BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tumasian RA 3rd, Harish A, Kundu G, Yang JH, Ubaida-Mohien C, Gonzalez-Freire M, Kaileh M, Zukley LM, Chia CW, Lyashkov A, Wood WH 3rd, Piao Y, Coletta C, Ding J, Gorospe M, Sen R, De S, Ferrucci L. Skeletal muscle transcriptome in healthy aging. Nat Commun 2021;12:2014. [PMID: 33795677 DOI: 10.1038/s41467-021-22168-2] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 16.0] [Reference Citation Analysis]
Number Citing Articles
1 Bakhtina AA, Pharaoh GA, Campbell MD, Keller A, Stuppard RS, Marcinek DJ, Bruce JE. Skeletal muscle mitochondrial interactome remodeling is linked to functional decline in aged female mice. Nat Aging 2023. [DOI: 10.1038/s43587-023-00366-5] [Reference Citation Analysis]
2 Jones RG 3rd, Dimet-Wiley A, Haghani A, da Silva FM, Brightwell CR, Lim S, Khadgi S, Wen Y, Dungan CM, Brooke RT, Greene NP, Peterson CA, McCarthy JJ, Horvath S, Watowich SJ, Fry CS, Murach KA. A molecular signature defining exercise adaptation with ageing and in vivo partial reprogramming in skeletal muscle. J Physiol 2023;601:763-82. [PMID: 36533424 DOI: 10.1113/JP283836] [Reference Citation Analysis]
3 Zeng M, Wang B, Liu L, Yang Y, Tang Z. Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs. Journal of Integrative Agriculture 2023. [DOI: 10.1016/j.jia.2023.02.040] [Reference Citation Analysis]
4 Coyle-Asbil B, Ogilvie LM, Simpson JA. Emerging roles for estrogen in regulating skeletal muscle physiology. Physiol Genomics 2023;55:75-8. [PMID: 36622080 DOI: 10.1152/physiolgenomics.00158.2022] [Reference Citation Analysis]
5 Shu H, Huang Y, Zhang W, Ling L, Hua Y, Xiong Z. An integrated study of hormone-related sarcopenia for modeling and comparative transcriptome in rats. Front Endocrinol (Lausanne) 2023;14:1073587. [PMID: 36817606 DOI: 10.3389/fendo.2023.1073587] [Reference Citation Analysis]
6 Araki H, Hino S, Anan K, Kuribayashi K, Etoh K, Seko D, Takase R, Kohrogi K, Hino Y, Ono Y, Araki E, Nakao M. LSD1 defines the fiber type-selective responsiveness to environmental stress in skeletal muscle. Elife 2023;12. [PMID: 36695573 DOI: 10.7554/eLife.84618] [Reference Citation Analysis]
7 Stokes T, Cen HH, Kapranov P, Gallagher IJ, Pitsillides AA, Volmar C, Kraus WE, Johnson JD, Phillips SM, Wahlestedt C, Timmons JA. Transcriptomics for Clinical and Experimental Biology Research: Hang on a Seq. Advanced Genetics 2023. [DOI: 10.1002/ggn2.202200024] [Reference Citation Analysis]
8 Keilich SR, Cadar AN, Ahern DT, Torrance BL, Lorenzo EC, Martin DE, Haynes L, Bartley JM. Altered T cell infiltration and enrichment of leukocyte regulating pathways within aged skeletal muscle are associated impaired muscle function following influenza infection. Geroscience 2023;45:1197-213. [PMID: 36580167 DOI: 10.1007/s11357-022-00715-z] [Reference Citation Analysis]
9 Fernandez-gonzalo R, Willis CRG, Etheridge T, Deane CS. RNA-Sequencing Muscle Plasticity to Resistance Exercise Training and Disuse in Youth and Older Age. Physiologia 2022;2:164-179. [DOI: 10.3390/physiologia2040014] [Reference Citation Analysis]
10 Tanaka T, Kafyra M, Jin Y, Chia CW, Dedoussis GV, Talegawkar SA, Ferrucci L. Quality Specific Associations of Carbohydrate Consumption and Frailty Index. Nutrients 2022;14. [PMID: 36501101 DOI: 10.3390/nu14235072] [Reference Citation Analysis]
11 Parvatiyar MS, Qaisar R. Editorial: Skeletal muscle in age-related diseases: From molecular pathogenesis to potential interventions. Front Physiol 2022;13:1056479. [DOI: 10.3389/fphys.2022.1056479] [Reference Citation Analysis]
12 Fu Y, Wu T, Yu H, Xu J, Zhang JZ, Fu DY, Ye H. The Transcription of Flight Energy Metabolism Enzymes Declined with Aging While Enzyme Activity Increased in the Long-Distance Migratory Moth, Spodoptera frugiperda. Insects 2022;13:936. [PMID: 36292884 DOI: 10.3390/insects13100936] [Reference Citation Analysis]
13 Araki H, Hino S, Anan K, Kuribayashi K, Etoh K, Seko D, Takase R, Kohrogi K, Hino Y, Ono Y, Araki E, Nakao M. LSD1 acts as an epigenetic barrier against glucocorticoid-induced atrophy and exercise-induced hypertrophy in skeletal muscle.. [DOI: 10.1101/2022.10.08.509614] [Reference Citation Analysis]
14 Chen F, Yi W, Wang S, Yuan M, Wen J, Li H, Zou Q, Liu S, Cai Z. A long-term high-fat diet influences brain damage and is linked to the activation of HIF-1α/AMPK/mTOR/p70S6K signalling. Front Neurosci 2022;16:978431. [DOI: 10.3389/fnins.2022.978431] [Reference Citation Analysis]
15 Bakhtina AA, Pharaoh G, Keller AD, Stuppard R, Marcinek DJ, Bruce JE. Mitochondrial interactome remodeling in aging mouse skeletal muscle associated with functional decline.. [DOI: 10.1101/2022.06.24.497539] [Reference Citation Analysis]
16 Anderson B, Ordaz A, Zlomislic V, Allen RT, Garfin SR, Schuepbach R, Farshad M, Schenk S, Ward SR, Shahidi B. Paraspinal Muscle Health is Related to Fibrogenic, Adipogenic, and Myogenic Gene Expression in Patients with Lumbar Spine Pathology. BMC Musculoskelet Disord 2022;23:608. [PMID: 35739523 DOI: 10.1186/s12891-022-05572-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Sturm G, Bobba-alves N, Tumasian RA, Michelson J, Ferrucci L, Kempes CP, Picard M. Accelerating the clock: Interconnected speedup of energetic and molecular dynamics during aging in cultured human cells.. [DOI: 10.1101/2022.05.10.491392] [Reference Citation Analysis]
18 Acosta-Rodríguez V, Rijo-Ferreira F, Izumo M, Xu P, Wight-Carter M, Green CB, Takahashi JS. Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science 2022;:e. [PMID: 35511946 DOI: 10.1126/science.abk0297] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 27.0] [Reference Citation Analysis]
19 Tsitsipatis D, Martindale JL, Ubaida-Mohien C, Lyashkov A, Yanai H, Kashyap A, Shin CH, Herman AB, Ji E, Yang JH, Munk R, Dunn C, Lukyanenko Y, Yang X, Chia CW, Karikkineth AC, Zukley L, D'Agostino J, Kaileh M, Cui CY, Beerman I, Ferrucci L, Gorospe M. Proteomes of primary skin fibroblasts from healthy individuals reveal altered cell responses across the life span. Aging Cell 2022;21:e13609. [PMID: 35429111 DOI: 10.1111/acel.13609] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Joel MM, Pontifex C, Martens K, Chhibber S, de Koning J, Pfeffer G. Transcriptome analysis from muscle biopsy tissues in late-onset myopathies identifies potential biomarkers correlating to muscle pathology. Neuromuscular Disorders 2022. [DOI: 10.1016/j.nmd.2022.04.009] [Reference Citation Analysis]
21 Dungan CM, Figueiredo VC, Wen Y, VonLehmden GL, Zdunek CJ, Thomas NT, Mobley CB, Murach KA, Brightwell CR, Long DE, Fry CS, Kern PA, McCarthy JJ, Peterson CA. Senolytic treatment rescues blunted muscle hypertrophy in old mice. Geroscience 2022. [PMID: 35325353 DOI: 10.1007/s11357-022-00542-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Montano M, Oursler KK, Xu K, Sun YV, Marconi VC. Biological ageing with HIV infection: evaluating the geroscience hypothesis. Lancet Healthy Longev 2022;3:e194-205. [PMID: 36092375 DOI: 10.1016/s2666-7568(21)00278-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Ferrucci L, Wilson DM, Donegà S, Gorospe M. The energy–splicing resilience axis hypothesis of aging. Nat Aging 2022;2:182-185. [DOI: 10.1038/s43587-022-00189-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
24 Das A, Shyamal S, Sinha T, Mishra SS, Panda AC. Identification of Potential circRNA-microRNA-mRNA Regulatory Network in Skeletal Muscle. Front Mol Biosci 2021;8:762185. [PMID: 34912845 DOI: 10.3389/fmolb.2021.762185] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
25 Englund DA, Zhang X, Aversa Z, LeBrasseur NK. Skeletal muscle aging, cellular senescence, and senotherapeutics: Current knowledge and future directions. Mech Ageing Dev 2021;200:111595. [PMID: 34742751 DOI: 10.1016/j.mad.2021.111595] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
26 Omenn GS, Lane L, Overall CM, Paik YK, Cristea IM, Corrales FJ, Lindskog C, Weintraub S, Roehrl MHA, Liu S, Bandeira N, Srivastava S, Chen YJ, Aebersold R, Moritz RL, Deutsch EW. Progress Identifying and Analyzing the Human Proteome: 2021 Metrics from the HUPO Human Proteome Project. J Proteome Res 2021. [PMID: 34670092 DOI: 10.1021/acs.jproteome.1c00590] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
27 Dodds RM, Hurst C, Hillman SJ, Davies K, Aspray TJ, Granic A, Sayer AA. Advancing our understanding of skeletal muscle across the lifecourse: protocol for the MASS_Lifecourse study and characteristics of the first 80 participants.. [DOI: 10.1101/2021.10.14.21264985] [Reference Citation Analysis]
28 Han Y, Li LZ, Kastury NL, Thomas CT, Lam MPY, Lau E. Transcriptome features of striated muscle aging and predictability of protein level changes. Mol Omics 2021. [PMID: 34328155 DOI: 10.1039/d1mo00178g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
29 Han Y, Li LZ, Kastury NL, Thomas CT, Lam MPY, Lau E. Transcriptome features of striated muscle aging and predictability of protein level changes.. [DOI: 10.1101/2021.06.12.448203] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Clemens Z, Sivakumar S, Pius A, Sahu A, Shinde S, Mamiya H, Luketich N, Cui J, Dixit P, Hoeck JD, Kreuz S, Franti M, Barchowsky A, Ambrosio F. The biphasic and age-dependent impact of klotho on hallmarks of aging and skeletal muscle function. Elife 2021;10:e61138. [PMID: 33876724 DOI: 10.7554/eLife.61138] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]