1
|
Lizarazo-Taborda MDR, Vega-Magaña N, Díaz-Palomera CD, Villegas-Pineda JC, Godínez-Rubí M, Bayardo-González RA, Ramírez-de-Arellano A, Pereira-Suárez AL. A comparative analysis of estrogen receptors, ACE2 and cytokines in pre-and postmenopausal women and men with COVID-19. Front Public Health 2025; 13:1554024. [PMID: 40356822 PMCID: PMC12066641 DOI: 10.3389/fpubh.2025.1554024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/25/2025] [Indexed: 05/15/2025] Open
Abstract
The pandemic of Coronavirus Disease 2019 (COVID-19) has a significant impact on older individuals, those with comorbidities, and a bias toward males. Mortality, associated with an exacerbated immune response by proinflammatory cytokines, suggests potential hormonal influences in this scenario. The objective of this research was to analyze the expression of Estrogen Receptor α (ERα), Estrogen Receptor β (ERβ), G Protein-Coupled Estrogen Receptor (GPER), and the Angiotensin-Converting Enzyme 2 (ACE2) receptor, as well as their relationship with the viral load of SARS-CoV-2 and serum cytokine levels in three demographic groups of unvaccinated individuals diagnosed with COVID-19: premenopausal women, postmenopausal women, and men. The presence and expression of ERα, ERβ, and GPER, along with the ACE2 receptor, were analyzed by immunofluorescence assays in cells obtained from nasopharyngeal swabs of individuals with confirmed COVID-19 through RT-qPCR testing. Additionally, serum cytokine levels were evaluated using a chemiluminescent microparticle immunoassay. The results highlighted notable disparities in the expression of ERα and ACE2, as well as a higher expression of IL-8 and MIP-1β in the premenopausal women group compared to postmenopausal women and men. These findings suggest that in premenopausal women with COVID-19, the elevated expression of ERα and ACE2 could play a protective role, strengthening the antiviral immune response. The importance of exploring the complex hormonal and molecular influences in the pathogenesis of COVID-19 is emphasized, underscoring the need for additional research to better understand the factors determining severity and immune response in different demographic groups.
Collapse
Affiliation(s)
- Mélida Del Rosario Lizarazo-Taborda
- Maestría en Microbiología Médica, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Laboratorio de Investigación en Cáncer e Infecciones, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Natali Vega-Magaña
- Laboratorio de Investigación en Cáncer e Infecciones, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Carlos Daniel Díaz-Palomera
- Laboratorio de Investigación en Cáncer e Infecciones, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Julio César Villegas-Pineda
- Laboratorio de Investigación en Cáncer e Infecciones, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Marisol Godínez-Rubí
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Rubén Alberto Bayardo-González
- Departamento de Clínicas Odontológicas Integrales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Adrián Ramírez-de-Arellano
- Laboratorio de Investigación en Cáncer e Infecciones, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Laura Pereira-Suárez
- Laboratorio de Investigación en Cáncer e Infecciones, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
2
|
Yu EA, Bravo MD, Avelino-Silva VI, Bruhn RL, Busch MP, Custer B. Higher intraindividual variability of body mass index is associated with elevated risk of COVID-19 related hospitalization and post-COVID conditions. Int J Obes (Lond) 2024; 48:1711-1719. [PMID: 39134693 PMCID: PMC11674580 DOI: 10.1038/s41366-024-01603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Cardiometabolic diseases are risk factors for COVID-19 severity. The extent that cardiometabolic health represents a modifiable factor to mitigate the short- and long-term consequences from SARS-CoV-2 remains unclear. Our objective was to evaluate the associations between intraindividual variability of cardiometabolic health indicators and COVID-19 related hospitalizations and post-COVID conditions (PCC) among a relatively healthy population. METHODS This retrospective, multi-site cohort study was a post-hoc analysis among individuals with cardiometabolic health data collected during routine blood donation visits in 24 US states (2009-2018) and who responded to COVID-19 questionnaires (2021-2023). Intraindividual variability of blood pressure (systolic, diastolic), total circulating cholesterol, and body mass index (BMI) were defined as the coefficient of variation (CV) across all available donation timepoints (ranging from 3 to 74); participants were categorized into CV quartiles. Associations were evaluated by multivariable binomial regressions. RESULTS Overall, 3344 participants provided 42,090 donations (median 9 [IQR 5, 17]). The median age was 48 years (38, 56) at the first study donation. 1.2% (N = 40) were hospitalized due to COVID-19 and 15.5% (N = 519) had PCC. Higher BMI variability was associated with greater risk of COVID-19 hospitalization (4th quartile aRR 4.15 [95% CI 1.31, 13.11], p = 0.02; 3rd quartile aRR 3.41 [95% CI 1.09, 10.69], p = 0.04). Participants with higher variability of BMI had greater risk of PCC (4th quartile aRR 1.29 [95% CI 1.02, 1.64]; p = 0.04). Intraindividual variability of blood pressure (systolic, diastolic) and total circulating cholesterol were not associated with COVID-19 hospitalization or PCC risk (all p > 0.05). From causal mediation analysis, the association between the highest quartiles of BMI variability and PCC was not mediated by hospitalization (p > 0.05). CONCLUSIONS Higher intraindividual variability of BMI was associated with COVID-19 hospitalization and PCC risk. Our findings underscore the need for further elucidating mechanisms that explain these associations and importance for consistent maintenance of body weight.
Collapse
Affiliation(s)
- Elaine A Yu
- Vitalant Research Institute, San Francisco, CA, USA.
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | | | - Vivian I Avelino-Silva
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Roberta L Bruhn
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Harvey BJ, Alvarez de la Rosa D. Sex Differences in Kidney Health and Disease. Nephron Clin Pract 2024; 149:77-103. [PMID: 39406203 DOI: 10.1159/000541352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/02/2024] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Sex differences exist in kidney physiology and disease which are underpinned by the biological actions of the sex hormones estrogen, progesterone and testosterone. In this review, we present an up-to-date discussion of the hormonal and molecular signalling pathways implicated in sex differences in kidney health and disease. SUMMARY Estrogen and progesterone have protective effects on renal blood flow, glomerular filtration rate and nephron ion and water reabsorptive processes, whereas testosterone tends to compromise these functions. The biological effects of estrogen appear to be the most important in reinforcing kidney function and protecting against kidney diseases in females. The actions of estrogen are myriad but all tend to bolster kidney physiology to maintain a steady-state and adaptable extracellular fluid volume (ECFV) and blood pressure. Estrogen safeguards ECFV homeostasis by stimulating renal epithelial sodium channel (ENaC) and water channel (AQP2) expression and transport function. Renal maintenance of ECFV within narrow physiological limits is a first-line of defense against hypertension and lowers the risk of cardiovascular disease in women. The estrogenic and XX chromosome basis for a female advantage are evident in a wide range of kidney diseases including acute kidney injury, chronic kidney disease, end-stage kidney disease, diabetic kidney disease, and polycystic kidney disease. The molecular mechanisms involve estrogen regulation of nephron ion and water transport, genetic immunogenic responses, activation of the protective arm of the renin angiotensin-aldosterone system and XX chromosome reinforcement of immune responses. Kidney disease can also predispose patients to cancer and women are protected in renal cancer with lower incidence, morbidity, and mortality than age-matched men with the disease. KEY MESSAGES This review underscores the importance of incorporating sex-specific considerations into clinical practice and basic research to bridge the gap in understanding and addressing biological sex disparities in kidney disease and renal cancer.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Centro de Estudios Científicos, Valdivia, Chile
| | - Diego Alvarez de la Rosa
- Departmento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
4
|
Harvey BJ, McElvaney NG. Sex differences in airway disease: estrogen and airway surface liquid dynamics. Biol Sex Differ 2024; 15:56. [PMID: 39026347 PMCID: PMC11264786 DOI: 10.1186/s13293-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland.
- Department of Medicine, RCSI ERC, Beaumont Hospital, Dublin 2, Ireland.
| | - Noel G McElvaney
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
5
|
Ho CY, Wei CY, Zhao RW, Ye YL, Huang HC, Lee JC, Cheng FJ, Huang WC. Artemisia argyi extracts overcome lapatinib resistance via enhancing TMPRSS2 activation in HER2-positive breast cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:3389-3399. [PMID: 38445457 DOI: 10.1002/tox.24202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Breast cancer stands as the predominant malignancy and primary cause of cancer-related mortality among females globally. Approximately 25% of breast cancers exhibit HER2 overexpression, imparting a more aggressive tumor phenotype and correlating with poor prognoses. Patients with metastatic breast cancer receiving HER2 tyrosine kinase inhibitors (HER2 TKIs), such as Lapatinib, develop acquired resistance within a year, posing a critical challenge in managing this disease. Here, we explore the potential of Artemisia argyi, a Chinese herbal medicine known for its anti-cancer properties, in mitigating HER2 TKI resistance in breast cancer. Analysis of the Cancer Genome Atlas (TCGA) revealed diminished expression of transmembrane serine protease 2 (TMPRSS2), a subfamily of membrane proteolytic enzymes, in breast cancer patients, correlating with unfavorable outcomes. Intriguingly, lapatinib-responsive patients exhibited higher TMPRSS2 expression. Our study unveiled that the compounds from Artemisia argyi, eriodictyol, and umbelliferone could inhibit the growth of lapatinib-resistant HER2-positive breast cancer cells. Mechanistically, they suppressed HER2 kinase activation by enhancing TMPRSS2 activity. Our findings propose TMPRSS2 as a critical determinant in lapatinib sensitivity, and Artemisia argyi emerges as a potential agent to overcome lapatinib via activating TMPRSS2 in HER2-positive breast cancer. This study not only unravels the molecular mechanisms driving cell death in HER2-positive breast cancer cells induced by Artemisia argyi but also lays the groundwork for developing novel inhibitors to enhance therapy outcomes.
Collapse
Affiliation(s)
- Chien-Yi Ho
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- Division of Family Medicine, Physical Examination Center, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Cheng-Yen Wei
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ruo-Wen Zhao
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Lun Ye
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Chi Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jen-Chih Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Fang-Ju Cheng
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chien Huang
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Adu-Amankwaah J, Bushi A, Tan R, Adekunle AO, Adzika GK, Ndzie Noah ML, Nadeem I, Adzraku SY, Koda S, Mprah R, Cui J, Li K, Wowui PI, Sun H. Estradiol mitigates stress-induced cardiac injury and inflammation by downregulating ADAM17 via the GPER-1/PI3K signaling pathway. Cell Mol Life Sci 2023; 80:246. [PMID: 37572114 PMCID: PMC10423133 DOI: 10.1007/s00018-023-04886-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Stress-induced cardiovascular diseases characterized by inflammation are among the leading causes of morbidity and mortality in postmenopausal women worldwide. Estradiol (E2) is known to be cardioprotective via the modulation of inflammatory mediators during stress. But the mechanism is unclear. TNFα, a key player in inflammation, is primarily converted to its active form by 'A Disintegrin and Metalloprotease 17' (ADAM17). We investigated if E2 can regulate ADAM17 during stress. Experiments were performed using female FVB wild-type (WT), C57BL/6 WT, and G protein-coupled estrogen receptor 1 knockout (GPER-1 KO) mice and H9c2 cells. The study revealed a significant increase in cardiac injury and inflammation during isoproterenol (ISO)-induced stress in ovariectomized (OVX) mice. Additionally, ADAM17's membrane content (mADAM17) was remarkably increased in OVX and GPER-1 KO mice during stress. However, in vivo supplementation of E2 significantly reduced cardiac injury, mADAM17, and inflammation. Also, administering G1 (GPER-1 agonist) in mice under stress reduced mADAM17. Further experiments demonstrated that E2, via GPER-1/PI3K pathway, localized ADAM17 at the perinuclear region by normalizing β1AR-Gαs, mediating the switch from β2AR-Gαi to Gαs, and reducing phosphorylated kinases, including p38 MAPKs and ERKs. Thus, using G15 and LY294002 to inhibit GPER-1 and its down signaling molecule, PI3K, respectively, in the presence of E2 during stress resulted in the disappearance of E2's modulatory effect on mADAM17. In vitro knockdown of ADAM17 during stress significantly reduced cardiac injury and inflammation, confirming its significant inflammatory role. These interesting findings provide novel evidence that E2 and G1 are potential therapeutic agents for ADAM17-induced inflammatory diseases associated with postmenopausal females.
Collapse
Affiliation(s)
- Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Aisha Bushi
- School of International Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Rubin Tan
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | | | - Gabriel Komla Adzika
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | | | - Iqra Nadeem
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Seyram Yao Adzraku
- Department of Hematology, Key Laboratory of Bone Marrow Stem Cell, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Stephane Koda
- Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jie Cui
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kexue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | | | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
7
|
Sheikh AB, Sobotka PA, Garg I, Dunn JP, Minhas AMK, Shandhi MMH, Molinger J, McDonnell BJ, Fudim M. Blood Pressure Variability in Clinical Practice: Past, Present and the Future. J Am Heart Assoc 2023; 12:e029297. [PMID: 37119077 PMCID: PMC10227216 DOI: 10.1161/jaha.122.029297] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Recent advances in wearable technology through convenient and cuffless systems will enable continuous, noninvasive monitoring of blood pressure (BP), heart rate, and heart rhythm on both longitudinal 24-hour measurement scales and high-frequency beat-to-beat BP variability and synchronous heart rate variability and changes in underlying heart rhythm. Clinically, BP variability is classified into 4 main types on the basis of the duration of monitoring time: very-short-term (beat to beat), short-term (within 24 hours), medium-term (within days), and long-term (over months and years). BP variability is a strong risk factor for cardiovascular diseases, chronic kidney disease, cognitive decline, and mental illness. The diagnostic and therapeutic value of measuring and controlling BP variability may offer critical targets in addition to lowering mean BP in hypertensive populations.
Collapse
Affiliation(s)
- Abu Baker Sheikh
- Department of Internal MedicineUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Paul A. Sobotka
- Division of CardiologyDuke University Medical CenterDurhamNCUSA
| | - Ishan Garg
- Department of Internal MedicineUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Jessilyn P. Dunn
- Department of Biomedical EngineeringDuke UniversityDurhamNCUSA
- Department of Biostatistics & BioinformaticsDuke UniversityDurhamNCUSA
| | | | | | | | - Barry J. McDonnell
- Department of Biomedical ResearchCardiff Metropolitan UniversitySchool of Sport and Health SciencesCardiffUnited Kingdom
| | - Marat Fudim
- Division of CardiologyDuke University Medical CenterDurhamNCUSA
- Duke Clinical Research InstituteDurhamNCUSA
| |
Collapse
|
8
|
Ghiarone T, Castorena-Gonzalez JA, Foote CA, Ramirez-Perez FI, Ferreira-Santos L, Cabral-Amador FJ, de la Torre R, Ganga RR, Wheeler AA, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. ADAM17 cleaves the insulin receptor ectodomain on endothelial cells and causes vascular insulin resistance. Am J Physiol Heart Circ Physiol 2022; 323:H688-H701. [PMID: 36018759 PMCID: PMC9512115 DOI: 10.1152/ajpheart.00039.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022]
Abstract
Inflammation and vascular insulin resistance are hallmarks of type 2 diabetes (T2D). However, several potential mechanisms causing abnormal endothelial insulin signaling in T2D need further investigation. Evidence indicates that the activity of ADAM17 (a disintegrin and metalloproteinase-17) and the presence of insulin receptor (IR) in plasma are increased in subjects with T2D. Accordingly, we hypothesized that in T2D, increased ADAM17 activity sheds the IR ectodomain from endothelial cells and impairs insulin-induced vasodilation. We used small visceral arteries isolated from a cross-sectional study of subjects with and without T2D undergoing bariatric surgery, human cultured endothelial cells, and recombinant proteins to test our hypothesis. Here, we demonstrate that arteries from subjects with T2D had increased ADAM17 expression, reduced presence of tissue inhibitor of metalloproteinase-3 (TIMP3), decreased extracellular IRα, and impaired insulin-induced vasodilation versus those from subjects without T2D. In vitro, active ADAM17 cleaved the ectodomain of the IRβ subunit. Endothelial cells with ADAM17 overexpression or exposed to the protein kinase-C activator, PMA, had increased ADAM17 activity, decreased IRα presence on the cell surface, and increased IR shedding. Moreover, pharmacological inhibition of ADAM17 with TAPI-0 rescued PMA-induced IR shedding and insulin-signaling impairments in endothelial cells and insulin-stimulated vasodilation in human arteries. In aggregate, our findings suggest that ADAM17-mediated shedding of IR from the endothelial surface impairs insulin-mediated vasodilation. Thus, we propose that inhibition of ADAM17 sheddase activity should be considered a strategy to restore vascular insulin sensitivity in T2D.NEW & NOTEWORTHY To our knowledge, this is the first study to investigate the involvement of ADAM17 in causing impaired insulin-induced vasodilation in T2D. We provide evidence that ADAM17 activity is increased in the vasculature of patients with T2D and support the notion that ADAM17-mediated shedding of endothelial IRα ectodomains is a novel mechanism causing vascular insulin resistance. Our results highlight that targeting ADAM17 activity may be a potential therapeutic strategy to correct vascular insulin resistance in T2D.
Collapse
Affiliation(s)
- Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jorge A Castorena-Gonzalez
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- Department of Pharmacology, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Christopher A Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri
| | | | | | | | - Rama R Ganga
- Department of Surgery, University of Missouri, Columbia, Missouri
| | - Andrew A Wheeler
- Department of Surgery, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
9
|
de Seabra Rodrigues Dias IR, Cao Z, Kwok HF. Adamalysins in COVID-19 - Potential mechanisms behind exacerbating the disease. Biomed Pharmacother 2022; 150:112970. [PMID: 35658218 PMCID: PMC9010236 DOI: 10.1016/j.biopha.2022.112970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 01/12/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, is a current pandemic that has resulted in nearly 250 million cases and over 5 million deaths. While vaccines have been developed to prevent infection, and most COVID-19 cases end up being fairly light, there are severe cases of COVID-19 that may end up in death, even with adequate healthcare treatment. New options to combat this disease's effects, therefore, could prove to be invaluable in saving lives. Adamalysins are proteins that have several roles in regulating different functions in the human body but are also known to have functions in inflammation. They are also known to have roles in several different diseases, including COVID-19, where ADAM17, in particular, is now well-known to have a prominent role, but also several diseases which include comorbidities that may worsen cases of COVID-19. Therefore, investigating the functions of adamalysins in disease may give us clues to the molecular workings of COVID-19 as well as potentially new therapeutic targets. Understanding these molecular mechanisms may also allow for an understanding of the mechanisms behind the rare severe side effects that occur in response to current COVID-19 vaccines, which may lead to better monitoring measures for people who may be more at risk of developing these side effects. This review investigates the known roles and functions of adamalysins in disease, including what is currently known of their involvement in COVID-19, and how these functions might be involved.
Collapse
Affiliation(s)
- Ivo Ricardo de Seabra Rodrigues Dias
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Zhijian Cao
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China,Co-corresponding author
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR,Corresponding author at: Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| |
Collapse
|
10
|
Iaconis D, Bordi L, Matusali G, Talarico C, Manelfi C, Cesta MC, Zippoli M, Caccuri F, Bugatti A, Zani A, Filippini F, Scorzolini L, Gobbi M, Beeg M, Piotti A, Montopoli M, Cocetta V, Bressan S, Bucci EM, Caruso A, Nicastri E, Allegretti M, Beccari AR. Characterization of raloxifene as a potential pharmacological agent against SARS-CoV-2 and its variants. Cell Death Dis 2022; 13:498. [PMID: 35614039 PMCID: PMC9130985 DOI: 10.1038/s41419-022-04961-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
The new coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic, which so far has caused over 6 million deaths in 2 years, despite new vaccines and antiviral medications. Drug repurposing, an approach for the potential application of existing pharmaceutical products to new therapeutic indications, could be an effective strategy to obtain quick answers to medical emergencies. Following a virtual screening campaign on the most relevant viral proteins, we identified the drug raloxifene, a known Selective Estrogen Receptor Modulator (SERM), as a new potential agent to treat mild-to-moderate COVID-19 patients. In this paper we report a comprehensive pharmacological characterization of raloxifene in relevant in vitro models of COVID-19, specifically in Vero E6 and Calu-3 cell lines infected with SARS-CoV-2. A large panel of the most common SARS-CoV-2 variants isolated in Europe, United Kingdom, Brazil, South Africa and India was tested to demonstrate the drug's ability in contrasting the viral cytopathic effect (CPE). Literature data support a beneficial effect by raloxifene against the viral infection due to its ability to interact with viral proteins and activate protective estrogen receptor-mediated mechanisms in the host cells. Mechanistic studies here reported confirm the significant affinity of raloxifene for the Spike protein, as predicted by in silico studies, and show that the drug treatment does not directly affect Spike/ACE2 interaction or viral internalization in infected cell lines. Interestingly, raloxifene can counteract Spike-mediated ADAM17 activation in human pulmonary cells, thus providing new insights on its mechanism of action. A clinical study in mild to moderate COVID-19 patients (NCT05172050) has been recently completed. Our contribution to evaluate raloxifene results on SARS-CoV-2 variants, and the interpretation of the mechanisms of action will be key elements to better understand the trial results, and to design new clinical studies aiming to evaluate the potential development of raloxifene in this indication.
Collapse
Affiliation(s)
| | - Licia Bordi
- grid.419423.90000 0004 1760 4142National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Giulia Matusali
- grid.419423.90000 0004 1760 4142National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | | | | | | | | | - Francesca Caccuri
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Antonella Bugatti
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Alberto Zani
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Federica Filippini
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Laura Scorzolini
- grid.419423.90000 0004 1760 4142National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Marco Gobbi
- grid.4527.40000000106678902Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marten Beeg
- grid.4527.40000000106678902Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Arianna Piotti
- grid.4527.40000000106678902Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Monica Montopoli
- grid.5608.b0000 0004 1757 3470Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, VIMM Veneto Institute Molecular Medicine, Padua, Italy
| | - Veronica Cocetta
- grid.5608.b0000 0004 1757 3470Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, VIMM Veneto Institute Molecular Medicine, Padua, Italy
| | - Silvia Bressan
- grid.5608.b0000 0004 1757 3470Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, VIMM Veneto Institute Molecular Medicine, Padua, Italy
| | - Enrico M. Bucci
- grid.264727.20000 0001 2248 3398Sbarro Health Research Organization, Biology Department CFT, Temple University, Philadelphia, PA USA
| | - Arnaldo Caruso
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Emanuele Nicastri
- grid.419423.90000 0004 1760 4142National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | | | | |
Collapse
|
11
|
Cagnacci A, Londero AP, Xholli A. COVID-19 and hormonal contraception. Case Rep Womens Health 2022; 34:e00389. [PMID: 35096531 PMCID: PMC8788094 DOI: 10.1016/j.crwh.2022.e00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/03/2022] Open
|
12
|
Cenko E, Badimon L, Bugiardini R, Claeys MJ, De Luca G, de Wit C, Derumeaux G, Dorobantu M, Duncker DJ, Eringa EC, Gorog DA, Hassager C, Heinzel FR, Huber K, Manfrini O, Milicic D, Oikonomou E, Padro T, Trifunovic-Zamaklar D, Vasiljevic-Pokrajcic Z, Vavlukis M, Vilahur G, Tousoulis D. Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology & Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovasc Res 2021; 117:2705-2729. [PMID: 34528075 PMCID: PMC8500019 DOI: 10.1093/cvr/cvab298] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/10/2021] [Indexed: 01/08/2023] Open
Abstract
The cardiovascular system is significantly affected in coronavirus disease-19 (COVID-19). Microvascular injury, endothelial dysfunction, and thrombosis resulting from viral infection or indirectly related to the intense systemic inflammatory and immune responses are characteristic features of severe COVID-19. Pre-existing cardiovascular disease and viral load are linked to myocardial injury and worse outcomes. The vascular response to cytokine production and the interaction between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and angiotensin-converting enzyme 2 receptor may lead to a significant reduction in cardiac contractility and subsequent myocardial dysfunction. In addition, a considerable proportion of patients who have been infected with SARS-CoV-2 do not fully recover and continue to experience a large number of symptoms and post-acute complications in the absence of a detectable viral infection. This conditions often referred to as 'post-acute COVID-19' may have multiple causes. Viral reservoirs or lingering fragments of viral RNA or proteins contribute to the condition. Systemic inflammatory response to COVID-19 has the potential to increase myocardial fibrosis which in turn may impair cardiac remodelling. Here, we summarize the current knowledge of cardiovascular injury and post-acute sequelae of COVID-19. As the pandemic continues and new variants emerge, we can advance our knowledge of the underlying mechanisms only by integrating our understanding of the pathophysiology with the corresponding clinical findings. Identification of new biomarkers of cardiovascular complications, and development of effective treatments for COVID-19 infection are of crucial importance.
Collapse
Affiliation(s)
- Edina Cenko
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Giuseppe Massarenti 9, 40134 Bologna, Italy
| | - Lina Badimon
- Cardiovascular Program ICCC-Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, CiberCV, Barcelona, Spain
| | - Raffaele Bugiardini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Giuseppe Massarenti 9, 40134 Bologna, Italy
| | - Marc J Claeys
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Giuseppe De Luca
- Cardiovascular Department of Cardiology, Ospedale “Maggiore della Carità”, Eastern Piedmont University, Novara, Italy
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, Lübeck, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Geneviève Derumeaux
- IMRB U955, UPEC, Créteil, France
- Department of Physiology, AP-HP, Henri-Mondor Teaching Hospital, Créteil, France
- Fédération Hospitalo-Universitaire « SENEC », Créteil, France
| | - Maria Dorobantu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam Cardiovascular Science Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
- Department of Physiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Diana A Gorog
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK
- Department of Postgraduate Medicine, University of Hertfordshire, Hatfield, UK
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Frank R Heinzel
- Department of Cardiology, Charité-Universitaetsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Kurt Huber
- 3rd Medical Department, Cardiology and Intensive Care Medicine, Wilhelminen Hospital, Vienna, Austria
- Medical School, Sigmund Freud University, Vienna, Austria
| | - Olivia Manfrini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Giuseppe Massarenti 9, 40134 Bologna, Italy
| | - Davor Milicic
- Department of Cardiovascular Diseases, University Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Evangelos Oikonomou
- Department of Cardiology, ‘Hippokration’ General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Teresa Padro
- Cardiovascular Program ICCC-Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, CiberCV, Barcelona, Spain
| | - Danijela Trifunovic-Zamaklar
- Cardiology Department, Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Marija Vavlukis
- University Clinic of Cardiology, Medical Faculty, Ss' Cyril and Methodius University in Skopje, Skopje, Republic of Macedonia
| | - Gemma Vilahur
- Cardiovascular Program ICCC-Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, CiberCV, Barcelona, Spain
| | - Dimitris Tousoulis
- Department of Cardiology, ‘Hippokration’ General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
13
|
Lashgari NA, Momeni Roudsari N, Momtaz S, Abdolghaffari AH. Transmembrane serine protease 2 and angiotensin-converting enzyme 2 anti-inflammatory receptors for COVID-19/inflammatory bowel diseases treatment. World J Gastroenterol 2021; 27:7943-7955. [PMID: 35046622 PMCID: PMC8678820 DOI: 10.3748/wjg.v27.i46.7943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) refer to a subgroup of chronic, progressive, long-term, and relapsing inflammatory disorders. IBD may spontaneously grow in the colon, and in severe cases may result in tumor lesions such as invasive carcinoma in inflamed regions of the intestine. Recent epidemiological reports indicate that old age and underlying diseases such as IBD contribute to severity and mortality in patients with coronavirus disease 2019 (COVID-19). Currently, the ongoing COVID-19 pandemic caused serious morbidity and mortality worldwide. It has also been shown that the transmembrane serine protease 2 is an essential factor for viral activation and viral engulfment. Generally, viral entry causes a 'cytokine storm' that induces excessive generation of proinflammatory cytokines/chemokines including interleukin (IL)-6, IL-2, IL-7, tumor necrosis factor-α, and interferon-γ. Future research could concentrate on developing inflammatory immunological responses that are efficient to encounter COVID-19. Current analysis elucidates the role of inflammation and immune responses during IBD infection with COVID-19 and provides a list of possible targets for IBD-regulated therapies in particular. Data from clinical, in vitro, and in vivo studies were collected in English from PubMed, Google Scholar, Scopus, and the Cochrane library until May 2021.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 141554364, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1941933111, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1941933111, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran 1941933111, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 141554364, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1941933111, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1941933111, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran 1941933111, Iran
| |
Collapse
|
14
|
Arazi H, Falahati A, Suzuki K. Moderate Intensity Aerobic Exercise Potential Favorable Effect Against COVID-19: The Role of Renin-Angiotensin System and Immunomodulatory Effects. Front Physiol 2021; 12:747200. [PMID: 34867452 PMCID: PMC8634264 DOI: 10.3389/fphys.2021.747200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is caused by a novel coronavirus (CoV) named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As the angiotensin converting enzyme 2 (ACE2) is the cellular receptor of SARS-CoV-2, it has a strong interaction with the renin angiotensin system (RAS). Experimental studies have shown that the higher levels of ACE2 or increasing ACE2/ACE1 ratio improve COVID-19 outcomes through lowering inflammation and death. Aerobic moderate intensity physical exercise fights off infections by two mechanisms, the inhibition of ACE/Ang II/AT1-R pathway and the stimulation of ACE2/Ang-(1-7)/MasR axis. Exercise can also activate the anti-inflammatory response so that it can be a potential therapeutic strategy against COVID-19. Here, we summarize and focus the relation among COVID-19, RAS, and immune system and describe the potential effect of aerobic moderate intensity physical exercise against CoV as a useful complementary tool for providing immune protection against SARS-CoV-2 virus infection, which is a novel intervention that requires further investigation.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Akram Falahati
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | | |
Collapse
|
15
|
Agrawal S, Salazar J, Tran TM, Agrawal A. Sex-Related Differences in Innate and Adaptive Immune Responses to SARS-CoV-2. Front Immunol 2021; 12:739757. [PMID: 34745109 PMCID: PMC8563790 DOI: 10.3389/fimmu.2021.739757] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/28/2021] [Indexed: 01/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) exhibits a sex bias with males showing signs of more severe disease and hospitalizations compared with females. The mechanisms are not clear but differential immune responses, particularly the initial innate immune response, between sexes may be playing a role. The early innate immune responses to SARS-CoV-2 have not been studied because of the gap in timing between the patient becoming infected, showing symptoms, and getting the treatment. The primary objective of the present study was to compare the response of dendritic cells (DCs) and monocytes from males and females to SARS-CoV-2, 24 h after infection. To investigate this, peripheral blood mononuclear cells (PBMCs) from healthy young individuals were stimulated in vitro with the virus. Our results indicate that PBMCs from females upregulated the expression of HLA-DR and CD86 on pDCs and mDCs after stimulation with the virus, while the activation of these cells was not significant in males. Monocytes from females also displayed increased activation than males. In addition, females secreted significantly higher levels of IFN-α and IL-29 compared with males at 24 h. However, the situation was reversed at 1 week post stimulation and males displayed high levels of IFN-α production compared with females. Further investigations revealed that the secretion of CXCL-10, a chemokine associated with lung complications, was higher in males than females at 24 h. The PBMCs from females also displayed increased induction of CTLs. Altogether, our results suggest that decreased activation of pDCs, mDCs, and monocytes and the delayed and prolonged IFN-α secretion along with increased CXCL-10 secretion may be responsible for the increased morbidity and mortality of males to COVID-19.
Collapse
Affiliation(s)
| | | | | | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
16
|
Farshbafnadi M, Kamali Zonouzi S, Sabahi M, Dolatshahi M, Aarabi MH. Aging & COVID-19 susceptibility, disease severity, and clinical outcomes: The role of entangled risk factors. Exp Gerontol 2021; 154:111507. [PMID: 34352287 PMCID: PMC8329427 DOI: 10.1016/j.exger.2021.111507] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
The emergence of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) in late 2019 has been associated with a high rate of mortality and morbidity. It has been determined that the old population are not only at an increased risk for affliction with COVID-19 infection, but also atypical presentations, severe forms of the disease, and mortality are more common in this population. A plethora of mechanisms and risk factors contribute to the higher risk of infection in the old population. For instance, aging is associated with an increment in the expression of Angiotensin-Converting Enzyme-2 (ACE-2), the receptor for SARS-CoV-2 spike protein, which precipitates replication of the virus in the old population. On the other hand, immune dysregulation and changes in gut microbiota as a result of aging can contribute to the cytokine storm, one of the main indicators of disease severity. Decrement in sex steroids, especially in women, as well as growth hormone, both of which have crucial roles in immune regulation, is a key contributor to disease severity in old age. Senescence-associated oxidative stress and mitochondrial dysfunction in both pneumocytes and immune cells contribute to the severity of infection in an exacerbative manner. In addition, lifestyle-associated factors such as nutrition and physical activity, which are compromised in old age, are known as important factors in COVID-19 infection. Aging-associated comorbidities, especially cardiovascular diseases and diabetes mellitus, also put older adults at an increased risk of complications, and disease severity.
Collapse
Affiliation(s)
| | - Sara Kamali Zonouzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammadmahdi Sabahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mahsa Dolatshahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Hadi Aarabi
- Padova Neuroscience Center (PNC), Department of Neuroscience, University of Padova, Padova, Italy.
| |
Collapse
|
17
|
Abramenko N, Vellieux F, Tesařová P, Kejík Z, Kaplánek R, Lacina L, Dvořánková B, Rösel D, Brábek J, Tesař A, Jakubek M, Smetana K. Estrogen Receptor Modulators in Viral Infections Such as SARS-CoV-2: Therapeutic Consequences. Int J Mol Sci 2021; 22:6551. [PMID: 34207220 PMCID: PMC8233910 DOI: 10.3390/ijms22126551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is a pandemic respiratory disease caused by the SARS-CoV-2 coronavirus. The worldwide epidemiologic data showed higher mortality in males compared to females, suggesting a hypothesis about the protective effect of estrogens against severe disease progression with the ultimate end being patient's death. This article summarizes the current knowledge regarding the potential effect of estrogens and other modulators of estrogen receptors on COVID-19. While estrogen receptor activation shows complex effects on the patient's organism, such as an influence on the cardiovascular/pulmonary/immune system which includes lower production of cytokines responsible for the cytokine storm, the receptor-independent effects directly inhibits viral replication. Furthermore, it inhibits the interaction of IL-6 with its receptor complex. Interestingly, in addition to natural hormones, phytestrogens and even synthetic molecules are able to interact with the estrogen receptor and exhibit some anti-COVID-19 activity. From this point of view, estrogen receptor modulators have the potential to be included in the anti-COVID-19 therapeutic arsenal.
Collapse
Affiliation(s)
- Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Fréderic Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
| | - Petra Tesařová
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic;
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Lukáš Lacina
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Barbora Dvořánková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Daniel Rösel
- BIOCEV, Faculty of Sciences, Charles University, 252 50 Vestec, Czech Republic; (D.R.); (J.B.)
| | - Jan Brábek
- BIOCEV, Faculty of Sciences, Charles University, 252 50 Vestec, Czech Republic; (D.R.); (J.B.)
| | - Adam Tesař
- Department of Neurology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic;
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| |
Collapse
|