1
|
Chen Y, Hu J, Zhang Y, Peng L, Li X, Li C, Wu X, Wang C. Epilepsy therapy beyond neurons: Unveiling astrocytes as cellular targets. Neural Regen Res 2026; 21:23-38. [PMID: 39819836 PMCID: PMC12094549 DOI: 10.4103/nrr.nrr-d-24-01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/16/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025] Open
Abstract
Epilepsy is a leading cause of disability and mortality worldwide. However, despite the availability of more than 20 antiseizure medications, more than one-third of patients continue to experience seizures. Given the urgent need to explore new treatment strategies for epilepsy, recent research has highlighted the potential of targeting gliosis, metabolic disturbances, and neural circuit abnormalities as therapeutic strategies. Astrocytes, the largest group of nonneuronal cells in the central nervous system, play several crucial roles in maintaining ionic and energy metabolic homeostasis in neurons, regulating neurotransmitter levels, and modulating synaptic plasticity. This article briefly reviews the critical role of astrocytes in maintaining balance within the central nervous system. Building on previous research, we discuss how astrocyte dysfunction contributes to the onset and progression of epilepsy through four key aspects: the imbalance between excitatory and inhibitory neuronal signaling, dysregulation of metabolic homeostasis in the neuronal microenvironment, neuroinflammation, and the formation of abnormal neural circuits. We summarize relevant basic research conducted over the past 5 years that has focused on modulating astrocytes as a therapeutic approach for epilepsy. We categorize the therapeutic targets proposed by these studies into four areas: restoration of the excitation-inhibition balance, reestablishment of metabolic homeostasis, modulation of immune and inflammatory responses, and reconstruction of abnormal neural circuits. These targets correspond to the pathophysiological mechanisms by which astrocytes contribute to epilepsy. Additionally, we need to consider the potential challenges and limitations of translating these identified therapeutic targets into clinical treatments. These limitations arise from interspecies differences between humans and animal models, as well as the complex comorbidities associated with epilepsy in humans. We also highlight valuable future research directions worth exploring in the treatment of epilepsy and the regulation of astrocytes, such as gene therapy and imaging strategies. The findings presented in this review may help open new therapeutic avenues for patients with drug-resistant epilepsy and for those suffering from other central nervous system disorders associated with astrocytic dysfunction.
Collapse
Affiliation(s)
- Yuncan Chen
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiayi Hu
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lulu Peng
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Li
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xunyi Wu
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Cong Wang
- Shanghai Fifth People’s Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Shanghai, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Wang Z, Li S, Wu D. Canine EEG helps human: cross-species and cross-modality epileptic seizure detection via multi-space alignment. Natl Sci Rev 2025; 12:nwaf086. [PMID: 40330047 PMCID: PMC12051906 DOI: 10.1093/nsr/nwaf086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 05/08/2025] Open
Abstract
Epilepsy significantly impacts global health, affecting about 65 million people worldwide, along with various animal species. The diagnostic processes of epilepsy are often hindered by the transient and unpredictable nature of seizures. Here we propose a multi-space alignment approach based on cross-species and cross-modality electroencephalogram (EEG) data to enhance the detection capabilities and understanding of epileptic seizures. By employing deep learning techniques, including domain adaptation and knowledge distillation, our framework aligns cross-species and cross-modality EEG signals to enhance the detection capability beyond traditional within-species and within-modality models. Experiments on multiple surfaces and intracranial EEG datasets of humans and canines demonstrated substantial improvements in detection accuracy, achieving over 90% AUC scores for cross-species and cross-modality seizure detection with extremely limited labeled data from the target species/modality. To our knowledge, this is the first study that demonstrates the effectiveness of integrating heterogeneous data from different species and modalities to improve EEG-based seizure detection performance. This is a pilot study that provides insights into the challenges and potential of multi-species and multi-modality data integration, offering an effective solution for future work to collect huge EEG data to train large brain models.
Collapse
Affiliation(s)
- Ziwei Wang
- Ministry of Education Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Brain-inspired Intelligent Systems, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siyang Li
- Ministry of Education Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Brain-inspired Intelligent Systems, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongrui Wu
- Ministry of Education Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Brain-inspired Intelligent Systems, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Wang C, Li Z, Zhu X, Sun W, Ding Y, Duan W, Wang D, Jiang Y, Chen M, Chen Y, Hu J, Cai Z, Zhao J, Wang J, Fan Z, Zheng F, Zhou X, Xie F, Zhang J, Guan Y, Yan K, Lei Z, Wang Q, Wang L, Xiao X, Zheng H, Chen L, Li C, Mao Y. Ultrabright ratiometric Raman-guided epilepsy surgery by intraoperatively visualizing proinflammatory microglia. Cell Rep Med 2025:102155. [PMID: 40449482 DOI: 10.1016/j.xcrm.2025.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/29/2025] [Accepted: 05/06/2025] [Indexed: 06/03/2025]
Abstract
Resective surgery is an effective approach for long-term seizure control in drug-resistant focal epilepsy when the epileptic focus (EF) can be accurately delineated and removed. However, intraoperative mapping of EF with electrocorticography is laborious, time-consuming, and highly vulnerable to the effects of anesthesia. Here, we demonstrated that activated microglia can be reliable biomarkers for EF localization. Leveraging a newly developed ratiometric Raman nanosensor, ultraHOCls, we successfully visualize proinflammatory microglia in live epileptic mice, allowing for precise EF delineation without the interference of anesthesia. Compared to electrocorticography-guided surgery, ultraHOCl-guided surgery results in a substantial 61% reduction in total seizure burden in epileptic mouse models. Notably, ultraHOCls sprayed on freshly excised human brain tissues can effectively discriminate epileptic regions from non-epileptic tissues with high sensitivity (94.89%) and specificity (93.3%). This work provides an alternative strategy for delineating the EF intraoperatively, potentially revolutionizing surgery outcomes in epilepsy patients.
Collapse
Affiliation(s)
- Cong Wang
- MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China; Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen 518055, China.
| | - Zhi Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Wanbing Sun
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Ding
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjia Duan
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine (21DZ2270800), Shanghai Key Laboratory of Forensic Medicine, Key Laboratory of Forensic Science, Ministry of Justice, 200063 Shanghai, China
| | - Difei Wang
- Department of Neurosurgery, Kings College Hospital NHS Foundation Trust, Denmark Hill, London, UK
| | - Yiqing Jiang
- MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuncan Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiayi Hu
- MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheping Cai
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, China
| | - Jing Zhao
- MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junfeng Wang
- MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Fan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Faming Zheng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xingyu Zhou
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianping Zhang
- Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, China
| | - Zuhai Lei
- MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qinyue Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Luting Wang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, China.
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, China; Shanghai Key Lab of Brain Function Restoration and Neural Regeneration, Shanghai, China; Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, China.
| | - Cong Li
- MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, School of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China; The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen 518055, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, China; Shanghai Key Lab of Brain Function Restoration and Neural Regeneration, Shanghai, China.
| |
Collapse
|
4
|
Huang W, Zong J, Li M, Li TF, Pan S, Xiao Z. Challenges and Opportunities: Nanomaterials in Epilepsy Diagnosis. ACS NANO 2025; 19:16224-16247. [PMID: 40266286 DOI: 10.1021/acsnano.5c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Epilepsy is a common neurological disorder characterized by a significant rate of disability. Accurate early diagnosis and precise localization of the epileptogenic zone are essential for timely intervention, seizure prevention, and personalized treatment. However, over 30% of patients with epilepsy exhibit negative results on electroencephalography and magnetic resonance imaging (MRI), which can lead to misdiagnosis and subsequent delays in treatment. Consequently, enhancing diagnostic methodologies is imperative for effective epilepsy management. The integration of nanomaterials with biomedicine has led to the development of diagnostic tools for epilepsy. Key advancements include nanomaterial-enhanced neural electrodes, contrast agents, and biochemical sensors. Nanomaterials improve the quality of electrophysiological signals and broaden the detection range of electrodes. In imaging, functionalized magnetic nanoparticles enhance MRI sensitivity, facilitating localization of the epileptogenic zone. NIR-II nanoprobes enable tracking of seizure-related biomarkers with deep tissue penetration. Furthermore, nanomaterials enhance the sensitivity of biochemical sensors for detecting epilepsy biomarkers, which is crucial for early detection. These advancements significantly increase diagnostic sensitivity and specificity. However, challenges remain, particularly regarding biosafety, quality control, and the scalability of fabrication processes. Overcoming these obstacles is essential for successful clinical translation. Artificial-intelligence-based big data analytics can facilitate the development of diagnostic tools by screening nanomaterials with specific properties. This approach may help to address current limitations and improve both effectiveness and safety. This review explores the application of nanomaterials in the diagnosis and detection of epilepsy, with the objective of inspiring innovative ideas and strategies to enhance diagnostic effectiveness.
Collapse
Affiliation(s)
- Wanbin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tong-Fei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Songqing Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
5
|
Wang X, Cheng Y, Qi Z, Zhao J, Wang C. Bio-Nano Innovations Targeting the Neurovascular Complex for Epilepsy Treatment. Adv Healthc Mater 2025; 14:e2404857. [PMID: 40304157 DOI: 10.1002/adhm.202404857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/13/2025] [Indexed: 05/02/2025]
Abstract
Epilepsy is a prevalent chronic neurological disorder characterized by seizures resulting from an imbalance between excitatory and inhibitory neurons. While pharmacotherapy remains the standard treatment, traditional pharmacotherapy faces significant challenges, including poor brain penetration, high drug resistance rates, and providing only symptomatic relief, rather than addressing the underlying causes for a comprehensive cure. Recently, the neurovascular complex (NVC) has gained attention for its critical role in the development and progression of epilepsy. Simultaneously, various innovative bio-nanotechnology systems have emerged, specifically designed to enhance drug delivery across the brain and enable precise targeting within the lesion. Herein, this review begins by outlining the core NVC involved in epilepsy treatment, breaking it down into four key components: the blood-brain barrier (BBB), neurons, glial cells, and the microenvironment. The viability of targeting NVC to improve epilepsy therapy is analyzed. Next, innovative bio-nanotechnology systems, detailing their design principles, construction strategies, and preclinical evaluations in epilepsy therapy are highlighted. Finally, the prospects for next-generation nanotechnologies and the challenges that must be overcome for effective clinical translation are discussed. Overall, this review aims to guide the development of more efficient and precise bio-nano therapies, ultimately enhancing treatment outcomes for epilepsy patients.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Yanlong Cheng
- Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Zhengzhuo Qi
- Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Jing Zhao
- Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Cong Wang
- Shanghai Fifth People's Hospital, School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, 518055, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| |
Collapse
|
6
|
Zhang C, Nan B, Xu J, Yang T, Xu L, Lu C, Zhang XB, Rao J, Song G. Magnetic-susceptibility-dependent ratiometric probes for enhancing quantitative MRI. Nat Biomed Eng 2025; 9:671-685. [PMID: 39613926 DOI: 10.1038/s41551-024-01286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/15/2024] [Indexed: 12/01/2024]
Abstract
In magnetic resonance imaging (MRI), quantitative measurements of analytes are hindered by difficulties in distinguishing the MRI signals of activation of the probe by the analyte from those of the accumulation of the intact probe. Here we show that imaging sensitivity and quantitation can be enhanced by ratiometric MRI probes with a high relaxivity-ratio change (more than 2.5-fold at 7 T) via magnetic-susceptibility-dependent magnetic resonance tuning. Specifically, polymeric probes that incorporate paramagnetic Mn-porphyrin and superparamagnetic iron oxide nanoparticles inducing opposite changes in the longitudinal and transverse magnetic relaxivities responded to analyte concentration independently of probe concentration. In mice, the probes allowed for quantitative real-time dynamic imaging of H2O2, H2S or pH in subcutaneous tumours, in livers with drug-induced injury and in orthotropic gliomas. The ratiometric MRI probes may be advantageously used to obtain molecular insight into pathological processes and to circumvent interference from dynamic changes in probe concentration within the body while providing anatomical information.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Bin Nan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Juntao Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Tengxiang Yang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Chang Lu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
7
|
Zhang Q, Wang Y, Wu D, Chen Z. Stimuli-responsive nanoscale drug delivery system for epilepsy theranostics. Acta Biomater 2025; 194:58-79. [PMID: 39880180 DOI: 10.1016/j.actbio.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/12/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Epilepsy is a common neurological disease characterized by distinct pathological changes in the epileptogenic zone. Antiseizure drugs (ASDs) are widely used as the primary treatment for epilepsy. To improve the efficiency of ASDs medication, stimuli-responsive nanoscale drug delivery systems (nanoDDSs), triggered by either endogenous or exogenous factors, have been developed and been considered as a noninvasive and spatial-temporal approach to epilepsy theranostics. In this review, we introduce the pathological variations observed in epileptic lesions such as dysregulated neurotransmitter systems, disrupted ion homeostasis, and dynamic inflammatory cytokine networks. Furthermore, we summarize the recent advances in functional nano-assemblies that could be activated by endogenous stimuli of pathological alterations or exogenous stimuli such as electricity, light, and other interventions. Finally, we discuss the remaining challenges and prospect the insight into perspective of future development in this field. In summary, this review aims to highlight the potential of stimuli-responsive nanoDDSs as precise, controllable and efficient strategies for addressing unresolved issues in epilepsy theranostics. STATEMENT OF SIGNIFICANCE: This review summarizes recent progress in pathological changes such as dysregulated neurotransmitter system, disrupted ion homeostasis and dynamic inflammatory cytokine network, and emphasizes endogenous/exogenous stimuli-responsive nanoscale platforms including neurotransmitter-, ion-, and other stimuli-responsive nanoDDSs, providing the prospects of smart nanoDDSs applications and discussing the challenges to offer generalized guideline for further development of epilepsy theranostics.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences and School of Basic Medical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences and School of Basic Medical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences and School of Basic Medical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences and School of Basic Medical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
8
|
Wang Q, Cui S, Shi D, Tao P, Zhang C, Wang F, Lin P, Li F, Ling D. A Neuronal Signal Sorting and Amplifying Nanosensor for EEG-Concordant Imaging-Guided Precision Epilepsy Ablation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408864. [PMID: 39676438 DOI: 10.1002/adma.202408864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Surgery remains an essential treatment for managing drug-resistant focal epilepsy, but its accessibility and efficacy are limited in patients without distinct structural abnormalities on magnetic resonance imaging (MRI). Potassium ion (K+), a critical marker for seizure-associated neuronal signaling, shows significant promise for designing sensors targeting hidden epileptic foci. However, existing sensors cannot cross the blood-brain barrier and lack the ability to specifically enrich and amplify K+ signals in the brain with high temporal and spatial resolution. Here, an intravenously administered neuronal signal sorting and amplifying nanosensor (NSAN) is reported that combines real-time dynamic reversible K+ fluorescence imaging with high-resolution structural MRI, enabling electroencephalogram-concordant imaging of MRI-negative epileptic foci. Guided by NSANs, minimally invasive surgery is successfully performed in both intrahippocampal kainic acid (KA) epilepsy model with foci confined to the ipsilateral hippocampus, and intraperitoneal KA model where foci are randomly distributed, resulting in sustained seizure control and cognitive improvement. These findings highlight the NSAN as a transformative tool for visualizing hidden epileptic foci, thereby broadening eligibility for minimally invasive and precision surgical intervention.
Collapse
Affiliation(s)
- Qiyue Wang
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sirui Cui
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dao Shi
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pan Tao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chencheng Zhang
- Department of Neurosurgery, Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fang Wang
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, 200124, China
| | - Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Yao B, Kong Y, Li J, Xu F, Deng Y, Chen Y, Chen Y, Chen J, Xu M, Zhu X, Chen L, Xie F, Zhang X, Wang C, Li C. Synthesis, preclinical evaluation and pilot clinical study of a P2Y 12 receptor targeting radiotracer [ 18F]QTFT for imaging brain disorders by visualizing anti-inflammatory microglia. Acta Pharm Sin B 2025; 15:1056-1069. [PMID: 40177553 PMCID: PMC11959935 DOI: 10.1016/j.apsb.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/08/2024] [Accepted: 01/05/2025] [Indexed: 04/05/2025] Open
Abstract
As the brain's resident immune cells, microglia perform crucial functions such as phagocytosis, neuronal network maintenance, and injury restoration by adopting various phenotypes. Dynamic imaging of these phenotypes is essential for accessing brain diseases and therapeutic responses. Although numerous probes are available for imaging pro-inflammatory microglia, no PET tracers have been developed specifically to visualize anti-inflammatory microglia. In this study, we present an 18F-labeled PET tracer (QTFT) that targets the P2Y12, a receptor highly expressed on anti-inflammatory microglia. [18F]QTFT exhibited high binding affinity to the P2Y12 (14.43 nmol/L) and superior blood-brain barrier permeability compared to other candidates. Micro-PET imaging in IL-4-induced neuroinflammation models showed higher [18F]QTFT uptake in lesions compared to the contralateral normal brain tissues. Importantly, this specific uptake could be blocked by QTFT or a P2Y12 antagonist. Furthermore, [18F]QTFT visualized brain lesions in mouse models of epilepsy, glioma, and aging by targeting the aberrantly expressed P2Y12 in anti-inflammatory microglia. In a pilot clinical study, [18F]QTFT successfully located epileptic foci, showing enhanced radioactive signals in a patient with epilepsy. Collectively, these studies suggest that [18F]QTFT could serve as a valuable diagnostic tool for imaging various brain disorders by targeting P2Y12 overexpressed in anti-inflammatory microglia.
Collapse
Affiliation(s)
- Bolin Yao
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Zhongshan Hospital, Fudan University, Shanghai 201203, China
| | - Yanyan Kong
- PET Center, Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jianing Li
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Zhongshan Hospital, Fudan University, Shanghai 201203, China
| | - Fulin Xu
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yan Deng
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Zhongshan Hospital, Fudan University, Shanghai 201203, China
| | - Yuncan Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yixiu Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jian Chen
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Zhongshan Hospital, Fudan University, Shanghai 201203, China
| | - Minhua Xu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fang Xie
- PET Center, Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Cong Wang
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Zhongshan Hospital, Fudan University, Shanghai 201203, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen 518055, China
| | - Cong Li
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Zhongshan Hospital, Fudan University, Shanghai 201203, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen 518055, China
| |
Collapse
|
10
|
Zou Y, Sun Z, Wang Q, Ju Y, Sun N, Yue Q, Deng Y, Liu S, Yang S, Wang Z, Li F, Hou Y, Deng C, Ling D, Deng Y. Core-Shell Magnetic Particles: Tailored Synthesis and Applications. Chem Rev 2025; 125:972-1048. [PMID: 39729245 DOI: 10.1021/acs.chemrev.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g., surface hydrophilicity, roughness, acidity, target recognition) for efficient applications in catalysis, optical modulation, environmental remediation, biomedicine, etc. Moreover, precise control over the shell structure features like thickness, porosity, crystallinity and compositions including metal oxides, carbon, silica, polymers, and metal-organic frameworks (MOFs) has been developed as the major method to exploit new functional materials. In this review, we highlight the synthesis methods, regulating strategies, interface engineering, and applications of core-shell magnetic particles over the past half-century. The fundamental methodologies for controllable synthesis of core-shell magnetic materials with diverse organic, inorganic, or hybrid compositions, surface morphology, and interface property are thoroughly elucidated and summarized. In addition, the influences of the synthesis conditions on the physicochemical properties (e.g., dispersibility, stability, stimulus-responsiveness, and surface functionality) are also discussed to provide constructive insight and guidelines for designing core-shell magnetic particles in specific applications. The brand-new concept of "core-shell assembly chemistry" holds great application potential in bioimaging, diagnosis, micro/nanorobots, and smart catalysis. Finally, the remaining challenges, future research directions and new applications for the core-shell magnetic particles are predicted and proposed.
Collapse
Affiliation(s)
- Yidong Zou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Zhenkun Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
| | - Yanmin Ju
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Nianrong Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qin Yue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Yu Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Shanbiao Liu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiyi Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Fangyuan Li
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yonghui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
11
|
Song S, Wang Q, Xie J, Guo Y, He W, Yao Y, Wang H, Huang B, Chen Z, Lin X, He Y, Tian W, Chen Z. A DNA machine-based magnetic resonance imaging nanoprobe for in vivo microRNA detection. Talanta 2025; 281:126867. [PMID: 39277939 DOI: 10.1016/j.talanta.2024.126867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
In situ monitoring microRNA (miRNA) expression in vivo holds immense potential for directly visualizing the occurrence and progression of tumors. However, the significant barrier to developing a probe that can overcome the low abundance of miRNAs while providing an output signal with unlimited tissue penetration depth remains formidable. In this study, we developed a DNA machine-based magnetic resonance imaging nanoprobe (MRINP) for amplified detection of miR-21 in vivo. The MRINP was constructed with superparamagnetic Fe3O4 nanoparticles (NPs), paramagnetic Gd-DOTA complexes, and miR-21-activated DNA machines; the DNA machine was composed of hairpin DNAzyme (HD) strands serving as the DNAzyme walker and hairpin substrate (HS) strands serving as the track. Once uptake into tumor cells, the intracellular miR-21 specifically recognized and hybridized with the HD strand, restoring the activity of DNAzyme. Subsequently, the DNAzyme walker autonomously traveled on the surface of MRINP, and each step movement of the DNAzyme walker resulted in the cleavage of its substrate strands and the ensued release of the Gd-DOTA complex-labeled oligonucleotides, turning on the T1 signal of Gd-DOTA complexes for in situ imaging of miR-21 in tumor-bearing mice. This strategy would offer a promising approach for mapping tumor-specific biomarkers in vivo with unlimited penetration depth.
Collapse
Affiliation(s)
- Sijie Song
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qi Wang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jiangao Xie
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yuheng Guo
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Wen He
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuhang Yao
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hongli Wang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Bingbing Huang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zhitong Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xucong Lin
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yu He
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Wei Tian
- Department of Dermatology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| | - Zhaowei Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
12
|
Lu C, Liao S, Chen B, Xu L, Wu N, Lu D, Kang H, Zhang XB, Song G. Responsive probes for in vivo magnetic resonance imaging of nitric oxide. NATURE MATERIALS 2025; 24:133-142. [PMID: 39587281 DOI: 10.1038/s41563-024-02054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/18/2024] [Indexed: 11/27/2024]
Abstract
Nitric oxide (NO), a pivotal signalling molecule, plays multifaceted roles in physiological and pathological processes, including cardiovascular and immune functions, neurotransmission and cancer progression. Nevertheless, measuring NO in vivo is challenging due to its transient nature and the complexity of the biological environment. Here we describe NO-responsive magnetic probes made of crosslinked superparamagnetic iron oxide nanoparticles tethered to a NO-sensitive cleavable linker for highly sensitive and selective NO magnetic resonance imaging in vivo. These probes enable the detection of NO at concentrations as low as 0.147 μM, allowing for the imaging and quantification of NO in mouse tumour models, studying its effects on tumour progression and immunity and assessing the response of tumour-associated macrophages to cancer immunotherapeutic agents. Additionally, they facilitate concurrent anatomical and molecular imaging of organs, helping to identify pathological alterations in the liver. Overall, these probes represent promising non-invasive tools for investigating the dose-dependent conflicting role of NO in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Chang Lu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Shiyi Liao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Baode Chen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Li Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Na Wu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Dingyou Lu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, Korea
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Guosheng Song
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
13
|
Zheng R, Yu C, Yao D, Cai M, Zhang L, Ye F, Huang X. Engineering Stimuli-Responsive Materials for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406439. [PMID: 39444066 PMCID: PMC11707583 DOI: 10.1002/smll.202406439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, precision medicine has garnered increasing attention, making significant strides in discovering new therapeutic drugs and mechanisms, resulting in notable achievements in symptom alleviation, pain reduction, and extended survival rates. However, the limited target specificity of primary drugs and inter-individual differences have often necessitated high-dosage strategies, leading to challenges such as restricted deep tissue penetration rates and systemic side effects. Material science advancements present a promising avenue for these issues. By leveraging the distinct internal features of diseased regions and the application of specific external stimuli, responsive materials can be tailored to achieve targeted delivery, controllable release, and specific biochemical reactions. This review aims to highlight the latest advancements in stimuli-responsive materials and their potential in precision medicine. Initially, we introduce disease-related internal stimuli and capable external stimuli, elucidating the reaction principles of responsive functional groups. Subsequently, we provide a detailed analysis of representative pre-clinical achievements of stimuli responsive materials across various clinical applications, including enhancements in the treatment of cancers, injury diseases, inflammatory diseases, infection diseases, and high-throughput microfluidic biosensors. Finally, we discuss some clinical challenges, such as off-target effects, long-term impacts of nano-materials, potential ethical concerns, and offer insights into future perspectives of stimuli-responsive materials.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Chang Yu
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
- Intervention DepartmentThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Dan Yao
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Mengsi Cai
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Lexiang Zhang
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Fangfu Ye
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Xiaoying Huang
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| |
Collapse
|
14
|
Zhang D, Zhang J, Bian X, Zhang P, Wu W, Zuo X. Iron Oxide Nanoparticle-Based T 1 Contrast Agents for Magnetic Resonance Imaging: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:33. [PMID: 39791792 PMCID: PMC11722098 DOI: 10.3390/nano15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
This review highlights recent progress in utilizing iron oxide nanoparticles (IONPs) as a safer alternative to gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging (MRI). It consolidates findings from multiple studies, discussing current T1 contrast agents (CAs), the synthesis techniques for IONPs, the theoretical principles for designing IONP-based MRI CAs, and the key factors that impact their T1 contrast efficacy, such as nanoparticle size, morphology, surface modifications, valence states, and oxygen vacancies. Furthermore, we summarize current strategies to achieve IONP-based responsive CAs, including self-assembly/disassembly and distance adjustment. This review also evaluates the biocompatibility, organ accumulation, and clearance pathways of IONPs for clinical applications. Finally, the challenges associated with the clinical translation of IONP-based T1 CAs are included.
Collapse
Affiliation(s)
- Dongmei Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Jing Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Xianglin Bian
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Pei Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Weihua Wu
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Xudong Zuo
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
- The Jiangsu Key Laboratory of Clean Energy Storage and Conversion, Jiangsu University of Technology, Changzhou 213100, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
15
|
Liu Y, Gao D, He Y, Ma J, Chong SY, Qi X, Ting HJ, Luo Z, Yi Z, Tang J, Chang C, Wang J, Sheng Z, Zheng H, Liu X. Single-point mutated lanmodulin as a high-performance MRI contrast agent for vascular and kidney imaging. Nat Commun 2024; 15:9834. [PMID: 39537629 PMCID: PMC11561317 DOI: 10.1038/s41467-024-54167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Magnetic resonance imaging contrast agents can enhance diagnostic precision but often face limitations such as short imaging windows, low tissue specificity, suboptimal contrast enhancement, or potential toxicity, which affect resolution and long-term monitoring. Here, we present a protein contrast agent based on lanmodulin, engineered with a single-point mutation at position 108 from N to D to yield maximum gadolinium binding sites. After loading with Gd3+ ions, the resulting protein complex, LanND-Gd, exhibits efficient renal clearance, high relaxivity, and prolonged renal retention compared to commercial agents. LanND-Gd enables high-performance visualization of whole-body structures and brain vasculature in male mice at a resolution finer than one hundred micrometers. In male ischemia mouse models, LanND-Gd also improves kidney dysfunction monitoring while minimizing risks of neural toxicity or immunogenic reactions. This protein-based contrast agent offers superior image quality, improved biocompatibility, and extended imaging timeframes, promising significant advancements in magnetic resonance-based diagnostics and patient outcomes.
Collapse
Affiliation(s)
- Yuxia Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Duyang Gao
- Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanyuan He
- School of Physics, Peking University, Beijing, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, China
| | - Jing Ma
- School of Physics, Peking University, Beijing, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, China
| | - Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xinyi Qi
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Jun Ting
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Jingyu Tang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Chao Chang
- School of Physics, Peking University, Beijing, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, China
| | - Jiongwei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Zonghai Sheng
- Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen, China.
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Hairong Zheng
- Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen, China.
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Liu S, Sun X, Wang Y, Liu K, Liu R, Zhang Y, Ni Z, Tang W, Zhang S, Mu X, Wang H, Zhang XD, Ming D. A nanowell-based MoS 2 neuroelectrode for high-sensitivity neural recording. iScience 2024; 27:110949. [PMID: 39391733 PMCID: PMC11465046 DOI: 10.1016/j.isci.2024.110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/06/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Implantable neural electrodes are crucial in neurological diagnosis and therapy because of their ultra-high spatial resolution, but they are constrained by high impedance and insufficient charge injection capacity, resulting in noise that often obscures valuable signals. Emerging nanotechnologies are powerful tools to improve sensitivity and biocompatibility. Herein, we developed quantized 2D MoS2 electrodes by incorporating bioactive MoS2 nanosheets onto bare electrodes, achieving sensitive, compatible recording. The 2D materials can create tiny nanowells, which behaved as quantized charge storage units and thus improved sensitivity. The key sensitivity indicators, impedance and cathode charge storage capacity, showed a multifold increase. The 17.7-fold improvement in catalytic activity of MoS2 electrodes facilitated effective current transmission and reduced inflammatory response. In vivo recording showed that the sensitivity of local field potentials increased throughout frequency range and peaked at a 4.7-fold in β rhythm. This work provides a general strategy for achieving effective diagnoses of neurological disorders.
Collapse
Affiliation(s)
- Shuangjie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xinyu Sun
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Kaijin Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Renpeng Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Yuqin Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhaoliang Ni
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Wanyu Tang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Dong Ming
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
17
|
Gao J, Wang Y, Meng X, Wang X, Han F, Xing H, Lv G, Zhang L, Wu S, Jiang X, Yao Z, Fang X, Zhang J, Bu W. A FAPα-activated MRI nanoprobe for precise grading diagnosis of clinical liver fibrosis. Nat Commun 2024; 15:8036. [PMID: 39271701 PMCID: PMC11399433 DOI: 10.1038/s41467-024-52308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Molecular imaging holds the potential for noninvasive and accurate grading of liver fibrosis. It is limited by the lack of biomarkers that strongly correlate with liver fibrosis grade. Here, we discover the grading potential of fibroblast activation protein alpha (FAPα) for liver fibrosis through transcriptional analysis and biological assays on clinical liver samples. The protein and mRNA expression of FAPα are linearly correlated with fibrosis grade (R2 = 0.89 and 0.91, respectively). A FAPα-responsive MRI molecular nanoprobe is prepared for quantitatively grading liver fibrosis. The nanoprobe is composed of superparamagnetic amorphous iron nanoparticles (AFeNPs) and paramagnetic gadoteric acid (Gd-DOTA) connected by FAPα-responsive peptide chains (ASGPAGPA). As liver fibrosis worsens, the increased FAPα cut off more ASGPAGPA, restoring a higher T1-MRI signal of Gd-DOTA. Otherwise, the signal remains quenched due to the distance-dependent magnetic resonance tuning (MRET) effect between AFeNPs and Gd-DOTA. The nanoprobe identifies F1, F2, F3, and F4 fibrosis, with area under the curve of 99.8%, 66.7%, 70.4%, and 96.3% in patients' samples, respectively. This strategy exhibits potential in utilizing molecular imaging for the early detection and grading of liver fibrosis in the clinic.
Collapse
Affiliation(s)
- Jiahao Gao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Ya Wang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Xianfu Meng
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
- Department of Nuclear Medicine, Changhai Hospital, Navy Medical University, Shanghai, 200433, P. R. China
| | - Xiaoshuang Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Fang Han
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hao Xing
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Guanglei Lv
- Center for Biotechnology and Biomedical Engineering, Yiwu Research Institute of Fudan University, Yiwu, 322000, P. R. China
| | - Li Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Shiman Wu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiangming Fang
- Department of Radiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, 2214023, P. R. China.
| | - Jiawen Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China.
| | - Wenbo Bu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China.
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.
| |
Collapse
|
18
|
Xu SL, Fan M, Ma MD, Zheng Q, Chen PQ, Wei YD, Sun HM, Sun HZ, Ge JF. Differential toxic and antiepileptic features of Vigabatrin raceme and its enantiomers. Brain Res 2024; 1838:148991. [PMID: 38754803 DOI: 10.1016/j.brainres.2024.148991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND The study aimed to investigate the potential pharmacological and toxicological differences between Vigabatrin (VGB) and its enantiomers S-VGB and R-VGB. The researchers focused on the toxic effects and antiepileptic activity of these compounds in a rat model. METHODS The epileptic rat model was established by intraperitoneal injection of kainic acid, and the antiepileptic activity of VGB, S-VGB, and VGB was observed, focusing on the improvements in seizure latency, seizure frequency and sensory, motor, learning and memory deficits in epileptic rats, as well as the hippocampal expression of key molecular associated with synaptic plasticity and the Wnt/β-catenin/GSK 3β signaling pathway. The acute toxic test was carried out and the LD50 was calculated, and tretinal damages in epileptic rats were also evaluated. RESULT The results showed that S-VGB exhibited stronger antiepileptic and neuroprotective effects with lower toxicity compared to VGB raceme. These findings suggest that S-VGB and VGB may modulate neuronal damage, glial cell activation, and synaptic plasticity related to epilepsy through the Wnt/β-catenin/GSK 3β signaling pathway. The study provides valuable insights into the potential differential effects of VGB enantiomers, highlighting the potential of S-VGB as an antiepileptic drug with reduced side effects. CONCLUSION S-VGB has the highest antiepileptic effect and lowest toxicity compared to VGB and R-VGB.
Collapse
Affiliation(s)
- Song-Lin Xu
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Meng-Die Ma
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qiang Zheng
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Peng-Quan Chen
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Ya-Dong Wei
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Hui-Min Sun
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Huai-Zhi Sun
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| |
Collapse
|
19
|
Ping H, Ding D, Zhu G, Wang J, Zhang J. Advancements in the application of nanotechnology for the management of epileptic seizures. ACTA EPILEPTOLOGICA 2024; 6:23. [PMID: 40217331 PMCID: PMC11960228 DOI: 10.1186/s42494-024-00171-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/23/2024] [Indexed: 04/15/2025] Open
Abstract
Epilepsy is a common yet complex neurological disorder. Historically, antiseizure medications (ASMs) have faced challenges in crossing the blood-brain barrier (BBB) and targeting the epileptogenic zone, creating a bottleneck in seizure management. Certain nanomaterials can facilitate drug penetration through the BBB and enable stimulus-responsive drug release, thereby enhancing targeted and efficient drug utilization while reducing adverse reactions in other brain tissues and peripherally. This article reviews the current researches on stimulus-responsive nanosystems applicable in antiepileptic therapy, as well as nanotechnology applications that improve the brain delivery of ASMs.
Collapse
Affiliation(s)
- Honglu Ping
- Department of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Ding Ding
- Department of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Guoxing Zhu
- Department of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Jianhong Wang
- Department of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, National Center for Neurological Disorders, Fudan University, Wulumuqi Middle Road No.12, Shanghai, 200040, China.
| |
Collapse
|
20
|
Zhao M, Lai W, Li B, Bai T, Liu C, Lin Y, An S, Guo L, Li L, Wang J, Zhang F. NIR-II Fluorescence Sensor Based on Steric Hindrance Regulated Molecular Packing for In Vivo Epilepsy Visualization. Angew Chem Int Ed Engl 2024; 63:e202403968. [PMID: 38637949 DOI: 10.1002/anie.202403968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Fluorescence sensing is crucial to studying biological processes and diagnosing diseases, especially in the second near-infrared (NIR-II) window with reduced background signals. However, it's still a great challenge to construct "off-on" sensors when the sensing wavelength extends into the NIR-II region to obtain higher imaging contrast, mainly due to the difficult synthesis of spectral overlapped quencher. Here, we present a new fluorescence quenching strategy, which utilizes steric hindrance quencher (SHQ) to tune the molecular packing state of fluorophores and suppress the emission signal. Density functional theory (DFT) calculations further reveal that large SHQs can competitively pack with fluorophores and prevent their self-aggregation. Based on this quenching mechanism, a novel activatable "off-on" sensing method is achieved via bio-analyte responsive invalidation of SHQ, namely the Steric Hindrance Invalidation geNerated Emission (SHINE) strategy. As a proof of concept, the ClO--sensitive SHQ lead to the bright NIR-II signal release in epileptic mouse hippocampus under the skull and high photon scattering brain tissue, providing the real-time visualization of ClO- generation process in living epileptic mice.
Collapse
Affiliation(s)
- Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Weiping Lai
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Benhao Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Tianwen Bai
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Chunyan Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Yanfei Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Shixuan An
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Jianbo Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
21
|
Liu S, Wang Y, Zhao Y, Liu L, Sun S, Zhang S, Liu H, Liu S, Li Y, Yang F, Jiao M, Sun X, Zhang Y, Liu R, Mu X, Wang H, Zhang S, Yang J, Xie X, Duan X, Zhang J, Hong G, Zhang XD, Ming D. A Nanozyme-Based Electrode for High-Performance Neural Recording. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304297. [PMID: 37882151 DOI: 10.1002/adma.202304297] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Implanted neural electrodes have been widely used to treat brain diseases that require high sensitivity and biocompatibility at the tissue-electrode interface. However, currently used clinical electrodes cannot meet both these requirements simultaneously, which hinders the effective recording of electronic signals. Herein, nanozyme-based neural electrodes incorporating bioinspired atomically precise clusters are developed as a general strategy with a heterogeneous design for multiscale and ultrasensitive neural recording via quantum transport and biocatalytic processes. Owing to the dual high-speed electronic and ionic currents at the electrode-tissue interface, the impedance of nanozyme electrodes is 26 times lower than that of state-of-the-art metal electrodes, and the acquisition sensitivity for the local field potential is ≈10 times higher than that of clinical PtIr electrodes, enabling a signal-to-noise ratio (SNR) of up to 14.7 dB for single-neuron recordings in rats. The electrodes provide more than 100-fold higher antioxidant and multi-enzyme-like activities, which effectively decrease 67% of the neuronal injury area by inhibiting glial proliferation and allowing sensitive and stable neural recording. Moreover, nanozyme electrodes can considerably improve the SNR of seizures in acute epileptic rats and are expected to achieve precise localization of seizure foci in clinical settings.
Collapse
Affiliation(s)
- Shuangjie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yue Zhao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ling Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300354, China
| | - Shaofang Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300354, China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300354, China
| | - Shuhu Liu
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Yonghui Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300354, China
| | - Fan Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, California, 94305, USA
| | - Menglu Jiao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300354, China
| | - Xinyu Sun
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yuqin Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Renpeng Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shu Zhang
- Tianjin Neurological Institute, Department of Neurosurgery, General Hospital, Tianjin Medical University, Tianjin, 300041, China
| | - Jiang Yang
- School of Electronics and Information Technology and Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xi Xie
- School of Electronics and Information Technology and Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaojie Duan
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Department of Neurosurgery, General Hospital, Tianjin Medical University, Tianjin, 300041, China
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, California, 94305, USA
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300354, China
| | - Dong Ming
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
22
|
Lin L, Geng D, She D, Kuai X, Du C, Fu P, Zhu Y, Wang J, Pang Z, Zhang J. Targeted nanotheranostics for the treatment of epilepsy through in vivo hijacking of locally activated macrophages. Acta Biomater 2024; 174:314-330. [PMID: 38036284 DOI: 10.1016/j.actbio.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
Epilepsy refers to a disabling neurological disorder featured by the long-term and unpredictable occurrence of seizures owing to abnormal excessive neuronal electrical activity and is closely linked to unresolved inflammation, oxidative stress, and hypoxia. The difficulty of accurate localization and targeted drug delivery to the lesion hinders the effective treatment of this disease. The locally activated inflammatory cells in the epileptogenic region offer a new opportunity for drug delivery to the lesion. In this work, CD163-positive macrophages in the epileptogenic region were first harnessed as Trojan horses after being hijacked by targeted albumin manganese dioxide nanoparticles, which effectively penetrated the brain endothelial barrier and delivered multifunctional nanomedicines to the epileptic foci. Hence, accumulative nanoparticles empowered the visualization of the epileptogenic lesion through microenvironment-responsive MR T1-weight imaging of manganese dioxide. Besides, these manganese-based nanomaterials played a pivotal role in shielding neurons from cell apoptosis mediated by oxidative stress and hypoxia. Taken together, the present study provides an up-to-date approach for integrated diagnosis and treatment of epilepsy and other hypoxia-associated inflammatory diseases. STATEMENT OF SIGNIFICANCE: The therapeutic effects of antiepileptic drugs (AEDs) are hindered by insufficient drug accumulation in the epileptic site. Herein, we report an efficient strategy to use locally activated macrophages as carriers to deliver multifunctional nanoparticles to the brain lesion. As MR-responsive T1 contrast agents, multifunctional BMC nanoparticles can be harnessed to accurately localize the epileptogenic region with high sensitivity and specificity. Meanwhile, catalytic nanoparticles BMC can synergistically scavenge ROS, generate O2 and regulate neuroinflammation for the protection of neurons in the brain.
Collapse
Affiliation(s)
- Lin Lin
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Dejun She
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Xinping Kuai
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Chengjuan Du
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Pengfei Fu
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Yuefei Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery Ministry of Education, Shanghai 201203, China
| | - Jianhong Wang
- National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China; Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China.
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery Ministry of Education, Shanghai 201203, China.
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China.
| |
Collapse
|
23
|
Chen Y, Liang Z, Wang Q, Xiao L, Xie S, Yang S, Liu X, Ling D, Li F. Alpha-Synuclein Oligomers Driven T1-T2 Switchable Nanoprobes for Early and Accurate Diagnosis of Parkinson's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310404. [PMID: 38149464 DOI: 10.1002/adma.202310404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Indexed: 12/28/2023]
Abstract
The alpha-synuclein (α-syn) oligomers hold a central role in the pathology of Parkinson's disease (PD). Achieving accurate detection of α-syn oligomers in vivo presents a promising avenue for early and accurate diagnosis of PD. Magnetic resonance imaging (MRI), with non-invasion and exceptional tissue penetration, offers a potent tool for visualizing α-syn oligomers in vivo. Nonetheless, ensuring diagnostic specificity remains a formidable challenge. Herein, a novel MRI probe (ASOSN) is introduced, which encompasses highly sensitive antiferromagnetic nanoparticles functionalized with single-chain fragment variable antibodies, endowing it with the capacity for discerning recognition and binding to α-syn oligomers and triggering a switchable T1-T2 MRI signal. Significantly, ASOSN possesses the unique capability to accurately discriminate α-syn oligomers from neuroinflammation in vivo. Moreover, ASOSN facilitates the non-invasive and precise visualizing of endogenous α-syn oligomers in living systems. This innovative design heralds the development of a non-invasive visualization strategy for α-syn oligomers, marking a pivotal advancement for early and accurate diagnosis of PD.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zeyu Liang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Lin Xiao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shangzhi Xie
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xun Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
| |
Collapse
|
24
|
Gu P, Li Y, Li L, Deng S, Zhu X, Song Y, Song E, Tan W. Azo Reductase Activated Magnetic Resonance Tuning Probe with "Switch-On" Property for Specific and Sensitive Tumor Imaging in Vivo. ACS NANO 2023; 17:24384-24394. [PMID: 37991343 DOI: 10.1021/acsnano.3c10739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Cancer remains a threat to human health. However, if tumors can be detected in the early stage, then the effectiveness of cancer treatment could be significantly improved. Therefore, it is worthwhile to develop more sensitive and accurate cancer diagnostic methods. Herein, we demonstrated an azo reductase (AzoR)-activated magnetic resonance tuning (MRET) probe with a "switch-on" property for specific and sensitive tumor imaging in vivo. Specifically, Gd-labeled DNA1 (DNA1-Gd) and cyclodextrin-coated magnetic nanoparticles (MNP-CD) were employed as enhancer and quencher of MRET, respectively, while DNA2, an azobenzene (Azo) group-modified aptamer (AS1411), served as a linker between enhancer and quencher to construct the MRET probe of MNP@DNA(1-2)-Gd. In tumor tissues with high-level AzoR, the T1-weighted magnetic resonance signal of the MRET probe could be restored by intelligently regulating the switch from "OFF" to "ON" after activation with AzoR, thus accurately indicating the location of the tumor accurately. Moreover, the tumor with a 4 times smaller size than that of the normal tumor model could be imaged based on the proposed MRET probe. The as-proposed MRET-based magnetic resonance imaging strategy not only achieves tumor imaging accurately but also shows promise for early diagnosis of tumors, which might improve patients' survival rates and provide an opportunity for image-guided biomedical applications in the future.
Collapse
Affiliation(s)
- Peilin Gu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University Chongqing 400715, China
| | - Yu Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University Chongqing 400715, China
| | - Linyao Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University Chongqing 400715, China
| | - Siyu Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University Chongqing 400715, China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University Chongqing 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, CAS. Beijing 100085, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University Chongqing 400715, China
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
25
|
Li C, Zhao J, Gao X, Hao C, Hu S, Qu A, Sun M, Kuang H, Xu C, Xu L. Chiral Iron Oxide Supraparticles Enable Enantiomer-Dependent Tumor-Targeted Magnetic Resonance Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2308198. [PMID: 37721365 DOI: 10.1002/adma.202308198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Indexed: 09/19/2023]
Abstract
The chemical, physical and biological effects of chiral nanomaterials have inspired general interest and demonstrated important advantages in fundamental science. Here, chiral iron oxide supraparticles (Fe3 O4 SPs) modified by chiral penicillamine (Pen) molecules with g-factor of ≈2 × 10-3 at 415 nm are fabricated, and these SPs act as high-quality magnetic resonance imaging (MRI) contrast agents. Therein, the transverse relaxation efficiency and T2 -MRI results demonstrated chiral Fe3 O4 SPs have a r2 relaxivity of 157.39 ± 2.34 mM-1 ·S-1 for D-Fe3 O4 SPs and 136.21 ± 1.26 mM-1 ·S-1 for L-Fe3 O4 SPs due to enhanced electronic transition dipole moment for D-Fe3 O4 SPs compared with L-Fe3 O4 SPs. The in vivo MRI results show that D-Fe3 O4 SPs exhibit two-fold lower contrast ratio than L-Fe3 O4 SPs, which enhances targeted enrichment in tumor tissue, such as prostate cancer, melanoma and brain glioma tumors. Notably, it is found that D-Fe3 O4 SPs have 7.7-fold higher affinity for the tumor cell surface receptor cluster-of-differentiation 47 (CD47) than L-Fe3 O4 SPs. These findings uncover that chiral Fe3 O4 SPs act as a highly effective MRI contrast agent for targeting and imaging broad tumors, thus accelerating the practical application of chiral nanomaterials and deepening the understanding of chirality in biological and non-biological environments.
Collapse
Affiliation(s)
- Chen Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Jing Zhao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaoqing Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, and Oujiang Laboratory, Wenzhou, Zhejiang, 325001, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Shudong Hu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
26
|
Qiao N, Ma L, Zhang Y, Wang L. Update on Nonhuman Primate Models of Brain Disease and Related Research Tools. Biomedicines 2023; 11:2516. [PMID: 37760957 PMCID: PMC10525665 DOI: 10.3390/biomedicines11092516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The aging of the population is an increasingly serious issue, and many age-related illnesses are on the rise. These illnesses pose a serious threat to the health and safety of elderly individuals and create a serious economic and social burden. Despite substantial research into the pathogenesis of these diseases, their etiology and pathogenesis remain unclear. In recent decades, rodent models have been used in attempts to elucidate these disorders, but such models fail to simulate the full range of symptoms. Nonhuman primates (NHPs) are the most ideal neuroscientific models for studying the human brain and are more functionally similar to humans because of their high genetic similarities and phenotypic characteristics in comparison with humans. Here, we review the literature examining typical NHP brain disease models, focusing on NHP models of common diseases such as dementia, Parkinson's disease, and epilepsy. We also explore the application of electroencephalography (EEG), magnetic resonance imaging (MRI), and optogenetic study methods on NHPs and neural circuits associated with cognitive impairment.
Collapse
Affiliation(s)
- Nan Qiao
- School of Life Sciences, Hebei University, 180 Wusi Dong Lu, Baoding 071002, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China;
| | - Lizhen Ma
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China;
| | - Yi Zhang
- School of Life Sciences, Hebei University, 180 Wusi Dong Lu, Baoding 071002, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China;
| | - Lifeng Wang
- School of Life Sciences, Hebei University, 180 Wusi Dong Lu, Baoding 071002, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China;
| |
Collapse
|
27
|
Fan Y, Chen L, Zheng Y, Li A, Lin H, Gao J. Nanoparticle-Based Activatable MRI Probes for Disease Imaging and Monitoring. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:192-204. [PMID: 39473694 PMCID: PMC11504611 DOI: 10.1021/cbmi.3c00024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/04/2025]
Abstract
Traditional diagnosis relies on identifying anatomical abnormality, which offers a stage for various anatomical imaging techniques, such as X-ray computed tomography (CT), ultrasonic imaging, and magnetic resonance imaging (MRI). The good capacity of providing anatomical details, especially for soft tissues, popularizes the clinical use of MRI. However, as the understanding of various diseases reaches the molecular level, it is gradually accepted that molecular anomaly often precedes anatomical abnormality. Therefore, molecular imaging, which is aimed at gathering various molecular information in organisms via imaging, starts to gain momentum. Unfortunately, traditional MRI is not capable of molecular imaging. As a result, there is an urgent demand for probes that enable MRI to "see" molecules. A promising design strategy for these probes is to elicit a signal change triggered by the presence of molecular targets, i.e. activation. Benefiting from the rapid development of nanotechnology, a number of nanoparticle-based activatable MRI probes have been developed for molecular imaging. This review summarizes recent advances of activatable MRI nanoprobes for imaging pathological characteristics of cancer, inflammation, and neurodegenerative diseases, with a focus on the design strategies and applications of these probes. In addition, the prospects and challenges of activatable MRI nanoprobes are also discussed.
Collapse
Affiliation(s)
- Yifan Fan
- The MOE Laboratory of Spectrochemical
Analysis & Instrumentation, Fujian Provincial Key Laboratory of
Chemical Biology, and Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Limin Chen
- The MOE Laboratory of Spectrochemical
Analysis & Instrumentation, Fujian Provincial Key Laboratory of
Chemical Biology, and Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanxi Zheng
- The MOE Laboratory of Spectrochemical
Analysis & Instrumentation, Fujian Provincial Key Laboratory of
Chemical Biology, and Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ao Li
- The MOE Laboratory of Spectrochemical
Analysis & Instrumentation, Fujian Provincial Key Laboratory of
Chemical Biology, and Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- The MOE Laboratory of Spectrochemical
Analysis & Instrumentation, Fujian Provincial Key Laboratory of
Chemical Biology, and Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- The MOE Laboratory of Spectrochemical
Analysis & Instrumentation, Fujian Provincial Key Laboratory of
Chemical Biology, and Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
28
|
Foster D, Larsen J. Polymeric Metal Contrast Agents for T 1-Weighted Magnetic Resonance Imaging of the Brain. ACS Biomater Sci Eng 2023; 9:1224-1242. [PMID: 36753685 DOI: 10.1021/acsbiomaterials.2c01386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Imaging plays an integral role in diagnostics and treatment monitoring for conditions affecting the brain; enhanced brain imaging capabilities will improve upon both while increasing the general understanding of how the brain works. T1-weighted magnetic resonance imaging is the preferred modality for brain imaging. Commercially available contrast agents, which are often required to render readable brain images, have considerable toxicity concerns. In recent years, much progress has been made in developing new contrast agents based on the magnetic features of gadolinium, iron, or magnesium. Nanotechnological approaches for these systems allow for the protected integration of potentially harmful metals with added benefits like reduced dosage and improved transport. Polymeric enhancement of each design further improves biocompatibility while allowing for specific brain targeting. This review outlines research on polymeric nanomedicine designs for T1-weighted contrast agents that have been evaluated for performance in the brain.
Collapse
|
29
|
Dai J, Liu Z, Wang L, Huang G, Song S, Chen C, Wu T, Xu X, Hao C, Bian Y, Rozhkova EA, Chen Z, Yang H. A Telomerase-Activated Magnetic Resonance Imaging Probe for Consecutively Monitoring Tumor Growth Kinetics and In Situ Screening Inhibitors. J Am Chem Soc 2023; 145:1108-1117. [PMID: 36622303 DOI: 10.1021/jacs.2c10749] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Telomerase has long been considered as a biomarker for cancer diagnosis and a therapeutic target for drug discovery. Detecting telomerase activity in vivo could provide more direct information of tumor progression and response to drug treatment, which, however, is hampered by the lack of an effective probe that can generate an output signal without a tissue penetration depth limit. In this study, using the principle of distance-dependent magnetic resonance tuning, we constructed a telomerase-activated magnetic resonance imaging probe (TAMP) by connecting superparamagnetic ferroferric oxide nanoparticles (SPFONs) and paramagnetic Gd-DOTA (Gd(III) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) complexes via telomerase-responsive DNA motifs. Upon telomerase-catalyzed extension of the primer in TAMP, Gd-DOTA-conjugated oligonucleotides can be liberated from the surface of SPFONs through a DNA strand displacement reaction, restoring the T1 signal of the Gd-DOTA for a direct readout of the telomerase activity. Here we show that, by tracking telomerase activity, this probe provides consistent monitoring of tumor growth kinetics during progression and in response to drug treatment and enables in situ screening of telomerase inhibitors in whole-animal models. This study provides an alternative toolkit for cancer diagnosis, treatment response assessment, and anticancer drug screening.
Collapse
Affiliation(s)
- Junduan Dai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Zheng Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Lili Wang
- Fujian Medical University Union Hospital, Fuzhou 350001, P.R. China
| | - Guoming Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Sijie Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Chen Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Ting Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Xiao Xu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Chaojie Hao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Yijie Bian
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Elena A Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| |
Collapse
|
30
|
Li Z, Sun W, Duan W, Jiang Y, Chen M, Lin G, Wang Q, Fan Z, Tong Y, Chen L, Li J, Cheng G, Wang C, Li C, Chen L. Guiding Epilepsy Surgery with an LRP1-Targeted SPECT/SERRS Dual-Mode Imaging Probe. ACS APPLIED MATERIALS & INTERFACES 2023; 15:14-25. [PMID: 35588160 DOI: 10.1021/acsami.2c02540] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Accurate identification of the resectable epileptic lesion is a precondition of operative intervention to drug-resistant epilepsy (DRE) patients. However, even when multiple diagnostic modalities are combined, epileptic foci cannot be accurately identified in ∼30% of DRE patients. Inflammation-associated low-density lipoprotein receptor-related protein-1 (LRP1) has been validated to be a surrogate target for imaging epileptic foci. Here, we reported an LRP1-targeted dual-mode probe that is capable of providing comprehensive epilepsy information preoperatively with SPECT imaging while intraoperatively delineating epileptic margins in a sensitive high-contrast manner with surface-enhanced resonance Raman scattering (SERRS) imaging. Notably, a novel and universal strategy for constructing self-assembled monolayer (SAM)-based Raman reporters was proposed for boosting the sensitivity, stability, reproducibility, and quantifiability of the SERRS signal. The probe showed high efficacy to penetrate the blood-brain barrier. SPECT imaging showed the probe could delineate the epileptic foci clearly with a high target-to-background ratio (4.11 ± 0.71, 2 h). Further, with the assistance of the probe, attenuated seizure frequency in the epileptic mouse models was achieved by using SPECT together with Raman images before and during operation, respectively. Overall, this work highlights a new strategy to develop a SPECT/SERRS dual-mode probe for comprehensive epilepsy surgery that can overcome the brain shift by the co-registration of preoperative SPECT and SERRS intraoperative images.
Collapse
Affiliation(s)
- Zhi Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanbing Sun
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wenjia Duan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yiqing Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ming Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guorong Lin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qinyue Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhen Fan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yusheng Tong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Luo Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianing Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Guangli Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
| |
Collapse
|
31
|
Liu J, Chen C, Chen H, Huang C, Ren Q, Sun M, Tao J, Lin B, Zhao P. Brain Glucose Activated MRI Contrast Agent for Early Diagnosis of Alzheimer’s Disease. Anal Chem 2022; 94:16213-16221. [DOI: 10.1021/acs.analchem.2c03765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jiamin Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chuyao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huiting Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Cong Huang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingfan Ren
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingyan Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
32
|
Zhao J, Wang C, Sun W, Li C. Tailoring Materials for Epilepsy Imaging: From Biomarkers to Imaging Probes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203667. [PMID: 35735191 DOI: 10.1002/adma.202203667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Excising epileptic foci (EF) is the most efficient approach for treating drug-resistant epilepsy (DRE). However, owing to the vast heterogeneity of epilepsies, EF in one-third of patients cannot be accurately located, even after exhausting all current diagnostic strategies. Therefore, identifying biomarkers that truly represent the status of epilepsy and fabricating probes with high targeting specificity are prerequisites for identifying the "concealed" EF. However, no systematic summary of this topic has been published. Herein, the potential biomarkers of EF are first summarized and classified into three categories: functional, molecular, and structural aberrances during epileptogenesis, a procedure of nonepileptic brain biasing toward epileptic tissue. The materials used to fabricate these imaging probes and their performance in defining the EF in preclinical and clinical studies are highlighted. Finally, perspectives for developing the next generation of probes and their challenges in clinical translation are discussed. In general, this review can be helpful in guiding the development of imaging probes defining EF with improved accuracy and holds promise for increasing the number of DRE patients who are eligible for surgical intervention.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
- Academy for Engineering and Technology, Fudan University, 20 Handan Road, Yangpu District, Shanghai, 200433, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 200031, China
| | - Wanbing Sun
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
- State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
33
|
Yin D, Yao C, Chen Y, He Z, Yu P, Sun X, Wang S, Zhang F. HClO-Activated Near-Infrared Fluorogenic Aza-BODIPY-Bisferrocene Triad with High Turn-on Ratio for In Vivo Biosensing. Adv Healthc Mater 2022; 11:e2201139. [PMID: 35815541 DOI: 10.1002/adhm.202201139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 01/27/2023]
Abstract
Optically monitoring hypochlorous acid (HClO) in living body favors diagnosis and study of inflammatory diseases. However, this has been hampered by limited strategies to develop highly fluorogenic tools in the deep-penetration near-infrared spectrum. Herein, a near-infrared aza-BODIPY-bisferrocene triad Fc2 -CBDP that unexpectedly achieves an exceptionally sensitive and selective fluorescence turn-on (>220-fold) response toward HClO through single-ferrocene oxidation and boron-alkynyl hydrolysis cascade is reported. Mechanism insight shows that Fc2 -CBDP features "enhanced charge transfer"-caused quenching due to intramolecular bisferrocene electronic coupling, which is decoupled in the reaction with HClO. The utility of Fc2 -CBDP for intracellular HClO imaging is evaluated and, more importantly, in vivo high-contrast deep-tissue imaging of lymphatic inflammation and colitis is realized. This work provides new insights into both HClO and ferrocene chemistry, and extends the reach of fluorogenic strategies in the near-infrared biosensing.
Collapse
Affiliation(s)
- Dongrui Yin
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Chenzhi Yao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Zuyang He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Xingwen Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, China
| |
Collapse
|
34
|
Wang J, Fu J, Sun W, Yin X, Lv K, Zhang J. Functionalized PEG-PLA nanoparticles for brain targeted delivery of ketoconazole contribute to pregnane X receptor overexpressing in drug-resistant epilepsy. Epilepsy Res 2022; 186:107000. [PMID: 36037622 DOI: 10.1016/j.eplepsyres.2022.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/24/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To develop a functionalized PEG-PLA nanoparticle system containing ketoconazole (KCZ) to overcome the overactivity of pregnane X receptor (PXR) for the treatment of drug-resistant epilepsy (DRE). SIGNIFICANCE KCZ was developed as a therapy strategy for DRE limited by its lethal hepatotoxicity and minute brain concentration. KCZ-incorporated nanoparticles modified with angiopep-2 (NPs/KCZ) could reduce adverse effects of KCZ and achieve epileptic foci-targeted drug delivery. METHODS NPs/KCZ was prepared by thin-film hydration method and characterized in vitro and in vivo. The efficacy evaluation of NPs/KCZ was evaluated in a kainic acid (KA)-induced mice model of epilepsy with carbamazepine (CBZ) treatment. RESULTS The mean particle size and Zeta potential of NPs/KCZ were 17.84 ± 0.33 nm and - 2.28 ± 0.12 mV, respectively. The drug-loading (DL%) of KCZ in nanoparticles was 8.96 ± 0.12 % and the entrapment efficiency (EE%) was 98.56 ± 0.02 %. The critical value of critical micelle concentration was 10-3.3 mg/ml. No obvious cytotoxicity was found in vitro. The behavioral and electrographic seizure activities were obviously attenuated in NPs/KCZ+CBZ group. The CBZ concentration of brain tissues in mice treated with NPs/KCZ+CBZ was significantly increased than those treated with CBZ alone (P = 0.0028). A significantly decreased expression level of PXR and its downstream proteins was observed in NPs/KCZ+CBZ group compared with that in the control and CBZ group (All P < 0.05). CONCLUSION Our results showed that NPs/KCZ achieved the epileptic foci-targeted delivery of KCZ and ameliorated the efficacy of CBZ on DRE by attenuating the overactivity of PXR.
Collapse
Affiliation(s)
- Jianhong Wang
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Junyan Fu
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Wanbing Sun
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Xuyang Yin
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China; National Center for Neurological Disorders, No.12 Wulumuqi Road (Middle), Shanghai 200040, China.
| |
Collapse
|
35
|
Xu L, Xie L, Fang C, Lou W, Jiang T. New progress in tumor treatment based on nanoparticles combined with irreversible electroporation. NANO SELECT 2022. [DOI: 10.1002/nano.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Lei Xu
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Department of Ultrasound Medicine Affiliated Jinhua Hospital Zhejiang University School of Medicine Jinhua Zhejiang 321000 P.R. China
| | - Liting Xie
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
| | - ChengYu Fang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - WenJing Lou
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - Tianan Jiang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province Hangzhou Zhejiang 310000 P.R. China
| |
Collapse
|
36
|
He H, Zhang X, Du L, Ye M, Lu Y, Xue J, Wu J, Shuai X. Molecular imaging nanoprobes for theranostic applications. Adv Drug Deliv Rev 2022; 186:114320. [PMID: 35526664 DOI: 10.1016/j.addr.2022.114320] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022]
Abstract
As a non-invasive imaging monitoring method, molecular imaging can provide the location and expression level of disease signature biomolecules in vivo, leading to early diagnosis of relevant diseases, improved treatment strategies, and accurate assessment of treating efficacy. In recent years, a variety of nanosized imaging probes have been developed and intensively investigated in fundamental/translational research and clinical practice. Meanwhile, as an interdisciplinary discipline, this field combines many subjects of chemistry, medicine, biology, radiology, and material science, etc. The successful molecular imaging not only requires advanced imaging equipment, but also the synthesis of efficient imaging probes. However, limited summary has been reported for recent advances of nanoprobes. In this paper, we summarized the recent progress of three common and main types of nanosized molecular imaging probes, including ultrasound (US) imaging nanoprobes, magnetic resonance imaging (MRI) nanoprobes, and computed tomography (CT) imaging nanoprobes. The applications of molecular imaging nanoprobes were discussed in details. Finally, we provided an outlook on the development of next generation molecular imaging nanoprobes.
Collapse
Affiliation(s)
- Haozhe He
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xindan Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China
| | - Minwen Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yonglai Lu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jun Wu
- PCFM Lab of Ministry of Education, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China.
| |
Collapse
|
37
|
Wang T, Zhang X, Xu Y, Xu Y, Zhang Y, Zhang K. Emerging nanobiotechnology-encoded relaxation tuning establishes new MRI modes to localize, monitor and predict diseases. J Mater Chem B 2022; 10:7361-7383. [PMID: 35770674 DOI: 10.1039/d2tb00600f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the most important techniques in the diagnosis of many diseases including cancers, where contrast agents (CAs) are usually necessary to improve its precision and sensitivity. Previous MRI CAs are confined to the signal-to-noise ratio (SNR) elevation of lesions for precisely localizing lesions. As nanobiotechnology advances, some new MRI CAs or nanobiotechnology-enabled MRI modes have been established to vary the longitudinal or transverse relaxation of CAs, which are harnessed to detect lesion targets, monitor disease evolution, predict or evaluate curative effect, etc. These distinct cases provide unexpected insights into the correlation of the design principles of these nanobiotechnologies and corresponding MRI CAs with their potential applications. In this review, first, we briefly present the principles, classifications and applications of conventional MRI CAs, and then elucidate the recent advances in relaxation tuning via the development of various nanobiotechnologies with emphasis on the design strategies of nanobiotechnology and the corresponding MRI CAs to target the tumor microenvironment (TME) and biological targets or activities in tumors or other diseases. In addition, we exemplified the advantages of these strategies in disease theranostics and explored their potential application fields. Finally, we analyzed the present limitations, potential solutions and future development direction of MRI after its combination with nanobiotechnology.
Collapse
Affiliation(s)
- Taixia Wang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Xueni Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yuan Xu
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yingchun Xu
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yifeng Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Kun Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| |
Collapse
|
38
|
Liu S, Liu L, Zhao Y, Wang Y, Wu Y, Zhang XD, Ming D. A High-Performance Electrode Based on van der Waals Heterostructure for Neural Recording. NANO LETTERS 2022; 22:4400-4409. [PMID: 35587781 DOI: 10.1021/acs.nanolett.2c00848] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neural electrodes have been widely used to monitor neurological disorders and have a major impact on neuroscience, whereas traditional electrodes are limited to their inherent high impedance, which makes them insensitive to weak signals during recording neural signals. Herein, we developed a neural electrode based on the graphene/Ag van der Waals heterostructure for improving the detection sensitivity and signal-to-noise ratio (SNR). The impedance of the graphene/Ag electrode is reduced to 161.4 ± 13.4 MΩ μm2, while the cathode charge-storage capacity (CSCc) reaches 24.2 ± 1.9 mC cm-2, which is 6.3 and 48.4 times higher than those of the commercial Ag electrodes, respectively. Density functional theory (DFT) results find that the Ag-graphene interface has more doped electronic states, providing faster electron transfer and enhanced interfacial transport. In vivo detection sensitivity and SNR of graphene/Ag electrodes are significantly improved. The current work provides a feasible solution for designing brain electrodes to monitor neural signals more sensitively and accurately.
Collapse
Affiliation(s)
- Shuangjie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Ling Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yue Zhao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yingpeng Wu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Dong Ming
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
39
|
Li JJ, Meng XY, Men ZN, Chen X, Shen T, Liu JS. Electric and reactive oxygen species dual-responsive polymeric micelles improve the therapeutic efficacy of lamotrigine in pentylenetetrazole kindling rats. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Gao X, Xu J, Yao T, Liu X, Zhang H, Zhan C. Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases. Adv Drug Deliv Rev 2022; 187:114362. [PMID: 35654215 DOI: 10.1016/j.addr.2022.114362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Blood-Brain Barrier (BBB) is one of the most important physiological barriers strictly restricting the substance exchange between blood and brain tissues. While the BBB protects the brain from infections and toxins and maintains brain homeostasis, it is also recognized as the main obstacle to the penetration of therapeutics and imaging agents into the brain. Due to high specificity and affinity, peptides are frequently exploited to decorate nanocarriers across the BBB for diagnosis and/or therapy purposes. However, there are still some challenges that restrict their clinical application, such as stability, safety and immunocompatibility. In this review, we summarize the biological and pathophysiological characteristics of the BBB, strategies across the BBB, and recent progress on peptide decorated nanocarriers for brain diseases diagnosis and therapy. The challenges and opportunities for their translation are also discussed.
Collapse
|
41
|
Gugger JJ, Kennedy E, Panahi S, Tate DF, Roghani A, Van Cott AC, Lopez MR, Altalib H, Diaz-Arrastia R, Pugh MJ. Multimodal Quality of Life Assessment in Post-9/11 Veterans With Epilepsy: Impact of Drug Resistance, Traumatic Brain Injury, and Comorbidity. Neurology 2022; 98:e1761-e1770. [PMID: 35387856 PMCID: PMC9071370 DOI: 10.1212/wnl.0000000000200146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/18/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Epilepsy is defined by the occurrence of multiple unprovoked seizures, but quality of life (QOL) in people with epilepsy is determined by multiple factors, in which psychiatric comorbidities play a pivotal role. Therefore, understanding the interplay between comorbidities and QOL across epilepsy phenotypes is an important step towards improved outcomes. Here, we report the impact of QOL across distinct epilepsy phenotypes in a cohort of post-9/11 veterans with high rates of traumatic brain injury (TBI). METHODS This observational cohort study from the Veterans Health Administration included post-9/11 Veterans with epilepsy. A process integrating an epilepsy identification algorithm, chart abstraction, and self-reported measures was used to classify patients into one of four groups: 1. Epilepsy controlled with medications, 2. Drug resistant epilepsy (DRE), 3. Post-traumatic epilepsy (PTE), or 4. Drug resistant post-traumatic epilepsy (PT-DRE). Summary scores for six QOL measures were compared across the groups, adjusting for age, sex, and number of comorbidities. RESULTS A total of 529 survey respondents with epilepsy were included in the analysis: 249 controls (i.e., epilepsy without DRE or PTE), 124 with DRE, 86 with PTE, and 70 with PT-DRE. Drug resistant epilepsy was more common in those with PTE compared with non-traumatic epilepsy (45% vs. 33%, odds ratio 1.6 (95% CI: [1.1-2.4], p=0.01)). Patients with PTE and PT-DRE had significantly more comorbid conditions in health records than those with nontraumatic epilepsy. Those with both PTE and DRE reported the lowest QOL across all six measures, and this persisted after adjustment for comorbidities, and in further linear analyses. DISCUSSION Among those with PTE, DRE prevalence was significantly higher than for non-traumatic epilepsies. PTE was also associated with higher burden of comorbidity, and worse overall QOL compared to those with non-traumatic epilepsies. People with PTE are distinctly vulnerable to the comorbidities associated with TBI and epilepsy. This at-risk group should be the focus of future studies aimed at elucidating the factors associated with adverse health outcomes and developing anti-epileptogenic therapies.
Collapse
Affiliation(s)
- James J Gugger
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lei S, Zhang J, Blum NT, Li M, Zhang DY, Yin W, Zhao F, Lin J, Huang P. In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy. Nat Commun 2022; 13:1298. [PMID: 35277519 PMCID: PMC8917194 DOI: 10.1038/s41467-022-29082-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/24/2022] [Indexed: 01/08/2023] Open
Abstract
Non-invasive visualization of dynamic molecular events in real-time via molecular imaging may enable the monitoring of cascade catalytic reactions in living systems, however effective imaging modalities and a robust catalytic reaction system are lacking. Here we utilize three-dimensional (3D) multispectral photoacoustic (PA) molecular imaging to monitor in vivo cascade catalytic therapy based on a dual enzyme-driven cyclic reaction platform. The system consists of a two-dimensional (2D) Pd-based nanozyme conjugated with glucose oxidase (GOx). The combination of nanozyme and GOx can induce the PA signal variation of endogenous molecules. Combined with the PA response of the nanozyme, we can simultaneously map the 3D PA signals of dynamic endogenous and exogenous molecules associated with the catalytic process, thus providing a real-time non-invasive visualization. We can also treat tumors under the navigation of the PA imaging. Therefore, our study demonstrates the imaging-guided potential of 3D multispectral PA imaging in feedback-looped cascade catalytic therapy.
Collapse
Affiliation(s)
- Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jing Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Meng Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Dong-Yang Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Weimin Yin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Feng Zhao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
43
|
Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. J Control Release 2022; 345:231-274. [DOI: 10.1016/j.jconrel.2022.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
|
44
|
Wu D, Fei F, Zhang Q, Wang X, Gong Y, Chen X, Zheng Y, Tan B, Xu C, Xie H, Fang W, Chen Z, Wang Y. Nanoengineered on-demand drug delivery system improves efficacy of pharmacotherapy for epilepsy. SCIENCE ADVANCES 2022; 8:eabm3381. [PMID: 35020438 PMCID: PMC8754409 DOI: 10.1126/sciadv.abm3381] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Long-term pharmacotherapy, serving as the main therapeutic approach for epilepsy prophylaxis, has suffered from limited efficacy and potential side effects because of the blood-brain barrier (BBB) and untimely medication. Here, we reported a nanoengineered drug delivery system for synergistic brain-targeting delivery and on-demand drug release of antiepileptic drugs (AEDs). The dopamine-pyrrole hybrid system can improve delivery efficiency through a combination of receptor-mediated transcytosis and BBB disruption–enabled transport induced by photothermal conversion of near-infrared light. Incorporation of polydopamine endowed the delivery system with enhanced conductivity and sensitivity, giving sustained (2 hours) and rapid (30 s) drug release in response to epileptiform discharges. Acute, continuous, and spontaneous seizure models validated that the delivery system could inhibit seizures upon epileptiform abnormalities, treated by one-fifth of the conventional dosage. Complemented with satisfactory biosafety results, this “smart” modality is promising to be an effective and safe strategy to improve the therapeutic index of AEDs for epilepsy.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Fei
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xia Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiwei Gong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding author. (Z.C.); (Y.W.)
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding author. (Z.C.); (Y.W.)
| |
Collapse
|
45
|
Wang Q, Liang Z, Li F, Lee J, Low LE, Ling D. Dynamically switchable magnetic resonance imaging contrast agents. EXPLORATION (BEIJING, CHINA) 2021; 1:20210009. [PMID: 37323214 PMCID: PMC10191000 DOI: 10.1002/exp.20210009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/04/2021] [Indexed: 06/14/2023]
Abstract
Contrast agents can improve the sensitivity and resolution of magnetic resonance imaging (MRI) by accelerating the relaxation times of surrounding water protons. The MRI performances of contrast agents are closely related to their structural characteristics, including size, shape, surface modification, and so on. Recently, dynamically switchable MRI contrast agents that can undergo structural changes and imaging functional activations upon reaching the disease microenvironment have been developed for high performance MRI. This perspective highlights the ingenious design, controllable structural transformation, and tunable imaging property of dynamic MRI contrast agents. Additionally, the current challenges of the dynamic MRI contrast agents for medical diagnosis are discussed. Furthermore, the future integration of high-resolution ultra-high field MRI technology and cutting-edge dynamic MRI contrast agents for non-invasive histopathological level accurate detection of microscopic lesions are commented.
Collapse
Affiliation(s)
- Qiyue Wang
- Institute of Pharmaceutics, College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
| | - Zeyu Liang
- Institute of Pharmaceutics, College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaGyeonggi‐doRepublic of Korea
| | - Liang Ee Low
- Institute of Pharmaceutics, College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of PharmacyMonash University MalaysiaSelangor Darul EhsanMalaysia
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiP. R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhouZhejiangP. R. China
| |
Collapse
|
46
|
Zhang L, Sun H, Zhao J, Lee J, Ee Low L, Gong L, Chen Y, Wang N, Zhu C, Lin P, Liang Z, Wei M, Ling D, Li F. Dynamic nanoassemblies for imaging and therapy of neurological disorders. Adv Drug Deliv Rev 2021; 175:113832. [PMID: 34146626 DOI: 10.1016/j.addr.2021.113832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/07/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
The past decades have witnessed an increased incidence of neurological disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, ischemic stroke, and epilepsy, which significantly lower patients' life quality and increase the economic and social burden. Recently, nanomedicines composed of imaging and/or therapeutic agents have been explored to diagnose and/or treat NDs due to their enhanced bioavailability, blood-brain barrier (BBB) permeability, and targeting capacity. Intriguingly, dynamic nanoassemblies self-assembled from functional nanoparticles to simultaneously interfere with multiple pathogenic substances and pathological changes, have been regarded as one of the foremost candidates to improve the diagnostic and therapeutic efficacy of NDs. To help readers better understand this emerging field, in this review, the pathogenic mechanism of different types of NDs is briefly introduced, then the functional nanoparticles used as building blocks in the construction of dynamic nanoassemblies for NDs theranostics are summarized. Furthermore, dynamic nanoassemblies that can actively cross the BBB to target brain lesions, sensitively and efficiently diagnose or treat NDs, and effectively promote neuroregeneration are highlighted. Finally, we conclude with our perspectives on the future development in this field.
Collapse
|
47
|
Gessner I. Optimizing nanoparticle design and surface modification toward clinical translation. MRS BULLETIN 2021; 46:643-649. [PMID: 34305307 PMCID: PMC8279028 DOI: 10.1557/s43577-021-00132-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 05/14/2023]
Abstract
The field of nanomedicine is a rapidly evolving field driven by the need for safer and more efficient therapies as well as ultrasensitive and fast diagnostics. Although the advantages of nanoparticles for diagnostic and therapeutic applications are unambiguous, in vivo requirements, including low toxicity, long blood circulation time, proper clearance, sufficient stability, and reproducible synthesis have, in most cases, bedeviled their clinical translation. Nevertheless, researchers have the opportunity to have a decisive influence on the future of nanomedicine by developing new multifunctional molecules and adapting the material design to the requirements. Ultimately, the goal is to find the right level of functionality without adding unnecessary complexity to the system. This article aims to emphasize the potential and current challenges of nanoparticle-based medical agents and highlights how smart and functional material design considerations can help to overcome many of the current limitations and increase the clinical value of nanoparticles.
Collapse
Affiliation(s)
- Isabel Gessner
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
48
|
Low LE, Wang Q, Chen Y, Lin P, Yang S, Gong L, Lee J, Siva SP, Goh BH, Li F, Ling D. Microenvironment-tailored nanoassemblies for the diagnosis and therapy of neurodegenerative diseases. NANOSCALE 2021; 13:10197-10238. [PMID: 34027535 DOI: 10.1039/d1nr02127c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Neurodegenerative disorder is an illness involving neural dysfunction/death attributed to complex pathological processes, which eventually lead to the mortality of the host. It is generally recognized through features such as mitochondrial dysfunction, protein aggregation, oxidative stress, metal ions dyshomeostasis, membrane potential change, neuroinflammation and neurotransmitter impairment. The aforementioned neuronal dysregulations result in the formation of a complex neurodegenerative microenvironment (NME), and may interact with each other, hindering the performance of therapeutics for neurodegenerative disease (ND). Recently, smart nanoassemblies prepared from functional nanoparticles, which possess the ability to interfere with different NME factors, have shown great promise to enhance the diagnostic and therapeutic efficacy of NDs. Herein, this review highlights the recent advances of stimuli-responsive nanoassemblies that can effectively combat the NME for the management of ND. The first section outlined the NME properties and their interrelations that are exploitable for nanoscale targeting. The discussion is then extended to the controlled assembly of functional nanoparticles for the construction of stimuli-responsive nanoassemblies. Further, the applications of stimuli-responsive nanoassemblies for the enhanced diagnosis and therapy of ND are introduced. Finally, perspectives on the future development of NME-tailored nanomedicines are given.
Collapse
Affiliation(s)
- Liang Ee Low
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Qiyue Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Peihua Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Linji Gong
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Sangeetaprivya P Siva
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey-Hing Goh
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China and National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China and Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
49
|
Affiliation(s)
- Jan Grimm
- Molecular Pharmacology Program & Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Pharmacology Program, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|