1
|
Gao Y, Huang Y, An R, Yang Y, Chen X, Wan Q. Risk factors for sarcopenia in community setting across the life course: A systematic review and a meta-analysis of longitudinal studies. Arch Gerontol Geriatr 2025; 133:105807. [PMID: 40049056 DOI: 10.1016/j.archger.2025.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Sarcopenia is generally an age-related condition in older people that impacts adverse health consequences in terms of quality of life, morbidity and mortality. With the increasing interest of clinical and research interest in sarcopenia internationally, the epidemiological evidence reveals sarcopenia risk begins in early adulthood, influenced by gene, lifestyle and a range of chronic conditions across life course. OBJECTIVES The purpose of this study was to systematically summarize the risk factors for sarcopenia across the life course, and to identity the high-risk population. METHODS Searches were performed in PubMed, Web of Science, Scopus, Embase, MEDLINE, and SPORTDiscus databases from inception to July 2024. Longitudinal studies assessing the risk factors for sarcopenia in community setting were included in the analysis. Fixed- and random-effect models were used to pool effect size. Based on the results of meta-analysis, we developed a risk predictive model for sarcopenia. RESULTS Fifty-three studies were included in our systematic review. Risk factors associating with sarcopenia were grouped into eight domains: sociodemographic, anthropometric, health behaviors, health condition, biomarkers, early life factors, psychosocial and living environment factors. Fifteen risk factors derived from the twenty-three included studies were eligible for meta-analysis, and ten variables were identified as statistically significant. A risk predictive model was developed for secondary sarcopenia in community setting. CONCLUSIONS This study provides a fully understanding of sarcopenia across the life-course. Our risk predictive model could facilitate the early identification and prevention of secondary sarcopenia in community setting. REGISTRATION The systematic review and meta-analysis have been registered in PROSPERO(CRD42024536346).
Collapse
Affiliation(s)
- Yajing Gao
- School of Nursing, Peking University, Beijing, China
| | - Yuli Huang
- School of Nursing, Peking University, Beijing, China
| | - Ran An
- School of Nursing, Peking University, Beijing, China
| | - Yi Yang
- School of Nursing, Peking University, Beijing, China
| | - Xinyao Chen
- School of Nursing, Peking University, Beijing, China
| | - Qiaoqin Wan
- School of Nursing, Peking University, Beijing, China.
| |
Collapse
|
2
|
Weng CJ, Lv LB, Yang LQ, Zhao L, Hu ZF, Ma SY, Li YJ, Xiao WX, Wang Y, Hu XT, Li GH, Kong QP. Transcriptomic evidence from peripheral blood reveals nonlinear gene expression trajectories of aging in female rhesus macaques. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2877-5. [PMID: 40343578 DOI: 10.1007/s11427-024-2877-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/19/2025] [Indexed: 05/11/2025]
Affiliation(s)
- Chong-Jun Weng
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long-Bao Lv
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Long Zhao
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zheng-Fei Hu
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Si-Yu Ma
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yi-Jiang Li
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Wen-Xian Xiao
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Yun Wang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Xin-Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
3
|
Kamihara T, Omura T, Shimizu A. Deciphering the relationship between sarcopenia and aging: A combined text mining and bioinformatics approach. Geriatr Gerontol Int 2025. [PMID: 40256904 DOI: 10.1111/ggi.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Accepted: 03/28/2025] [Indexed: 04/22/2025]
Abstract
AIM Sarcopenia is recognized as an age-related muscle disease, but there has been no comprehensive analysis of what is different between normal aging and sarcopenia, with an awareness of the worldwide research to date. Therefore, in this study, we used text mining of PubMed articles on sarcopenia and focused our bioinformatics analysis on the items that have been identified. METHODS This study compared gene-level changes in sarcopenia and normal aging to identify sarcopenia-specific gene changes using high-throughput sequencing data. In particular, text mining analysis was used to identify pathways and mechanisms of interest in sarcopenia research, and focus more on these mechanisms. RESULTS We identified the pathways common to sarcopenia and normal aging. Interleukin-7 pathways were associated with both conditions. Although changes in phagosome-related pathways were suggested as sarcopenia-specific, no significant changes in phagosome formation, lysosome-related and mitophagy-related gene groups were identified. However, genes in the nicotinamide adenine dinucleotide phosphate oxidase catalytic subunit family were shown to be possibly altered, suggesting the involvement of oxidative stress regulatory pathways. CONCLUSIONS A comprehensive bioinformatics analysis, complemented by the text mining of the extant literature, suggested that sarcopenia might not be characterized by a failure of autophagy as a whole, but rather, by a disruption of oxidative stress regulation, particularly nicotinamide adenine dinucleotide phosphate oxidase catalytic subunit-related pathways at a subsequent stage of autophagy after phagosome-lysosome fusion. Geriatr Gerontol Int 2025; ••: ••-••.
Collapse
Affiliation(s)
- Takahiro Kamihara
- Department of Cardiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takuya Omura
- Department of Metabolic Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Atsuya Shimizu
- Department of Cardiology, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
4
|
Zhang Y, Qin L, Liu J. Bioinformatics and machine learning approaches to explore key biomarkers in muscle aging linked to adipogenesis. BMC Musculoskelet Disord 2025; 26:285. [PMID: 40121419 PMCID: PMC11929359 DOI: 10.1186/s12891-025-08528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Adipogenesis is intricately linked to the onset and progression of muscle aging; however, the relevant biomarkers remain unclear. This study sought to identify key genes associated with adipogenesis in the context of muscle aging. Firstly, gene expression profiles from biopsies of the vastus lateralis muscle in both young and elderly population were retrieved from the GEO database. After intersecting with the results of differential gene analysis, weighted gene co-expression network analysis, and sets of adipogenesis-related genes, 29 adipogenesis-related differential expressed genes (ARDEGs) were selected. Connectivity Map (cMAP) analysis identified tamsulosin, fraxidin, and alaproclate as key target compounds. In further, using three machine learning algorithms and the friends analysis, four hub ARDEGs, ESRRA, RXRG, GADD45A, and CEBPB were identified and verified in vivo aged mice muscles. Immune infiltration analysis showed a strong link between several immune cells and hub ARDEGs. In all, these findings suggested that ESRRA, RXRG, GADD45A, and CEBPB could serve as adipogenesis related biomarkers in muscle aging.
Collapse
Affiliation(s)
- Yumin Zhang
- Division of Geriatric Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Li Qin
- Division of Geriatric Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Juan Liu
- Division of Geriatric Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Umek N, Meznarič M, Šink Ž, Blagotinšek Cokan K, Prosenc Zmrzljak U, Horvat S. In situ spatial transcriptomic analysis of human skeletal muscle using the Xenium platform. Cell Tissue Res 2025; 399:291-302. [PMID: 39786556 DOI: 10.1007/s00441-024-03945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Traditional transcriptomic studies often overlook the complex heterogeneity of skeletal muscle, as they typically isolate RNA from mixed muscle fibre and cell populations, resulting in an averaged transcriptomic profile that obscures fibre type-specific differences. This study assessed the potential of the recently developed Xenium platform for high-resolution spatial transcriptomic analysis of human skeletal muscle histological sections. Human vastus lateralis muscle samples from two individuals were analysed using the Xenium platform and Human Multi-Tissue and Cancer Panel targeting 377 genes complemented by staining of successive sections for Myosin Heavy Chain isoforms to differentiate between type 1 and type 2 muscle fibres. Manual segmentation of muscle fibres allowed accurate comparisons of transcript densities across fibre types and subcellular regions, overcoming limitations in the platform's automated segmentation. The analysis revealed higher transcript density in type 1 fibres, particularly in nuclear and perinuclear areas, and identified 191 out of 377 genes with differential expression between muscle fibres and perimysium. Genes such as PROX1, S100A1, LGR5, ACTA2, and LPL exhibited higher expression in type 1 fibres, whereas PEBP4, CAVIN1, GATM, and PVALB in type 2 fibres. We demonstrated that the Xenium platform is capable of high-resolution spatial in situ transcriptomic analysis of skeletal muscle histological sections. This study demonstrates that, with manual segmentation, the Xenium platform effectively performs fibre type-specific transcriptomic analysis, providing new insights into skeletal muscle biology.
Collapse
Affiliation(s)
- Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
| | - Marija Meznarič
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Žiga Šink
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | | | | | - Simon Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Donega S, Banskota N, Gupta E, Gonzalez-Freire M, Moore AZ, Ubaida-Mohien C, Munk R, Zukley L, Piao Y, Bergeron C, Bergeron J, Bektas A, Zampino M, Stagg C, Indig F, Hartnell LM, Kaileh M, Fishbein K, Spencer RG, Gorospe M, De S, Egan JM, Sen R, Ferrucci L. Skeletal Muscle mRNA Splicing Variants Association With Four Different Fitness and Energetic Measures in the GESTALT Study. J Cachexia Sarcopenia Muscle 2025; 16:e13603. [PMID: 39621510 DOI: 10.1002/jcsm.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Physical activity is essential for maintaining muscle mitochondrial function and aerobic capacity. The molecular mechanisms underlying such protective effects are incompletely understood, in part because it is difficult to separate the effects of disease status and physical activity. We explored the association of human skeletal muscle transcriptomic with four measures of energetics and mitochondria oxidative capacity in healthy individuals. METHODS Using RNA sequencing of vastus lateralis muscle biopsies from 82 GESTALT participants (52 males, aged 22-89 years), we explored gene and splicing variant expression profiles associated with self-reported physical activity, peak oxygen consumption (VO2 peak), muscle oxidative capacity (kPCr) and mitochondrial respiration (Mit-O2 flux). The effect of aging on gene expression was examined in participants with low and high VO2 peak. RESULTS The four measures of energetics were negative correlated with age and generally intercorrelated. We identified protein-coding genes associated with four energetic measures adjusting for age, muscle fiber-ratio, sex and batch effect. Mitochondrial pathways were overrepresented across all energetic variables, albeit with little overlap at the gene level. Alternative spliced transcript isoforms associated with energetics were primarily enriched for cytoplasmic ribonucleoprotein granules. The splicing pathway was up-regulated with aging in low but not in high fitness participants, and transcript isoforms detected in the low fitness group pertain to processes such as cell cycle regulation, RNA/protein localization, nuclear transport and catabolism. CONCLUSIONS A consistent mitochondrial signature emerged across all energetic measures. Alternative splicing was enhanced in older, low fitness participants supporting the energy-splicing axis hypothesis. The identified splicing variants were enriched in pathways involving the accumulation of ribonucleoproteins in cytoplasmic granules, whose function remains unclear. Further research is needed to understand the function of these proteoforms in promoting adaptation to low energy availability.
Collapse
Affiliation(s)
- Stefano Donega
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Nirad Banskota
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Esha Gupta
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Marta Gonzalez-Freire
- Translational Research in Aging and Longevity Group (TRIAL group), Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| | - Ann Zenobia Moore
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Ceereena Ubaida-Mohien
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Linda Zukley
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Chris Bergeron
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Jan Bergeron
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Arsun Bektas
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Marta Zampino
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Carole Stagg
- Confocal Imaging Facility, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Fred Indig
- Confocal Imaging Facility, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Lisa M Hartnell
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Mary Kaileh
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Kenneth Fishbein
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Josephine M Egan
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
- Laboratory of Clinical Investigation, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology (LMBI), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| |
Collapse
|
7
|
Altab G, Merry BJ, Beckett CW, Raina P, Lopes I, Goljanek-Whysall K, de Magalhães JP. Unravelling the transcriptomic symphony of muscle ageing: key pathways and hub genes altered by ageing and caloric restriction in rat muscle revealed by RNA sequencing. BMC Genomics 2025; 26:29. [PMID: 39800693 PMCID: PMC11727704 DOI: 10.1186/s12864-024-11051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
Age-related muscle wasting, sarcopenia is an extensive loss of muscle mass and strength with age and a major cause of disability and accidents in the elderly. Mechanisms purported to be involved in muscle ageing and sarcopenia are numerous but poorly understood, necessitating deeper study. Hence, we employed high-throughput RNA sequencing to survey the global changes in protein-coding gene expression occurring in skeletal muscle with age. Caloric restriction (CR) is a known prophylactic intervention against sarcopenia. Therefore, total RNA was isolated from the muscle tissue of both rats fed ad libitum and CR rats. RNA-seq data were subjected to Gene Ontology, pathway, co-expression, and interaction network analyses. This revealed the functional pathways most activated by both ageing and CR, as well as the key "hub" proteins involved in their activation.RNA-seq revealed 442 protein-coding genes to be upregulated and 377 to be downregulated in aged muscle, compared to young muscle. Upregulated genes were commonly involved in protein folding and immune responses; meanwhile, downregulated genes were often related to developmental biology. CR was found to suppress 69.7% and rescue 57.8% of the genes found to be upregulated and downregulated in aged muscle, respectively. In addition, CR uniquely upregulated 291 and downregulated 304 protein-coding genes. Hub genes implicated in both ageing and CR included Gc, Plg, Irf7, Ifit3, Usp18, Rsad2, Blm and RT1-A2, whilst those exclusively implicated in CR responses included Alb, Apoa1, Ambp, F2, Apoh, Orm1, Mx1, Oasl2 and Rtp4. Hub genes involved in ageing but unaffected by CR included Fgg, Fga, Fgb and Serpinc1. In conclusion, this comprehensive RNA sequencing study highlights gene expression patterns, hub genes and signalling pathways most affected by ageing in skeletal muscle. This data may provide the initial evidence for several targets for potential future therapeutic interventions against sarcopenia.
Collapse
Affiliation(s)
- Gulam Altab
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Brian J Merry
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Charles W Beckett
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Priyanka Raina
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Inês Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Katarzyna Goljanek-Whysall
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
- College of Medicine, Nursing and Health Sciences, University of Galway, Galway, H91 TK33, Ireland
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK.
- Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham, B15 2WB, UK.
| |
Collapse
|
8
|
Chambers TL, Dimet‐Wiley A, Keeble AR, Haghani A, Lo W, Kang G, Brooke R, Horvath S, Fry CS, Watowich SJ, Wen Y, Murach KA. Methylome-proteome integration after late-life voluntary exercise training reveals regulation and target information for improved skeletal muscle health. J Physiol 2025; 603:211-237. [PMID: 39058663 PMCID: PMC11702923 DOI: 10.1113/jp286681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Exercise is a potent stimulus for combatting skeletal muscle ageing. To study the effects of exercise on muscle in a preclinical setting, we developed a combined endurance-resistance training stimulus for mice called progressive weighted wheel running (PoWeR). PoWeR improves molecular, biochemical, cellular and functional characteristics of skeletal muscle and promotes aspects of partial epigenetic reprogramming when performed late in life (22-24 months of age). In this investigation, we leveraged pan-mammalian DNA methylome arrays and tandem mass-spectrometry proteomics in skeletal muscle to provide detailed information on late-life PoWeR adaptations in female mice relative to age-matched sedentary controls (n = 7-10 per group). Differential CpG methylation at conserved promoter sites was related to transcriptional regulation genes as well as Nr4a3, Hes1 and Hox genes after PoWeR. Using a holistic method of -omics integration called binding and expression target analysis (BETA), methylome changes were associated with upregulated proteins related to global and mitochondrial translation after PoWeR (P = 0.03). Specifically, BETA implicated methylation control of ribosomal, mitoribosomal, and mitochondrial complex I protein abundance after training. DNA methylation may also influence LACTB, MIB1 and UBR4 protein induction with exercise - all are mechanistically linked to muscle health. Computational cistrome analysis predicted several transcription factors including MYC as regulators of the exercise trained methylome-proteome landscape, corroborating prior late-life PoWeR transcriptome data. Correlating the proteome to muscle mass and fatigue resistance revealed positive relationships with VPS13A and NPL levels, respectively. Our findings expose differential epigenetic and proteomic adaptations associated with translational regulation after PoWeR that could influence skeletal muscle mass and function in aged mice. KEY POINTS: Late-life combined endurance-resistance exercise training from 22-24 months of age in mice is shown to improve molecular, biochemical, cellular and in vivo functional characteristics of skeletal muscle and promote aspects of partial epigenetic reprogramming and epigenetic age mitigation. Integration of DNA CpG 36k methylation arrays using conserved sites (which also contain methylation ageing clock sites) with exploratory proteomics in skeletal muscle extends our prior work and reveals coordinated and widespread regulation of ribosomal, translation initiation, mitochondrial ribosomal (mitoribosomal) and complex I proteins after combined voluntary exercise training in a sizeable cohort of female mice (n = 7-10 per group and analysis). Multi-omics integration predicted epigenetic regulation of serine β-lactamase-like protein (LACTB - linked to tumour resistance in muscle), mind bomb 1 (MIB1 - linked to satellite cell and type 2 fibre maintenance) and ubiquitin protein ligase E3 component N-recognin 4 (UBR4 - linked to muscle protein quality control) after training. Computational cistrome analysis identified MYC as a regulator of the late-life training proteome, in agreement with prior transcriptional analyses. Vacuolar protein sorting 13 homolog A (VPS13A) was positively correlated to muscle mass, and the glycoprotein/glycolipid associated sialylation enzyme N-acetylneuraminate pyruvate lyase (NPL) was associated to in vivo muscle fatigue resistance.
Collapse
Affiliation(s)
- Toby L. Chambers
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and RecreationUniversity of ArkansasFayettevilleARUSA
| | | | - Alexander R. Keeble
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKYUSA
| | - Amin Haghani
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCAUSA
- Altos LabsSan DiegoCAUSA
| | - Wen‐Juo Lo
- Department of Educational Statistics and Research MethodsUniversity of ArkansasFayettevilleARUSA
| | - Gyumin Kang
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Division of Biomedical Informatics, Department of Internal MedicineUniversity of KentuckyLexingtonKYUSA
| | - Robert Brooke
- Epigenetic Clock Development FoundationLos AngelesCAUSA
| | - Steve Horvath
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCAUSA
- Altos LabsSan DiegoCAUSA
- Epigenetic Clock Development FoundationLos AngelesCAUSA
| | - Christopher S. Fry
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKYUSA
| | - Stanley J. Watowich
- Ridgeline TherapeuticsHoustonTXUSA
- Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Yuan Wen
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Division of Biomedical Informatics, Department of Internal MedicineUniversity of KentuckyLexingtonKYUSA
| | - Kevin A. Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and RecreationUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
9
|
Reed X, Weller CA, Saez-Atienzar S, Beilina A, Solaiman S, Portley M, Kaileh M, Roy R, Ding J, Zenobia Moore A, Thad Whitaker D, Traynor BJ, Raphael Gibbs J, Scholz SW, Cookson MR. Characterization of DNA methylation in PBMCs and donor-matched iPSCs shows methylation is reset during stem cell reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.627515. [PMID: 39713361 PMCID: PMC11661179 DOI: 10.1101/2024.12.13.627515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
DNA methylation is an important epigenetic mechanism that helps define and maintain cellular functions. It is influenced by many factors, including environmental exposures, genotype, cell type, sex, and aging. Since age is the primary risk factor for developing neurodegenerative diseases, it is important to determine if aging-related DNA methylation is retained when cells are reprogrammed to an induced Pluripotent Stem Cell (iPSC) state. Here, we selected peripheral blood mononuclear cells (PBMCs; n = 99) from a cohort of diverse and healthy individuals enrolled in the Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing (GESTALT) study to convert to iPSCs. After reprogramming we evaluated the resulting iPSCs for DNA methylation signatures to determine if they reflect the confounding factors of age and environmental factors. We used genome-wide DNA methylation arrays in both cell types to show that the epigenetic clock is largely reset to an early methylation age after conversion of PBMCs to iPSCs. We further examined the epigenetic age of each cell type using an Epigenome-wide Association Study (EWAS). Finally, we identified a set of methylation Quantitative Trait Loci (methQTL) in each cell type. Our results show that age-related DNA methylation is largely reset in iPSCs, and each cell type has a unique set of methylation sites that are genetically influenced.
Collapse
Affiliation(s)
- Xylena Reed
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cory A. Weller
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- DataTecnica LLC, Washington, DC 20037, USA
| | - Sara Saez-Atienzar
- Neuromuscular Disease Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Alexandra Beilina
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sultana Solaiman
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Makayla Portley
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - A. Zenobia Moore
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - D. Thad Whitaker
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bryan J. Traynor
- Neuromuscular Disease Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - J. Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Chen C, Murphy TE, Speiser JL, Bandeen-Roche K, Allore H, Travison TG, Griswold M, Shardell M. Gerontologic Biostatistics and Data Science: Aging Research in the Era of Big Data. J Gerontol A Biol Sci Med Sci 2024; 80:glae269. [PMID: 39500720 PMCID: PMC11683485 DOI: 10.1093/gerona/glae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 01/04/2025] Open
Abstract
Introduced in 2010, the subdiscipline of gerontologic biostatistics was conceptualized to address the specific challenges of analyzing data from clinical research studies involving older adults. Since then, the evolving technological landscape has led to a proliferation of advancements in biostatistics and other data sciences that have significantly influenced the practice of gerontologic research, including studies beyond the clinic. Data science is the field at the intersection of statistics and computer science, and although the term "data science" was not widely used in 2010, the field has quickly made palpable effects on gerontologic research. In this Review in Depth, we describe multiple advancements of biostatistics and data science that have been particularly impactful. Moreover, we propose the subdiscipline of "gerontologic biostatistics and data science," which subsumes gerontologic biostatistics into a more encompassing practice. Prominent gerontologic biostatistics and data science advancements that we discuss herein include cutting-edge methods in experimental design and causal inference, adaptations of machine learning, the rigorous quantification of deep phenotypic measurement, and analysis of high-dimensional -omics data. We additionally describe the need for integration of information from multiple studies and propose strategies to foster reproducibility, replicability, and open science. Lastly, we provide information on software resources for gerontologic biostatistics and data science practitioners to apply these approaches to their own work and propose areas where further advancement is needed. The methodological topics reviewed here aim to enhance data-rich research on aging and foster the next generation of gerontologic researchers.
Collapse
Affiliation(s)
- Chixiang Chen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Eurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Terrence E Murphy
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Jaime Lynn Speiser
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Karen Bandeen-Roche
- Departments of Biostatistics, Medicine and Nursing, Johns Hopkins University, Baltimore, Maryland, USA
| | - Heather Allore
- Department of Internal Medicine, Yale School of Medicine and Department of Biostatistics Yale School of Public Health, New Haven, Connecticut, USA
| | - Thomas G Travison
- Marcus Institute for Aging Research, Hebrew Senior Life, Boston, Massachusetts, USA
- Division of Gerontology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Griswold
- Departments of Medicine and Data Science, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michelle Shardell
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Wang W, Fan X, Liu W, Huang Y, Zhao S, Yang Y, Tang Z. The Spatial-Temporal Alternative Splicing Profile Reveals the Functional Diversity of FXR1 Isoforms in Myogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405157. [PMID: 39499773 PMCID: PMC11653684 DOI: 10.1002/advs.202405157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/08/2024] [Indexed: 11/07/2024]
Abstract
Alternative splicing (AS) is a fundamental mechanism contributing to proteome diversity, yet its comprehensive landscape and regulatory dynamics during skeletal muscle development remain largely unexplored. Here, the temporal AS profiles are investigated during myogenesis in five vertebrates, conducting comprehensive profiling across 27 developmental stages in skeletal muscle and encompassing ten tissues in adult pigs. The analysis reveals a pervasive and evolutionarily conserved pattern of alternative exon usage throughout myogenic differentiation, with hundreds of skipped exons (SEs) showing developmental regulation, particularly within skeletal muscle. Notably, this study identifies a muscle-specific SE (exon 15) within the Fxr1 gene, whose AS generates two dynamically expressed isoforms with distinct functions: the isoform without exon 15 (Fxr1E15 -) regulates myoblasts proliferation, while the isoform incorporating exon 15 (Fxr1E15+) promotes myogenic differentiation and fusion. Transcriptome analysis suggests that specifically knocking-down Fxr1E15+ isoform in myoblasts modulates differentiation by influencing gene expression and splicing of specific targets. The increased inclusion of exon 15 during differentiation is mediated by the binding of Rbm24 to the intron. Furthermore, in vivo experiments indicate that the Fxr1E15+ isoform facilitates muscle regeneration. Collectively, these findings provide a comprehensive resource for AS studies in skeletal muscle development, underscoring the diverse functions and regulatory mechanisms governing distinct Fxr1 isoforms in myogenesis.
Collapse
Affiliation(s)
- Wei Wang
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Weiwei Liu
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
- Guangxi Key Laboratory of Animal BreedingDisease Control and PreventionCollege of Animal Science & TechnologyGuangxi UniversityNanning530004China
| | - Yuxin Huang
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
- Guangxi Key Laboratory of Animal BreedingDisease Control and PreventionCollege of Animal Science & TechnologyGuangxi UniversityNanning530004China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Yalan Yang
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| |
Collapse
|
12
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
13
|
Park SM, Ban HJ, Lee M, Kim SY, Lee S, Jin HJ. Blood transcriptomic markers associated with immune abnormalities and sleep quality. Genes Dis 2024; 11:101105. [PMID: 39296323 PMCID: PMC11408026 DOI: 10.1016/j.gendis.2023.101105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 08/04/2023] [Indexed: 09/21/2024] Open
Affiliation(s)
- Sang-Min Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyo-Jeong Ban
- Korean Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Minsung Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soo Yeon Kim
- Korean Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Siwoo Lee
- Korean Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Hee-Jeong Jin
- Korean Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
14
|
Mcleod JC, Lim C, Stokes T, Sharif JA, Zeynalli V, Wiens L, D’Souza AC, Colenso-Semple L, McKendry J, Morton RW, Mitchell CJ, Oikawa SY, Wahlestedt C, Paul Chapple J, McGlory C, Timmons JA, Phillips SM. Network-based modelling reveals cell-type enriched patterns of non-coding RNA regulation during human skeletal muscle remodelling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.606848. [PMID: 39416175 PMCID: PMC11482748 DOI: 10.1101/2024.08.11.606848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A majority of human genes produce non-protein-coding RNA (ncRNA), and some have roles in development and disease. Neither ncRNA nor human skeletal muscle is ideally studied using short-read sequencing, so we used a customised RNA pipeline and network modelling to study cell-type specific ncRNA responses during muscle growth at scale. We completed five human resistance-training studies (n=144 subjects), identifying 61% who successfully accrued muscle-mass. We produced 288 transcriptome-wide profiles and found 110 ncRNAs linked to muscle growth in vivo, while a transcriptome-driven network model demonstrated interactions via a number of discrete functional pathways and single-cell types. This analysis included established hypertrophy-related ncRNAs, including CYTOR - which was leukocyte-associated (FDR = 4.9 ×10-7). Novel hypertrophy-linked ncRNAs included PPP1CB-DT (myofibril assembly genes, FDR = 8.15 × 10-8), and EEF1A1P24 and TMSB4XP8 (vascular remodelling and angiogenesis genes, FDR = 2.77 × 10-5). We also discovered that hypertrophy lncRNA MYREM shows a specific myonuclear expression pattern in vivo. Our multi-layered analyses established that single-cell-associated ncRNA are identifiable from bulk muscle transcriptomic data and that hypertrophy-linked ncRNA genes mediate their association with muscle growth via multiple cell types and a set of interacting pathways.
Collapse
Affiliation(s)
- Jonathan C. Mcleod
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Changhyun Lim
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Population Health Sciences Institute, Faculty of Medicial Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jalil-Ahmad Sharif
- Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Vagif Zeynalli
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Lucas Wiens
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Alysha C D’Souza
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Faculty of Land and Food Systems, Food, Nutrition & Health, University of British Columbia, BC, Canada
| | - Robert W. Morton
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Sara Y. Oikawa
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - J Paul Chapple
- Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queens University, Kingston, ON, Canada
| | - James A. Timmons
- Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Schaiter A, Hentschel A, Kleefeld F, Schuld J, Umathum V, Procida-Kowalski T, Nelke C, Roth A, Hahn A, Krämer HH, Ruck T, Horvath R, van der Ven PFM, Bartkuhn M, Roos A, Schänzer A. Molecular composition of skeletal muscle in infants and adults: a comparative proteomic and transcriptomic study. Sci Rep 2024; 14:22965. [PMID: 39362957 PMCID: PMC11450201 DOI: 10.1038/s41598-024-74913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
To gain a deeper understanding of skeletal muscle function in younger age and aging in elderly, identification of molecular signatures regulating these functions under physiological conditions is needed. Although molecular studies of healthy muscle have been conducted on adults and older subjects, there is a lack of research on infant muscle in terms of combined morphological, transcriptomic and proteomic profiles. To address this gap of knowledge, we performed RNA sequencing (RNA-seq), tandem mass spectrometry (LC-MS/MS), morphometric analysis and assays for mitochondrial maintenance in skeletal muscle biopsies from both, infants aged 4-28 months and adults aged 19-65 years. We identified differently expressed genes (DEGs) and differentially expressed proteins (DEPs) in adults compared to infants. The down-regulated genes in adults were associated with functional terms primarily related to sarcomeres, cellular maintenance, and metabolic, immunological and developmental processes. Thus, our study indicates age-related differences in the molecular signatures and associated functions of healthy skeletal muscle. Moreover, the findings assert that processes previously associated solely with aging are indeed part of development and healthy aging. Hence, combined findings of this study also indicate that age-dependent controls are crucial in muscle disease studies, as otherwise the comparative results may not be reliable.
Collapse
Affiliation(s)
| | - Andreas Hentschel
- Leibnitz Institut für Analytische Wissenschaften-ISAS e.V., Dortmund, Germany
| | - Felix Kleefeld
- Department of Clinical Neurosciences, School of Clinical Medicine, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Schuld
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Vincent Umathum
- Institute of Neuropathology, Justus-Liebig University, Giessen, Germany
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | | | - Christopher Nelke
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Angela Roth
- Institute of Neuropathology, Justus-Liebig University, Giessen, Germany
| | - Andreas Hahn
- Department of Pediatric Neurology, Justus-Liebig University Giessen, Giessen, Germany
| | - Heidrun H Krämer
- Department of Neurology, Justus-Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Giessen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Marek Bartkuhn
- Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig University, Giessen, Germany.
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
16
|
Guo H, Zhang Y, Xiang X, Tang N, Gao W, Cui X. Single-cell RNA sequencing analysis provides novel insights into the role of apoptosis-related genes in muscle aging. Arch Gerontol Geriatr 2024; 125:105499. [PMID: 38852373 DOI: 10.1016/j.archger.2024.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE This study employed a comprehensive single-cell analysis approach to explore the role of cell apoptosis-related genes in muscle aging. METHODS The single-cell RNA sequencing data from the GSE143704 dataset were used to identify distinct cell clusters and assess gene expression patterns related to apoptosis activation. The "limma" package was used to identify hub genes, after which we performed Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to identify relevant pathways. Additionally, Gene Set Enrichment Analysis(GSEA) and Gene Set Variation Analysis (GSVA) were used to uncover relevant biological pathways. The Receiver Operating Characteristic Curve (ROC) was used to evaluate the diagnostic value of the hub genes. Single-sample Gene Set Enrichment Analysis (ssGSEA) was used to analyze the immune cell infiltration levels. RESULTS Single-cell sequencing data from muscle aging patients allowed the identification of various cell types, including epithelial cells, adipocytes, and tissue-resident macrophages. By conducting a differential expression analysis that intersected active and nonactive apoptosis, as well as comparing elderly and young samples, a total of 22 hub genes were identified (p < 0.05). The 22 hub genes have discriminative ability as potential biomarkers for diagnosing muscle aging. The enrichment analysis indicated that these genes were closely associated with diverse pathways, including "response to UV-B" and "extracellular matrix organization" (p < 0.05). Furthermore, GSEA and GSVA indicated that multiple pathways emerged-for example, the "complement and coagulation cascades", "proteasome", "insulin signaling pathway", and "MAPK signaling pathway". Additionally, the analysis of immune cell infiltration revealed positive correlations between most of the hub genes and immune cells. CONCLUSION Our study identified 22 apoptosis-related genes involved in muscle aging and indicated their potential diagnostic value. These findings offer a novel perspective on the pathogenesis of muscle aging and present potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Hua Guo
- Department of General Medicine and Sleep Medicine Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University; Wuxi Medical Center, Nanjing Medical University Wuxi People's Hospital, Wuxi, Jiangsu Province, China
| | - Yunyun Zhang
- Department of General Medicine and Sleep Medicine Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University; Wuxi Medical Center, Nanjing Medical University Wuxi People's Hospital, Wuxi, Jiangsu Province, China
| | - Xin Xiang
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Na Tang
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Gao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Xiaochuan Cui
- Department of General Medicine and Sleep Medicine Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University; Wuxi Medical Center, Nanjing Medical University Wuxi People's Hospital, Wuxi, Jiangsu Province, China.
| |
Collapse
|
17
|
Tarum J, Ball G, Gustafsson T, Altun M, Santos L. Artificial neural network inference analysis identified novel genes and gene interactions associated with skeletal muscle aging. J Cachexia Sarcopenia Muscle 2024; 15:2143-2155. [PMID: 39210538 PMCID: PMC11446686 DOI: 10.1002/jcsm.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Sarcopenia is an age-related muscle disease that increases the risk of falls, disabilities, and death. It is associated with increased muscle protein degradation driven by molecular signalling pathways including Akt and FOXO1. This study aims to identify genes, gene interactions, and molecular pathways and processes associated with muscle aging and exercise in older adults that remained undiscovered until now leveraging on an artificial intelligence approach called artificial neural network inference (ANNi). METHODS Four datasets reporting the profile of muscle transcriptome obtained by RNA-seq of young (21-43 years) and older adults (63-79 years) were selected and retrieved from the Gene Expression Omnibus (GEO) data repository. Two datasets contained the transcriptome profiles associated to muscle aging and two the transcriptome linked to resistant exercise in older adults, the latter before and after 6 months of exercise training. Each dataset was individually analysed by ANNi based on a swarm neural network approach integrated into a deep learning model (Intelligent Omics). This allowed us to identify top 200 genes influencing (drivers) or being influenced (targets) by aging or exercise and the strongest interactions between such genes. Downstream gene ontology (GO) analysis of these 200 genes was performed using Metacore (Clarivate™) and the open-source software, Metascape. To confirm the differential expression of the genes showing the strongest interactions, real-time quantitative PCR (RT-qPCR) was employed on human muscle biopsies obtained from eight young (25 ± 4 years) and eight older men (78 ± 7.6 years), partaking in a 6-month resistance exercise training programme. RESULTS CHAD, ZDBF2, USP54, and JAK2 were identified as the genes with the strongest interactions predicting aging, while SCFD1, KDM5D, EIF4A2, and NIPAL3 were the main interacting genes associated with long-term exercise in older adults. RT-qPCR confirmed significant upregulation of USP54 (P = 0.005), CHAD (P = 0.03), and ZDBF2 (P = 0.008) in the aging muscle, while exercise-related genes were not differentially expressed (EIF4A2 P = 0.99, NIPAL3 P = 0.94, SCFD1 P = 0.94, and KDM5D P = 0.64). GO analysis related to skeletal muscle aging suggests enrichment of pathways linked to bone development (adj P-value 0.006), immune response (adj P-value <0.001), and apoptosis (adj P-value 0.01). In older exercising adults, these were ECM remodelling (adj P-value <0.001), protein folding (adj P-value <0.001), and proteolysis (adj P-value <0.001). CONCLUSIONS Using ANNi and RT-qPCR, we identified three strongly interacting genes predicting muscle aging, ZDBF2, USP54, and CHAD. These findings can help to inform the design of nonpharmacological and pharmacological interventions that prevent or mitigate sarcopenia.
Collapse
Affiliation(s)
- Janelle Tarum
- Department of Sport Science, Sport, Health and Performance Enhancement Research Centre (SHAPE), School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| | - Graham Ball
- Medical Technology Research CentreAnglia Ruskin UniversityEssexUK
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Section of Clinical PhysiologyKarolinska Institutet HuddingeHuddingeSweden
- Department of Clinical PhysiologyKarolinska University HospitalHuddingeSweden
| | - Mikael Altun
- Department of Laboratory Medicine, Section of Clinical PhysiologyKarolinska Institutet HuddingeHuddingeSweden
- Department of Clinical PhysiologyKarolinska University HospitalHuddingeSweden
| | - Lívia Santos
- Department of Sport Science, Sport, Health and Performance Enhancement Research Centre (SHAPE), School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| |
Collapse
|
18
|
Mcleod J, Lim C, Stokes T, Sharif JA, Zeynalli V, Wiens L, D’Souza A, Colenso-Semple L, McKendry J, Morton R, Mitchell C, Oikawa S, Wahlestedt C, Chapple J, McGlory C, Timmons J, Phillips S. Network-based modelling reveals cell-type enriched patterns of non-coding RNA regulation during human skeletal muscle remodelling. NAR MOLECULAR MEDICINE 2024; 1:ugae016. [PMID: 39669123 PMCID: PMC11632610 DOI: 10.1093/narmme/ugae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 12/14/2024]
Abstract
A majority of human genes produce non-protein-coding RNA (ncRNA), and some have roles in development and disease. Neither ncRNA nor human skeletal muscle is ideally studied using short-read sequencing, so we used a customized RNA pipeline and network modelling to study cell-type specific ncRNA responses during muscle growth at scale. We completed five human resistance-training studies (n = 144 subjects), identifying 61% who successfully accrued muscle-mass. We produced 288 transcriptome-wide profiles and found 110 ncRNAs linked to muscle growth in vivo, while a transcriptome-driven network model demonstrated interactions via a number of discrete functional pathways and single-cell types. This analysis included established hypertrophy-related ncRNAs, including CYTOR-which was leukocyte-associated (false discovery rate [FDR] = 4.9 × 10-7). Novel hypertrophy-linked ncRNAs included PPP1CB-DT (myofibril assembly genes, FDR = 8.15 × 10-8), and EEF1A1P24 and TMSB4XP8 (vascular remodelling and angiogenesis genes, FDR = 2.77 × 10-5). We also discovered that hypertrophy lncRNA MYREM shows a specific myonuclear expression pattern in vivo. Our multi-layered analyses established that single-cell-associated ncRNA are identifiable from bulk muscle transcriptomic data and that hypertrophy-linked ncRNA genes mediate their association with muscle growth via multiple cell types and a set of interacting pathways.
Collapse
Affiliation(s)
- Jonathan C Mcleod
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Changhyun Lim
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Population Health Sciences Institute, Faculty of Medicial Sciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Jalil-Ahmad Sharif
- Faculty of Medicine and Dentistry, Queen Mary University London, London, E1 4NS, UK
| | - Vagif Zeynalli
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Lucas Wiens
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Alysha C D’Souza
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | | | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Faculty of Land and Food Systems, Food, Nutrition & Health, University of British Columbia, BC, V6T 1Z4, Canada
| | - Robert W Morton
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Cameron J Mitchell
- School of Kinesiology, University of British Columbia, BC, V6T 1Z1, Canada
| | - Sara Y Oikawa
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Claes Wahlestedt
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - J Paul Chapple
- Faculty of Medicine and Dentistry, Queen Mary University London, London, E1 4NS, UK
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queens University, Kingston, ON, K7L 3N6, Canada
| | - James A Timmons
- Faculty of Medicine and Dentistry, Queen Mary University London, London, E1 4NS, UK
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| |
Collapse
|
19
|
Kato N, Yang Y, Bumrungkit C, Kumrungsee T. Does Vitamin B6 Act as an Exercise Mimetic in Skeletal Muscle? Int J Mol Sci 2024; 25:9962. [PMID: 39337450 PMCID: PMC11432312 DOI: 10.3390/ijms25189962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Marginal vitamin B6 (B6) deficiency is common in various segments worldwide. In a super-aged society, sarcopenia is a major concern and has gained significant research attention focused on healthy aging. To date, the primary interventions for sarcopenia have been physical exercise therapy. Recent evidence suggests that inadequate B6 status is associated with an increased risk of sarcopenia and mortality among older adults. Our previous study showed that B6 supplementation to a marginal B6-deficient diet up-regulated the expression of various exercise-induced genes in the skeletal muscle of rodents. Notably, a supplemental B6-to-B6-deficient diet stimulates satellite cell-mediated myogenesis in rodents, mirroring the effects of physical exercise. These findings suggest the potential role of B6 as an exercise-mimetic nutrient in skeletal muscle. To test this hypothesis, we reviewed relevant literature and compared the roles of B6 and exercise in muscles. Here, we provide several pieces of evidence supporting this hypothesis and discuss the potential mechanisms behind the similarities between the effects of B6 and exercise on muscle. This research, for the first time, provides insight into the exercise-mimetic roles of B6 in skeletal muscle.
Collapse
Affiliation(s)
- Norihisa Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yongshou Yang
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Chanikan Bumrungkit
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
20
|
Huang J, Liu M, Zhang H, Sun G, Furey A, Rahman P, Zhai G. Multi-Omics Integrative Analyses Identified Two Endotypes of Hip Osteoarthritis. Metabolites 2024; 14:480. [PMID: 39330487 PMCID: PMC11434176 DOI: 10.3390/metabo14090480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
(1) Background: Osteoarthritis (OA) is a heterogeneous disorder, and subgroup classification of OA remains elusive. The aim of our study was to identify endotypes of hip OA and investigate the altered pathways in the different endotypes. (2) Methods: Metabolomic profiling and genome-wide genotyping were performed on fasting blood. Transcriptomic profiling was performed on RNA extracted from cartilage samples. Machine learning methods were used to identify endotypes of hip OA. Pathway analysis was used to identify the altered pathways between hip endotypes and controls. GWAS was performed on each of the identified metabolites. Transcriptomic data was used to examine the expression levels of identified genes in cartilage. (3) Results: 180 hip OA patients and 120 OA-free controls were classified into three clusters based on metabolomic data. The combination of arginine, ornithine, and the average value of 7 lysophosphatidylcholines had an area under the curve (AUC) of 0.97 (95% CI: 0.96-0.99) to discriminate hip OA from controls, and the combination of γ-aminobutyric acid, spermine, aconitic acid, and succinic acid had an AUC of 0.96 (95% CI: 0.94-0.99) to distinguish two hip OA endotypes. GWAS identified 236 SNPs to be associated with identified metabolites at GWAS significance level. Pro-inflammatory cytokine levels were significantly different between two endotypes (all p < 0.05). (4) Conclusions: Hip OA could be classified into two distinct molecular endotypes. The primary differences between the two endotypes involve changes in pro-inflammatory factors and energy metabolism.
Collapse
Affiliation(s)
- Jingyi Huang
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Ming Liu
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Hongwei Zhang
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Guang Sun
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Andrew Furey
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
- Office of the Premier, Government of Newfoundland & Labrador, St. John's, NL A1B 4J6, Canada
| | - Proton Rahman
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Guangju Zhai
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
21
|
Patyal P, Ameer FS, Verma A, Zhang X, Azhar G, Shrivastava J, Sharma S, Zhang R, Wei JY. The Role of Sirtuin-1 Isoforms in Regulating Mitochondrial Function. Curr Issues Mol Biol 2024; 46:8835-8851. [PMID: 39194739 DOI: 10.3390/cimb46080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
The sirtuin-1 (SIRT1) gene contains multiple exons that usually undergo alternative splicing. The exclusion of one or more exons causes domain loss in the alternatively spliced isoforms and may change their functions. However, it is not completely established to what extent the loss of a non-catalytic domain could affect its regulatory function. Using muscle cells and SIRT1-knockout cells, we examined the function of the constitutively spliced isoform (SIRT1-v1) versus the alternatively spliced isoforms SIRT1-v2 and SIRT1-v3 that had lost part of the N-terminal region. Our data indicate that partial loss of the N-terminal domains in SIRT1-v2 and SIRT1-v3 attenuated their function. The full-length SIRT1-v1 significantly increased the oxidative phosphorylation and ATP production rate. Furthermore, SIRT1-v1 specifically upregulated the mitochondrial respiratory complex I without affecting the activity of complexes II, III, and IV. Additionally, domain loss affected the regulation of site-specific lysine acetylation in the histone H4 protein, the gene expression of respiratory complex I subunits, and the metabolic balance of oxidative phosphorylation versus glycolysis. Since alternatively spliced isoforms tend to increase with advancing age, the impact of SIRT1 isoforms on mitochondrial respiratory complexes warrants further investigation.
Collapse
Affiliation(s)
- Pankaj Patyal
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Fathima S Ameer
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ambika Verma
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiaomin Zhang
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gohar Azhar
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jyotsna Shrivastava
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Shakshi Sharma
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rachel Zhang
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeanne Y Wei
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
22
|
Ataman M, Mittal N, Tintignac L, Schmidt A, Ham DJ, González A, Ruegg MA, Zavolan M. Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles. Commun Biol 2024; 7:974. [PMID: 39127848 PMCID: PMC11316767 DOI: 10.1038/s42003-024-06679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Calorie restriction (CR) and treatment with rapamycin (RM), an inhibitor of the mTORC1 growth-promoting signaling pathway, are known to slow aging and promote health from worms to humans. At the transcriptome and proteome levels, long-term CR and RM treatments have partially overlapping effects, while their impact on protein phosphorylation within cellular signaling pathways have not been compared. Here we measured the phosphoproteomes of soleus, tibialis anterior, triceps brachii and gastrocnemius muscles from adult (10 months) and 30-month-old (aged) mice receiving either a control, a calorie restricted or an RM containing diet from 15 months of age. We reproducibly detected and extensively analyzed a total of 6960 phosphosites, 1415 of which are not represented in standard repositories. We reveal the effect of these interventions on known mTORC1 pathway substrates, with CR displaying greater between-muscle variation than RM. Overall, CR and RM have largely consistent, but quantitatively distinct long-term effects on the phosphoproteome, mitigating age-related changes to different degrees. Our data expands the catalog of protein phosphorylation sites in the mouse, providing important information regarding their tissue-specificity, and revealing the impact of long-term nutrient-sensing pathway inhibition on mouse skeletal muscle.
Collapse
Affiliation(s)
- Meric Ataman
- Biozentrum, University of Basel, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Basel, Switzerland.
| | | | - Lionel Tintignac
- Department of Neurology and Biomedicine, University of Basel; University Hospital Basel, Basel, Switzerland
| | | | - Daniel J Ham
- Biozentrum, University of Basel, Basel, Switzerland
| | - Asier González
- Biozentrum, University of Basel, Basel, Switzerland
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Mihaela Zavolan
- Biozentrum, University of Basel, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Basel, Switzerland.
| |
Collapse
|
23
|
Huang X, Chen M, Xiao Y, Zhu F, Chen L, Tian X, Hong L. The influence of biological sex in human skeletal muscle transcriptome during ageing. Biogerontology 2024; 25:461-478. [PMID: 37792135 DOI: 10.1007/s10522-023-10070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023]
Abstract
Sex is a crucial biological variable, and influence of biological sex on the change of gene expression in ageing skeletal muscle has not yet been fully revealed. In this study, the mRNA expression profiles were obtained from the Gene Expression Omnibus database. Key genes were identified by differential expression analysis and weighted gene co-expression network analysis. The gene set enrichment analysis software and Molecular Signatures Database were used for functional and enrichment analysis. A protein-protein interaction network was constructed using STRING and visualized in Cytoscape. The results were compared between female and male subgroups. Differentially expressed genes and enriched pathways in different sex subgroups shared only limited similarities. The pathways enriched in the female subgroup were more similar to the pathways enriched in the older groups without taking sex difference into consideration. The pathways enriched in the female subgroup were more similar to the pathways enriched in the older groups without taking sex difference into consideration. The muscle myosin filament pathways were downregulated in the both aged female and male samples whereas transforming growth factor beta pathway and extracellular matrix-related pathways were upregulated. With muscle ageing, the metabolism-related pathways, protein synthesis and degradation pathways, results of predicted immune cell infiltration, and gene cluster associated with slow-type myofibers drastically different between the female and male subgroups. This finding may indicate that changes in muscle type with ageing may differ between the sexes in vastus lateralis muscle.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mao Chen
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ya Xiao
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangyi Zhu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liying Chen
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyu Tian
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China.
- Pelvic Floor Research Centre of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
24
|
dos Santos GA, Magdaleno GDV, de Magalhães JP. Evidence of a pan-tissue decline in stemness during human aging. Aging (Albany NY) 2024; 16:5796-5810. [PMID: 38604248 PMCID: PMC11042951 DOI: 10.18632/aging.205717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/02/2024] [Indexed: 04/13/2024]
Abstract
Despite their biological importance, the role of stem cells in human aging remains to be elucidated. In this work, we applied a machine learning methodology to GTEx transcriptome data and assigned stemness scores to 17,382 healthy samples from 30 human tissues aged between 20 and 79 years. We found that ~60% of the studied tissues exhibit a significant negative correlation between the subject's age and stemness score. The only significant exception was the uterus, where we observed an increased stemness with age. Moreover, we observed that stemness is positively correlated with cell proliferation and negatively correlated with cellular senescence. Finally, we also observed a trend that hematopoietic stem cells derived from older individuals might have higher stemness scores. In conclusion, we assigned stemness scores to human samples and show evidence of a pan-tissue loss of stemness during human aging, which adds weight to the idea that stem cell deterioration may contribute to human aging.
Collapse
Affiliation(s)
- Gabriel Arantes dos Santos
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 01246 903, Brazil
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, United Kingdom
| | | | - João Pedro de Magalhães
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, United Kingdom
| |
Collapse
|
25
|
Zhang L, Lou H, Huang Y, Dong L, Gong X, Zhang X, Bao W, Xiao R. Identification of Synonymous Pathogenic Variants in Monogenic Disorders by Integrating Exome with Transcriptome Sequencing. J Mol Diagn 2024; 26:267-277. [PMID: 38280421 DOI: 10.1016/j.jmoldx.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/23/2023] [Accepted: 12/20/2023] [Indexed: 01/29/2024] Open
Abstract
Exome sequencing is becoming a first-tier clinical diagnostic test for Mendelian diseases, drastically reducing the time and cost of diagnostic odyssey and improving the diagnosis rate. Despite its success, exome sequencing faces practical challenges in assessing the pathogenicity of numerous intronic and synonymous variants, leaving a significant proportion of patients undiagnosed. In this study, a whole-blood transcriptome database was constructed that showed the expression profile of 2981 Online Mendelian Inheritance in Man disease genes in blood samples. Meanwhile, a workflow integrating exome sequencing, blood transcriptome sequencing, and in silico prediction tools to identify and validate splicing-altering intronic or synonymous variants was proposed. Following this pipeline, seven synonymous variants in eight patients were discovered. Of these, the functional evidence of c.981G>A (PIGN), c.1161A>G (ALPL), c.858G>A (ATP6AP2), and c.1011G>T (MTHFR) have not been reported previously. RNA sequencing validation confirmed that these variants induced aberrant splicing, expanding the disease-causing variant spectrum of these genes. Overall, this study shows the feasibility of combining multi-omics data to identify splicing-altering variants, especially the power of RNA sequencing. It also reveals that synonymous variants, which often are overlooked in standard diagnostic approaches, comprise an important portion of unresolved genetic diseases.
Collapse
Affiliation(s)
- Lin Zhang
- Prenatal Diagnosis Center, Peking University People's Hospital, Beijing, China.
| | | | - Yanhong Huang
- Prenatal Diagnosis Center, Liaocheng Maternal and Child Health Care Hospital, Liaocheng, China
| | - Liping Dong
- Newborn Screening Center, Zibo Maternal and Child Health Care Hospital, Zibo, China
| | - Xueye Gong
- Department of Medical Genetics and Prenatal Diagnosis, Binzhou Maternal and Child Health Care Hospital, Binzhou, China
| | - Xiaoning Zhang
- Department of the Clinical Laboratory, Binzhou Maternal and Child Health Care Hospital, Binzhou, China
| | - Wenqi Bao
- Becreative Lab Co., Ltd., Beijing, China
| | - Rui Xiao
- National Engineering Laboratory for Key Technology of Birth Defect Control and Prevention, Screening and Diagnostic R&D Center, Hangzhou, China
| |
Collapse
|
26
|
King PH. Skeletal muscle as a molecular and cellular biomarker of disease progression in amyotrophic lateral sclerosis: a narrative review. Neural Regen Res 2024; 19:747-753. [PMID: 37843208 PMCID: PMC10664124 DOI: 10.4103/1673-5374.382226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 10/17/2023] Open
Abstract
Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target. Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis, there is considerable heterogeneity, including clinical presentation, progression, and the underlying triggers for disease initiation. Based on longitudinal studies with families harboring amyotrophic lateral sclerosis-associated gene mutations, it has become apparent that overt disease is preceded by a prodromal phase, possibly in years, where compensatory mechanisms delay symptom onset. Since 85-90% of amyotrophic lateral sclerosis is sporadic, there is a strong need for identifying biomarkers that can detect this prodromal phase as motor neurons have limited capacity for regeneration. Current Food and Drug Administration-approved therapies work by slowing the degenerative process and are most effective early in the disease. Skeletal muscle, including the neuromuscular junction, manifests abnormalities at the earliest stages of the disease, before motor neuron loss, making it a promising source for identifying biomarkers of the prodromal phase. The accessibility of muscle through biopsy provides a lens into the distal motor system at earlier stages and in real time. The advent of "omics" technology has led to the identification of numerous dysregulated molecules in amyotrophic lateral sclerosis muscle, ranging from coding and non-coding RNAs to proteins and metabolites. This technology has opened the door for identifying biomarkers of disease activity and providing insight into disease mechanisms. A major challenge is correlating the myriad of dysregulated molecules with clinical or histological progression and understanding their relevance to presymptomatic phases of disease. There are two major goals of this review. The first is to summarize some of the biomarkers identified in human amyotrophic lateral sclerosis muscle that have a clinicopathological correlation with disease activity, evidence of a similar dysregulation in the SOD1G93A mouse during presymptomatic stages, and evidence of progressive change during disease progression. The second goal is to review the molecular pathways these biomarkers reflect and their potential role in mitigating or promoting disease progression, and as such, their potential as therapeutic targets in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Peter H. King
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| |
Collapse
|
27
|
Omidsalar AA, McCullough CG, Xu L, Boedijono S, Gerke D, Webb MG, Manojlovic Z, Sequeira A, Lew MF, Santorelli M, Serrano GE, Beach TG, Limon A, Vawter MP, Hjelm BE. Common mitochondrial deletions in RNA-Seq: evaluation of bulk, single-cell, and spatial transcriptomic datasets. Commun Biol 2024; 7:200. [PMID: 38368460 PMCID: PMC10874445 DOI: 10.1038/s42003-024-05877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
Common mitochondrial DNA (mtDNA) deletions are large structural variants in the mitochondrial genome that accumulate in metabolically active tissues with age and have been investigated in various diseases. We applied the Splice-Break2 pipeline (designed for high-throughput quantification of mtDNA deletions) to human RNA-Seq datasets and describe the methodological considerations for evaluating common deletions in bulk, single-cell, and spatial transcriptomics datasets. A robust evaluation of 1570 samples from 14 RNA-Seq studies showed: (i) the abundance of some common deletions detected in PCR-amplified mtDNA correlates with levels observed in RNA-Seq data; (ii) RNA-Seq library preparation method has a strong effect on deletion detection; (iii) deletions had a significant, positive correlation with age in brain and muscle; (iv) deletions were enriched in cortical grey matter, specifically in layers 3 and 5; and (v) brain regions with dopaminergic neurons (i.e., substantia nigra, ventral tegmental area, and caudate nucleus) had remarkable enrichment of common mtDNA deletions.
Collapse
Affiliation(s)
- Audrey A Omidsalar
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Carmel G McCullough
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Lili Xu
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Stanley Boedijono
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Daniel Gerke
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Michelle G Webb
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Zarko Manojlovic
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California - Irvine (UCI) School of Medicine, Irvine, CA, USA
| | - Mark F Lew
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Marco Santorelli
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute (BSHRI), Sun City, AZ, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute (BSHRI), Sun City, AZ, USA
| | - Agenor Limon
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Marquis P Vawter
- Department of Psychiatry and Human Behavior, University of California - Irvine (UCI) School of Medicine, Irvine, CA, USA
| | - Brooke E Hjelm
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Cheng JH, Okada D. Data-driven detection of age-related arbitrary monotonic changes in single-cell gene expression distributions. PeerJ 2024; 12:e16851. [PMID: 38344300 PMCID: PMC10859082 DOI: 10.7717/peerj.16851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Identification of genes whose expression increases or decreases with age is central to understanding the mechanisms behind aging. Recent scRNA-seq studies have shown that changes in single-cell expression profiles with aging are complex and diverse. In this study, we introduce a novel workflow to detect changes in the distribution of arbitrary monotonic age-related changes in single-cell expression profiles. Since single-cell gene expression profiles can be analyzed as probability distributions, our approach uses information theory to quantify the differences between distributions and employs distance matrices for association analysis. We tested this technique on simulated data and confirmed that potential parameter changes could be detected in a set of probability distributions. Application of the technique to a public scRNA-seq dataset demonstrated its potential utility as a straightforward screening method for identifying aging-related cellular features.
Collapse
Affiliation(s)
- Jian Hao Cheng
- Center for Genomics Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Daigo Okada
- Center for Genomics Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| |
Collapse
|
29
|
Raue U, Begue G, Minchev K, Jemiolo B, Gries KJ, Chambers T, Rubenstein A, Zaslavsky E, Sealfon SC, Trappe T, Trappe S. Fast and slow muscle fiber transcriptome dynamics with lifelong endurance exercise. J Appl Physiol (1985) 2024; 136:244-261. [PMID: 38095016 PMCID: PMC11219013 DOI: 10.1152/japplphysiol.00442.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
We investigated fast and slow muscle fiber transcriptome exercise dynamics among three groups of men: lifelong exercisers (LLE, n = 8, 74 ± 1 yr), old healthy nonexercisers (OH, n = 9, 75 ± 1 yr), and young exercisers (YE, n = 8, 25 ± 1 yr). On average, LLE had exercised ∼4 day·wk-1 for ∼8 h·wk-1 over 53 ± 2 years. Muscle biopsies were obtained pre- and 4 h postresistance exercise (3 × 10 knee extensions at 70% 1-RM). Fast and slow fiber size and function were assessed preexercise with fast and slow RNA-seq profiles examined pre- and postexercise. LLE fast fiber size was similar to OH, which was ∼30% smaller than YE (P < 0.05) with contractile function variables among groups, resulting in lower power in LLE (P < 0.05). LLE slow fibers were ∼30% larger and more powerful compared with YE and OH (P < 0.05). At the transcriptome level, fast fibers were more responsive to resistance exercise compared with slow fibers among all three cohorts (P < 0.05). Exercise induced a comprehensive biological response in fast fibers (P < 0.05) including transcription, signaling, skeletal muscle cell differentiation, and metabolism with vast differences among the groups. Fast fibers from YE exhibited a growth and metabolic signature, with LLE being primarily metabolic, and OH showing a strong stress-related response. In slow fibers, only LLE exhibited a biological response to exercise (P < 0.05), which was related to ketone and lipid metabolism. The divergent exercise transcriptome signatures provide novel insight into the molecular regulation in fast and slow fibers with age and exercise and suggest that the ∼5% weekly exercise time commitment of the lifelong exercisers provided a powerful investment for fast and slow muscle fiber metabolic health at the molecular level.NEW & NOTEWORTHY This study provides the first insights into fast and slow muscle fiber transcriptome dynamics with lifelong endurance exercise. The fast fibers were more responsive to exercise with divergent transcriptome signatures among young exercisers (growth and metabolic), lifelong exercisers (metabolic), and old healthy nonexercisers (stress). Only lifelong exercisers had a biological response in slow fibers (metabolic). These data provide novel insights into fast and slow muscle fiber health at the molecular level with age and exercise.
Collapse
Affiliation(s)
- Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gwenaelle Begue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kevin J Gries
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Toby Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Aliza Rubenstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Todd Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
30
|
Hatt AA, Kamal M, Mikhail AI, Fortino SA, Wageh M, Kumbhare D, Parise G. Nuclear-localized androgen receptor content following resistance exercise training is associated with hypertrophy in males but not females. FASEB J 2024; 38:e23403. [PMID: 38197297 DOI: 10.1096/fj.202301291rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
Androgen receptor (AR) content has been implicated in the differential response between high and low responders following resistance exercise training (RET). However, the influence of AR expression on acute skeletal muscle damage and whether it may influence the adaptive response to RET in females is poorly understood. Thus, the purpose of this exploratory examination was to 1) investigate changes in AR content during skeletal muscle repair and 2) characterize AR-mediated sex-based differences following RET. A skeletal muscle biopsy from the vastus lateralis was obtained from 26 healthy young men (n = 13) and women (n = 13) at baseline and following 300 eccentric kicks. Subsequently, participants performed 10 weeks of full-body RET and a final muscle biopsy was collected. In the untrained state, AR mRNA expression was associated with paired box protein-7 (PAX7) mRNA in males. For the first time in human skeletal muscle, we quantified AR content in the myofiber and localized to the nucleus where AR has been shown to trigger cellular outcomes related to growth. Upon eccentric damage, nuclear-associated AR (nAR) content increased (p < .05) in males and not females. Males with the greatest increase in cross-sectional area (CSA) post-RET had more (p < .05) nAR content than females with the greatest gain CSA. Collectively, skeletal muscle damage and RET increased AR protein, and both gene and hypertrophy measures revealed sex differences in relation to AR. These findings suggest that AR content but more importantly, nuclear localization, is a factor that differentiates RET-induced hypertrophy between males and females.
Collapse
Affiliation(s)
- Aidan A Hatt
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Michael Kamal
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Andrew I Mikhail
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Stephen A Fortino
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Mai Wageh
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Dinesh Kumbhare
- Department of Medicine, Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Gianni Parise
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
31
|
Granic A, Suetterlin K, Shavlakadze T, Grounds M, Sayer A. Hallmarks of ageing in human skeletal muscle and implications for understanding the pathophysiology of sarcopenia in women and men. Clin Sci (Lond) 2023; 137:1721-1751. [PMID: 37986616 PMCID: PMC10665130 DOI: 10.1042/cs20230319] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Ageing is a complex biological process associated with increased morbidity and mortality. Nine classic, interdependent hallmarks of ageing have been proposed involving genetic and biochemical pathways that collectively influence ageing trajectories and susceptibility to pathology in humans. Ageing skeletal muscle undergoes profound morphological and physiological changes associated with loss of strength, mass, and function, a condition known as sarcopenia. The aetiology of sarcopenia is complex and whilst research in this area is growing rapidly, there is a relative paucity of human studies, particularly in older women. Here, we evaluate how the nine classic hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication contribute to skeletal muscle ageing and the pathophysiology of sarcopenia. We also highlight five novel hallmarks of particular significance to skeletal muscle ageing: inflammation, neural dysfunction, extracellular matrix dysfunction, reduced vascular perfusion, and ionic dyshomeostasis, and discuss how the classic and novel hallmarks are interconnected. Their clinical relevance and translational potential are also considered.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| | - Karen Suetterlin
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, U.K
| | - Tea Shavlakadze
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, NY, U.S.A
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Avan A. Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| |
Collapse
|
32
|
Cummings SR, Newman AB, Coen PM, Hepple RT, Collins R, Kennedy, MS K, Danielson M, Peters K, Blackwell T, Johnson E, Mau T, Shankland EG, Lui LY, Patel S, Young D, Glynn NW, Strotmeyer ES, Esser KA, Marcinek DJ, Goodpaster BH, Kritchevsky S, Cawthon PM. The Study of Muscle, Mobility and Aging (SOMMA): A Unique Cohort Study About the Cellular Biology of Aging and Age-related Loss of Mobility. J Gerontol A Biol Sci Med Sci 2023; 78:2083-2093. [PMID: 36754371 PMCID: PMC10613002 DOI: 10.1093/gerona/glad052] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The Study of Muscle, Mobility and Aging (SOMMA) aims to understand the biological basis of many facets of human aging, with a focus on mobility decline, by creating a unique platform of data, tissues, and images. METHODS The multidisciplinary SOMMA team includes 2 clinical centers (University of Pittsburgh and Wake Forest University), a biorepository (Translational Research Institute at Advent Health), and the San Francisco Coordinating Center (California Pacific Medical Center Research Institute). Enrollees were age ≥70 years, able to walk ≥0.6 m/s (4 m); able to complete 400 m walk, free of life-threatening disease, and had no contraindications to magnetic resonance or tissue collection. Participants are followed with 6-month phone contacts and annual in-person exams. At baseline, SOMMA collected biospecimens (muscle and adipose tissue, blood, urine, fecal samples); a variety of questionnaires; physical and cognitive assessments; whole-body imaging (magnetic resonance and computed tomography); accelerometry; and cardiopulmonary exercise testing. Primary outcomes include change in walking speed, change in fitness, and objective mobility disability (able to walk 400 m in 15 minutes and change in 400 m speed). Incident events, including hospitalizations, cancer diagnoses, fractures, and mortality are collected and centrally adjudicated by study physicians. RESULTS SOMMA exceeded its goals by enrolling 879 participants, despite being slowed by the COVID-19 pandemic: 59.2% women; mean age 76.3 ± 5.0 years (range 70-94); mean walking speed 1.04 ± 0.20 m/s; 15.8% identify as other than Non-Hispanic White. Over 97% had data for key measurements. CONCLUSIONS SOMMA will provide the foundation for discoveries in the biology of human aging and mobility.
Collapse
Affiliation(s)
- Steven R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Anne B Newman
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul M Coen
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | - Russell T Hepple
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Robin Collins
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Kimberly Kennedy, MS
- Department of Internal Medicine, Section on Gerontology & Geriatric Medicine and the Sticht Center for Healthy aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Michelle Danielson
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kathy Peters
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Terri Blackwell
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Eileen Johnson
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Eric G Shankland
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Li-Yung Lui
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Sheena Patel
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Dani Young
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Nancy W Glynn
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elsa S Strotmeyer
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karyn A Esser
- Department of Physiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | - Stephen Kritchevsky
- Department of Internal Medicine, Section on Gerontology & Geriatric Medicine and the Sticht Center for Healthy aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Peggy M Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| |
Collapse
|
33
|
Wang Z, Tian W, Wang D, Guo Y, Cheng Z, Zhang Y, Li X, Zhi Y, Li D, Li Z, Jiang R, Li G, Tian Y, Kang X, Li H, Dunn IC, Liu X. Comparative analyses of dynamic transcriptome profiles highlight key response genes and dominant isoforms for muscle development and growth in chicken. Genet Sel Evol 2023; 55:73. [PMID: 37872550 PMCID: PMC10591418 DOI: 10.1186/s12711-023-00849-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Modern breeding strategies have resulted in significant differences in muscle mass between indigenous chicken and specialized broiler. However, the molecular regulatory mechanisms that underlie these differences remain elusive. The aim of this study was to identify key genes and regulatory mechanisms underlying differences in breast muscle development between indigenous chicken and specialized broiler. RESULTS Two time-series RNA-sequencing profiles of breast muscles were generated from commercial Arbor Acres (AA) broiler (fast-growing) and Chinese indigenous Lushi blue-shelled-egg (LS) chicken (slow-growing) at embryonic days 10, 14, and 18, and post-hatching day 1 and weeks 1, 3, and 5. Principal component analysis of the transcriptome profiles showed that the top four principal components accounted for more than 80% of the total variance in each breed. The developmental axes between the AA and LS chicken overlapped at the embryonic stages but gradually separated at the adult stages. Integrative investigation of differentially-expressed transcripts contained in the top four principal components identified 44 genes that formed a molecular network associated with differences in breast muscle mass between the two breeds. In addition, alternative splicing analysis revealed that genes with multiple isoforms always had one dominant transcript that exhibited a significantly higher expression level than the others. Among the 44 genes, the TNFRSF6B gene, a mediator of signal transduction pathways and cell proliferation, harbored two alternative splicing isoforms, TNFRSF6B-X1 and TNFRSF6B-X2. TNFRSF6B-X1 was the dominant isoform in both breeds before the age of one week. A switching event of the dominant isoform occurred at one week of age, resulting in TNFRSF6B-X2 being the dominant isoform in AA broiler, whereas TNFRSF6B-X1 remained the dominant isoform in LS chicken. Gain-of-function assays demonstrated that both isoforms promoted the proliferation of chicken primary myoblasts, but only TNFRSF6B-X2 augmented the differentiation and intracellular protein content of chicken primary myoblasts. CONCLUSIONS For the first time, we identified several key genes and dominant isoforms that may be responsible for differences in muscle mass between slow-growing indigenous chicken and fast-growing commercial broiler. These findings provide new insights into the regulatory mechanisms underlying breast muscle development in chicken.
Collapse
Affiliation(s)
- Zhang Wang
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Zhimin Cheng
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Yanyan Zhang
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Xinyan Li
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Yihao Zhi
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China.
| | - Ian C Dunn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, No. 63, Nongye Road, Zhengzhou, 450002, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, China.
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450002, China.
| |
Collapse
|
34
|
Beird HC, Wu CC, Nakazawa M, Ingram D, Daniele JR, Lazcano R, Little L, Davies C, Daw NC, Wani K, Wang WL, Song X, Gumbs C, Zhang J, Rubin B, Conley A, Flanagan AM, Lazar AJ, Futreal PA. Complete loss of TP53 and RB1 is associated with complex genome and low immune infiltrate in pleomorphic rhabdomyosarcoma. HGG ADVANCES 2023; 4:100224. [PMID: 37593416 PMCID: PMC10428123 DOI: 10.1016/j.xhgg.2023.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Rhabdomyosarcoma accounts for roughly 1% of adult sarcomas, with pleomorphic rhabdomyosarcoma (PRMS) as the most common subtype. Survival outcomes remain poor for patients with PRMS, and little is known about the molecular drivers of this disease. To better characterize PRMS, we performed a broad array of genomic and immunostaining analyses on 25 patient samples. In terms of gene expression and methylation, PRMS clustered more closely with other complex karyotype sarcomas than with pediatric alveolar and embryonal rhabdomyosarcoma. Immune infiltrate levels in PRMS were among the highest observed in multiple sarcoma types and contrasted with low levels in other rhabdomyosarcoma subtypes. Lower immune infiltrate was associated with complete loss of both TP53 and RB1. This comprehensive characterization of the genetic, epigenetic, and immune landscape of PRMS provides a roadmap for improved prognostications and therapeutic exploration.
Collapse
Affiliation(s)
- Hannah C. Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Nakazawa
- Department of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Davis Ingram
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph R. Daniele
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rossana Lazcano
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Latasha Little
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher Davies
- Research Department of Pathology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Najat C. Daw
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Khalida Wani
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Lien Wang
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Curtis Gumbs
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brian Rubin
- Institute Chair, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Adrienne M. Flanagan
- Research Department of Pathology, UCL Cancer Institute, London WC1E 6DD, UK
- Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Alexander J. Lazar
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - P. Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
35
|
Ramakrishnan A, Datta I, Panja S, Patel H, Liu Y, Craige MW, Chu C, Jean-Marie G, Oladoja AR, Kim I, Mitrofanova A. Tissue-specific biological aging predicts progression in prostate cancer and acute myeloid leukemia. Front Oncol 2023; 13:1222168. [PMID: 37746266 PMCID: PMC10512286 DOI: 10.3389/fonc.2023.1222168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Chronological aging is a well-recognized diagnostic and prognostic factor in multiple cancer types, yet the role of biological aging in manifesting cancer progression has not been fully explored yet. Methods Given the central role of chronological aging in prostate cancer and AML incidence, here we investigate a tissue-specific role of biological aging in prostate cancer and AML progression. We have employed Cox proportional hazards modeling to associate biological aging genes with cancer progression for patients from specific chronological aging groups and for patients with differences in initial cancer aggressiveness. Results Our prostate cancer-specific investigations nominated four biological aging genes (CD44, GADD45B, STAT3, GFAP) significantly associated with time to disease progression in prostate cancer in Taylor et al. patient cohort. Stratified survival analysis on Taylor dataset and validation on an independent TCGA and DKFZ PRAD patient cohorts demonstrated ability of these genes to predict prostate cancer progression, especially for patients with higher Gleason score and for patients younger than 60 years of age. We have further tested the generalizability of our approach and applied it to acute myeloid leukemia (AML). Our analysis nominated three AML-specific biological aging genes (CDC42EP2, CDC42, ALOX15B) significantly associated with time to AML overall survival, especially for patients with favorable cytogenetic risk score and for patients older than 56 years of age. Discussion Comparison of the identified PC and AML markers to genes selected at random and to known markers of progression demonstrated robustness of our results and nominated the identified biological aging genes as valuable markers of prostate cancer and AML progression, opening new avenues for personalized therapeutic management and potential novel treatment investigations.
Collapse
Affiliation(s)
- Anitha Ramakrishnan
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Indrani Datta
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Sukanya Panja
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Harmony Patel
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Health Informatics and Information Management, College of Applied and Natural Sciences, Louisiana Tech University, Ruston, LA, United States
| | - Yingci Liu
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
- New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Michael W. Craige
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Cassandra Chu
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Giselle Jean-Marie
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Rutgers Youth Enjoy Science Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Abdur-Rahman Oladoja
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Rutgers Youth Enjoy Science Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Isaac Kim
- Department of Urology, Yale School of Medicine, New Haven, CT, United States
| | - Antonina Mitrofanova
- Department of Biomedical and Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
36
|
Davey EE, Légaré C, Planco L, Shaughnessy S, Lennon CD, Roussel MP, Shorrock HK, Hung M, Cleary JD, Duchesne E, Berglund JA. Individual transcriptomic response to strength training for patients with myotonic dystrophy type 1. JCI Insight 2023; 8:e163856. [PMID: 37318869 PMCID: PMC10443797 DOI: 10.1172/jci.insight.163856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/13/2023] [Indexed: 06/17/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common form of adult-onset muscular dystrophy, is caused by a CTG expansion resulting in significant transcriptomic dysregulation that leads to muscle weakness and wasting. While strength training is clinically beneficial in DM1, molecular effects had not been studied. To determine whether training rescued transcriptomic defects, RNA-Seq was performed on vastus lateralis samples from 9 male patients with DM1 before and after a 12-week strength-training program and 6 male controls who did not undergo training. Differential gene expression and alternative splicing analysis were correlated with the one-repetition maximum strength evaluation method (leg extension, leg press, hip abduction, and squat). While training program-induced improvements in splicing were similar among most individuals, rescued splicing events varied considerably between individuals. Gene expression improvements were highly varied between individuals, and the percentage of differentially expressed genes rescued after training were strongly correlated with strength improvements. Evaluating transcriptome changes individually revealed responses to the training not evident from grouped analysis, likely due to disease heterogeneity and individual exercise response differences. Our analyses indicate that transcriptomic changes are associated with clinical outcomes in patients with DM1 undergoing training and that these changes are often specific to the individual and should be analyzed accordingly.
Collapse
Affiliation(s)
- Emily E. Davey
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Cécilia Légaré
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
- Department of Health Sciences, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Quebec, Canada
- Centre de recherche Charles-Le Moyne Saguenay–Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Faculté de médecine et des sciences de la santé de l’Université de Sherbrooke, Site Saguenay, Saguenay, Quebec, Canada
| | - Lori Planco
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Sharon Shaughnessy
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Claudia D. Lennon
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Marie-Pier Roussel
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Quebec, Canada
- Centre de recherche Charles-Le Moyne Saguenay–Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Faculté de médecine et des sciences de la santé de l’Université de Sherbrooke, Site Saguenay, Saguenay, Quebec, Canada
- Department of Basic Sciences, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
| | - Hannah K. Shorrock
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Man Hung
- Department of Orthopaedic Surgery Operations, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, USA
| | - John Douglas Cleary
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Elise Duchesne
- Department of Health Sciences, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Quebec, Canada
- Centre de recherche Charles-Le Moyne Saguenay–Lac-Saint-Jean sur les innovations en santé (CR-CSIS), Faculté de médecine et des sciences de la santé de l’Université de Sherbrooke, Site Saguenay, Saguenay, Quebec, Canada
| | - J. Andrew Berglund
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| |
Collapse
|
37
|
Stokes T, Cen HH, Kapranov P, Gallagher IJ, Pitsillides AA, Volmar C, Kraus WE, Johnson JD, Phillips SM, Wahlestedt C, Timmons JA. Transcriptomics for Clinical and Experimental Biology Research: Hang on a Seq. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200024. [PMID: 37288167 PMCID: PMC10242409 DOI: 10.1002/ggn2.202200024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 06/09/2023]
Abstract
Sequencing the human genome empowers translational medicine, facilitating transcriptome-wide molecular diagnosis, pathway biology, and drug repositioning. Initially, microarrays are used to study the bulk transcriptome; but now short-read RNA sequencing (RNA-seq) predominates. Positioned as a superior technology, that makes the discovery of novel transcripts routine, most RNA-seq analyses are in fact modeled on the known transcriptome. Limitations of the RNA-seq methodology have emerged, while the design of, and the analysis strategies applied to, arrays have matured. An equitable comparison between these technologies is provided, highlighting advantages that modern arrays hold over RNA-seq. Array protocols more accurately quantify constitutively expressed protein coding genes across tissue replicates, and are more reliable for studying lower expressed genes. Arrays reveal long noncoding RNAs (lncRNA) are neither sparsely nor lower expressed than protein coding genes. Heterogeneous coverage of constitutively expressed genes observed with RNA-seq, undermines the validity and reproducibility of pathway analyses. The factors driving these observations, many of which are relevant to long-read or single-cell sequencing are discussed. As proposed herein, a reappreciation of bulk transcriptomic methods is required, including wider use of the modern high-density array data-to urgently revise existing anatomical RNA reference atlases and assist with more accurate study of lncRNAs.
Collapse
Affiliation(s)
- Tanner Stokes
- Faculty of ScienceMcMaster UniversityHamiltonL8S 4L8Canada
| | - Haoning Howard Cen
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | - Iain J Gallagher
- School of Applied SciencesEdinburgh Napier UniversityEdinburghEH11 4BNUK
| | | | | | | | - James D. Johnson
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | | | - James A. Timmons
- Miller School of MedicineUniversity of MiamiMiamiFL33136USA
- William Harvey Research InstituteQueen Mary University LondonLondonEC1M 6BQUK
- Augur Precision Medicine LTDStirlingFK9 5NFUK
| |
Collapse
|
38
|
Tian Q, Adam MG, Ozcariz E, Fantoni G, Shehadeh NM, Turek LM, Collingham VL, Kaileh M, Moaddel R, Ferrucci L. Human Metabolome Reference Database in a Biracial Cohort across the Adult Lifespan. Metabolites 2023; 13:metabo13050591. [PMID: 37233632 DOI: 10.3390/metabo13050591] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
As one of the OMICS in systems biology, metabolomics defines the metabolome and simultaneously quantifies numerous metabolites that are final or intermediate products and effectors of upstream biological processes. Metabolomics provides accurate information that helps determine the physiological steady state and biochemical changes during the aging process. To date, reference values of metabolites across the adult lifespan, especially among ethnicity groups, are lacking. The "normal" reference values according to age, sex, and race allow the characterization of whether an individual or a group deviates metabolically from normal aging, encompass a fundamental element in any study aimed at understanding mechanisms at the interface between aging and diseases. In this study, we established a metabolomics reference database from 20-100 years of age from a biracial sample of community-dwelling healthy men and women and examined metabolite associations with age, sex, and race. Reference values from well-selected healthy individuals can contribute to clinical decision-making processes of metabolic or related diseases.
Collapse
Affiliation(s)
- Qu Tian
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21214, USA
| | | | | | - Giovanna Fantoni
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Nader M Shehadeh
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Lisa M Turek
- Clinical Research Unit, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21214, USA
| |
Collapse
|
39
|
Keilich SR, Cadar AN, Ahern DT, Torrance BL, Lorenzo EC, Martin DE, Haynes L, Bartley JM. Altered T cell infiltration and enrichment of leukocyte regulating pathways within aged skeletal muscle are associated impaired muscle function following influenza infection. GeroScience 2023; 45:1197-1213. [PMID: 36580167 PMCID: PMC9886695 DOI: 10.1007/s11357-022-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/30/2022] Open
Abstract
Older adults have diminished immune responses that increase susceptibility to infectious diseases, such as influenza (flu). In older adults, flu infection can lead to hospitalization, catastrophic disability, and mortality. We previously demonstrated severe and prolonged muscle degradation and atrophy in aged mice during flu infection. Here, we utilized an unbiased transcriptomic analysis to elucidate mechanisms of flu-induced muscular declines in a mouse model. Our results showed age-related gene expression differences including downregulation of genes associated with muscle regeneration and organization and upregulation of genes associated with pro-inflammatory cytokines and migratory immune pathways in aged mice when compared to young. Pathway analysis revealed significant enrichment of leukocyte migration and T cell activation pathways in the aged muscle during infection. Intramuscular CD4 T cells increased in both young and aged mice during infection, while intramuscular CD8 T cells increased exclusively in aged muscle. CD4 T cells in young muscle were regulatory T cells (Treg), while those in aged were T follicular helper (Tfh) and Th2 cells. Correspondingly, IL-33, an important cytokine for Treg accumulation within tissue, increased only in young flu-infected muscle. Conversely, CXCL10 (IP-10) increased only in aged muscle suggesting a continued recruitment of CD8 T cells into the aged muscle during flu infection. Overall, our findings elucidate a link between flu-induced disability and dysregulated intracellular T cell recruitment into flu-injured muscle with aging. Furthermore, we uncovered potential pathways involved that can be targeted to develop preventative and therapeutic interventions to avert disability and maintain independence following infection.
Collapse
Affiliation(s)
- Spencer R Keilich
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Millipore Sigma, 400 Summit Drive, Burlington, MA, 01803, USA
| | - Andreia N Cadar
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Darcy T Ahern
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Intellia Therapeutics, 40 Erie St, Cambridge, MA, 02139, USA
| | - Blake L Torrance
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Erica C Lorenzo
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Dominique E Martin
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Laura Haynes
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| | - Jenna M Bartley
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| |
Collapse
|
40
|
Bakhtina AA, Pharaoh GA, Campbell MD, Keller A, Stuppard RS, Marcinek DJ, Bruce JE. Skeletal muscle mitochondrial interactome remodeling is linked to functional decline in aged female mice. NATURE AGING 2023; 3:313-326. [PMID: 37118428 PMCID: PMC10154043 DOI: 10.1038/s43587-023-00366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/10/2023] [Indexed: 04/30/2023]
Abstract
Genomic, transcriptomic and proteomic approaches have been used to gain insight into molecular underpinnings of aging in laboratory animals and in humans. However, protein function in biological systems is under complex regulation and includes factors besides abundance levels, such as modifications, localization, conformation and protein-protein interactions. By making use of quantitative chemical cross-linking technologies, we show that changes in the muscle mitochondrial interactome contribute to mitochondrial functional decline in aging in female mice. Specifically, we identify age-related changes in protein cross-links relating to assembly of electron transport system complexes I and IV, activity of glutamate dehydrogenase, and coenzyme-A binding in fatty acid β-oxidation and tricarboxylic acid cycle enzymes. These changes show a remarkable correlation with complex I respiration differences within the same young-old animal pairs. Each observed cross-link can serve as a protein conformational or protein-protein interaction probe in future studies, which will provide further molecular insights into commonly observed age-related phenotypic differences. Therefore, this data set could become a valuable resource for additional in-depth molecular studies that are needed to better understand complex age-related molecular changes.
Collapse
Affiliation(s)
- Anna A Bakhtina
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gavin A Pharaoh
- Department of Radiology, University of Washington, Seattle, WA, USA
| | | | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA.
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
41
|
Jones RG, Dimet-Wiley A, Haghani A, da Silva FM, Brightwell CR, Lim S, Khadgi S, Wen Y, Dungan CM, Brooke RT, Greene NP, Peterson CA, McCarthy JJ, Horvath S, Watowich SJ, Fry CS, Murach KA. A molecular signature defining exercise adaptation with ageing and in vivo partial reprogramming in skeletal muscle. J Physiol 2023; 601:763-782. [PMID: 36533424 PMCID: PMC9987218 DOI: 10.1113/jp283836] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Exercise promotes functional improvements in aged tissues, but the extent to which it simulates partial molecular reprogramming is unknown. Using transcriptome profiling from (1) a skeletal muscle-specific in vivo Oct3/4, Klf4, Sox2 and Myc (OKSM) reprogramming-factor expression murine model; (2) an in vivo inducible muscle-specific Myc induction murine model; (3) a translatable high-volume hypertrophic exercise training approach in aged mice; and (4) human exercise muscle biopsies, we collectively defined exercise-induced genes that are common to partial reprogramming. Late-life exercise training lowered murine DNA methylation age according to several contemporary muscle-specific clocks. A comparison of the murine soleus transcriptome after late-life exercise training to the soleus transcriptome after OKSM induction revealed an overlapping signature that included higher JunB and Sun1. Also, within this signature, downregulation of specific mitochondrial and muscle-enriched genes was conserved in skeletal muscle of long-term exercise-trained humans; among these was muscle-specific Abra/Stars. Myc is the OKSM factor most induced by exercise in muscle and was elevated following exercise training in aged mice. A pulse of MYC rewired the global soleus muscle methylome, and the transcriptome after a MYC pulse partially recapitulated OKSM induction. A common signature also emerged in the murine MYC-controlled and exercise adaptation transcriptomes, including lower muscle-specific Melusin and reactive oxygen species-associated Romo1. With Myc, OKSM and exercise training in mice, as well habitual exercise in humans, the complex I accessory subunit Ndufb11 was lower; low Ndufb11 is linked to longevity in rodents. Collectively, exercise shares similarities with genetic in vivo partial reprogramming. KEY POINTS: Advances in the last decade related to cellular epigenetic reprogramming (e.g. DNA methylome remodelling) toward a pluripotent state via the Yamanaka transcription factors Oct3/4, Klf4, Sox2 and Myc (OKSM) provide a window into potential mechanisms for combatting the deleterious effects of cellular ageing. Using global gene expression analysis, we compared the effects of in vivo OKSM-mediated partial reprogramming in skeletal muscle fibres of mice to the effects of late-life murine exercise training in muscle. Myc is the Yamanaka factor most induced by exercise in skeletal muscle, and so we compared the MYC-controlled transcriptome in muscle to Yamanaka factor-mediated and exercise adaptation mRNA landscapes in mice and humans. A single pulse of MYC is sufficient to remodel the muscle methylome. We identify partial reprogramming-associated genes that are innately altered by exercise training and conserved in humans, and propose that MYC contributes to some of these responses.
Collapse
Affiliation(s)
- Ronald G. Jones
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | | | - Amin Haghani
- University of California Los Angeles, Department of Human Genetics, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Francielly Morena da Silva
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Camille R. Brightwell
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Seongkyun Lim
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Sabin Khadgi
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Yuan Wen
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
| | - Cory M. Dungan
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
| | | | - Nicholas P. Greene
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Charlotte A. Peterson
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
| | - John J. McCarthy
- Altos Labs, San Diego, CA, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
| | - Steve Horvath
- University of California Los Angeles, Department of Human Genetics, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Stanley J. Watowich
- Ridgeline Therapeutics, Houston, TX, USA
- University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Galveston, TX, USA
| | - Christopher S. Fry
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Kevin A. Murach
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| |
Collapse
|
42
|
Coyle-Asbil B, Ogilvie LM, Simpson JA. Emerging roles for estrogen in regulating skeletal muscle physiology. Physiol Genomics 2023; 55:75-78. [PMID: 36622080 DOI: 10.1152/physiolgenomics.00158.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Bridget Coyle-Asbil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| |
Collapse
|
43
|
Araki H, Hino S, Anan K, Kuribayashi K, Etoh K, Seko D, Takase R, Kohrogi K, Hino Y, Ono Y, Araki E, Nakao M. LSD1 defines the fiber type-selective responsiveness to environmental stress in skeletal muscle. eLife 2023; 12:84618. [PMID: 36695573 PMCID: PMC9876571 DOI: 10.7554/elife.84618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Skeletal muscle exhibits remarkable plasticity in response to environmental cues, with stress-dependent effects on the fast-twitch and slow-twitch fibers. Although stress-induced gene expression underlies environmental adaptation, it is unclear how transcriptional and epigenetic factors regulate fiber type-specific responses in the muscle. Here, we show that flavin-dependent lysine-specific demethylase-1 (LSD1) differentially controls responses to glucocorticoid and exercise in postnatal skeletal muscle. Using skeletal muscle-specific LSD1-knockout mice and in vitro approaches, we found that LSD1 loss exacerbated glucocorticoid-induced atrophy in the fast fiber-dominant muscles, with reduced nuclear retention of Foxk1, an anti-autophagic transcription factor. Furthermore, LSD1 depletion enhanced endurance exercise-induced hypertrophy in the slow fiber-dominant muscles, by induced expression of ERRγ, a transcription factor that promotes oxidative metabolism genes. Thus, LSD1 serves as an 'epigenetic barrier' that optimizes fiber type-specific responses and muscle mass under the stress conditions. Our results uncover that LSD1 modulators provide emerging therapeutic and preventive strategies against stress-induced myopathies such as sarcopenia, cachexia, and disuse atrophy.
Collapse
Affiliation(s)
- Hirotaka Araki
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto UniversityKumamotoJapan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Kotaro Anan
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Kanji Kuribayashi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Kan Etoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Daiki Seko
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki UniversityNagasakiJapan
| | - Ryuta Takase
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Kensaku Kohrogi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto UniversityKumamotoJapan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| |
Collapse
|
44
|
Shu H, Huang Y, Zhang W, Ling L, Hua Y, Xiong Z. An integrated study of hormone-related sarcopenia for modeling and comparative transcriptome in rats. Front Endocrinol (Lausanne) 2023; 14:1073587. [PMID: 36817606 PMCID: PMC9929355 DOI: 10.3389/fendo.2023.1073587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Sarcopenia is a senile disease with high morbidity, serious complications and limited clinical treatments. Menopause increases the risk of sarcopenia in females, while the exact pathogenesis remains unclear. To systematically investigate the development of hormone-related sarcopenia, we established a model of sarcopenia by ovariectomy and recorded successive characteristic changes. Furthermore, we performed the transcriptome RNA sequencing and bioinformatics analysis on this model to explore the underlying mechanism. In our study, we identified an integrated model combining obesity, osteoporosis and sarcopenia. Functional enrichment analyses showed that most of the significantly enriched pathways were down-regulated and closely correlated with endocrine and metabolism, muscle dysfunction, cognitive impairment and multiple important signaling pathways. We finally selected eight candidate genes to verify their expression levels. These findings confirmed the importance of estrogen in the maintenance of skeletal muscle function and homeostasis, and provided potential targets for further study on hormone-related sarcopenia.
Collapse
Affiliation(s)
- Han Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubing Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenqian Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengai Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhengai Xiong,
| |
Collapse
|
45
|
Cheng KYK, Bao Z, Long Y, Liu C, Huang T, Cui C, Chow SKH, Wong RMY, Cheung WH. Sarcopenia and Ageing. Subcell Biochem 2023; 103:95-120. [PMID: 37120466 DOI: 10.1007/978-3-031-26576-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Musculoskeletal ageing is a major health challenge as muscles and bones constitute around 55-60% of body weight. Ageing muscles will result in sarcopenia that is characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes. In recent years, a few consensus panels provide new definitions for sarcopenia. It was officially recognized as a disease in 2016 with an ICD-10-CM disease code, M62.84, in the International Classification of Diseases (ICD). With the new definitions, there are many studies emerging to investigate the pathogenesis of sarcopenia, exploring new interventions to treat sarcopenia and evaluating the efficacy of combination treatments for sarcopenia. The scope of this chapter is to summarize and appraise the evidence in terms of (1) clinical signs, symptoms, screening, and diagnosis, (2) pathogenesis of sarcopenia with emphasis on mitochondrial dysfunction, intramuscular fat infiltration and neuromuscular junction deterioration, and (3) current treatments with regard to physical exercises and nutritional supplement.
Collapse
Affiliation(s)
- Keith Yu-Kin Cheng
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhengyuan Bao
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yufeng Long
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chaoran Liu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Huang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Can Cui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
46
|
Tanaka T, Kafyra M, Jin Y, Chia CW, Dedoussis GV, Talegawkar SA, Ferrucci L. Quality Specific Associations of Carbohydrate Consumption and Frailty Index. Nutrients 2022; 14:5072. [PMID: 36501101 PMCID: PMC9736578 DOI: 10.3390/nu14235072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background: The quality of carbohydrate consumed may influence the risk of frailty. In this study, we tested the hypothesis that indices of carbohydrate intake are associated with trajectories of frailty in participants of the Baltimore Longitudinal Study of Aging (BLSA). Methods: Cross sectional and longitudinal analyses were conducted in 1024 BLSA participants to examine the association between usual intake of carbohydrate and frailty index. Seven measures of carbohydrate consumption were estimated using data derived from Food Frequency Questionnaires (FFQs) and examined in association with a 43-item Frailty Index (FI). Results: In cross-sectional analyses, there was a significant, positive association between higher tertiles of total carbohydrate, glycemic load, and non-whole grains and FI. Conversely, higher tertiles of fiber-to-carbohydrate ratio was associated with lower FI. These differences persisted over the follow-up period of up to 13.8 years. Women in the highest tertile of the fiber-to-carbohydrate ratio showed a less steep increase in FI over time. Conclusions: Carbohydrate intake was positively associated with increased frailty risk in the BLSA participants, whereas a higher fiber-to-carbohydrate ratio was related to reduced risk for frailty.
Collapse
Affiliation(s)
- Toshiko Tanaka
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Maria Kafyra
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece
| | - Yichen Jin
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Chee W. Chia
- Clinical Research Core, National Institute on Aging, National Institutes of Health Intramural Research Program, Baltimore, MD 21224, USA
| | - George V. Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece
| | - Sameera A. Talegawkar
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| |
Collapse
|
47
|
Parvatiyar MS, Qaisar R. Editorial: Skeletal muscle in age-related diseases: From molecular pathogenesis to potential interventions. Front Physiol 2022; 13:1056479. [PMID: 36324312 PMCID: PMC9619087 DOI: 10.3389/fphys.2022.1056479] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 09/05/2023] Open
Affiliation(s)
- Michelle S. Parvatiyar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, United States
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
48
|
Fu Y, Wu T, Yu H, Xu J, Zhang JZ, Fu DY, Ye H. The Transcription of Flight Energy Metabolism Enzymes Declined with Aging While Enzyme Activity Increased in the Long-Distance Migratory Moth, Spodoptera frugiperda. INSECTS 2022; 13:936. [PMID: 36292884 PMCID: PMC9604208 DOI: 10.3390/insects13100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Of all the things that can fly, the flight mechanisms of insects are possibly the least understood. By using RNAseq, we studied the aging-associated gene expression changes in the thorax of Spodoptera frugiperda females. Three possible flight energy metabolism pathways were constructed based on 32 key metabolic enzymes found in S. frugiperda. Differential expression analysis revealed up to 2000 DEGs within old females versus young ones. Expression and GO and KEGG enrichment analyses indicated that most genes and pathways related to energy metabolism and other biological processes, such as transport, redox, longevity and signaling pathway, were downregulated with aging. However, activity assay showed that the activities of all the five tested key enzymes increased with age. The age-associated transcriptional decrease and activity increase in these enzymes suggest that these enzymes are stable. S. frugiperda is a long-distance migrator, and a high activity of enzymes may be important to guarantee a high flight capacity. The activity ratio of GAPDH/HOAD ranged from 0.594 to 0.412, suggesting that lipid is the main fuel of this species, particularly in old individuals. Moreover, the expression of enzymes in the proline oxidation pathway increased with age, suggesting that this energy metabolic pathway also is important for this species or linked to some aging-specific processes. In addition, the expression of immunity- and repair-related genes also increased with age. This study established the overall transcriptome framework of the flight muscle and aging-associated expression change trajectories in an insect for the first time.
Collapse
Affiliation(s)
- Yan Fu
- Yunnan Academy of Biodiversity, School of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Ting Wu
- Yunnan Academy of Biodiversity, School of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Hong Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, School of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Jun-Zhong Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Da-Ying Fu
- Yunnan Academy of Biodiversity, School of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Hui Ye
- School of Ecology and Environment, Yunnan University, Kunming 650091, China
| |
Collapse
|
49
|
Zhang Z, Liu N, Guo Z, Jiao L, Fenster A, Jin W, Zhang Y, Chen J, Yan C, Gou S. Ageing and degeneration analysis using ageing-related dynamic attention on lateral cephalometric radiographs. NPJ Digit Med 2022; 5:151. [PMID: 36168038 PMCID: PMC9515216 DOI: 10.1038/s41746-022-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
With the increase of the ageing in the world's population, the ageing and degeneration studies of physiological characteristics in human skin, bones, and muscles become important topics. Research on the ageing of bones, especially the skull, are paid much attention in recent years. In this study, a novel deep learning method representing the ageing-related dynamic attention (ARDA) is proposed. The proposed method can quantitatively display the ageing salience of the bones and their change patterns with age on lateral cephalometric radiographs images (LCR) images containing the craniofacial and cervical spine. An age estimation-based deep learning model based on 14142 LCR images from 4 to 40 years old individuals is trained to extract ageing-related features, and based on these features the ageing salience maps are generated by the Grad-CAM method. All ageing salience maps with the same age are merged as an ARDA map corresponding to that age. Ageing salience maps show that ARDA is mainly concentrated in three regions in LCR images: the teeth, craniofacial, and cervical spine regions. Furthermore, the dynamic distribution of ARDA at different ages and instances in LCR images is quantitatively analyzed. The experimental results on 3014 cases show that ARDA can accurately reflect the development and degeneration patterns in LCR images.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Department of Orthodontics, the Affiliated Stomatological Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ningtao Liu
- Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, 710071, Shaanxi, China
- Robarts Research Institute, Western University, London, N6A 3K7, ON, Canada
| | - Zhang Guo
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Licheng Jiao
- Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Aaron Fenster
- Robarts Research Institute, Western University, London, N6A 3K7, ON, Canada
| | - Wenfan Jin
- Department of Radiology, the Affiliated Stomatological Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yuxiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Jie Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Chunxia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Shuiping Gou
- Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, 710071, Shaanxi, China.
| |
Collapse
|
50
|
Chen F, Yi WM, Wang SY, Yuan MH, Wen J, Li HY, Zou Q, Liu S, Cai ZY. A long-term high-fat diet influences brain damage and is linked to the activation of HIF-1α/AMPK/mTOR/p70S6K signalling. Front Neurosci 2022; 16:978431. [PMID: 36188454 PMCID: PMC9524849 DOI: 10.3389/fnins.2022.978431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
High-fat diets (HFDs) are related to the incidence of obesity and diabetes, but the effect of high-fat diet-induced brain damage remains to be clarified. In our study, we found that 24 weeks of a HFD effectively induced obesity and a change in fur color in mice. In addition, the mice also exhibited deficits in learning and memory. We further found that autophagic flux was impaired in mice after HFD feeding. Hypoxia-inducible factor 1α (HIF-1α) expression was significantly increased in HFD-fed mice, and HFD feeding inhibited adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and induced mechanistic target of rapamycin (mTOR) phosphorylation and p70S6K expression. Treatment of HFD-induced BV2 cell model with palmitic acid (PA) was used to further verify a similar result. We concluded that improving tissue hypoxia or enhancing autophagy through the AMPK/mTOR/p70S6K pathway may be a relevant strategy for improving obesity- and ageing-related disorders.
Collapse
Affiliation(s)
- Fei Chen
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Wen-min Yi
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Sheng-yuan Wang
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Ming-hao Yuan
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Jie Wen
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
- Department of Neurology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hong-Yan Li
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qian Zou
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Shu Liu
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Zhi-you Cai
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
- *Correspondence: Zhi-you Cai, ; orcid.org/0000-0002-9552-4020
| |
Collapse
|