1
|
Li F, Hooi SL, Choo YM, Teh CSJ, Toh KY, Lim LWZ, Lee YQ, Chong CW, Ahmad Kamar A. Progression of gut microbiome in preterm infants during the first three months. Sci Rep 2025; 15:12104. [PMID: 40204761 PMCID: PMC11982265 DOI: 10.1038/s41598-025-95198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
The colonization and evolution of gut microbiota early in life play a vital role in shaping a healthy, robust immune system for infant health, whether in combating short-term illness or improving long-term health outcomes. Early-life clinical practices may interrupt or disrupt the normal colonization process of the infant gut microbiota, thereby increasing disease susceptibility. In this prospective cohort study, we analyzed the gut microbiota of 46 term and 23 preterm infants using 16S rRNA gene metagenomic sequencing. Fecal samples were collected at six timepoints during the first three months of life. Notably, gestational age was the main factor contributing to differences in the meconium microbial composition. Intriguingly, our study unveiled a more homogeneous microbial composition in preterm infants with more abundant Bifidobacterium from the postnatal age (PNA) of one month. Concurrently, the beneficial bacteria Bifidobacterium and Lactobacillus gradually increased, and the potentially pathogenic bacteria Clostridium, Enterobacter, Enterococcus, Klebsiella, and Pseudomonas gradually decreased. Furthermore, our study underscored a link between decreased microbial diversity of preterm infants and exclusive breastfeeding and antibiotic exposure. Moreover, preterm infants with patent ductus arteriosus (PDA) exhibited reduced microbial diversity but higher abundances of Streptococcus oralis and Streptococcus mitis.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Pediatrics, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Yao Mun Choo
- Department of Pediatrics, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | | | - Yee Qing Lee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
- Monash Microbiome Research Centre, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Azanna Ahmad Kamar
- Department of Pediatrics, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Rossouw C, Ryan FJ, Lynn DJ. The role of the gut microbiota in regulating responses to vaccination: current knowledge and future directions. FEBS J 2025; 292:1480-1499. [PMID: 39102299 PMCID: PMC11927049 DOI: 10.1111/febs.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Antigen-specific B and T cell responses play a critical role in vaccine-mediated protection against infectious diseases, but these responses are highly variable between individuals and vaccine immunogenicity is frequently sub-optimal in infants, the elderly and in people living in low- and middle-income countries. Although many factors such as nutrition, age, sex, genetics, environmental exposures, and infections may all contribute to variable vaccine immunogenicity, mounting evidence indicates that the gut microbiota is an important and targetable factor shaping optimal immune responses to vaccination. In this review, we discuss evidence from human, preclinical and experimental studies supporting a role for a healthy gut microbiota in mediating optimal vaccine immunogenicity, including the immunogenicity of COVID-19 vaccines. Furthermore, we provide an overview of the potential mechanisms through which this could occur and discuss strategies that could be used to target the microbiota to boost vaccine immunogenicity where it is currently sub-optimal.
Collapse
Affiliation(s)
- Charné Rossouw
- Precision MedicineSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkAustralia
| | - Feargal J. Ryan
- Precision MedicineSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkAustralia
| | - David J. Lynn
- Precision MedicineSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkAustralia
| |
Collapse
|
3
|
Golshany H, Helmy SA, Morsy NFS, Kamal A, Yu Q, Fan L. The gut microbiome across the lifespan: how diet modulates our microbial ecosystem from infancy to the elderly. Int J Food Sci Nutr 2025; 76:95-121. [PMID: 39701663 DOI: 10.1080/09637486.2024.2437472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
This comprehensive review examines the impact of dietary patterns on gut microbiome composition and diversity from infancy to old age, linking these changes to age-related health outcomes. It investigates how the gut microbiome develops and changes across life stages, focusing on the influence of dietary factors. The review explores how early-life feeding practices, including breastfeeding and formula feeding, shape the infant gut microbiota and have lasting effects. In elderly individuals, alterations in the gut microbiome are associated with increased susceptibility to infections, chronic inflammation, metabolic disorders and cognitive decline. The critical role of diet in modulating the gut microbiome throughout life is emphasised, particularly the potential benefits of probiotics and fortified foods in promoting healthy ageing. By elucidating the mechanisms connecting food systems to gut health, this review provides insights into interventions that could enhance gut microbiome resilience and improve health outcomes across the lifespan.
Collapse
Affiliation(s)
- Hazem Golshany
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | | | - Aya Kamal
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Qun Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety & Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Toivonen E, Sikkinen J, Salonen A, Kärkkäinen O, Koistinen V, Klåvus A, Meuronen T, Heini T, Maltseva A, Niku M, Jääskeläinen T, Laivuori H. Metabolic profiles of meconium in preeclamptic and normotensive pregnancies. Metabolomics 2025; 21:21. [PMID: 39863780 PMCID: PMC11762436 DOI: 10.1007/s11306-025-02224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn. OBJECTIVES To compare meconium metabolome of infants from PE and normotensive pregnancies. METHODS A cohort of preeclamptic parturients and normotensive controls were recruited in Tampere University Hospital during 2019-2022. Meconium was sampled and its metabolome analyzed using liquid chromatography- mass spectrometry in 48 subjects in each group. RESULTS Differences in abundances of 1263 compounds, of which 19 could be annotated, were detected between the two groups. Several acylcarnitines, androsterone sulfate, three bile acids, amino acid derivatives (phenylacetylglutamine, epsilon-(gamma-glutamyl)lysine and N-(phenylacetyl)glutamic acid), as well as caffeine and paraxanthine were lower in the PE group compared to the control group. Urea and progesterone were higher in the PE group. CONCLUSION PE is associated with alterations in the meconium metabolome of infants. The differing abundances of several metabolites show alterations in the interaction between the fetoplacental unit and mother in PE, but whether they are a cause or an effect of the disorder remains to be further investigated.
Collapse
Affiliation(s)
- Elli Toivonen
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland.
| | - Jutta Sikkinen
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Kärkkäinen
- Afekta Technologies Ltd., Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | | | | | - Tuomas Heini
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arina Maltseva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Mikael Niku
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Tiina Jääskeläinen
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Hannele Laivuori
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, Helsinki, Finland
| |
Collapse
|
5
|
Benitez AJ, Tanes C, Friedman ES, Zackular JP, Ford E, Gerber JS, DeRusso PA, Kelly A, Li H, Elovitz MA, Wu GD, Zemel B, Bittinger K. Antibiotic exposure is associated with minimal gut microbiome perturbations in healthy term infants. MICROBIOME 2025; 13:21. [PMID: 39856742 PMCID: PMC11761179 DOI: 10.1186/s40168-024-01999-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/05/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND The evolving infant gut microbiome influences host immune development and later health outcomes. Early antibiotic exposure could impact microbiome development and contribute to poor outcomes. Here, we use a prospective longitudinal birth cohort of n = 323 healthy term African American children to determine the association between antibiotic exposure and the gut microbiome through shotgun metagenomics sequencing as well as bile acid profiles through liquid chromatography-mass spectrometry. RESULTS Stool samples were collected at ages 4, 12, and 24 months for antibiotic-exposed (n = 170) and unexposed (n = 153) participants. A short-term substudy (n = 39) collected stool samples at first exposure, and over 3 weeks following antibiotics initiation. Antibiotic exposure (predominantly amoxicillin) was associated with minimal microbiome differences, whereas all tested taxa were modified by breastfeeding. In the short-term substudy, we observed microbiome differences only in the first 2 weeks following antibiotics initiation, mainly a decrease in Bifidobacterium bifidum. The differences did not persist a month after antibiotic exposure. Four species were associated with infant age. Antibiotic exposure was not associated with an increase in antibiotic resistance gene abundance or with differences in microbiome-derived fecal bile acid composition. CONCLUSIONS Short-term and long-term gut microbiome perturbations by antibiotic exposure were detectable but substantially smaller than those associated with breastfeeding and infant age.
Collapse
Affiliation(s)
- Alain J Benitez
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Elliot S Friedman
- Division of Gastroenterology and Hepatology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joseph P Zackular
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eileen Ford
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey S Gerber
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patricia A DeRusso
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrea Kelly
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hongzhe Li
- Department of Biostatistics, Informatics, and Epidemiology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michal A Elovitz
- Women's Biomedical Research Institute, Icahn School of Medicine, New York, NY, USA
| | - Gary D Wu
- Division of Gastroenterology and Hepatology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Babette Zemel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA.
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Pan J, Zhang X, Shi D, Tian X, Xu L, Lu X, Dong M, Yao P, Pan Z, Ling Z, Wu N, Yao H. Short-chain fatty acids play a key role in antibody response to SARS-CoV-2 infection in people living with HIV. Sci Rep 2024; 14:31211. [PMID: 39732792 DOI: 10.1038/s41598-024-82596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
High SARS-CoV-2-specific antibody levels can protect against SARS-CoV-2 reinfection. The gut microbiome can affect a host's immune response. However, its role in the antibody response to SARS-CoV-2 in people living with HIV (PLWH) remains poorly understood. Here, we categorised PLWH and healthy individuals into high- and low-antibody-response groups. Shotgun metagenomic sequencing and targeted metabolomic assays were used to investigate the differences in the gut microbiome and metabolic functions between the high- and low-antibody-response groups. PLWH demonstrated a higher abundance of short-chain fatty acid (SCFA)-producing species, accompanied by high serum levels of several SCFAs, in the high-antibody-response group than in the low-antibody-response group. In contrast, healthy individuals demonstrated higher enrichment of pilus-bearing bacterial species, with flagella-expressing genes, in the high-antibody-response group than in the low-antibody-response group. Therefore, gut-microbiota-derived SCFAs play a key role in antibody responses in PLWH but not in healthy individuals. Our results afford a novel understanding of how the gut microbiome and its metabolites are associated with host immunity. Moreover, they may facilitate the exploration of modalities to prevent SARS-CoV-2 reinfection through various gut-microbiota-targeted interventions tailored to different populations.
Collapse
Affiliation(s)
- Jingying Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Xiaodi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xuebin Tian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Lijun Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Mingqing Dong
- Department of Infectious Disease, Zhejiang Qingchun Hospital, Zhejiang University, Hangzhou, 310000, China
| | - Peng Yao
- Department of Infectious Disease, Zhejiang Qingchun Hospital, Zhejiang University, Hangzhou, 310000, China
| | - Zhaoyi Pan
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Nanping Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
| |
Collapse
|
7
|
Ouédraogo LO, Deng L, Ouattara CA, Compaoré A, Ouédraogo M, Argaw A, Lachat C, Houpt ER, Saidi Q, Haerynck F, Sonnenburg J, Azad MB, Tavernier SJ, Bastos-Moreira Y, Toe LC, Dailey-Chwalibóg T. Describing Biological Vulnerability in Small, Vulnerable Newborns in Urban Burkina Faso (DenBalo): Gut Microbiota, Immune System, and Breastmilk Assembly. Nutrients 2024; 16:4242. [PMID: 39683635 PMCID: PMC11644820 DOI: 10.3390/nu16234242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Small vulnerable newborns (SVNs), including those born preterm, small for gestational age, or with low birth weight, are at higher risk of neonatal mortality and long-term health complications. Early exposure to maternal vaginal microbiota and breastfeeding plays a critical role in the development of the neonatal microbiota and immune system, especially in low-resource settings like Burkina Faso, where neonatal mortality rates remain high. Objectives: The DenBalo study aims to investigate the role of maternal and neonatal factors, such as vaginal and gut microbiota, immune development, and early nutrition, in shaping health outcomes in SVNs and healthy infants. Methods: This prospective cohort observational study will recruit 141 mother-infant pairs (70 SVNs and 71 healthy controls) from four health centers in Bobo-Dioulasso, Burkina Faso. The mother-infant pairs will be followed for six months with anthropometric measurements and biospecimen collections, including blood, breast milk, saliva, stool, vaginal swabs, and placental biopsies. Multi-omics approaches, encompassing metagenomics, metabolomics, proteomics, and immune profiling, will be used to assess vaginal and gut microbiota composition and functionality, immune cell maturation, and cytokine levels at critical developmental stages. Conclusions: This study will generate comprehensive data on how microbiota, metabolomic, and proteomic profiles, along with immune system development, differ between SVNs and healthy infants. These findings will guide targeted interventions to improve neonatal health outcomes and reduce mortality, particularly in vulnerable populations.
Collapse
Affiliation(s)
- Lionel Olivier Ouédraogo
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.O.); (L.D.); (A.A.); (C.L.); (Y.B.-M.); (L.C.T.)
- Centre Muraz, Bobo-Dioulasso 01 BP 390, Burkina Faso
| | - Lishi Deng
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.O.); (L.D.); (A.A.); (C.L.); (Y.B.-M.); (L.C.T.)
| | - Cheick Ahmed Ouattara
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (C.A.O.); (A.C.); (M.O.)
| | - Anderson Compaoré
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (C.A.O.); (A.C.); (M.O.)
| | - Moctar Ouédraogo
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (C.A.O.); (A.C.); (M.O.)
| | - Alemayehu Argaw
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.O.); (L.D.); (A.A.); (C.L.); (Y.B.-M.); (L.C.T.)
| | - Carl Lachat
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.O.); (L.D.); (A.A.); (C.L.); (Y.B.-M.); (L.C.T.)
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (E.R.H.); (Q.S.)
| | - Queen Saidi
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (E.R.H.); (Q.S.)
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Lab (PIRL) at Ghent University Hospital (UZGent), 9000 Ghent, Belgium; (F.H.); (S.J.T.)
| | - Justin Sonnenburg
- Department of Microbiology and Immunology and Center for Human Microbiome Studies, Stanford University, Stanford, CA 94305, USA;
| | - Meghan B. Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Manitoba Interdisciplinary Lactation Center (MILC), Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Simon J. Tavernier
- Primary Immunodeficiency Research Lab (PIRL) at Ghent University Hospital (UZGent), 9000 Ghent, Belgium; (F.H.); (S.J.T.)
- Center for Primary Immunodeficiency, Ghent University Hospital, 9000 Ghent, Belgium
- Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
| | - Yuri Bastos-Moreira
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.O.); (L.D.); (A.A.); (C.L.); (Y.B.-M.); (L.C.T.)
- Center of Excellence in Mycotoxicology and Public Health, MYTOX-SOUTH® Coordination Unit, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Laeticia Celine Toe
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.O.); (L.D.); (A.A.); (C.L.); (Y.B.-M.); (L.C.T.)
- Unité Nutrition et Maladies Métaboliques, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso 01 BP 545, Burkina Faso
| | - Trenton Dailey-Chwalibóg
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (L.O.O.); (L.D.); (A.A.); (C.L.); (Y.B.-M.); (L.C.T.)
- Agence de Formation de Recherche et d’Expertise en Santé pour l’Afrique (AFRICSanté), Bobo-Dioulasso 01 BP 298, Burkina Faso; (C.A.O.); (A.C.); (M.O.)
| |
Collapse
|
8
|
Jovandaric MZ, Jovanović K, Raus M, Babic S, Igic T, Kotlica B, Milicevic S. The Significance of Plant Nutrition in the Creation of the Intestinal Microbiota-Prevention of Chronic Diseases: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1969. [PMID: 39768848 PMCID: PMC11678629 DOI: 10.3390/medicina60121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Dysbiosis of the gastrointestinal tract is the most common cause of disease in childhood and adulthood. The formation of the intestinal microbiome begins in utero, and composition modification during life depends mainly on various genetic, nutritional, and environmental factors. The main cause of intestinal dysbiosis is improper nutrition due to a short period of breastfeeding, insufficient intake of fresh fruits and vegetables, and/or consumption of a large amount of processed food. The benefits of a diet based on grains, legumes, fruits, and vegetables are reflected in reducing the risk of cancer, cardiovascular diseases, myocardial infarction, stroke, rheumatoid arthritis, high blood pressure, asthma, allergies, and kidney stones. Anaerobic fermentation of fibers produces short-chain fatty acids (SCFA) that have an anti-inflammatory role and great importance in shaping the intestinal microbiota. Factors associated with high fiber in a plant-based diet promote increased insulin sensitivity. Insulin and insulin-like growth factor 1 (IGF-I) act as promoters of most normal and pre-neoplastic tissues. Conclusion: A plant-based diet high in fiber prevents disease by creating metabolites in the gut that reduce oxidative stress.
Collapse
Affiliation(s)
- Miljana Z. Jovandaric
- Department of Neonatology, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Kristina Jovanović
- Department of Neurology, University Children’s Hospital, 11000 Belgrade, Serbia
| | - Misela Raus
- Department of Neonatology, University Children’s Hospital, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sandra Babic
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Tamara Igic
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Boba Kotlica
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Srboljub Milicevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Gynecology and Obstetrics, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Liu Y, Zhang L, Wang J, Sui X, Li J, Gui Y, Wang H, Zhao Y, Xu Y, Cao W, Wang P, Zhang Y. Prenatal PM 2.5 Exposure Associated with Neonatal Gut Bacterial Colonization and Early Children's Cognitive Development. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:802-815. [PMID: 39568692 PMCID: PMC11574624 DOI: 10.1021/envhealth.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 11/22/2024]
Abstract
Previous research indicated that fine particulate matter (PM2.5) exposure affected both offspring neurodevelopment and the colonization of gut microbiota (GM), while the underlying mechanism remained unclear. Our study aimed to evaluate the impacts of prenatal PM2.5 exposure on child cognitive development and investigate the role of neonatal GM colonization in the association. Based on the Shanghai Maternal-Child Pairs Cohort, 361 maternal-child pairs were recruited. Prenatal PM2.5 exposure concentrations were estimated using a high-spatial-resolution prediction model, and child neurodevelopment was assessed by the Ages and Stages Questionnaire. Multivariable linear regression models, logistic regression models, linear discriminant analysis effect size, and random forest model were applied to explore the associations among PM2.5 exposure, GM colonization, and children's neurodevelopment. The present study revealed a negative correlation between PM2.5 exposure throughout pregnancy and child neurodevelopment. Prenatal PM2.5 exposure was associated with an increased risk of suspected developmental delay (SDD) (OR = 1.683, 95% CI: 1.138, 2.489) in infants aged 2 months. Additionally, potential operational taxonomic unit markers were identified for PM2.5-related neurotoxicity, demonstrating promising classification potential for early SDD screening (AUC = 71.27%). Prenatal PM2.5 exposure might disrupt the composition, richness, and evenness of meconium GM, thereby influencing cognitive development and the occurrence of SDD in offspring. Seven PM2.5-related genera, Ruminococcus gnavus group, Romboutsia, Burkholderiaceae Caballeronia Paraburkholderia, Blautia, Alistipes, Parabacteroides, and Bacteroides, were validated as correlated with prenatal PM2.5 exposure and the occurrence of SDD. Moreover, alterations of GM related to PM2.5 exposure and SDD might be accompanied by changes in functional pathways of amino acid, lipid, and vitamin metabolism as indicated by differentially enriched species in the Kyoto Encyclopedia of Genes and Genomes.
Collapse
Affiliation(s)
- Yang Liu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jieming Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xinyao Sui
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiufeng Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuyan Gui
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yue Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yaqi Xu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Weizhao Cao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Department of Environmental and Occupational Health, School of Public Health, Zhengzhou University, Henan 450001, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Soto Ocaña J, Friedman ES, Keenan O, Bayard NU, Ford E, Tanes C, Munneke MJ, Beavers WN, Skaar EP, Bittinger K, Zemel BS, Wu GD, Zackular JP. Metal availability shapes early life microbial ecology and community succession. mBio 2024; 15:e0153424. [PMID: 39440978 PMCID: PMC11558993 DOI: 10.1128/mbio.01534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
The gut microbiota plays a critical role in human health and disease. Microbial community assembly and succession early in life are influenced by numerous factors. In turn, assembly of this microbial community is known to influence the host, including immune system development, and has been linked to outcomes later in life. To date, the role of host-mediated nutritional immunity and metal availability in shaping microbial community assembly and succession early in life has not been explored in depth. Using a human infant cohort, we show that the metal-chelating protein calprotectin is highly abundant in infants. Taxa previously shown to be successful early colonizers of the infant gut, such as Enterococcus, Enterobacteriaceae, and Bacteroides, are highly resistant to experimental metal starvation in culture. Lactobacillus, meanwhile, is highly susceptible to metal restriction, pointing to a possible mechanism by which host-mediated metal limitation shapes the fitness of early colonizing taxa in the infant gut. We further demonstrate that formula-fed infants harbor markedly higher levels of metals in their gastrointestinal tract compared to breastfed infants. Formula-fed infants with high levels of metals harbor distinct microbial communities compared to breastfed infants, with higher levels of Enterococcus, Enterobacter, and Klebsiella, taxa which show increased resistance to the toxic effects of high metal concentrations. These data highlight a new paradigm in microbial community assembly and suggest an unappreciated role for nutritional immunity and dietary metals in shaping the earliest colonization events of the microbiota.IMPORTANCEEarly life represents a critical window for microbial colonization of the human gastrointestinal tract. Surprisingly, we still know little about the rules that govern the successful colonization of infants and the factors that shape the success of early life microbial colonizers. In this study, we report that metal availability is an important factor in the assembly and succession of the early life microbiota. We show that the host-derived metal-chelating protein, calprotectin, is highly abundant in infants and successful early life colonizers can overcome metal restriction. We further demonstrate that feeding modality (breastmilk vs formula) markedly impacts metal levels in the gut, potentially influencing microbial community succession. Our work suggests that metals, a previously unexplored aspect of early life ecology, may play a critical role in shaping the early events of microbiota assembly in infants.
Collapse
Affiliation(s)
- Joshua Soto Ocaña
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elliot S. Friedman
- Division of Gastroenterology & Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Orlaith Keenan
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nile U. Bayard
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eileen Ford
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew J. Munneke
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - William N. Beavers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- The Center for Microbial Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Babette S. Zemel
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology & Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Center for Microbial Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Kreuze K, Friman VP, Vatanen T. Mobile genetic elements: the hidden puppet masters underlying infant gut microbiome assembly? MICROBIOME RESEARCH REPORTS 2024; 4:7. [PMID: 40207272 PMCID: PMC11977359 DOI: 10.20517/mrr.2024.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 04/11/2025]
Abstract
The gut microbiota is important for healthy infant development. Part of the initial colonizing microbial strains originate from the maternal gut, and undergo a selective event, termed the "colonization bottleneck". While vertical mother-to-infant inheritance and subsequent colonization of bacteria have previously been studied, the role of mobile genetic elements (MGEs) in the infant gut microbiota assembly is unclear. In this perspective article, we discuss how horizontally and vertically transmitted phages and conjugative elements potentially have important roles in infant gut microbiota assembly and colonization through parasitic and mutualistic interactions with their bacterial hosts. While some of these MGEs are likely to be detrimental to their host survival, in other contexts, they may help bacteria colonize new niches, antagonize other bacteria, or protect themselves from other parasitic MGEs in the infant gut. As a result, the horizontal transfer of MGEs likely occurs at high rates in the infant gut, contributing to gene transfer between bacteria and affecting which bacteria can pass the colonization bottleneck. We conclude by highlighting the potential in silico, in vitro, and in vivo methodological approaches that could be employed to study the transmission and colonization dynamics of MGEs and bacteria in the infant gut.
Collapse
Affiliation(s)
- Kim Kreuze
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki FI-00014, Finland
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki FI-00014, Finland
| | - Ville-Petri Friman
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki FI-00014, Finland
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki FI-00014, Finland
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki FI-00014, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
12
|
Liu J, Chen Y, Laurent I, Yang P, Xiao X, Li X. Gestational diabetes exacerbates intrauterine microbial exposure induced intestinal microbiota change in offspring contributing to increased immune response. Nutr Diabetes 2024; 14:87. [PMID: 39424815 PMCID: PMC11489853 DOI: 10.1038/s41387-024-00346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND maternal health during pregnancy can affect the intestinal microbial community of offspring, but currently the impact of intrauterine environmental changes resulting from gestational diabetes mellitus (GDM) on the microbiota of offspring as well as its interaction with the immune system remains unclear. AIMS to explore the impact of intrauterine microbial exposure during pregnancy of gestational diabetes mellitus on the development of neonate's intestinal microbiota and activation of immune responses. METHODS Levels of lipopolysaccharides in cord blood from GDM and expression of microbial recognition-related proteins in the placenta were measured. To evaluate embryonic intestinal colonization, pregnant mice with GDM were administered with labeled Escherichia coli or Lactobacillus. The intestinal colonization of pups was analyzed through 16S rRNA gene sequencing and labeled microbial culture. Additionally, memory T lymphocyte and dendritic cell co-culture experiments were conducted to elucidate the immune memory of intestinal microbes during the embryonic stages. RESULT Gestational diabetes mellitus led to elevated umbilical cord blood LPS level and increased GFP labeled Escherichia coli in the offspring's intestine after gestational microbial exposure. The mouse model of GDM exhibited increased immune markers including TLR4, TLR5, IL-22 and IL-23 in the placenta and a recall response from memory T cells in offspring's intestines, with similar observations found in human experiments. Furthermore, reduced intestinal microbiome diversity and an increased ratio of Firmicutes/Bacteroidetes was found in GDM progeny, with the stability of bacterial colonization been interfered. CONCLUSIONS Our investigation has revealed a noteworthy correlation between gestational diabetes and intrauterine microbial exposure, as well as alterations in the neonatal microbiota and activation of immune responses. These findings highlight the gestational diabetes's role on offspring's gut microbiota and immune system interactions with early-life pathogen exposure.
Collapse
Affiliation(s)
- Juncheng Liu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Gastroenterology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yan Chen
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrinology and Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Irakoze Laurent
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yang
- Yongchuan Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiaoqiu Xiao
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xinyu Li
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Pharmacy, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Ren X, Clark RM, Bansah DA, Varner EN, Tiffany CR, Jaswal K, Geary JH, Todd OA, Winkelman JD, Friedman ES, Zemel BS, Wu GD, Zackular JP, DePas WH, Behnsen J, Palmer LD. Amino acid competition shapes Acinetobacter baumannii gut carriage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619093. [PMID: 39502362 PMCID: PMC11537318 DOI: 10.1101/2024.10.19.619093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Antimicrobial resistance is an urgent threat to human health. Asymptomatic colonization is often critical for persistence of antimicrobial-resistant pathogens. Gut colonization by the antimicrobial-resistant priority pathogen Acinetobacter baumannii is associated with increased risk of clinical infection. Ecological factors shaping A. baumannii gut colonization remain unclear. Here we show that A. baumannii and other pathogenic Acinetobacter evolved to utilize the amino acid ornithine, a non-preferred carbon source. A. baumannii utilizes ornithine to compete with the resident microbiota and persist in the gut in mice. Supplemental dietary ornithine promotes long-term fecal shedding of A. baumannii. By contrast, supplementation of a preferred carbon source-monosodium glutamate (MSG)-abolishes the requirement for A. baumannii ornithine catabolism. Additionally, we report evidence for diet promoting A. baumannii gut carriage in humans. Together, these results highlight that evolution of ornithine catabolism allows A. baumannii to compete with the microbiota in the gut, a reservoir for pathogen spread.
Collapse
Affiliation(s)
- Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - R. Mason Clark
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Dziedzom A. Bansah
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Elizabeth N. Varner
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Connor R. Tiffany
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kanchan Jaswal
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - John H. Geary
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Olivia A. Todd
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | | | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Babette S. Zemel
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Microbial Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - William H. DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Mostafavi Abdolmaleky H, Zhou JR. Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases. Antioxidants (Basel) 2024; 13:985. [PMID: 39199231 PMCID: PMC11351922 DOI: 10.3390/antiox13080985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
Gut dysbiosis, resulting from an imbalance in the gut microbiome, can induce excessive production of reactive oxygen species (ROS), leading to inflammation, DNA damage, activation of the immune system, and epigenetic alterations of critical genes involved in the metabolic pathways. Gut dysbiosis-induced inflammation can also disrupt the gut barrier integrity and increase intestinal permeability, which allows gut-derived toxic products to enter the liver and systemic circulation, further triggering oxidative stress, inflammation, and epigenetic alterations associated with metabolic diseases. However, specific gut-derived metabolites, such as short-chain fatty acids (SCFAs), lactate, and vitamins, can modulate oxidative stress and the immune system through epigenetic mechanisms, thereby improving metabolic function. Gut microbiota and diet-induced metabolic diseases, such as obesity, insulin resistance, dyslipidemia, and hypertension, can transfer to the next generation, involving epigenetic mechanisms. In this review, we will introduce the key epigenetic alterations that, along with gut dysbiosis and ROS, are engaged in developing metabolic diseases. Finally, we will discuss potential therapeutic interventions such as dietary modifications, prebiotics, probiotics, postbiotics, and fecal microbiota transplantation, which may reduce oxidative stress and inflammation associated with metabolic syndrome by altering gut microbiota and epigenetic alterations. In summary, this review highlights the crucial role of gut microbiota dysbiosis, oxidative stress, and inflammation in the pathogenesis of metabolic diseases, with a particular focus on epigenetic alterations (including histone modifications, DNA methylomics, and RNA interference) and potential interventions that may prevent or improve metabolic diseases.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
15
|
Bertero A, Banchi P, Del Carro A, Corrò M, Colitti B, Van Soom A, Bertolotti L, Rota A. Meconium microbiota in naturally delivered canine puppies. BMC Vet Res 2024; 20:363. [PMID: 39135043 PMCID: PMC11318152 DOI: 10.1186/s12917-024-04225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Microbial colonization during early life has a pivotal impact on the host health, shaping immune and metabolic functions, but little is known about timing and features of this process in dogs. The objectives of this study were to characterize the first step of intestinal microbiota development in naturally delivered canine puppies and to investigate its relationship with the maternal bacterial flora, using traditional culture and molecular analyses. Sixty puppies of two breeds, Appenzeller Cattle Dog (n = 3 dams) and Lagotto Romagnolo (n = 6), housed in the same breeding kennel, were included in the study. Swabs were collected in duplicate (for culture and for molecular analysis) from the dams' vagina and rectum at the end of parturition, from puppies' rectum, before maternal care, and from the environment (floor of the nursery and parturition box). RESULTS 93.3% meconium samples showed bacterial growth, limited to a few colonies in 57.0% of cases. High growth was detected for Enterococcus faecalis, which was the most frequently isolated bacterium. The genus Enterococcus was one of the most represented in the dams' rectum and vagina (88.9% and 55.6%, respectively). The genera Staphylococcus, Enterococcus, Escherichia and Proteus were also often isolated in meconium but were usually present in maternal samples as well, together with ubiquitous bacteria (Acinetobacter, Psychrobacter). In the environmental samples, just a few bacterial species were found, all with low microbial load. Additionally, bacteria of the phyla Proteobacteria, Firmicutes, and Actinobacteria were identified in meconium through molecular analysis, confirming the culture results and the early colonization of the newborn gut. Maternal, meconium and environmental samples had similar alpha diversity, while beta-diversity showed differences among families (i.e. a dam and her litter), and association indexes revealed a significant correlation between family members and between sample origin, suggesting a strong contribution of the maternal flora to the initial seeding of the canine neonatal gut and a strong individual dam imprint. CONCLUSION This study showed that the meconium of vaginally delivered puppies has its own microbiota immediately after birth, and that it is shaped by the dam, which gives a specific imprint to her litter.
Collapse
Affiliation(s)
- Alessia Bertero
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy.
| | - Penelope Banchi
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Angela Del Carro
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| | - Michela Corrò
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro (Padua), Italy
| | - Barbara Colitti
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Luigi Bertolotti
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| | - Ada Rota
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| |
Collapse
|
16
|
Vélez-Ixta JM, Juárez-Castelán CJ, Ramírez-Sánchez D, Lázaro-Pérez NDS, Castro-Arellano JJ, Romero-Maldonado S, Rico-Arzate E, Hoyo-Vadillo C, Salgado-Mancilla M, Gómez-Cruz CY, Krishnakumar A, Piña-Escobedo A, Benitez-Guerrero T, Pizano-Zárate ML, Cruz-Narváez Y, García-Mena J. Post Natal Microbial and Metabolite Transmission: The Path from Mother to Infant. Nutrients 2024; 16:1990. [PMID: 38999737 PMCID: PMC11243545 DOI: 10.3390/nu16131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The entero-mammary pathway is a specialized route that selectively translocates bacteria to the newborn's gut, playing a crucial role in neonatal development. Previous studies report shared bacterial and archaeal taxa between human milk and neonatal intestine. However, the functional implications for neonatal development are not fully understood due to limited evidence. This study aimed to identify and characterize the microbiota and metabolome of human milk, mother, and infant stool samples using high-throughput DNA sequencing and FT-ICR MS methodology at delivery and 4 months post-partum. Twenty-one mothers and twenty-five infants were included in this study. Our results on bacterial composition suggest vertical transmission of bacteria through breastfeeding, with major changes occurring during the first 4 months of life. Metabolite chemical characterization sheds light on the growing complexity of the metabolites. Further data integration and network analysis disclosed the interactions between different bacteria and metabolites in the biological system as well as possible unknown pathways. Our findings suggest a shared bacteriome in breastfed mother-neonate pairs, influenced by maternal lifestyle and delivery conditions, serving as probiotic agents in infants for their healthy development. Also, the presence of food biomarkers in infants suggests their origin from breast milk, implying selective vertical transmission of these features.
Collapse
Affiliation(s)
- Juan Manuel Vélez-Ixta
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| | - Carmen Josefina Juárez-Castelán
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| | - Daniela Ramírez-Sánchez
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| | - Noemí del Socorro Lázaro-Pérez
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| | - José Javier Castro-Arellano
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (J.J.C.-A.); (E.R.-A.); (M.S.-M.); (C.Y.G.-C.)
| | - Silvia Romero-Maldonado
- Unidad de Cuidados Intermedios al Recién Nacido, Instituto Nacional de Perinatología, Secretaría de Salud, Mexico City 11000, Mexico;
| | - Enrique Rico-Arzate
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (J.J.C.-A.); (E.R.-A.); (M.S.-M.); (C.Y.G.-C.)
| | - Carlos Hoyo-Vadillo
- Departamento de Farmacología, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico;
| | - Marisol Salgado-Mancilla
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (J.J.C.-A.); (E.R.-A.); (M.S.-M.); (C.Y.G.-C.)
| | - Carlos Yamel Gómez-Cruz
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (J.J.C.-A.); (E.R.-A.); (M.S.-M.); (C.Y.G.-C.)
| | - Aparna Krishnakumar
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| | - Tizziani Benitez-Guerrero
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| | - María Luisa Pizano-Zárate
- Coordinación de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Secretaría de Salud, Mexico City 11000, Mexico
- Unidad de Medicina Familiar No. 4, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (J.J.C.-A.); (E.R.-A.); (M.S.-M.); (C.Y.G.-C.)
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (J.M.V.-I.); (C.J.J.-C.); (D.R.-S.); (N.d.S.L.-P.); (A.K.); (A.P.-E.); (T.B.-G.)
| |
Collapse
|
17
|
Younge N. Influence of infant microbiome on health and development. Clin Exp Pediatr 2024; 67:224-231. [PMID: 37605538 PMCID: PMC11065641 DOI: 10.3345/cep.2023.00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023] Open
Abstract
The microbiome is a complex ecosystem comprising microbes, their genomes, and the surrounding environment. The microbiome plays a critical role in early human development, including maturation of the host immune system and gastrointestinal tract. Multiple factors, including diet, anti-biotic use, and other environmental exposures, influence the establishment of the microbiome during infancy. Numerous studies have identified associations between the microbiome and neonatal diseases, including necrotizing enterocolitis, sepsis, and malnutrition. Furthermore, there is compelling evidence that perturbation of the microbiome in early life can have lasting developmental effects that increase an individual's risk for immune and metabolic diseases in later life. Supplementation of the microbiome with probiotics reduces the risk of necrotizing enterocolitis and sepsis in at-risk infants. This review focuses on the structure and function of the infant microbiome, the environmental and clinical factors that influence its assembly, and its impact on infant health and development.
Collapse
|
18
|
García-Bayona L, Said N, Coyne MJ, Flores K, Elmekki NM, Sheahan ML, Camacho AG, Hutt K, Yildiz FH, Kovács ÁT, Waldor MK, Comstock LE. A pervasive large conjugative plasmid mediates multispecies biofilm formation in the intestinal microbiota increasing resilience to perturbations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.590671. [PMID: 38746121 PMCID: PMC11092513 DOI: 10.1101/2024.04.29.590671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Although horizontal gene transfer is pervasive in the intestinal microbiota, we understand only superficially the roles of most exchanged genes and how the mobile repertoire affects community dynamics. Similarly, little is known about the mechanisms underlying the ability of a community to recover after a perturbation. Here, we identified and functionally characterized a large conjugative plasmid that is one of the most frequently transferred elements among Bacteroidales species and is ubiquitous in diverse human populations. This plasmid encodes both an extracellular polysaccharide and fimbriae, which promote the formation of multispecies biofilms in the mammalian gut. We use a hybridization-based approach to visualize biofilms in clarified whole colon tissue with unprecedented 3D spatial resolution. These biofilms increase bacterial survival to common stressors encountered in the gut, increasing strain resiliency, and providing a rationale for the plasmid's recent spread and high worldwide prevalence.
Collapse
|
19
|
Xiao Y, Wang Y, Tong B, Gu Y, Zhou X, Zhu N, Xu X, Yin X, Kou Y, Tan Y, Wang J, Li W. Eubacterium rectale is a potential marker of altered gut microbiota in psoriasis and psoriatic arthritis. Microbiol Spectr 2024; 12:e0115423. [PMID: 38441468 PMCID: PMC10986482 DOI: 10.1128/spectrum.01154-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 01/27/2024] [Indexed: 04/06/2024] Open
Abstract
Previous studies have profiled the gut microbiota among psoriatic patients compared to that among healthy individuals. However, a comprehensive understanding of the magnitude, direction, and detailed compositional and functional profiles remains limited. Additionally, research exploring the gut microbiota in the context of both plaque psoriasis (PsO) and psoriatic arthritis (PsA) is lacking. To assess the taxonomic and functional characteristics of the gut microbiota in PsO and PsA patients and investigate potential links between the gut microbiota and disease pathogenesis. We collected fecal samples from 70 psoriatic patients (44 PsO and 26 PsA) and 25 age- and gender-matched healthy controls (HC) and employed deep metagenomic sequencing to characterize their gut microbiota. We noted significant alternations in the gut microbiota compositions of both PsO and PsA patients compared to those of HC. Despite limited effect sizes in alpha diversity (12.3% reduction of microbial richness but unchanged evenness in psoriatic patients) and beta diversity (disease accounts for 3.5% of total variations), we consistently observed substantial reductions of Eubacterium rectale in both PsO and PsA patients, with PsA patients exhibiting even lower levels of E. rectale than PsO patients. Additionally, two Alistipes species were also depleted in psoriatic patients. These microorganisms are known to play crucial roles in carbohydrate metabolism pathways, mainly producing short-chain fatty acids with anti-inflammatory effects. Overall, our observations supplemented the profiling of altered gut microbiota in patients with PsO and PsA at the species level and described a link between the dominant short-chain fatty acid-producing bacterial species and systemic immunity in psoriatic patients. IMPORTANCE In this observational clinical study with sufficient sample size and metagenomic sequencing to profile the gut microbiota, we identified consistent signals of the depleted abundance of Eubacterium rectale and related functional genes among psoriatic patients, including those with psoriatic arthritis. E. rectale may serve as an ecologically important functional unit in the gut microbiota, holding potential as a diagnostic marker and target for therapeutic interventions to achieve lasting effects. Our findings provide comprehensive gut microbiota profiling in psoriasis, resolving previous contradictions and generating new hypotheses for further investigation. These insights may significantly impact psoriasis management and related conditions.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiyi Wang
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Yuanxia Gu
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingli Zhou
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | | - Wei Li
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Burcham ZM, Belk AD, McGivern BB, Bouslimani A, Ghadermazi P, Martino C, Shenhav L, Zhang AR, Shi P, Emmons A, Deel HL, Xu ZZ, Nieciecki V, Zhu Q, Shaffer M, Panitchpakdi M, Weldon KC, Cantrell K, Ben-Hur A, Reed SC, Humphry GC, Ackermann G, McDonald D, Chan SHJ, Connor M, Boyd D, Smith J, Watson JMS, Vidoli G, Steadman D, Lynne AM, Bucheli S, Dorrestein PC, Wrighton KC, Carter DO, Knight R, Metcalf JL. A conserved interdomain microbial network underpins cadaver decomposition despite environmental variables. Nat Microbiol 2024; 9:595-613. [PMID: 38347104 PMCID: PMC10914610 DOI: 10.1038/s41564-023-01580-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/08/2023] [Indexed: 03/07/2024]
Abstract
Microbial breakdown of organic matter is one of the most important processes on Earth, yet the controls of decomposition are poorly understood. Here we track 36 terrestrial human cadavers in three locations and show that a phylogenetically distinct, interdomain microbial network assembles during decomposition despite selection effects of location, climate and season. We generated a metagenome-assembled genome library from cadaver-associated soils and integrated it with metabolomics data to identify links between taxonomy and function. This universal network of microbial decomposers is characterized by cross-feeding to metabolize labile decomposition products. The key bacterial and fungal decomposers are rare across non-decomposition environments and appear unique to the breakdown of terrestrial decaying flesh, including humans, swine, mice and cattle, with insects as likely important vectors for dispersal. The observed lockstep of microbial interactions further underlies a robust microbial forensic tool with the potential to aid predictions of the time since death.
Collapse
Affiliation(s)
- Zachary M Burcham
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Aeriel D Belk
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Animal Sciences, Auburn University, Auburn, AL, USA
| | - Bridget B McGivern
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amina Bouslimani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Parsa Ghadermazi
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Liat Shenhav
- Center for Studies in Physics and Biology, Rockefeller University, New York, NY, USA
- Institute for Systems Genetics, New York Grossman School of Medicine, New York University, New York, NY, USA
- Department of Computer Science, New York University, New York, NY, USA
| | - Anru R Zhang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Pixu Shi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Alexandra Emmons
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Heather L Deel
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhenjiang Zech Xu
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Victoria Nieciecki
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Qiyun Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Morgan Panitchpakdi
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Kelly C Weldon
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Kalen Cantrell
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - Sasha C Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, USA
| | - Greg C Humphry
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Gail Ackermann
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Melissa Connor
- Forensic Investigation Research Station, Colorado Mesa University, Grand Junction, CO, USA
| | - Derek Boyd
- Forensic Anthropology Center, Department of Anthropology, University of Tennessee, Knoxville, TN, USA
- Department of Social, Cultural, and Justice Studies, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Jake Smith
- Forensic Anthropology Center, Department of Anthropology, University of Tennessee, Knoxville, TN, USA
- Mid-America College of Funeral Service, Jeffersonville, IN, USA
| | - Jenna M S Watson
- Forensic Anthropology Center, Department of Anthropology, University of Tennessee, Knoxville, TN, USA
| | - Giovanna Vidoli
- Forensic Anthropology Center, Department of Anthropology, University of Tennessee, Knoxville, TN, USA
| | - Dawnie Steadman
- Forensic Anthropology Center, Department of Anthropology, University of Tennessee, Knoxville, TN, USA
| | - Aaron M Lynne
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Sibyl Bucheli
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - David O Carter
- Laboratory of Forensic Taphonomy, Forensic Sciences Unit, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jessica L Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA.
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Daca A, Jarzembowski T. From the Friend to the Foe- Enterococcus faecalis Diverse Impact on the Human Immune System. Int J Mol Sci 2024; 25:2422. [PMID: 38397099 PMCID: PMC10888668 DOI: 10.3390/ijms25042422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Enterococcus faecalis is a bacterium which accompanies us from the first days of our life. As a commensal it produces vitamins, metabolizes nutrients, and maintains intestinal pH. All of that happens in exchange for a niche to inhabit. It is not surprising then, that the bacterium was and is used as an element of many probiotics and its positive impact on the human immune system and the body in general is hard to ignore. This bacterium has also a dark side though. The plasticity and relative ease with which one acquires virulence traits, and the ability to hide from or even deceive and use the immune system to spread throughout the body make E. faecalis a more and more dangerous opponent. The statistics clearly show its increasing role, especially in the case of nosocomial infections. Here we present the summarization of current knowledge about E. faecalis, especially in the context of its relations with the human immune system.
Collapse
Affiliation(s)
- Agnieszka Daca
- Department of Physiopathology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Tomasz Jarzembowski
- Department of Microbiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
22
|
Rimal B, Collins SL, Tanes CE, Rocha ER, Granda MA, Solanki S, Hoque NJ, Gentry EC, Koo I, Reilly ER, Hao F, Paudel D, Singh V, Yan T, Kim MS, Bittinger K, Zackular JP, Krausz KW, Desai D, Amin S, Coleman JP, Shah YM, Bisanz JE, Gonzalez FJ, Vanden Heuvel JP, Wu GD, Zemel BS, Dorrestein PC, Weinert EE, Patterson AD. Bile salt hydrolase catalyses formation of amine-conjugated bile acids. Nature 2024; 626:859-863. [PMID: 38326609 PMCID: PMC10881385 DOI: 10.1038/s41586-023-06990-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/18/2023] [Indexed: 02/09/2024]
Abstract
Bacteria in the gastrointestinal tract produce amino acid bile acid amidates that can affect host-mediated metabolic processes1-6; however, the bacterial gene(s) responsible for their production remain unknown. Herein, we report that bile salt hydrolase (BSH) possesses dual functions in bile acid metabolism. Specifically, we identified a previously unknown role for BSH as an amine N-acyltransferase that conjugates amines to bile acids, thus forming bacterial bile acid amidates (BBAAs). To characterize this amine N-acyltransferase BSH activity, we used pharmacological inhibition of BSH, heterologous expression of bsh and mutants in Escherichia coli and bsh knockout and complementation in Bacteroides fragilis to demonstrate that BSH generates BBAAs. We further show in a human infant cohort that BBAA production is positively correlated with the colonization of bsh-expressing bacteria. Lastly, we report that in cell culture models, BBAAs activate host ligand-activated transcription factors including the pregnane X receptor and the aryl hydrocarbon receptor. These findings enhance our understanding of how gut bacteria, through the promiscuous actions of BSH, have a significant role in regulating the bile acid metabolic network.
Collapse
Affiliation(s)
- Bipin Rimal
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Collins
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ceylan E Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edson R Rocha
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Megan A Granda
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Sumeet Solanki
- Department of Molecular & Integrative Physiology and Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Nushrat J Hoque
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Imhoi Koo
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Erin R Reilly
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Devendra Paudel
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Vishal Singh
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Min Soo Kim
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph P Zackular
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dhimant Desai
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | - Shantu Amin
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | - James P Coleman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology and Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Jordan E Bisanz
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- One Health Microbiome Center, Huck Life Sciences Institute, University Park, PA, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John P Vanden Heuvel
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
- INDIGO Biosciences, Inc., State College, PA, USA
| | - Gary D Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Emily E Weinert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
- One Health Microbiome Center, Huck Life Sciences Institute, University Park, PA, USA.
| |
Collapse
|
23
|
Lubin JB, Silverman MA, Planet PJ. Comparison of gnotobiotic communities reveals milk-adapted metabolic functions and unexpected amino acid metabolism by the pre-weaning microbiome. Gut Microbes 2024; 16:2387875. [PMID: 39133869 PMCID: PMC11321411 DOI: 10.1080/19490976.2024.2387875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/20/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
The intestinal microbiome during infancy and childhood has distinct metabolic functions and microbial composition compared to adults. We recently published a gnotobiotic mouse model of the pre-weaning microbiome (PedsCom), which retains a pre-weaning configuration during the transition from a milk-based diet to solid foods, leads to a stunted immune system, and increases susceptibility to enteric infection. Here, we compared the phylogenetic and metabolic relationships of the PedsCom consortium to two adult-derived gnotobiotic communities, Altered Schaedler Flora and Oligo-Mouse Microbiota 12 (Oligo-MM12). We find that PedsCom contains several unique functions relative to these adult-derived mouse consortia, including differences in carbohydrate and lipid metabolism genes. Notably, amino acid degradation metabolic modules are more prevalent among PedsCom isolates, which is in line with the ready availability of these nutrients in milk. Indeed, metabolomic analysis revealed significantly lower levels of total free amino acids and lower levels of specific amino acids abundant in milk (e.g. glutamine and glutamic acid) in the intestinal contents of adult PedsCom colonized mice compared to Oligo-MM12 controls. Metabolomic analysis of pre-weaning intestinal contents also showed lower levels of amino acids that are replete in milk compared to germ-free controls. Thus, enhanced amino acid metabolism is a prominent feature of the pre-weaning microbiome that may facilitate design of early-life microbiome interventions.
Collapse
Affiliation(s)
- Jean-Bernard Lubin
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael A. Silverman
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul J. Planet
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Turunen J, Tejesvi MV, Paalanne N, Pokka T, Amatya SB, Mishra S, Kaisanlahti A, Reunanen J, Tapiainen T. Investigating prenatal and perinatal factors on meconium microbiota: a systematic review and cohort study. Pediatr Res 2024; 95:135-145. [PMID: 37591927 PMCID: PMC10798900 DOI: 10.1038/s41390-023-02783-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND The first-pass meconium has been suggested as a proxy for the fetal gut microbiota because it is formed in utero. This systematic review and cohort study investigated how pre- and perinatal factors influence the composition of the meconium microbiota. METHODS We performed the systematic review using Covidence by searching PubMed, Scopus, and Web of Science databases with the search terms "meconium microbiome" and "meconium microbiota". In the cohort study, we performed 16 S rRNA gene sequencing on 393 meconium samples and analyzed the sequencing data using QIIME2. RESULTS Our systematic review identified 69 studies exploring prenatal factors, immediate perinatal factors, and microbial composition in relation to subsequent health of infants but gave only limited comparative evidence regarding factors related to the composition of the meconium microbiota. The cohort study pointed to a low-biomass microbiota consisting of the phyla Firmicutes, Proteobacteria and Actinobacteriota and the genera Staphylococcus, Escherichia-Shigella and Lactobacillus, and indicated that immediate perinatal factors affected the composition of the meconium microbiota more than did prenatal factors. CONCLUSIONS This finding supports the idea that the meconium microbiota mostly starts developing during delivery. IMPACT It is unclear when the first-pass meconium microbiota develops, and what are the sources of the colonization. In this systematic review, we found 69 studies exploring prenatal factors, immediate perinatal factors, and microbial composition relative to subsequent health of infants, but there was no consensus on the factors affecting the meconium microbiota development. In this cohort study, immediate perinatal factors markedly affected the meconium microbiota development while prenatal factors had little effect on it. As the meconium microbiota composition was influenced by immediate perinatal factors, the present study supports the idea that the initial gut microbiota develops mainly during delivery.
Collapse
Affiliation(s)
- Jenni Turunen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.
- Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Mysore V Tejesvi
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| | - Niko Paalanne
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Tytti Pokka
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Research Service Unit, Oulu University Hospital, Oulu, Finland
| | - Sajeen Bahadur Amatya
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Surbhi Mishra
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Anna Kaisanlahti
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Justus Reunanen
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Terhi Tapiainen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
25
|
Mokhtari P, Holzhausen EA, Chalifour BN, Schmidt KA, Babaei M, Machle CJ, Adise S, Alderete TL, Goran MI. Associations between Dietary Sugar and Fiber with Infant Gut Microbiome Colonization at 6 Mo of Age. J Nutr 2024; 154:152-162. [PMID: 37717629 PMCID: PMC10808822 DOI: 10.1016/j.tjnut.2023.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND The taxonomic composition of the gut microbiome undergoes rapid development during the first 2-3 y of life. Poor diet during complementary feeding has been associated with alterations in infant growth and compromised bone, immune system, and neurodevelopment, but how it may affect gut microbial composition is unknown. OBJECTIVES This cross-sectional study aimed to examine the associations between early-life nutrition and the developing infant gut microbiota at 6 mo of age. METHODS Latino mother-infant pairs from the Mother's Milk Study (n = 105) were included. Infant gut microbiota and dietary intake were analyzed at 6 mo of age using 16S ribosomal RNA amplicon sequencing and 24-h dietary recalls, respectively. Poisson generalized linear regression analysis was performed to examine associations between dietary nutrients and microbial community abundance while adjusting for infants' mode of delivery, antibiotics, infant feeding type, time of introduction of solid foods, energy intake, and body weight. A P value of <0.05 was used to determine the statistical significance in the study. RESULTS Infants with higher consumption of total sugar exhibited a lower relative abundance of the genera Bacteroides (β = -0.01; 95% CI: -0.02, -0.00; P = 0.03) and genus Clostridium belonging to the Lachnospiraceae family (β = -0.02; 95% CI: -0.03, -0.00; P = 0.01). In addition, a higher intake of free sugar (which excludes sugar from milk, dairy, and whole fruit) was associated with several bacteria at the genus level, including Parabacteroides genus (β = 0.03; 95% CI: 0.01, 0.05; P = 0.001). Total insoluble fiber intake was associated with favorable bacteria at the genus level such as Faecalibacterium (β = 0.28; 95% CI: 0.03, 0.52; P = 0.02) and Coprococcus (β = 0.28; 95% CI: 0.02, 0.52; P = 0.03). CONCLUSION These findings demonstrate that early-life dietary intake at 6 mo impacts the developing gut microbiome associated with the presence of both unfavorable gut microbes and dietary fiber-associated commensal microbes.
Collapse
Affiliation(s)
- Pari Mokhtari
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Elizabeth A Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Bridget N Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Kelsey A Schmidt
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Mahsa Babaei
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Christopher J Machle
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Shana Adise
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Michael I Goran
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
26
|
Flores JN, Lubin JB, Silverman MA. The case for microbial intervention at weaning. Gut Microbes 2024; 16:2414798. [PMID: 39468827 PMCID: PMC11540084 DOI: 10.1080/19490976.2024.2414798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
Weaning, the transition from a milk-based diet to solid food, coincides with the most significant shift in gut microbiome composition in the lifetime of most mammals. Notably, this period also marks a "window of opportunity" where key components of the immune system develop, and host-microbe interactions shape long-term immune homeostasis thereby influencing the risk of autoimmune and inflammatory diseases. This review provides a comprehensive analysis of the changes in nutrition, microbiota, and host physiology that occur during weaning. We explore how these weaning-associated processes differ across species, lifestyles, and regions of the intestine. Using prinicples of microbial ecology, we propose that the weaning transition is an optimal period for microbiome-targeted therapeutic interventions. Additionally, we suggest that replicating features of the weaning microbiome in adults could promote the successful engraftment of probiotics. Finally, we highlight key research areas that could deepen our understanding of the complex relationships between diet, commensal microbes, and the host, informing the development of more effective microbial therapies.
Collapse
Affiliation(s)
- Julia N. Flores
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Bernard Lubin
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael A. Silverman
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Zhang A, de Ángel Solá D, Acevedo Flores M, Cao L, Wang L, Kim JG, Tarr PI, Warner BB, Rosario Matos N, Wang L. Infants exposed in utero to Hurricane Maria have gut microbiomes with reduced diversity and altered metabolic capacity. mSphere 2023; 8:e0013423. [PMID: 37754563 PMCID: PMC10597457 DOI: 10.1128/msphere.00134-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023] Open
Abstract
The gut microbiome is a potentially important mechanism that links prenatal disaster exposures with increased disease risks. However, whether prenatal disaster exposures are associated with alterations in the infant's gut microbiome remains unknown. We established a birth cohort study named Hurricane as the Origin of Later Alterations in Microbiome (HOLA) after Hurricane Maria struck Puerto Rico in 2017. We enrolled vaginally born Latino term infants aged 2 to 6 months, including n = 29 infants who were exposed in utero to Hurricane Maria in Puerto Rico and n = 34 infants who were conceived at least 5 months after the hurricane as controls. Shotgun metagenomic sequencing was performed on infant stool swabs. Infants exposed in utero to Hurricane Maria had a reduced diversity in their gut microbiome compared to the control infants, which was mainly seen in the exclusively formula-fed group (P = 0.02). Four bacterial species, including Bacteroides vulgatus, Clostridium innocuum, Bifidobacterium pseudocatenulatum, and Clostridium neonatale, were depleted in the exposure group compared to the control group. Compositional differences in the microbial community and metabolic genes between the exposure and control groups were significant, which were driven by the formula feeding group (P = 0.02 for the microbial community and P = 0.008 for the metabolic genes). Metabolic modules involved in carbohydrate metabolism were reduced in the exposure group. Prenatal maternal exposure to Hurricane Maria was associated with a reduced gut commensal and an altered microbial composition and metabolic potential in the offspring's gut. Breastfeeding can adjust the composition of the gut microbiomes of exposed infants. IMPORTANCE Climate change is a serious issue that is affecting human health. With more frequent and intense weather disasters due to climate change, there is an urgent need to evaluate and understand the impacts of prenatal disaster exposures on the offspring. The prenatal stage is a particularly vulnerable stage for disease origination. However, the impact of prenatal weather disaster exposures on the offspring's gut microbiome has not been evaluated. Our HOLA study starts to fill this knowledge gap and provides novel insights into the microbiome as a mechanism that links prenatal disaster exposures with elevated disease risks. Our major finding that reduced microbial diversity and altered metabolic capacity are associated with prenatal hurricane exposures warrants further studies to evaluate the impact of weather disasters on the unborn.
Collapse
Affiliation(s)
- Ai Zhang
- Department of Medicine, Division of Allergy and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - David de Ángel Solá
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Midnela Acevedo Flores
- Department of Pediatrics and Obstetrics and Gynecology, San Juan City Hospital Research Unit, San Juan Hospital, San Juan, Puerto Rico
| | - Lijuan Cao
- Department of Medicine, Division of Allergy and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Josh G. Kim
- Department of Medicine, Division of Allergy and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Phillip I. Tarr
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Barbara B. Warner
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Nicolás Rosario Matos
- Department of Pediatrics and Obstetrics and Gynecology, San Juan City Hospital Research Unit, San Juan Hospital, San Juan, Puerto Rico
| | - Leyao Wang
- Department of Medicine, Division of Allergy and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Steininger H, Moltzau-Anderson J, Lynch SV. Contributions of the early-life microbiome to childhood atopy and asthma development. Semin Immunol 2023; 69:101795. [PMID: 37379671 DOI: 10.1016/j.smim.2023.101795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
The rapid rise in atopy and asthma in industrialized nations has led to the identification of early life environmental factors that promote these conditions and spurred research into how such exposures may mediate the trajectory to childhood disease development. Over the past decade, the human microbiome has emerged as a key determinant of human health. This is largely due to the increasing appreciation for the myriad of non-mutually exclusive mechanisms by which microbes tune and train host immunity. Microbiomes, particularly those in early life, are shaped by extrinsic and intrinsic factors, including many of the exposures known to influence allergy and asthma risk. This has led to the over-arching hypothesis that such exposures mediate their effect on childhood atopy and asthma by altering the functions and metabolic productivity of microbiomes that shape immune function during this critical developmental period. The capacity to study microbiomes at the genetic and molecular level in humans from the pre-natal period into childhood with well-defined clinical outcomes, offers an unprecedented opportunity to identify early-life and inter-generational determinants of atopy and asthma outcomes. Moreover, such studies provide an integrative microbiome research framework that can be applied to other chronic inflammatory conditions. This review attempts to capture key studies in the field that offer insights into the developmental origins of childhood atopy and asthma, providing novel insights into microbial mediators of maladaptive immunity and chronic inflammatory disease in childhood.
Collapse
Affiliation(s)
- Holly Steininger
- Division of Gastroenterology, University of California, San Francisco, USA; Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, USA
| | - Jacqueline Moltzau-Anderson
- Division of Gastroenterology, University of California, San Francisco, USA; Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, USA
| | - Susan V Lynch
- Division of Gastroenterology, University of California, San Francisco, USA; Benioff Center for Microbiome Medicine, Department of Medicine, University of California, San Francisco, USA.
| |
Collapse
|
29
|
Zhou L, Qiu W, Wang J, Zhao A, Zhou C, Sun T, Xiong Z, Cao P, Shen W, Chen J, Lai X, Zhao LH, Wu Y, Li M, Qiu F, Yu Y, Xu ZZ, Zhou H, Jia W, Liao Y, Retnakaran R, Krewski D, Wen SW, Clemente JC, Chen T, Xie RH, He Y. Effects of vaginal microbiota transfer on the neurodevelopment and microbiome of cesarean-born infants: A blinded randomized controlled trial. Cell Host Microbe 2023; 31:1232-1247.e5. [PMID: 37327780 DOI: 10.1016/j.chom.2023.05.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 06/18/2023]
Abstract
The microbiomes of cesarean-born infants differ from vaginally delivered infants and are associated with increased disease risks. Vaginal microbiota transfer (VMT) to newborns may reverse C-section-related microbiome disturbances. Here, we evaluated the effect of VMT by exposing newborns to maternal vaginal fluids and assessing neurodevelopment, as well as the fecal microbiota and metabolome. Sixty-eight cesarean-delivered infants were randomly assigned a VMT or saline gauze intervention immediately after delivery in a triple-blind manner (ChiCTR2000031326). Adverse events were not significantly different between the two groups. Infant neurodevelopment, as measured by the Ages and Stages Questionnaire (ASQ-3) score at 6 months, was significantly higher with VMT than saline. VMT significantly accelerated gut microbiota maturation and regulated levels of certain fecal metabolites and metabolic functions, including carbohydrate, energy, and amino acid metabolisms, within 42 days after birth. Overall, VMT is likely safe and may partially normalize neurodevelopment and the fecal microbiome in cesarean-delivered infants.
Collapse
Affiliation(s)
- Lepeng Zhou
- School of Nursing, Affiliated Foshan Maternity & Child Healthcare Hospital, Department of Laboratory Medicine in Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; School of Nursing; Department of Nursing, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528100, China; Department of Nursing, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| | - Wen Qiu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jie Wang
- School of Nursing; Department of Nursing, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528100, China
| | - Aihua Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chuhui Zhou
- School of Nursing; Department of Nursing, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528100, China
| | - Tao Sun
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Ziyu Xiong
- Department of Nursing, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| | - Peihua Cao
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei Shen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jingfen Chen
- School of Nursing; Department of Nursing, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528100, China
| | - Xiaolu Lai
- School of Nursing; Department of Nursing, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528100, China
| | - Liu-Hong Zhao
- School of Nursing; Department of Nursing, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528100, China
| | - Yue Wu
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Meng Li
- Department of Obstetrics, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| | - Feng Qiu
- Department of Laboratory Medicine, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhenjiang Zech Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; State Key Laboratory of Food Science and Technology, Institute of Nutrition and College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yan Liao
- Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | - Ravi Retnakaran
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Division of Endocrinology, University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Risk Science International, Ottawa, ON K1P 5J6, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Shi Wu Wen
- Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jose C Clemente
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Ri-Hua Xie
- School of Nursing; Department of Nursing, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528100, China.
| | - Yan He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Clinical Research Center for Laboratory Medicine, Guangzhou, Guangdong 510033, China.
| |
Collapse
|
30
|
St-Pierre B, Perez Palencia JY, Samuel RS. Impact of Early Weaning on Development of the Swine Gut Microbiome. Microorganisms 2023; 11:1753. [PMID: 37512925 PMCID: PMC10385335 DOI: 10.3390/microorganisms11071753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Considering that pigs are naturally weaned between 12 and 18 weeks of age, the common practice in the modern swine industry of weaning as early as between two and four weeks of age increases challenges during this transition period. Indeed, young pigs with an immature gut are suddenly separated from the sow, switched from milk to a diet consisting of only solid ingredients, and subjected to a new social hierarchy from mixing multiple litters. From the perspective of host gut development, weaning under these conditions causes a regression in histological structure as well as in digestive and barrier functions. While the gut is the main center of immunity in mature animals, the underdeveloped gut of early weaned pigs has yet to contribute to this function until seven weeks of age. The gut microbiota or microbiome, an essential contributor to the health and nutrition of their animal host, undergoes dramatic alterations during this transition, and this descriptive review aims to present a microbial ecology-based perspective on these events. Indeed, as gut microbial communities are dependent on cross-feeding relationships, the change in substrate availability triggers a cascade of succession events until a stable composition is reached. During this process, the gut microbiota is unstable and prone to dysbiosis, which can devolve into a diseased state. One potential strategy to accelerate maturation of the gut microbiome would be to identify microbial species that are critical to mature swine gut microbiomes, and develop strategies to facilitate their establishment in early post-weaning microbial communities.
Collapse
Affiliation(s)
- Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Jorge Yair Perez Palencia
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| |
Collapse
|
31
|
Fontaine F, Turjeman S, Callens K, Koren O. The intersection of undernutrition, microbiome, and child development in the first years of life. Nat Commun 2023; 14:3554. [PMID: 37322020 PMCID: PMC10272168 DOI: 10.1038/s41467-023-39285-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Undernutrition affects about one out of five children worldwide. It is associated with impaired growth, neurodevelopment deficits, and increased infectious morbidity and mortality. Undernutrition, however, cannot be solely attributed to a lack of food or nutrient deficiency but rather results from a complex mix of biological and environmental factors. Recent research has shown that the gut microbiome is intimately involved in the metabolism of dietary components, in growth, in the training of the immune system, and in healthy development. In this review, we look at these features in the first three years of life, which is a critical window for both microbiome establishment and maturation and child development. We also discuss the potential of the microbiome in undernutrition interventions, which could increase efficacy and improve child health outcomes.
Collapse
Affiliation(s)
- Fanette Fontaine
- Food and Agriculture Organization of the United Nations, Rome, Italy
- Université Paris- Cité, 75006, Paris, France
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Karel Callens
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
32
|
Golubkova A, Hunter CJ. Development of the Neonatal Intestinal Barrier, Microbiome, and Susceptibility to NEC. Microorganisms 2023; 11:1247. [PMID: 37317221 PMCID: PMC10221463 DOI: 10.3390/microorganisms11051247] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The function of the intestinal barrier is partially dependent on host maturity and the colonization patterns of the microbiome to which it is exposed. Premature birth and stressors of neonatal intensive care unit (NICU)-related support (e.g., antibiotics, steroids, etc.) can alter the host internal environment resulting in changes in the intestinal barrier. Pathogenic microbial proliferation and breach of the immature intestinal barrier are proposed to be crucial steps in the development of neonatal diseases such as necrotizing enterocolitis. This article will review the current literature on the intestinal barrier in the neonatal gut, the consequences of microbiome development for this defense system, and how prematurity can influence neonatal susceptibility to gastrointestinal infection.
Collapse
Affiliation(s)
| | - Catherine J. Hunter
- Division of Pediatric Surgery, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
33
|
Lubin JB, Green J, Maddux S, Denu L, Duranova T, Lanza M, Wynosky-Dolfi M, Flores JN, Grimes LP, Brodsky IE, Planet PJ, Silverman MA. Arresting microbiome development limits immune system maturation and resistance to infection in mice. Cell Host Microbe 2023; 31:554-570.e7. [PMID: 36996818 PMCID: PMC10935632 DOI: 10.1016/j.chom.2023.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/09/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Disruptions to the intestinal microbiome during weaning lead to negative effects on host immune function. However, the critical host-microbe interactions during weaning that are required for immune system development remain poorly understood. We find that restricting microbiome maturation during weaning stunts immune system development and increases susceptibility to enteric infection. We developed a gnotobiotic mouse model of the early-life microbiome Pediatric Community (PedsCom). These mice develop fewer peripheral regulatory T cells and less IgA, hallmarks of microbiota-driven immune system development. Furthermore, adult PedsCom mice retain high susceptibility to Salmonella infection, which is characteristic of young mice and children. Altogether, our work illustrates how the post-weaning transition in microbiome composition contributes to normal immune maturation and protection from infection. Accurate modeling of the pre-weaning microbiome provides a window into the microbial requirements for healthy development and suggests an opportunity to design microbial interventions at weaning to improve immune development in human infants.
Collapse
Affiliation(s)
- Jean-Bernard Lubin
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jamal Green
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Maddux
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lidiya Denu
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tereza Duranova
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew Lanza
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | - Julia N Flores
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Logan P Grimes
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, IFI, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul J Planet
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michael A Silverman
- Division of Infectious Disease, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Immunology Research Unit, GlaxoSmithKline, Collegeville, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Dos Anjos Borges LG, Pastuschek J, Heimann Y, Dawczynski K, Schleußner E, Pieper DH, Zöllkau J. Vaginal and neonatal microbiota in pregnant women with preterm premature rupture of membranes and consecutive early onset neonatal sepsis. BMC Med 2023; 21:92. [PMID: 36907851 PMCID: PMC10009945 DOI: 10.1186/s12916-023-02805-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Preterm premature rupture of membranes (PPROM), which is associated with vaginal dysbiosis, is responsible for up to one-third of all preterm births. Consecutive ascending colonization, infection, and inflammation may lead to relevant neonatal morbidity including early-onset neonatal sepsis (EONS). The present study aims to assess the vaginal microbial composition of PPROM patients and its development under standard antibiotic therapy and to evaluate the usefulness of the vaginal microbiota for the prediction of EONS. It moreover aims to decipher neonatal microbiota at birth as possible mirror of the in utero microbiota. METHODS As part of the PEONS prospective multicenter cohort study, 78 women with PPROM and their 89 neonates were recruited. Maternal vaginal and neonatal pharyngeal, rectal, umbilical cord blood, and meconium microbiota were analyzed by 16S rRNA gene sequencing. Significant differences between the sample groups were evaluated using permutational multivariate analysis of variance and differently distributed taxa by the Mann-Whitney test. Potential biomarkers for the prediction of EONS were analyzed using the MetaboAnalyst platform. RESULTS Vaginal microbiota at admission after PPROM were dominated by Lactobacillus spp. Standard antibiotic treatment triggers significant changes in microbial community (relative depletion of Lactobacillus spp. and relative enrichment of Ureaplasma parvum) accompanied by an increase in bacterial diversity, evenness and richness. The neonatal microbiota showed a heterogeneous microbial composition where meconium samples were characterized by specific taxa enriched in this niche. The vaginal microbiota at birth was shown to have the potential to predict EONS with Escherichia/Shigella and Facklamia as risk taxa and Anaerococcus obesiensis and Campylobacter ureolyticus as protective taxa. EONS cases could also be predicted at a reasonable rate from neonatal meconium communities with the protective taxa Bifidobacterium longum, Agathobacter rectale, and S. epidermidis as features. CONCLUSIONS Vaginal and neonatal microbiota analysis by 16S rRNA gene sequencing after PPROM may form the basis of individualized risk assessment for consecutive EONS. Further studies on extended cohorts are necessary to evaluate how far this technique may in future close a diagnostic gap to optimize and personalize the clinical management of PPROM patients. TRIAL REGISTRATION NCT03819192, ClinicalTrials.gov. Registered on January 28, 2019.
Collapse
Affiliation(s)
- Luiz Gustavo Dos Anjos Borges
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany
| | - Jana Pastuschek
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Yvonne Heimann
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Kristin Dawczynski
- Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Department of Pediatrics, Section Neonatology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | | | - Ekkehard Schleußner
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany.
| | - Janine Zöllkau
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
35
|
Johnson D, Letchumanan V, Thum CC, Thurairajasingam S, Lee LH. A Microbial-Based Approach to Mental Health: The Potential of Probiotics in the Treatment of Depression. Nutrients 2023; 15:nu15061382. [PMID: 36986112 PMCID: PMC10053794 DOI: 10.3390/nu15061382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Probiotics are currently the subject of intensive research pursuits and also represent a multi-billion-dollar global industry given their vast potential to improve human health. In addition, mental health represents a key domain of healthcare, which currently has limited, adverse-effect prone treatment options, and probiotics may hold the potential to be a novel, customizable treatment for depression. Clinical depression is a common, potentially debilitating condition that may be amenable to a precision psychiatry-based approach utilizing probiotics. Although our understanding has not yet reached a sufficient level, this could be a therapeutic approach that can be tailored for specific individuals with their own unique set of characteristics and health issues. Scientifically, the use of probiotics as a treatment for depression has a valid basis rooted in the microbiota-gut-brain axis (MGBA) mechanisms, which play a role in the pathophysiology of depression. In theory, probiotics appear to be ideal as adjunct therapeutics for major depressive disorder (MDD) and as stand-alone therapeutics for mild MDD and may potentially revolutionize the treatment of depressive disorders. Although there is a wide range of probiotics and an almost limitless range of therapeutic combinations, this review aims to narrow the focus to the most widely commercialized and studied strains, namely Lactobacillus and Bifidobacterium, and to bring together the arguments for their usage in patients with major depressive disorder (MDD). Clinicians, scientists, and industrialists are critical stakeholders in exploring this groundbreaking concept.
Collapse
Affiliation(s)
- Dinyadarshini Johnson
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Chern Choong Thum
- Department of Psychiatry, Hospital Sultan Abdul Aziz Shah, Persiaran Mardi-UPM, Serdang 43400, Malaysia
| | - Sivakumar Thurairajasingam
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| |
Collapse
|
36
|
Gomes R, Denison Kroschel A, Day S, Jansen R. High variation across E. coli hybrid isolates identified in metabolism-related biological pathways co-expressed with virulent genes. Gut Microbes 2023; 15:2228042. [PMID: 37417543 PMCID: PMC10332235 DOI: 10.1080/19490976.2023.2228042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Virulent genes present in Escherichia coli (E. coli) can cause significant human diseases. These enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC) isolates with virulent genes show different expression levels when grown under diverse laboratory conditions. In this research, we have performed differential gene expression analysis using publicly available RNA-seq data on three pathogenic E. coli hybrid isolates in an attempt to characterize the variation in gene interactions that are altered by the presence or absence of virulent factors within the genome. Almost 26.7% of the common genes across these strains were found to be differentially expressed. Out of the 88 differentially expressed genes with virulent factors identified from PATRIC, nine were common in all these strains. A combination of Weighted Gene Co-Expression Network Analysis and Gene Ontology Enrichment Analysis reveals significant differences in gene co-expression involving virulent genes common among the three investigated strains. The co-expression pattern is observed to be especially variable among biological pathways involving metabolism-related genes. This suggests a potential difference in resource allocation or energy generation across the three isolates based on genomic variation.
Collapse
Affiliation(s)
- Rahul Gomes
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | | | - Stephanie Day
- Department of Earth, Environment, and Geospatial Sciences, North Dakota State University, Fargo, ND, USA
| | - Rick Jansen
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
37
|
Mukhopadhyay S, Lee JJ, Hartman E, Woodford E, Dhudasia MB, Mattei LM, Daniel SG, Wade KC, Underwood MA, Bittinger K. Preterm infants at low risk for early-onset sepsis differ in early fecal microbiome assembly. Gut Microbes 2022; 14:2154091. [PMID: 36474348 PMCID: PMC9733690 DOI: 10.1080/19490976.2022.2154091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibiotics are administered near-universally to very low birth weight (VLBW) infants after birth for suspected early-onset sepsis (EOS). We previously identified a phenotypic group of VLBW infants, referred to as low-risk for EOS (LRE), whose risk of EOS is low enough to avoid routine antibiotic initiation. In this cohort study, we compared 18 such infants with 30 infants categorized as non-LRE to determine if the lower risk of pathogen transmission at birth is accompanied by differences in microbiome acquisition and development. We did shotgun metagenomic sequencing of 361 fecal samples obtained serially. LRE infants had a higher human-to-bacterial DNA ratio than non-LRE infants in fecal samples on days 1-3 after birth, confirming lower bacterial acquisition among LRE infants. The microbial diversity and composition in samples from days 4-7 differed between the groups with a predominance of Staphylococcus epidermidis in LRE infants and Enterobacteriaceae sp. in non-LRE infants. Compositional differences were congruent with the distribution of virulence factors and antibiotic resistant genes. After the first week, the overall composition was similar, but changes in relative abundance for several taxa with increasing age differed between groups. Of the nine late-onset bacteremia episodes, eight occurred in non-LRE infants. Species isolated from the blood culture was detected in the pre-antibiotic fecal samples of the infant for all episodes, though these species were also found in infants without bacteremia. In conclusion, LRE infants present a distinct pattern of microbiome development that is aligned with their low risk for EOS. Further investigation to determine the impact of these differences on later outcomes such as late-onset bacteremia is warranted.
Collapse
Affiliation(s)
- Sagori Mukhopadhyay
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States,Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States,Sagori Mukhopadhyay Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Roberts Center for Pediatric Research, 2716 South Street, Office 19-322, Philadelphia, PA19146, United States
| | - Jung-Jin Lee
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Erica Hartman
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States,Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Emily Woodford
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Miren B. Dhudasia
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States,Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Lisa M. Mattei
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Scott G. Daniel
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Kelly C. Wade
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Mark A. Underwood
- Department of Pediatrics, University of California Davis, Sacramento, California, United States
| | - Kyle Bittinger
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States,Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States,CONTACT Kyle Bittinger CHOP Microbiome Center, Children’s Hospital of Philadelphia, Roberts Center for Pediatric Research, 2716 South Street, Philadelphia, PA19146, United States
| |
Collapse
|
38
|
Bankole T, Winn H, Li Y. Dietary Impacts on Gestational Diabetes: Connection between Gut Microbiome and Epigenetic Mechanisms. Nutrients 2022; 14:nu14245269. [PMID: 36558427 PMCID: PMC9786016 DOI: 10.3390/nu14245269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common obstetric complications due to an increased level of glucose intolerance during pregnancy. The prevalence of GDM increases due to the obesity epidemic. GDM is also associated with an increased risk of gestational hypertension and preeclampsia resulting in elevated maternal and perinatal morbidity and mortality. Diet is one of the most important environmental factors associated with etiology of GDM. Studies have shown that the consumption of certain bioactive diets and nutrients before and during pregnancy might have preventive effects against GDM leading to a healthy pregnancy outcome as well as beneficial metabolic outcomes later in the offspring's life. Gut microbiome as a biological ecosystem bridges the gap between human health and diseases through diets. Maternal diets affect maternal and fetal gut microbiome and metabolomics profiles, which consequently regulate the host epigenome, thus contributing to later-life metabolic health in both mother and offspring. This review discusses the current knowledge regarding how epigenetic mechanisms mediate the interaction between maternal bioactive diets, the gut microbiome and the metabolome leading to improved metabolic health in both mother and offspring.
Collapse
Affiliation(s)
- Taiwo Bankole
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Hung Winn
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65212, USA
| | - Yuanyuan Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
- Correspondence:
| |
Collapse
|
39
|
Van de Vliet M, Joossens M. The Resemblance between Bacterial Gut Colonization in Pigs and Humans. Microorganisms 2022; 10:1831. [PMID: 36144433 PMCID: PMC9500663 DOI: 10.3390/microorganisms10091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Thorough understanding of the initial colonization process of human intestines is important to optimize the prevention of microbiota-associated diseases, and also to further improve the current microbial therapies. In recent years, therefore, colonization of the human gut has gained renewed interest. However, due to a lack of standardization of life events that might influence this early colonization process in humans, many generally accepted insights are based on deduction and assumption. In our review, we compare knowledge on colonization in humans with research in piglets, because the intestinal tract of pigs is remarkably similar to that of humans and the early-life events are more standardized. We assess potential similarities and challenge some concepts that have been widely accepted in human microbiota research. Bacterial colonization of the human gut is characterized by successive waves in a progressive process, to a complex gut microbiota community. After re-analyzing available data from piglets, we found that the bacterial colonization process is very similar in terms of the wave sequence and functionality of each wave. Moreover, based on the piglet data, we found that, in addition to external factors such as suckling and nutrition, the bacterial community itself appears to have a major influence on the colonization success of additional bacteria in the intestine. Thus, the colonization process in piglets might rely, at least in part, on niche dependency, an ecological principle to be considered in the intestinal colonization process in humans.
Collapse
Affiliation(s)
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology (WE10), Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
40
|
Dierikx T, Berkhout D, Eck A, Tims S, van Limbergen J, Visser D, de Boer M, de Boer N, Touw D, Benninga M, Schierbeek N, Visser L, Knol J, Roeselers G, de Vries J, de Meij T. Influence of timing of maternal antibiotic administration during caesarean section on infant microbial colonisation: a randomised controlled trial. Gut 2022; 71:1803-1811. [PMID: 34803023 PMCID: PMC9380480 DOI: 10.1136/gutjnl-2021-324767] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/02/2021] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Revised guidelines for caesarean section (CS) advise maternal antibiotic administration prior to skin incision instead of after umbilical cord clamping, unintentionally exposing the infant to antibiotics antenatally. We aimed to investigate if timing of intrapartum antibiotics contributes to the impairment of microbiota colonisation in CS born infants. DESIGN In this randomised controlled trial, women delivering via CS received antibiotics prior to skin incision (n=20) or after umbilical cord clamping (n=20). A third control group of vaginally delivering women (n=23) was included. Faecal microbiota was determined from all infants at 1, 7 and 28 days after birth and at 3 years by 16S rRNA gene sequencing and whole-metagenome shotgun sequencing. RESULTS Compared with vaginally born infants, profound differences were found in microbial diversity and composition in both CS groups in the first month of life. A decreased abundance in species belonging to the genera Bacteroides and Bifidobacterium was found with a concurrent increase in members belonging to the phylum Proteobacteria. These differences could not be observed at 3 years of age. No statistically significant differences were observed in taxonomic and functional composition of the microbiome between both CS groups at any of the time points. CONCLUSION We confirmed that microbiome colonisation is strongly affected by CS delivery. Our findings suggest that maternal antibiotic administration prior to CS does not result in a second hit on the compromised microbiome. Future, larger studies should confirm that antenatal antibiotic exposure in CS born infants does not aggravate colonisation impairment and impact long-term health.
Collapse
Affiliation(s)
- Thomas Dierikx
- Department of Paediatric Gastroenterology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands .,Department of Paediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Daniel Berkhout
- Department of Paediatric Gastroenterology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands,Department of Paediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Anat Eck
- Nutricia Research Center, Utrecht, The Netherlands
| | | | - Johan van Limbergen
- Department of Paediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands,Department of Paediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Douwe Visser
- Department of Neonatology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Marjon de Boer
- Department of Obstetrics and Gynaecology, Reproduction and Development, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Nanne de Boer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Daan Touw
- Department of Pharmaceutical Analysis, University of Groningen Groningen Research Institute of Pharmacy, Groningen, The Netherlands,Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marc Benninga
- Department of Paediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Nine Schierbeek
- Department of Paediatric Gastroenterology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Laura Visser
- Department of Obstetrics and Gynaecology, Reproduction and Development, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Jan Knol
- Nutricia Research Center, Utrecht, The Netherlands,Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Johanna de Vries
- Department of Obstetrics and Gynaecology, Reproduction and Development, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Tim de Meij
- Department of Paediatric Gastroenterology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands,Department of Paediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Ma Q, Gao F, Zhou L, Fan Y, Zhao B, Xi W, Wang C, Zhu F, Ma X, Wang W, Wang Y. Characterizing serum amino acids in schizophrenic patients: Correlations with gut microbes. J Psychiatr Res 2022; 153:125-133. [PMID: 35810602 DOI: 10.1016/j.jpsychires.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/02/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Amino acid abnormalities have been suggested to be a key pathophysiological mechanism in schizophrenia (SZ). Recently, gut microbes were found to be critically involved in mental and metabolic diseases. However, the relationship between serum amino acid levels and gut microbes in SZ is rarely studied. Here, we analyzed serum amino acid levels in 76 untreated SZ patients and 79 healthy controls (HC). Serum levels of 10 amino acids were significantly altered in patients with SZ. We further classified the cut-off values for serum arginine, leucine, glutamine, and methionine levels to distinguish SZ patients from controls. These classifiers were shown to be effective in another validation cohort (49 SZ and 48 HC). The correlation between serum amino acids and clinical symptoms and cognitive functions was also analyzed. Arginine, leucine, glutamine, and methionine levels were significantly correlated with clinical symptoms and cognitive impairments in SZ patients. By metagenome shotgun sequencing of fecal samples, we found that patients with SZ with a low level of serum amino acids have higher richness and evenness of the gut microbiota. At the genus level, the abundances of Mitsuokella and Oscillibacter are significantly abnormal. At the mOTU level, 15 mOTUs in the low-level SZ group were significantly different from the HC group. In addition, Mitsuokella multacida was correlated with glutamine and methionine, respectively. Our research revealed that alterations in serum amino acid levels are critically related to changes in gut microbiota composition in SZ patients. These findings may shed light on new strategies for the diagnosis and treatment of SZ.
Collapse
Affiliation(s)
- Qingyan Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Fengjie Gao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Lina Zhou
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yajuan Fan
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Binbin Zhao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Wenyu Xi
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Chuyao Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Feng Zhu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Wei Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| | - Yunpeng Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
42
|
Moya-Gonzálvez EM, Peña-Gil N, Rubio-del-Campo A, Coll-Marqués JM, Gozalbo-Rovira R, Monedero V, Rodríguez-Díaz J, Yebra MJ. Infant Gut Microbial Metagenome Mining of α-l-Fucosidases with Activity on Fucosylated Human Milk Oligosaccharides and Glycoconjugates. Microbiol Spectr 2022; 10:e0177522. [PMID: 35943155 PMCID: PMC9430343 DOI: 10.1128/spectrum.01775-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
The gastrointestinal microbiota members produce α-l-fucosidases that play key roles in mucosal, human milk, and dietary oligosaccharide assimilation. Here, 36 open reading frames (ORFs) coding for putative α-l-fucosidases belonging to glycosyl hydrolase family 29 (GH29) were identified through metagenome analysis of breast-fed infant fecal microbiome. Twenty-two of those ORFs showed a complete coding sequence with deduced amino acid sequences displaying the highest degree of identity with α-l-fucosidases from Bacteroides thetaiotaomicron, Bacteroides caccae, Phocaeicola vulgatus, Phocaeicola dorei, Ruminococcus gnavus, and Streptococcus parasanguinis. Based on sequence homology, 10 α-l-fucosidase genes were selected for substrate specificity characterization. The α-l-fucosidases Fuc18, Fuc19A, Fuc35B, Fuc39, and Fuc1584 showed hydrolytic activity on α1,3/4-linked fucose present in Lewis blood antigens and the human milk oligosaccharide (HMO) 3-fucosyllactose. In addition, Fuc1584 also hydrolyzed fucosyl-α-1,6-N-acetylglucosamine (6FN), a component of the core fucosylation of N-glycans. Fuc35A and Fuc193 showed activity on α1,2/3/4/6 linkages from H type-2, Lewis blood antigens, HMOs and 6FN. Fuc30 displayed activity only on α1,6-linked l-fucose, and Fuc5372 showed a preference for α1,2 linkages. Fuc2358 exhibited a broad substrate specificity releasing l-fucose from all the tested free histo-blood group antigens, HMOs, and 6FN. This latest enzyme also displayed activity in glycoconjugates carrying lacto-N-fucopentaose II (Lea) and lacto-N-fucopentaose III (Lex) and in the glycoprotein mucin. Fuc18, Fuc19A, and Fuc39 also removed l-fucose from neoglycoproteins and human α-1 acid glycoprotein. These results give insight into the great diversity of α-l-fucosidases from the infant gut microbiota, thus supporting the hypothesis that fucosylated glycans are crucial for shaping the newborn microbiota composition. IMPORTANCE α-l-Fucosyl residues are frequently present in many relevant glycans, such as human milk oligosaccharides (HMOs), histo-blood group antigens (HBGAs), and epitopes on cell surface glycoconjugate receptors. These fucosylated glycans are involved in a number of mammalian physiological processes, including adhesion of pathogens and immune responses. The modulation of l-fucose content in such processes may provide new insights and knowledge regarding molecular interactions and may help to devise new therapeutic strategies. Microbial α-l-fucosidases are exoglycosidases that remove α-l-fucosyl residues from free oligosaccharides and glycoconjugates and can be also used in transglycosylation reactions to synthesize oligosaccharides. In this work, α-l-fucosidases from the GH29 family were identified and characterized from the metagenome of fecal samples of breastfed infants. These enzymes showed different substrate specificities toward HMOs, HBGAs, naturally occurring glycoproteins, and neoglycoproteins. These novel glycosidase enzymes from the breast-fed infant gut microbiota, which resulted in a good source of α-l-fucosidases, have great biotechnological potential.
Collapse
Affiliation(s)
- Eva M. Moya-Gonzálvez
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Valencia, Spain
| | - Nazaret Peña-Gil
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- INCLIVA, Instituto de Investigación Sanitaría del Hospital Clínico de Valencia, Valencia, Spain
| | - Antonio Rubio-del-Campo
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Valencia, Spain
| | - José M. Coll-Marqués
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- INCLIVA, Instituto de Investigación Sanitaría del Hospital Clínico de Valencia, Valencia, Spain
| | - Vicente Monedero
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- INCLIVA, Instituto de Investigación Sanitaría del Hospital Clínico de Valencia, Valencia, Spain
| | - María J. Yebra
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Valencia, Spain
| |
Collapse
|
43
|
Di Profio E, Magenes VC, Fiore G, Agostinelli M, La Mendola A, Acunzo M, Francavilla R, Indrio F, Bosetti A, D’Auria E, Borghi E, Zuccotti G, Verduci E. Special Diets in Infants and Children and Impact on Gut Microbioma. Nutrients 2022; 14:3198. [PMID: 35956374 PMCID: PMC9370825 DOI: 10.3390/nu14153198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota is a complex system that starts to take shape early in life. Several factors influence the rise of microbial gut colonization, such as term and mode of delivery, exposure to antibiotics, maternal diet, presence of siblings and family members, pets, genetics, local environment, and geographical location. Breastfeeding, complementary feeding, and later dietary patterns during infancy and toddlerhood are major players in the proper development of microbial communities. Nonetheless, if dysbiosis occurs, gut microbiota may remain impaired throughout life, leading to deleterious consequences, such as greater predisposition to non-communicable diseases, more susceptible immune system and altered gut-brain axis. Children with specific diseases (i.e., food allergies, inborn errors of metabolism, celiac disease) need a special formula and later a special diet, excluding certain foods or nutrients. We searched on PubMed/Medline, Scopus and Embase for relevant pediatric studies published over the last twenty years on gut microbiota dietary patterns and excluded case reports or series and letters. The aim of this review is to highlight the changes in the gut microbiota in infants and children fed with special formula or diets for therapeutic requirements and, its potential health implications, with respect to gut microbiota under standard diets.
Collapse
Affiliation(s)
- Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Marta Agostinelli
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Alice La Mendola
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Miriam Acunzo
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Ruggiero Francavilla
- Pediatric Section, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Flavia Indrio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Alessandra Bosetti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Enza D’Auria
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Elisa Borghi
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20144 Milan, Italy
- Pediatric Clinical Research Center, Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20122 Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
44
|
Orchanian SB, Gauglitz JM, Wandro S, Weldon KC, Doty M, Stillwell K, Hansen S, Jiang L, Vargas F, Rhee KE, Lumeng JC, Dorrestein PC, Knight R, Kim JH, Song SJ, Swafford AD. Multiomic Analyses of Nascent Preterm Infant Microbiomes Differentiation Suggest Opportunities for Targeted Intervention. Adv Biol (Weinh) 2022; 6:e2101313. [PMID: 35652166 PMCID: PMC10321678 DOI: 10.1002/adbi.202101313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/01/2022] [Indexed: 01/28/2023]
Abstract
The first week after birth is a critical time for the establishment of microbial communities for infants. Preterm infants face unique environmental impacts on their newly acquired microbiomes, including increased incidence of cesarean section delivery and exposure to antibiotics as well as delayed enteral feeding and reduced human interaction during their intensive care unit stay. Using contextualized paired metabolomics and 16S sequencing data, the development of the gut, skin, and oral microbiomes of infants is profiled daily for the first week after birth, and it is found that the skin microbiome appears robust to early life perturbation, while direct exposure of infants to antibiotics, rather than presumed maternal transmission, delays microbiome development and prevents the early differentiation based on body site regardless of delivery mode. Metabolomic analyses identify the development of all gut metabolomes of preterm infants toward full-term infant profiles, but a significant increase of primary bile acid metabolism only in the non-antibiotic treated vaginally birthed late preterm infants. This study provides a framework for future multi-omic, multibody site analyses on these high-risk preterm infant populations and suggests opportunities for monitoring and intervention, with infant antibiotic exposure as the primary driver of delays in microbiome development.
Collapse
Affiliation(s)
- Stephanie B. Orchanian
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Present address: Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
- These authors contributed equally to this work
| | - Julia M. Gauglitz
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- These authors contributed equally to this work
| | - Stephen Wandro
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- These authors contributed equally to this work
| | - Kelly C. Weldon
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
| | - Megan Doty
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Present address: Neonatal Intensive Care Unit, Kapi’olani Medical Center for Women & Children, Honolulu, HI, USA
| | - Kristina Stillwell
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Present address: Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Shalisa Hansen
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Lingjing Jiang
- Division of Biostatistics, University of California San Diego, La Jolla, CA, USA
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Present address: Perinatal Institute, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kyung E. Rhee
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Julie C. Lumeng
- Department of Pediatrics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Pieter C. Dorrestein
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jae H. Kim
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Present address: Perinatal Institute, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Se Jin Song
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Austin D. Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
45
|
Yang Z, Liu X, Wu Y, Peng J, Wei H. Effect of the Microbiome on Intestinal Innate Immune Development in Early Life and the Potential Strategy of Early Intervention. Front Immunol 2022; 13:936300. [PMID: 35928828 PMCID: PMC9344006 DOI: 10.3389/fimmu.2022.936300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Early life is a vital period for mammals to be colonized with the microbiome, which profoundly influences the development of the intestinal immune function. For neonates to resist pathogen infection and avoid gastrointestinal illness, the intestinal innate immune system is critical. Thus, this review summarizes the development of the intestinal microbiome and the intestinal innate immune barrier, including the intestinal epithelium and immune cells from the fetal to the weaning period. Moreover, the impact of the intestinal microbiome on innate immune development and the two main way of early-life intervention including probiotics and fecal microbiota transplantation (FMT) also are discussed in this review. We hope to highlight the crosstalk between early microbial colonization and intestinal innate immunity development and offer some information for early intervention.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangchen Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanting Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
46
|
Ma B, Sundararajan S, Nadimpalli G, France M, McComb E, Rutt L, Lemme-Dumit JM, Janofsky E, Roskes LS, Gajer P, Fu L, Yang H, Humphrys M, Tallon LJ, Sadzewicz L, Pasetti MF, Ravel J, Viscardi RM. Highly Specialized Carbohydrate Metabolism Capability in Bifidobacterium Strains Associated with Intestinal Barrier Maturation in Early Preterm Infants. mBio 2022; 13:e0129922. [PMID: 35695455 PMCID: PMC9239261 DOI: 10.1128/mbio.01299-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
Abstract
"Leaky gut," or high intestinal barrier permeability, is common in preterm newborns. The role of the microbiota in this process remains largely uncharacterized. We employed both short- and long-read sequencing of the 16S rRNA gene and metagenomes to characterize the intestinal microbiome of a longitudinal cohort of 113 preterm infants born between 240/7 and 326/7 weeks of gestation. Enabled by enhanced taxonomic resolution, we found that a significantly increased abundance of Bifidobacterium breve and a diet rich in mother's breastmilk were associated with intestinal barrier maturation during the first week of life. We combined these factors using genome-resolved metagenomics and identified a highly specialized genetic capability of the Bifidobacterium strains to assimilate human milk oligosaccharides and host-derived glycoproteins. Our study proposes mechanistic roles of breastmilk feeding and intestinal microbial colonization in postnatal intestinal barrier maturation; these observations are critical toward advancing therapeutics to prevent and treat hyperpermeable gut-associated conditions, including necrotizing enterocolitis (NEC). IMPORTANCE Despite improvements in neonatal intensive care, necrotizing enterocolitis (NEC) remains a leading cause of morbidity and mortality. "Leaky gut," or intestinal barrier immaturity with elevated intestinal permeability, is the proximate cause of susceptibility to NEC. Early detection and intervention to prevent leaky gut in "at-risk" preterm neonates are critical for decreasing the risk of potentially life-threatening complications like NEC. However, the complex interactions between the developing gut microbial community, nutrition, and intestinal barrier function remain largely uncharacterized. In this study, we reveal the critical role of a sufficient breastmilk feeding volume and the specialized carbohydrate metabolism capability of Bifidobacterium in the coordinated postnatal improvement of the intestinal barrier. Determining the clinical and microbial biomarkers that drive the intestinal developmental disparity will inform early detection and novel therapeutic strategies to promote appropriate intestinal barrier maturation and prevent NEC and other adverse health conditions in preterm infants.
Collapse
Affiliation(s)
- Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sripriya Sundararajan
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gita Nadimpalli
- Department of Epidemiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elias McComb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lindsay Rutt
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jose M. Lemme-Dumit
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elise Janofsky
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa S. Roskes
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Li Fu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hongqiu Yang
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mike Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Luke J. Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcela F. Pasetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rose M. Viscardi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Michel C, Blottière HM. Neonatal Programming of Microbiota Composition: A Plausible Idea That Is Not Supported by the Evidence. Front Microbiol 2022; 13:825942. [PMID: 35783422 PMCID: PMC9247513 DOI: 10.3389/fmicb.2022.825942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Underpinning the theory "developmental origins of health and disease" (DOHaD), evidence is accumulating to suggest that the risks of adult disease are in part programmed by exposure to environmental factors during the highly plastic "first 1,000 days of life" period. An elucidation of the mechanisms involved in this programming is challenging as it would help developing new strategies to promote adult health. The intestinal microbiome is proposed as a long-lasting memory of the neonatal environment. This proposal is supported by indisputable findings such as the concomitance of microbiota assembly and the first 1,000-day period, the influence of perinatal conditions on microbiota composition, and the impact of microbiota composition on host physiology, and is based on the widely held but unconfirmed view that the microbiota is long-lastingly shaped early in life. In this review, we examine the plausibility of the gut microbiota being programmed by the neonatal environment and evaluate the evidence for its validity. We highlight that the capacity of the pioneer bacteria to control the implantation of subsequent bacteria is supported by both theoretical principles and statistical associations, but remains to be demonstrated experimentally. In addition, our critical review of the literature on the long-term repercussions of selected neonatal modulations of the gut microbiota indicates that sustained programming of the microbiota composition by neonatal events is unlikely. This does not exclude the microbiota having a role in DOHaD due to a possible interaction with tissue and organ development during the critical windows of neonatal life.
Collapse
Affiliation(s)
| | - Hervé M. Blottière
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, France
| |
Collapse
|
48
|
Metagenomic profiles of the early life microbiome of Indonesian inpatient neonates and their influence on clinical characteristics. Sci Rep 2022; 12:9413. [PMID: 35672441 PMCID: PMC9174262 DOI: 10.1038/s41598-022-13496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
Determining the initial normal neonatal gut microbiome is challenging. The debate regarding the sterile fetal environment is still ongoing. Therefore, studying and comparing normal and dysbiotic microbiomes requires the elucidation of both the fetal and infant microbiomes. Factors influencing the normal microbiome also include regional and genetic factors specific to different countries. Determining the normal microbiome population in our center and their association with the clinical conditions of infants is helpful as a tool for both the prevention and treatment of related diseases during neonatal care. Here, we employed metagenomic sequencing to characterize meconium and the subsequent early-life gut microbiome of preterm neonates in Jakarta, Indonesia. Microbiome diversity and complexity was higher in the meconium and on day 4 than on day 7. At the genus level, the most abundant genus overall was unidentified Enterobacteriaceae, with meconium samples dominated by Ureaplasma, day 4 fecal samples dominated by Staphylococcus, and day 7 samples dominated by Clostridiales, while at the phylum level the most abundant was Proteobacteria and Firmicutes. Perinatal factors of PROM and mother’s diet influenced the meconium microbiome, while day 4 and day 7 microbiome was associated with bacteremia and early administration of antibiotics. One of our sample sets was derived from triplets, and they had varying diversity despite being triplets. These data are valuable for understanding the formation of a healthy microbiome specific to neonates and devising a strategy to improve both the gut health and related clinical outcomes of the neonate.
Collapse
|
49
|
Dynamic Distribution of Gut Microbiota in Pigs at Different Growth Stages: Composition and Contribution. Microbiol Spectr 2022; 10:e0068821. [PMID: 35583332 PMCID: PMC9241710 DOI: 10.1128/spectrum.00688-21] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fully understanding the dynamic distribution of the gut microbiota in pigs is essential, as gut microorganisms play a fundamental role in physiological processes, immunity, and the metabolism of nutrients by the host. Here, we first summarize the characteristics and the dynamic shifts in the gut microbial community of pigs at different ages based on the results of 63 peer-review publications. Then a meta-analysis based on the sequences from 16 studies with accession numbers in the GenBank database is conducted to verify the characteristics of the gut microbiota in healthy pigs. A dynamic shift is confirmed in the gut microbiota of pigs at different ages and growth phases. In general, Bacteroides, Escherichia, Clostridium, Lactobacillus, Fusobacterium, and Prevotella are dominant in piglets before weaning, then Prevotella and Aneriacter shift to be the predominant genera with Fusobacterium, Lactobacillus, and Miscellaneous as comparative minors in postweaned pigs. A number of 19 bacterial genera, including Bacteroides, Prevotella, and Lactobacillus can be found in more than 90% of pigs and three enterotypes can be identified in all pigs at different ages, suggesting there is a “core” microbiota in the gut of healthy pigs, which can be a potential target for nutrition or health regulation. The “core” members benefit the growth and gut health of the host. These findings help to define an “optimal” gut microbial profile for assessing, or improving, the performance and health status of pigs at different growth stages. IMPORTANCE The ban on feed antibiotics by more and more countries, and the expected ban on ZnO in feed supplementation from 2022 in the EU, urge researchers and pig producers to search for new alternatives. One possible alternative is to use the so-called “next-generation probiotics (NGPs)” derived from gastrointestinal tract. In this paper, we reveal that a total of 19 “core” bacterial genera including Bacteroides, Prevotella, and Lactobacillus etc., can be found in more than 90% of healthy pigs across different ages. These identified genera may probably be the potential candidates of NGPs or the potential target of microflora regulation. Adding substrates preferred by these target microbes will help to increase the abundance of specific symbiotic species and benefit the gut health of pigs. Further research targeting these “core” microbes and the dynamic distribution of microbiota, as well as the related function is of great importance in swine production.
Collapse
|
50
|
Liang G, Gao H, Bushman FD. The pediatric virome in health and disease. Cell Host Microbe 2022; 30:639-649. [PMID: 35550667 DOI: 10.1016/j.chom.2022.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
Abstract
Associations between the global microbiome and diseases of children have been studied extensively; however, research on the viral component of the microbiome, the "virome," is less advanced. The analysis of disease associations with the virome is often technically challenging, requiring a close examination of the "virome dark matter." The gut is a particularly rich source of viral particles, and now multiple studies have reported intriguing associations of the virome with childhood diseases. For example, virome studies have elucidated new lineages of gut viruses that appear to be tightly associated with childhood diarrhea, and consistent patterns are starting to emerge from virome studies in pediatric IBD. In this review, we summarize the methods for studying the virome and recent research on the nature of the virome during childhood, focusing on specific studies of the intestinal virome in pediatric diseases.
Collapse
Affiliation(s)
- Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| | - Hongyan Gao
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA.
| |
Collapse
|