1
|
Lewis EM, Becker O, Symons AN, LaCoss C, Baclig AJ, Guzman A, Sanders C, Gonzalez L, Warner LR, Lewis KA. The LARP6 La module from Tetrabaena socialis reveals structural and functional differences from plant and animal LARP6 homologues. RNA Biol 2025; 22:1-9. [PMID: 40181506 PMCID: PMC11988235 DOI: 10.1080/15476286.2025.2489303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/06/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
This study identified the LARP6 La Module from Tetrabaena socialis (T. socialis), a four-celled green algae, in an effort to better understand the evolution of LARP6 structure and RNA-binding activity in multicellular eukaryotes. Using a combination of sequence alignments, domain boundary screens, and structural modelling, we recombinantly expressed and isolated the TsLARP6 La Module to > 98% purity for in vitro biochemical characterization. The La Module is stably folded and exerts minimal RNA binding activity against single-stranded homopolymeric RNAs. Surprisingly, it exhibits low micromolar binding affinity for the vertebrate LARP6 cognate ligand, a bulged-stem loop found in the 5'UTR of collagen type I mRNA, but does not bind double-stranded RNAs of similar size. These result suggests that the TsLARP6 La Module may prefer structured RNA ligands. In contrast, however, the TsLARP6 La Module does not exhibit the RNA chaperone activity that is observed in vertebrate homologs. Therefore, we conclude that protist LARP6 may have both distinct RNA ligands and binding mechanisms from the previously characterized LARP6 proteins of animals and vascular plants, thus establishing a distinct third class of the LARP6 protein family.
Collapse
Affiliation(s)
- Emily M. Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Olga Becker
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Alexis N. Symons
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Cora LaCoss
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
- San Marcos High School, San Marcos, TX, USA
| | - A. Jasmine Baclig
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID, USA
| | - Avery Guzman
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Charles Sanders
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Leticia Gonzalez
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Lisa R. Warner
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID, USA
| | - Karen A. Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| |
Collapse
|
2
|
Li B, Luo S, Wang W, Xu J, Liu D, Shameem M, Mattila J, Franklin MC, Hawkins PG, Atwal GS. PROPERMAB: an integrative framework for in silico prediction of antibody developability using machine learning. MAbs 2025; 17:2474521. [PMID: 40042626 PMCID: PMC11901398 DOI: 10.1080/19420862.2025.2474521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Selection of lead therapeutic molecules is often driven predominantly by pharmacological efficacy and safety. Candidate developability, such as biophysical properties that affect the formulation of the molecule into a product, is usually evaluated only toward the end of the drug development pipeline. The ability to evaluate developability properties early in the process of antibody therapeutic development could accelerate the timeline from discovery to clinic and save considerable resources. In silico predictive approaches, such as machine learning models, which map molecular features to predictions of developability properties could offer a cost-effective and high-throughput alternative to experiments for antibody developability assessment. We developed a computational framework, PROPERMAB (PROPERties of Monoclonal AntiBodies), for large-scale and efficient in silico prediction of developability properties for monoclonal antibodies, using custom molecular features and machine learning modeling. We demonstrate the power of PROPERMAB by using it to develop models to predict antibody hydrophobic interaction chromatography retention time and high-concentration viscosity. We further show that structure-derived features can be rapidly and accurately predicted directly from sequences by pre-training simple models for molecular features, thus providing the ability to scale these approaches to repertoire-scale sequence datasets.
Collapse
Affiliation(s)
- Bian Li
- Therapeutic Proteins, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Shukun Luo
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Wenhua Wang
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Jiahui Xu
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Dingjiang Liu
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Mohammed Shameem
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - John Mattila
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | | | - Peter G. Hawkins
- Molecular Profiling and Data Science, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Gurinder S. Atwal
- Molecular Profiling and Data Science, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| |
Collapse
|
3
|
Wang S, Li X, Ma J, Duan X, Wang H, Wang L, Hu D, Jiang W, Li X, Qian P. Structural and functional analysis reveals the catalytic mechanism and substrate binding mode of the broad-spectrum endolysin Ply2741. Virulence 2025; 16:2449025. [PMID: 39810299 PMCID: PMC11740692 DOI: 10.1080/21505594.2024.2449025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
The emergence of antibiotic-resistant bacteria has attracted interest in the field of endolysins. Here, we analyzed the diversity of Streptococcus endolysins and identified a new endolysin, Ply2741, that exhibited broad-spectrum bactericidal activity. Our results demonstrated that Ply2741 could effectively eradicate multidrug-resistant gram-positive pathogens in vitro and in vivo. Structural analysis revealed that the bactericidal activity of Ply2741 depends on the classic "Cys-His-Asn" catalytic triad. Site-directed mutagenesis results further identified that the conserved residue Gln29, located near the catalytic triad, also contributes to the lytic activity of Ply2741. Furthermore, the key residues (R189 and W250) in the Ply2741 cell wall binding domain (CBD) responsible for binding to peptidoglycan were revealed by molecular docking and fluorescence-activated cell sorting (FACS) analysis. Ply2741 demonstrates a broad lytic spectrum, with significant bactericidal activity against Enterococcus, Staphylococcus, and Streptococcus and species. To the best of our knowledge, we found that residue Gln29 participated in the lytic activity of endolysin for the first time. Additionally, we systematically elucidate the binding mode and key residues of the Ply2741CBD. This study proposes Ply2741 as a potential antibiotic substitute and provides a structural basis for the modification and design of endolysins.
Collapse
Affiliation(s)
- Shuang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiahui Ma
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaochao Duan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haiyan Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Linkang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dayue Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenwu Jiang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Ramon A, Ni M, Predeina O, Gaffey R, Kunz P, Onuoha S, Sormanni P. Prediction of protein biophysical traits from limited data: a case study on nanobody thermostability through NanoMelt. MAbs 2025; 17:2442750. [PMID: 39772905 PMCID: PMC11730357 DOI: 10.1080/19420862.2024.2442750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
In-silico prediction of protein biophysical traits is often hindered by the limited availability of experimental data and their heterogeneity. Training on limited data can lead to overfitting and poor generalizability to sequences distant from those in the training set. Additionally, inadequate use of scarce and disparate data can introduce biases during evaluation, leading to unreliable model performances being reported. Here, we present a comprehensive study exploring various approaches for protein fitness prediction from limited data, leveraging pre-trained embeddings, repeated stratified nested cross-validation, and ensemble learning to ensure an unbiased assessment of the performances. We applied our framework to introduce NanoMelt, a predictor of nanobody thermostability trained with a dataset of 640 measurements of apparent melting temperature, obtained by integrating data from the literature with 129 new measurements from this study. We find that an ensemble model stacking multiple regression using diverse sequence embeddings achieves state-of-the-art accuracy in predicting nanobody thermostability. We further demonstrate NanoMelt's potential to streamline nanobody development by guiding the selection of highly stable nanobodies. We make the curated dataset of nanobody thermostability freely available and NanoMelt accessible as a downloadable software and webserver.
Collapse
Affiliation(s)
- Aubin Ramon
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Mingyang Ni
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Olga Predeina
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Rebecca Gaffey
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Patrick Kunz
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Pietro Sormanni
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Yang Y, Zhong Y, Chen L. EIciRNAs in focus: current understanding and future perspectives. RNA Biol 2025; 22:1-12. [PMID: 39711231 DOI: 10.1080/15476286.2024.2443876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of covalently closed single-stranded RNA molecules that play diverse roles in normal physiology and pathology. Among the major types of circRNA, exon-intron circRNA (EIciRNA) distinguishes itself by its sequence composition and nuclear localization. Recent RNA-seq technologies and computational methods have facilitated the detection and characterization of EIciRNAs, with features like circRNA intron retention (CIR) and tissue-specificity being characterized. EIciRNAs have been identified to exert their functions via mechanisms such as regulating gene transcription, and the physiological relevance of EIciRNAs has been reported. Within this review, we present a summary of the current understanding of EIciRNAs, delving into their identification and molecular functions. Additionally, we emphasize factors regulating EIciRNA biogenesis and the physiological roles of EIciRNAs based on recent research. We also discuss the future challenges in EIciRNA exploration, underscoring the potential for novel functions and functional mechanisms of EIciRNAs for further investigation.
Collapse
Affiliation(s)
- Yan Yang
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Yinchun Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Xie W, Liang G, Kong X, Tsui CKM, She X, Liu W, Li X. Genomic epidemiology and antifungal resistance of emerging Trichophyton indotineae in China. Emerg Microbes Infect 2025; 14:2498571. [PMID: 40293476 PMCID: PMC12077451 DOI: 10.1080/22221751.2025.2498571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 03/27/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
The emergence and spread of antifungal-resistant Trichophyton indotineae pose an increasing public health concern worldwide. Multidrug-resistant T. indotineae infections have been reported in China in the past few years. To understand the genetic relationship and the origin of these Chinese isolates, as well as their relationship to the global collections, we sequenced the whole genomes of 31 isolates using the Illumina platforms. Genomic epidemiology was performed on a dataset of 181 T. indotineae isolates from China and 8 other countries, representing the largest genome-wide analysis. Single nucleotide polymorphism analysis revealed that T. indotineae can be divided into four distinct phylogenetic groups (I, II, III, IV), with regional clonal transmission clusters identified in eastern China; T. indotineae was introduced into China more than once given the genetic variability. The isolates from South Asia may be the source of Chinese isolates based on epidemiological information. There were differences in the prevalence and resistance profiles among four phylogenetic groups, with Group III being predominant and exhibiting a higher terbinafine resistance rate of 88.24% and azole resistance. Also, we characterized the role of gene mutation, copy number variation, and gene expression in antifungal drug resistance. Terbinafine resistance could be mainly associated with Phe397Leu substitution in SQLE, and azole resistance might be related to increased copy number of CYP51B, as well as elevated MDR2 and MDR3 expression. Given the clinical challenges posed by T. indotineae, this emerging dermatophyte should be recognized as a global threat, necessitating urgent collaborative surveillance and management strategies.
Collapse
Affiliation(s)
- Wenting Xie
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People’s Republic of China
| | - Guanzhao Liang
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People’s Republic of China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, People’s Republic of China
- CAMS Collection Centre of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, People’s Republic of China
| | - Xue Kong
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People’s Republic of China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, People’s Republic of China
- CAMS Collection Centre of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, People’s Republic of China
| | - Clement K. M. Tsui
- Infectious Diseases Research Laboratory, National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Xiaodong She
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People’s Republic of China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, People’s Republic of China
- CAMS Collection Centre of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, People’s Republic of China
| | - Weida Liu
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People’s Republic of China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, People’s Republic of China
- CAMS Collection Centre of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, People’s Republic of China
- Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiaofang Li
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People’s Republic of China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, People’s Republic of China
- CAMS Collection Centre of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, People’s Republic of China
| |
Collapse
|
7
|
Alharthi R, Sueiro-Olivares M, Storer I, Bin Shuraym H, Scott J, Al-Shidhani R, Fortune-Grant R, Bignell E, Tabernero L, Bromley M, Zhao C, Amich J. The sulfur-related metabolic status of Aspergillus fumigatus during infection reveals cytosolic serine hydroxymethyltransferase as a promising antifungal target. Virulence 2025; 16:2449075. [PMID: 39825596 PMCID: PMC11749473 DOI: 10.1080/21505594.2024.2449075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/07/2024] [Accepted: 12/28/2024] [Indexed: 01/20/2025] Open
Abstract
Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into Aspergillus fumigatus sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of in vitro conditions. We identified a set of 15 genes that were consistently expressed at higher levels in vivo than in vitro, suggesting that they may be particularly relevant for intrapulmonary growth and thus constitute promising drug targets. Indeed, the role of 5 of the 15 genes has previously been empirically validated, supporting the likelihood that the remaining candidates are relevant. In addition, the analysis of gene expression dynamics at early (16 h), mid (24 h), and late (72 h) time-points uncovered potential disease initiation and progression factors. We further characterized one of the identified genes, encoding the cytosolic serine hydroxymethyltransferase ShmB, and demonstrated that it is an essential gene of A. fumigatus, also required for virulence in a murine model of established pulmonary infection. We further showed that the structure of the ligand-binding pocket of the fungal enzyme differs significantly from its human counterpart, suggesting that specific inhibitors can be designed. Therefore, in vivo transcriptomics is a powerful tool for identifying genes crucial for fungal pathogenicity that may encode promising antifungal target candidates.
Collapse
Affiliation(s)
- Reem Alharthi
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Monica Sueiro-Olivares
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Isabelle Storer
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hajer Bin Shuraym
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jennifer Scott
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Reem Al-Shidhani
- Lydia Becker Institute for Immunology and Inflammation, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Rachael Fortune-Grant
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elaine Bignell
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Lydia Tabernero
- Lydia Becker Institute for Immunology and Inflammation, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Michael Bromley
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Can Zhao
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jorge Amich
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Mycology Reference Laboratory (Laboratorio deReferencia e Investigación en Micología LRIM), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- CiberInfec ISCIII, CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
He Y, Xu H, Tan S, Long J, Lei H, Xiao L, Qi X, Deng M, Xiong X, You J, Zhu L, Lü M, Liang S. Activity guided discovery of dual inhibitors of α-glucosidase and β-glucuronidase from the leaves of Millettia pachycarpa Benth. J Enzyme Inhib Med Chem 2025; 40:2501041. [PMID: 40371697 PMCID: PMC12082738 DOI: 10.1080/14756366.2025.2501041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/20/2025] [Accepted: 04/26/2025] [Indexed: 05/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) and cancers are two globally prevalent diseases which can increase the incidence of each other. Intestinal α-glucosidase and β-glucuronidase are key targets for glycaemic control and chemotherapy detoxification, respectively. This study first found that the leaf methanol extract of Millettia pachycarpa displayed dual inhibition to the two enzymes. The dually active constituents were then isolated and identified as two prenylated isoflavones of 6,8-diprenylorobol and 6,8-diprenylgenistein. Diprenylorobol exhibits competitive inhibition to both the two enzymes with Ki values of 21.6 μM (α-glucosidase) and 1.41 μM (β-glucuronidase). Diprenylgenistein is an uncompetitive inhibitor of α-glucosidase (Ki = 11.4 μM) but a competitive inhibitor of β-glucuronidase (Ki = 1.69 μM). Molecular docking studies showed that both the two isoflavones tightly bind into the active pockets via various hydrogen bonds and hydrophobic interactions. In summary, the current study identifies two promising dual inhibitors of α-glucosidase and β-glucuronidase from the leaves of Millettia pachycarpa.
Collapse
Affiliation(s)
- Yanxi He
- The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Huanran Xu
- Innovation Centre of Targeted Development of Medicinal Resources (iCTM), Anqing Normal University, Anqing, People’s Republic of China
| | - Shaoqian Tan
- The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Jing Long
- The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Ling Xiao
- Innovation Centre of Targeted Development of Medicinal Resources (iCTM), Anqing Normal University, Anqing, People’s Republic of China
| | - Xiaoyi Qi
- The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Mingming Deng
- The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Xia Xiong
- The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Jingcan You
- Basic Medicine Research Innovation Centre for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Liangliang Zhu
- Innovation Centre of Targeted Development of Medicinal Resources (iCTM), Anqing Normal University, Anqing, People’s Republic of China
| | - Muhan Lü
- The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Sicheng Liang
- The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Basic Medicine Research Innovation Centre for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Loyau J, Monney T, Montefiori M, Bokhovchuk F, Streuli J, Blackburn M, Goepfert A, Caro LN, Chakraborti S, De Angelis S, Grandclément C, Blein S, Mbow ML, Srivastava A, Perro M, Sammicheli S, Zhukovsky EA, Dyson M, Dreyfus C. Biparatopic binding of ISB 1442 to CD38 in trans enables increased cell antibody density and increased avidity. MAbs 2025; 17:2457471. [PMID: 39882744 PMCID: PMC11784651 DOI: 10.1080/19420862.2025.2457471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
ISB 1442 is a bispecific biparatopic antibody in clinical development to treat hematological malignancies. It consists of two adjacent anti-CD38 arms targeting non-overlapping epitopes that preferentially drive binding to tumor cells and a low-affinity anti-CD47 arm to enable avidity-induced blocking of proximal CD47 receptors. We previously reported the pharmacology of ISB 1442, designed to reestablish synthetic immunity in CD38+ hematological malignancies. Here, we describe the discovery, optimization and characterization of the ISB 1442 antigen binding fragment (Fab) arms, their assembly to 2 + 1 format, and present the high-resolution co-crystal structures of the two anti-CD38 Fabs, in complex with CD38. This, with biophysical and functional assays, elucidated the underlying mechanism of action of ISB 1442. In solution phase, ISB 1442 forms a 2:2 complex with CD38 as determined by size-exclusion chromatography with multi-angle light scattering and electron microscopy. The predicted antibody-antigen stoichiometries at different CD38 surface densities were experimentally validated by surface plasmon resonance and cell binding assays. The specific design and structural features of ISB 1442 enable: 1) enhanced trans binding to adjacent CD38 molecules to increase Fc density at the cancer cell surface; 2) prevention of avid cis binding to monomeric CD38 to minimize blockade by soluble shed CD38; and 3) greater binding avidity, with a slower off-rate at high CD38 density, for increased specificity. The superior CD38 targeting of ISB 1442, at both high and low receptor densities, by its biparatopic design, will enhance proximal CD47 blockade and thus counteract a major tumor escape mechanism in multiple myeloma patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mario Perro
- Ichnos Glenmark Innovation, New York, NY, USA
| | | | | | | | | |
Collapse
|
10
|
Huang Y, Gao Y, Huang Y, Wang X, Xu M, Xu G, Zhang X, Li H, Shi J, Xu Z, Zhang X. Enhanced l-serine synthesis in Corynebacterium glutamicum by exporter engineering and Bayesian optimization of the medium composition. Synth Syst Biotechnol 2025; 10:835-845. [PMID: 40291977 PMCID: PMC12033900 DOI: 10.1016/j.synbio.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
l-serine is a versatile, high value-added amino acid, widely used in food, medicine and cosmetics. However, the low titer of l-serine has limited its industrial production. In this study, a cell factory without plasmid for efficient production of l-serine was constructed based on transport engineering. Firstly, the effects of l-serine exporter SerE overexpression and deletion on the cell growth and l-serine titer were investigated in Corynebacterium glutamicum (C. glutamicum) A36, overexpression of s erE using a plasmid led to a 15.1% increase in l-serine titer but also caused a 15.1% decrease in cell growth. Subsequently, to increase the export capacity of SerE, we conducted semi-rational design and bioinformatics analysis, combined with alanine mutation and site-specific saturation mutation. The mutant E277K was obtained and exhibited a 53.2% higher export capacity compared to wild-type SerE, resulting in l-serine titer increased by 39.6%. Structural analysis and molecular dynamics simulations were performed to elucidate the mechanism. The results showed that the mutation shortened the hydrogen bond distance between the exporter and l-serine, enhanced complex stability, and reduced the binding energy. Finally, Bayesian optimization was employed to further improve l-serine titer of the mutant strain C-E277K. Under the optimized conditions, 47.77 g/L l-serine was achieved in a 5-L bioreactor, representing the highest reported titer for C. glutamicum to date. This study provides a basis for the transformation of l-serine export pathway and offers a new strategy for increasing l-serine titer.
Collapse
Affiliation(s)
- Yifan Huang
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yujie Gao
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yamin Huang
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xiaogang Wang
- Key Laboratory of Advanced Control for Light Industry Processes, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Meijuan Xu
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Guoqiang Xu
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xiaojuan Zhang
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hui Li
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jinsong Shi
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhenghong Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaomei Zhang
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
11
|
Covarrubias M, Liang Q, Nguyen-Phuong L, Kennedy KJ, Alexander TD, Sam A. Structural insights into the function, dysfunction and modulation of Kv3 channels. Neuropharmacology 2025; 275:110483. [PMID: 40288604 DOI: 10.1016/j.neuropharm.2025.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
The third subfamily of voltage-gated K+ (Kv) channels includes four members, Kv3.1, Kv3.2, Kv3.3 and Kv3.4. Fast gating and activation at relatively depolarized membrane potentials allows Kv3 channels to be major drivers of fast action potential repolarization in the nervous system. Consequently, they help determine the fast-spiking phenotype of inhibitory interneurons and regulate fast synaptic transmission at glutamatergic synapses and the neuromuscular junction. Recent studies from our group and a team of collaborators have used cryo-EM to demonstrate the surprising gating role of the Kv3.1 cytoplasmic T1 domain, the structural basis of a developmental epileptic encephalopathy caused by the Kv3.2-C125Y variant and the mechanism of action of positive allosteric modulators involving unexpected interactions and conformational changes in Kv3.1 and Kv3.2. Furthermore, our recent work has shown that Kv3.4 regulates use-dependent spike broadening in a manner that depends on gating modulation by phosphorylation of the channel's N-terminal inactivation domain, which can impact activity-dependent synaptic facilitation. Here, we review and integrate these studies to provide a perspective on our current understanding of Kv3 channel function, dysfunction and pain modulation in the nervous system.
Collapse
Affiliation(s)
- Manuel Covarrubias
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA.
| | - Qiansheng Liang
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Linh Nguyen-Phuong
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Kyle J Kennedy
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Tyler D Alexander
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| | - Andrew Sam
- Department of Neuroscience, Sidney Kimmel Medical College of Thomas Jefferson University, Bluemle Life Science Building, 233 South 10th Street, Room 231, Philadelphia, PA, 19107, USA; Vickie and Jack Farber Institute for Neuroscience, USA; Jefferson Synaptic Biology Center, USA
| |
Collapse
|
12
|
Li X, Cheng Y, Xu D, Cheng B, Xu Y, Chen Z, Tang L, Wang Y. A novel CD40LG mutation causing X‑linked hyper-IgM syndrome. Glob Med Genet 2025; 12:100007. [PMID: 40330326 PMCID: PMC12049815 DOI: 10.1016/j.gmg.2024.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 05/08/2025] Open
Abstract
X-linked hyper-IgM (X-HIGM), which results from mutations of the CD40 ligand gene (CD40LG) located on chromosome Xq26.3, is characterized by a defective T-B lymphocyte cross talk and class switch recombination (CSR). The present study aimed to evaluate the expression of CD40L and lymphocyte subsets using flow cytometry and to identify the novel genetic defect of CD40LG responsible for X-HIGM in a Chinese family. We reported an X-HIGM case caused by a novel mutation in CD40LG. The expression of CD40L was absent on the surface of activated CD4 + T cells evaluated using flow cytometry. The total number of mature B cells in circulation was normal, but memory B cells were significantly decreased. In helper T cells, Th2 was dominant, and the numbers of Th1 and Th17 were decreased. The results of genetic analysis revealed a new causative mutation in CD40L (NM_000074;exon5;c.505_506del), which leads to a change in amino acids (p.Y169Lfs*31) appearing in the proband. The frame shift mutation led to incorrect amino acid translation and loss of β-pleated sheet and loop region, which produced a mutant dysfunctional protein. This study provides a complete picture of X-HIGM and broadens our knowledge of the pathogenicity of the CD40L variant spectrum.
Collapse
Affiliation(s)
- Xuejing Li
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yungai Cheng
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Dan Xu
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Beilei Cheng
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yingchun Xu
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zhimin Chen
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Lanfang Tang
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yingshuo Wang
- Department of Pulmonology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
13
|
Richter P, Karanth S, Dos Santos Natividade R, Nicoli A, Kogut-Guenthel MM, Benthin J, Di Pizio A, Koehler M, Somoza V. Biomolecular and biophysical AFM probing reveals distinct binding of bitter peptide VAPFPEVF to TAS2R16 without inducing an intracellular calcium response. Food Chem 2025; 484:144448. [PMID: 40288211 DOI: 10.1016/j.foodchem.2025.144448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/17/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
The casein-derived bitter peptide VAPFPEVF has been shown to stimulate proton secretion in human parietal cells (HGT-1) via bitter taste receptor TAS2R16, confirmed by siRNA knockdown. Since literature evidence is inconclusive, we hypothized that VAPFPEVF binds to TAS2R16, and investigated its effects on G protein-coupled signaling pathways. Exposure of HGT-1 cells to VAPFPEVF altered cAMP signaling without inducing a calcium response. An atomic force microscopy (AFM)-based approach was employed to demonstrate peptide binding to TAS2R16 in cellular and cell-free environments using TAS2R16-reconstituted proteoliposomes. Increased binding events were observed, reduced by the addition of salicin and TAS2R16 antagonist probenecid. AlphaFold multimer and molecular dynamics simulations suggest VAPFPEVF binds the orthosteric site of TAS2R16. These findings reveal (i) VAPFPEVF interacts with TAS2R16 to modulate cAMP levels without triggering calcium mobilization and (ii) the AFM approach as a valuable tool for studying peptide binding to TAS2R16 and possibly other G-protein coupled transmembrane receptors.
Collapse
Affiliation(s)
- Phil Richter
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Sanjai Karanth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Rita Dos Santos Natividade
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Alessandro Nicoli
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Małgorzata M Kogut-Guenthel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Julia Benthin
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; Chemoinformatics and Protein Modelling, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany.
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; TUM Junior Fellow at the Chair of Nutritional Systems Biology at the Technical University of Munich, 85354, Freising, Germany.
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; Chair of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Wien, Austria.
| |
Collapse
|
14
|
Yu H, Wang Y, Yang Z, Ying J, Guan F, Liu B, Miao M, Mohamed A, Wei X, Yang Y, Liu X, Sun L, Jiang Z, Yang S, Xin F. Enhancing the synthesis efficiency of galacto-oligosaccharides of a β-galactosidase from Paenibacillus barengoltzii by engineering the active and distal sites. Food Chem 2025; 483:144208. [PMID: 40220440 DOI: 10.1016/j.foodchem.2025.144208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Previously, a glycoside hydrolase (GH) family 2 β-galactosidase (PbBGal2A) from Paenibacillus barengoltzii is characterized for its high transglycosylation capability. Here, the cryo-electron microscopy (cryo-EM) structure of PbBGal2A was determined, revealing an enlarged acidic catalytic pocket that facilitate the binding of carbohydrate substrates. Three structure-based strategies as well as machine learning MECE platform (method for enhancing the catalytic efficiency) were employed to identify active and distal mutations with enhanced galacto-oligosaccharides (GOS) synthesis and their synergistic effects were evaluated. The best H331V mutation yielded a maximum GOS production of 76.57 % at 4 h when 35 % (w/v) of lactose was used as a substrate. Molecular dynamics (MD) simulation analysis further indicated that distal mutations increase the rigidity of the loops surrounding the catalytic pocket. This research sheds light on the structural and catalytic mechanisms of PbBGal2A, highlighting the importance of both active and distal mutations in the efficient design of customized β-galactosidases.
Collapse
Affiliation(s)
- Haiyan Yu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Zhisen Yang
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiabao Ying
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feifei Guan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bolin Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Miao Miao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abeer Mohamed
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuji Yang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xin Liu
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Linfeng Sun
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China.
| |
Collapse
|
15
|
Wu J, Wang Z, Zeng M, He Z, Chen Q, Chen J. Engineering the substrate-binding pocket of Cellobiose 2-epimerase for enhancing lactulose biosynthesis. Food Chem 2025; 483:144284. [PMID: 40220446 DOI: 10.1016/j.foodchem.2025.144284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Cellobiose 2-epimerase (CE) converts lactose into lactulose and epilactose with high added value and prebiotic benefits. However, the low conversion of lactulose by CsCE limits its industrial application. Inspired by previous work introducing engineered disulfide bonds on the loop of CsCE, we performed saturation mutagenesis and high-throughput screening of all residues within 4 Å of the engineered disulfide bond. The best mutant, CsCE-S173C/F231C/L172S/I178V(M4), showed a 1.3-fold increase in isomerization activity over CsCE-S173C/F231C. Molecular dynamics simulations and binding pocket analysis revealed that mutations reshaped the shape and size of the substrate-binding pocket and increased non-covalent interactions of the protein with the ligand. Binding free energy calculations showed a higher binding affinity of M4 for lactose and lactulose. Therefore, we demonstrated that the catalytic characteristics of CE can be modulated by further manipulating the loop region near the pocket, which is important for improving the catalytic efficiency and promiscuity of the enzyme.
Collapse
Affiliation(s)
- Junhao Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
16
|
Kang C. 19F NMR in RNA structural biology: exploring structures, dynamics, and small molecule interactions. Eur J Med Chem 2025; 292:117682. [PMID: 40300458 DOI: 10.1016/j.ejmech.2025.117682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/01/2025]
Abstract
RNA molecules play essential roles in numerous biological pathways, making them attractive targets for drug discovery. Despite the challenges in developing small molecules targeting RNA, the success in developing compounds that modulate RNA function underscores its therapeutic potential. 19F NMR spectroscopy has emerged as a powerful tool in structural biology and drug discovery, particularly for studying macromolecular structures and ligand interactions. As RNA continues to gain prominence as a drug target, 19F NMR is expected to play a pivotal role in advancing RNA-focused drug discovery. This review describes the diverse applications of 19F NMR in RNA biology, including its use in characterizing RNA structures, probing molecular dynamics, identifying small-molecule binders, and investigating interaction mechanisms of small-molecule ligands. By providing detailed structural and ligand binding insights, 19F NMR will facilitate the discovery of RNA-targeting therapeutics and deepen our understanding of RNA modulatory mechanisms.
Collapse
Affiliation(s)
- CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A∗STAR), 10 Biopolis Road, #05-01, 138670, Singapore.
| |
Collapse
|
17
|
Zhang L, Wang X, Gao G, Bian Z, Kong L. SSE-Net: A novel network based on sequence spatial equation for Camellia sinensis lysine acetylation identification. Comput Biol Chem 2025; 117:108442. [PMID: 40174510 DOI: 10.1016/j.compbiolchem.2025.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/25/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Lysine acetylation (Kace) is one of the most important post-translational modifications. It is key to identify Kace sites for understanding regulation mechanisms in Camellia sinensis. In this study, we defined a mathematical formula, named sequence spatial equation (SSE), which could give each amino acid coordinate in 3-D space by rotating and translating. Based on SSE, an optional network SSE-Net was constructed for representing spatial structure information. Centrality metrics of SSE-Net were used to design structure feature vectors for reflecting the importance of sites. The optimal features were fed into classifier to construct model SSE-ET. The results showed that SSE-ET outperformed the other classifiers. Meanwhile, all MCC results were higher than 0.7 for different machine learning, which indicated that SSE-Net was effective for representing Kace sites in Camellia sinensis. Moreover, we implemented the other models on our dataset. The results of comparison showed that SSE-ET was much more powerful than the others. Specifically, the result of SN was nearly 20 % higher than the other models. These results showed that the proposed SSE was a valuable mathematics concept for reflecting 3-D space Kace site information in Camellia sinensis, and SSE-Net may be an essential complementary for biology and bioinformatics research.
Collapse
Affiliation(s)
- Lichao Zhang
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, PR China; Hebei Innovation Center for Smart Perception and Applied Technology of Agricultural Data, Qinhuangdao, PR China.
| | - Xue Wang
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, PR China
| | - Ge Gao
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, PR China
| | - Zhengyan Bian
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, PR China
| | - Liang Kong
- Hebei Innovation Center for Smart Perception and Applied Technology of Agricultural Data, Qinhuangdao, PR China; School of Mathematics and Information Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, PR China
| |
Collapse
|
18
|
Zhang J, Zhang B, Duan F, Xuan Z, Sun T, Lu L. Metagenomic exploration of novel β-galactosidases for glycosylation engineering. BIORESOURCE TECHNOLOGY 2025; 430:132546. [PMID: 40245993 DOI: 10.1016/j.biortech.2025.132546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/25/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
β-Galactosidases are important enzymatic tools for glycosylation, but their properties vary greatly with the source. Here, ten putative β-galactosidase genes, designated as bga1 to bga10, encoding proteins Bga1 to Bga10, were mined from an environmental metagenomic dataset comprising 119,152 sequences. Five of the encoded enzyme proteins exhibited less than 80% sequence similarity to known enzymes, but displayed conserved catalytic sites in their predicted three-dimensional models. After heterologous expression and characterization, two recombinant enzymes showed specific hydrolysis activity toward o-nitrophenyl-β-d-galactopyranoside. One of them, Bga4R, exhibited remarkable activity at pH 7.4 and 50℃, with excellent alkaline stability. Notably, Bga4R tolerated a wide range of acceptors for transglycosylation. It catalyzed galactosyl transfer to various monosaccharides and sugar alcohols, and enabling the synthesis of diverse glycosylated derivatives. This study identifies a novel GH 1 β-galactosidase as a powerful tool for glycosylation engineering, with promising potential for synthesizing galactosides valuable to food and pharmaceutical industries.
Collapse
Affiliation(s)
- Jingwen Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Binge Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Feiyu Duan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zehui Xuan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Tong Sun
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.
| |
Collapse
|
19
|
Ak B, Akısü M, Durmaz A, Yalaz M, Terek D, Sönmezler E, Oktay Y, Akın H, Aykut A. Expanding the genetic spectrum of short rib polydactyly syndrome: Novel DYNC2H1 variants and functional insights. Bone 2025; 197:117511. [PMID: 40339774 DOI: 10.1016/j.bone.2025.117511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
INTRODUCTION Short rib polydactyly syndrome (SRPS), with or without polydactyly, also known as Verma-Naumoff/Saldino-Noonan syndrome, is a type of skeletal ciliopathy. Initially, variants in the IFT80 gene were implicated; however, approximately half of the SRPS cases are associated with variants in the DYNC2H1 gene. Additionally, digenic variants involving DYNC2H1 and NEK1 can contribute to the syndrome. MATERIALS AND METHODS This case report describes a male patient presenting with characteristic SRPS features, including a constricted thorax and shortened limbs. Exome sequencing was performed to identify causative variants, followed by functional analyses to assess the pathogenicity of the identified variants, including a synonymous variant. RESULTS Exome sequencing identified compound heterozygous variants in the DYNC2H1 gene: a novel missense variant c.6439G>T p.(Asp2147Tyr) and a synonymous variant c.6477G>A p.(Gln2159=). Functional analyses confirmed that the synonymous variant triggers nonsense-mediated decay of the affected allele. CONCLUSION This study expands the spectrum of DYNC2H1 variants associated with SRPS and emphasizes the importance of functional analyses in genetic diagnostics. Demonstrating pathogenicity for a synonymous variant highlights the necessity for comprehensive variant assessments to improve diagnostic accuracy and enable early intervention. These findings have significant implications for molecular diagnostics and personalized therapy strategies in skeletal ciliopathies.
Collapse
Affiliation(s)
- Bilgesu Ak
- Department of Medical Genetics, Ege University Hospital, Izmir, Turkey
| | - Mete Akısü
- Department of Neonatology, Ege University Hospital, Izmir, Turkey.
| | - Asude Durmaz
- Department of Medical Genetics, Ege University Hospital, Izmir, Turkey.
| | - Mehmet Yalaz
- Department of Neonatology, Ege University Hospital, Izmir, Turkey.
| | - Demet Terek
- Department of Neonatology, Ege University Hospital, Izmir, Turkey.
| | | | - Yavuz Oktay
- Izmir Biomedicine and Genome Center, Izmir, Turkey.
| | - Haluk Akın
- Department of Medical Genetics, Ege University Hospital, Izmir, Turkey.
| | - Ayça Aykut
- Department of Medical Genetics, Ege University Hospital, Izmir, Turkey.
| |
Collapse
|
20
|
Guan L, Wang P, Li Y, Zhang S. FERONIA interacts with NPL4 to regulate immunity gene mRNA nucleocytoplasmic transport in response to plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 357:112545. [PMID: 40348341 DOI: 10.1016/j.plantsci.2025.112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 05/04/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Nucleocytoplasmic transport plays a critical role in the activation of immune mechanisms in plant cells. Fluorescence imaging analysis indicated that a high concentration of rapid alkalinization factor (RALF) suppresses the immune response and can induce nuclear envelope (NE) shape deformation. This phenomenon depends on the receptor kinase FERONIA (FER). Consistently, bacterial infection also affects NE shape. This study presents evidence that FER displays functional interactions with NPL4 and that phosphorylated NPL4 promotes its stability. We reported the identification and characterization of the nuclear localization protein NPL4, which is directly involved in general mRNA nuclear export. FER and NPL4 mutations both affected rhizosphere Pseudomonas colonization levels, suggesting that the interactions between FER and NPL4 are largely indispensable for regulating rhizosphere Pseudomonas colonization levels. In addition, NPL4 altered the mRNA nucleocytoplasmic distribution of immune genes in conjunction with the function of RALF-FER in the suppression of plant immunity. In brief, NPL4, which is downstream of FER is required for innate immunity and mRNA nuclear accumulation of resistance genes in Arabidopsis. Overall, through the analysis of RALF-FER and the nuclear localization protein NPL4, this work provides novel insights into the mRNA nucleocytoplasmic transport of immune genes and plant health.
Collapse
Affiliation(s)
- Li Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China.
| | - Peilong Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, PR China
| | - Yongliang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| | - Sufang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
21
|
Xie J, Zhong S, Huang D, Shao W. PocketDTA: A pocket-based multimodal deep learning model for drug-target affinity prediction. Comput Biol Chem 2025; 117:108416. [PMID: 40073710 DOI: 10.1016/j.compbiolchem.2025.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Drug-target affinity prediction is a fundamental task in the field of drug discovery. Extracting and integrating structural information from proteins effectively is crucial to enhance the accuracy and generalization of prediction, which remains a substantial challenge. This paper proposes a pocket-based multimodal deep learning model named PocketDTA for drug-target affinity prediction, based on the principle of "structure determines function". PocketDTA introduces the pocket graph structure that encodes protein residue features pretrained using a biological language model as nodes, while edges represent different protein sequences and spatial distances. This approach overcomes the limitations of lack of spatial information in traditional prediction models with only protein sequence input. Furthermore, PocketDTA employs relational graph convolutional networks at both atomic and residue levels to extract structural features from drugs and proteins. By integrating multimodal information through deep neural networks, PocketDTA combines sequence and structural data to improve affinity prediction accuracy. Experimental results demonstrate that PocketDTA outperforms state-of-the-art prediction models across multiple benchmark datasets by showing strong generalization under more realistic data splits and confirming the effectiveness of pocket-based methods for affinity prediction.
Collapse
Affiliation(s)
- Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Shengsheng Zhong
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Dingkai Huang
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Wei Shao
- Scientific Research Management Department, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
22
|
Latta O, Weinert EE, Bechthold A. Heme dependent activity of the Streptomyces c-di-GMP-metabolizing enzyme CdgA. J Inorg Biochem 2025; 269:112874. [PMID: 40056506 DOI: 10.1016/j.jinorgbio.2025.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Streptomyces species are vital for producing natural products like antibiotics, with c-di-GMP playing a key role in regulating processes such as differentiation. C-di-GMP metabolism is controlled by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), which synthesize and hydrolyze c-di-GMP, respectively, to modulate cellular levels. To improve our understanding of c-di-GMP-regulated processes in Streptomyces, we have characterized a c-di-GMP-metabolizing enzyme CdgA from Streptomyces ghanaensis that contains both a diguanylate cyclase and a phosphodiesterase domain. Our studies demonstrate that the enzyme is purified in a form without heme and is only able to degrade c-di-GMP. When reconstituted with heme, it enables c-di-GMP synthesis, and depending on the redox state the synthesis rate is changed. To our knowledge, this is the first heme-dependent activity reported for a c-di-GMP-metabolizing enzyme in Streptomyces and has major implications for understanding the way c-di-GMP is metabolized in vivo in Streptomyces.
Collapse
Affiliation(s)
- Olaf Latta
- Institute for Pharmaceutical Biology and Biotechnology, University of Freiburg, Germany
| | - Emily E Weinert
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andreas Bechthold
- Institute for Pharmaceutical Biology and Biotechnology, University of Freiburg, Germany.
| |
Collapse
|
23
|
Wu Q, Xiao Y, Yang X, Zhu A, Cao W, Cai L, Lin X, Zhao Z, Zhang Q, Zhou X. Magnetic-assisted and aptamer-based SERS biosensor for high enrichment, ultrasensitive detection of multicomponent heart failure biomarkers. Talanta 2025; 290:127834. [PMID: 40020612 DOI: 10.1016/j.talanta.2025.127834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
The high-sensitivity detection of low-concentration multicomponent biomarkers in the blood of heart failure (HF) patients using surface-enhanced Raman spectroscopy (SERS) remains a significant challenge. In this study, an ultrasensitive biosensor for the detection of multicomponent HF biomarkers was designed. This biosensor utilizes Au@Ag nanoparticles (Au@Ag NPs) functionalized with Raman reporter molecules (RaRs) as SERS probes, and Ag-coated Fe3O4 nanoparticles (Fe3O4-Ag NPs) modified with internal standard (IS) molecules as the capture substrate, offering the dual advantages of magnetic enrichment and SERS enhancement. Additionally, specific aptamers or antibodies were conjugated to the surfaces of Au@Ag NPs and Fe3O4-Ag NPs to specifically recognize target proteins to construct a three-layer composite structure (Fe3O4-Ag/HF biomarkers/Au@Ag). The limit of detection (LOD) of HF markers for cTnI, NT-proBNP, and sST2 is 0.1 pg/mL, 1.0 fg/mL, and 1.0 fg/mL, respectively, surpassing most reported methods. Additionally, the analysis of 45 clinical serum samples revealed no statistically significant differences between the SERS-based results and those obtained by conventional clinical methods, as confirmed by the Shapiro-Wilk test (p > 0.05). In conclusion, this SERS biosensor successfully developed an easy-to-operate accurate diagnosis method capable of simultaneous, quantitative detection of multiple HF biomarkers and provided a new technique for accurate diagnosis of other diseases in clinical testing.
Collapse
Affiliation(s)
- Qingyu Wu
- Department of Pharmacy, Shantou University Medical College, Shantou, Guangdong, 515041, China; Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China; College of Medical Technology, Zhangzhou Health Vocational College, Zhangzhou, Fujian, 363000, China
| | - Yingxiu Xiao
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xinran Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Aoxue Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Wendi Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Leshan Cai
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xiaozhe Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Zhenhua Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qiaoxin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Xia Zhou
- Department of Pharmacy, Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
24
|
Fatima Ali N, Khan S, Zahid S. A critical address to advancements and challenges in computational strategies for structural prediction of protein in recent past. Comput Biol Chem 2025; 117:108430. [PMID: 40121710 DOI: 10.1016/j.compbiolchem.2025.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Protein structure prediction has undergone significant advancements, driven by the limitations of experimental techniques like X-ray crystallography, NMR, and cryo-EM, which are costly and time-consuming. To bridge the gap between protein sequences and their structures, computational methods have emerged as essential tools. Traditional approaches such as homology modeling, threading, and ab initio folding made progress but often lacked atomic-level precision. The field has been revolutionized by deep learning-based models such as AlphaFold2, RoseTTAFold, and OpenFold, which have demonstrated unprecedented accuracy in predicting protein structures. These AI-driven models leverage vast datasets and neural networks to generate highly reliable structural predictions, sometimes rivaling experimental methods. This review explores the historical evolution of computational protein structure prediction, analyzing the strengths and weaknesses of state-of-the-art models. These models have broad applications in fields such as drug discovery, enzyme engineering, and disease-related protein modeling. However, challenges remain, including the need for extensive training data, computational resource requirements, and difficulties in modeling protein dynamics, intrinsically disordered regions, and protein-protein interactions. Future directions in the field include improving AI models to address current limitations, better integration with experimental techniques, and extending predictions to protein complexes and post-translational modifications. By continuing to refine these methods, computational protein structure prediction will further enhance biomedical research and therapeutic design, reshaping the landscape of structural biology and computational biophysics.
Collapse
Affiliation(s)
- Nida Fatima Ali
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Shumaila Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
25
|
Weiss K, Agarkova Y, Zwosta A, Hoevel S, Himmelreich AK, Shumanska M, Etich J, Poschmann G, Brachvogel B, Bogeski I, Mielenz D, Riemer J. A fluorescent sensor for real-time monitoring of DPP8/9 reveals crucial roles in immunity and cancer. Life Sci Alliance 2025; 8:e202403076. [PMID: 40355159 PMCID: PMC12069513 DOI: 10.26508/lsa.202403076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025] Open
Abstract
Dipeptidyl peptidases 8 and 9 (DPP8/9) are critical for the quality control of mitochondrial and endoplasmic reticulum protein import, immune regulation, cell adhesion, and cell migration. Dysregulation of DPP8/9 is associated with pathologies including tumorigenesis and inflammation. Commonly, DPP8/9 activity is analysed by in vitro assays using artificial substrates, which allow neither continuously monitoring DPP8/9 activity in individual, living cells nor detecting effects from endogenous interactors and posttranslational modifications. Here, we developed DiPAK (for DPP8/9 activity sensor based on AK2), a ratiometric genetically encoded fluorescent sensor, which enables studying DPP8/9 activity in living cells. Using DiPAK, we determined the dynamic range of DPP8/9 activity in cells overexpressing or lacking DPP9. We identified distinct activity levels among melanoma cell lines and found that LPS-induced primary B-cell activation depends on DPP8/9 as the absence of DPP8/9 activity results in apoptotic but not pyroptotic cell death. Consistently, we observed increasing DPP8/9 activity during B-cell maturation. Overall, DiPAK is a versatile tool for real-time single-cell monitoring of DPP8/9 activity in a broad range of cells and organisms.
Collapse
Affiliation(s)
- Konstantin Weiss
- Redox Metabolism Group, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Yelizaveta Agarkova
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexandra Zwosta
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sarah Hoevel
- Redox Metabolism Group, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Ann-Kathrin Himmelreich
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Magdalena Shumanska
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Julia Etich
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jan Riemer
- Redox Metabolism Group, Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Liu Z, Qiu WR, Liu Y, Yan H, Pei W, Zhu YH, Qiu J. A comprehensive review of computational methods for Protein-DNA binding site prediction. Anal Biochem 2025; 703:115862. [PMID: 40209920 DOI: 10.1016/j.ab.2025.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/20/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Accurately identifying protein-DNA binding sites is essential for understanding the molecular mechanisms underlying biological processes, which in turn facilitates advancements in drug discovery and design. While biochemical experiments provide the most accurate way to locate DNA-binding sites, they are generally time-consuming, resource-intensive, and expensive. There is a pressing need to develop computational methods that are both efficient and accurate for DNA-binding site prediction. This study thoroughly reviews and categorizes major computational approaches for predicting DNA-binding sites, including template detection, statistical machine learning, and deep learning-based methods. The 14 state-of-the-art DNA-binding site prediction models have been benchmarked on 136 non-redundant proteins, where the deep learning-based, especially pre-trained large language model-based, methods achieve superior performance over the other two categories. Applications of these DNA-binding site prediction methods are also involved.
Collapse
Affiliation(s)
- Zi Liu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Wang-Ren Qiu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yan Liu
- Department of Computer Science, Yangzhou University, 196 Huayang West Road, Yangzhou, 225100, China
| | - He Yan
- College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry University, 159 Longpanlu Road, Nanjing, 210037, China
| | - Wenyi Pei
- Geriatric Department, Shanghai Baoshan District Wusong Central Hospital, 101 Tongtai North Road, Shanghai, 200940, China.
| | - Yi-Heng Zhu
- College of Artificial Intelligence, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China.
| | - Jing Qiu
- Information Department, The First Affiliated Hospital of Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
27
|
Hull JJ, Le KP, Schutze IX, Heu CC, Gross RJ, Fabrick PG, Rodriguez JA, Hull AM, Langhorst D, Fabrick JA, Brent CS. RNAi-Mediated Knockdown of Tektins Does Not Affect Male Fertility in Lygus hesperus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70053. [PMID: 40170425 DOI: 10.1002/arch.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/03/2025]
Abstract
Mirid plant bugs (Hemiptera: Miridae), including Lygus hesperus (western tarnished plant bug), are key pests of numerous agricultural crops. While management of this pest relies heavily on chemical insecticides, the evolution of resistance and environmental concerns underscore the need for new and more effective approaches. Genetic-based strategies that target male fertiliy are currently being evaluated for population suppression. However, a lack of candidate gene targets with appropriate function, specifically in non-model species like L. hesperus, has hindered progress in the development and application of such approaches. Given their conserved role in stabilization of the flagella axoneme and association with sperm motility in many organisms, members of the tektin gene family represent logical targets for genetic-based sterilization. Here, we identified four homologs of the non-vertebrate tektin family from L. hesperus and used RNA interference-mediated knockdown to assess their roles in male fertility. Although transcription of the four tektins was predominantly in the testis, knockdown had negligible effects on either sperm abundance or male fertility. Our results suggest that tektins do not play a critical role in sperm fertilization of eggs in L. hesperus and are thus likely poor targets for genetic-based sterilization approaches in this species.
Collapse
Affiliation(s)
- J Joe Hull
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Kevin P Le
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Inana X Schutze
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Chan C Heu
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Roni J Gross
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Peter G Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Joseph A Rodriguez
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Aiden M Hull
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Daniel Langhorst
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Jeffrey A Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| | - Colin S Brent
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, USA
| |
Collapse
|
28
|
Ying X, Tao Y, Yuan Y, Ni D, Zhang W, Yan B, Zhao J, Zhang H, Chen W, Fan D. Microwave irradiation benefits fructan degradation in sourdough steamed cake by tunning the β-fructosidase FosE-substrate interaction. Food Chem 2025; 480:143960. [PMID: 40120306 DOI: 10.1016/j.foodchem.2025.143960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Producing low FODMAP grain-based staple foods is crucial for individuals with irritable bowel syndrome (IBS). This study aimed to resolve the impact of microwave heating on the fructan content in sourdough steamed cake and to elucidate the potential mechanism by which microwave fields activate β-fructosidase FosE. With similar heating rate, microwave treatment induced a significant reduction of fructans in sourdough steamed cakes compared to conventional steaming method, and this was confirmed to be the result of enhanced FosE activity by microwaves irradiation. Molecular docking and molecular dynamics simulations revealed that microwave irradiation improves the structural stability of the enzyme-substrate complex. Analysis of binding free energy indicated that microwaves enhance the coulombic interactions through energy transfer. These findings provide valuable insights into the molecular mechanisms underlying the interactions between FosE and fructan under microwave irradiation, paving the way for the future applications of microwaves in low-FODMAP cereal-based food processing.
Collapse
Affiliation(s)
- Xiaoyue Ying
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Tao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
29
|
Crauwels C, Díaz A, Vranken W. GPCRchimeraDB: A Database of Chimeric G Protein-Coupled Receptors (GPCRs) to Assist Their Design. J Mol Biol 2025; 437:169164. [PMID: 40268234 DOI: 10.1016/j.jmb.2025.169164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins crucial to numerous diseases, yet many remain poorly characterized and untargeted by drugs. Chimeric GPCRs have emerged as valuable tools for elucidating GPCR function by facilitating the identification of signaling pathways, resolving structures, and discovering novel ligands of poorly understood GPCRs. Such chimeric GPCRs are obtained by merging a well- and less-well-characterized GPCR at the intracellular limits of their transmembrane regions or intracellular loops, leveraging knowledge transfer from the well-characterized GPCR. However, despite the engineering of over 200 chimeric GPCRs to date, the design process remains largely trial-and-error and lacks a standardized approach. To address this gap, we introduce GPCRchimeraDB (https://www.bio2byte.be/gpcrchimeradb/), the first comprehensive database dedicated to chimeric GPCRs. It catalogs 212 chimeric receptors, identified through literature review, and includes 1,755 class A natural GPCRs, enabling connections between chimeras and their parent receptors while facilitating the exploration of novel parent combinations. Both chimeric and natural GPCR entries are extensively described at the sequence, structural, and biophysical level through a range of visualization tools, with annotations from resources like UniProt and GPCRdb and predictions from AlphaFold2 and b2btools. Additionally, GPCRchimeraDB offers a GPCR sequence aligner and a feature comparator to investigate differences between natural and chimeric receptors. It also provides design guidelines to support rational chimera engineering. GPCRchimeraDB is therefore a resource to facilitate and optimize the design of new chimeras, so helping to gain insights into poorly characterized receptors and contributing to advances in GPCR therapeutic development.
Collapse
Affiliation(s)
- Charlotte Crauwels
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium; AI Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Adrián Díaz
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium; AI Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium; AI Lab, Vrije Universiteit Brussel, Brussels, Belgium; Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium; Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
30
|
Anderson AM, O'Connor MS, Pipkin J, Malanga M, Sohajda T, Loftsson T, Szente L, García-Fandiño R, Piñeiro Á. A comprehensive nomenclature system for cyclodextrins. Carbohydr Polym 2025; 360:123600. [PMID: 40399013 DOI: 10.1016/j.carbpol.2025.123600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 05/23/2025]
Abstract
Modified cyclodextrins (CDs) are cyclic oligosaccharides with many applications in drug delivery, catalysis, and as active pharmaceutical ingredients. In general, they exist as distributions of structurally diverse molecules rather than single-isomer compounds. Their performance depends on the number of glucopyranose units (GPUs), and the type, number, and position of chemical substitutions in their hydroxyl groups. Effectively targeting individual species within these distributions is essential for optimizing CDs for specific applications. Computational techniques can generate large datasets to AI-driven structural optimization, but the absence of a standardized nomenclature system for modified CDs presents a major barrier to progress in this direction. This lack of consensus limits effective communication, data sharing, automation, and collaboration. To address this, a clear and extensible nomenclature for modified CDs is proposed. In this framework, GPUs are treated like amino-acid residues, with unsubstituted GPUs as reference building-blocks and substituted ones considered as mutations. This approach precisely defines substitution types and patterns, resolves cyclic permutation ambiguities, and offers versatility for both simple and complex modifications, including chiral center alterations and covalently linked CD oligomers. By introducing this standardized nomenclature, we aim to enhance molecular design, improve reproducibility, and streamline both experimental and computational research in the CD field.
Collapse
Affiliation(s)
| | | | - James Pipkin
- Ligand Pharmaceuticals Incorporated, 3911 Sorrento Valley Boulevard, San Diego, CA 92121, USA
| | - Milo Malanga
- CarboHyde, Budapest, Berlini u. 47-49, 1045, Hungary
| | - Tamas Sohajda
- CarboHyde, Budapest, Berlini u. 47-49, 1045, Hungary
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Lajos Szente
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos u. 7., Budapest H-1097, Hungary
| | - Rebeca García-Fandiño
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, CIQUS, Spain.
| | - Ángel Piñeiro
- Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, Spain.
| |
Collapse
|
31
|
Lee S, Park JS, Hong JH, Woo H, Lee CH, Yoon JH, Lee KB, Chung S, Yoon DS, Lee JH. Artificial intelligence in bacterial diagnostics and antimicrobial susceptibility testing: Current advances and future prospects. Biosens Bioelectron 2025; 280:117399. [PMID: 40184880 DOI: 10.1016/j.bios.2025.117399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
Recently, artificial intelligence (AI) has emerged as a transformative tool, enhancing the speed, accuracy, and scalability of bacterial diagnostics. This review explores the role of AI in revolutionizing bacterial detection and antimicrobial susceptibility testing (AST) by leveraging machine learning models, including Random Forest, Support Vector Machines (SVM), and deep learning architectures such as Convolutional Neural Networks (CNNs) and transformers. The integration of AI into these methods promises to address the current limitations of traditional techniques, offering a path toward more efficient, accessible, and reliable diagnostic solutions. In particular, AI-based approaches have demonstrated significant potential in resource-limited settings by enabling cost-effective and portable diagnostic solutions, reducing dependency on specialized infrastructure, and facilitating remote bacterial detection through smartphone-integrated platforms and telemedicine applications. This review highlights AI's transformative role in automating data analysis, minimizing human error, and delivering real-time diagnostic results, ultimately improving patient outcomes and optimizing healthcare efficiency. In addition, we not only examine the current advances in machine learning and deep learning but also review their applications in plate counting, mass spectrometry, morphology-based and motion-based microscopic detection, holographic microscopy, colorimetric and fluorescence detection, electrochemical sensors, Raman and Surface-Enhanced Raman Spectroscopy (SERS), and Atomic Force Microscopy (AFM) for bacterial diagnostics and AST. Finally, we discuss the future directions and potential advancements in AI-driven bacterial diagnostics.
Collapse
Affiliation(s)
- Seungmin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
| | - Jeong Soo Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Mechanical Engineering, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea
| | - Ji Hye Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
| | - Hyowon Woo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chang-Hyun Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Ju Hwan Yoon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Ki-Baek Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea.
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea; Astrion Inc, Seoul, 02841, Republic of Korea.
| | - Jeong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Department of Integrative Energy Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
32
|
Wu H, Wang Q, Hu M, Xu M, Rao Z, Zhang X. Engineering an alkaline-stable protein A through rational design strategies. Biochem Biophys Res Commun 2025; 769:151991. [PMID: 40367905 DOI: 10.1016/j.bbrc.2025.151991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
In recent years, monoclonal antibody drugs have dominated the bio-pharmaceutical market because of their high specificity and low adverse reactions. Antibody purification has always occupied most of the cost of antibody drug production. Protein A affinity chromatogra phy, as the most commonly used antibody purification method, has been explored to improve its service life and reduce the cost of purification. Cleaning in place (CIP) of protein A requires protein A to have a better alkalinity resistance for protein A affinity chromatography reuse. Therefore, in this study, we redesigned a base-tolerant protein A, 4xPA-LPA, by semi-rational analysis based on bio-informatics. Including surface charge analysis, construction of linker peptides, and MSA and FoldX prediction-based conserved site screening and targeting mutagenesis. Analyzed by SDS-PAGE, differential scanning calorimeter and circular dichroism, the results showed that 4xPA-LPA was treated with 0.5 M NaOH and more than 84 % residues remain after 24 h. The Tm value of 4xPA-LPA increased by 2.47 °C compared with that before mutation. Its α-helices number increased, and the protein structure was more stable. DBC retention was approximately 86 % after alkali immersing and 89 % after 100 simulated wash repetitions. The novel alkali-resistant protein A has good application prospects in the field of monoclonal antibody purification, and this study also provides a certain reference strategy for future engineering to improve the alkali-resistance of proteins.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qiang Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mengkai Hu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
33
|
Rahman MA, Dalwani S, Venkatesan R. Structural enzymological studies of the long chain fatty acyl-CoA synthetase FadD5 from the mce1 operon of Mycobacterium tuberculosis. Biochem Biophys Res Commun 2025; 769:151960. [PMID: 40347623 DOI: 10.1016/j.bbrc.2025.151960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/25/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
The cell wall of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is rich in complex lipids. During intracellular stage, Mtb depends on lipids for its survival. Mammalian cell entry (Mce) 1 complex encoded by the mce1 operon is a mycolic/fatty acid importer. mce1 operon also encodes a putative fatty acyl-CoA synthetase (FadD5; Rv0166), potentially responsible for the activation of fatty acids imported through the Mce1 complex by conjugating them to Coenzyme A. Here, we report that FadD5 is associated to membrane although it can be purified as a soluble dimeric protein. ATP and CoA binding influence FadD5's stability and conformation respectively. Enzymatic studies with fatty acids of varying chain lengths show that FadD5 prefers long chain fatty acids as substrates. X-ray crystallographic studies on FadD5 and its variant reveal that the C-terminal domain (∼100 residues) is cleaved off during crystallization. Noteworthy, deletion of this domain renders FadD5 completely inactive. SAXS studies, however, confirm the presence of full length FadD5 as a dimer in solution. Further structural analysis and comparisons with homologs provide insights on the possible mode of membrane association and fatty acyl tail binding.
Collapse
Affiliation(s)
| | - Subhadra Dalwani
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Rajaram Venkatesan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
34
|
Ferreira JV, Ahmed Y, Heunis T, Jain A, Johnson E, Räschle M, Ernst R, Vanni S, Carvalho P. Pex30-dependent membrane contact sites maintain ER lipid homeostasis. J Cell Biol 2025; 224:e202409039. [PMID: 40407417 PMCID: PMC12101078 DOI: 10.1083/jcb.202409039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/28/2025] [Accepted: 03/12/2025] [Indexed: 05/26/2025] Open
Abstract
In eukaryotic cells, communication between organelles and the coordination of their activities depend on membrane contact sites (MCS). How MCS are regulated under the dynamic cellular environment remains poorly understood. Here, we investigate how Pex30, a membrane protein localized to the endoplasmic reticulum (ER), regulates multiple MCS in budding yeast. We show that Pex30 is critical for the integrity of ER MCS with peroxisomes and vacuoles. This requires the dysferlin (DysF) domain on the Pex30 cytosolic tail. This domain binds to phosphatidic acid (PA) both in vitro and in silico, and it is important for normal PA metabolism in vivo. The DysF domain is evolutionarily conserved and may play a general role in PA homeostasis across eukaryotes. We further show that the ER-vacuole MCS requires a Pex30 C-terminal domain of unknown function and that its activity is controlled by phosphorylation in response to metabolic cues. These findings provide new insights into the dynamic nature of MCS and their coordination with cellular metabolism.
Collapse
Affiliation(s)
| | - Yara Ahmed
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Aamna Jain
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
- Preclinical Center for Molecular Signaling, Saarland University, Homburg, Germany
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Markus Räschle
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
- Preclinical Center for Molecular Signaling, Saarland University, Homburg, Germany
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Hahn HJ, Pashkova N, Cianfrocco MA, Weisman LS. Cargo adaptors use a handhold mechanism to engage with myosin V for organelle transport. J Cell Biol 2025; 224:e202408006. [PMID: 40377475 DOI: 10.1083/jcb.202408006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/28/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025] Open
Abstract
Myo2, a class V myosin motor, is essential for organelle transport in budding yeast. Its association with cargo is regulated by adaptor proteins that mediate both attachment and release. Vac17, a vacuole-specific adaptor, links Myo2 to the vacuole membrane protein Vac8 and plays a key role in assembling and disassembling the Myo2-Vac17-Vac8 complex during vacuole inheritance. Using genetics, cryo-EM, and structure prediction, we find that Vac17 interacts with Myo2 at two distinct sites rather than a single interface. Similarly, the peroxisome adaptor Inp2 engages two separate regions of Myo2, one of which overlaps with a Vac17-binding site. These findings support a "handhold" model, in which cargo adaptors occupy multiple surfaces on the Myo2 tail, which likely enhances motor-cargo associations as well as provide additional regulatory control over motor recruitment.
Collapse
Affiliation(s)
- Hye Jee Hahn
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan , Ann Arbor, MI, USA
| | - Natalya Pashkova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael A Cianfrocco
- Life Sciences Institute, University of Michigan , Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Lois S Weisman
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
36
|
Zhang C, Zhao WN, Liu XX, Song WY, Peng HH, Yang M, Li PF, Wei JQ, Zhou YC, Sun Y. Development and evaluation of recombinant multi-epitopes vaccine against nervous necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110332. [PMID: 40222691 DOI: 10.1016/j.fsi.2025.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
Capsid protein (CP) is the antigen of nervous necrosis virus (NNV), a fatal microorganism for almost marine fishes. Antigen epitope is a special chemical group in an antigen molecule that determines the specificity of the antigen, usually consisting of 5-15 amino acid residues. However, the antigen epitope of NNV antigen remains unclear. In this study, using immunoinformatic method, we analyzed the antigen epitope of CP and designed a multi-epitopes vaccine of NNV (PA). Furthermore, we evaluated the immune responses induced by PA vaccine. The results showed that three cytotoxic T lymphocyte epitopes and six B-cell lymphocyte epitopes were predicted, with high antigenicity, non-allergen, and non-toxin. Based on these epitopes, a multi-epitopes vaccine of NNV (PA) was designed and prepared. After immunization, the mRNA expression levels of IL-1β, TNF-α, CD4, CD8, MHC-Ⅰ, and MHC-Ⅱ in PA group were significantly up-regulated. Moreover, it has been proven that PA could significantly activate antigen presenting cells. Importantly, PA could induce similar levels of antibodies secretion and immune protection, compared to CP group. The survival rate reached 77.22 % in PA group. This study provides a cheap and effective strategy for aquatic vaccine design, which will be beneficial in application to development of vaccine in aquaculture industry.
Collapse
Affiliation(s)
- Chen Zhang
- School of Marine Biology and Fisheries, Sanya Institute of Breeding and Multiplication, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Wei-Nan Zhao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, China
| | - Xin-Xin Liu
- School of Life and Health Sciences, Hainan University, China
| | - Wen-Ye Song
- School of Marine Biology and Fisheries, Sanya Institute of Breeding and Multiplication, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Hai-Hua Peng
- School of Marine Biology and Fisheries, Sanya Institute of Breeding and Multiplication, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Min Yang
- College of Marine Sciences, South China Agricultural University, China
| | - Peng-Fei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Jin-Qi Wei
- Nanning No.3 Middle School, Nanning, China
| | - Yong-Can Zhou
- School of Marine Biology and Fisheries, Sanya Institute of Breeding and Multiplication, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Yun Sun
- School of Marine Biology and Fisheries, Sanya Institute of Breeding and Multiplication, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China.
| |
Collapse
|
37
|
Li R, Guo S, Wang D, Yang T, Li W, Wang J, Huang L, Zhang X, Dai Z. Elucidation of the plant progesterone biosynthetic pathway and its application in a yeast cell factory. Metab Eng 2025; 90:197-208. [PMID: 40157715 DOI: 10.1016/j.ymben.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Progesterone and its steroidal derivatives, including androgens, estrogens, glucocorticoids and mineralocorticoids are extensively utilized in pharmacotherapy, serving as predominant agents in anti-inflammatory, contraceptive, and anticancer treatments. From the 1990s to the present, scientists attempted to biosynthesize steroids such as progesterone and hydrocortisone from sugars in engineered microbial strains expressing pathway enzymes derived from animal sources. However, the low activity of the cytochrome P450 sterol side-chain cleavage (P450scc) system and their mitochondrial compartmentalization have limited the development of this route. Therefore, discovering an efficient P450scc system and developing innovative strategies will be necessary to overcome this bottleneck. Here, we elucidated the complete biosynthetic pathway of progesterone in Marsdenia tenacissima, a medicinal plant rich in steroids. The pathway comprises four enzymes, the two P450scc enzymes MtCYP108 and MtCYP150, as well as the two 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerases (HSDs) MtHSD5 and MtHSD6. Unlike their animal counterparts, the plant-derived P450scc enzymes were found to be localized to the endoplasmic reticulum in yeast and plants, and using the plant-type cytochrome P450 reductase (CPR) as electron transfer chain. The plant-derived HSDs are cytoplasmic in yeast and plants, whereas animal-derived HSDs localize to the endoplasmic reticulum. Based on this discovery, we engineered a yeast-based cell factory capable of synthesizing 1.06 g/L of progesterone from a simple carbon source. This discovery lays the groundwork for the sustainable synthesis of steroid hormone drugs through the use of plant-based systems or microbial host cells.
Collapse
Affiliation(s)
- Rongsheng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tingting Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Wenhao Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jie Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Zhubo Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
38
|
Zheng Y, Young ND, Wang T, Chang BCH, Song J, Gasser RB. Systems biology of Haemonchus contortus - Advancing biotechnology for parasitic nematode control. Biotechnol Adv 2025; 81:108567. [PMID: 40127743 DOI: 10.1016/j.biotechadv.2025.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Parasitic nematodes represent a substantial global burden, impacting animal health, agriculture and economies worldwide. Of these worms, Haemonchus contortus - a blood-feeding nematode of ruminants - is a major pathogen and a model for molecular and applied parasitology research. This review synthesises some key advances in understanding the molecular biology, genetic diversity and host-parasite interactions of H. contortus, highlighting its value for comparative studies with the free-living nematode Caenorhabditis elegans. Key themes include recent developments in genomic, transcriptomic and proteomic technologies and resources, which are illuminating critical molecular pathways, including the ubiquitination pathway, protease/protease inhibitor systems and the secretome of H. contortus. Some of these insights are providing a foundation for identifying essential genes and exploring their potential as targets for novel anthelmintics or vaccines, particularly in the face of widespread anthelmintic resistance. Advanced bioinformatic tools, such as machine learning (ML) algorithms and artificial intelligence (AI)-driven protein structure prediction, are enhancing annotation capabilities, facilitating and accelerating analyses of gene functions, and biological pathways and processes. This review also discusses the integration of these tools with cutting-edge single-cell sequencing and spatial transcriptomics to dissect host-parasite interactions at the cellular level. The discussion emphasises the importance of curated databases, improved culture systems and functional genomics platforms to translate molecular discoveries into practical outcomes, such as novel interventions. New research findings and resources not only advance research on H. contortus and related nematodes but may also pave the way for innovative solutions to the global challenges with anthelmintic resistance.
Collapse
Affiliation(s)
- Yuanting Zheng
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiangning Song
- Faculty of IT, Department of Data Science and AI, Monash University, Victoria, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia; Monash Data Futures Institute, Monash University, Victoria, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
39
|
Huang XY, Zhang X, Xing L, Huang SX, Zhang C, Hu XC, Liu CG. Promoting lignocellulosic biorefinery by machine learning: progress, perspectives and challenges. BIORESOURCE TECHNOLOGY 2025; 428:132434. [PMID: 40139471 DOI: 10.1016/j.biortech.2025.132434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
The lignocellulosic biorefinery involves pretreatment, enzymatic hydrolysis, mixed sugar fermentation, and optional anaerobic digestion. This pipeline could be effectively implemented through machine learning (ML)-guided process optimization and strain modification rather than experimental or experience-based ones. This review takes a holistic perspective on the entire pipeline, discussing how ML could aid lignocellulosic, while other published work has focused on individual modules within the pipeline. This review also explores the model construction and evaluation strategies and highlights the emerging potential of transfer learning and hybrid ML models to address data insufficiency and improve model interpretability. Furthermore, challenges and future prospects of ML in lignocellulosic biorefinery will be elaborated in this review. Integrating ML into lignocellulosic biorefinery offers a promising pathway towards sustainable and competitive biorefinery systems.
Collapse
Affiliation(s)
- Xiao-Yan Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Xing
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd., Qingdao 266000, China.
| | - Shu-Xia Huang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd., Qingdao 266000, China
| | - Cui Zhang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd., Qingdao 266000, China
| | - Xiao-Cong Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd., Qingdao 266000, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
40
|
Tung MC, Oner M, Soong SW, Cheng PT, Li YH, Chen MC, Chou CK, Kang HY, Lin FCF, Tsai SCS, Lin H. CDK5 targets p21 CIP1 to regulate thyroid cancer cell proliferation and malignancy in patients. Mol Med Rep 2025; 32:182. [PMID: 40280108 PMCID: PMC12059462 DOI: 10.3892/mmr.2025.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/12/2025] [Indexed: 04/29/2025] Open
Abstract
Cyclin‑dependent kinase 5 (CDK5), known for its role in neuronal function, has emerged as a key player in cancer biology, particularly in thyroid cancer. The present study explored the interaction between CDK5 and the cyclin‑dependent kinase inhibitor p21CIP1 in thyroid cancer (TC). Bioinformatic tools and immunoprecipitation assays were used to confirm that CDK5 targets p21 for ubiquitin‑mediated degradation, reducing its stability and tumor‑suppressive effects. Data from The Cancer Genome Atlas revealed a significant inverse correlation between CDK5 and p21 expression, with higher CDK5 levels linked to increased tumor malignancy and worse survival outcomes; conversely, higher p21 expression was correlated with an improved prognosis. Immunohistochemistry analysis of TC samples further confirmed that increased CDK5 and reduced p21 expression were associated with more advanced tumor stages and aggressive phenotypes. These findings suggested that CDK5‑mediated degradation of p21 contributes to TC progression and malignancy, highlighting the potential of targeting the CDK5‑p21 axis as a therapeutic strategy for management of TC.
Collapse
Affiliation(s)
- Min-Che Tung
- Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan, R.O.C
| | - Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Shiuan-Woei Soong
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Pang-Ting Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Yu-Hsuan Li
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Chen-Kai Chou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan, R.O.C
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan 83301, Taiwan, R.O.C
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804959, Taiwan, R.O.C
- Center for Hormone and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
| | - Frank Cheau-Feng Lin
- School of Medicine, Chung Shan Medical University, Taichung 402367, Taiwan, R.O.C
- Department of Surgery, Chung Shan University Hospital, Taichung 402367, Taiwan, R.O.C
| | - Stella Chin-Shaw Tsai
- Department of Otolaryngology, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan, R.O.C
- College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| |
Collapse
|
41
|
Bressanelli S, Fieulaine S, Tubiana T. Structural biology of single-stranded, positive-sense RNA viruses in the age of accurate atomic-scale predictions of protein structures. Virology 2025; 608:110546. [PMID: 40288078 DOI: 10.1016/j.virol.2025.110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
For decades atomic structures of proteins could only be determined experimentally and at a very slow pace. This was a particular problem for RNA viruses, for which sequences diverge fast and horizontal transfers are common. This made modeling from known structures difficult and uncertain. Only hard experimental structural data could allow accurate atomic descriptions of viral proteins and subsequent analyses, from mutant phenotype prediction to drug design. This has changed. With the advent of AlphaFold, that allows accurate protein structure prediction from sequence only, it is now possible in most cases to have the structure of a new protein of interest in a matter of minutes. In this mini review we focus on important consequences of this new state of affairs. While most of our conclusions are likely relevant to RNA viruses in general, here we focus on single-stranded, positive-sense RNA viruses. Taking as case studies proteins that are studied in our lab, we highlight why these viruses generally encode proteins that are particularly tough cases, being membrane-associated proteins with alternate conformations, structures, and interactions that may not be conserved even between close relatives. For these proteins AlphaFold may even fail or at least mislead, but with a proper approach it may also allow jump-starting the study of difficult or understudied viruses.
Collapse
Affiliation(s)
- Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France.
| | - Sonia Fieulaine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France.
| | - Thibault Tubiana
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France.
| |
Collapse
|
42
|
Fodor I, Schmidt J, Svigruha R, László Z, Molnár L, Gonda S, Elekes K, Pirger Z. Chronic tributyltin exposure induces metabolic disruption in an invertebrate model animal, Lymnaea stagnalis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107404. [PMID: 40354690 DOI: 10.1016/j.aquatox.2025.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Over the last 20 years, tributyltin (TBT) has been reported to cause metabolic disruption in both invertebrates and vertebrates, highlighting the need for further detailed analysis of its physiological effects. This study aimed to investigate the metabolic-disrupting effects of TBT from the behavioral to the molecular level. Adult specimens of the great pond snail (Lymnaea stagnalis) were exposed to an environmentally relevant concentration (100 ng L-1) of TBT for 21 days. After the chronic exposure, behavioral alterations as well as histological, cellular, and molecular changes were investigated in the central nervous system, kidney, and hepatopancreas. TBT exposure significantly decreased feeding activity, while locomotor activity remained unchanged. At the histological level, the cellular localization of tin was demonstrated in all tissues investigated and, in addition, characteristic morphological changes were observed in the kidney and hepatopancreas. Tissue-specific changes in lipid profiles confirmed TBT-induced disruption of lipid homeostasis in mollusks, characterized by a consistent reduction in the proportion of polyunsaturated fatty acids and a shift toward more saturated lipids. The expression of 17β-hydroxysteroid dehydrogenase type 12 (HSD17B12) enzyme, involved in lipid metabolism in vertebrates, was reduced in all three tissues after TBT exposure. Our results show that TBT induces significant multi-level metabolic changes in Lymnaea, including direct alterations in feeding activity and lipid composition. Our findings also suggest that HSD17B12 enzyme plays a key role in lipid metabolism in mollusks, as in mammals, and is likely involved in TBT-induced metabolic disruption. Overall, our study extends the findings of previous studies on mollusks by providing novel behavioral as well as tissue-specific histological and metabolic data and highlights the complexity and evolutionary conserved way of TBT-induced metabolic disruption.
Collapse
Affiliation(s)
- István Fodor
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary.
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - Réka Svigruha
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Zita László
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - László Molnár
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Sándor Gonda
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; Department of Pharmacognosy, University of Debrecen, 4002, Debrecen, Hungary; Department of Botany, University of Debrecen, 4032, Debrecen, Hungary; Institute of Environmental Science, University of Nyíregyháza, 4400, Nyíregyháza, Hungary
| | - Károly Elekes
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, 8237, Tihany, Hungary
| |
Collapse
|
43
|
Niknam M, Sadeghi L, Zarrini G. Isolation and characterization of antimicrobial peptides from Lactobacillus: Exploring mechanisms of action. Microb Pathog 2025; 204:107537. [PMID: 40187579 DOI: 10.1016/j.micpath.2025.107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
The rise of antibiotic-resistant bacteria necessitates the development of novel antimicrobial agents. In this study, antimicrobial peptides (AMPs) were isolated from Lactobacillus sp., yielding Bioactive Peptide I (BAP I) and Bioactive Peptide III (BAP III). Purified via gel filtration chromatography (GFC), these peptides were characterized by MALDI-TOF MS and SDS-PAGE, which confirmed their molecular masses as 4168.14 Da and 8076.45 Da, respectively, and verified their high purity. Both peptides demonstrated potent antibacterial activity against Pseudomonas aeruginosa, Streptococcus sanguinis, Bacillus cereus, and Staphylococcus aureus, with BAP I exhibiting superior efficacy. This enhanced activity is likely due to its amphipathic structure and hydrophobic C-terminal region, which promote effective bacterial membrane disruption as evidenced by FE-SEM imaging. In addition to compromising membrane integrity, both BAP I and BAP III inhibited bacterial DNA polymerase activity, as shown by reduced PCR product formation. Complementary Circular Dichroism (CD) spectroscopy analysis indicated that peptide binding induced conformational changes in Taq polymerase, reducing its α-helical and β-sheet content while increasing the proportion of random coil structures-thus enhancing the enzyme's flexibility. Molecular docking and dynamics studies further revealed stable interactions between the peptides and the enzyme, suggesting a dual mechanism of action that targets both the bacterial membrane and DNA replication processes. Collectively, these findings highlight the significant potential of BAP I and BAP III as novel antimicrobial agents against multidrug-resistant infections. Future research should focus on evaluating their safety and clinical efficacy, as well as exploring their synergistic potential with existing antibiotics to advance these peptides as therapeutic alternatives.
Collapse
Affiliation(s)
- Mahsa Niknam
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Leila Sadeghi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Gholamreza Zarrini
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
44
|
Biadun M, Sidor S, Kalka M, Karelus R, Sochacka M, Krowarsch D, Opalinski L, Zakrzewska M. Production and purification of recombinant long protein isoforms of FGF11 subfamily. J Biotechnol 2025; 403:9-16. [PMID: 40154621 DOI: 10.1016/j.jbiotec.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
The FGF11 subfamily of FGF proteins also known as fibroblast growth factor homologous factors (FHFs) includes four proteins, FGF11, FGF12, FGF13, and FGF14. They are mainly expressed in excitable cells but are also present in fibroblasts or osteoclasts, where their function is much less understood. Each FGF11-14 protein has at least two isoforms formed by alternative splicing, which differ in both cellular localization and function. Until recently, only the short isoforms had been efficiently produced and purified in recombinant form. Here, we developed a protocol to produce in the bacterial expression system and efficiently purify the long "a" isoforms of FGF11, FGF12, FGF13 and FGF14. In addition, we characterized their biophysical and biological properties, demonstrating that they activate downstream signaling and, unlike short "b" isoforms, induce cell proliferation.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Szymon Sidor
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Marta Kalka
- Department of Medical Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Daniel Krowarsch
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Lukasz Opalinski
- Department of Medical Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
45
|
Song H, Zhang S, He Q, Zhang H, Fang C, Lin X. A synergistic strategy for E2E+ESM2-driven protein a design and wet lab validation. Methods 2025; 239:30-41. [PMID: 40121002 DOI: 10.1016/j.ymeth.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/10/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Protein A is widely used in the biopharmaceutical field, playing a key role in antibody purification. It also serves as an important tool for the research of other biomolecules. Therefore, Protein A design is critical for bioengineering and drug development. Although computational protein design has made progress in model building and functional prediction, current methods still face the following limitations: (1) the predictive accuracy of generative models needs improvement, particularly in matching structural and functional features; (2) the multidimensional screening process for generated proteins requires further optimization. To address these issues, a synergistic strategy for Protein A design and wet-lab validation based on E2E+ESM2 is proposed. In the multidimensional screening process, this research introduces the innovative concept of feature distance. First, multiple Protein A-like sequences are synthesized using a generative model, and their tertiary structures are predicted using AlphaFold. Then, feature distances are calculated based on the ESM2 model, and multidimensional screening is performed by combining parameters such as skeleton distance and solubility. Finally, the functional performance of the selected synthetic proteins is validated through affinity testing. The experimental results show that the synthetic protein V2 exhibits excellent binding kinetics, with a KD value of 3.81±0.17E-10 M, close to the target Protein A. The balance between the association and dissociation rates indicates strong binding performance. This method improves the functional consistency and application potential of the generated proteins, providing a promising solution for protein design.
Collapse
Affiliation(s)
- Huijia Song
- School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Shibo Zhang
- School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Qiang He
- School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Huainian Zhang
- School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Chun Fang
- School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Xiaozhu Lin
- School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China.
| |
Collapse
|
46
|
Nakada T, Koga M, Takeuchi H, Doi K, Sugiyama H, Sakurai H. PP2A adapter protein IER5 induces dephosphorylation and degradation of MDM2, thereby stabilizing p53. Cell Signal 2025; 131:111739. [PMID: 40081547 DOI: 10.1016/j.cellsig.2025.111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/11/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The tumor suppressor p53 activates transcription of the IER5 gene, which encodes an adapter protein of protein phosphatase PP2A. IER5 binds to both the B55 regulatory subunit of PP2A and PP2A's target proteins, facilitating PP2A/B55-catalyzed dephosphorylation of these proteins. Here, we show that IER5 functions as a positive regulator of p53 by inhibiting its ubiquitination, thereby increasing cellular p53 levels. Mechanistically, this effect of IER5 requires its nuclear localization and binding to both PP2A/B55 and the p53 ubiquitin E3 ligase MDM2. Importantly, IER5 fails to inhibit p53 ubiquitination in cells treated with the MDM2 inhibitor Nutlin-3. The IER5-PP2A/B55 complex dephosphorylates MDM2 at Ser166, leading to MDM2 ubiquitination and a reduction in nuclear MDM2. Altogether, our data provide evidence that IER5-PP2A/B55 regulates the nuclear balance between MDM2 and p53 via MDM2 dephosphorylation.
Collapse
Affiliation(s)
- Taisei Nakada
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Mayuko Koga
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroto Takeuchi
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Kuriko Doi
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Haruka Sugiyama
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroshi Sakurai
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
47
|
Linghu K, Xu K, Zhao X, Zhou J, Wang X. Modulating phosphate transfer process for promoting phosphorylation activity of acid phosphatase. BIORESOURCE TECHNOLOGY 2025; 427:132348. [PMID: 40081774 DOI: 10.1016/j.biortech.2025.132348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Klebsiella pneumonia acid phosphatase is widely employed in the large-scale synthesis of nucleotides. It was found that the phosphate acceptance capability of the substrate limited the efficiency of the phosphate transfer process. By reducing steric hindrance and optimizing substrate interaction with the catalytic site, variants of Klebsiella pneumonia acid phosphatase were designed, with the E104G variant showing significantly enhanced hydrolysis activity while maintaining high phosphorylation activity. Crystal structure and quantum mechanics/molecular mechanics analyses of the E104G variant revealed that the mutation promotes substrate binding and lowers the energy barrier. Based on these insights, several mutations were designed, achieving significantly improved conversion rates. By knocking out degradation-related enzymes, the degradation rates of inosinic acid and guanylic acid were successfully controlled. This study provides a structure-based top-down design strategy that effectively enhances enzyme specificity, offering a promising enzyme candidate for large-scale nucleotide synthesis.
Collapse
Affiliation(s)
- Kai Linghu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kangjie Xu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyi Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xinglong Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
48
|
Osei EK, O'Hea R, Cambillau C, Athalye A, Hille F, Franz CMAP, O'Doherty Á, Wilson M, Murray GGR, Weinert LA, Manzanilla EG, Mahony J, Kenny JG. Isolation of phages infecting the zoonotic pathogen Streptococcus suis reveals novel structural and genomic characteristics. Microbiol Res 2025; 296:128147. [PMID: 40132484 DOI: 10.1016/j.micres.2025.128147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Bacteriophage research has experienced a renaissance in recent years, owing to their therapeutic potential and versatility in biotechnology, particularly in combating antibiotic resistant-bacteria along the farm-to-fork continuum. However, certain pathogens remain underexplored as targets for phage therapy, including the zoonotic pathogen Streptococcus suis which causes infections in pigs and humans. Despite global efforts, the genome of only one infective S. suis phage has been described. Here, we report the isolation of two phages that infect S. suis: Bonnie and Clyde. The phages infect 58 of 100 S. suis strains tested, including representatives of seven different serotypes and thirteen known sequence types from diverse geographical origins. Clyde suppressed bacterial growth in vitro within two multi-strain mixes designed to simulate a polyclonal S. suis infection. Both phages demonstrated stability across various temperatures and pH levels, highlighting their potential to withstand storage conditions and maintain viability in delivery formulations. Genome comparisons revealed that neither phage shares significant nucleotide identity with any cultivated phages in the NCBI database and thereby represent novel species belonging to two distinct novel genera. This study is the first to investigate the adhesion devices of S. suis infecting phages. Structure prediction and analysis of adhesion devices with AlphaFold2 revealed two distinct lineages of S. suis phages: Streptococcus thermophilus-like (Bonnie) and S. suis-like (Clyde). The structural similarities between the adhesion devices of Bonnie and S. thermophilus phages, despite the lack of nucleotide similarity and differing ecological niches, suggest a common ancestor or convergent evolution, highlighting evolutionary links between pathogenic and non-pathogenic streptococcal species. These findings provide valuable insights into the genetic and phenotypic characteristics of phages that can infect S. suis, providing new data for the therapeutic application of phages in a One Health context.
Collapse
Affiliation(s)
- Emmanuel Kuffour Osei
- School of Microbiology, University College Cork, Co., Cork T12 K8AF, Ireland; APC Microbiome Ireland, University College Cork, Co, Cork T12 YT20, Ireland; Food Bioscience, Teagasc Food Research Centre, Moorepark, Co, Cork P61 C996, Ireland
| | - Reuben O'Hea
- School of Microbiology, University College Cork, Co., Cork T12 K8AF, Ireland
| | - Christian Cambillau
- School of Microbiology, University College Cork, Co., Cork T12 K8AF, Ireland; APC Microbiome Ireland, University College Cork, Co, Cork T12 YT20, Ireland; Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université - CNRS, Marseille UMR 7255, France
| | - Ankita Athalye
- School of Microbiology, University College Cork, Co., Cork T12 K8AF, Ireland
| | - Frank Hille
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str. 1, Kiel 24103, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str. 1, Kiel 24103, Germany
| | - Áine O'Doherty
- Central Veterinary Research Laboratory, Backweston, Co, Kildare, Ireland
| | - Margaret Wilson
- Central Veterinary Research Laboratory, Backweston, Co, Kildare, Ireland
| | - Gemma G R Murray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK; Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Edgar Garcia Manzanilla
- Pig and Poultry Research and Knowledge Transfer Department, Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland; School of Veterinary Medicine, University College Dublin, Co., Dublin D04 V1W8, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Co., Cork T12 K8AF, Ireland; APC Microbiome Ireland, University College Cork, Co, Cork T12 YT20, Ireland.
| | - John G Kenny
- APC Microbiome Ireland, University College Cork, Co, Cork T12 YT20, Ireland; Food Bioscience, Teagasc Food Research Centre, Moorepark, Co, Cork P61 C996, Ireland; VistaMilk SFI Research Centre, Fermoy, Co, Cork P61 C996, Ireland.
| |
Collapse
|
49
|
Yang C, Huang L, Hu C, Yao J, Zhou T, Li XZ, Seah SYK, Peng B. Identification and characterization of aldo-keto reductase responsible for patulin degradation in Saccharomyces cerevisiae. Food Chem 2025; 478:143706. [PMID: 40147281 DOI: 10.1016/j.foodchem.2025.143706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/13/2025] [Accepted: 03/01/2025] [Indexed: 03/29/2025]
Abstract
Patulin (PAT) is a hazardous mycotoxin that contaminates fruits and their products, causing significant economic losses. An aldo-keto reductase from Saccharomyces cerevisiae (ScAKR) was expressed in Escherichia coli in this study. The purified ScAKR converted PAT to E-ascladiol with NADPH as a cofactor. The ScAKR exhibited a strong degradation activity on PAT and the optimal degradation conditions were pH 7 and 37 °C. Molecular docking and site-specific mutagenesis indicated that the amino acids in ScAKR interacting with PAT aldehyde affected the degradation effect, and the mutation of Trp298 showed the most significant effect on the degradation rate. Furthermore, ScAKR also showed a strong degradation effect on 3-keto-deoxynivalenol, a metabolite of another mycotoxin, deoxynivalenol (DON). The findings offer new insights on the detoxification mechanism of PAT by S. cerevisiae and for the development and application of bioenzymes with broad-spectrum mycotoxin degradation properties.
Collapse
Affiliation(s)
- Chao Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lingxuan Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jieqiong Yao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Xiu-Zhen Li
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Stephen Y K Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Bangzhu Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
50
|
Horaguchi Y, Saitoh H, Konno H, Makabe K, Yano S. Crystal structure of GH71 α-1,3-glucanase Agn1p from Schizosaccharomyces pombe: an enzyme regulating cell division in fission yeast. Biochem Biophys Res Commun 2025; 766:151907. [PMID: 40306164 DOI: 10.1016/j.bbrc.2025.151907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Agn1p is a glycoside hydrolase family 71 α-1,3-glucanase from Schizosaccharomyces pombe. It is involved in cell division and releases nigero-pentaose from α-1,3-glucan as a primary hydrolysate. In this study, we used x-ray crystallography to determine the molecular structure of Agn1p, achieving a resolution of 1.80 Å for its free form and 2.10 Å for the substrate complex structure of an inactive mutant. We find that Agn1p comprises eight α-helices and sixteen β-strands, and these combined into a classical (α/β)8 TIM-barrel core domain and a β-sandwich accessory domain. The TIM-barrel had a deep cavity in the center. Next, to determine which amino acid residues are involved in the catalytic reaction, we conducted substitution experiments on Asp-69, Asp-237, and Glu-240, three residues located in the cavity, preparing the corresponding substitution mutants D69N, D237A, D237N, E240A and E240Q. We found that the far-UV CD spectra of the five substitution mutants were similar to those of wild-type Agn1p, but all five mutants lost α-1,3-glucan hydrolyzing activity. We also obtained the cocrystal of the D237N mutant and nigero-heptaose, and its structure was determined. Specifically, we observed the electron density for the hexamer or pentamer sugar portion of nigero-heptaose. Moreover, the substrates were located in the vicinity of Asp-69, Asp-237, and Glu-240. Overall, these results suggest that Agn1p contains a stable substrate binding site for the hexamer or pentamer sugar structure of nigero-oligosaccharide.
Collapse
Affiliation(s)
- Yui Horaguchi
- Graduate School of Sciences and Engineering, Yamagata UniversityJonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Honoka Saitoh
- Graduate School of Sciences and Engineering, Yamagata UniversityJonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Konno
- Graduate School of Sciences and Engineering, Yamagata UniversityJonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Koki Makabe
- Graduate School of Sciences and Engineering, Yamagata UniversityJonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata UniversityJonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|