gut microbiota, especially Akkermansia muciniphila (A. muciniphila), and decreases short-chain fatty acid butyrate. Supplement of active A. muciniphila, butyrate or a butyrate-producing high fiber diet dramatically reversed the oncogenic property and anxiety-like behavior of psychological stress in a murine spontaneous tumor model or an orthotopic tumor model. Mechanistically, RNA sequencing analysis screened out that butyrate decreases LRP5 expression to block the activation of Wnt/β-catenin signaling pathway, dampening breast cancer stemness. Moreover, butyrate as a HDAC inhibitor elevated histone H3K9 acetylation level to transcriptionally activate ZFP36, which further accelerates LRP5 mRNA decay by binding adenine uridine-rich (AU-rich) elements of LRP5 transcript. Clinically, fecal A. muciniphila and serum butyrate were inversely correlated with tumoral LRP5/β-catenin expression, poor prognosis and negative mood in breast cancer patients. Altogether, our findings uncover a microbiota-dependent mechanism of psychological stress-triggered cancer stemness, and provide both clinical biomarkers and potential therapeutic avenues for cancer patients undergoing psychological stress.
Collapse
Affiliation(s)
- Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xinyu Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Sijia Zheng
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuqing Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhuoran Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xianxian Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xu Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingrui Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaoshan Nie
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuanyuan Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ziyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Congcong Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xinyi Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Anqi Cai
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhumeng Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhihang Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fan An
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yunkun Zhang
- Department of Pathology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Keith W Kelley
- Department of Pathology, College of Medicine and Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Guowang Xu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Lingzhi Xu
- Department of Oncology, the Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
26
|
Nor WMFSBWM, Kwong SC, Fuzi AAM, Said NABM, Jamil AHA, Lee YY, Lee SC, Lim YAL, Chung I. Linking microRNA to metabolic reprogramming and gut microbiota in the pathogenesis of colorectal cancer (Review). Int J Mol Med 2025; 55:46. [PMID: 39820715 PMCID: PMC11759585 DOI: 10.3892/ijmm.2025.5487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
Colorectal cancer (CRC), an emerging public health concern, is one of the leading causes of cancer morbidity and mortality worldwide. An increasing body of evidence shows that dysfunction in metabolic reprogramming is a crucial characteristic of CRC progression. Specifically, metabolic reprogramming abnormalities in glucose, glutamine and lipid metabolism provide the tumour with energy and nutrients to support its rapid cell proliferation and survival. More recently, microRNAs (miRNAs) appear to be involved in the pathogenesis of CRC, including regulatory roles in energy metabolism. In addition, it has been revealed that dysbiosis in CRC might play a key role in impairing the host metabolic reprogramming processes, and while the exact interactions remain unclear, the link may lie with miRNAs. Hence, the aims of the current review include first, to delineate the metabolic reprogramming abnormalities in CRC; second, to explain how miRNAs mediate the aberrant regulations of CRC metabolic pathways; third, linking miRNAs with metabolic abnormalities and dysbiosis in CRC and finally, to discuss the roles of miRNAs as potential biomarkers.
Collapse
Affiliation(s)
| | - Soke Chee Kwong
- Centre for Population Health (CePH), Department of Social and Preventive Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Afiqah Alyaa Md Fuzi
- Office of Deputy Vice Chancellor (Research and Innovation), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Akmarina Binti Mohd Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Amira Hajirah Abd Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Malaysia
| | - Soo Ching Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yvonne Ai-Lian Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Mukherjee SD, Batagello CA, Adler A, Agudelo J, Zampini A, Suryavanshi M, Nguyen A, Orr T, Dearing D, Monga M, Miller AW. Complex system modelling reveals oxalate homeostasis is driven by diverse oxalate-degrading bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.28.620613. [PMID: 39553961 PMCID: PMC11565779 DOI: 10.1101/2024.10.28.620613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Decades of research have made clear that host-associated microbiomes touch all facets of health. However, effective therapies that target the microbiome have been elusive given its inherent complexity. Here, we experimentally examined diet-microbe-host interactions through a complex systems framework, centered on dietary oxalate. Using multiple, independent molecular, animal, and in vitro experimental models, we found that microbiome composition influenced multiple oxalate-microbe-host interfaces. Importantly, administration of the oxalate-degrading specialist, Oxalobacter formigenes, was only effective against a poor oxalate-degrading microbiota background and gives critical new insights into why clinical intervention trials with this species exhibit variable outcomes. Data suggest that, while heterogeneity in the microbiome impacts multiple diet-host-microbe interfaces, metabolic redundancy among diverse microorganisms in specific diet-microbe axes is a critical variable that may impact the efficacy of bacteriotherapies, which can help guide patient and probiotic selection criteria in probiotic clinical trials.
Collapse
Affiliation(s)
- Sromona D. Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Carlos A. Batagello
- Division of Urology, Hospital das Clínicas, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Ava Adler
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jose Agudelo
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Zampini
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mangesh Suryavanshi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Nguyen
- M Health Fairview Southdale Hospital, Edina, MN, USA
| | - Teri Orr
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Manoj Monga
- Department of Urology, University of California San Diego, San Diego, CA, USA
| | - Aaron W. Miller
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
28
|
Shiro Y, Arai YC, Nakaso Y, Sakurai H, Inoue M, Owari K, Sato J, Ikemoto T, Ushida T. Differences in Gut Microbiota Composition Depending on the Site of Pain in Patients with Chronic Pain. J Pain Res 2025; 18:769-782. [PMID: 39991525 PMCID: PMC11846523 DOI: 10.2147/jpr.s494984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/31/2025] [Indexed: 02/25/2025] Open
Abstract
Background There are many factors associated with chronic pain, including changes in the nervous and musculoskeletal systems and so on. Recently, it has become clear that the gut microbiota (GM) influences these factors, and there are many reports of GM dysbiosis in patients with chronic pain. However, the relationship between pain and GM remains unclear. Our previous study reported that defecation status, which reflects GM composition, was associated with pain intensity and that this relationship was different for each pain site. Our study investigated the association between pain site and the GM composition of feces in chronic pain patients. Methods The subjects were 136 patients with chronic pain and 125 healthy controls. Patients were classified into four groups, whole body (WB) pain, lower back and lower extremity (LL) pain, headache, and upper back and upper extremity pain, based on the site of pain, and we investigated differences in GM taxonomy groups compared with healthy subject. Results Chronic pain patients had a lower alpha diversity (effect size=0.16, p=0.02). But each pain site group did not differ in alpha diversity. WB pain patients showed higher Eggerthellaceae (LDA=3.09, p<0.01) and lower Halomonas (LDA =-2.72, p<0.01). LL pain patients had increased Fusobacterium and Sellimonas (LDA=4.09,3.03 p<0.01, 0.01) but reduced Halomonas (LDA=-2.59, p<0.01), and other key taxa. Conclusion WB and LL patients may have GM compositions different from healthy controls, but larger studies are needed to confirm this.
Collapse
Affiliation(s)
- Yukiko Shiro
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
- Department of Physical Therapy, Faculty of Rehabilitation Sciences, Nagoya Gakuin University, Aichi, Japan
| | - Young-Chang Arai
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| | - Yuichiro Nakaso
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| | - Hiroki Sakurai
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
- Faculty of Health and Medical Sciences, Tokoha University, Shizuoka, Japan
| | - Masayuki Inoue
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| | - Keiko Owari
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| | - Jun Sato
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| | - Tatsunori Ikemoto
- Department of Orthopedics, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Takahiro Ushida
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| |
Collapse
|
29
|
Kim J, Seki E. Inflammation and Immunity in Liver Neoplasms: Implications for Future Therapeutic Strategies. Mol Cancer Ther 2025; 24:188-199. [PMID: 39365846 PMCID: PMC11794036 DOI: 10.1158/1535-7163.mct-23-0726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 10/06/2024]
Abstract
Over the past two decades, the "hallmarks of cancer" have revolutionized cancer research and highlighted the crucial roles of inflammation and immunity. Protumorigenic inflammation promotes cancer development along with inhibition of antitumor immunity, shaping the tumor microenvironment (TME) toward a tumor-permissive state and further enhancing the malignant potential of cancer cells. This immunosuppressive TME allows tumors to evade immunosurveillance. Thus, understanding the complex interplay between tumors and the immune system within the TME has become pivotal, especially with the advent of immunotherapy. Although immunotherapy has achieved notable success in many malignancies, primary liver cancer, particularly hepatocellular carcinoma, presents unique challenges. The hepatic immunosuppressive environment poses obstacles to the effectiveness of immunotherapy, along with high mortality rates and limited treatment options for patients with liver cancer. In this review, we discuss current understanding of the complex immune-mediated mechanisms underlying liver neoplasms, focusing on hepatocellular carcinoma and liver metastases. We describe the molecular and cellular heterogeneity within the TME, highlighting how this presents unique challenges and opportunities for immunotherapy in liver cancers. By unraveling the immune landscape of liver neoplasms, this review aims to contribute to the development of more effective therapeutic interventions, ultimately improving clinical outcomes for patients with liver cancer.
Collapse
Affiliation(s)
- Jieun Kim
- Karsh Division of Gastroenterology Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
30
|
Zang J, Yin F, Liu Z, Li F, Zhang Y. Bacteria-tumor symbiosis destructible novel nanocatalysis drug delivery systems for effective tumor therapy. Nanomedicine (Lond) 2025; 20:305-318. [PMID: 39889806 PMCID: PMC11792809 DOI: 10.1080/17435889.2024.2443388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/13/2024] [Indexed: 02/03/2025] Open
Abstract
Colorectal cancer (CRC) is a significant threat to human health. The dynamic equilibrium between probiotics and pathogenic bacteria within the gut microbiota is crucial in mitigating the risk of CRC. An overgrowth of harmful microorganisms in the gastrointestinal tract can result in an excessive accumulation of bacterial toxins and carcinogenic metabolites, thereby disrupting the delicate balance of the microbiota. This disruption may lead to alterations in microbial composition, impairment of mucosal barrier function, potential promotion of abnormal cell proliferation, and ultimately contribute to the progression of CRC. Recently, research has indicated that intestinal presence of Fusobacterium nucleatum (Fn) significantly influences the onset, progression, and metastasis of CRC. Consequently, disrupting the interaction between CRC cells and Fn presents a promising strategy against CRC. Nanomaterials have been extensively utilized in cancer therapy and bacterial infection control, demonstrating substantial potential in treating bacteria-associated tumors. This review begins by elucidating the mechanisms of gut microbiota and the occurrence and progression of CRC, with a particular emphasis on clarifying the intricate relationship between Fn and CRC. Subsequently, we highlight strategies that utilize nanomaterials to disrupt the association between Fn and CRC. Overall, this review offers valuable insight and guidance for leveraging nanomaterials in CRC therapy.
Collapse
Affiliation(s)
- Jing Zang
- Department of Pharmacy, Shanghai Eighth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fang Yin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Ziyuan Liu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fengqian Li
- Department of Pharmacy, Shanghai Eighth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yang Zhang
- Department of Pharmacy, Shanghai Eighth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
31
|
Turocy T, Crawford JM. Bacterial small molecule metabolites implicated in gastrointestinal cancer development. Nat Rev Microbiol 2025; 23:106-121. [PMID: 39375475 DOI: 10.1038/s41579-024-01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/09/2024]
Abstract
Numerous associations have been identified between cancer and the composition and function of the human microbiome. As cancer remains the second leading global cause of mortality, investigating the carcinogenic contributions of microbiome members could advance our understanding of cancer risk and support potential therapeutic interventions. Although fluctuations in bacterial species have been associated with cancer progression, studying their small molecule metabolites offers one avenue to establish support for causal relationships and the molecular mechanisms governing host-microorganism interactions. In this Review, we explore the expanding repertoire of small molecule metabolites and their mechanisms implicated in the risk of developing gastrointestinal cancers.
Collapse
Affiliation(s)
- Tayah Turocy
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
32
|
Zhong Y, Chen G, Chen M, Cui J, Tan Q, Xiao Z. Gene prediction of immune cells association between gut microbiota and colorectal cancer: a Mendelian randomization study. Front Immunol 2025; 16:1460936. [PMID: 39958359 PMCID: PMC11825486 DOI: 10.3389/fimmu.2025.1460936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025] Open
Abstract
Background An increasing number of studies have revealed that gut microbiota influences the development and progression of Colorectal cancer (CRC). However, whether a causal relationship exists between the two remains unclear, and the role of immune cells in this context is not well understood. Objective To elucidate the causal relationship between gut microbiota and CRC and to explore the potential mediating role of circulating immune cells. Materials and methods To analyze the causal relationship between gut microbiota and CRC, we employed a univariable Mendelian randomization (UVMR) approach. Subsequently, a two-step multivariable Mendelian randomization (MVMR) to assess the potential mediating role of circulating immune cells. Primarily, applied the Inverse-Variance Weighted method to evaluate the causal relationship between exposure and outcome. To ensure the robustness of the results linking gut microbiota and CRC, we validated the findings using Robust Inverse-Variance Weighted, Penalized Inverse-Variance Weighted, and Penalized Robust Inverse-Variance Weighted methods. Additionally, we employed MR-Egger Intercept to mitigate the influence of horizontal pleiotropy. MR-PRESSO was used to detect and correct outliers by excluding anomalous instrumental variables. Finally, we supplemented our analysis with methods such as Bayesian Weighted Mendelian Randomization (BWMR), Maximum-Likelihood, Lasso, Debiased Inverse Variance Weighted, and Contamination Mixture to establish a robust and compelling causal relationship. Results After accounting for reverse causality, horizontal pleiotropy, and various methodological corrections, Bifidobacterium kashiwanohense, GCA-900066755 sp900066755, Geminocystis, and Saccharofermentanaceae exhibited strong and robust causal effects on CRC. Specifically, CD40 on monocytes (2.82%) and CD45 on CD33+HLA-DR+CD14- cells (12.87%) mediated the causal relationship between Bifidobacterium kashiwanohense and CRC risk. Furthermore, CD45 on CD33-HLA-DR+ (3.94%) mediated the causal relationship between GCA-900066755 sp900066755 and CRC risk. Additionally, terminally differentiated CD4+T cells (11.55%) mediated the causal relationship between Geminocystis and CRC risk. Lastly, CD40 on monocytes (2.35%), central memory CD4+T cells (5.76%), and CD28 on CD28+CD45RA+CD8+T cells (5.00%) mediated the causal relationship between Saccharofermentanaceae and CRC risk. Conclusion Our mediation MR analysis provides genetic evidence suggesting that circulating immune cells may mediate the causal relationship between gut microbiota and CRC. The identified associations and mediation effects offer new insights into potential therapeutic avenues for CRC.
Collapse
Affiliation(s)
- Yan Zhong
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guanglei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Menglu Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Junsong Cui
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qianren Tan
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhenghua Xiao
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
33
|
Wang Y, Ma H, Li H, Huang Y, Tang Y, Tang X, Sun P, Tan Z, Pang H, Yang F. Selenium-Enriched Lactiplantibacillus plantarum ZZU 8-12 Regulates Intestinal Microbiota and Inhibits Acute Liver Injury. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10459-9. [PMID: 39875778 DOI: 10.1007/s12602-025-10459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Intake of certain Lactiplantibacillus strains was recognized as a potential strategy for acute liver injury (ALI) prevention. This study is aimed at developing a selenium-enriched Lactiplantibacillus strain-based ALI prevention strategy. L. plantarum ZZU 8-12 was isolated from human fecal sample and screened out based on its adaption to intestinal microenvironment, inhibitive capability against pathogenic bacteria, and in vivo anti-inflammation response in DSS-induced colitis mice model. The strain was applied as a producer of nano selenium particles to produce selenium-enriched L. plantarum ZZU 8-12. Intake of selenium-enriched L. plantarum ZZU 8-12 upregulated the abundance of short-chain fatty acid-producing genera including Lactiplantibacillus, Phascolarctobacterium, Butyricicoccus, and Clostridiales bacterium in fecal microbiota and thus inhibited ALI induced by CCL4 injection in mice. This study drew the potential for selenium-enriched L. plantarum ZZU 8-12 as an ingredient for ALI protection.
Collapse
Affiliation(s)
- Yanping Wang
- Henan Key Laboratory of Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Hengyu Ma
- Henan Key Laboratory of Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
- Department of Medical Equipment, Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, 450000, Zhengzhou, China
| | - Haolong Li
- Henan Key Laboratory of Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuhang Huang
- Henan Key Laboratory of Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yupeng Tang
- Henan Key Laboratory of Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xiaoxue Tang
- Henan Key Laboratory of Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Pintian Sun
- Henan Key Laboratory of Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhongfang Tan
- Henan Key Laboratory of Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Huili Pang
- Henan Key Laboratory of Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Fengyuan Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
34
|
Wang X, Li Z, Zhou H, Liu Q, Zhang X, Hu F. Periodontitis Exacerbates Colorectal Cancer by Altering Gut Microbiota-Derived Metabolomics in Mice. J Periodontal Res 2025. [PMID: 39843386 DOI: 10.1111/jre.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
AIM The correlation between periodontitis and colorectal cancer (CRC) has drawn widespread attention. However, how periodontitis affects CRC progression remains unclear. METHODS C57BL/6 mice were used to establish experimental periodontitis and CRC model. Histological alterations of periodontium and colon were observed by hematoxylin and eosin staining. Micro-computed tomography (micro-CT) was applied to evaluate alveolar bone loss (ABL). Tumor growth was detected by immunofluorescence. Gut bacteria were analyzed using 16S rRNA sequencing. Gas chromatography-mass spectrometry (GC-MS) was performed to observe the alterations of gut microbial metabolites. The detection of associated pathways was carried out using quantitative real-time PCR (qRT-PCR). RESULTS Experimental periodontitis significantly induced increases in tumor number in mice with CRC. Double immunofluorescence for Ki67 and β-catenin, as well as Cyclin D1 and β-catenin, indicated that experimental periodontitis observably promoted tumor growth. 16S rRNA sequencing and untargeted metabolomics analysis displayed that experimental periodontitis altered gut microbial community and metabolite profiles in CRC mice. Notably, we found that experimental periodontitis dramatically increased the level of three oncometabolites (serotonin, adenosine, and spermine) in mice with CRC. CONCLUSION Alterations of gut microbial community and metabolites might be relevant in experimental periodontitis deteriorating CRC.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Zhichao Li
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Haiquan Zhou
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Qianyi Liu
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Xueyang Zhang
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Fei Hu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou City, Guangdong Province, China
| |
Collapse
|
35
|
Xu K, Motiwala Z, Corona-Avila I, Makhanasa D, Alkahalifeh L, Khan MW. The Gut Microbiome and Its Multifaceted Role in Cancer Metabolism, Initiation, and Progression: Insights and Therapeutic Implications. Technol Cancer Res Treat 2025; 24:15330338251331960. [PMID: 40208053 PMCID: PMC12032467 DOI: 10.1177/15330338251331960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
This review summarizes the intricate relationship between the microbiome and cancer initiation and development. Microbiome alterations impact metabolic pathways, immune responses, and gene expression, which can accelerate or mitigate cancer progression. We examine how dysbiosis affects tumor growth, metastasis, and treatment resistance. Additionally, we discuss the potential of microbiome-targeted therapies, such as probiotics and fecal microbiota transplants, to modulate cancer metabolism. These interventions offer the possibility of reversing or controlling cancer progression, enhancing the efficacy of traditional treatments like chemotherapy and immunotherapy. Despite promising developments, challenges remain in identifying key microbial species and pathways and validating microbiome-targeted therapies through large-scale clinical trials. Nonetheless, the intersection of microbiome research and cancer initiation and development presents an exciting frontier for innovative therapies. This review offers a fresh perspective on cancer initiation and development by integrating microbiome insights, highlighting the potential for interdisciplinary research to enhance our understanding of cancer progression and treatment strategies.
Collapse
Affiliation(s)
- Kai Xu
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Zainab Motiwala
- Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Irene Corona-Avila
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Dhruvi Makhanasa
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Md. Wasim Khan
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
36
|
Ye C, Liu X, Liu Z, Pan C, Zhang X, Zhao Z, Sun H. Fusobacterium nucleatum in tumors: from tumorigenesis to tumor metastasis and tumor resistance. Cancer Biol Ther 2024; 25:2306676. [PMID: 38289287 PMCID: PMC10829845 DOI: 10.1080/15384047.2024.2306676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024] Open
Abstract
Fusobacterium nucleatum, an anaerobic Gram-negative bacterium primarily residing in the oral cavity, has garnered significant attention for its emerging role in cancer progression and prognosis. While extensive research has revealed mechanistic links between Fusobacterium nucleatum and colorectal cancer, a comprehensive review spanning its presence and metastatic implications in cancers beyond colorectal origin is conspicuously absent. This paper broadens our perspective from colorectal cancer to various malignancies associated with Fusobacterium nucleatum, including oral, pancreatic, esophageal, breast, and gastric cancers. Our central focus is to unravel the mechanisms governing Fusobacterium nucleatum colonization, initiation, and promotion of metastasis across diverse cancer types. Additionally, we explore Fusobacterium nucleatum's adverse impacts on cancer therapies, particularly within the domains of immunotherapy and chemotherapy. Furthermore, this paper underscores the clinical research significance of Fusobacterium nucleatum as a potential tumor biomarker and therapeutic target, offering a novel outlook on its applicability in cancer detection and prognostic assessment.
Collapse
Affiliation(s)
- Chun Ye
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiao Liu
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zilun Liu
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chuxuan Pan
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaowei Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhanyi Zhao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, Central People’s Hospital of Ji’an, Shanghai East Hospital of Ji’an, Ji’an, China
| |
Collapse
|
37
|
Song C, Zhao C. Innovative Bacterial Therapies and Genetic Engineering Approaches in Colorectal Cancer: A Review of Emerging Strategies and Clinical Implications. J Microbiol Biotechnol 2024; 34:2397-2412. [PMID: 39467702 PMCID: PMC11733548 DOI: 10.4014/jmb.2408.08026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Colorectal cancer (CRC) is considered a widespread cancer, ranking second in mortality and incidence among cancer patients worldwide. CRC develops from adenoma to carcinoma through the dynamic interplay of genetic and environmental factors. The conventional modes of treatment, including operation, chemotherapy, and irradiation, are associated with significant challenges, such as drug resistance and toxicity, necessitating the exploration of new treatment modalities. These difficulties reveal the necessity of the emergence of new therapeutic approaches. This review mainly emphasizes the bacterial-based therapies that have recently developed like the engineered bacteriophage therapy and bacterial immunotherapy that pale the existing chemotherapy in terms of toxicity but are effective in killing tumor cells. Also, it also investigates various molecular genetic engineering strategies such as CRISPR-Cas9, CRISPR prime editing and gene silencing to achieve better targeting of CRC. Implementing these new approaches into the forefront of CRC treatment may bring better, more effective therapy with fewer side effects on patients' quality of life.
Collapse
Affiliation(s)
- Chunxiao Song
- Department of Colorectal and Anal Surgery, Weifang People's Hospital, Weifang 261000, P. R. China
| | - Chunwu Zhao
- Department of Gastrointestinal Surgery, Weifang People's Hospital, Weifang 261000, P. R. China
| |
Collapse
|
38
|
Dovrolis N, Spathakis M, Collins AR, Pandey VK, Uddin MI, Anderson DD, Kaminska T, Paspaliaris V, Kolios G. Pan-Cancer Insights: A Study of Microbial Metabolite Receptors in Malignancy Dynamics. Cancers (Basel) 2024; 16:4178. [PMID: 39766077 PMCID: PMC11674037 DOI: 10.3390/cancers16244178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES The role of the gut microbiome in cancer biology has become an increasingly prominent area of research, particularly regarding the role of microbial metabolites and their receptors (MMRs). These metabolites, through the various gut-organ axes, have been proven to influence several pathogenetic mechanisms. This study conducted a comprehensive pan-cancer analysis of MMR transcriptomic profiles across twenty-three cancer types, exploring the mechanisms through which they can influence cancer development and progression. METHODS Utilizing both cancer cell lines from CCLE (Cancer Cell Line Encyclopedia) and human tumor samples from TCGA (The Cancer Gene Atlas), we analyzed 107 MMRs interacting with microbial metabolites such as short-chain fatty acids, bile acids, indole derivatives, and others while studying their interactions with key known cancer genes. RESULTS Our results revealed that certain MMRs, such as GPR84 and serotonin receptors, are consistently upregulated in various malignancies, while others, like ADRA1A, are frequently downregulated, suggesting diverse roles in cancer pathophysiology. Furthermore, we identified significant correlations between MMR expression and cancer hallmark genes and pathways, including immune evasion, proliferation, and metastasis. CONCLUSIONS These findings suggest that the interactions between microbial metabolites and MMRs may serve as potential biomarkers for cancer diagnosis, prognosis, and therapy, highlighting their therapeutic potential. This study underscores the significance of the microbiota-cancer axis and provides novel insights into microbiome-based strategies for cancer treatment.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (G.K.)
| | - Michail Spathakis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (G.K.)
| | - Alexandra R. Collins
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | - Varun Kumar Pandey
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | - Muhammad Ikhtear Uddin
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | | | - Tetiana Kaminska
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | - Vasilis Paspaliaris
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
- BioGut Technologies Inc., Fort Worth, TX 76104, USA;
- Tithon Biotech, Inc., San Diego, CA 92127, USA
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (G.K.)
| |
Collapse
|
39
|
Kunath BJ, De Rudder C, Laczny CC, Letellier E, Wilmes P. The oral-gut microbiome axis in health and disease. Nat Rev Microbiol 2024; 22:791-805. [PMID: 39039286 DOI: 10.1038/s41579-024-01075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
The human body hosts trillions of microorganisms throughout many diverse habitats with different physico-chemical characteristics. Among them, the oral cavity and the gut harbour some of the most dense and diverse microbial communities. Although these two sites are physiologically distinct, they are directly connected and can influence each other in several ways. For example, oral microorganisms can reach and colonize the gastrointestinal tract, particularly in the context of gut dysbiosis. However, the mechanisms of colonization and the role that the oral microbiome plays in causing or exacerbating diseases in other organs have not yet been fully elucidated. Here, we describe recent advances in our understanding of how the oral and intestinal microbiota interplay in relation to their impact on human health and disease.
Collapse
Affiliation(s)
- Benoit J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Charlotte De Rudder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
40
|
Liang A, Zhao W, Lv T, Zhu Z, Haotian R, Zhang J, Xie B, Yi Y, Hao Z, Sun L, Luo A. Advances in novel biosensors in biomedical applications. Talanta 2024; 280:126709. [PMID: 39151317 DOI: 10.1016/j.talanta.2024.126709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Biosensors, devices capable of detecting biomolecules or bioactive substances, have recently become one of the important tools in the fields of bioanalysis and medical diagnostics. A biosensor is an analytical system composed of biosensitive elements and signal-processing elements used to detect various biological and chemical substances. Biomimetic elements are key to biosensor technology and are the components in a sensor that are responsible for identifying the target analyte. The construction methods and working principles of biosensors based on synthetic biomimetic elements, such as DNAzyme, molecular imprinted polymers and aptamers, and their updated applications in biomedical analysis are summarised. Finally, the technical bottlenecks and future development prospects for biomedical analysis are summarised and discussed.
Collapse
Affiliation(s)
- Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianjian Lv
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziyu Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruilin Haotian
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Yi
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zikai Hao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
41
|
Permain J, Hock B, Eglinton T, Purcell R. Functional links between the microbiome and the molecular pathways of colorectal carcinogenesis. Cancer Metastasis Rev 2024; 43:1463-1474. [PMID: 39340753 PMCID: PMC11554747 DOI: 10.1007/s10555-024-10215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Colorectal cancer (CRC) is a common cancer, with a concerning rise in early-onset CRC cases, signalling a shift in disease epidemiology. Whilst our understanding of the molecular underpinnings of CRC has expanded, the complexities underlying its initiation remain elusive, with emerging evidence implicating the microbiome in CRC pathogenesis. This review synthesizes current knowledge on the intricate interplay between the microbiome, tumour microenvironment (TME), and molecular pathways driving CRC carcinogenesis. Recent studies have reported how the microbiome may modulate the TME and tumour immune responses, consequently influencing cancer progression, and whilst specific bacteria have been linked with CRC, the underlying mechanisms remains poorly understood. By elucidating the functional links between microbial landscapes and carcinogenesis pathways, this review offers insights into how bacteria orchestrate diverse pathways of CRC development, shedding light on potential therapeutic targets and personalized intervention strategies.
Collapse
Affiliation(s)
- Jessica Permain
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Barry Hock
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Timothy Eglinton
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Rachel Purcell
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
42
|
Brockmueller A, Buhrmann C, Moravejolahkami AR, Shakibaei M. Resveratrol and p53: How are they involved in CRC plasticity and apoptosis? J Adv Res 2024; 66:181-195. [PMID: 38190940 PMCID: PMC11674784 DOI: 10.1016/j.jare.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC), which is mainly caused by epigenetic and lifestyle factors, is very often associated with functional plasticity during its development. In addition, the malignant plasticity of CRC cells underscores one of their survival abilities to functionally adapt to specific stresses, including inflammation, that occur during carcinogenesis. This leads to the generation of various subsets of cancer cells with phenotypic diversity and promotes epithelial-mesenchymal transition (EMT), formation of cancer cell stem cells (CSCs) and metabolic reprogramming. This can enhance cancer cell differentiation and facilitate tumorigenic potential, drug resistance and metastasis. AIM OF REVIEW The tumor protein p53 acts as one of the central suppressors of carcinogenesis by regulating its target genes, whose proteins are involved in the plasticity of cancer cells, autophagy, cell cycle, apoptosis, DNA repair. The aim of this review is to summarize the latest published research on resveratrol's effect in the prevention of CRC, its regulatory actions, specifically on the p53 pathway, and its treatment options. KEY SCIENTIFIC CONCEPTS OF REVIEW Resveratrol, a naturally occurring polyphenol, is a potent inducer of a variety of tumor-controlling. However, the underlying mechanisms linking the p53 signaling pathway to the functional anti-plasticity effect of resveratrol in CRC are still poorly understood. Therefore, this review discusses novel relationships between anti-cellular plasticity/heterogeneity, pro-apoptosis and modulation of tumor protein p53 signaling in CRC oncogenesis, as one of the crucial mechanisms by which resveratrol prevents malignant phenotypic changes leading to cell migration and drug resistance, thus improving the ongoing treatment of CRC.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany
| | - Constanze Buhrmann
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Amir Reza Moravejolahkami
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany.
| |
Collapse
|
43
|
Yu J, Feng L, Luo Z, Yang J, Zhang Q, Liu C, Liang D, Xie Y, Li H, Gong J, He Z, Lan P. Interleukin-10 deficiency suppresses colorectal cancer metastasis by enriching gut Parabacteroides distasonis. J Adv Res 2024:S2090-1232(24)00543-5. [PMID: 39571733 DOI: 10.1016/j.jare.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION The intricate interplay of interleukin-10 (IL-10) and gut microbiota influences tumor development and progression, yet the impacts on colorectal cancer (CRC) metastasis remain incompletely understood. METHODS The impact of Il10 deficiency on CRC metastasis was first evaluated in CRC metastasis tumor samples and mouse model. Antibiotic sterilization and fecal microbiota transplantation (FMT) experiment were used to assess the role of gut microbiota in IL-10 mediated CRC metastasis, and full-length 16S rDNA sequencing analysis further identified the potential target bacteria influencing CRC metastasis. The inhibitory effect of Parabacteroides distasonis (P. distasonis) on CRC metastasis was evaluated by oral administration in mice. Key metabolites involved in P. distasonis inhibition of CRC metastasis was identified by widely-targeted metabolome analysis and validated both in vivo and in vitro. The underlying mechanisms of P-hydroxyphenyl acetic acid (4-HPAA) inhibiting CRC metastasis was investigated via RNA-sequencing and validated in cellular experiments. RESULTS We revealed that serum IL-10 levels were markedly elevated in metastatic CRC patients compared to non-metastatic cases. In parallel, Il10-deficiency (Il10-/-) in mice resulted in decreased CRC metastasis in a gut microbiota-dependent manner. Mechanistically, Il10-/- mice reshaped gut microbiota composition, notably enriching P. distasonis. The enriched P. distasonis produced 4-HPAA, which activated the aryl hydrocarbon receptor (AHR) and subsequently inhibited the expression of VEGFA, a typical oncogene, thereby sequentially suppressing CRC metastasis. Importantly, engineered bacteria capable of producing 4-HPAA effectively hindered CRC metastasis. Furthermore, AHR depletion significantly disrupted the 4-HPAA-induced reduction in CRC cell migration and the inhibition of metastasis in both in vitro and in vivo lung metastasis mouse models. CONCLUSIONS These findings demonstrate the significance of IL-10 deficiency in suppressing CRC metastasis through the 4-HPPA-AHR-VEGFA axis mediated by gut P. distasonis, suggesting that P. distasonis or 4-HPAA supplementation could offer a promising therapeutic strategy for CRC metastasis prevention.
Collapse
Affiliation(s)
- Jing Yu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Lili Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Zhanhao Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Jingyi Yang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Qiang Zhang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Chen Liu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Dayi Liang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Yanchun Xie
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Hongmin Li
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Junli Gong
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China.
| | - Zhen He
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China.
| | - Ping Lan
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| |
Collapse
|
44
|
Schwärzler J, Mayr L, Grabherr F, Tilg H, Adolph TE. Epithelial metabolism as a rheostat for intestinal inflammation and malignancy. Trends Cell Biol 2024; 34:913-927. [PMID: 38341347 DOI: 10.1016/j.tcb.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
The gut epithelium protects the host from a potentially hostile environment while allowing nutrient uptake that is vital for the organism. To maintain this delicate task, the gut epithelium has evolved multilayered cellular functions ranging from mucus production to hormone release and orchestration of mucosal immunity. Here, we review the execution of intestinal epithelial metabolism in health and illustrate how perturbation of epithelial metabolism affects experimental gut inflammation and tumorigenesis. We also discuss the impact of environmental factors and host-microbe interactions on epithelial metabolism in the context of inflammatory bowel disease and colorectal cancer. Insights into epithelial metabolism hold promise to unravel mechanisms of organismal health that may be therapeutically exploited in humans in the future.
Collapse
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
45
|
Duong VA, Enkhbayar A, Bhasin N, Senavirathna L, Preisner EC, Hoffman KL, Shukla R, Jenq RR, Cheng K, Bronner MP, Figeys D, Britton RA, Pan S, Chen R. A complementary metaproteomic approach to interrogate microbiome cultivated from clinical colon biopsies. Proteomics 2024; 24:e2400078. [PMID: 38824665 PMCID: PMC11576236 DOI: 10.1002/pmic.202400078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
The human gut microbiome plays a vital role in preserving individual health and is intricately involved in essential functions. Imbalances or dysbiosis within the microbiome can significantly impact human health and are associated with many diseases. Several metaproteomics platforms are currently available to study microbial proteins within complex microbial communities. In this study, we attempted to develop an integrated pipeline to provide deeper insights into both the taxonomic and functional aspects of the cultivated human gut microbiomes derived from clinical colon biopsies. We combined a rapid peptide search by MSFragger against the Unified Human Gastrointestinal Protein database and the taxonomic and functional analyses with Unipept Desktop and MetaLab-MAG. Across seven samples, we identified and matched nearly 36,000 unique peptides to approximately 300 species and 11 phyla. Unipept Desktop provided gene ontology, InterPro entries, and enzyme commission number annotations, facilitating the identification of relevant metabolic pathways. MetaLab-MAG contributed functional annotations through Clusters of Orthologous Genes and Non-supervised Orthologous Groups categories. These results unveiled functional similarities and differences among the samples. This integrated pipeline holds the potential to provide deeper insights into the taxonomy and functions of the human gut microbiome for interrogating the intricate connections between microbiome balance and diseases.
Collapse
Affiliation(s)
- Van-An Duong
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School/ The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Altai Enkhbayar
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Nobel Bhasin
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA Baylor College of Medicine, Houston, TX 77030
| | - Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School/ The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Eva C Preisner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristi L Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richa Shukla
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA Baylor College of Medicine, Houston, TX 77030
| | - Robert R Jenq
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kai Cheng
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mary P Bronner
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School/ The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Ru Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
46
|
Shetty VV, Shetty SS. Exploring the gut microbiome and head and neck cancer interplay. Pathol Res Pract 2024; 263:155603. [PMID: 39368364 DOI: 10.1016/j.prp.2024.155603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
The gut microbiome, a complex community of microorganisms residing in the gastrointestinal tract, plays a crucial role in maintaining human health and influencing disease outcomes. Recent advancements in sequencing technologies have revealed the intricate relationship between gut microbiota and various health conditions. This review explores the impact of gut microbiome dysbiosis on immune function, chronic inflammation, and cancer progression. Dysbiosis, characterized by an imbalance in microbial populations, can lead to immune dysfunction, creating a pro-inflammatory environment conducive to tumorigenesis. Gut microbiome metabolites, such as short-chain fatty acids and bile acids, also play a significant role in modulating these processes. The interplay between these factors contributes to the development and progression of HNC. Furthermore, this review highlights the potential of therapeutic interventions targeting the gut microbiome, including probiotics, prebiotics, and dietary modifications, to restore microbial balance and mitigate cancer risk. Understanding the mechanisms by which the gut microbiome influences HNC can provide valuable insights into novel preventive and therapeutic strategies. Future research should focus on elucidating the specific microbial taxa and metabolites involved in HNC, as well as the impact of lifestyle factors such as diet, alcohol consumption, and oral hygiene on the gut microbiome. By leveraging the growing knowledge of the gut microbiome, it may be possible to develop personalized approaches to cancer prevention and treatment, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Veeksha V Shetty
- Nitte (Deemed To Be University), KS Hegde Medical Academy (KSHEMA), Central Research Laboratory, Cellomics, Lipidomics and Molecular Genetics Division, India
| | - Shilpa S Shetty
- Nitte (Deemed To Be University), KS Hegde Medical Academy (KSHEMA), Central Research Laboratory, Cellomics, Lipidomics and Molecular Genetics Division, India.
| |
Collapse
|
47
|
Zhang M, Mo J, Huang W, Bao Y, Luo X, Yuan L. The ovarian cancer-associated microbiome contributes to the tumor's inflammatory microenvironment. Front Cell Infect Microbiol 2024; 14:1440742. [PMID: 39497925 PMCID: PMC11532186 DOI: 10.3389/fcimb.2024.1440742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/25/2024] [Indexed: 11/07/2024] Open
Abstract
A growing body of research has established a correlation between tumors and persistent chronic inflammatory infiltration. As a primary instigator of inflammation, the majority of microbiomes naturally residing within our bodies engage in a mutually beneficial symbiotic relationship. Nevertheless, alterations in the microbiome's composition or breaches in the normal barrier function can disrupt the internal environment's homeostasis, potentially leading to the development and progression of various diseases, including tumors. The investigation of tumor-related microbiomes has contributed to a deeper understanding of their role in tumorigenesis. This review offers a comprehensive overview of the microbiome alterations and the associated inflammatory changes in ovarian cancer. It may aid in advancing research to elucidate the mechanisms underlying the ovarian cancer-associated microbiome, providing potential theoretical support for the future development of microbiome-targeted antitumor therapies and early screening through convenient methods.
Collapse
Affiliation(s)
- Min Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jiahang Mo
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wu Huang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yiting Bao
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xukai Luo
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lei Yuan
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Wang X, Fang Y, Liang W, Wong CC, Qin H, Gao Y, Liang M, Song L, Zhang Y, Fan M, Liu C, Lau HCH, Xu L, Li X, Song W, Wang J, Wang N, Yang T, Mo M, Zhang X, Fang J, Liao B, Sung JJY, Yu J. Fusobacterium nucleatum facilitates anti-PD-1 therapy in microsatellite stable colorectal cancer. Cancer Cell 2024; 42:1729-1746.e8. [PMID: 39303724 DOI: 10.1016/j.ccell.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/23/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Microsatellite stable (MSS) colorectal cancers (CRCs) are often resistant to anti-programmed death-1 (PD-1) therapy. Here, we show that a CRC pathogen, Fusobacterium nucleatum (Fn), paradoxically sensitizes MSS CRC to anti-PD-1. Fecal microbiota transplantation (FMT) from patients with Fn-high MSS CRC to germ-free mice bearing MSS CRC confers sensitivity to anti-PD-1 compared to FMT from Fn-low counterparts. Single Fn administration also potentiates anti-PD-1 efficacy in murine allografts and CD34+-humanized mice bearing MSS CRC. Mechanistically, we demonstrate that intratumoral Fn generates abundant butyric acid, which inhibits histone deacetylase (HDAC) 3/8 in CD8+ T cells, inducing Tbx21 promoter H3K27 acetylation and expression. TBX21 transcriptionally represses PD-1, alleviating CD8+ T cell exhaustion and promoting effector function. Supporting this notion, knockout of a butyric acid-producing gene in Fn abolishes its anti-PD-1 boosting effect. In patients with MSS CRC, high intratumoral Fn predicts favorable response to anti-PD-1 therapy, indicating Fn as a potential biomarker of immunotherapy response in MSS CRC.
Collapse
Affiliation(s)
- Xueliang Wang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Fang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chi Chun Wong
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Meinong Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Song
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongxin Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Miao Fan
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuanfa Liu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wu Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junlin Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Na Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Yang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengmiao Mo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zhang
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Liao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Joseph J Y Sung
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jun Yu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
49
|
Flory M, Bravo P, Alam A. Impact of gut microbiota and its metabolites on immunometabolism in colorectal cancer. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00050. [PMID: 39624362 PMCID: PMC11608621 DOI: 10.1097/in9.0000000000000050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/17/2024] [Indexed: 01/25/2025]
Abstract
Colorectal cancer (CRC) is highly prevalent, accounting for approximately one-tenth of cancer cases and deaths globally. It stands as the second most deadly and third most common cancer type. Although the gut microbiota has been implicated in CRC carcinogenesis for the last several decades, it remains one of the least understood risk factors for CRC development, as the gut microbiota is highly diverse and variable. Many studies have uncovered unique microbial signatures in CRC patients compared with healthy matched controls, with variations dependent on patient age, disease stage, and location. In addition, mechanistic studies revealed that tumor-associated bacteria produce diverse metabolites, proteins, and macromolecules during tumor development and progression in the colon, which impact both cancer cells and immune cells. Here, we summarize microbiota's role in tumor development and progression, then we discuss how the metabolic alterations in CRC tumor cells, immune cells, and the tumor microenvironment result in the reprogramming of activation, differentiation, functions, and phenotypes of immune cells within the tumor. Tumor-associated microbiota also undergoes metabolic adaptation to survive within the tumor environment, leading to immune evasion, accumulation of mutations, and impairment of immune cells. Finally, we conclude with a discussion on the interplay between gut microbiota, immunometabolism, and CRC, highlighting a complex interaction that influences cancer development, progression, and cancer therapy efficacy.
Collapse
Affiliation(s)
- Madison Flory
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Paloma Bravo
- Department of Biology, Carleton College, Northfield, MN, USA
| | - Ashfaqul Alam
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
50
|
Li Y, Peng J, Meng X. Gut bacteria, host immunity, and colorectal cancer: From pathogenesis to therapy. Eur J Immunol 2024; 54:e2451022. [PMID: 38980275 DOI: 10.1002/eji.202451022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
The emergence of 16S rRNA and metagenomic sequencing has gradually revealed the close relationship between dysbiosis and colorectal cancer (CRC). Recent studies have confirmed that intestinal dysbiosis plays various roles in the occurrence, development, and therapeutic response of CRC. Perturbation of host immunity is one of the key mechanisms involved. The intestinal microbiota, or specific bacteria and their metabolites, can modulate the progression of CRC through pathogen recognition receptor signaling or via the recruitment, polarization, and activation of both innate and adaptive immune cells to reshape the protumor/antitumor microenvironment. Therefore, the administration of gut bacteria to enhance immune homeostasis represents a new strategy for the treatment of CRC. In this review, we cover recent studies that illuminate the role of gut bacteria in the progression and treatment of CRC through orchestrating the immune response, which potentially offers insights for subsequent transformative research.
Collapse
Affiliation(s)
- Yuyi Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinjin Peng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|