1
|
Zeng Z, Jiang C, Deng F, Zhang L, Zhang Q, Fang Z, Hu B, Chen H, Wang C, Wu W, Liu Y. Digestive characteristics of Tibetan tea polyphenols and polysaccharides in vitro and their effects on gut microbiota. Food Chem 2025; 483:144289. [PMID: 40245621 DOI: 10.1016/j.foodchem.2025.144289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
Tibetan tea contains highly valuable bioactive components like polyphenols and polysaccharides, which can regulate gut microbiota and promote bodily health. This study systematically investigated the gastrointestinal digestion and colonic fermentation behavior of Tibetan tea polyphenols (TPP), polysaccharides (TPS), and their polyphenol-polysaccharide complex (TC). TPP, TPS, and TC demonstrated minimal changes in physicochemical and structural characteristics after gastrointestinal digestion. Following 24 h of fecal fermentation, all components significantly degraded and altered microbial composition (pH decreased to 6.44, 5.76, and 6.14, respectively), promoting dominant flora such as Phascolarctobacterium and Lachnoclostridium. Differentially, TPS and TC demonstrated stronger promotion of dominant Bifidobacterium, Faecalibacterium, and Collinsella, whereas TPP preferentially enriched Megasphaera and Butyricicoccus. Additionally, fermentation markedly increased the concentration of short-chain fatty acids (SCFAs), with TPS yielding the highest total SCFAs (17.29 ± 0.50 mM), particularly acetic and propionic acids. Overall, Tibetan tea polyphenols and polysaccharides may serve as potential prebiotics to improve intestinal health.
Collapse
Affiliation(s)
- Zhen Zeng
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Chunping Jiang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Fengshi Deng
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Lijia Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Qiyun Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Bin Hu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Caixia Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wenjuan Wu
- Sichuan Agricultural University, College of Science, Yaan 625014, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
2
|
Hu Y, Bai F, Guo W, Chen G, Cai H. Bioavailability and gut microbiota modulation of polyphenol from Camellia oleifera shells during digestion and fermentation in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40347027 DOI: 10.1002/jsfa.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 05/12/2025]
Abstract
BACKGROUND Camellia oleifera shells (COS) are a by-product of camellia oil processing and are rich in polyphenols. To date, the polyphenols extracted from COS have not been fully developed. In this study, two polyphenol fractions, referred to as 20P and 40P, were obtained by sequentially eluting the COS crude extract from an AB-8 macroporous resin column using ethanol at concentrations of 20% and 40% with different polarities. In addition, the biotransformation processes of these two polyphenols and their effects on the gut microbiota were studied. RESULTS The results of in vitro digestion showed that at the end of the intestinal digestion stage the total phenolic content (TPC) content (0.34 ± 0.050 mg gallic acid equivalent (GAE) mg-1 dry weight (DW)) and antioxidant activity (0.53 ± 0.0076 mg vitamin C (Vc) mg-1 DW) of the 20P component were significantly higher than those of the 40P component (0.19 ± 0.020 mg GAE mg-1 DW; 0.39 ± 0.016 mg Vc mg-1 DW). In addition, the experiment also found that the phenolic composition and transformation process of 20P and 40P components were significantly different, and the TPC content (0.30 ± 0.058 mg GAE mg-1 DW) and antioxidant capacity (0.73 ± 0.034 mg Vc mg-1 DW) of the 40P component were significantly higher than that of the 20P (0.13 ± 0.035 mg GAE mg-1 DW); (0.19 ± 0.013 mg Vc mg-1 DW) component during in vitro fermentation. This may be related to the types of compounds extracted by solvents with different polarities. In addition, both 20P and 40P components significantly regulated the gut microbiota and promoted the production of short-chain fatty acids. CONCLUSION These results indicate that polyphenols from different polar sources of COS can serve as valuable bioactive compounds with potential health-regulating properties. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanan Hu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, China
- College of Food and Nutrition, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Agricultural University, Hefei, China
- Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Hefei, China
| | - Fuqing Bai
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, China
- College of Food and Nutrition, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Agricultural University, Hefei, China
- Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Hefei, China
| | - Wei Guo
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, China
- College of Food and Nutrition, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Agricultural University, Hefei, China
- Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Hefei, China
| | - Guijie Chen
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Agricultural University, Hefei, China
- Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Hefei, China
| | - Huimei Cai
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, China
- College of Food and Nutrition, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- Anhui Provincial Joint Construction Key Laboratory of Industrial New-Style Tea Beverage Green Manufacturing, Anhui Agricultural University, Hefei, China
- Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Hefei, China
| |
Collapse
|
3
|
Singh S, Saini V, Jha HC. The role of secondary genomes in neurodevelopment and co-evolutionary dynamics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2025; 180:245-297. [PMID: 40414634 DOI: 10.1016/bs.irn.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
This chapter examines how human biology and microbial "secondary genomes" have co-evolved to shape neurodevelopment through the gut-brain axis. Microbial communities generate metabolites that cross blood-brain and placental barriers, influencing synaptogenesis, immune responses, and neural circuit formation. Simultaneously, Human Accelerated Regions (HARs) and Endogenous Retroviruses (ERVs) modulate gene expression and immune pathways, determining which microbes thrive in the gut and impacting brain maturation. These factors converge to form a dynamic host-microbe dialogue with significant consequences for neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and schizophrenia. Building on evolutionary perspectives, the chapter elucidates how genetic and immune mechanisms orchestrate beneficial and pathological host-microbe interactions in early brain development. It then explores therapeutic strategies, such as probiotics, prebiotics, fecal microbiota transplantation, and CRISPR-driven microbial engineering, targeting gut dysbiosis to mitigate or prevent neurodevelopmental dysfunctions. Furthermore, innovative organ-on-chip models reveal mechanistic insights under physiologically relevant conditions, offering a translational bridge between in vitro experiments and clinical applications. As the field continues to evolve, this work underscores the translational potential of manipulating the microbiome to optimize neurological outcomes. It enriches our understanding of the intricate evolutionary interplay between host genomes and the microbial world.
Collapse
Affiliation(s)
- Siddharth Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| | - Vaishali Saini
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
4
|
Gao X, Wang C, Pan B, Liu Y, Yuan S, Zheng S, Yu D, Han L, Meng Z. Elucidating the critical role of gut microbiota in the pathogenesis of bacterial pneumonia: insights from a Mendelian randomization analysis mediated by immune cell. BMC Infect Dis 2025; 25:378. [PMID: 40102744 PMCID: PMC11921498 DOI: 10.1186/s12879-025-10758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND The gut microbiota (GM) is recognized as a critical factor in sustaining overall health and regulating the immune system. However, the precise function of GM in the pathogenesis of bacterial pneumonia (BP), as well as the potential involvement of immune cells in these mechanisms, remains inadequately understood. Given that BP represents a substantial public health issue, elucidating the protective role of the gut microbiota against this condition is of considerable significance. METHODS We employed a bidirectional two-sample univariate Mendelian randomization (UVMR) approach to investigate the potential causal relationship between GM and BP. Furthermore, we integrated UVMR with multivariate Mendelian randomization (MVMR) analysis to assess the mediating role of immune cells in the pathway linking GM to BP risk. We additionally performed a reverse analysis to exclude GM that could exhibit a reverse causal relationship with BP. RESULTS Mendelian randomization (MR) analysis identified 18 GM significantly associated with BP, with 8 of these bacterial taxa linked to a reduced risk and 10 associated with an increased risk. Additionally, 50 immune cell traits exhibited suggestive associations with BP, with 27 immune cells potentially conferring protection and 23 immune cells potentially augmenting risk. Importantly, mediation MR analysis revealed that the protective effect of Clostridia on BP was predominantly mediated by the proportion of HLA DR + Natural Killer cells within CD3- lymphocytes (HLA DR + Natural Killer %CD3- lymphocytes) (Total effect IVW: OR = 0.724, 95% CI [0.552, 0.950], P = 0.020). The evaluation of the mediation effect revealed an effect size of -0.025 (95% CI [-0.061, -0.000]), with a mediation effect ratio of 7.143%. CONCLUSION The study identified specific components of the GM that confer a protective effect against BP. It revealed that the subsets of HLA DR + Natural Killer %CD3- lymphocytes are modulated by Clostridia, thereby enhancing the host's immune defense against BP.
Collapse
Affiliation(s)
- Xin Gao
- The Second Department of Infection, The Second Hospital of Hebei Medical University, Heping West Road 215, Shijiazhuang, 050061, China
| | - Changle Wang
- Department of Pathogenic Biology, Hebei Medical University, Zhongshan Road 361, Shijiazhuang, 050017, China
- Public Research Platform, School of Basic Medicine Sciences, Hebei Medical University, Zhongshan Road 361, Shijiazhuang, 050017, China
| | - Bingxin Pan
- Department of Pathogenic Biology, Hebei Medical University, Zhongshan Road 361, Shijiazhuang, 050017, China
- Department of Clinical Laboratory, Hui'an County Hospital, Huixing Street 582, Quanzhou, 362100, China
| | - Yawen Liu
- Department of Pathogenic Biology, Hebei Medical University, Zhongshan Road 361, Shijiazhuang, 050017, China
- Public Research Platform, School of Basic Medicine Sciences, Hebei Medical University, Zhongshan Road 361, Shijiazhuang, 050017, China
| | - Shuo Yuan
- The Second Department of Infection, The Second Hospital of Hebei Medical University, Heping West Road 215, Shijiazhuang, 050061, China
| | - Shaoru Zheng
- The Second Department of Infection, The Second Hospital of Hebei Medical University, Heping West Road 215, Shijiazhuang, 050061, China
| | - Dongmei Yu
- The Second Department of Infection, The Second Hospital of Hebei Medical University, Heping West Road 215, Shijiazhuang, 050061, China
| | - Lujuan Han
- Department of Pathogenic Biology, Hebei Medical University, Zhongshan Road 361, Shijiazhuang, 050017, China.
- Public Research Platform, School of Basic Medicine Sciences, Hebei Medical University, Zhongshan Road 361, Shijiazhuang, 050017, China.
- , 215# Heping West Road, Shijiazhuang, China.
| | - Zhaohua Meng
- The Second Department of Infection, The Second Hospital of Hebei Medical University, Heping West Road 215, Shijiazhuang, 050061, China.
- , 215# Heping West Road, Shijiazhuang, China.
| |
Collapse
|
5
|
Zhao Z, Zhang X, Sun N, Duan L, Xin J, Li H, Ni X, Wang H, Ma H, Bai Y. Lactobacillus johnsonii HL79 modulates the microbiota-gut-brain axis to protect cognitive function in mice chronically exposed to high altitude. Front Microbiol 2025; 16:1561400. [PMID: 40124891 PMCID: PMC11925889 DOI: 10.3389/fmicb.2025.1561400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction High-altitude environments have significant effects on brain function, particularly a decline in cognitive function, due to insufficient oxygen supply. The microbiome-gut-brain axis (MGBA) plays an important role in regulating cognitive function, but its specific mechanism of action in high-altitude environments is unclear. Therefore, the aim of this study was to investigate whether the probiotic Lactobacillus johnsonii HL79 could alleviate high altitude-induced cognitive dysfunction in mice by modulating the gut microbiota. Methods and results Sixty C57BL/6 mice aged 8 weeks were randomly divided into four groups: control, high altitude exposure (HA), HL79-treated (P), and high altitude exposure plus HL79-treated (HAP). the HA and HAP groups were exposed to a low-pressure oxygen chamber at a simulated altitude of 3,500-4,000 m for 20 weeks, while the Control and P groups were maintained at the normal barometric pressure level. Probiotic HL79 was given daily by gavage in the P and HAP groups, while saline gavage was given daily in the other two groups. The cognitive functions of the mice were assessed by new object recognition test and elevated plus maze test. The results showed that HL79 treatment significantly improved the working memory abilities of high altitude exposed mice. In addition, HL79 treatment improved antioxidant capacity, decreased malondialdehyde (MDA) content, and increased superoxide dismutase (SOD) and catalase (CAT) activities in serum and whole brain tissue. Gut microbiota analysis showed that HL79 was able to modulate the structure of gut microbiota and increase the relative abundance of beneficial flora in high altitude environment. Conclusion Lactobacillus johnsonii HL79 significantly ameliorated cognitive dysfunction in high altitude-exposed mice by modulating the gut microbiota and antioxidant capacity, further confirming the important role of MGBA in high altitude environment.
Collapse
Affiliation(s)
- Zhifang Zhao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Xufei Zhang
- Key Laboratory of High Altitudes Brain, Science and Environmental Acclimation, Tibet University, Lhasa, China
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Tibet Autonomous Region Psychological Society, Lhasa, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixiao Duan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jinge Xin
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Li
- Key Laboratory of High Altitudes Brain, Science and Environmental Acclimation, Tibet University, Lhasa, China
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Tibet Autonomous Region Psychological Society, Lhasa, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hailin Ma
- Key Laboratory of High Altitudes Brain, Science and Environmental Acclimation, Tibet University, Lhasa, China
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Tibet Autonomous Region Psychological Society, Lhasa, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Bélteky M, Wahlberg J, Ludvigsson J. Infections and antibiotic use in early childhood have limited importance in developing manifest type 1 diabetes - The ABIS cohort study. Front Endocrinol (Lausanne) 2025; 16:1529447. [PMID: 40060384 PMCID: PMC11885132 DOI: 10.3389/fendo.2025.1529447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/30/2025] [Indexed: 05/13/2025] Open
Abstract
Aims To investigate the effect of early childhood infections and antibiotic use on the risk of type 1 diabetes in a general population cohort. Research Design and Methods The All Babies In Southeast Sweden (ABIS) cohort followed 16 428 children from birth. Questionnaires collected at 1 year (n=11 093), 3 years (n=8 890) and 5 years of age (n=7 445) included data on infections and antibiotic use and were validated against national registers. After a mean follow-up of 25 years, 168 individuals have been diagnosed with type 1 diabetes (1.0% of the original cohort, aged 1-24.5 years). Results There were few significant differences in type or frequency of early childhood infections or antibiotic use between cases with type 1 diabetes and the reference group (remaining individuals who did not develop type 1 diabetes) after adjusting for sex, heredity and socioeconomic status. A small number of type 1 diabetes children (4.8% compared to 0.8% of the reference group) reported six or more episodes of gastroenteritis in the 1-3-year age group, resulting in an adjusted odds ratio (aOR) of 8.21; 95% CI 2.70-25.01, p<0.001. Cases of type 1 diabetes with an increased genetic risk (n=91) reported fewer episodes of the common cold between 1 and 3 years of age compared to the reference group (aOR 0.27; 0.13-0.58, p<0.001). Individuals with type 1 diabetes without risk-associated HLA alleles (n=14) reported a higher frequency of pneumonia in the 1-3- and 3-5-year age group (aOR 26.08; 6.29-108.17, p<0.001 and aOR 35.63; 4.10-309.96, p=0.001 respectively), and had more viral and total infections registered in the National Patient Register from 0-5 years (aOR 5.72; 1.59-20.57, p=0.008 and aOR 18.71; 1.95-179.55, p=0.01). Conclusions Childhood infections could increase the risk of developing type 1 diabetes in a small group of individuals without risk-associated HLA alleles, but this was not seen in the majority with HLA-risk. More research is required for this overlooked population, including screening and prevention trials. The association to frequent gastrointestinal infections in the first years of life needs to be reproduced in other studies to be confirmed.
Collapse
Affiliation(s)
- Malin Bélteky
- Crown Princess Victoria’s Children´s Hospital, Region Östergötland and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jeanette Wahlberg
- Department of Acute Internal Medicine and Geriatrics in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Faculty of Medical Sciences, Örebro University, Örebro, Sweden
| | - Johnny Ludvigsson
- Crown Princess Victoria’s Children´s Hospital, Region Östergötland and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Blok L, Hanssen N, Nieuwdorp M, Rampanelli E. From Microbes to Metabolites: Advances in Gut Microbiome Research in Type 1 Diabetes. Metabolites 2025; 15:138. [PMID: 39997763 PMCID: PMC11857261 DOI: 10.3390/metabo15020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Type 1 diabetes (T1D) is a severe chronic T-cell mediated autoimmune disease that attacks the insulin-producing beta cells of the pancreas. The multifactorial nature of T1D involves both genetic and environmental components, with recent research focusing on the gut microbiome as a crucial environmental factor in T1D pathogenesis. The gut microbiome and its metabolites play an important role in modulating immunity and autoimmunity. In recent years, studies have revealed significant alterations in the taxonomic and functional composition of the gut microbiome associated with the development of islet autoimmunity and T1D. These changes include reduced production of short-chain fatty acids, altered bile acid and tryptophan metabolism, and increased intestinal permeability with consequent perturbations of host (auto)immune responses. Methods/Results: In this review, we summarize and discuss recent observational, mechanistic and etiological studies investigating the gut microbiome in T1D and elucidating the intricate role of gut microbes in T1D pathogenesis. Moreover, we highlight the recent advances in intervention studies targeting the microbiota for the prevention or treatment of human T1D. Conclusions: A deeper understanding of the evolution of the gut microbiome before and after T1D onset and of the microbial signals conditioning host immunity may provide us with essential insights for exploiting the microbiome as a prognostic and therapeutic tool.
Collapse
Affiliation(s)
- Lente Blok
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Nordin Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| |
Collapse
|
8
|
Li J, Xie Z, Yang L, Guo K, Zhou Z. The impact of gut microbiome on immune and metabolic homeostasis in type 1 diabetes: Clinical insights for prevention and treatment strategies. J Autoimmun 2025; 151:103371. [PMID: 39883994 DOI: 10.1016/j.jaut.2025.103371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Type 1 diabetes (T1D) is a complex disease triggered by a combination of genetic and environmental factors, where abnormal autoimmune responses lead to progressive damage of the pancreatic β cells and severe glucose metabolism disorder. Recent studies have increasingly highlighted the close link between gut microbiota dysbiosis and the development of T1D. This review delves into existing population studies to explore the intricate interactions between the gut microbiota and the immune and metabolic homeostasis in T1D. It summarizes how changes in the structure and function of the gut microbiota are closely associated with the onset and progression of T1D across its natural course and clinical stages. More importantly, based on evidence accumulated from clinical observations and trials, we pioneer the discussion on gut microbiota-based T1D prevention and treatment strategies, this not only enriches our understanding of the complex pathological mechanisms of T1D but also provides potential directions for developing novel prevention and treatment strategies.
Collapse
Affiliation(s)
- Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
Xiao Y, Zhao Q, Ni D, Zhang X, Hao W, Yuan Q, Xu W, Mu W, Wu D, Wu X, Wang S. Polymerization of dietary fructans differentially affects interactions among intestinal microbiota of colitis mice. THE ISME JOURNAL 2025; 19:wrae262. [PMID: 39745882 PMCID: PMC11742283 DOI: 10.1093/ismejo/wrae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 12/31/2024] [Indexed: 01/04/2025]
Abstract
The intestinal microbiota plays a critical role in maintaining human health and can be modulated by dietary interventions and lifestyle choices. Fructans, a dietary carbohydrate, are selectively utilized by the intestinal microbiota to confer health benefits. However, the specific effects of different fructan types on microbial changes and functions remain incompletely understood. Here, we investigated how the intestinal microbiota responds to fructans with varying degrees of polymerization in the context of gut dysbiosis. Both low molecular weight fructo-oligosaccharides and high molecular weight levan suppressed intestinal inflammation in a colitis mouse model, mitigating intestinal fibrosis and dysbiosis. Although both the effects of fructo-oligosaccharides and levan are microbiota-dependent, distinct modulation patterns of the intestinal microbiota were observed based on the molecular weight of the fructans. Levan had a more pronounced and persistent impact on gut microbiota compared to fructo-oligosaccharides. Levan particularly promoted the abundance of Dubosiella newyorkensis, which exhibited preventive effects against colitis. Our findings highlight the importance of polymerization levels of dietary fructans in microbiota alterations and identify Dubosiella newyorkensis as a potential probiotic for treating inflammatory diseases.
Collapse
Affiliation(s)
- Yaqin Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Southwest Medical University, Xianglin Road, Longmatan District, Luzhou, Sichuan 646000, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xiaoqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Wei Hao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Qin Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengluo Avenue, Chengdu, Sichuan 616106, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Southwest Medical University, Xianglin Road, Longmatan District, Luzhou, Sichuan 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| |
Collapse
|
10
|
Lalli MK, Salo TE, Hakola L, Knip M, Virtanen SM, Vatanen T. Associations between dietary fibers and gut microbiome composition in the EDIA longitudinal infant cohort. Am J Clin Nutr 2025; 121:83-99. [PMID: 39551356 PMCID: PMC11747200 DOI: 10.1016/j.ajcnut.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND The infant gut microbiome undergoes rapid changes in the first year of life, supporting normal development and long-term health. Although diet shapes this process, the role of fibers in complementary foods on gut microbiome maturation is poorly understood. OBJECTIVES We explored how the transition from human milk to fibers in complementary foods shapes the taxonomic and functional maturation of the gut microbiome within the first year of life. METHODS We assessed the longitudinal and cross-sectional development of infant gut microbiomes (N = 68 infants) and metabolomes (N = 33 infants) using linear mixed models to uncover their associations to dietary fibers and their food sources. Fiber intakes were assessed with 3-d food records (months 3, 6, 9, and 12) relying on CODEX-compliant fiber fraction values, and questionnaires tracked the overall complementary food introduction. Bacterial species were identified and quantified via MetaPhlAn2 from metagenomic data, and metabolomic profiles were obtained using 4 LC-MS methods. RESULTS We identified 176 complementary food fiber-bacterial species associations. First plant-based fibers associated with microbiota compositions similar to breastfeeding, and further associated with aromatic amino acid-derived metabolites, including 5-hydroxyindoleacetic acid (total dietary fiber - complementary foods (g) - β = 3.50, CI: 2.48, 4.52, P = 6.53 × 10-5). Distinct fibers from different food categories showed unique associations with specific bacterial taxa. Key species, such as Faecalibacterium prausnitznii, associated with oat fibers (g/MJ, β = 2.18, confidence interval: 1.36, 2.84, P = 6.12 × 10-6), reflective of maturing microbial communities. Fiber intake during weaning associated with shifts in metabolite profiles, including immunomodulatory metabolites, with fiber effects observed in a source- and timing-dependent manner, implicated in gradual microbiome diversification. CONCLUSIONS Introducing complementary dietary fibers during the weaning period supports gut microbiome diversification and stabilization. Even minor dietary variations shows significant associations with microbial taxa and functions from the onset of weaning, highlighting the importance of infant dietary recommendations that support the gut microbiome maturation during early life. This trial was registered at clinicaltrials.gov as registration number NCT01735123.
Collapse
Affiliation(s)
- Marianne K Lalli
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tuuli Ei Salo
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Leena Hakola
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; New Children's Hospital, Helsinki University Hospital, Helsinki, Finland; Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Suvi M Virtanen
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland; Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, MA, United States; Liggins Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
11
|
Saurabh R, Cani A, Möller M, Busch H. Large-scale global retrospective study on the interaction between ancestry and risk of comorbid autoimmune diseases in patients with pemphigus. Sci Rep 2024; 14:30151. [PMID: 39627354 PMCID: PMC11614865 DOI: 10.1038/s41598-024-78031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
The pemphigus family of skin blistering diseases represents a rare yet potentially life-threatening condition characterized by multiple known genetic loci associated with other autoimmune disorders. While several studies have empirically indicated an increased risk of developing additional autoimmune diseases in individuals with pemphigus, the scarcity of data and the rarity of pemphigus have hindered efforts to establish and generalize these associations across diverse populations. In this study, we analyzed a dataset comprising 126 million patients, including 18,000 with pemphigus, to assess the likelihood of developing any of 74 autoimmune diseases following a diagnosis of pemphigus. For a subset of 26 diseases from this list with adequate patient numbers, we conducted further case-control retrospective analyses to quantify the odds and hazard ratios of developing comorbid conditions across various ethnicities. Our findings reveal highly significant and generalizable associations between pemphigus and pemphigoid diseases, discoid lupus erythematosus, lichen planus, and undifferentiated connective tissue disease, among others.
Collapse
Affiliation(s)
- Rochi Saurabh
- Lübecker Institute for Experimental Dermatology (LIED), Lübeck, Germany
| | - Anikamila Cani
- Lübecker Institute for Experimental Dermatology (LIED), Lübeck, Germany
| | - Marius Möller
- Lübecker Institute for Experimental Dermatology (LIED), Lübeck, Germany.
| | - Hauke Busch
- Lübecker Institute for Experimental Dermatology (LIED), Lübeck, Germany
| |
Collapse
|
12
|
Chen W, Zhou Z, Qi R, Zhou J, Liang H, Huang P, Zou Z, Dong L, Li H, Du B, Li P. Ameliorative effects of Trichosanthes kirilowii Maxim. seed oil on hyperlipidemia rats associated with the regulation of gut microbiology and metabolomics. Food Res Int 2024; 197:115141. [PMID: 39593355 DOI: 10.1016/j.foodres.2024.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 11/28/2024]
Abstract
The mechanisms underlying the ameliorative effects of polyunsaturated fatty acids (PUFAs) on metabolic disorders induced by a high-fat diet (HFD) remain poorly unclear. In this study, we investigated the anti-hyperlipidemic effects of Trichosanthes kirilowii Maxim. (T. kirilowii) seed oil rich in conjugated linolenic acid in HFD-induced hyperlipidemic rats, by the gut microbiome, cecum bile acids (BAs), and serum metabolomics. The results showed that T. kirilowii seed oil improved dyslipidemia, hepatic steatosis, oxidative stress, and inflammatory responses in HFD-induced rats. Meanwhile, T. kirilowii seed oil inhibited sterol regulatory element-binding protein 1c (SREBP-1c) mediated fatty acid synthesis and upregulated cholesterol 7-alpha hydroxylase (CYP7A1) mediated hepatic cholesterol metabolism to exert hypolipidemic effects. The administration of high dose T. kirilowii seed oil (THD) improved gut microbiota dysbiosis, increased the relative abundance of beneficial bacteria Romboutsia and unidentified_Oscillospiraceae, and decreased the relative abundance of Christensenellaceae_R-7 group, Phascolarctobacterium, and Bacteroides in HFD-induced rats. T. kirilowii seed oil reduced the accumulation of cecum primary BAs in HFD-induced rats. In addition, THD reversed the HFD-induced changes in 24 serum metabolites including leucine, isoleucine, acetylcarnitine, and glucose. Metabolic pathway enrichment analysis of the differential metabolites revealed that valine, leucine and isoleucine metabolism, butanoate metabolism, citrate cycle, and glycolysis were potential metabolic pathways involved in the anti-hyperlipidemic effects of T. kirilowii seed oil. In conclusion, this study found that dietary T. kirilowii seed oil alleviated gut microbiota dysbiosis and improved metabolic disorders in hyperlipidemic rats. This provides new insights into the anti-hyperlipidemic mechanism by which other families of PUFAs are derived from different plants.
Collapse
Affiliation(s)
- Weili Chen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhangbao Zhou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ruida Qi
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jun Zhou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huiying Liang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pinxi Huang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zebin Zou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ling Dong
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Hua Li
- Anhui Youyu Kuayue Food Development Co., Ltd, Anqing, Anhui 246300, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
13
|
Taghaddos D, Saqib Z, Bai X, Bercik P, Collins SM. Post-infectious ibs following Clostridioides difficile infection; role of microbiota and implications for treatment. Dig Liver Dis 2024; 56:1805-1809. [PMID: 38653643 DOI: 10.1016/j.dld.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
Up to 25% of patients recovering from antibiotic-treated Clostridioides difficile infection (CDI) develop functional symptoms reminiscent of Post-Infectious Irritable Bowel Syndrome (PI-IBS). For patients with persistent symptoms following infection, a clinical dilemma arises as to whether to provide additional antibiotic treatment or to adopt a conservative symptom-based approach. Here, we review the literature on CDI-related PI-IBS and compare the findings with PI-IBS. We review proposed mechanisms, including the role of C. difficile toxins and the microbiota, and discuss implications for therapy. We suggest that gut dysfunction post-CDI may be initiated by toxin-induced damage to enteroglial cells and that a dysbiotic gut microbitota maintains the clinical phenotype over time, prompting consideration of microbiota-directed therapies. While Fecal Microbial Transplant (FMT) is currently reserved for recurrent CDI (rCDI), we propose that microbiota-directed therapies may have a role in primary CDI in order to avoid or mitigate futher antibiotic treatment that further disrupts the microbiota and thus prevent PI-IBS. We discuss novel microbial transfer therapies and as they emerge, we recommend clinical trials to determine whether microbial transfer therapy of the primary infection prevents both rCDI and CDI-related PI- IBS.
Collapse
Affiliation(s)
- Dana Taghaddos
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Zarwa Saqib
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Xiaopeng Bai
- Division of Gastroenterology, Kyushu University, Japan
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Stephen M Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
14
|
Eurén A, Lynch K, Lindfors K, Parikh H, Koletzko S, Liu E, Akolkar B, Hagopian W, Krischer J, Rewers M, Toppari J, Ziegler A, Agardh D, Kurppa K. Risk of celiac disease autoimmunity is modified by interactions between CD247 and environmental exposures. Sci Rep 2024; 14:25463. [PMID: 39462122 PMCID: PMC11567144 DOI: 10.1038/s41598-024-75496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Season of birth, viral infections, HLA haplogenotypes and non-HLA variants are implicated in the development of celiac disease and celiac disease autoimmunity, suggesting a combined role of genes and environmental exposures. The aim of the study was to further decipher the biological pathways conveying the season of birth effect in celiac disease autoimmunity to gain novel insights into the early pathogenesis of celiac disease. Interactions between season of birth, genetics, and early-life environmental factors on the risk of celiac autoimmunity were investigated in the multicenter TEDDY birth cohort study. Altogether 6523 genetically predisposed children were enrolled to long-term follow-up with prospective sampling and data collection at six research centers in the USA, Germany, Sweden and Finland. Celiac disease autoimmunity was defined as positive tissue transglutaminase antibodies in two consecutive serum samples. There was a significant season of birth effect on the risk of celiac autoimmunity. The effect was dependent on polymorphisms in CD247 gene encoding for CD3ζ chain of TCR-CD3 complex. In particular, children with major alleles for SNP rs864537A > G, in CD247 (AA genotype) had an excess risk of celiac autoimmunity when born March-August as compared to other months. The interaction of CD247 with season of birth on autoimmunity risk was accompanied by interactions with febrile infections between the ages of 3-6 months. Considering the important role of TCR-CD3 complex in the adaptive immune response and our findings here, CD247 variants and their possible effect of subgroups in autoimmunity development could be of interest in the design of future gene-environment studies of celiac disease. ClinicalTrials.gov Identifier: NCT00279318.
Collapse
Affiliation(s)
- Anna Eurén
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kristian Lynch
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Katri Lindfors
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hemang Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany
- Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Edwin Liu
- Digestive Health Institute, Children's Hospital, Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD, USA
| | - William Hagopian
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, CO, USA
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Centre for Population Health Research, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, 20520, Turku, Finland
| | - Anette Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany
- Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- Forschergruppe Diabetes e.V., Neuherberg -Munich, Germany
| | | | - Kalle Kurppa
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Faculty of Medicine and Health Technology, Tampere Center for Child, Adolescent, and Maternal Health Research, Tampere University and Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland.
- Seinäjoen yliopistokeskus, Seinäjoki, Finland.
| |
Collapse
|
15
|
Luppi S, Aldegheri L, Azzalini E, Pacetti E, Barucca Sebastiani G, Fabiani C, Robino A, Comar M. Unravelling the Role of Gut and Oral Microbiota in the Pediatric Population with Type 1 Diabetes Mellitus. Int J Mol Sci 2024; 25:10611. [PMID: 39408940 PMCID: PMC11477131 DOI: 10.3390/ijms251910611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Type 1 Diabetes Mellitus (T1DM) is a chronic autoimmune disease that results in the destruction of pancreatic β cells, leading to hyperglycaemia and the need for lifelong insulin therapy. Although genetic predisposition and environmental factors are considered key contributors to T1DM, the exact causes of the disease remain partially unclear. Recent evidence has focused on the relationship between the gut, the oral cavity, immune regulation, and systemic inflammation. In individuals with T1DM, changes in the gut and oral microbial composition are commonly observed, indicating that dysbiosis may contribute to immune dysregulation. Gut dysbiosis can influence the immune system through increased intestinal permeability, altered production of short chain fatty acids (SCFAs), and interactions with the mucosal immune system, potentially triggering the autoimmune response. Similarly, oral dysbiosis may contribute to the development of systemic inflammation and thus influence the progression of T1DM. A comprehensive understanding of these relationships is essential for the identification of biomarkers for early diagnosis and monitoring, as well as for the development of therapies aimed at restoring microbial balance. This review presents a synthesis of current research on the connection between T1DM and microbiome dysbiosis, with a focus on the gut and oral microbiomes in pediatric populations. It explores potential mechanisms by which microbial dysbiosis contributes to the pathogenesis of T1DM and examines the potential of microbiome-based therapies, including probiotics, prebiotics, synbiotics, and faecal microbiota transplantation (FMT). This complex relationship highlights the need for longitudinal studies to monitor microbiome changes over time, investigate causal relationships between specific microbial species and T1DM, and develop personalised medicine approaches.
Collapse
Affiliation(s)
- Stefania Luppi
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (S.L.); (L.A.); (M.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (E.A.); (E.P.)
| | - Luana Aldegheri
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (S.L.); (L.A.); (M.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (E.A.); (E.P.)
| | - Eros Azzalini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (E.A.); (E.P.)
| | - Emanuele Pacetti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (E.A.); (E.P.)
| | - Giulia Barucca Sebastiani
- Medicine of Services Department, Clinical Analysis Laboratory, Azienda Sanitaria Universitaria Giuliano Isontina, 34125 Trieste, Italy; (G.B.S.); (C.F.)
| | - Carolina Fabiani
- Medicine of Services Department, Clinical Analysis Laboratory, Azienda Sanitaria Universitaria Giuliano Isontina, 34125 Trieste, Italy; (G.B.S.); (C.F.)
| | - Antonietta Robino
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (S.L.); (L.A.); (M.C.)
| | - Manola Comar
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (S.L.); (L.A.); (M.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (E.A.); (E.P.)
| |
Collapse
|
16
|
Li Y, Xue J, Zhang Z, Wang W, Wang Y, Zhang W. Alteration of gut microbiota in Henoch-Schönlein purpura children with gastrointestinal involvement. Ir J Med Sci 2024; 193:2397-2406. [PMID: 38967706 DOI: 10.1007/s11845-024-03750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND The compositional and structural changes of gut microbiota were closely related to the status of Henoch-Schönlein purpura (HSP). AIMS To investigate if clinical indicators and gut microbiota differ between HSP patients with or without gastrointestinal (GI) involvement and to explore the alterations of fecal microbiota in HSP children with and without GI symptoms. METHODS A total of 22 children with HSP were enrolled in the study. Fecal microbiota composition was analyzed by 16S rRNA sequencing. Clinical indicators, fecal microbial diversity, and compositions were compared between the two groups. RESULTS Respectively, 9 patients with GI involvement (HSP-A) and 13 patients without GI involvement (HSP-N) were enrolled. Prealbumin (PA) and the ratio of immunoglobulin A (IgA) / complement (C)3 were significantly decreased in the HSP-A group and an elevated D-dimer was found in the HSP-N group. The relative abundances of Blautia, Lachnospira, and Haemophilus were significantly higher in the HSP-A group compared to HSP-N. Lower levels of unidentified Prevotellaceae, Parabacteroides, and Romboutsia were found in HSP-A patients. The linear discriminant analysis effect size (LEfSe) showed that the biomarkers for the HSP-A group included Blautia, Anaerostipes, Veillonella, Lachnospira, and Haemophilus. For the HSP-N group, unidentified Prevotellaceae, Intestinibacter, Romboutsia, and Akkermansia were the prominent biomarkers at the genus level. Additionally, the ratio of IgA/C3 exhibited a negative correlation with the genus Blautia. Meanwhile, PA showed negatively correlation with Veillonella. CONCLUSIONS These results provide a broader understanding for future microbial-based therapies to decrease the development of GI involvement and improve the clinical outcome of HSP in children.
Collapse
Affiliation(s)
- Ye Li
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Avenue, Jinan, 250012, Shandong, China
| | - Jiang Xue
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Avenue, Jinan, 250012, Shandong, China
| | - Zhaohua Zhang
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Avenue, Jinan, 250012, Shandong, China
| | - Wei Wang
- Department of Respiratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yulong Wang
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Avenue, Jinan, 250012, Shandong, China.
| | - Weiquan Zhang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
17
|
Berryman MA, Ilonen J, Triplett EW, Ludvigsson J. Functional metagenomic analysis reveals potential inflammatory triggers associated with genetic risk for autoimmune disease. J Autoimmun 2024; 148:103290. [PMID: 39033688 DOI: 10.1016/j.jaut.2024.103290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/28/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
To assess functional differences between the microbiomes of individuals with autoimmune risk-associated human leukocyte antigen (HLA) genetics and autoimmune protection-associated HLA, we performed a metagenomic analysis of stool samples from 72 infants in the All Babies in Southeast Sweden general-population cohort and assessed haplotype-peptide binding affinities. Infants with risk-associated HLA DR3-DQ2.5 and DR4-DQ8 had a higher abundance of known pathogen-associated molecular patterns and virulence related genes than infants with protection-associated HLA DR15-DQ6.2. However, there was limited overlap in the type of inflammatory trigger between risk groups. Supported by a high Firmicutes/Bacteroides ratio and differentially abundant flagellated species, genes related to the synthesis of flagella were prominent in those with HLA DR3-DQ2.5. However, this haplotype had a significantly lower likelihood of binding affinity to flagellin peptides. O-antigen biosynthesis genes were significantly correlated with the risk genotypes and absent from protective genotype association, supported by the differential abundance of gram-negative bacteria seen in the risk-associated groups. Genes related to vitamin B biosynthesis stood out in higher abundance in infants with HLA DR3-DQ2.5/DR4-DQ8 heterozygosity compared to those with autoimmune-protective genetics. Prevotella species and genus were significantly abundant in all infant groups with high risk for autoimmune disease. The potential inflammatory triggers associated with genetic risk for autoimmunity have significant implications. These results suggest that certain HLA haplotypes may be creating the opportunity for dysbiosis and subsequent inflammation early in life by clearing beneficial microbes or not clearing proinflammatory microbes. This HLA gatekeeping may prevent genetically at-risk individuals from benefiting from probiotic therapies by restricting the colonization of those beneficial bacteria.
Collapse
Affiliation(s)
- Meghan A Berryman
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eric W Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria's Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
18
|
Vatanen T, de Beaufort C, Marcovecchio ML, Overbergh L, Brunak S, Peakman M, Mathieu C, Knip M. Gut microbiome shifts in people with type 1 diabetes are associated with glycaemic control: an INNODIA study. Diabetologia 2024; 67:1930-1942. [PMID: 38832971 PMCID: PMC11410864 DOI: 10.1007/s00125-024-06192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/23/2024] [Indexed: 06/06/2024]
Abstract
AIMS/HYPOTHESIS The gut microbiome is implicated in the disease process leading to clinical type 1 diabetes, but less is known about potential changes in the gut microbiome after the diagnosis of type 1 diabetes and implications in glucose homeostasis. We aimed to analyse potential associations between the gut microbiome composition and clinical and laboratory data during a 2 year follow-up of people with newly diagnosed type 1 diabetes, recruited to the Innovative approaches to understanding and arresting type 1 diabetes (INNODIA) study. In addition, we analysed the microbiome composition in initially unaffected family members, who progressed to clinical type 1 diabetes during or after their follow-up for 4 years. METHODS We characterised the gut microbiome composition of 98 individuals with newly diagnosed type 1 diabetes (ND cohort) and 194 autoantibody-positive unaffected family members (UFM cohort), representing a subgroup of the INNODIA Natural History Study, using metagenomic sequencing. Participants from the ND cohort attended study visits within 6 weeks from the diagnosis and 3, 6, 12 and 24 months later for stool sample collection and laboratory tests (HbA1c, C-peptide, diabetes-associated autoantibodies). Participants from the UFM cohort were assessed at baseline and 6, 12, 18, 24 and 36 months later. RESULTS We observed a longitudinal increase in 21 bacterial species in the ND cohort but not in the UFM cohort. The relative abundance of Faecalibacterium prausnitzii was inversely associated with the HbA1c levels at diagnosis (p=0.0019). The rate of the subsequent disease progression in the ND cohort, as assessed by change in HbA1c, C-peptide levels and insulin dose, was associated with the abundance of several bacterial species. Individuals with rapid decrease in C-peptide levels in the ND cohort had the lowest gut microbiome diversity. Nineteen individuals who were diagnosed with type 1 diabetes in the UFM cohort had increased abundance of Sutterella sp. KLE1602 compared with the undiagnosed UFM individuals (p=1.2 × 10-4). CONCLUSIONS/INTERPRETATION Our data revealed associations between the gut microbiome composition and the disease progression in individuals with recent-onset type 1 diabetes. Future mechanistic studies as well as animal studies and human trials are needed to further validate the significance and causality of these associations.
Collapse
Affiliation(s)
- Tommi Vatanen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| | - Carine de Beaufort
- Paediatric Endocrinology and Diabetology (DECCP), Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Lut Overbergh
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Soren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Chantal Mathieu
- Department of Chronic Diseases and Metabolism, Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- New Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
19
|
Garmendia JV, De Sanctis CV, Hajdúch M, De Sanctis JB. Microbiota and Recurrent Pregnancy Loss (RPL); More than a Simple Connection. Microorganisms 2024; 12:1641. [PMID: 39203483 PMCID: PMC11357228 DOI: 10.3390/microorganisms12081641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Recurrent Pregnancy Loss (RPL) affects 1-2% of women, and its triggering factors are unclear. Several studies have shown that the vaginal, endometrial, and gut microbiota may play a role in RPL. A decrease in the quantity of Lactobacillus crispatus in local microbiota has been associated with an increase in local (vaginal and endometrial) inflammatory response and immune cell activation that leads to pregnancy loss. The inflammatory response may be triggered by gram-negative bacteria, lipopolysaccharides (LPS), viral infections, mycosis, or atypia (tumor growth). Bacterial structures and metabolites produced by microbiota could be involved in immune cell modulation and may be responsible for immune cell activation and molecular mimicry. Gut microbiota metabolic products may increase the amount of circulating pro-inflammatory lymphocytes, which, in turn, will migrate into vaginal or endometrial tissues. Local pro-inflammatory Th1 and Th17 subpopulations and a decrease in local Treg and tolerogenic NK cells are accountable for the increase in pregnancy loss. Local microbiota may modulate the local inflammatory response, increasing pregnancy success. Analyzing local and gut microbiota may be necessary to characterize some RPL patients. Although oral supplementation of probiotics has not been shown to modify vaginal or endometrial microbiota, the metabolites produced by it may benefit patients. Lactobacillus crispatus transplantation into the vagina may enhance the required immune tolerogenic response to achieve a normal pregnancy. The effect of hormone stimulation and progesterone to maintain early pregnancy on microbiota has not been adequately studied, and more research is needed in this area. Well-designed clinical trials are required to ascertain the benefit of microbiota modulation in RPL.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
- Czech Advanced Technology and Research Institute, Palacky University, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital Olomouc (FNOL), Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
- Czech Advanced Technology and Research Institute, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
20
|
Lee J, Reiman D, Singh S, Chang A, Morel L, Chervonsky AV. Microbial influences on severity and sex bias of systemic autoimmunity. Immunol Rev 2024; 325:64-76. [PMID: 38716867 PMCID: PMC11338725 DOI: 10.1111/imr.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Commensal microbes have the capacity to affect development and severity of autoimmune diseases. Germ-free (GF) animals have proven to be a fine tool to obtain definitive answers to the queries about the microbial role in these diseases. Moreover, GF and gnotobiotic animals can be used to dissect the complex symptoms and determine which are regulated (enhanced or attenuated) by microbes. These include disease manifestations that are sex biased. Here, we review comparative analyses conducted between GF and Specific-Pathogen Free (SPF) mouse models of autoimmunity. We present data from the B6;NZM-Sle1NZM2410/AegSle2NZM2410/AegSle3NZM2410/Aeg-/LmoJ (B6.NZM) mouse model of systemic lupus erythematosus (SLE) characterized by multiple measurable features. We compared the severity and sex bias of SPF, GF, and ex-GF mice and found variability in the severity and sex bias of some manifestations. Colonization of GF mice with the microbiotas taken from B6.NZM mice housed in two independent institutions variably affected severity and sexual dimorphism of different parameters. Thus, microbes regulate both the severity and sexual dimorphism of select SLE traits. The sensitivity of particular trait to microbial influence can be used to further dissect the mechanisms driving the disease. Our results demonstrate the complexity of the problem and open avenues for further investigations.
Collapse
Affiliation(s)
- Jean Lee
- Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Derek Reiman
- Toyota Technological Institute at Chicago, Chicago, Illinois, USA
| | - Samara Singh
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Anthony Chang
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Laurence Morel
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Alexander V Chervonsky
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, The University of Chicago, Chicago, Illinois, USA
- Committee on Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Cui X, Wu Z, Zhou Y, Deng L, Chen Y, Huang H, Sun X, Li Y, Wang H, Zhang L, He J. A bibliometric study of global trends in T1DM and intestinal flora research. Front Microbiol 2024; 15:1403514. [PMID: 39027096 PMCID: PMC11254799 DOI: 10.3389/fmicb.2024.1403514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease that seriously jeopardizes human physical and mental health and reduces quality of life. Intestinal flora is one of the critical areas of exploration in T1DM research. Objective This study aims to explore the research hotspot and development trend of T1DM and intestinal flora to provide research direction and ideas for researchers. Methods We used the Web of Science (WOS) Core Collection and searched up to 18 November 2023, for articles on studies of the correlation between T1DM and intestinal flora. CiteSpace, VOSviewers and R package "bibliometrix" were used to conduct this bibliometric analysis. Results Eventually, 534 documents met the requirements to be included, and as of 18 November 2023, there was an upward trend in the number of publications in the field, with a significant increase in the number of articles published after 2020. In summary, F Susan Wong (UK) was the author with the most publications (21), the USA was the country with the most publications (198), and the State University System of Florida (the United States) was the institution with the most publications (32). The keywords that appeared more frequently were T cells, fecal transplants, and short-chain fatty acids. The results of keywords with the most robust citation bursts suggest that Faecalibacterium prausnitzii and butyrate may become a focus of future research. Conclusion In the future, intestinal flora will remain a research focus in T1DM. Future research can start from Faecalibacterium prausnitzii and combine T cells, fecal bacteria transplantation, and short-chain fatty acids to explore the mechanism by which intestinal flora affects blood glucose in patients with T1DM, which may provide new ideas for the prevention and treatment of T1DM.
Collapse
Affiliation(s)
- Xinxin Cui
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Zhen Wu
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yangbo Zhou
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Longji Deng
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yu Chen
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hanqiao Huang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiangbin Sun
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yu Li
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Haixia Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Li Zhang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jia He
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
22
|
Mu M, Yang F, Han B, Tian G, Zhang K. Vermicompost: In situ retardant of antibiotic resistome accumulation in cropland soils. J Environ Sci (China) 2024; 141:277-286. [PMID: 38408828 DOI: 10.1016/j.jes.2023.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 02/28/2024]
Abstract
The dissemination of antibiotic resistance genes (ARGs) in soil has become a global environmental issue. Vermicomposting is gaining prominence in agricultural practices as a soil amendment to improve soil quality. However, its impact on soil ARGs remains unclear when it occurs in farmland. We comprehensively explored the evolution and fate of ARGs and their hosts in the field soil profiles under vermicompost application for more than 3 years. Vermicompost application increased several ARG loads in soil environment but decreased the high-risk bla-ARGs (blaampC, blaNDM, and blaGES-1) by log(0.04 - 0.43). ARGs in soil amended with vermicompost primarily occurred in topsoil (approximately 1.04-fold of unfertilized soil), but it is worth noting that their levels in the 40-60 cm soil layer were the same or even less than in the unfertilized soil. The microbial community structure changed in soil profiles after vermicompost application. Vermicompost application altered the microbial community structure in soil profiles, showing that the dominant bacteria (i.e., Proteobacteria, Actinobacteriota, Firmicutes) were decreased 2.62%-5.48% with the increase of soil depth. A network analysis further revealed that most of ARG dominant host bacteria did not migrate from surface soil to deep soil. In particular, those host bacteria harboring high-risk bla-ARGs were primarily concentrated in the surface soil. This study highlights a lower risk of the propagation of ARGs caused by vermicompost application and provides a novel approach to reduce and relieve the dissemination of ARGs derived from animals in agricultural production.
Collapse
Affiliation(s)
- Meirui Mu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Guisheng Tian
- Wuxue City Agriculture and Rural Bureau, Wuhan 435400, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R. China, Beijing 10083, China.
| |
Collapse
|
23
|
Ludgate ME, Masetti G, Soares P. The relationship between the gut microbiota and thyroid disorders. Nat Rev Endocrinol 2024:10.1038/s41574-024-01003-w. [PMID: 38906998 DOI: 10.1038/s41574-024-01003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/23/2024]
Abstract
Disorders of the thyroid gland are common, more prevalent in women than in men, and range from inflammatory to neoplastic lesions. Autoimmune thyroid diseases (AITD) affect 2-5% of the population, while thyroid cancer is the most frequent endocrine malignancy. Treatment for AITD is still restricted to management rather than prevention or cure. Progress has been made in identifying genetic variants that predispose to AITD and thyroid cancer, but the increasing prevalence of all thyroid disorders indicates that factors other than genes are involved. The gut microbiota, which begins to develop before birth, is highly sensitive to diet and the environment, providing a potential mechanism for non-communicable diseases to become communicable. Its functions extend beyond maintenance of gut integrity: the gut microbiota regulates the immune system, contributes to thyroid hormone metabolism and can generate or catabolize carcinogens, all of which are relevant to AITD and thyroid cancer. Observational and interventional studies in animal models support a role for the gut microbiota in AITD, which has been confirmed in some reports from human cohorts, although considerable geographic variation is apparent. Reports of a role for the microbiota in thyroid cancer are more limited, but evidence supports a relationship between gut dysbiosis and thyroid cancer.
Collapse
Affiliation(s)
| | | | - Paula Soares
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Porto, Portugal
| |
Collapse
|
24
|
Feng Z, Liao M, Guo X, Li L, Zhang L. Effects of immune cells in mediating the relationship between gut microbiota and myelodysplastic syndrome: a bidirectional two-sample, two-step Mendelian randomization study. Discov Oncol 2024; 15:199. [PMID: 38819469 PMCID: PMC11143100 DOI: 10.1007/s12672-024-01061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The definitive establishment of a causal relationship between gut microbiota and myelodysplastic syndrome (MDS) has not been achieved. Furthermore, the involvement of immune cells in mediating the connection between gut microbiota and MDS is presently unclear. METHODS To elucidate the bidirectional correlation between gut microbiota and MDS, as well as to investigate the mediating role of immune cells, a bidirectional two-sample, two-step Mendelian randomization (MR) study was conducted. Summary statistics were obtained from genome-wide association studies (GWAS), including MDS (456,348 individuals), gut microbiota (18,340 individuals), and 731 immune cells signatures (3757 individuals). RESULTS Genetically predicted eight gut microbiota traits were significantly associated with MDS risk, but not vice versa. Through biological annotation of host-microbiome shared genes, we found that immune regulation may mediate the impact of gut microbiota on MDS. Subsequently, twenty-three immunophenotypes that exhibited significant associations with MDS risk and five of these immunophenotypes were under the causal influence of gut microbiota. Importantly, the causal effects of gut microbiota on MDS were significantly mediated by five immunophenotypes, including CD4 +T cell %leukocyte, CD127 on CD45RA - CD4 not regulatory T cell, CD45 on CD33 + HLA DR + WHR, CD33 on basophil, and Monocyte AC. CONCLUSIONS Gut microbiota was causally associated with MDS risk, and five specific immunophenotypes served as potential causal mediators of the effect of gut microbiota on MDS. Understanding the causality among gut microbiota, immune cells and MDS is critical in identifying potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Zuxi Feng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Minjing Liao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xuege Guo
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
25
|
Nelson BN, Friedman JE. Developmental Programming of the Fetal Immune System by Maternal Western-Style Diet: Mechanisms and Implications for Disease Pathways in the Offspring. Int J Mol Sci 2024; 25:5951. [PMID: 38892139 PMCID: PMC11172957 DOI: 10.3390/ijms25115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Maternal obesity and over/undernutrition can have a long-lasting impact on offspring health during critical periods in the first 1000 days of life. Children born to mothers with obesity have reduced immune responses to stimuli which increase susceptibility to infections. Recently, maternal western-style diets (WSDs), high in fat and simple sugars, have been associated with skewing neonatal immune cell development, and recent evidence suggests that dysregulation of innate immunity in early life has long-term consequences on metabolic diseases and behavioral disorders in later life. Several factors contribute to abnormal innate immune tolerance or trained immunity, including changes in gut microbiota, metabolites, and epigenetic modifications. Critical knowledge gaps remain regarding the mechanisms whereby these factors impact fetal and postnatal immune cell development, especially in precursor stem cells in bone marrow and fetal liver. Components of the maternal microbiota that are transferred from mothers consuming a WSD to their offspring are understudied and identifying cause and effect on neonatal innate and adaptive immune development needs to be refined. Tools including single-cell RNA-sequencing, epigenetic analysis, and spatial location of specific immune cells in liver and bone marrow are critical for understanding immune system programming. Considering the vital role immune function plays in offspring health, it will be important to understand how maternal diets can control developmental programming of innate and adaptive immunity.
Collapse
Affiliation(s)
- Benjamin N. Nelson
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Physiology and Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
26
|
Hou J, Zhang L, Xu W, Liu Z, Yu J, Yu R, Chen L. Glycometabolic disorder induced by chronic exposure to low-concentration imidacloprid in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173421. [PMID: 38788955 DOI: 10.1016/j.scitotenv.2024.173421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
The health risks induced by chronic exposure to low concentrations of imidacloprid (IMI) to zebrafish were investigated in this study. The results indicated that the growth of zebrafish was inhibited after being exposed to 10, 100, and 500 μg/L of IMI for 90 days. Moreover, the blood glucose levels in the IMI-exposed groups were significantly higher compared to the control group. Investigation into the development of zebrafish larvae revealed that IMI exposure hindered the development of the liver and pancreatic islets, organs crucial for glucose metabolism. In addition, the IMI-exposed groups exhibited reduced liver glycogen and plasma insulin levels, along with changes in the activity of enzymes and the transcription levels of genes associated with liver glucose metabolism. These findings suggest that IMI induces glycometabolic disorders in zebrafish. The analysis of intestinal flora revealed that several key bacteria associated with an elevated risk of diabetes were significantly altered in IMI-exposed fish. Specifically, a remarkable decrease was found in the abundance of the genera Aeromonas and Shewanella, which have been found closely related to the development of pancreatic islets. This implies that the alteration of key bacteria in the fish gut by IMI, which in turn affects the development of organs such as the pancreatic islets, may be the initial trigger for abnormalities in glucose metabolism. Our results revealed that chronic exposure to low concentrations of IMI led to glycometabolic disorder in fish. Therefore, considering the pervasive existence of IMI residues in the environment, the health hazards posed by low-concentration IMI to fish cannot be overlooked.
Collapse
Affiliation(s)
- Jiayin Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Lulu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Ningbo Univ, Coll Food & Pharmaceut Sci, Ningbo 315832, Zhejiang, China
| | - Wanghui Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Zhejiang Univ Technol, Catalyt Hydrogenat Res Ctr, Zhejiang Green Pesticide Collaborat Innovat Ctr, Zhejiang Key Lab Green Pesticides & Cleaner Prod, Hangzhou 310014, Zhejiang, China
| | - Zhiyu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Ningbo Univ, Coll Food & Pharmaceut Sci, Ningbo 315832, Zhejiang, China
| | - Jianzhong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ruixian Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
27
|
Ahrens AP, Hyötyläinen T, Petrone JR, Igelström K, George CD, Garrett TJ, Orešič M, Triplett EW, Ludvigsson J. Infant microbes and metabolites point to childhood neurodevelopmental disorders. Cell 2024; 187:1853-1873.e15. [PMID: 38574728 DOI: 10.1016/j.cell.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/22/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.
Collapse
Affiliation(s)
- Angelica P Ahrens
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, Örebro 702 81, Sweden
| | - Joseph R Petrone
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Kajsa Igelström
- Department of Biomedical and Clinical Sciences, Division of Neurobiology, Linköping University, Linköping 58185, Sweden
| | - Christian D George
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 702 81, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Eric W Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| |
Collapse
|
28
|
Wang T, Sternes PR, Guo XK, Zhao H, Xu C, Xu H. Autoimmune diseases exhibit shared alterations in the gut microbiota. Rheumatology (Oxford) 2024; 63:856-865. [PMID: 37467058 PMCID: PMC10907812 DOI: 10.1093/rheumatology/kead364] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/19/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
OBJECTIVE Accumulating evidence from microbial studies have highlighted the modulatory roles of intestinal microbes in numerous human diseases, however, the shared microbial signatures across different diseases remain relatively unclear. METHODS To consolidate existing knowledge across multiple studies, we performed meta-analyses of 17 disease types, covering 34 case-control datasets of 16S rRNA sequencing data, to identify shared alterations among different diseases. Furthermore, the impact of a microbial species, Lactobacillus salivarius, was established in a dextran sodium sulphate-induced colitis model and a collagen type II-induced arthritis mouse model. RESULTS Microbial alterations among autoimmune diseases were substantially more consistent compared with that of other diseases (cancer, metabolic disease and nervous system disease), with microbial signatures exhibiting notable discriminative power for disease prediction. Autoimmune diseases were characterized by the enrichment of Enterococcus, Veillonella, Streptococcus and Lactobacillus and the depletion of Ruminococcus, Gemmiger, Oscillibacter, Faecalibacterium, Lachnospiracea incertae sedis, Anaerostipes, Coprococcus, Alistipes, Roseburia, Bilophila, Barnesiella, Dorea, Ruminococcus2, Butyricicoccus, Phascolarctobacterium, Parabacteroides and Odoribacter, among others. Functional investigation of L. salivarius, whose genus was commonly enriched in numerous autoimmune diseases, demonstrated protective roles in two separate inflammatory mouse models. CONCLUSION Our study highlights a strong link between autoimmune diseases and the gut microbiota, with notably consistent microbial alterations compared with that of other diseases, indicating that therapeutic strategies that target the gut microbiome may be transferable across different autoimmune diseases. Functional validation of L. salivarius highlighted that bacterial genera associated with disease may not always be antagonistic, but may represent protective or adaptive responses to disease.
Collapse
Affiliation(s)
- Tianjiao Wang
- School of Medicine, Tsinghua University, Beijing, China
| | - Peter R Sternes
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Xue-Kun Guo
- School of Medicine, Tsinghua University, Beijing, China
| | - Huiying Zhao
- Sun Yat-sen Memorial Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Congmin Xu
- Biomap (Beijing) Intelligence Technology Ltd., Beijing, China
| | - Huji Xu
- School of Medicine, Tsinghua University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
29
|
Zhang Q, Zeng R, Tang J, Jiang X, Zhu C. The "crosstalk" between microbiota and metabolomic profile in high-fat-diet-induced obese mice supplemented with Bletilla striata polysaccharides and composite polysaccharides. Int J Biol Macromol 2024; 262:130018. [PMID: 38331057 DOI: 10.1016/j.ijbiomac.2024.130018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
The potential prebiotic feature of Bletilla striata polysaccharides (BSP) has been widely accepted, while the beneficial effect of BSP on high-fat-diet-induced obesity is unclear. Moreover, the "crosstalk" between microbiota and metabolomic profile in high-fat-diet-induced obese mice supplemented with BSP still need to be further explored. The present study attempted to illustrate the effect of BSP and/or composite polysaccharides on high-fat-diet-induced obese mice by combining multi-matrix (feces, urine, liver) metabolomics and gut microbiome. The results showed that BSP and/or composite polysaccharides were able to reduce the abnormal weight gain induced by high-fat diet. A total of 175 molecules were characterized by proton nuclear magnetic resonance (1H NMR) in feces, urine and liver, suggesting that multi-matrix metabolomics could provide a comprehensive view of metabolic regulatory mechanism of BSP in high-fat-diet-induced obese mice. Several pathways were altered in response to BSP supplementation, mainly pertaining to amino acid, purine, pyrimidine, ascorbate and aldarate metabolisms. In addition, BSP ameliorated high-fat-diet-induced imbalanced gut microbiome, by lowering the ratio of Firmicutes/Bacteroidetes. Significant correlations were illustrated between particular microbiota's features and specific metabolites. Overall, the anti-obesity effect of BSP could be attributed to the amelioration of the disorders of gut microbiota and to the regulation of the "gut-liver axis" metabolism.
Collapse
Affiliation(s)
- Qian Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiaole Jiang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
30
|
Forero-Rodríguez J, Zimmermann J, Taubenheim J, Arias-Rodríguez N, Caicedo-Narvaez JD, Best L, Mendieta CV, López-Castiblanco J, Gómez-Muñoz LA, Gonzalez-Santos J, Arboleda H, Fernandez W, Kaleta C, Pinzón A. Changes in Bacterial Gut Composition in Parkinson's Disease and Their Metabolic Contribution to Disease Development: A Gut Community Reconstruction Approach. Microorganisms 2024; 12:325. [PMID: 38399728 PMCID: PMC10893096 DOI: 10.3390/microorganisms12020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/25/2024] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease with the major symptoms comprising loss of movement coordination (motor dysfunction) and non-motor dysfunction, including gastrointestinal symptoms. Alterations in the gut microbiota composition have been reported in PD patients vs. controls. However, it is still unclear how these compositional changes contribute to disease etiology and progression. Furthermore, most of the available studies have focused on European, Asian, and North American cohorts, but the microbiomes of PD patients in Latin America have not been characterized. To address this problem, we obtained fecal samples from Colombian participants (n = 25 controls, n = 25 PD idiopathic cases) to characterize the taxonomical community changes during disease via 16S rRNA gene sequencing. An analysis of differential composition, diversity, and personalized computational modeling was carried out, given the fecal bacterial composition and diet of each participant. We found three metabolites that differed in dietary habits between PD patients and controls: carbohydrates, trans fatty acids, and potassium. We identified six genera that changed significantly in their relative abundance between PD patients and controls, belonging to the families Lachnospiraceae, Lactobacillaceae, Verrucomicrobioaceae, Peptostreptococcaceae, and Streptococcaceae. Furthermore, personalized metabolic modeling of the gut microbiome revealed changes in the predicted production of seven metabolites (Indole, tryptophan, fructose, phenylacetic acid, myristic acid, 3-Methyl-2-oxovaleric acid, and N-Acetylneuraminic acid). These metabolites are associated with the metabolism of aromatic amino acids and their consumption in the diet. Therefore, this research suggests that each individual's diet and intestinal composition could affect host metabolism. Furthermore, these findings open the door to the study of microbiome-host interactions and allow us to contribute to personalized medicine.
Collapse
Affiliation(s)
- Johanna Forero-Rodríguez
- Bioinformatics and Systems Biology Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.F.-R.); (J.D.C.-N.); (J.L.-C.)
- Medical Systems Biology Research Group, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany (J.T.)
| | - Johannes Zimmermann
- Medical Systems Biology Research Group, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany (J.T.)
| | - Jan Taubenheim
- Medical Systems Biology Research Group, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany (J.T.)
| | - Natalia Arias-Rodríguez
- Bioinformatics and Systems Biology Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.F.-R.); (J.D.C.-N.); (J.L.-C.)
| | - Juan David Caicedo-Narvaez
- Bioinformatics and Systems Biology Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.F.-R.); (J.D.C.-N.); (J.L.-C.)
- Neurosciences Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Lena Best
- Medical Systems Biology Research Group, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany (J.T.)
| | - Cindy V. Mendieta
- PhD Program in Clinical Epidemiology, Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Julieth López-Castiblanco
- Bioinformatics and Systems Biology Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.F.-R.); (J.D.C.-N.); (J.L.-C.)
| | - Laura Alejandra Gómez-Muñoz
- Neurosciences Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Cell Death Research Group, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Janneth Gonzalez-Santos
- Structural Biochemistry and Bioinformatics Laboratory, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Humberto Arboleda
- Cell Death Research Group, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - William Fernandez
- Neurosciences Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Cell Death Research Group, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Christoph Kaleta
- Medical Systems Biology Research Group, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany (J.T.)
| | - Andrés Pinzón
- Bioinformatics and Systems Biology Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.F.-R.); (J.D.C.-N.); (J.L.-C.)
| |
Collapse
|
31
|
Liu Z, Liu M, Wang H, Qin P, Di Y, Jiang S, Li Y, Huang L, Jiao N, Yang W. Glutamine attenuates bisphenol A-induced intestinal inflammation by regulating gut microbiota and TLR4-p38/MAPK-NF-κB pathway in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115836. [PMID: 38154151 DOI: 10.1016/j.ecoenv.2023.115836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Bisphenol A (BPA), as a kind of widely exerted environmental hazardous material, brings toxicity to both humans and animals. This study aimed to investigate the role of glutamine (Gln) in intestinal inflammation and microbiota in BPA-challenged piglets. Thirty-two piglets were randomly divided into four groups according to 2 factors including BPA (0 vs. 0.1%) and Gln (0 vs. 1%) supplemented in basal diet for a 42-day feeding experiment. The results showed BPA exposure impaired piglet growth, induced intestinal inflammation and disturbed microbiota balance. However, dietary Gln supplementation improved the growth performance, while decreasing serum pro-inflammatory cytokine levels in BPA-challenged piglets. In addition, Gln attenuated intestinal mucosal damage and inflammation by normalizing the activation of toll-like receptor 4 (TLR4)-p38/MAPK-nuclear factor-kappa B (NF-κB) pathway caused by BPA. Moreover, dietary Gln supplementation decreased the abundance of Actinobacteriota and Proteobacteria, and attenuated the decreased abundance of Roseburia, Prevotella, Romboutsia and Phascolarctobacterium and the content of short-chain fatty acids in cecum contents caused by BPA exposure. Moreover, there exerted potential relevance between the gut microbiota and pro-inflammatory cytokines and cecal short-chain fatty acids. In conclusion, Gln is critical nutrition for attenuating BPA-induced intestinal inflammation, which is partially mediated by regulating microbial balance and suppressing the TLR4/p38 MAPK/NF-κB signaling.
Collapse
Affiliation(s)
- Zihao Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Min Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Huiru Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Pengxiang Qin
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yanjiao Di
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Libo Huang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Ning Jiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China.
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
32
|
Song YS, Ha DU, Park K, Kim BG. Dietary full-fat or defatted black soldier fly larvae can replace protein sources with no detrimental effect on growth performance or intestinal health of nursery pigs. J Anim Sci 2024; 102:skae333. [PMID: 39470409 PMCID: PMC11586662 DOI: 10.1093/jas/skae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/26/2024] [Indexed: 10/30/2024] Open
Abstract
This work aimed to determine the effects of dietary full-fat or defatted black soldier fly larvae (BSFL) to replace protein sources on growth performance, blood parameters, intestinal morphology, and intestinal microbiota in nursery pigs and to investigate the effects of dietary defatted BSFL at up to 30% at the expense of protein sources on growth performance in nursery pigs. In Exp. 1, a total of 36 barrows with an initial body weight of 7.0 kg (SD = 0.8) were allotted to three dietary treatments in a randomized complete block design with four replicate pens per treatment and three barrows per pen. A corn-soybean meal (SBM)-whey-based control diet was prepared with soy protein concentrate and fish meal as additional protein supplements. Two additional diets were prepared to include 20% full-fat BSFL or 20% defatted BSFL to replace soy protein concentrate and fish meal to maintain the same energy and nutrient concentrations in all diets. In the 28-d feeding trial, pigs fed the diet containing defatted BSFL tended to consume more feeds (P < 0.10) than other groups during days 14 to 28 and the overall period. On day 28, the serum blood urea nitrogen in pigs fed the control diet was less (P < 0.05) than that fed the full-fat or defatted BSFL, but fecal score and jejunal morphology did not differ among the treatment groups. Relative abundance of Mycoplasma in the ileal digesta was less (P < 0.05) in the pigs fed the diet containing full-fat or defatted BSFL compared with the control group. In Exp. 2, a total of 192 pigs with an initial body weight of 7.8 (SD = 1.2 kg) were randomly allotted to one of four dietary treatments in a randomized complete block design with six replicate pens per treatment and four barrows and four gilts per pen. A control diet was mainly based on corn, SBM, fermented SBM, fish meal, and spray-dried plasma protein (SDPP). Three additional diets were prepared to contain 10%, 20%, and 30% defatted BSFL to replace SBM, fermented SBM, fish meal, and SDPP to maintain for the same energy and nutrient concentrations. Average daily gain, average daily feed intake, gain:feed, and fecal score were not affected by increasing dietary defatted BSFL. Overall, dietary BSFL did not compromise growth performance or intestinal health in nursery pigs. BSFL can be used in nursery pig diets to replace other protein sources without negative effects.
Collapse
Affiliation(s)
- Yoon Soo Song
- Department of Animal Science, Konkuk University, Seoul, Republic of Korea
| | - Dong Uk Ha
- Department of Animal Science, Konkuk University, Seoul, Republic of Korea
| | - Kwanho Park
- Industrial Insect and Sericulture Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Beob Gyun Kim
- Department of Animal Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Song B, Sun P, Kong L, Xiao C, Pan X, Song Z. The improvement of immunity and activation of TLR2/NF-κB signaling pathway by Romboutsia ilealis in broilers. J Anim Sci 2024; 102:skae286. [PMID: 39305205 PMCID: PMC11544627 DOI: 10.1093/jas/skae286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/19/2024] [Indexed: 11/09/2024] Open
Abstract
This study was conducted to investigate the effects of Romboutsia ilealis on the immune function of broilers and the underlying mechanisms. A total of 48 one-day-old Arbor Acres broilers were allocated to 4 groups as follows: broilers treated daily with 1 mL live R. ilealis in general anaerobic medium broth media (0, 1 × 104, 1 × 106, and 1 × 108 CFU/mL) from days 1 to 7. Samples were collected on days 8 and 14. The results showed that R. ilealis had no negative effect on the body weight of broilers (P > 0.05). R. ilealis significantly increased the levels of lysozyme, IFN-γ, IFN-γ/IL-4, and IgG in the serum (P < 0.05). R. ilealis significantly increased the levels of IL-4, IFN-γ, sIgA, lysozyme, and iNOS in the ileal mucosa (P < 0.05). R. ilealis significantly increased the mRNA levels of TLR2, TLR4, NF-κB, IL-1β, TNF-α, IFN-γ, IgA, pIgR, iNOS, and MHC-II in the ileum (P < 0.05). R. ilealis significantly increased the relative abundance of Enterococcus and Paracoccus in the jejunum and ileum, ileal Candidatus Arthromitus, and cecal Romboutsia and Intestinimonas (P < 0.05). Correlation analysis showed that Enterococcus, Paracoccus, Romboutsia, and Intestinimonas were significantly positively correlated with humoral immune function (P < 0.05). In conclusion, R. ilealis boosted the immune system, activated the intestinal TLR2/NF-κB signaling pathway, and improved the gut microbiota in broilers.
Collapse
Affiliation(s)
- Bochen Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Peng Sun
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Linglian Kong
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining, Shandong, China
| | - Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
34
|
Vänni P, Tejesvi MV, Paalanne N, Aagaard K, Ackermann G, Camargo CA, Eggesbø M, Hasegawa K, Hoen AG, Karagas MR, Kolho KL, Laursen MF, Ludvigsson J, Madan J, Ownby D, Stanton C, Stokholm J, Tapiainen T. Machine-learning analysis of cross-study samples according to the gut microbiome in 12 infant cohorts. mSystems 2023; 8:e0036423. [PMID: 37874156 PMCID: PMC10734493 DOI: 10.1128/msystems.00364-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/13/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE There are challenges in merging microbiome data from diverse research groups due to the intricate and multifaceted nature of such data. To address this, we utilized a combination of machine-learning (ML) models to analyze 16S sequencing data from a substantial set of gut microbiome samples, sourced from 12 distinct infant cohorts that were gathered prospectively. Our initial focus was on the mode of delivery due to its prior association with changes in infant gut microbiomes. Through ML analysis, we demonstrated the effective merging and comparison of various gut microbiome data sets, facilitating the identification of robust microbiome biomarkers applicable across varied study populations.
Collapse
Affiliation(s)
- Petri Vänni
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Mysore V. Tejesvi
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| | - Niko Paalanne
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Kjersti Aagaard
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Gail Ackermann
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Merete Eggesbø
- Department of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Kaija-Leena Kolho
- Children’s Hospital, University of Helsinki and HUS, Helsinki, Finland
| | - Martin F. Laursen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Johnny Ludvigsson
- Crown Princess Victoria Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Juliette Madan
- Department of Psychiatry, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
- Department of Pediatrics, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Dennis Ownby
- Medical College of Georgia, Augusta, Georgia, USA
| | - Catherine Stanton
- Teagasc Food Research Centre & APC Microbiome Ireland, Moorepark, Fermoy, Co. Cork, Ireland
| | - Jakob Stokholm
- Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Terhi Tapiainen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
- Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
35
|
Mosby CA, Long KJ, Phillips MB, Bartel J, Jones MK. Changes in the Murine Microbiome and Bacterial Extracellular Vesicle Production in Response to Antibiotic Treatment and Norovirus Infection. Viruses 2023; 15:2443. [PMID: 38140684 PMCID: PMC10747002 DOI: 10.3390/v15122443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Norovirus infection is influenced by the presence of commensal bacteria, and both human and murine norovirus (MNV) bind to these bacteria. These virus-bacterial interactions, as well as MNV infection, promote the increased production of bacterial extracellular vesicles (bEVs). However, no correlation has been made between specific bacterial groups, their vesicles, and their impact on norovirus infection. The current study evaluated the impact of select bacterial compositions of murine microbiomes using antibiotic (ABX) cocktails on MNV infection and bEV production. The goal of this research was to determine if increases in bEVs following MNV infection in mice were associated with changes in specific bacterial populations. Bacterial taxa were found to be differentially abundant in both ABX-treated and untreated mice, with the greatest change in bacterial taxa seen in mice treated with a broad-spectrum ABX cocktail. Specifically, Lachnospiraeae were found to be differentially abundant between a variety of treatment factors, including MNV infection. Overall, these results demonstrate that MNV infection can alter the abundance of bacterial taxa within the microbiota, as well as their production of extracellular vesicles, and that the use of selective antibiotic treatments can allow the detection of viral impacts on the microbiome that might otherwise be masked.
Collapse
Affiliation(s)
- Chanel A. Mosby
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, FL 32611, USA; (C.A.M.); (K.J.L.); (J.B.)
| | - Kendall J. Long
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, FL 32611, USA; (C.A.M.); (K.J.L.); (J.B.)
| | - Matthew B. Phillips
- Molecular Genetics and Microbiology Department, College of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Julia Bartel
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, FL 32611, USA; (C.A.M.); (K.J.L.); (J.B.)
| | - Melissa K. Jones
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, FL 32611, USA; (C.A.M.); (K.J.L.); (J.B.)
| |
Collapse
|
36
|
Wu D, Xie J, Liu Y, Jin L, Li G, An T. Metagenomic and Machine Learning Meta-Analyses Characterize Airborne Resistome Features and Their Hosts in China Megacities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16414-16423. [PMID: 37844141 DOI: 10.1021/acs.est.3c02593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Urban ambient air contains a cocktail of antibiotic resistance genes (ARGs) emitted from various anthropogenic sites. However, what is largely unknown is whether the airborne ARGs exhibit site-specificity or their pathogenic hosts persistently exist in the air. Here, by retrieving 1.2 Tb metagenomic sequences (n = 136), we examined the airborne ARGs from hospitals, municipal wastewater treatment plants (WWTPs) and landfills, public transit centers, and urban sites located in seven of China's megacities. As validated by the multiple machine learning-based classification and optimization, ARGs' site-specificity was found to be the most apparent in hospital air, with featured resistances to clinical-used rifamycin and (glyco)peptides, whereas the more environmentally prevalent ARGs (e.g., resistance to sulfonamide and tetracycline) were identified being more specific to the nonclinical ambient air settings. Nearly all metagenome-assembled genomes (MAGs) that possessed the site-featured resistances were identified as pathogenic taxa, which occupied the upper-representative niches in all the neutrally distributed airborne microbial community (P < 0.01, m = 0.22-0.50, R2 = 0.41-0.86). These niche-favored putative resistant pathogens highlighted the enduring antibiotic resistance hazards in the studied urban air. These findings are critical, albeit the least appreciated until our study, to gauge the airborne dimension of resistomes' features and fates in urban atmospheric environments.
Collapse
Affiliation(s)
- Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Chongqing Institute of East China Normal University, East China Normal University, Shanghai 200241, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiawen Xie
- Department of Civil and Environmental Engineering and Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yangying Liu
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Ling Jin
- Department of Civil and Environmental Engineering and Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
37
|
Martinez E, Crevecoeur S, Thirion C, Grandjean J, Fall PA, Hayette MP, Michel M, Taminiau B, Louis E, Daube G. Gut Microbiota Associated with Clostridioides difficile Carriage in Three Clinical Groups (Inflammatory Bowel Disease, C. difficile Infection and Healthcare Workers) in Hospital Field. Microorganisms 2023; 11:2527. [PMID: 37894185 PMCID: PMC10609531 DOI: 10.3390/microorganisms11102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridioides difficile is an anaerobic spore-forming Gram-positive bacterium. C. difficile carriage and 16S rDNA profiling were studied in three clinical groups at three different sampling times: inflammatory bowel disease (IBD) patients, C. difficile infection (CDI) patients and healthcare workers (HCWs). Diversity analysis was realized in the three clinical groups, the positive and negative C. difficile carriage groups and the three analysis periods. Concerning the three clinical groups, β-diversity tests showed significant differences between them, especially between the HCW group and IBD group and between IBD patients and CDI patients. The Simpson index (evenness) showed a significant difference between two clinical groups (HCWs and IBD). Several genera were significantly different in the IBD patient group (Sutterella, Agathobacter) and in the CDI patient group (Enterococcus, Clostridioides). Concerning the positive and negative C. difficile carriage groups, β-diversity tests showed significant differences. Shannon, Simpson and InvSimpson indexes showed significant differences between the two groups. Several genera had significantly different relative prevalences in the negative group (Agathobacter, Sutterella, Anaerostipes, Oscillospira) and the positive group (Enterococcus, Enterobacteriaceae_ge and Enterobacterales_ge). A microbiota footprint was detected in C. difficile-positive carriers. More experiments are needed to test this microbiota footprint to see its impact on C. difficile infection.
Collapse
Affiliation(s)
- Elisa Martinez
- Food Microbiology Lab, Fundamental and Applied Research for Animals and Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium
| | - Sebastien Crevecoeur
- Food Microbiology Lab, Fundamental and Applied Research for Animals and Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium
| | - Carine Thirion
- Department of Clinical Sciences, Immunopathology—Infectious Diseases and General Internal Medicine, University Hospital CHU of Liege, 4000 Liège, Belgium
| | - Jessica Grandjean
- Department of Gastroenterology, University Hospital CHU of Liege, 4000 Liège, Belgium
| | | | - Marie-Pierre Hayette
- Department of Biomedical and Preclinical Sciences, Faculty of Medicine, University of Liege, 4000 Liège, Belgium
| | - Moutschen Michel
- Department of Clinical Sciences, Immunopathology—Infectious Diseases and General Internal Medicine, University Hospital CHU of Liege, 4000 Liège, Belgium
| | - Bernard Taminiau
- Food Microbiology Lab, Fundamental and Applied Research for Animals and Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium
| | - Edouard Louis
- Department of Gastroenterology, University Hospital CHU of Liege, 4000 Liège, Belgium
| | - Georges Daube
- Food Microbiology Lab, Fundamental and Applied Research for Animals and Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium
| |
Collapse
|
38
|
Berryman MA, Ilonen J, Triplett EW, Ludvigsson J. Important denominator between autoimmune comorbidities: a review of class II HLA, autoimmune disease, and the gut. Front Immunol 2023; 14:1270488. [PMID: 37828987 PMCID: PMC10566625 DOI: 10.3389/fimmu.2023.1270488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Human leukocyte antigen (HLA) genes are associated with more diseases than any other region of the genome. Highly polymorphic HLA genes produce variable haplotypes that are specifically correlated with pathogenically different autoimmunities. Despite differing etiologies, however, many autoimmune disorders share the same risk-associated HLA haplotypes often resulting in comorbidity. This shared risk remains an unanswered question in the field. Yet, several groups have revealed links between gut microbial community composition and autoimmune diseases. Autoimmunity is frequently associated with dysbiosis, resulting in loss of barrier function and permeability of tight junctions, which increases HLA class II expression levels and thus further influences the composition of the gut microbiome. However, autoimmune-risk-associated HLA haplotypes are connected to gut dysbiosis long before autoimmunity even begins. This review evaluates current research on the HLA-microbiome-autoimmunity triplex and proposes that pre-autoimmune bacterial dysbiosis in the gut is an important determinant between autoimmune comorbidities with systemic inflammation as a common denominator.
Collapse
Affiliation(s)
- Meghan A. Berryman
- Triplett Laboratory, Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eric W. Triplett
- Triplett Laboratory, Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Johnny Ludvigsson
- Crown Princess Victoria’s Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
39
|
Querdasi FR, Enders C, Karnani N, Broekman B, Yap Seng C, Gluckman PD, Mary Daniel L, Yap F, Eriksson JG, Cai S, Chong MFF, Toh JY, Godfrey K, Meaney MJ, Callaghan BL. Multigenerational adversity impacts on human gut microbiome composition and socioemotional functioning in early childhood. Proc Natl Acad Sci U S A 2023; 120:e2213768120. [PMID: 37463211 PMCID: PMC10372691 DOI: 10.1073/pnas.2213768120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/25/2023] [Indexed: 07/20/2023] Open
Abstract
Adversity exposures in the prenatal and postnatal period are associated with an increased risk for psychopathology, which can be perpetuated across generations. Nonhuman animal research highlights the gut microbiome as a putative biological mechanism underlying such generational risks. In a sample of 450 mother-child dyads living in Singapore, we examined associations between three distinct adversity exposures experienced across two generations-maternal childhood maltreatment, maternal prenatal anxiety, and second-generation children's exposure to stressful life events-and the gut microbiome composition of second-generation children at 2 y of age. We found distinct differences in gut microbiome profiles linked to each adversity exposure, as well as some nonaffected microbiome features (e.g., beta diversity). Remarkably, some of the microbial taxa associated with concurrent and prospective child socioemotional functioning shared overlapping putative functions with those affected by adversity, suggesting that the intergenerational transmission of adversity may have a lasting impact on children's mental health via alterations to gut microbiome functions. Our findings open up a new avenue of research into the underlying mechanisms of intergenerational transmission of mental health risks and the potential of the gut microbiome as a target for intervention.
Collapse
Affiliation(s)
- Francesca R. Querdasi
- Department of Psychology, University of California Los Angeles, Los Angeles, CA90095
| | - Craig Enders
- Department of Psychology, University of California Los Angeles, Los Angeles, CA90095
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
| | - Birit Broekman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
| | - Chong Yap Seng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo School of Medicine, National University of Singapore, Singapore117597, Singapore
| | - Peter D. Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
- Liggins Institute, University of Auckland, Auckland1023, New Zealand
| | - Lourdes Mary Daniel
- Duke-National University of Singapore Medical School, Singapore169857, Singapore
- Department of Child Development, KK Women’s and Children’s Hospital, Singapore229899, Singapore
| | - Fabian Yap
- Department of Paediatrics, KK Women’s and Children’s Hopsital, Singapore229899, Singapore
- Department of Pediatrics, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore636921, Singapore
- Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, Singapore229899, Singapore
| | - Johan G. Eriksson
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo School of Medicine, National University of Singapore, Singapore117597, Singapore
- Department of General Practice and Primary Health, University of Helsinki and Helsinki University Hospital, 00100Helsinki, Finland
- Program of Public Health Research, Folkhälsan Research Center, 00250Helsinki, Finland
| | - Shirong Cai
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
| | - Mary Foong-Fong Chong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore117561, Singapore
| | - Jia Ying Toh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
| | - Keith Godfrey
- Department of Epidemiology, University of Southampton, SouthamptonSO16 6YD, United Kingdom
- Department of Human Development, University of Southampton, SouthamptonSO16 6YD, United Kingdom
| | - Michael J. Meaney
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
- Department of Psychiatry, McGill University, Montreal, QuebecH3A 0G4, Canada
- Brain–Body Initiative, Agency for Science, Technology, and Research, Singapore138632, Singapore
| | - Bridget L. Callaghan
- Department of Psychology, University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
40
|
Petrone JR, Rios Glusberger P, George CD, Milletich PL, Ahrens AP, Roesch LFW, Triplett EW. RESCUE: a validated Nanopore pipeline to classify bacteria through long-read, 16S-ITS-23S rRNA sequencing. Front Microbiol 2023; 14:1201064. [PMID: 37547696 PMCID: PMC10402275 DOI: 10.3389/fmicb.2023.1201064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Despite the advent of third-generation sequencing technologies, modern bacterial ecology studies still use Illumina to sequence small (~400 bp) hypervariable regions of the 16S rRNA SSU for phylogenetic classification. By sequencing a larger region of the rRNA gene operons, the limitations and biases of sequencing small portions can be removed, allowing for more accurate classification with deeper taxonomic resolution. With Nanopore sequencing now providing raw simplex reads with quality scores above Q20 using the kit 12 chemistry, the ease, cost, and portability of Nanopore play a leading role in performing differential bacterial abundance analysis. Sequencing the near-entire rrn operon of bacteria and archaea enables the use of the universally conserved operon holding evolutionary polymorphisms for taxonomic resolution. Here, a reproducible and validated pipeline was developed, RRN-operon Enabled Species-level Classification Using EMU (RESCUE), to facilitate the sequencing of bacterial rrn operons and to support import into phyloseq. Benchmarking RESCUE showed that fully processed reads are now parallel or exceed the quality of Sanger, with median quality scores of approximately Q20+, using the R10.4 and Guppy SUP basecalling. The pipeline was validated through two complex mock samples, the use of multiple sample types, with actual Illumina data, and across four databases. RESCUE sequencing is shown to drastically improve classification to the species level for most taxa and resolves erroneous taxa caused by using short reads such as Illumina.
Collapse
|
41
|
Zhu J, Jin J, Qi Q, Li L, Zhou J, Cao L, Wang L. The association of gut microbiome with recurrent pregnancy loss: A comprehensive review. Drug Discov Ther 2023; 17:157-169. [PMID: 37357394 DOI: 10.5582/ddt.2023.01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The steady-state gut microbiome not only promotes the metabolism and absorption of nutrients that are difficult to digest by the host itself, but also participates in systemic metabolism. Once the dynamic balance is disturbed, the gut microbiome may lead to a variety of diseases. Recurrent pregnancy loss (RPL) affects 1-2% of women of reproductive age, and its prevalence has increased in recent years. According to the literature review, the gut microbiome is a new potential driver of the pathophysiology of recurrent abortion, and the gut microbiome has emerged as a new candidate for clinical prevention and treatment of RPL. However, few studies have concentrated on the direct correlation between RPL and the gut microbiome, and the mechanisms by which the gut microbiome influences recurrent miscarriage need further investigation. In this review, the effects of the gut microbiome on RPL were discussed and found to be associated with inflammatory response, the disruption of insulin signaling pathway and the formation of insulin resistance, maintenance of immunological tolerance at the maternal-fetal interface due to the interference with the immune imbalance of Treg/Th17 cells, and obesity.
Collapse
Affiliation(s)
- Jun Zhu
- The Affiliated Wenling Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jiaxi Jin
- The Affiliated Wenling Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qing Qi
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
| | - Liwen Cao
- Center for Reproductive Medicine, Zhoushan Women and Children Hospital, Zhejiang, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
42
|
Mokhtari P, Jambal P, Metos JM, Shankar K, Anandh Babu PV. Microbial taxonomic and functional shifts in adolescents with type 1 diabetes are associated with clinical and dietary factors. EBioMedicine 2023; 93:104641. [PMID: 37290262 PMCID: PMC10272319 DOI: 10.1016/j.ebiom.2023.104641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Evidence indicates a link between the pathogenesis of type 1 diabetes (T1D) and the gut microbiome. However, the regulation of microbial metabolic pathways and the associations of bacterial species with dietary factors in T1D are largely unknown. We investigated whether microbial metagenomic signatures in adolescents with T1D are associated with clinical/dietary factors. METHODS Adolescents with T1D (case) and healthy adolescents (control) were recruited, and microbiome profiling in participants' stool samples was performed using shotgun metagenomic sequencing. The bioBakery3 pipeline (Kneaddata, Metaphlan 4 and HUMAnN) was used to assign taxonomy and functional annotations. Clinical (HbA1c) and dietary information (3-day food record) were collected for conducting association analysis using Spearman's correlation. FINDINGS Adolescents with T1D exhibited modest changes in taxonomic composition of gut microbiome. Nineteen microbial metabolic pathways were altered in T1D, including downregulation of biosynthesis of vitamins (B2/flavin, B7/biotin and B9/folate), enzyme cofactors (NAD+ and s-adenosyl methionine) and amino acids (aspartate, asparagine and lysine) with an upregulation in the fermentation pathways. Furthermore, bacterial species associated with dietary and clinical factors differed between healthy adolescents and adolescents with T1D. Supervised models modeling identified taxa predictive of T1D status, and the top features included Coprococcus and Streptococcus. INTERPRETATION Our study provides new insight into the alteration of microbial and metabolic signatures in adolescents with T1D, suggesting that microbial biosynthesis of vitamins, enzyme cofactors and amino acids may be potentially altered in T1D. FUNDING Research grants from NIH/NCCIH: R01AT010247 and USDA/NIFA: 2019-67017-29253; and Larry & Gail Miller Family Foundation Assistantship.
Collapse
Affiliation(s)
- Pari Mokhtari
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
| | - Puujee Jambal
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie M Metos
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
| | - Kartik Shankar
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
43
|
Jacobs S, Payne C, Shaboodien S, Kgatla T, Pretorius A, Jumaar C, Sanni O, Butrous G, Maarman G. Gut microbiota crosstalk mechanisms are key in pulmonary hypertension: The involvement of melatonin is instrumental too. Pulm Circ 2023; 13:e12277. [PMID: 37583483 PMCID: PMC10423855 DOI: 10.1002/pul2.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
The microbiota refers to a plethora of microorganisms with a gene pool of approximately three million, which inhabits the human gastrointestinal tract or gut. The latter, not only promotes the transport of nutrients, ions, and fluids from the lumen to the internal environment but is linked with the development of diseases including coronary artery disease, heart failure, and lung diseases. The exact mechanism of how the microbiota achieves crosstalk between itself and distant organs/tissues is not clear, but factors released to other organs may play a role, like inflammatory and genetic factors, and now we highlight melatonin as a novel mediator of the gut-lung crosstalk. Melatonin is present in high concentrations in the gut and the lung and has recently been linked to the pathogenesis of pulmonary hypertension (PH). In this comprehensive review of the literature, we suggest that melatonin is an important link between the gut microbiota and the development of PH (where suppressed melatonin-crosstalk between the gut and lungs could promote the development of PH). More studies are needed to investigate the link between the gut microbiota, melatonin and PH. Studies could also investigate whether microbiota genes play a role in the epigenetic aspects of PH. This is relevant because, for example, dysbiosis (caused by epigenetic factors) could reduce melatonin signaling between the gut and lungs, reduce subcellular melatonin concentrations in the gut/lungs, or reduce melatonin serum levels secondary to epigenetic factors. This area of research is largely unexplored and further studies are warranted.
Collapse
Affiliation(s)
- Steve Jacobs
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Carmen Payne
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Sara Shaboodien
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Thato Kgatla
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Amy Pretorius
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Chrisstoffel Jumaar
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Olakunle Sanni
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Ghazwan Butrous
- School of Pharmacy, Imperial College of LondonUniversity of KentCanterburyUK
| | - Gerald Maarman
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
44
|
Akinsuyi OS, Roesch LFW. Meta-Analysis Reveals Compositional and Functional Microbial Changes Associated with Osteoporosis. Microbiol Spectr 2023; 11:e0032223. [PMID: 37042756 PMCID: PMC10269714 DOI: 10.1128/spectrum.00322-23] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Over the past decade, the role of the gut microbiota in many disease states has gained a great deal of attention. Mounting evidence from case-control and observational studies has linked changes in the gut microbiota to the pathophysiology of osteoporosis (OP). Nonetheless, the results of these studies contain discrepancies, leaving the literature without a consensus on osteoporosis-associated microbial signatures. Here, we conducted a comprehensive meta-analysis combining and reexamining five publicly available 16S rRNA partial sequence data sets to identify gut bacteria consistently associated with osteoporosis across different cohorts. After adjusting for the batch effect associated with technical variation and heterogeneity of studies, we observed a significant shift in the microbiota composition in the osteoporosis group. An increase in the relative abundance of opportunistic pathogens Clostridium sensu stricto, Bacteroides, and Intestinibacter was observed in the OP group. Moreover, short-chain-fatty-acid (SCFA) producers, including members of the genera Collinsella, Megasphaera, Agathobaculum, Mediterraneibacter, Clostridium XIV, and Dorea, were depleted in the OP group relative to the healthy control (HC) group. Lactic acid-producing bacteria, including Limosilactobacillus, were significantly increased in the OP group. The random forest algorithm further confirmed that these bacteria differentiate the two groups. Furthermore, functional prediction revealed depletion of the SCFA biosynthesis pathway (glycolysis, tricarboxylic acid [TCA] cycle, and Wood-Ljungdahl pathway) and amino acid biosynthesis pathway (methionine, histidine, and arginine) in the OP group relative to the HC group. This study uncovered OP-associated compositional and functional microbial alterations, providing robust insight into OP pathogenesis and aiding the possible development of a therapeutic intervention to manage the disease. IMPORTANCE Osteoporosis is the most common metabolic bone disease associated with aging. Mounting evidence has linked changes in the gut microbiota to the pathophysiology of osteoporosis. However, which microbes are associated with dysbiosis and their impact on bone density and inflammation remain largely unknown due to inconsistent results in the literature. Here, we present a meta-analysis with a standard workflow, robust statistical approaches, and machine learning algorithms to identify notable microbial compositional changes influencing osteoporosis.
Collapse
Affiliation(s)
- Oluwamayowa S. Akinsuyi
- Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Luiz F. W. Roesch
- Institute of Food and Agriculture, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
45
|
Wei X, Li N, Wu X, Cao G, Qiao H, Wang J, Hao R. The preventive effect of Glycyrrhiza polysaccharide on lipopolysaccharide-induced acute colitis in mice by modulating gut microbial communities. Int J Biol Macromol 2023; 239:124199. [PMID: 36972824 DOI: 10.1016/j.ijbiomac.2023.124199] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Acute colitis is characterised by an unpredictable onset and causes intestinal flora imbalance together with microbial migration, which leads to complex parenteral diseases. Dexamethasone, a classic drug, has side effects, so it is necessary to use natural products without side effects to prevent enteritis. Glycyrrhiza polysaccharide (GPS) is an α-d-pyranoid polysaccharide with anti-inflammatory effects; however, its anti-inflammatory mechanism in the colon remains unknown. This study investigated whether GPS reduces the lipopolysaccharide (LPS)-induced inflammatory response in acute colitis. The results revealed that GPS attenuated the upregulation of tumour necrosis factor-α, interleukin (IL)-1β, and IL-6 in the serum and colon tissues and significantly reduced the malondialdehyde content in colon tissues. In addition, the 400 mg/kg GPS group showed higher relative expressions of occludin, claudin-1, and zona occludens-1 in colon tissues and lower concentrations of diamine oxidase, D-lactate, and endotoxin in the serum than the LPS group did, indicating that GPS improved the physical and chemical barrier functions of colon tissues. GPS increased the abundance of beneficial bacteria, such as Lactobacillus, Bacteroides, and Akkermansia, whereas pathogenic bacteria, such as Oscillospira and Ruminococcus were inhibited. Our findings indicate that GPS can effectively prevent LPS-induced acute colitis and exert beneficial effects on the intestinal health.
Collapse
Affiliation(s)
- Xinxin Wei
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Na Li
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030012, China
| | - Xiaoying Wu
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030012, China
| | - Guidong Cao
- Shanxi Ruixiang Bio Pharmaceutical Co., Ltd, Taiyuan 030032, China
| | - Hongping Qiao
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030012, China
| | - Jing Wang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Ruirong Hao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
46
|
McKinley KNL, Herremans KM, Riner AN, Vudatha V, Freudenberger DC, Hughes SJ, Triplett EW, Trevino JG. Translocation of Oral Microbiota into the Pancreatic Ductal Adenocarcinoma Tumor Microenvironment. Microorganisms 2023; 11:1466. [PMID: 37374966 PMCID: PMC10305341 DOI: 10.3390/microorganisms11061466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Oral dysbiosis has long been associated with pancreatic ductal adenocarcinoma (PDAC). In this work, we explore the relationship between the oral and tumor microbiomes of patients diagnosed with PDAC. Salivary and tumor microbiomes were analyzed using a variety of sequencing methods, resulting in a high prevalence and relative abundance of oral bacteria, particularly Veillonella and Streptococcus, within tumor tissue. The most prevalent and abundant taxon found within both saliva and tumor tissue samples, Veillonella atypica, was cultured from patient saliva, sequenced and annotated, identifying genes that potentially contribute to tumorigenesis. High sequence similarity was observed between sequences recovered from patient matched saliva and tumor tissue, indicating that the taxa found in PDAC tumors may derive from the mouth. These findings may have clinical implications in the care and treatment of patients diagnosed with PDAC.
Collapse
Affiliation(s)
- Kelley N. L. McKinley
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA;
| | - Kelly M. Herremans
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.M.H.); (A.N.R.); (S.J.H.)
| | - Andrea N. Riner
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.M.H.); (A.N.R.); (S.J.H.)
| | - Vignesh Vudatha
- Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.V.); (D.C.F.)
| | - Devon C. Freudenberger
- Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.V.); (D.C.F.)
| | - Steven J. Hughes
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.M.H.); (A.N.R.); (S.J.H.)
| | - Eric W. Triplett
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA;
| | - Jose G. Trevino
- Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.V.); (D.C.F.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
47
|
Aguayo-Patrón SV, Trujillo-Rivera OA, Cornejo-Granados F, Ochoa-Leyva A, Calderón de la Barca AM. HLA-Haplotypes Influence Microbiota Structure in Northwestern Mexican Schoolchildren Predisposed for Celiac Disease or Type 1 Diabetes. Microorganisms 2023; 11:1412. [PMID: 37374914 DOI: 10.3390/microorganisms11061412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
To contribute to and elucidate the participation of microbiota in celiac disease (CD) and type 1 diabetes (T1D) development, we evaluated the influence of HLA haplotypes, familial risk, and diet on the microbiota of schoolchildren. We conducted a cross-sectional study on 821 apparently healthy schoolchildren, genotyping HLA DQ2/DQ8, and registering familial risk. We analyzed the fecal microbiota using 16S rRNA gene sequencing, and autoantibodies for CD or T1D by ELISA. After analyses, we created three groups: at-high-risk children (Group 1), at-high-risk children plus autoantibodies (Group 2), and nonrisk children (Group 3). HLA influenced the microbiota of Groups 1 and 2, decreasing phylogenetic diversity in comparison to Group 3. The relative abundance of Oscillospiraceae UCG_002, Parabacteroides, Akkermansia, and Alistipes was higher in Group 3 compared to Groups 1 and 2. Moreover, Oscillospiraceae UCG_002 and Parabacteroides were protectors of the autoantibodies' positivity (RRR = 0.441 and RRR = 0.034, respectively). Conversely, Agathobacter was higher in Group 2, and Lachnospiraceae was in both Groups 1 and 2. Lachnospiraceae correlated positively with the sucrose degradation pathway, while the principal genera in Group 3 were associated with amino acid biosynthesis pathways. In summary, HLA and familial risk influence microbiota composition and functionality in children predisposed to CD or T1D, increasing their autoimmunity risk.
Collapse
Affiliation(s)
- Sandra V Aguayo-Patrón
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Mexico
| | - Omar A Trujillo-Rivera
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Mexico
| | - Ana M Calderón de la Barca
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Mexico
| |
Collapse
|
48
|
Ziegler AG. The countdown to type 1 diabetes: when, how and why does the clock start? Diabetologia 2023:10.1007/s00125-023-05927-2. [PMID: 37231274 DOI: 10.1007/s00125-023-05927-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 05/27/2023]
Abstract
'The clock to type 1 diabetes has started when islet antibodies are first detected', commented George Eisenbarth with regard to the pathogenesis of type 1 diabetes. This review focuses on 'starting the clock', i.e. the initiation of pre-symptomatic islet autoimmunity/the first appearance of islet autoantibodies. In particular, this review addresses why susceptibility to developing islet autoimmunity is greatest in the first 2 years of life and why beta cells are a frequent target of the immune system during this fertile period. A concept for the development of beta cell autoimmunity in childhood is discussed and three factors are highlighted that contribute to this early predisposition: (1) high beta cell activity and potential vulnerability to stress; (2) high rates of and first exposures to infection; and (3) a heightened immune response, with a propensity for T helper type 1 (Th1) immunity. Arguments are presented that beta cell injury, accompanied by activation of an inflammatory immune response, precedes the initiation of autoimmunity. Finally, the implications for strategies aimed at primary prevention for a world without type 1 diabetes are discussed.
Collapse
Affiliation(s)
- Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany.
- Forschergruppe Diabetes, School of Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.
- Forschergruppe Diabetes e.V. at Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany.
| |
Collapse
|
49
|
Cao T, Wang S, Pan Y, Guo F, Wu B, Zhang Y, Wang Y, Tian J, Xing Q, Liu X. Characterization of the semen, gut, and urine microbiota in patients with different semen abnormalities. Front Microbiol 2023; 14:1182320. [PMID: 37293215 PMCID: PMC10244769 DOI: 10.3389/fmicb.2023.1182320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Semen quality is decreasing worldwide, leading to increased male infertility. This study analyzed the microbiota of the gut, semen, and urine in individuals with semen abnormalities to identify potential probiotics and pathogenic bacteria that affect semen parameters and help develop new methods for the diagnosis and treatment of patients with semen abnormalities. Methods We recruited 12 individuals with normal semen parameters (control group), 12 with asthenospermia but no semen hyperviscosity (Group_1), 6 with oligospermia (Group_2), 9 with severe oligospermia or azoospermia (Group_3), and 14 with semen hyperviscosity only (Group_4). The semen, gut, and urine microbiota were examined by analyzing the 16S ribosomal RNA gene sequence using next-generation sequencing. Results The gut microbes were clustered into the highest number of operational taxonomic units, followed by urine and semen. Furthermore, the α-diversity of gut microbes was highest and significantly different from that of urine and semen microbiota. The microbiota of the gut, urine, and semen were all significantly different from each other in terms of β-diversity. The gut abundance of Collinsella was significantly reduced in groups 1, 3, and 4. Furthermore, the gut abundance of Bifidobacterium and Blautia was significantly decreased in Group_1, while that of Bacteroides was significantly increased in Group_3. The abundance of Staphylococcus was significantly increased in the semen of groups 1 and 4. Finally, Lactobacillus abundance was significantly reduced in the urine of groups 2 and 4. Discussion This study comprehensively describes the differences in intestinal and genitourinary tract microbiota between healthy individuals and those with abnormal semen parameters. Furthermore, our study identified Collinsella, Bifidobacterium, Blautia, and Lactobacillus as potential probiotics. Finally, the study identified Bacteroides in the gut and Staphylococcus in semen as potential pathogenic bacteria. Our study lays the foundation of a new approach to the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Tingshuai Cao
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Pan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Guo
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Wu
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingchun Zhang
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yujie Wang
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaqing Tian
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qingfei Xing
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
50
|
He Y, Xu M, Lu S, Zou W, Wang Y, Fakhar-E-Alam Kulyar M, Iqbal M, Li K. Seaweed polysaccharides treatment alleviates injury of inflammatory responses and gut barrier in LPS-induced mice. Microb Pathog 2023; 180:106159. [PMID: 37201636 DOI: 10.1016/j.micpath.2023.106159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Gastrointestinal (GI) disease is a common digestive tract disease effects health of millions of human globally each year, thus the role of intestinal microflora had been emphasized. Seaweed polysaccharides featured a wide range of pharmacological activities, such as antioxidant activity and pharmacological action, but whether they can alleviate the dysbiosis of gut microbial ecology caused by lipopolysaccharide (LPS) exposure has not been well conducted. In this study, we investigated the effects of different concentration of seaweed polysaccharides on LPS-induced intestinal disorder by using microscope and 16S rRNA high-throughput sequencing. Histopathological results indicated that the intestinal structure in the LPS-induced group was damaged. Furthermore, LPS exposure not only reduced the intestinal microbial diversity in mice but also induced momentous transformation in its composition, including a significantly increased in some pathogenic bacteria (Helicobacter, Citrobacter and Mucispirillum) and decreased in several beneficial bacteria (Firmicutes, Lactobacillus, Akkermansia and Parabacteroides). Nonetheless, seaweed polysaccharide administration could recover the gut microbial dysbiosis and the loss of gut microbial diversity induced by LPS exposure. In summary, seaweed polysaccharides were effective against LPS-induced intestinal damage in mice via the modulation of intestinal microecology.
Collapse
Affiliation(s)
- Yuanyuan He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Sijia Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wen Zou
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, 61100, Pakistan
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|