1
|
Bräutigam K, Skok K, Szymonski K, Rift CV, Karamitopoulou E. Tumor immune microenvironment in pancreatic ductal adenocarcinoma revisited - Exploring the "Space". Cancer Lett 2025; 622:217699. [PMID: 40204149 DOI: 10.1016/j.canlet.2025.217699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most deadly malignancies with a highly immunosuppressive tumor immune microenvironment (TIME) that hinders effective therapy. PDAC is characterized by significant heterogeneity in immune cell composition, spatial distribution and activation states, which impacts tumor progression and treatment response. Tumour-infiltrating lymphocytes (TILs), including CD4+ T-helper cells, CD8+ cytotoxic T-cells and FOXP3+ regulatory T-cells, play a key role in immune regulation, yet PDAC is largely an immunologically "cold" tumour with limited effector T-cell infiltration. The surrounding cellular microenvironment, particularly Cancer Associated Fibroblasts (CAFs) and macrophages, contributes to immune evasion by promoting a fibrotic and desmoplastic barrier that limits TIL infiltration. The prognostic significance of TILs is increasingly recognized, with higher densities correlating with improved survival, whereas regulatory T-cell infiltration and immunosuppressive stromal interactions are associated with poor outcomes. Emerging therapeutic strategies targeting the TIME (e.g., CAFs), immune checkpoint inhibitors, and TIL-based therapies offer the potential to overcome resistance. Future research must focus on optimizing immunotherapy strategies and unravelling the complex stromal-immune interactions to improve clinical translation.
Collapse
Affiliation(s)
- Konstantin Bräutigam
- Institute of Cancer Research, Centre for Evolution and Cancer, London, SM2 5NG, United Kingdom; Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland.
| | - Kristijan Skok
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Institute of Biomedical Sciences, Medical Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Krzysztof Szymonski
- Department of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Eva Karamitopoulou
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Huang Y, Chen L, Chen Y, Zhou S, Xie X, Xie J, Yu M, Chen J. High-density lipoprotein-based nanoplatform reprograms tumor microenvironment and enhances chemotherapy against pancreatic ductal adenocarcinoma. Biomaterials 2025; 318:123147. [PMID: 39908877 DOI: 10.1016/j.biomaterials.2025.123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 01/26/2025] [Indexed: 02/07/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive, with limited success in traditional therapies due to the fibrotic, immunosuppressive, pro-metastatic tumor microenvironment (TME), which collectively impede the drug accumulation and accelerate the tumor progression. In this work, we developed a PDAC-customized nutrient-mimicking reconstituted high-density lipoprotein (rHDL) capable of efficiently co-encapsulate versatile TME regulating cannabidiol and cytotoxic gemcitabine to simultaneously reprogram TME while suppressing PDAC progression. Specifically, a small-sized, nutrient-like rHDL was constructed to realize deep PDAC parenchyma penetration and efficient intra-tumoral uptake. Next, natural herbal compound cannabidiol was screened and incorporated into rHDL to regulate TME via attenuating fibrosis, reliving immunosuppression and mitigating metastatic tendency. At last, gemcitabine, the PDAC gold standard first-line therapy was co-delivered by the PDAC-customized rHDL to overcome drug resistance and amplify its PDAC suppression. Our findings demonstrate the feasibility of an integrated multi-stage TME regulation strategy for improved PDAC therapy, and might represent a modality in promoting chemotherapy against PDAC.
Collapse
Affiliation(s)
- Yukun Huang
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China; Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liang Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yu Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Songlei Zhou
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Xiaoying Xie
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Jing Xie
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Minghua Yu
- Fudan University Clinical Research Center for Cell-based Immunotherapy & Department of Oncology, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China
| | - Jun Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
3
|
Sun G, Wu Y, Li J, Yang M, Xu H, Li Y, Tong P, Shao R, Liu Y, Kong X. Quercetin liposomes conjugated with hyaluronidase: An efficient drug delivery system to block pancreatic cancer. J Control Release 2025; 382:113642. [PMID: 40127723 DOI: 10.1016/j.jconrel.2025.113642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/03/2025] [Accepted: 03/15/2025] [Indexed: 03/26/2025]
Abstract
Pancreatic cancer characterized with intense hydraulic tissue in tumor extracellular matrix (ECM) resists most of chemotherapeutic drugs. Increased levels of hyaluronic acid (HA) represent the primary component of the hydraulic tissue, rendering tumors protective from drug targeting. Quercetin (Que), a natural flavonoid, has the ability to inhibit tumor cell growth in a number of cancers; however, its poor water solubility and low bioavailability largely limit its application in cancer therapy. Hence, we developed an efficient drug delivery system by encapsulation of Que. into liposomes and conjugation with hyaluronidase (HAase) at liposome surface, termed as HQL. In the presence of HAase, HQL were predominantly accumulated at tumor with enhanced permeability and retention effect. Treatment of xenografted tumor mice with HQL gave rise to suppressed tumor growth, while no toxic effects were observed in mice. HQL demonstrated the strong ability to inhibit cell proliferation, promote cell apoptosis, and induce arrest at G2/M cell cycle in pancreatic cancer lines, three-dimensional cultured cell spheroids and pancreatic ductal adenocarcinoma (PDAC)-derived organoids. Mechanistically, HQL downregulated expression of cell cycle-associated protein (CCNB1, CDK1 and PLK1) and cell apoptosis-associated factors PI3K/AKT and Bcl-2. In summary, HQL degraded HA in the tumor microenvironment to enhance nano-particle penetration and inhibited tumor cell growth, eliciting efficacy of anti-tumor therapy. Thereof, HQL may provide a novel efficient drug delivery approach for the adjuvant treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ge Sun
- Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai 200127, China
| | - Ying Wu
- Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai 200127, China
| | - Jiekai Li
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Mingjie Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hang Xu
- Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai 200127, China
| | - Yiping Li
- Department of Oncology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430065, China
| | - Peilin Tong
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Shao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Diseases, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of General Surgery, Jiading Branch, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201800, China; Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai 200127, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai 200127, China.
| | - Xianming Kong
- Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
4
|
Fang Y, Tan C, Zheng Z, Yang J, Tang J, Guo R, Silli EK, Chen Z, Chen J, Ge R, Liu Y, Wen X, Liang J, Zhu Y, Jin Y, Li Q, Wang Y. The function of microRNA related to cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Biochem Pharmacol 2025; 236:116849. [PMID: 40056941 DOI: 10.1016/j.bcp.2025.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignant tumor characterized by a poor prognosis. A prominent feature of PDAC is the rich and dense stroma present in the tumor microenvironment (TME), which significantly hinders drug penetration. Cancer-associated fibroblasts (CAFs), activated fibroblasts originating from various cell sources, including pancreatic stellate cells (PSCs) and mesenchymal stem cells (MSCs), play a critical role in PDAC progression and TME formation. MicroRNAs (miRNAs) are small, single-stranded non-coding RNA molecules that are frequently involved in tumorigenesis and progression, exhibiting either oncolytic or oncogenic activity. Increasing evidence suggests that aberrant expression of miRNAs can mediate interactions between cancer cells and CAFs, thereby providing novel therapeutic targets for PDAC treatment. In this review, we will focus on the potential roles of miRNAs that target CAFs or CAFs-derived exosomes in PDAC progression, highlighting the feasibility of therapeutic strategies aimed at restoring aberrantly expressed miRNAs associated with CAFs, offering new pathways for the clinical management of PDAC.
Collapse
Affiliation(s)
- Yaohui Fang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chunlu Tan
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenjiang Zheng
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianchen Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jiali Tang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruizhe Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Epiphane K Silli
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhe Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jia Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruyu Ge
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yuquan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiuqi Wen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jingdan Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yunfei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yutong Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Qian Li
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
5
|
Dreyer SB, Beer P, Hingorani SR, Biankin AV. Improving outcomes of patients with pancreatic cancer. Nat Rev Clin Oncol 2025; 22:439-456. [PMID: 40329051 DOI: 10.1038/s41571-025-01019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Research studies aimed at improving the outcomes of patients with pancreatic ductal adenocarcinoma (PDAC) have brought about limited progress, and in clinical practice, the optimized use of surgery, chemotherapy and supportive care have led to modest improvements in survival that have probably reached a plateau. As a result, PDAC is expected to be the second leading cause of cancer-related death in Western societies within a decade. The development of therapeutic advances in PDAC has been challenging owing to a lack of actionable molecular targets, a typically immunosuppressive microenvironment, and a disease course characterized by rapid progression and clinical deterioration. Yet, the progress in our understanding of PDAC and identification of novel therapeutic opportunities over the past few years is leading to a strong sense of optimism in the field. In this Perspective, we address the aforementioned challenges, including biological aspects of PDAC that make this malignancy particularly difficult to treat. We explore specific areas with potential for therapeutic advances, including targeting mutant KRAS, novel strategies to harness the antitumour immune response and approaches to early detection, and propose mechanisms to improve clinical trial design and to overcome various community and institutional barriers to progress.
Collapse
Affiliation(s)
- Stephan B Dreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- Department of Hepatobiliary Surgery, Royal Liverpool University Hospital, Liverpool, UK
| | - Philip Beer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- Hull York Medical School, University of York, York, UK
| | - Sunil R Hingorani
- Department of Internal Medicine, Division of Hemotology/Oncology, University of Nebraska Medical Center, Omaha, NE, USA
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK.
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK.
| |
Collapse
|
6
|
Yu X, Chen X, Chen W, Han X, Xie Q, Geng D, Guo G, Zhou L, Tang S, Chen J, Huang X, Zhong X. TGFβ2 Promotes the Construction of Fibrotic and Immunosuppressive Tumor Microenvironment in Pancreatic Adenocarcinoma: A Comprehensive Analysis. Mol Biotechnol 2025; 67:2562-2575. [PMID: 39044066 DOI: 10.1007/s12033-024-01219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/10/2024] [Indexed: 07/25/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) was characterized by dense fibrotic stroma and immunosuppressive tumor microenvironment (TME). TGFβ signaling pathways are highly activated in human cancers. However, the role of TGFβ2 in TME of PAAD remains to be elucidated. In this study, we showed that TGFβ2 was expressed at a relatively high level in PAAD tissues or cancer cells. Moreover, its high expression predicted unfavorable prognosis. In PAAD, gene set enrichment analysis showed that TGFβ2 correlated positively with leukocyte transendothelial migration, but negatively with aerobic metabolism, including oxidative phosphorylation. Results in Tumor and Immune System Interaction Database showed that TGFβ2 correlated with the infiltration of tumor-associated macrophages (TAMs), which could be attributed to that TGFβ2 promote CCL2 expression in PAAD. Moreover, correlation analysis showed that TGFβ2 could trigger cancer-associated fibroblasts (CAFs) activation in PAAD. The drug sensitivity analysis may indicate that patients with TGFβ2 high expression have higher sensitivity to chemotherapeutics, but the sensitivity to targeted drugs is still controversial. TGFβ2 could promote expansion of CAFs and infiltration of TAMs, thus participating in the construction of a fibrotic and immunosuppressive TME in PAAD. Targeting TGFβ2 could be a promising therapeutic approach, which needs to be elucidated by clinical and experimental evidences.
Collapse
Affiliation(s)
- Xiaofen Yu
- Department of Medical Oncology, Nanchang Third Hospital, Nanchang, 330000, Jiangxi, China
| | - Xuefen Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Wanxian Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Xiaosha Han
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Qihu Xie
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Deyi Geng
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Genghong Guo
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Linsa Zhou
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Shijie Tang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Jiasheng Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China.
| | - Xin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Pancreatobiliary Surgery, Sun Yat-Sen University Cancer Center, GuangzhouGuangdong, 510060, China.
| | - Xiaoping Zhong
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China.
| |
Collapse
|
7
|
Yang D, Sun X, Wang H, Wistuba II, Wang H, Maitra A, Chen Y. TREM2 Depletion in Pancreatic Cancer Elicits Pathogenic Inflammation and Accelerates Tumor Progression via Enriching IL-1β + Macrophages. Gastroenterology 2025; 168:1153-1169. [PMID: 39956331 PMCID: PMC12103993 DOI: 10.1053/j.gastro.2025.01.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/31/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) has a complex tumor microenvironment enriched with tumor-associated macrophages. Triggering receptor expressed on myeloid cells 2 (TREM2) is highly expressed by a subset of macrophages in PDAC. However, the functional role of TREM2 in PDAC progression remains elusive. METHODS We generated a novel transgenic mouse model (KPPC;Trem2-/-) that enables the genetic depletion of TREM2 in the context of spontaneous PDAC development. Single-cell RNA-sequencing analysis was used to identify changes in the tumor immune microenvironment on TREM2 depletion. We evaluated the impacts of TREM2 depletion on the tumor immune microenvironment to elucidate the functions of TREM2 in macrophages and PDAC development. RESULTS Unexpectedly, genetic depletion of TREM2 significantly accelerated spontaneous PDAC progression and shortened the survival of KPPC;Trem2-/- mice. Single-cell analysis revealed that TREM2 depletion enhanced proinflammatory macrophages and exacerbated pathogenic inflammation in PDAC. Specifically, TREM2 functions as a key braking mechanism for the NLRP3/nuclear factor-κB/interleukin (IL)-1β inflammasome pathway, opposing to microbial lipopolysaccharide as the key activator of this pathway. TREM2 deficiency orchestrated with microbial lipopolysaccharide to trigger IL-1β upregulation and pathogenic inflammation, thereby fueling PDAC development. Notably, IL-1β inhibition or microbiome ablation not only reversed the accelerated PDAC progression caused by TREM2 depletion, but also further inhibited PDAC progression in the TREM2-depleted context. CONCLUSIONS TREM2 depletion accelerates tumor progression by enhancing proinflammatory macrophages and IL-1β-mediated pathogenic inflammation in PDAC. The accelerated tumor progression by TREM2 depletion can be reversed by blocking IL-1β-associated pathogenic inflammation.
Collapse
MESH Headings
- Animals
- Interleukin-1beta/metabolism
- Interleukin-1beta/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/deficiency
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Tumor Microenvironment/immunology
- Disease Progression
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
- Tumor-Associated Macrophages/pathology
- Mice
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Mice, Transgenic
- Humans
- Inflammasomes/metabolism
- Inflammasomes/immunology
- Mice, Knockout
- Disease Models, Animal
- NF-kappa B/metabolism
- Signal Transduction
- Macrophages/immunology
- Macrophages/metabolism
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Daowei Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xinlei Sun
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hua Wang
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yang Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
8
|
Li X, Ma W, Xu Z, Zhang N, Sharma S, Ramachandran T, Karthikeyan A, Thatoi DN, Ismail AI. Injectable anticancer biodegradable hydrogel-based nanocomposites: Synergistic pH-responsive paclitaxel/β-cyclodextrin nanocomplex delivery in polyvinyl alcohol hydrogel for targeted pancreatic ductal adenocarcinoma treatment. Int J Pharm 2025; 677:125514. [PMID: 40221063 DOI: 10.1016/j.ijpharm.2025.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/06/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer that is highly aggressive and has a challenging tumor microenvironment, which restricts the efficacy of conventional medical treatments. This investigation aims to formulate a localized anticancer hydrogel that incorporates a Paclitaxel/β-cyclodextrin (β-CD) nanocomplex composed of polyvinyl alcohol (PVA). Enhancements in drug delivery, therapeutic efficacy, adverse effects, and the mitigation of multidrug resistance are the objectives of PDAC treatment. In silico analyses were performed to examine the interaction between paclitaxel (PTX) and β-CD, which revealed favorable binding and pH-dependent release characteristics. Via FTIR and XRD analyses, the PTX/β-CD inclusion complex was verified. A hydrogel based on PVA was subsequently formed by incorporating this complex. The hydrogel's physicochemical and structural characteristics were examined using SEM, FTIR, XRD, and rheological methods.. Hydrogel's physical characteristics were evaluated through biodegradation and water absorption experiments. The cytotoxic and anti-metastatic potential of the hydrogel nanocomposite was quantified by conducting MTT assays and invasion and migration assays to assess its anticancer efficacy. The estimated adsorption energy (Eads) of PTX within β-CD to form the PTX/β-CD complex was -1.133 × 10-3 kJ/mol. In the Monte Carlo (MC) method, van der Waals forces and electrostatic interactions were considered based on group-based interactions with a cutoff radius of 12.5 Å. The interaction energy of B and PVA on PTX/β-CD was -319.150 kJ/mol. The binding energy (Ebinding = Einteraction) for B/PVA/PTX/β-CD was found to be -60.977 at pH 3.4 and -69.312 at pH 7.4. In acidic conditions, the Paclitaxel/β-CD nanocomplex exhibited efficient drug release and strong binding interactions. Biodegradation (80 % weight loss within 28 days) and water absorption (up to 500 % of its dried weight) were both exceptional characteristics of the PVA hydrogel. According to anticancer assays, the nanocomposite exhibited substantial cytotoxic effects, which included the inhibition of cancer cell migration and invasion. Paclitaxel's solubility and biological activity were significantly improved by the injectable hydrogel, which confirmed its potential as a sophisticated local drug delivery system. CONCLUSIONS: For the localized treatment of PDAC, the PVA-based injectable hydrogel that has been developed, which includes a Paclitaxel/β-CD nanocomplex, is a promising approach. Its targeted delivery, enhanced solubility, and potent anticancer characteristics offer a valuable method for enhancing therapeutic outcomes while reducing systemic side effects and multidrug resistance.
Collapse
Affiliation(s)
- Xiuxiu Li
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Weiyu Ma
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Zhou Xu
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Ninggang Zhang
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Shubham Sharma
- Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India; Jadara University Research Center, Jadara University, Jordan.
| | - T Ramachandran
- Department of Mechanical Engineering, School of Engineering and Technology, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - A Karthikeyan
- Department of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Dhirendra Nath Thatoi
- Department of Mechanical Engineering, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India.
| | - A I Ismail
- Mechanical Engineering Department, College of Engineering and Architecture, UMM Alqura University, Saudi Arabia.
| |
Collapse
|
9
|
Jeong JH, Shin D, Kim SY, Bae DJ, Sung YH, Koh EY, Kim J, Kim CJ, Park JS, Choi JK, Kim SC, Jun E. Spatial distribution and activation changes of T cells in pancreatic tumors according to KRAS mutation subtype. Cancer Lett 2025; 618:217641. [PMID: 40090570 DOI: 10.1016/j.canlet.2025.217641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
To enhance immunotherapy efficacy in pancreatic cancer, it is crucial to characterize its immune landscape and identify key factors driving immune alterations. To achieve this, we quantitatively analyzed the immune microenvironment using multiplex immunohistochemistry, assessing the spatial relationships between immune and tumor cells to correlate with patient survival rates and oncological factors. Additionally, through Whole Exome Sequencing analysis based on public data, we explored genetic mutations that could drive these compositions. Finally, we validated T cell (Tc) migration mechanisms using patient-derived tumor organoids with induced KRAS mutation subtypes. Through this approach, we obtained the following meaningful results. First, immune cells in pancreatic cancer are denser in stromal regions than near tumor cells, with higher Tc distribution linked to increased patient survival rates. Second, the distance between tumor and Tc was within 100 μm, with higher Tc density found within 15-30 μm of the tumor cells. Third, while increasing CAF levels correspond to higher Tc density, higher ECM density tends to decrease Tc presence. Fourth, compared to KRAS G12D, KRAS G12V mutation increases various immune cells, notably Tc, which is closely linked to a dramatic rise in vascular cells. Finally, Tc migration was enhanced in tumor organoids with the G12V mutation, attributed to a reduction in the secretion of immunosuppressive cytokines. Our results indicate that KRAS mutation subtypes influence immune cell composition and function in the pancreatic cancer microenvironment, leading to varied immunotherapy responses. This underscores the need for personalized immune therapeutics and research models specific to KRAS mutations.
Collapse
Affiliation(s)
- Ji Hye Jeong
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Dakyum Shin
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation Surgery, Department of General Surgery, Chosun University Hospital, 365, Pilmun-daero, Dong-gu, Gwangju Metropolitan City, 61453, Republic of Korea
| | - Sang-Yeob Kim
- Department of Convergence Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Dong-Jun Bae
- PrismCDX, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Young Hoon Sung
- Department of Convergence Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea; Department of Cell and Genetic Engineering, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Eun-Young Koh
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jinju Kim
- Department of Convergence Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Chong Jai Kim
- Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jae Soon Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea; SCL-KAIST Institute of Translational Research, Daejeon, 34141, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea; SCL-KAIST Institute of Translational Research, Daejeon, 34141, Republic of Korea.
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea; Department of Surgery, BK21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Eunsung Jun
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea; Asan Preclinical Evaluation Center for Cancer Therapeutix, Asan Medical Center, Seoul, 05505, Republic of Korea; Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| |
Collapse
|
10
|
Wang W, Hu K, Xue J, Chen J, Du X, Zhao T, Chen Y, Tang X, Xu L, Hao X, Li X, Yang Y. In vivo FAP-CAR macrophages enhance chemotherapy and immunotherapy against pancreatic cancer by removing the fibrosis barrier. J Control Release 2025:113888. [PMID: 40425095 DOI: 10.1016/j.jconrel.2025.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2025] [Accepted: 05/24/2025] [Indexed: 05/29/2025]
Abstract
Patients with pancreatic ductal adenocarcinoma (PDAC) derive limited benefits from chemotherapy or immunotherapy, with a five-year survival rate still below 10 %. The key therapeutic challenge is the dense fibrosis barrier driven by activated cancer-associated fibroblasts (CAFs) and their secreted collagen, which impedes drug penetration and characterizes PDAC as an immune-desert tumor. To address this challenge, we developed in vivo chimeric antigen receptor macrophages (FAP-CAR-M) targeting fibroblast activation protein-α (FAP), the marker of activated CAFs, to enhance chemo and immunotherapy against PDAC by removing the fibrosis barrier using mannose-modified mRNA-LNP (MLNP). Our results demonstrate that mRNA-MLNP can efficiently reprogram M2 macrophages into FAP-CAR-M. With the FAP-CAR-M treatment, the activated CAF markers (FAP), collagen volume fraction (CVF), and the type I collagen (col1a1) secretion were decreased by 3-fold, 5-fold, and 4-fold in orthotopic PDAC, respectively. By removing the fibrosis barrier, FAP-CAR-M enhanced the penetration of gemcitabine (GEM) and immune cells, improved PDAC sensitivity to chemo and immunotherapy, and significantly prolonged survival. Therefore, in vivo FAP-CAR-M may represent a potential therapeutic approach to enhance chemo and immunotherapy against PDAC by removing the fibrosis barrier.
Collapse
Affiliation(s)
- Wenguang Wang
- School of Translational Research, China Pharmaceutical University, Nanjing 211198, China; Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China.
| | - Kaiyuan Hu
- School of Translational Research, China Pharmaceutical University, Nanjing 211198, China; Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Junjie Xue
- School of Translational Research, China Pharmaceutical University, Nanjing 211198, China; Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Jingyi Chen
- School of Translational Research, China Pharmaceutical University, Nanjing 211198, China; Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Xiuli Du
- School of Translational Research, China Pharmaceutical University, Nanjing 211198, China; Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Tian Zhao
- School of Translational Research, China Pharmaceutical University, Nanjing 211198, China; Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yiwei Chen
- School of Translational Research, China Pharmaceutical University, Nanjing 211198, China; Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Xinying Tang
- School of Translational Research, China Pharmaceutical University, Nanjing 211198, China; Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Lu Xu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Longhua District, Haikou 570102, Hainan Province, China
| | - Xinbao Hao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Longhua District, Haikou 570102, Hainan Province, China
| | - Xianjing Li
- School of Translational Research, China Pharmaceutical University, Nanjing 211198, China; Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yong Yang
- School of Translational Research, China Pharmaceutical University, Nanjing 211198, China; Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
11
|
Khosla D, Singh G, Thakur V, Kapoor R, Gupta R, Kumar D, Madan R, Goyal S, Oinam AS, Rana SS. Survival prediction using CT-based radiomic features in patients of pancreatic cancer treated with chemotherapy followed by SBRT. J Cancer Res Ther 2025:01363817-990000000-00110. [PMID: 40413786 DOI: 10.4103/jcrt.jcrt_1595_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/29/2025] [Indexed: 05/27/2025]
Abstract
PURPOSE Owing to the heterogeneous nature of pancreatic cancer, clinical prediction models are not sufficient for prognostication. Radiomics is quantitative noninvasive assessment performed from imaging which by means of mathematical models can decode tumor phenotype and further predict disease and treatment outcomes. This pilot study aims to investigate the association of CT-based radiomic features with overall survival (OS) in pancreatic cancer patients treated with stereotactic body radiation therapy (SBRT). MATERIALS AND METHODS This study was conducted in patients of borderline resectable and locally advanced pancreatic cancer at our institute from January 2021 to December 2022. Ten patients underwent neoadjuvant chemotherapy, followed by SBRT with doses ranging from 33 Gy to 42 Gy administered in 5-6 fractions. Subsequent treatment included additional chemotherapy and evaluation for potential surgery. Radiomic features were extracted from planning CT images, and statistical analysis was performed using R software. RESULTS Out of 10 patients receiving neoadjuvant chemotherapy followed by SBRT, three underwent surgery. The duration of median follow-up was 15 months, and the median OS was 25 months. A total of 851 radiomic features including 107 original images features and 93 × 8 wavelet-based features were extracted. Using Lasso Cox regression, four wavelet-based features were found to influence the overall survival. CONCLUSIONS The present study demonstrates that CT-based radiomic features can be a promising tool in predicting survival and in addition to clinical parameters can provide detailed prognostic information that can facilitate personalized patient care. However, clinical implications of this radiomic analysis need a larger number of patients to validate the results.
Collapse
Affiliation(s)
- Divya Khosla
- Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Gaganpreet Singh
- Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Vandana Thakur
- Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rakesh Kapoor
- Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rajesh Gupta
- Department of GI Surgery, HPB, and Liver Transplantation, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Divyesh Kumar
- Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Renu Madan
- Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shikha Goyal
- Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arun S Oinam
- Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Surinder S Rana
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
12
|
Pedersen RS, Hettich A, Thorlacius-Ussing J, Langholm LL, Crespo-Bravo M, Chen IM, Hansen CP, Johansen JS, Diab HMH, Jorgensen LN, Karsdal M, Willumsen N. Proteolytic degradation of Beta-Ig H3 (βigH3/TGFBI) can be quantified non-invasively in serum and predicts prognosis in patients with advanced pancreatic ductal adenocarcinoma. BMC Cancer 2025; 25:905. [PMID: 40394523 DOI: 10.1186/s12885-025-14283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025] Open
Abstract
The extracellular matrix (ECM) protein Beta-Ig H3 (βigH3, also known as transforming growth factor β induced protein (TGFBI)) is related to poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). Proteolytic cleavage of βigH3 has been shown to result in release of the N-terminal fragment covering amino acid 1 to 137, but whether the degradation of βigH3 is associated to prognosis has yet to be determined. In this study we developed an ELISA targeting a collagenase generated fragment of βigH3 (cβigH3) in human serum to use the fragment as a biomarker reflecting degradation of βigH3. We demonstrated that the assay was specific to the cleaved fragment (cβigH3) and confirmed the generation of cβigH3 from degradation of fibroblast generated matrices. Moreover, higher levels of cβigH3 were released upon degradation of matrices produced by TGF-β stimulated pancreatic fibroblast compared to matrices produced by pancreatic fibroblast without TGF-β stimulation, indicating an association of the biomarker with degradation of fibrotic matrix. To evaluate the clinical relevance, we first measured cβigH3 in a cohort of 220 patients with different types of cancer with detectable levels for all 11 cancer types. We then measured the cβigH3 biomarker in pre-treatment serum from a cohort of 469 patients with locally advanced or metastatic PDAC and found that high levels of cβigH3 were associated with longer overall survival independently of age, disease stage, performance status, carbohydrate antigen 19-9 (CA19-9), and the tumor fibrosis biomarker PRO-C3 as compared to patients with high levels of cβigH3 (HR 0.78, 95% CI: 0.0.61-0.98, p = 0.04). In conclusion, cβigH3 reflects proteolytic degradation of βigH3 and shows potential as an independent prognostic biomarker for patients with advanced PDAC.
Collapse
Affiliation(s)
- Rasmus S Pedersen
- Nordic Bioscience A/S, 2730, Herlev, Denmark.
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Annika Hettich
- Nordic Bioscience A/S, 2730, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | | | | | - Marina Crespo-Bravo
- Nordic Bioscience A/S, 2730, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Inna M Chen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, 2730, Herlev, Denmark
| | - Carsten P Hansen
- Department of Surgery, Copenhagen University Hospital - Rigshospitalet, 2100, Copenhagen, Denmark
| | - Julia S Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, 2730, Herlev, Denmark
- Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte, 2730, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Hadi M H Diab
- Digestive Disease Center, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400, Copenhagen, Denmark
| | - Lars N Jorgensen
- Digestive Disease Center, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400, Copenhagen, Denmark
| | | | | |
Collapse
|
13
|
Liu Y, Ran X, Zhou G, Liu Y, Tan W. Multivalent Aptamer Assembly Enhances Tumor-Specific Degradation of Transforming Growth Factor-Beta to Remodel the Stromal and Immunosuppressive Cancer Microenvironment. ACS NANO 2025; 19:18164-18175. [PMID: 40326636 DOI: 10.1021/acsnano.4c16628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Extracellular proteins like transforming growth factor-β (TGFβ) are crucial enforcers in the development of cancer stroma and the tumor immunosuppressive microenvironment. Lysosome-targeting chimera-mediated protein degradation appeared as a promising tool for extracellular signal interference but was limited by several lysosome-trafficking receptors and inadequate in vivo degradation efficiency. Here, we designed a multivalent aptamer assembly with a universal pattern to drag extracellular proteins (e.g., TGFβ1) for lysosome degradation with high tumor specificity. By accelerating cell recognition-internalization and lysosomal delivery, the assembly promoted TGFβ blockade and degradation in pancreatic cancer cells and pancreatic stellate cells (PSCs). In vivo, the assembly exhibited highly tumor-specific accumulation and prolonged retention, which resulted in efficient TGFβ inhibition, stromal remodeling, and reversed polarization of immunosuppressive cells in the tumor microenvironment, as well as synergic therapeutic effects when combined with gemcitabine or ovalbumin. Therefore, this study provides a feasible strategy to construct a multivalent aptamer assembly for tumor-specific extracellular protein degradation, after remodeling the tumor stromal and immunosuppressive microenvironment in a manner that enhances the effects of cancer chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyue Ran
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangdong Zhou
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
14
|
Zhao Z, Li Q, Qu C, Jiang Z, Jia G, Lan G, Luan Y. A collagenase nanogel backpack improves CAR-T cell therapy outcomes in pancreatic cancer. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01924-1. [PMID: 40389641 DOI: 10.1038/s41565-025-01924-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/31/2025] [Indexed: 05/21/2025]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of haematological malignancies. Challenges in overcoming physical barriers however greatly limit CAR-T cell efficacy in solid tumours. Here we show that an approach based on collagenase nanogel generally improves the outcome of T cell-based therapies, and specifically of CAR-T cell therapy. The nanogels are created by cross-linking collagenase and subsequently modifying them with a CXCR4 antagonist peptide. These nanogels can bind CAR-T cells via receptor-ligand interaction, resulting in cellular backpack delivery systems. The nanogel backpacks modulate tumoural infiltration and localization of CAR-T cells by surmounting physical barriers and disrupting chemokine-mediated CAR-T cell imprisonment, thereby addressing their navigation deficiency within solid tumours. Our approach offers a promising strategy for pancreatic cancer therapy and holds potential for advancing CAR-T cell therapy towards clinical applications.
Collapse
Affiliation(s)
- Zhipeng Zhao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenghao Qu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zeyu Jiang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoqing Jia
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gongde Lan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxia Luan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
15
|
Zhang T, Celiker B, Shao Y, Gai J, Hill M, Wang C, Zheng L. Comparison of Shared Class I HLA-Bound Noncanonical Neoepitopes between Normal and Neoplastic Tissues of Pancreatic Adenocarcinoma. Clin Cancer Res 2025; 31:1956-1965. [PMID: 39699517 PMCID: PMC12079097 DOI: 10.1158/1078-0432.ccr-24-2251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/04/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
PURPOSE Developing T-cell or vaccine therapies for pancreatic ductal adenocarcinoma (PDAC) has been challenging because of a lack of knowledge regarding immunodominant, cancer-specific antigens as PDAC are characterized by a scarcity of genomic mutation-associated neoepitopes, and effective approaches to discover them are limited. EXPERIMENTAL DESIGN An advanced mass spectrometry approach was employed to compare the immunopeptidome of PDAC tissues and matched normal tissues from the same patients. RESULTS This study identified HLA class I-binding variant peptides derived from canonical proteins, which had single amino-acid substitutions not attributed to genetic mutations or RNA editing. These amino-acid substitutions appeared to result from translational errors. The variant peptides were predominantly found in tumor tissues, with certain peptides common among multiple patients. Importantly, several of these variant peptides were more immunogenic than their wild-type counterparts. CONCLUSIONS The shared noncanonical neoepitopes identified in this study offer promising candidates for vaccine and T-cell therapy development, potentially providing new avenues for immunotherapy in PDAC. See related commentary by Yuan et al., p. 1821.
Collapse
Affiliation(s)
- Tengyi Zhang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Betul Celiker
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yingkuan Shao
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Cancer Institute, Ministry of Education, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jessica Gai
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Hill
- Immuno-Oncology Discovery and Translational Medicine, Bristol Myers Squibb Company, Seattle, Washington
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
Roscigno G, Jacobs S, Toledo B, Borea R, Russo G, Pepe F, Serrano MJ, Calabrò V, Troncone G, Giovannoni R, Giovannetti E, Malapelle U. The potential application of stroma modulation in targeting tumor cells: focus on pancreatic cancer and breast cancer models. Semin Cancer Biol 2025:S1044-579X(25)00060-4. [PMID: 40373890 DOI: 10.1016/j.semcancer.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/08/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer development and spreading being considered as "the dark side of the tumor". Within this term tumor cells, immune components, supporting cells, extracellular matrix and a myriad of bioactive molecules that synergistically promote tumor development and therapeutic resistance, are included. Recent findings revealed the profound impacts of TME on cancer development, serving as physical support, critical mediator and biodynamic matrix in cancer evolution, immune modulation, and treatment outcomes. TME targeting strategies built on vasculature, immune checkpoints, and immuno-cell therapies, have paved the way for revolutionary clinical interventions. On this basis, the relevance of pre-clinical and clinical investigations has rapidly become fundamental for implementing novel therapeutical strategies breaking cell-cell and cell -mediators' interactions between TME components and tumor cells. This review summarizes the key players in the breast and pancreatic TME, elucidating the intricate interactions among cancer cells and their essential role for cancer progression and therapeutic resistance. Different tumors such breast and pancreatic cancer have both different and similar stroma features, that might affect therapeutic strategies. Therefore, this review aims to comprehensively evaluate recent findings for refining breast and pancreatic cancer therapies and improve patient prognoses by exploiting the TME's complexity in the next future.
Collapse
Affiliation(s)
- Giuseppina Roscigno
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Sacha Jacobs
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| | - Belen Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain.
| | - Roberto Borea
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy.
| | - Gianluca Russo
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pepe
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Maria Jose Serrano
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain.
| | - Viola Calabrò
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Roberto Giovannoni
- Department of Biology, Genetic Unit, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy.
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
17
|
Zhao S, Gao Z, Hu L, Li Y, Wang X, Li X, Chen M, Chen F, Song Z. Reversing VTN deficiency inhibits the progression of pancreatic cancer and enhances sensitivity to anti-PD1 immunotherapy. Front Immunol 2025; 16:1578870. [PMID: 40433359 PMCID: PMC12106453 DOI: 10.3389/fimmu.2025.1578870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/17/2025] [Indexed: 05/29/2025] Open
Abstract
Background Pancreatic cancer, a highly lethal malignancy with limited therapeutic options, necessitates the identification of novel prognostic biomarkers and therapeutic targets. The extracellular matrix protein vitronectin (VTN) has been implicated in tumor progression, but its specific role in pancreatic cancer progression and immunotherapy response remains unclear. Methods This study employed an integrative approach combining single-cell RNA sequencing, analysis of public databases, and functional assays. In vitro experiments assessed the impact of VTN knockdown and overexpression on pancreatic cancer cell proliferation, invasion, and migration. Mechanistic investigations explored associations between VTN expression and immune regulatory factors. A syngeneic mouse subcutaneous tumor model evaluated the therapeutic efficacy of VTN overexpression combined with anti-PD1 immunotherapy. Results VTN was significantly downregulated in pancreatic cancer tissues compared to normal tissues. Lower VTN levels correlated with poorer overall survival. VTN knockdown promoted pancreatic cancer cell proliferation, invasion, and migration in vitro, whereas VTN overexpression suppressed these phenotypes. VTN expression was linked to immune regulatory pathways. High VTN levels predicted improved survival in patients receiving anti-PD1/PD-L1 therapy. In a mouse model, VTN overexpression inhibited tumor growth and synergized with anti-PD1 therapy to enhance antitumor efficacy, suggesting combinatorial therapeutic potential. Conclusions This study identifies VTN as a dual-functional regulator in pancreatic cancer, acting as both a suppressor of tumor progression and a modulator of immunotherapy response. These findings position VTN as a prognostic biomarker and a therapeutic target to sensitize pancreatic tumors to anti-PD1-based immunotherapy, providing a potential strategy for overcoming treatment resistance in this aggressive malignancy.
Collapse
Affiliation(s)
- Siqi Zhao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lingyu Hu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yihan Li
- Department of Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoping Li
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Minjie Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
18
|
Ji S, Xu X, Li A, Liu H, Zhu J, Fei H. GSH-activable and cytolytic iPep-coupled immune nanoagonist for cancer synergetic therapy. Biomaterials 2025; 322:123402. [PMID: 40373515 DOI: 10.1016/j.biomaterials.2025.123402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/17/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Integrating an oncotic immunogenic cell death (ICD) inducer with TLR agonists to facilitate chemo-immunotherapy presents a promising avenue for addressing cancer treatment. While each agent shown remarkable potential in eliciting immune responses individually, the synergistic capabilities of oncotic chemotherapeutics in combination with TLR agonists remain an uncharted area of research. Herein, to prevent the occurrence of off-target systemic inflammatory side effects associated with the TLR7/8 agonist, the reactive amino group of Resiquimod (R848) was covalently linked to human serum albumin (HSA) via a glutathione (GSH)-activatable linker, thereby establishing a series of R848-HSA conjugates. Specifically, RS-HSA (with an R848: HSA ratio of 1.6:1, n/n) was assembled with an oncotic membrane-active peptide (iPep) to form iP-RS NPs, which exhibited reduced toxicity and synergistic effects in modulating the tumor immunosuppressive microenvironment, disrupting the surrounding desmoplastic stroma, and enhancing anti-tumor immunity. The iP-RS NPs demonstrated satisfactory chemo-immune effects, achieving complete tumor regression in orthotopic 4T1 breast tumor mice and subcutaneous Panc02 pancreatic tumor mice. Furthermore, iP-RS NPs achieved successful treatment in three out of five mice harboring a clinically relevant and challenging orthotopic model of fLuc-KPC pancreatic ductal adenocarcinoma (PDAC), leading to a significant prolongation of their survival. In stark contrast, the first-line treatment regimen of Gemcitabine + Nab-paclitaxel offered only a marginal survival extension of less than a week when compared to the PBS control group. Our findings underscore the promising prospects of combining oncotic therapeutics with TLR7/8 agonists, with a rational design aimed at minimizing the toxicity of the TLR agonist while achieving superior synergistic therapeutic efficacy.
Collapse
Affiliation(s)
- Shuangshuang Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China; Nanobiomedicine Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiangxiang Xu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; Affiliated Changshu Hospital of Nantong University, Changshu, 215500, China
| | - Ang Li
- Nanobiomedicine Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Hanjie Liu
- Nanobiomedicine Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Jiang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Hao Fei
- Nanobiomedicine Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; Key Laboratory of Nano-Bio Interface, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
19
|
Jia Y, Wang Y, Zhao G, Yang Y, Yan W, Wang R, Han B, Wang L, Zhang Z, Chen L, Lemoine NR, Chard Dunmall LS, Wang P, Wang Y. Novel oncolytic vaccinia virus armed with interleukin-27 is a potential therapeutic agent for the treatment of murine pancreatic cancer. J Immunother Cancer 2025; 13:e010341. [PMID: 40350204 PMCID: PMC12067774 DOI: 10.1136/jitc-2024-010341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Pancreatic cancer has a complex immunosuppressive tumor microenvironment (TME), which is highly resistant to conventional therapies and emerging cancer immunotherapies. Oncolytic viruses are multifaceted killers of malignant tumors, which can selectively infect, replicate in and lyse tumor cells, release tumor-associated antigens to stimulate specific antitumor immune responses, and recruit immune cells into the TME, turning "cold" tumors "hot". Here, we report a novel vaccinia virus (VV), VVLΔTKΔN1LΔA41L (with deletion of thymidine kinase (TK), N1L, and A41L genes) armed with interleukin 27 (IL-27), that can cure established tumors and promote long-term antitumor immunity in murine pancreatic cancer tumor models. METHODS A novel oncolytic VV with deletion of the TK, N1L, and A41L genes, and expression of the red fluorescent protein (RFP) gene (VVL-TD-RFP) was constructed using CRISPR-Cas9-based homologous recombination. This virus was armed with IL-27, creating VVL-TD-IL-27. The characteristics of these viruses were evaluated in vitro using viral replication assays, cytotoxicity assays and ELISA. The antitumor effects of VVL-TD-IL-27 were evaluated using a variety of pancreatic cancer tumor models in vivo, and the mechanisms of antitumor effects were explored using flow cytometry, immunohistochemistry, ELISA and quantitative PCR. RESULTS VVL-TD-RFP cured 71.4% of tumor-bearing mice, compared with 14.3% of animals treated with VVLΔTKΔN1L that does not have an A41L gene deletion. Efficacy was mainly dependent on elevated dendritic cell (DC) populations, activation of DC, CD86+ DC, and CD8+ effector memory T cells in the TME. Efficacy was further enhanced by arming VVL-TD-RFP with IL-27, which resulted in a cure rate of 100% and promoted long-term antitumor immunity. VVL-TD-IL-27 treatment increased the proportion of CD8+ TEM and decreased the proportion of regulatory T cells and macrophages in tumor tissues. It also polarized macrophages to an M1 phenotype in vivo. Furthermore, IL-27 exhibits strong anti-angiogenic effects. CONCLUSIONS VVL-TD-mIL-27 is a potential immunotherapy agent for the treatment of pancreatic cancer, and a clinical study of this virus is warranted.
Collapse
Affiliation(s)
- Yangyang Jia
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanru Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Guanghao Zhao
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yong Yang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenyi Yan
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruimin Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bing Han
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihong Wang
- Department of Oncology, Air Force Medical Center, PLA, Beijing, China
| | - Zhe Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijuan Chen
- Department of Oncology, Henan International Joint Laboratory of Lung Cancer Biology and Therapeutics, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Nicholas R Lemoine
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
20
|
Sato Y. The Role of Tregs in the Tumor Microenvironment. Biomedicines 2025; 13:1173. [PMID: 40427000 DOI: 10.3390/biomedicines13051173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
The tumor microenvironment (TME) is a unique ecosystem that surrounds tumor tissues. The TME is composed of extracellular matrix, immune cells, blood vessels, stromal cells, and fibroblasts. These environments enhance cancer development, progression, and metastasis. Recent success in immune checkpoint blockade also supports the importance of the TME and immune cells residing in the tumor niche. Although the TME can be identified in almost all cancer types, the role of the TME may not be similar among different cancer types. Regulatory T cells (Tregs) play a pivotal role in immune homeostasis and are frequently found in the TME. Owing to their suppressive function, Tregs are often considered unfavorable factors that allow the immune escape of cancer cells. However, the presence of Tregs is not always linked to an unfavorable phenotype, which can be explained by the heterogeneity and plasticity of Tregs. In this review, the current understanding of the role of Tregs in TME is addressed for each cancer cell type. Moreover, recently a therapeutic approach targeting Tregs infiltrating in the TME has been developed including drug antibody conjugate, immunotoxin, and FOXP3 inhibiting peptide. Thus, understanding the role of Tregs in the TME may lead to the development of novel therapies that directly target the TME.
Collapse
Affiliation(s)
- Yohei Sato
- Laboratory of Immune Cell Therapy, Project Research Unit, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Core Research Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Immunology and Allergy Research Unit, Division of Otorhinolaryngology Head & Neck Surgery, Faculty of Medicine, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
21
|
Mitra P, Saha U, Stephen KJ, Prasad P, Jena S, Patel AK, Bv H, Mondal SK, Kurkalang S, Roy S, Ghosh A, Roy SS, Das Sarma J, Biswas NK, Acharya M, Sharan R, Arun P, Jolly MK, Maitra A, Singh S. Tie2 activity in cancer associated myofibroblasts serves as novel target against reprogramming of cancer cells to embryonic-like cell state and associated poor prognosis in oral carcinoma patients. J Exp Clin Cancer Res 2025; 44:142. [PMID: 40349056 PMCID: PMC12065280 DOI: 10.1186/s13046-025-03405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Myofibroblastic cancer-associated fibroblasts (CAF) in tumor stroma serves as an independent poor prognostic indicator, supporting higher stemness in oral cancer; however, the underlying biology is not fully comprehended. Here, we have explored the crucial role of Tunica Interna Endothelial Cell Kinase (Tie2/TEK) signaling in transition and maintenance of myofibroblastic phenotype of CAFs, and as possible link with the poor prognosis of head and neck squamous cell carcinoma (HNSCC) patients. METHODS Bulk and single cell RNA-sequencing (scRNAseq) methods and in-depth bioinformatic analysis were applied for CAF and cancer cells co-culture for studying molecular relationships. In vitro 3D-spheroid-forming ability, expression of stemness markers, in vivo tumor formation ability in zebrafish embryo and syngeneic mouse allografts formation was conducted to test stemness, upon targeting CAF-specific Tie2 activity by gene silencing or with small molecule inhibitor. Immunohistochemistry analysis was performed to locate the distribution of Tie2 and αSMA in primary tumors of oral carcinoma. Prognosis in HNSCC patient cohort from The Cancer Genome Atlas (TCGA) study was analysed based on single sample gene set enrichment score (ssGSEA) and Kaplan-Meier analysis. RESULTS Autocrine or exogenous TGFβ-induction in CAF led to the recruitment of histone deacetylase 2 (HDAC2) on the promoter of Tie2-antagonist, Angiopoietin-2 (ANGPT2), resulting in its downregulation, leading to phosphorylation of Tie2 (Y992) and subsequent activation of SRC (Y418). This led to SRC/ROCK mediated αSMA-positive stress-fiber formation with gain of myofibroblast phenotype. The CAF-specific Tie2-signaling was responsible for producing embryonic-like cell state in co-cultured cancer cells; with enhanced tumor initiating ability. Tie2 activity in CAF exerted the dynamic gene expression reprogramming, with the upregulation of 'cell migration' and downregulation of 'protein biosynthesis' related gene-regulatory-network modules in malignant cells. The AUCell scores calculated for gene signatures derived from these modules showed significant concordance in independently reported scRNAseq studies of HNSCC tumors and significant association with poor prognosis in HNSCC patient cohort. CONCLUSIONS CAF-specific Tie2 activity may serve as direct stromal-target against cancer cell plasticity leading to poor prognosis of oral cancer patients. Overall, our work has provided wider applicability of Tie2-specific functions in tumor biology, along with its known role in endothelial cell-specific function.
Collapse
Affiliation(s)
- Paromita Mitra
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Uday Saha
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Priyanka Prasad
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
| | - Subhashree Jena
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ankit Kumar Patel
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Umea University, Umea, Sweden
| | | | | | - Sillarine Kurkalang
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Comprehensive Cancer Center, University of Chicago Medicine, Chicago, IL, USA
| | - Sumitava Roy
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Arnab Ghosh
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Shantanu Saha Roy
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
| | | | - Nidhan Kumar Biswas
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Moulinath Acharya
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | | | | | | | - Arindam Maitra
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sandeep Singh
- BRIC National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, WB, 741251, India.
- Regional Centre for Biotechnology, Faridabad, India.
| |
Collapse
|
22
|
Chen L, Li H, Liu J, Wang Y, Zhang S. Hollow Mesoporous Carbon Nanospheres Derived from Metal-Organic Frameworks for Efficient Sono-immunotherapy against Pancreatic Cancer. CYBORG AND BIONIC SYSTEMS 2025; 6:0247. [PMID: 40352815 PMCID: PMC12062583 DOI: 10.34133/cbsystems.0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/20/2025] [Accepted: 03/01/2025] [Indexed: 05/14/2025] Open
Abstract
Sono-immunotherapy is expected to effectively enhance treatment efficacy and reduce mortality in patients with pancreatic cancer. Hence, efficient applicable sono-immunotherapy systems are urgently needed for the treatment of this condition. In this study, hollow mesoporous carbon (HMC) nanoparticles were prepared using the sacrificial template method. These nanoparticles had a porphyrin-like structure and could generate singlet oxygen more efficiently than commercial TiO2. Cellular assays showed that HMC killed tumor cells in the presence of ultrasonication, primarily by inducing apoptosis. HMC could also accelerate the release of immune factors by tumor cells, thereby activating dendritic cells and enhancing the efficacy of immunotherapy. Experiments in tumor-bearing mice and in situ pancreatic cancer tests showed that HMC, in combination with the small-molecule inhibitors of programmed cell death ligand 1, could reduce tumor growth via the generation of reactive oxygen species following ultrasonication. HMC could enhance the efficacy of immunotherapy by disrupting the immunosuppressive tumor microenvironment and promoting the accumulation of immune cells. Accordingly, in vivo sono-immunotherapy was achieved, and the growth of transplanted tumors and in situ tumors could be reduced. In conclusion, this study proposes a novel method for the preparation of HMC nanoparticles and demonstrates their potential in tumor treatment. Additionally, owing to their unique structure, these HMC nanoparticles could be used for different combination therapies tailored based on specific clinical requirements.
Collapse
Affiliation(s)
- Libin Chen
- Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology,
Cancer Hospital of China Medical University, Shenyang 110042, China
- Department of Ultrasound Medicine,
The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Haiwei Li
- Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology,
Cancer Hospital of China Medical University, Shenyang 110042, China
| | - Jing Liu
- Department of Radiology,
The First Hospital of China Medical University, Shenyang 110001, China
| | - Yunzhong Wang
- Department of Ultrasound Medicine,
The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Shengmin Zhang
- Department of Ultrasound Medicine,
The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| |
Collapse
|
23
|
Glapiński F, Zając W, Fudalej M, Deptała A, Czerw A, Sygit K, Kozłowski R, Badowska-Kozakiewicz A. The Role of the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma: Recent Advancements and Emerging Therapeutic Strategies. Cancers (Basel) 2025; 17:1599. [PMID: 40427098 DOI: 10.3390/cancers17101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic cancer (PC), with pancreatic ductal adenocarcinoma (PDAC) comprising about 90% of all cases, is one of the most aggressive and lethal solid tumors. PDAC remains one of the most significant challenges of oncology to this day due to its inadequate response to conventional treatment, gradual rise in incidence since 2004, and poor five-year survival rates. As cancer cells are the primary adversary in this uneven fight, they remain the primary research target. Nevertheless, increasing attention is being paid to the tumor microenvironment (TME). The most crucial TME constellation components are immune cells, especially macrophages, stellate cells and lymphocytes, fibroblasts, bacterial and fungal microflora, and neuronal cells. Depending on the particular phenotype of these cells, the composition of the microenvironment, and the cell ratio, patients can experience different disease outcomes and varying vulnerability to treatment approaches. This study aims to present the current knowledge and review the most up-to-date scientific findings regarding the microenvironment of PC. It contains detailed information on the structure and cellular composition of the stroma, including its impact on disease development, metastasis, and response to treatment, as well as the therapeutic opportunities that arise from targeting this tissue.
Collapse
Affiliation(s)
- Franciszek Glapiński
- Students' Scientific Organization of Cancer Cell Biology, Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Weronika Zając
- Students' Scientific Organization of Cancer Cell Biology, Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Marta Fudalej
- Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Oncology, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Andrzej Deptała
- Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Katarzyna Sygit
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland
| | - Remigiusz Kozłowski
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-131 Lodz, Poland
| | | |
Collapse
|
24
|
Mao Y, Li Y, Zheng Z, Xu Y, Ke M, He A, Liang F, Zhang K, Wang X, Gao W, Tian R. All-at-once spatial proteome profiling of complex tissue context with single-cell-type resolution by proximity proteomics. Cell Syst 2025:101291. [PMID: 40345200 DOI: 10.1016/j.cels.2025.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/01/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025]
Abstract
Spatial proteomics enables in-depth mapping of tissue architectures, mostly achieved by laser microdissection-mass spectrometry (LMD-MS) and antibody-based imaging. However, trade-offs among sampling precision, throughput, and proteome coverage still limit the applicability of these strategies. Here, we propose proximity labeling for spatial proteomics (PSPro) by combining precise antibody-targeted biotinylation and efficient affinity purification for all-at-once cell-type proteome capture with sub-micrometer resolution from single tissue slice. With fine-tuned labeling parameters, PSPro shows reliable performance in benchmarking against flow cytometry- and LMD-based proteomic workflows. We apply PSPro to tumor and spleen slices, enriching thousands of proteins containing known markers from ten cell types. We further incorporate LMD into PSPro to facilitate comparison of cell subpopulations from the same tissue slice, revealing spatial proteome heterogeneity of cancer cells and immune cells in pancreatic tumor. Collectively, PSPro converts the traditional "antibody-epitope" paradigm to an "antibody-cell-type proteome" for spatial biology in a user-friendly manner. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Yiheng Mao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuan Li
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhendong Zheng
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanfen Xu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mi Ke
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - An He
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fuchao Liang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Keren Zhang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xi Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weina Gao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
25
|
Seidel T, Ohri N, Glaß M, Sunami Y, Müller LP, Kleeff J. Stromal Cells in Early Inflammation-Related Pancreatic Carcinogenesis-Biology and Its Potential Role in Therapeutic Targeting. Cancers (Basel) 2025; 17:1541. [PMID: 40361466 DOI: 10.3390/cancers17091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The stroma of healthy pancreases contains various non-hematopoietic, non-endothelial mesenchymal cells. It is altered by chronic inflammation which in turn is a major contributor to the development of pancreatic adenocarcinoma (PDAC). In PDAC, the stroma plays a decisive and well-investigated role for tumor progression and therapy response. This review addresses the central role of stromal cells in the early inflammation-driven development of PDAC. It focuses on major subpopulations of pancreatic mesenchymal cells, i.e., fibroblasts, pancreatic stellate cells, and multipotent stroma cells, particularly their activation and functional alterations upon chronic inflammation including the development of different types of carcinoma-associated fibroblasts. In the second part, the current knowledge on the impact of activated stroma cells on acinar-to-ductal metaplasia and the transition to pancreatic intraepithelial neoplasia is summarized. Finally, putative strategies to target stroma cells and their signaling in early pancreatic carcinogenesis are reflected. In summary, the current data show that the activation of pancreatic stroma cells and the resulting fibrotic changes has pro- and anti-carcinogenetic effects but, overall, creates a carcinogenesis-promoting microenvironment. However, this is a dynamic process and the therapeutic targeting of specific pathways and cells requires in-depth knowledge of the molecular interplay of various cell types.
Collapse
Affiliation(s)
- Tina Seidel
- Department of Internal Medicine, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Nupur Ohri
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Lutz P Müller
- Department of Internal Medicine, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| |
Collapse
|
26
|
He X, Liu J, Zhou Y, Zhao S, Chen Z, Xu Z, Xue C, Zeng L, Liu S, Liu S, Bai R, Wu S, Zhuang L, Li M, Zhao H, Zhou Q, Lin D, Zheng J, Huang X, Zhang J. CSTF2-impeded innate αβ T cell infiltration and activation exacerbate immune evasion of pancreatic cancer. Cell Death Differ 2025; 32:973-988. [PMID: 39972059 DOI: 10.1038/s41418-025-01464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Alternative cleavage and polyadenylation (APA) have gained increasing attention in cancer biology, yet its role in modulating anti-tumor immune response remains largely unexplored. Here, we identify the cleavage stimulation factor 2 (CSTF2), an APA-related gene, as a pivotal suppressor of anti-tumor immunity in pancreatic ductal adenocarcinoma (PDAC). CSTF2 promotes tumor development by inhibiting the infiltration and cytotoxic immune cell recruitment function of TCRαβ+CD4-CD8-NK1.1- innate αβ T (iαβT) cells. Mechanistically, CSTF2 diminishes CXCL10 expression by promoting PolyA polymerase alpha (PAPα) binding to the 3' untranslated regions of CXCL10 RNA, resulting in shortened PolyA tails and compromised RNA stability. Furthermore, we identify Forsythoside B, a selective inhibitor targeting the RNA recognition motif of CSTF2, can effectively activate anti-tumor immunity and overcome resistance to immune checkpoint blockade (ICB) therapy. Collectively, our findings unveil CSTF2 as a promising therapeutic target for sensitizing PDAC to ICB therapy.
Collapse
Affiliation(s)
- Xiaowei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Yifan Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Sihan Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Ziming Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Zilan Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Chunling Xue
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Lingxing Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Shuang Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Shaoqiu Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Ruihong Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Shaojia Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Lisha Zhuang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongzhe Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Quanbo Zhou
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| | - Xudong Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
| | - Jialiang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
| |
Collapse
|
27
|
Chang Z, Chen B, Wang S, Chen K, Huang L, Yang Y, Wu H, Jian W, Cheng ZJ, Han X, Sun B. Organ-specific cancer biomarker identification: a ten-year single-center study in southern China. BMC Cancer 2025; 25:820. [PMID: 40312330 PMCID: PMC12044899 DOI: 10.1186/s12885-025-14225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Cancer biomarker discovery is essential for early detection and monitoring, yet there is a lack of comprehensive studies examining organ-specific biomarkers across various cancer types. In this study, we analyzed clinical data from 59,184 cancer patients diagnosed between 2013 and 2023, focusing on 11 major cancer systems. We used propensity score matching with 55,010 healthy controls to create balanced comparison groups. Serum biomarker profiles were assessed through principal component analysis, differential expression analysis, and ROC curve analysis. Our findings revealed organ-specific biomarker patterns, such as decreased CA724, ferritin, and β2-microglobulin in thoracic cancer, reduced serum phosphorus in neurological cancer, and elevated cystatin C and creatinine in urinary system cancer. Further analysis across 22 cancer types uncovered additional biomarkers, including elevated ALT in hepatobiliary cancer, altered coagulation factors in laryngeal cancer, increased monocytes in pancreatic cancer, and reduced complement C3 in intestinal cancer. These results provide valuable insights into the unique biomarker signatures for different cancers, contributing to the potential development of more targeted and efficient screening methods.
Collapse
Affiliation(s)
- Zhenglin Chang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, XingDaoHuanBei Road, Guangzhou, 510005, Guangdong Province, China
| | - Bingsen Chen
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Suilin Wang
- Department of Orthopedics, Guangzhou Orthopedic Hospital, Guangzhou, 510045, Guangdong Province, China
| | - Kaipai Chen
- Department of Stomatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Linliang Huang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yi Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Haojie Wu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Wenhua Jian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Zhangkai J Cheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, XingDaoHuanBei Road, Guangzhou, 510005, Guangdong Province, China.
| | - Xiujing Han
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, XingDaoHuanBei Road, Guangzhou, 510005, Guangdong Province, China.
| |
Collapse
|
28
|
Deipenbrock A, Wilmes BE, Sommermann T, Abdo N, Moustakas K, Raasch M, Rennert K, Teusch NE. Modelling of the multicellular tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) on a fit-for-purpose biochip for preclinical drug discovery. LAB ON A CHIP 2025; 25:2168-2181. [PMID: 40018951 DOI: 10.1039/d4lc01016g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and lethal form of pancreatic cancer. One major cause for a fast disease progression is the presence of a highly fibrotic tumor microenvironment (TME) mainly composed of cancer-associated fibroblasts (CAF), and various immune cells, especially tumor-associated macrophages (TAM). To conclusively evaluate drug efficacy, it is crucial to develop in vitro models that can recapitulate the cross talk between tumor cells and the surrounding stroma. Here, we constructed a fit-for-purpose biochip platform which allows the integration of PDAC spheroids (composed of PANC-1 cells and pancreatic stellate cells (PSC)). Additionally, the chip design enables dynamic administration of drugs or immune cells via a layer of human umbilical vein endothelial cells (HUVEC). As a proof-of-concept for drug administration, vorinostat, an FDA-approved histone deacetylase inhibitor for cutaneous T cell lymphoma (CTCL), subjected via continuous flow for 72 h, resulted in a significantly reduced viability of PDAC spheroids without affecting vascular integrity. Furthermore, dynamic perfusion with peripheral mononuclear blood cells (PBMC)-derived monocytes resulted in an immune cell migration through the endothelium into the spheroids. After 72 h of infiltration, monocytes differentiated into macrophages which polarized into the M2 phenotype. The polarization into M2 macrophages persisted for at least 168 h, verified by expression of the M2 marker CD163 which increased from 72 h to 168 h, while the M1 markers CD86 and HLA-DR were significantly downregulated. Overall, the described spheroid-on-chip model allows the evaluation of novel therapeutic strategies by mimicking and targeting the complex TME of PDAC.
Collapse
Affiliation(s)
- Alina Deipenbrock
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Ben Eric Wilmes
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | - Kyra Moustakas
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | - Nicole E Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
29
|
Fan H, Zhao H, Gao L, Dong Y, Zhang P, Yu P, Ji Y, Chen ZS, Liang X, Chen Y. CCN1 Enhances Tumor Immunosuppression through Collagen-Mediated Chemokine Secretion in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500589. [PMID: 40287974 DOI: 10.1002/advs.202500589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense, immunosuppressive tumor microenvironment (TME) that limits therapeutic efficacy. This study investigates the role of cellular communication network factor 1 (CCN1, also known as Cyr61), an extracellular matrix-associated protein, in modulating the TME of PDAC. It is demonstrated that Ccn1 promotes PDAC progression by upregulating collagen and chemokine expression, thereby facilitating immune cell exclusion and enhancing tumor growth. Using a Ccn1-deficient PDAC model, decreased collagen and chemokine levels are observed, resulting in increased infiltration of cytotoxic immune cells and reduced myeloid-derived suppressor cells (MDSCs). Furthermore, Ccn1-deficient tumors exhibit heightened sensitivity to gemcitabine and show enhanced responsiveness to anti-programmed cell death 1 (anti-PD1) therapy. Mechanistically, Ccn1 regulates chemokine production through collagen expression, with chemokine levels remaining suppressed even upon interferon-gamma treatment in collagen-deficient cells. These findings highlight Ccn1 as a potential therapeutic target that reprograms the TME to enhance the efficacy of both chemotherapy and immunotherapy in PDAC, providing a novel approach for overcoming immune resistance in PDAC.
Collapse
Affiliation(s)
- Hongjie Fan
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Huzi Zhao
- Department of Pathology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, China
| | - Lili Gao
- Department of Pathology, Xinhua Hospital Affiliated to Medicine School of Shanghai Jiaotong University, Shanghai, 200082, China
| | - Yucheng Dong
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100006, China
| | - Pei Zhang
- Department of Mathematics, University of Maryland, College Park, Maryland, MD 20742, USA
| | - Pengfei Yu
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yunfei Ji
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xinmiao Liang
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yang Chen
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| |
Collapse
|
30
|
Huang X, Ji M, Shang X, Zhang H, Zhang X, Zhou J, Yin T. Smart on-demand drug release strategies for cancer combination therapy. J Control Release 2025; 383:113782. [PMID: 40294796 DOI: 10.1016/j.jconrel.2025.113782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/06/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
In cancer therapy, enhancing therapeutic indices and patient compliance has been a central focus in recent drug delivery technology development. However, achieving a delicate balance between improving anti-tumor efficacy and minimizing toxicity to normal tissues remains a significant challenge. With the advent of smart on-demand drug release strategies, new opportunities have emerged. These strategies represent a promising approach to drug delivery, enabling precise control over the release of therapeutic agents in a programmed and spatiotemporal manner. Recent studies have focused on designing delivery systems capable of releasing multiple therapeutic agents sequentially, while achieving spatial resolution in vivo. Smart on-demand drug release strategies have demonstrated considerable potential in tumor combination therapy for achieving precision drug delivery and controlled release by responding to specific physiological signals or external physical stimuli in the tumor microenvironment. These strategies not only improve tumor targeting and reduce toxicity to healthy tissues but also enable sequential release in combination therapy, allowing multiple drugs to be released in a specific spatiotemporal order to enhance synergistic treatment effects. In this paper, we systematically reviewed the current research progress of smart on-demand drug release drug delivery strategies in anti-tumor combination therapy. We highlighted representative integrated drug delivery systems and discussed the challenges associated with their clinical application. Additionally, potential future research directions are proposed to further advance this promising field.
Collapse
Affiliation(s)
- Xiaolin Huang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Mengfei Ji
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xinyu Shang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Hengchuan Zhang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xin Zhang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
31
|
Zhao B, Fang R, Schürmann H, Hemmer EJ, Mayer GL, Trajkovic-Arsic M, Althoff K, Yang J, Godfrey L, Liffers ST, Savvatakis K, Dorsch M, Grüner BM, Hahn S, Remke M, Lueong SS, Siveke JT. PLK1 blockade enhances the anti-tumor effect of MAPK inhibition in pancreatic ductal adenocarcinoma. Cell Rep 2025; 44:115541. [PMID: 40188436 DOI: 10.1016/j.celrep.2025.115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/04/2025] [Accepted: 03/19/2025] [Indexed: 04/08/2025] Open
Abstract
Despite constitutive Ras/Raf/MAPK pathway activation in most pancreatic ductal adenocarcinomas (PDACs), treatment approaches targeting this pathway have primarily been unsuccessful. We conduct a drug library screen on an MEK inhibitor (MEKi)-resistant PDAC model and perform complementary pathway analysis to identify cellular resistance phenotypes. We use syngeneic models to investigate the molecular determinants of identified drug synergism. Our study reveals an enrichment for the hallmarks of G2/M checkpoints in MEKi-resistant phenotypes from all investigated models. We find overexpression of Polo-like kinase 1 (PLK1) and other G2/M checkpoint-related proteins in MEKi-resistant cells. We identify synergistic activity between MEK and PLK1 inhibition both in vitro and in vivo and mechanistically show that dual inhibition of the PLK1 and MEK pathways activates the JNK/c-JUN pathway. This causes the accumulation of DNA damage, ultimately leading to apoptotic cell death. Dual PLK1/MEK inhibition emerges as a promising targeted approach in PDAC.
Collapse
Affiliation(s)
- Ben Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Rui Fang
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Hendrik Schürmann
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany; Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Erik Jan Hemmer
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Gina Lauren Mayer
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Kristina Althoff
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Jiajin Yang
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Laura Godfrey
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Sven T Liffers
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Konstantinos Savvatakis
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Madeleine Dorsch
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany; Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Barbara M Grüner
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany; Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Stephan Hahn
- Department of Molecular GI Oncology, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany; Department of Internal Medicine, Ruhr University Bochum, Knappschaftskrankenhaus, 44780 Bochum, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, 40225 Düsseldorf, Germany; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 40225 Düsseldorf, Germany
| | - Smiths S Lueong
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany.
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany.
| |
Collapse
|
32
|
Hung JT, Mynam RS, Patel MA, Ozogbo S, LoConte NK, Kratz JD. Immune-Based Therapies in Pancreatic Cancer: a Systematic Review of Ongoing Clinical Trials (2020-2022). J Gastrointest Cancer 2025; 56:103. [PMID: 40259076 DOI: 10.1007/s12029-025-01194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2025] [Indexed: 04/23/2025]
Abstract
INTRODUCTION Immune-based treatment strategies have emerged across solid organ malignancies largely with the development of immune checkpoint inhibitors. To date, these strategies have not improved clinical outcomes in pancreatic ductal adenocarcinoma (PDAC). METHODS Here, we perform a systematic review to summarize available evidence for recent immune-based treatment strategies in PDAC. We analyze trends in activated clinical trials queried from clinicaltrials.gov in the years 2020-2022. We review study design, sponsorship, and trends in the phase of development. There is a growing emergence of multiple new classes of immune-based targets and combination strategies in early-phase development. RESULTS Immune-based clinical trials in PDAC are highly collaborative including primarily stakeholders in government, industry, and academic medical centers. In this period, a majority of trials have integrated a non-randomized design (83.2%), including a trend towards an increase in Phase I/II clinical trials. This analysis found a growing list of studies using combinations including inhibitors of vascular endothelial growth factors (VEGF), an expanded set of vaccine-based strategies, and the use of Bispecific T-Cell Engagers (BiTEs). Immune checkpoint inhibitors have been a mainstay of combination strategies including the use of new immune checkpoint inhibitors (CD40, TIGIT). CONCLUSION Immune-based strategies in PDAC have expanded across new targets and the complexities of combinatory approaches. Integrating this work across key stakeholders remains of critical importance to improve clinical outcomes.
Collapse
Affiliation(s)
- Justine T Hung
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Ritwick S Mynam
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Monica A Patel
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Stanley Ozogbo
- Department of Internal Medicine, St Elizabeth Hospital, Youngstown, OH, USA
| | - Noelle K LoConte
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Jeremy D Kratz
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
- William S. Middleton Veterans Administration Health System, Madison, WI, USA.
- Center for Human Genomics and Precision Medicine, University of Wisconsin, 1111 Highland Ave, 2784 West Wedge, MadisonWI, WI, 53705, USA.
| |
Collapse
|
33
|
Wang K, Sun M, Liu S, Wang R, Liu H, Qian F. Albumin-conjugated flumethasone for targeting and normalization of pancreatic stellate cells. J Control Release 2025; 380:994-1004. [PMID: 39983925 DOI: 10.1016/j.jconrel.2025.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/16/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
The tumor microenvironment (TME) plays a critical role in the poor clinical outlook for pancreatic ductal adenocarcinoma (PDAC). Activated pancreatic stellate cells (PSC) drive the complex interactions within the TME, resulting in a microenvironment that is resistant to chemotherapy and tolerant to the immune system, thereby promoting tumor growth. Effective deactivation of PSC is vital in treating pancreatic cancer. However, previous studies have only focused on limited changes in PSC phenotype without comprehensively analysing their overall function. Our transcriptome analysis identified agents capable of modulating multiple biological functions of PSC, including fibrosis, extracellular matrix generation, and the secretion of cytokines and immune factors. Through this comprehensive assessment, we discovered that flumethasone (Flu) effectively deactivates PSC. This glucocorticoid analogue remodels the tumor microenvironment by regulating the secretomes of PSC and their interaction with tumor cells. Additionally, our research revealed that activated PSC exhibited heightened albumin endocytosis. As a result, we propose that albumin conjugation could serve as an effective targeted drug delivery approach for PSC. Our findings also demonstrate that albumin-conjugated Flu maintained reprogramming capabilities in stromal cells, and enhanced the efficacy of chemotherapy in orthotopic mouse models of PDAC and KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) pancreatic tumor allograft mouse model. Our investigation into the mechanism of PSC deactivation by flumethasone has revealed its potential for clinical cancer treatment through its effects on the tumor microenvironment. Furthermore, the conjugation of flumethasone to albumin enhances its safety and targeted delivery, offering a promising approach for PSC-targeted drug application in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Kaixin Wang
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Mengnan Sun
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Shiyu Liu
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Rui Wang
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Huiqin Liu
- Quaerite Biopharm Research, Beijing, China
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
34
|
Zhang Y, Wang TW, Tamatani M, Zeng X, Nakamura L, Omori S, Yamaguchi K, Hatakeyama S, Shimizu E, Yamazaki S, Furukawa Y, Imoto S, Johmura Y, Nakanishi M. Signaling networks in cancer stromal senescent cells establish malignant microenvironment. Proc Natl Acad Sci U S A 2025; 122:e2412818122. [PMID: 40168129 PMCID: PMC12002233 DOI: 10.1073/pnas.2412818122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The tumor microenvironment (TME) encompasses various cell types, blood and lymphatic vessels, and noncellular constituents like extracellular matrix (ECM) and cytokines. These intricate interactions between cellular and noncellular components contribute to the development of a malignant TME, such as immunosuppressive, desmoplastic, angiogenic conditions, and the formation of a niche for cancer stem cells, but there is limited understanding of the specific subtypes of stromal cells involved in this process. Here, we utilized p16-CreERT2-tdTomato mouse models to investigate the signaling networks established by senescent cancer stromal cells, contributing to the development of a malignant TME. In pancreatic ductal adenocarcinoma (PDAC) allograft models, these senescent cells were found to promote cancer fibrosis, enhance angiogenesis, and suppress cancer immune surveillance. Notably, the selective elimination of senescent cancer stromal cells improves the malignant TME, subsequently reducing tumor progression in PDAC. This highlights the antitumor efficacy of senolytic treatment alone and its synergistic effect when combined with conventional chemotherapy. Taken together, our findings suggest that the signaling crosstalk among senescent cancer stromal cells plays a key role in the progression of PDAC and may be a promising therapeutic target.
Collapse
Affiliation(s)
- Yue Zhang
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Teh-Wei Wang
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
- Project Division of Generative AI Utilization Aging Cells, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Maho Tamatani
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Xinyi Zeng
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Lindo Nakamura
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Satotaka Omori
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Seira Hatakeyama
- Division of Clinical Genome Research, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Eigo Shimizu
- Division of Health Medical Intelligence, Human Genome Center, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Satoshi Yamazaki
- Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kanazawa920-1192, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| |
Collapse
|
35
|
Vinaixa J, Martínez-Bosch N, Gibert J, Manero-Rupérez N, Santofimia-Castaño P, Baudou FG, Vera RE, Pease DR, Iglesias M, Sen S, Wang X, Almada LL, Marks DL, Moreno M, Iovanna JL, Rabinovich GA, Fernandez-Zapico ME, Navarro P. Nuclear Galectin-1 promotes KRAS-dependent activation of pancreatic cancer stellate cells. Proc Natl Acad Sci U S A 2025; 122:e2424051122. [PMID: 40172967 PMCID: PMC12002210 DOI: 10.1073/pnas.2424051122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, primarily due to its complex tumor microenvironment (TME), which drives both disease progression and therapy resistance. Understanding the molecular mechanisms governing TME dynamics is essential for developing new treatment strategies for this devastating disease. In this study, we uncover an oncogenic role for Galectin-1 (Gal1), a glycan-binding protein abundantly expressed by activated pancreatic stellate cells (PSCs), a key component of the PDAC TME that orchestrates tumor progression. Our findings reveal that Gal1 expression is elevated in the nucleus of human PSCs in both tissue samples and cultured cell lines. Using chromatin immunoprecipitation followed by sequencing analysis (ChIP-seq), we identify Gal1 occupancy at the promoters of several cancer-associated genes, including KRAS, a pivotal oncogene involved in PDAC pathogenesis. We demonstrate that Gal1 binds to the KRAS promoter, sustaining KRAS expression in PSCs, which, in turn, maintains PSC activation and promotes the secretion of protumorigenic cytokines. Mechanistically, Gal1 is required to preserve histone H3 lysine 4 monomethylation levels and to recruit the histone methyltransferase MLL1 to target promoters. Collectively, our findings define a nuclear function of Gal1 in modulating the transcriptional landscape of cancer-associated genes in PSCs within the PDAC TME, mediated through an epigenetic mechanism. These insights enhance our understanding of PDAC pathology and open potential avenues for therapeutic interventions targeting intracellular Gal1.
Collapse
Affiliation(s)
- Judith Vinaixa
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
- Cancer Research Program, Hospital del Mar Research Institute, Associated Unit Hospital del Mar Research Institute/Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona08003, Spain
| | - Joan Gibert
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Noemí Manero-Rupérez
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Patricia Santofimia-Castaño
- Translational Research and Innovative Therapies Department, Cancer Research Center of Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, UMR 7258, Marseille13273, France
| | - Federico G. Baudou
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires1428, Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján6700, Provincia de Buenos Aires, Argentina
| | - Renzo E. Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - David R. Pease
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Mar Iglesias
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
- Departament of Pathology, Hospital del Mar, Barcelona08003, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid28029, Spain
| | - Sandhya Sen
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Xiyin Wang
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Luciana L. Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - David L. Marks
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Mireia Moreno
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Juan L. Iovanna
- Translational Research and Innovative Therapies Department, Cancer Research Center of Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, UMR 7258, Marseille13273, France
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires1428, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires1428, Argentina
- Caixa Research Institute, Barcelona08022, Spain
| | - Martin E. Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Research Institute, Associated Unit Hospital del Mar Research Institute/Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona08003, Spain
- Department of Molecular and Cellular Biomedicine, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona08036, Spain
- Institut d’Investigacions Biomediques August Pi Sunyer, Barcelona08036, Spain
| |
Collapse
|
36
|
Liang KL, Azad NS. Immune-Based Strategies for Pancreatic Cancer in the Adjuvant Setting. Cancers (Basel) 2025; 17:1246. [PMID: 40227779 PMCID: PMC11988091 DOI: 10.3390/cancers17071246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related mortality in the United States, with poor overall survival across all stages. Less than 20% of patients are eligible for curative surgical resection at diagnosis, and despite adjuvant chemotherapy, most will experience disease recurrence within two years. The incorporation of immune-based strategies in the adjuvant setting remains an area of intense investigation with unrealized promise. It offers the potential of providing durable disease control for micro-metastatic disease following curative intent surgery and enabling personalized treatments based on mutational neoantigen profiles derived from resected specimens. However, most of these attempts have failed to demonstrate significant clinical success, likely due to the immunosuppressive tumor microenvironment (TME) and individual genetic heterogeneity. Despite these challenges, immune-based strategies, such as therapeutic vaccines targeted towards neoantigens, have demonstrated promise via immune activation and induction of T-cell tumor infiltration. In this review, we will highlight the foundational lessons learned from previous clinical trials of adjuvant immunotherapy, discussing the knowledge gained from analyses of trials with disappointing results. In addition, we will discuss how these data have been incorporated to design new agents and study concepts that are proving to be exciting in more recent trials, such as shared antigen vaccines and combination therapy with immune-checkpoint inhibitors and chemotherapy. This review will evaluate novel approaches in ongoing and future clinical studies and provide insight into how these immune-based strategies might evolve to address the unique challenges for treatment of PDAC in the adjuvant setting.
Collapse
Affiliation(s)
| | - Nilofer S. Azad
- Department of Oncology, Sidney Kimmel Comprehensive Cancer, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| |
Collapse
|
37
|
Qin D, Huang K, Yao Z, Xi P, Jiang L, Wei R, Li S. Development of a Nomogram Integrating Modified Inflammation-Based Indexes for Predicting Overall Survival in Pancreatic Cancer: A Retrospective Study. J Inflamm Res 2025; 18:4813-4830. [PMID: 40224394 PMCID: PMC11988201 DOI: 10.2147/jir.s519779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
Background Pancreatic cancer (PCA) is a highly malignant tumor with a 5-year survival rate of <10%. It is characterized as a cold tumor with an immunosuppressive microenvironment. Liver dysfunction due to biliary obstruction can affect the inflammation index, an indicator of immune status. Adjusting inflammation indices for liver function may enhance their clinical utility for predicting overall survival (OS) in PCA patients. Methods Resected PCA cases were selected using specific criteria. Liver function indicators identified by Spearman's analysis were integrated into a covariance analysis to refine inflammation indices, including modified neutrophil-to-lymphocyte ratio (mNLR), modified platelet-to-lymphocyte ratio (mPLR), modified lymphocyte-to-monocyte ratio (mLMR), modified systemic immune-inflammation index (mSII), and modified C-reactive protein (mCRP). These modified indices and clinicopathological factors were analyzed to identify independent OS predictors. A nomogram was developed and compared with a primary inflammation-based model using calibration curves, decision curve analysis (DCA), and the concordance index (C-index). Results Liver function indicators including direct bilirubin (DBIL), indirect bilirubin (IBIL), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), lactate dehydrogenase (LDH), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), and albumin (ALB) were integrated to refine inflammation indices. In PCA patients, higher mNLR, mSII, CA19-9, T stage, and N stage were associated with worse OS, while higher mLMR or PNI levels correlated with better OS. Vascular invasion predicted poor OS, whereas chemotherapy improved OS. The nomogram model's clinical utility surpassed that of the primary inflammation-based model. Conclusion The nomogram incorporating modified inflammation indices demonstrated superior clinical utility. Adjusting inflammation indices for liver function is recommended for prognostic prediction, especially in PCA patients with biliary obstruction. For patients with advanced T and N staging or poorly differentiated tumors, intraoperative margin nanoknife ablation and timely postoperative adjuvant chemotherapy are recommended to enhance prognosis.
Collapse
Affiliation(s)
- Dailei Qin
- State Key Laboratory of Oncology in South China, Guangdong Provincial ClinicalResearch Center for Cancer, Department of Hepatobiliary and Pancreatic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Kewei Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial ClinicalResearch Center for Cancer, Department of Hepatobiliary and Pancreatic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Zehui Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial ClinicalResearch Center for Cancer, Department of Hepatobiliary and Pancreatic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Pu Xi
- State Key Laboratory of Oncology in South China, Guangdong Provincial ClinicalResearch Center for Cancer, Department of Hepatobiliary and Pancreatic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Lingmin Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial ClinicalResearch Center for Cancer, Department of Hepatobiliary and Pancreatic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Ran Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial ClinicalResearch Center for Cancer, Department of Hepatobiliary and Pancreatic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial ClinicalResearch Center for Cancer, Department of Hepatobiliary and Pancreatic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| |
Collapse
|
38
|
Li YC, Zhang L, Wang YT, Hu H, Zhang ZY, Nie QQ, Zuo CJ. Role of EFNAs in Shaping the Tumor Immune Microenvironment and Their Impact on Pancreatic Adenocarcinoma Prognosis. Cancer Manag Res 2025; 17:693-712. [PMID: 40190415 PMCID: PMC11972607 DOI: 10.2147/cmar.s502401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Purpose Due to the highly heterogeneous and immunosuppressed tumor microenvironment (TME), pancreatic adenocarcinoma (PAAD) has limited therapeutic options and an abysmal prognosis. Ephrin A 1-5 (EFNA1-5) have been shown to regulate tumorigenesis and metastasis in various cancers, but its role in PAAD remains unclear. Methods We comprehensively analyzed EFNA gene expression levels in pan-cancer and PAAD using the GEPIA and HPA databases. Then, we assessed the prognostic value of EFNA1-5 using the Kaplan-Meier plotter and nomogram model. Further exploration of the association of EFNA1-5 with clinicopathological features of PAAD used information from the UALCAN database, and the TIMER dataset was used to reveal the correlation between EFNA1-5 and the tumor immune microenvironment (TIME) of pancreatic cancer. In addition, cBioPortal Databases, GSEA, and GSCALite were used to explore gene changes, protein interactions, and biological functions. Finally, the oncogenic effect of EFNA5 was verified in vivo and in vitro. Results The expression levels of EFNA1-5 were significantly upregulated in PAAD. The expression of EFNA1/3/4/5 were significantly associated with overall survival (OS) and relapse-free survival (RFS) in PAAD patients. The high expression of EFNA2-5 were related to poor clinical features, such as higher tumor stage or grade and a wider range of lymph node metastasis. EFNA1-5 were closely associated with immune cell infiltration, CAFs, and MDSCs expression. Furthermore, EFNA5 is an independent risk factor for poor prognosis in PAAD patients, and it can promote the malignant progression of pancreatic cancer in vitro and in vivo. Conclusion Differential expression of EFNA1-5 is associated with TIME in pancreatic cancer, predicts different survival outcomes, and maybe a novel prognostic marker reflecting an immunosuppressive state and a potential therapeutic target.
Collapse
Affiliation(s)
- Yu-Chao Li
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Lu Zhang
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yi-Ting Wang
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Hao Hu
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Ze-Yu Zhang
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Qian-Qian Nie
- Department of Central Laboratory, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Chang-Jing Zuo
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
39
|
Chen Y, Wang C, Zhao Y. Reply. Gastroenterology 2025; 168:845-846. [PMID: 39761932 DOI: 10.1053/j.gastro.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025]
Affiliation(s)
- Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, Beijing, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, Beijing, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China; Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China; Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, Beijing, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Otieno MO, Powrózek T, Garcia-Foncillas J, Martinez-Useros J. The crosstalk within tumor microenvironment and exosomes in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189308. [PMID: 40180303 DOI: 10.1016/j.bbcan.2025.189308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Pancreatic cancer is one of the most malignant tumors with a grim prognosis. Patients develop chemoresistance that drastically decreases their survival. The chemoresistance is mainly attributed to deficient vascularization of the tumor, intratumoral heterogeneity and pathophysiological barrier due to the highly desmoplastic tumor microenvironment. The interactions of cells that constitute the tumor microenvironment change its architecture into a cancer-permissive environment and stimulate cancer development, metastasis and treatment response. The cell-cell communication in the tumor microenvironment is often mediated by exosomes that harbour a diverse repertoire of molecular cargo, such as proteins, lipids, and nucleic acid, including messenger RNAs, non-coding RNAs and DNA. Therefore, exosomes can serve as potential targets as biomarkers and improve the clinical management of pancreatic cancer to overcome chemoresistance. This review critically elucidates the role of exosomes in cell-cell communication within the tumor microenvironment and how these interactions can orchestrate chemoresistance.
Collapse
Affiliation(s)
- Michael Ochieng' Otieno
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Tomasz Powrózek
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University in Lublin, 20-080 Lublin, Poland
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Medical Oncology Department, Fundación Jimenez Diaz University Hospital, 28040, Madrid, Spain
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos Univer-Sity, 28922 Madrid, Spain.
| |
Collapse
|
41
|
Quemerais C, Jean C, Brunel A, Decaup E, Labrousse G, Audureau H, Raffenne J, Belhabib I, Cros J, Perraud A, Dusetti N, Nicolle R, Mathonnet M, Pyronnet S, Martineau Y, Fanjul M, Bousquet C. Unveiling FKBP7 as an early endoplasmic reticulum sentinel in pancreatic stellate cell activation, collagen remodeling and tumor progression. Cancer Lett 2025; 614:217538. [PMID: 39924075 DOI: 10.1016/j.canlet.2025.217538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), fibroblast activation leads to excessive secretion of extracellular matrix (ECM) and soluble factors that regulate tumor progression, prompting investigation into endoplasmic reticulum (ER)-resident proteins that may support this activation. We identified FKBP7, a peptidyl-prolyl isomerase in the ER, as overexpressed in PDAC stroma compared to cancer cells, and in patients with favorable prognosis. Analysis of single-cell RNA sequencing databases revealed FKBP7 expression in pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs). When analyzed by immunohistochemistry on PDAC patient tissues, FKBP7 emerged as an early activation marker in the preneoplastic stroma, preceding αSMA expression, and responding to FAK- and TGFβ-induced stiffening and pro-fibrotic programs in PSCs. Functional analyses revealed that FKBP7 knockdown in PSCs enhanced contractility, Rho/FAK signaling, and secretion of pro-inflammatory cytokines as well as remodeling of type I collagen, promoting an activated phenotype and accelerating tumor growth in vivo. Conversely, FKBP7 expression supported a tumor-restraining (i.e. encapsulating) ECM characterized by type IV collagen. Mechanistically, FKBP7 interacts with BiP, and blocking this interaction instead leads to increased PSC secretion of type I collagen. Thus, FKBP7 serves as a novel PSC marker and ER regulator in a complex with BiP of the secretion of specific collagen subtypes, highlighting its potential to mediate ECM normalization and constrain PDAC tumorigenesis.
Collapse
Affiliation(s)
- Christophe Quemerais
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Christine Jean
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Alexia Brunel
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Emilie Decaup
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Guillaume Labrousse
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Hippolyte Audureau
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Jérôme Raffenne
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Ismahane Belhabib
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Jérôme Cros
- Department of Pathology, Beaujon-Bichat University Hospital - Paris Diderot University, Clichy, France
| | - Aurélie Perraud
- EA 3842 Laboratory, Medicine and Pharmacy Faculties, University of Limoges, France
| | - Nelson Dusetti
- Cancer Research Center of Marseille (CRCM), INSERM UMR-1068, CNRS UMR-7258, Marseille, France
| | - Remy Nicolle
- Center of Research on Inflammation (CRI), INSERM U1149, Paris, France
| | - Muriel Mathonnet
- EA 3842 Laboratory, Medicine and Pharmacy Faculties, University of Limoges, France
| | - Stéphane Pyronnet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Yvan Martineau
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Marjorie Fanjul
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France.
| |
Collapse
|
42
|
Dong Y, Li J, Dai Y, Zhang X, Wang T, Zhao B, Liu W, Chen L, Yang S, Du P, Jiao Z. Redox-responsive metal-organic framework nanocapsules enhance tumor chemo-immunotherapy by modulating tumor metabolic reprogramming. Mater Today Bio 2025; 31:101487. [PMID: 39896279 PMCID: PMC11786678 DOI: 10.1016/j.mtbio.2025.101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 02/04/2025] Open
Abstract
Immunotherapy, particularly immune checkpoint blockade (ICB), has opened the era of modern oncology, offering significant promise for modern oncology. However, the efficacy of immunotherapy is frequently curtailed by the immunosuppressive tumor microenvironment (ITM), a milieu shaped by tumor metabolic reprogramming. Herein, a novel tumor microenvironment-responsive nanocapsules (DNMCs) were developed that simultaneously modulate tumor metabolism and the ITM to enhance the effectiveness of chemo-immunotherapy. DNMCs consist of an acidic and redox-sensitive metal-organic framework (MOF) encapsulating Doxorubicin (DOX) and the indoleamine-2,3-dioxygenase1 (IDO1) inhibitor NLG919. In the tumor microenvironment, DNMCs degrade, rapidly releasing DOX and NLG919. DOX induces immunogenic cell death (ICD), while NLG919 regulates amino acid metabolism by modulating IDO1 activity, thereby reversing the immunosuppressive of ITM. Consequently, DNMCs elicit effective anti-tumor immune responses, characterized by an increased density of tumor-infiltrating CD8+ cytotoxic T cells as well as depletion of immunosuppressive regulatory T cells (Tregs), thus effectively suppressing pancreatic cancer growth in KPC mice through combined chemo-immunotherapy. Overall, DNMCs exhibit significant tumor growth inhibition in pancreatic cancer patient-derived organoids (PDOs) and mouse models. This study presents a promising approach to enhancing chemo-immunotherapy by targeting tumor metabolic reprogramming and augmenting immune response against malignant tumors.
Collapse
Affiliation(s)
- Yuman Dong
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Jieru Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Yiwei Dai
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Xinyu Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Tao Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Bin Zhao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Wenbo Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Li Chen
- Department of Orthopaedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Shaopei Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pengcheng Du
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zuoyi Jiao
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| |
Collapse
|
43
|
Guo X, Yang Z, Guo Z, Lai H, Meng H, Meng M, Li T, Li Z, Chen J, Feng Y, Pang X, Tian H, Chen X. A Polymeric mRNA Vaccine Featuring Enhanced Site-Specific mRNA Delivery and Inherent STING-Stimulating Performance for Tumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410998. [PMID: 40095378 DOI: 10.1002/adma.202410998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/14/2024] [Indexed: 03/19/2025]
Abstract
The development of mRNA delivery carriers with innate immune stimulation functions has emerged as a focal point in the field of mRNA vaccines. Nonetheless, the expression of mRNA in specific sites and innate immune stimulation at specific sites are prerequisites for ensuring the safety of mRNA vaccines. Based on the synthetic PEIRs carriers library, this study identifies an innovative mRNA delivery carrier named POctS with the following characteristics: 1) simultaneously possessing high mRNA delivery efficiency and stimulator of interferon genes (STING) stimulation function. 2) Leveraging the distinctive site-specific delivery capabilities of POctS, the expression of mRNA at specific sites and the activation of innate immune responses at designated sites are achieved, minimizing formulation toxicity and maximizing the vaccine performance. 3) Tailoring two types of mRNA vaccines based on POctS according to the immune infiltration status of different types of tumors. Briefly, POctS-loading ovalbumin (OVA) mRNA as a tumor antigen vaccine achieves the prevention and treatment of melanoma in mice. Further, POctS-loading mixed lineage kinase domain-like protein (MLKL) mRNA as an in situ tumor vaccine effectively treats orthotopic pancreatic cancer in mice. This delivery carrier offers a feasible mRNA vaccine-based immunotherapy strategy for various types of tumors.
Collapse
Affiliation(s)
- Xiaoya Guo
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhiyu Yang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhaopei Guo
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Huiyan Lai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Hanyu Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Meng Meng
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Tong Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Jie Chen
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuanji Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Xuan Pang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Huayu Tian
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
44
|
Peixoto D, Ravasco JM, Blanco-Fernandez B, Veiga F, Concheiro A, Conde J, Paiva-Santos AC, Alvarez-Lorenzo C. Enzyme-responsive vitamin D-based micelles for paclitaxel-controlled delivery and synergistic pancreatic cancer therapy. Mater Today Bio 2025; 31:101555. [PMID: 40026626 PMCID: PMC11869029 DOI: 10.1016/j.mtbio.2025.101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most feared diseases worldwide owing to its poor prognosis, negligible therapeutic advances, and high mortality. Herein, multifunctional enzyme-responsive micelles for the controlled delivery of paclitaxel (PTX) were prepared to circumvent its current clinical challenges. Accordingly, two enzyme-responsive structural units composed of Vitamin D3 (VD3) conjugated with polyethylene glycol of different molecular weights (600 Da and 2000 Da) were synthesized and characterized using different analytical methods. By applying the solvent evaporation method, these bioactive structural units self-assembled into sub-100 nm VD3 micelles with minimal batch-to-batch variation, monomodal particle size distribution, and high encapsulation efficiency. The enzyme-triggered disassembly of PTX-loaded VD3 micelles was demonstrated by release studies in the presence of a high esterase content typically featured by PDAC cells. PTX-loaded VD3 micelles also exhibited prominent cell internalization and induced a considerable cytotoxic synergistic effect against human PDAC cells (BxPC-3 cells) in 2D and 3D cell culture models compared with free PTX. The PTX-loaded VD3 micelles were hemocompatible and stable after long-term storage in the presence of biorelevant media, and showed higher efficiency to inhibit the tumor growth compared to the approved clinical nanoformulation (Abraxane®) in an in ovo tumor model. The findings reported here indicate that VD3S-PEG micelles may have a promising role in PDAC therapy, since VD3 could act not only as a hydrophobic core of the micelles but also as a therapeutic agent that provides synergetic therapeutic effects with the encapsulated PTX.
Collapse
Affiliation(s)
- Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| | - João M. Ravasco
- Comprehensive Health Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169, Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649, Lisbon, Portugal
| | - Barbara Blanco-Fernandez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| | - João Conde
- Comprehensive Health Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169, Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649, Lisbon, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| |
Collapse
|
45
|
Pienkowski T, Wawrzak-Pienkowska K, Tankiewicz-Kwedlo A, Ciborowski M, Kurek K, Pawlak D. Leveraging glycosylation for early detection and therapeutic target discovery in pancreatic cancer. Cell Death Dis 2025; 16:227. [PMID: 40164585 PMCID: PMC11958638 DOI: 10.1038/s41419-025-07517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies, primarily due to late-stage diagnosis, limited biomarker specificity, and aggressive metastatic potential. Recent glycoproteomic studies have illuminated the crucial role of glycosylation in PC progression, revealing altered glycosylation patterns that impact cell adhesion, immune evasion, and tumor invasiveness. Biomarkers such as CA19-9 remain the clinical standard, yet limitations in sensitivity and specificity, especially in early disease stages, necessitate the exploration of alternative markers. Emerging glycoproteins-such as mesothelin, thrombospondin-2, and glycan modifications like sialyl-Lewis x-offer diagnostic promise when combined with CA19-9 or used in profiling panels. Furthermore, therapeutic strategies targeting glycosylation processes, including sialylation, and fucosylation, have shown potential in curbing PC metastasis and enhancing immune response. Translational platforms, such as patient-derived xenografts and advanced in vitro models, are pivotal in validating these findings and assessing glycosylation potential therapeutic impact. Continued exploration of glycosylation-driven mechanisms and biomarker discovery in PC can significantly advance early detection and treatment efficacy, offering new hope in the management of this challenging disease.
Collapse
Affiliation(s)
- Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, Sklodowskiej MC 24A, Bialystok, Poland
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Wawrzak-Pienkowska
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Gastroenterology, Hepatology and Internal Diseases, Voivodeship Hospital in Bialystok, Bialystok, Poland
| | | | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, Sklodowskiej MC 24A, Bialystok, Poland
| | - Krzysztof Kurek
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
46
|
Kataki AD, Gupta PG, Cheema U, Nisbet A, Wang Y, Kocher HM, Pérez-Mancera PA, Velliou EG. Mapping Tumor-Stroma-ECM Interactions in Spatially Advanced 3D Models of Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16708-16724. [PMID: 40052705 PMCID: PMC11931495 DOI: 10.1021/acsami.5c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/21/2025]
Abstract
Bioengineering-based in vitro tumor models are increasingly important as tools for studying disease progression and therapy response for many cancers, including the deadly pancreatic ductal adenocarcinoma (PDAC) that exhibits a tumor/tissue microenvironment of high cellular/biochemical complexity. Therefore, it is crucial for in vitro models to capture that complexity and to enable investigation of the interplay between cancer cells and factors such as extracellular matrix (ECM) proteins or stroma cells. Using polyurethane (PU) scaffolds, we performed a systematic study on how different ECM protein scaffold coatings impact the long-term cell evolution in scaffolds containing only cancer or only stroma cells (activated stellate and endothelial cells). To investigate potential further changes in those biomarkers due to cancer-stroma interactions, we mapped their expression in dual/zonal scaffolds consisting of a cancer core and a stroma periphery, spatially mimicking the fibrotic/desmoplastic reaction in PDAC. In our single scaffolds, we observed that the protein coating affected the cancer cell spatial aggregation, matrix deposition, and biomarker upregulation in a cell-line-dependent manner. In single stroma scaffolds, different levels of fibrosis/desmoplasia in terms of ECM composition/quantity were generated depending on the ECM coating. When studying the evolution of cancer and stroma cells in our dual/zonal model, biomarkers linked to cell aggressiveness/invasiveness were further upregulated by both cancer and stroma cells as compared to single scaffold models. Collectively, our study advances the understanding of how different ECM proteins impact the long-term cell evolution in PU scaffolds. Our findings show that within our bioengineered models, we can stimulate the cells of the PDAC microenvironment to develop different levels of aggressiveness/invasiveness, as well as different levels of fibrosis. Furthermore, we highlight the importance of considering spatial complexity to map cell invasion. Our work contributes to the design of in vitro models with variable, yet biomimetic, tissue-like properties for studying the tumor microenvironment's role in cancer progression.
Collapse
Affiliation(s)
- Anna-Dimitra Kataki
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| | - Priyanka G. Gupta
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
- School
of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4JD, U.K.
| | - Umber Cheema
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| | - Andrew Nisbet
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Yaohe Wang
- Centre
for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Hemant M. Kocher
- Centre
for Tumour Biology and Experimental Cancer Medicine, Barts Cancer
Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Pedro A. Pérez-Mancera
- Department
of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GE, U.K.
| | - Eirini G. Velliou
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| |
Collapse
|
47
|
Sharma AK, Gupta K, Mishra A, Lofland G, Chen SY, Marsh I, Fair PT, Hobbs RF, Armstrong TM, Jaffee EM, Gabrielson EW, Zheng L, Nimmagadda S. EphA2-targeted alpha-particle theranostics for enhancing PDAC treatment. Theranostics 2025; 15:4229-4246. [PMID: 40225586 PMCID: PMC11984392 DOI: 10.7150/thno.106948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) presents a formidable challenge in oncology due to its aggressive nature and resistance to therapy. Current treatments, including surgery, chemotherapy, and radiotherapy, have limited success in improving patient outcomes. This study addresses the urgent need for novel radiotheranostic strategies for PDAC by investigating EphA2 as a potential target. Methods and Results: Analysis of genomic data from the Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA) revealed elevated EphA2 expression in PDAC, confirmed by immunohistochemical staining of tumor tissue microarrays (TMAs). Further analysis showed variable EphA2 expression across PDAC cell lines, with surface receptor density not always correlating with mRNA levels. A low molecular weight peptide was developed and labeled with gallium-68 for PET imaging. In vitro studies demonstrated specific binding to EphA2-expressing PDAC cells with rapid internalization. In vivo PET imaging in subcutaneous and orthotopic PDAC models confirmed high tumor uptake and minimal off-target binding, confirming EphA2 as a valid imaging target. For molecular radiotherapy, a DOTA-conjugated peptide was labeled with the alpha-particle emitter, actinium-225. In vitro studies revealed dose-dependent cytotoxicity in PDAC cells, with an IC50 of 0.32 µCi/mL. In a tumor model, treatment with Ac-225 labeled peptide significantly inhibited tumor growth compared to controls, with mild adverse effects. Conclusion: These results establish EphA2 as a promising radiotheranostic target in PDAC, with potential for both non-invasive imaging and targeted radiotherapy. Given the potential, further optimization of EphA2-targeted agents are warranted to advance personalized treatment strategies for PDAC patients.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kuldeep Gupta
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Akhilesh Mishra
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Gabriela Lofland
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sophia Y. Chen
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ian Marsh
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Peyton T Fair
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Robert F. Hobbs
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Todd M. Armstrong
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Elizabeth M. Jaffee
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Edward W. Gabrielson
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lei Zheng
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sridhar Nimmagadda
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|
48
|
Ibrahim S, Yousef EH, El-Dessouki AM, Raslan NA, Alzokaky AA. Melatonin augments anti-tumor activity and alleviates nephrotoxicity of gemcitabine in a pancreatic cancer xenograft model targeting P62/Keap1 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03938-x. [PMID: 40100373 DOI: 10.1007/s00210-025-03938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 02/16/2025] [Indexed: 03/20/2025]
Abstract
Although gemcitabine is a primary chemotherapy for pancreatic cancer, its effectiveness is limited by chemoresistance and nephrotoxicity, posing significant clinical challenges. Therefore, the development of novel therapeutic approaches to prevent pancreatic malignancy remains crucial. This study aimed to investigate the potential of melatonin in enhancing gemcitabine's anticancer efficacy while mitigating its nephrotoxic effects through modulation of the Keap1/p62 pathway. A pancreatic cancer xenograft model was established in rats, which received either gemcitabine (50 mg/kg, I.P.), melatonin (50 mg/kg, I.P.), or their combination three times per week for 2 weeks. Our findings demonstrate that melatonin potentiates gemcitabine's cancer-suppressing effects via modulation of the Kelch-like-ECH associated protein-1 (Keap1)/p62 pathway, resulting in reduced fibrosis, oxidative stress, and inflammatory markers. Additionally, melatonin significantly mitigated gemcitabine-induced nephrotoxicity. These results suggest that melatonin may serve as an adjuvant therapy in pancreatic cancer treatment, enhancing chemotherapy efficacy while reducing its adverse effects.
Collapse
Affiliation(s)
- Samar Ibrahim
- Pharmacy Practice and Clinical Pharmacy Department, Faculty of Pharmacy, Galala University, Ataka, Egypt
| | - Eman H Yousef
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, 12566, Egypt
| | - Nahed A Raslan
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11651, Egypt
- Department of Clinical Pharmacy Program, College of Health Sciences and Nursing, Al-Rayan Colleges, AL-Madina AL-Munawarah, Saudi Arabia
| | - Amany A Alzokaky
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt.
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11651, Egypt.
| |
Collapse
|
49
|
Liu X, Shao Y, Li Y, Chen Z, Shi T, Tong Q, Zou X, Ju L, Pan J, Zhuang R, Pan X. Extensive Review of Nanomedicine Strategies Targeting the Tumor Microenvironment in PDAC. Int J Nanomedicine 2025; 20:3379-3406. [PMID: 40125427 PMCID: PMC11927507 DOI: 10.2147/ijn.s504503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the world, mainly because of its powerful pro-connective tissue proliferation matrix and immunosuppressive tumor microenvironment (TME), which promote tumor progression and metastasis. In addition, the extracellular matrix leads to vascular collapse, increased interstitial fluid pressure, and obstruction of lymphatic return, thereby hindering effective drug delivery, deep penetration, and immune cell infiltration. Therefore, reshaping the TME to enhance tumor perfusion, increase deep drug penetration, and reverse immune suppression has become a key therapeutic strategy. Traditional therapies for PDAC, including surgery, radiation, and chemotherapy, face significant limitations. Surgery is challenging due to tumor location and growth, while chemotherapy and radiation are hindered by the dense extracellular matrix and immunosuppressive TME. In recent years, the advancement of nanotechnology has provided new opportunities to improve drug efficacy. Nanoscale drug delivery systems (NDDSs) provide several advantages, including improved drug stability in vivo, enhanced tumor penetration, and reduced systemic toxicity. However, the clinical translation of nanotechnology in PDAC therapy faces several challenges. These include the need for precise targeting and control over drug release, potential immune responses to the nanocarriers, and the scalability and cost-effectiveness of production. This article provides an overview of the latest nanobased methods for achieving better therapeutic outcomes and overcoming drug resistance. We pay special attention to TME-targeted therapy in the context of PDAC, discuss the advantages and limitations of current strategies, and emphasize promising new developments. By emphasizing the enormous potential of NDDSs in improving the treatment outcomes of patients with PDAC, while critically discussing the limitations of traditional therapies and the challenges faced by nanotechnology in achieving clinical breakthroughs, our review paves the way for future research in this rapidly developing field.
Collapse
Affiliation(s)
- Xing Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311400, People’s Republic of China
| | - Yidan Shao
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Yunjiang Li
- Radiology Department, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Zuhua Chen
- Radiology Department, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Tingting Shi
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Qiao Tong
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Xi Zou
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Liping Ju
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Jinming Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Xuwang Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| |
Collapse
|
50
|
Gu J, Wang Y, Zhang H, Gu H, Zhu H. SIGLEC1 has the potential to be an immune-related prognostic indicator in colon adenocarcinoma: a study based on transcriptomic data and Mendelian randomization analysis. Discov Oncol 2025; 16:324. [PMID: 40088346 PMCID: PMC11910455 DOI: 10.1007/s12672-025-02093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Colonic adenocarcinoma (COAD) is the most common pathological type of colon cancer. Tumor microenvironment (TME) plays an important role in the occurrence and development of COAD. There are currently no specific studies indicating the mechanism of action of TME in COPD patients. METHODS The percentage of tumor-infiltrating immune cells (TIC) in 512 COAD cases from The Cancer Genome Atlas (TCGA) database was calculated using CIBERSORT and ESTIMATE. Weighted gene coexpression network analysis (WGCNA) was performed to find modules of differentially expressed genes (DEGs) with high correlations followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to determine the function of distant metastasis (M)-stage-related modules. Pathway enrichment analysis, protein-protein interaction (PPI) network, Cox regression analysis, and Kaplan-Meier survival analysis were performed on DEGs to select the most critical genes. The correlation between SIGLEC1 expression in COAD and TME status and between immune checkpoints and SIGLEC1 was examined using gene set enrichment analysis (GSEA) and Pearson correlation coefficients. RESULTS A WGCNA screen was performed to obtain 12,342 DEGs and 209 key genes associated with M stage between tumor and normal samples. GO and KEGG analysis revealed that the DEGs primarily engaged in pathways such as Th1 and Th2 cell differentiation and cell adhesion molecules. SIGELEC1 gene was identified by univariate Cox regression, PPI network construction, and survival analysis. GSEA showed that the genes in the high-expression SIGLEC1 group were mainly enriched in immune-related activities. In the low-expression SIGLEC1 group, the genes were enriched in MYC targets. CIBERSORT analysis of the proportion of TICs showed that SIGLEC1 was positively correlated with macrophages (M0, M2), T-cell CD8 and immune checkpoint-related genes, suggesting that SIGLEC1 may be responsible for maintaining the immune dominance of TME. Immunohistochemical and prognostic analysis showed that the group with higher SIGLEC1 expression had more severe lesions and a worse prognosis than the group with lower SIGLEC1 expression. CONCLUSIONS SIGLEC1 gene is a distant metastasis-related gene that affects the survival prognosis of COAD patients and provides additional insight into the treatment of COAD.
Collapse
Affiliation(s)
- Jue Gu
- Cardiovascular Department Affiliated Hospital of Nantong University, Nantong, China
| | - Yaxuan Wang
- Cancer Research Center Nantong, Nantong Tumor Hospital & Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Hui Zhang
- Cancer Research Center Nantong, Nantong Tumor Hospital & Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Haijuan Gu
- Cancer Research Center Nantong, Nantong Tumor Hospital & Affiliated Tumor Hospital of Nantong University, Nantong, China.
| | - Haixia Zhu
- Cancer Research Center Nantong, Nantong Tumor Hospital & Affiliated Tumor Hospital of Nantong University, Nantong, China.
| |
Collapse
|