1
|
Ast HK, Hammer M, Zhang S, Bruton A, Hatsu IE, Leung B, McClure R, Srikanth P, Farris Y, Norby-Adams L, Robinette LM, Arnold LE, Swann JR, Zhu J, Karstens L, Johnstone JM. Gut microbiome changes with micronutrient supplementation in children with attention-deficit/hyperactivity disorder: the MADDY study. Gut Microbes 2025; 17:2463570. [PMID: 39963956 PMCID: PMC11845018 DOI: 10.1080/19490976.2025.2463570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 02/23/2025] Open
Abstract
Micronutrients have demonstrated promise in managing inattention and emotional dysregulation in children with attention-deficit/hyperactivity disorder (ADHD). One plausible pathway by which micronutrients improve symptoms is the gut microbiome. This study examines changes in fecal microbial composition and diversity after micronutrient supplementation in children with ADHD (N = 44) and highlights potential mechanisms responsible for the behavioral improvement, as determined by blinded clinician-rated global improvement response to micronutrients. Participants represent a sub-group of the Micronutrients for ADHD in Youth (MADDY) study, a double blind randomized controlled trial in which participants received micronutrients or placebo for 8 weeks, followed by an 8-week open extension. Stool samples collected at baseline, week 8, and week 16 were analyzed using 16S rRNA amplicon sequencing targeting the V4 hypervariable region. Pairwise compositional analyses investigated changes in fecal microbial composition between micronutrients versus placebo and responders versus non-responders. A significant change in microbial evenness, as measured by alpha diversity, and beta-diversity, as measured by Bray-Curtis, was observed following micronutrients supplementation. The phylum Actinobacteriota decreased in the micronutrients group compared to placebo. Two butyrate-producing bacterial families: Rikenellaceae and Oscillospiraceae, exhibited a significant increase in change following micronutrients between responders versus non-responders. These findings suggest that micronutrients modulated the composition of the fecal microbiota and identified specific bacterial changes associated with micronutrient responders.
Collapse
Affiliation(s)
- Hayleigh K. Ast
- Department of Psychiatry, Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
| | - Matthew Hammer
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Shiqi Zhang
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Alisha Bruton
- Department of Psychiatry, Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
| | - Irene E. Hatsu
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Brenda Leung
- Faculty of Health Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Ryan McClure
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Priya Srikanth
- Oregon Health and Science University-Portland State University School of Public Health, Portland, OR, USA
| | - Yuliya Farris
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lydia Norby-Adams
- Department of Psychiatry, Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, USA
| | - Lisa M. Robinette
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - L. Eugene Arnold
- Department of Psychiatry & Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Jonathan R. Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Lisa Karstens
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Jeanette M. Johnstone
- Department of Psychiatry, Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Ma G, Chai Y, Tye KD, Xie H, Meng L, Tang X, Luo H, Xiao X. Predictive analysis of the impact of probiotic administration during pregnancy on the functional pathways of the gut microbiome in healthy infants based on 16S rRNA gene sequencing. Gene 2025; 952:149414. [PMID: 40086705 DOI: 10.1016/j.gene.2025.149414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/16/2024] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Maternal probiotic supplementation altered the microbial composition in infants' gut, yet its effect on the functional pathways of the microbiota remains unclear. This study aimed to explore the potential impact of maternal probiotic intake on the predicted functional pathways of the gut microbiome in healthy infants. A total of 24 pregnant women were randomly allocated to either the control group or the probiotic group. The women in the probiotic group began receiving probiotics at the 32nd week of pregnancy and continued until delivery. Meconium and fecal samples were collected from infants at birth, as well as on the 3rd day, 14th day, and 6th month after birth. The functional characteristics of the microbial community were inferred using 16S rRNA gene analysis, processed with PICRUSt software, and cross-referenced with the KEGG database. The probiotic group had lower levels of Actinobacteria and Bacteroidetes, while Bifidobacterium growth was notably increased in the infant gut microbiota. At day 0 postpartum, the control group exhibited higher levels of Prevotellaceae compared to the probiotic group (P < 0.05). However, no significant differences were found by day 3. At day 14, the control group exhibited higher levels of Bacteroidaceae and Bacteroides, while Bacteroides_thetaiotaomicron was more abundant in the probiotic group (P < 0.05). By 6 months, the control group showed a higher abundance of Firmicutes (P < 0.05). On day 0 postpartum, maternal probiotic consumption increased the Environmental information processing pathway at KEGG Level 1, and increased Energy metabolism, Metabolism of cofactors and vitamins, and Cell growth and death pathways at KEGG Level 2. It also increased Histidine metabolism, One carbon pool by folate, and Folate biosynthesis at KEGG Level 3. No changes were observed in the infant gut microbiota's functional metabolic pathways at 3 days postpartum. At 14 days postpartum, probiotics reduced Lipid metabolism pathways at KEGG Level 2 and the Citrate cycle at KEGG Level 3. At 6 months postpartum, probiotics decreased Carbohydrate metabolism pathways at KEGG Level 2. Our findings suggest that probiotic supplementation during pregnancy affects the functional metabolism of the gut microbiota in healthy infants. This, in turn, may influence the development of the infant's immune system, metabolism, and overall health by modifying the gut microbial environment.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yang Chai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kian Deng Tye
- Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haishan Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lulu Meng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Chen XN, Zhang Y, Kam KW, Au SCL, Zhang XJ, Ng MPH, Yip WW, Ip P, Wong ICK, Young AL, Pang CP, Tham CC, Chen LJ, Yam JC. Genetic association of attention-deficit/hyperactivity disorder with thirteen ocular disorders. J Affect Disord 2025; 385:119422. [PMID: 40381862 DOI: 10.1016/j.jad.2025.119422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
PURPOSE Although attention deficit hyperactivity disorder (ADHD) is linked to elevated risk of various ocular disorders, their genetic association and causality remain unclear. METHODS This study performed linkage disequilibrium score regression (LDSC) and pleiotropic analysis under composite null hypothesis (PLACO) to explore genetic associations, and bidirectional mendelian randomization (MR) to assess the causality between ADHD and thirteen ocular disorders. RESULTS LDSC showed ADHD genetically correlated with corneal ulcer, keratitis, blepharochalasis, lacrimal system disorders, senile cataract, retinal vascular occlusion, and age-related macular degeneration. MR revealed genetic liability to ADHD increased the risk of corneal ulcer (OR = 1.18, FDR adjusted P = 0.01), keratitis (OR = 1.13, P = 0.007), blepharochalasis (OR = 1.23, P = 0.002), and lacrimal system disorders (OR = 1.09, P = 0.04), while decreasing the risk of primary open-angle glaucoma (OR = 0.83, P = 0.003), exfoliation glaucoma (OR = 0.71, P = 0.001), and normotensive glaucoma (OR = 0.79, P = 0.02). Conversely, genetic liability to strabismus increased ADHD risk (OR = 1.09, P = 0.03). The identification of pleiotropic loci using PLACO suggested that genetic factors played a role in the associations between ADHD and ocular diseases. CONCLUSIONS This study revealed genetic associations between ADHD and multiple ocular disorders, identifying causal effects of ADHD on an increased risk of corneal ulcer, keratitis, blepharochalasis, and lacrimal system disorders, while showing a protective effect against glaucoma. Conversely, genetic liability to strabismus increased ADHD risk.
Collapse
Affiliation(s)
- Xiu Nian Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yuzhou Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong Hong Kong Eye Hospital, Hong Kong Special Administrative Region of China
| | - Sunny Chi Lik Au
- Department of Ophthalmology, Tung Wah Eastern Hospital, Hong Kong Special Administrative Region of China
| | - Xiu Juan Zhang
- Department of Ophthalmology, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Mandy P H Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wilson W Yip
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong Hong Kong Eye Hospital, Hong Kong Special Administrative Region of China
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ian C K Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Aston Pharmacy School, Aston University, Birmingham, B4 7ET, UK
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital & Alice Ho Miu Ling Nethersole Hospital, Hong Kong SAR, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong Hong Kong Eye Hospital, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong Hong Kong Eye Hospital, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China; Hong Kong Eye Hospital, Hong Kong Special Administrative Region of China; Department of Ophthalmology, Hong Kong Children's Hospital, Hong Kong Special Administrative Region of China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong Hong Kong Eye Hospital, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China; Hong Kong Eye Hospital, Hong Kong Special Administrative Region of China.
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong Hong Kong Eye Hospital, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China; Hong Kong Eye Hospital, Hong Kong Special Administrative Region of China; Department of Ophthalmology, Hong Kong Children's Hospital, Hong Kong Special Administrative Region of China.
| |
Collapse
|
4
|
Volpedo G, Riva A, Nobili L, Zara F, Ravizza T, Striano P. Gut-immune-brain interactions during neurodevelopment: from a brain-centric to a multisystem perspective. BMC Med 2025; 23:263. [PMID: 40325407 PMCID: PMC12054192 DOI: 10.1186/s12916-025-04093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) and epileptic syndromes are complex neurological conditions linked by shared abnormal neurobiological processes. Existing therapies mostly target symptoms, rather than addressing the underlying causes of the disease, leaving a burden of unmet clinical needs. MAIN BODY Emerging evidence suggests a significant role for the gut microbiota and associated immune responses in influencing brain development and function, changing the paradigm of a brain-centric origin of NDDs. This review discusses the pivotal interactions within the gut-immune-brain axis, highlighting how microbial dysbiosis and immune signaling contribute to neurological pathologies. We also explore the potential of microbial management and immunomodulation as novel therapeutic avenues, emphasizing the need for a shift towards addressing the root causes of these disorders rather than just their symptoms. CONCLUSIONS This integrated perspective offers new insights into the biological underpinnings of NDDs and epilepsy, proposing innovative biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy.
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy
- Child Neuropsychiatry Unit, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy
| | - Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy
| |
Collapse
|
5
|
Lee SY, Wang LJ, Yen CF. Identification of diagnostic and therapeutic biomarkers for attention-deficit/hyperactivity disorder. Kaohsiung J Med Sci 2025; 41:e12931. [PMID: 39764705 DOI: 10.1002/kjm2.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 04/02/2025] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common psychiatric condition among children and adolescents, often associated with a high risk of psychiatric comorbidities. Currently, ADHD diagnosis relies exclusively on clinical presentation and patient history, underscoring the need for clinically relevant, reliable, and objective biomarkers. Such biomarkers may enable earlier diagnosis and lead to improved treatment outcomes. Our research team has focused on identifying potential biomarkers for ADHD by investigating its possible pathomechanisms, with consideration of the aforementioned criteria. Given the significant sex-related differences in ADHD prevalence (male predominance) and the age-related variability in its symptomatology, we explored the role of neuroendocrine systems in ADHD. Specifically, we examined the epigenetic regulation mechanism involved in ADHD pathogenesis and developed a diagnostic model based on peripheral microRNA. Additionally, we investigated the role of microbiota dysbiosis in the pathophysiology of ADHD and provided novel insights into its management. This paper presents a summary of our findings on potential biomarkers for ADHD. By analyzing blood, salivary, and fecal samples, we identified several promising biomarkers that may serve as objective parameters for improving the diagnostic accuracy for ADHD. Further research involving larger cohort studies is required to confirm the reliability of these biomarkers.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Psychiatry, School of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Cheng-Fang Yen
- Department of Psychiatry, School of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
6
|
Wu W, Li S, Ye Z. Targeting the gut microbiota-inflammation-brain axis as a potential therapeutic strategy for psychiatric disorders: A Mendelian randomization analysis. J Affect Disord 2025; 374:150-159. [PMID: 39809351 DOI: 10.1016/j.jad.2025.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Extensive research indicates a link between gut microbiota dysbiosis and psychiatric disorders. However, the causal relationships between gut microbiota and different types of psychiatric disorders, as well as whether inflammatory factors mediate these relationships, remain unclear. METHODS We utilized summary statistics from the largest genome-wide association studies to date for gut microbiota (n = 18,340 in MiBioGen consortium), circulating inflammatory factors (n = 8293 for 41 factors and n = 14,824 for 91 factors in GWAS catalog), and six major psychiatric disorders from the Psychiatric Genomics Consortium (PGC): attention deficit hyperactivity disorder (ADHD, n = 38,691), anxiety disorder (ANX, n = 2248), bipolar disorder (BIP, n = 41,917), anorexia nervosa (AN, n = 16,992), schizophrenia (SCZ, n = 36,989), and autism spectrum disorder (ASD, n = 18,381). We conducted bidirectional Mendelian randomization (MR) analysis to explore the causal relationships between gut microbiota and psychiatric disorders. Additionally, we performed two-step MR and multivariable MR (MVMR) analyses to identify potential mediating inflammatory factors. RESULTS We found significant causal relationships between 11 gut microbiota and ADHD, 2 gut microbiota and ANX, 11 gut microbiota and BIP, 8 gut microbiota and AN, 15 gut microbiota and SCZ, and 5 gut microbiota and ASD. There were 16 positive and 15 negative causal effects between inflammatory factors and psychiatric disorders. Furthermore, MVMR analysis results indicated that the correlation between genus Roseburia and ADHD was mediated by MCSF, with a mediation proportion of 3.3 %; the correlation between genus Erysipelotrichaceae UCG003 and BIP was mediated by GDNF, with a mediation proportion of 3.7 %; and the correlation between family Prevotellaceae and SCZ was mediated by CD40, with a mediation proportion of 8.2 %. CONCLUSIONS The MR analysis results supported causal relationships between gut microbiota and six psychiatric disorders, as well as the potential mediating role of inflammatory factors. This study highlights the potential role of the gut microbiota-inflammation-brain axis in psychiatric disorders.
Collapse
Affiliation(s)
- Wenjing Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Shuhan Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zengjie Ye
- School of Nursing, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Lewis N, Villani A, Lagopoulos J. Gut dysbiosis as a driver of neuroinflammation in attention-deficit/hyperactivity disorder: A review of current evidence. Neuroscience 2025; 569:298-321. [PMID: 39848564 DOI: 10.1016/j.neuroscience.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
There is mounting evidence for the involvement of the immune system, neuroinflammation and disturbed gut microbiota, or dysbiosis, in attention-deficit/hyperactivity disorder (ADHD). Gut dysbiosis is strongly implicated in many physical, autoimmune, neurological, and neuropsychiatric conditions, however knowledge of its particular pathogenic role in ADHD is sparse. As such, this narrative review examines and synthesizes the available evidence related to inflammation, dysbiosis, and neural processes in ADHD. Minimal differences in microbiota diversity measures between cases and controls were found, however many relative abundance differences were observed at all classification levels (phylum to strain). Compositional differences of taxa important to key gut-brain axis pathways, in particular Bacteroides species and Faecalibacterium, may contribute to inflammation, brain functioning differences, and symptoms, in ADHD. We have identified one possible model of ADHD etiopathogenesis involving systemic inflammation, an impaired blood-brain barrier, and neural disturbances as downstream consequences of gut dysbiosis. Nevertheless, studies conducted to date have varied degrees of methodological rigour and involve diverse participant characteristics and analytical techniques, highlighting a need for additional research.
Collapse
Affiliation(s)
- Naomi Lewis
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia; Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya, QLD 4575, Australia.
| | - Anthony Villani
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia.
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Eccles Blvd, Birtinya, QLD 4575, Australia.
| |
Collapse
|
8
|
Davias A, Verghese M, Bridgman SL, Tun HM, Field CJ, Hicks M, Pei J, Hicks A, Moraes TJ, Simons E, Turvey SE, Subbarao P, Scott JA, Mandhane PJ, Kozyrskyj AL. Gut microbiota metabolites, secretory immunoglobulin A and Bayley-III cognitive scores in children from the CHILD Cohort Study. Brain Behav Immun Health 2025; 44:100946. [PMID: 39911944 PMCID: PMC11795817 DOI: 10.1016/j.bbih.2025.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
Background Dysbiosis of the gut microbiota has been demonstrated in neurodevelopmental disorders but the underlying mechanisms that may explain these associations are poorly understood. Gut secretory immunoglobulin A (SIgA) binds pathogenic microbes, preventing mucosal penetration. Gut microbes also influence SIgA production and its binding characteristics through short-chain fatty acid (SCFA) metabolites, allowing them to regulate the immune response. Serum IgA deficiency has been noted in children with autism spectrum disorders (ASD). In this study, we aimed to determine whether SIgA level in infancy is associated with gut microbiota taxonomy and metabolites, and neurodevelopmental outcomes in preschool children. Methods For a subsample of 178 children from the Canadian CHILD Cohort Study, gut microbiota of fecal samples collected at 3-4 months and 12 months was profiled using 16S rRNA sequencing. Gut bacterial metabolites levels and SIgA level were measured by nuclear magnetic resonance (NMR) based metabolomics and SIgA enzyme-linked immunosorbent assay at 3-4 months, respectively. Bayley-III Scale of Infant Development was assessed at 12 and 24 months. We evaluated direct relationships in multiple linear regression models and putative causal relationships in statistical mediation models. Results Propionate and butyrate levels at 3-4 months were associated with decreased Bayley cognitive score at 24 months (p-values: 0.01 and 0.02, respectively) in adjusted multiple linear regression models, but when we investigated an indirect relationship mediated by decreased SIgA level at 3-4 months, it did not reach statistical significance (p-values: 0.18 and 0.20, respectively). Lactate level at 3-4 months was associated with increased Bayley cognitive score at 24 months in adjusted multiple linear regression models (p-value: 0.01), but the statistical model mediated by increased SIgA level at 3-4 months did not reach statistical significance neither (p-value: 0.20). Conclusions Our study contributes to growing evidence that neurodevelopment is influenced by the infant gut microbiota and that it might involve SIgA level, but larger studies are required.
Collapse
Affiliation(s)
- Aline Davias
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, 38700, La Tronche, France
| | - Myah Verghese
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Sarah L. Bridgman
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Hein M. Tun
- The Jockey Club School of Public Health and Primary Care, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Canada
| | - Matthew Hicks
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Jacqueline Pei
- Department of Educational Psychology, Faculty of Education, University of Alberta, Edmonton, Canada
| | - Anne Hicks
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Theo J. Moraes
- Hospital for Sick Children (SickKids), Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Elinor Simons
- Children's Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| | - Stuart E. Turvey
- BC Children's Hospital, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Padmaja Subbarao
- Hospital for Sick Children (SickKids), Department of Pediatrics, University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, Division of Occupational and Environmental Health, University of Toronto, Toronto, Canada
| | - James A. Scott
- Dalla Lana School of Public Health, Division of Occupational and Environmental Health, University of Toronto, Toronto, Canada
| | - Piushkumar J. Mandhane
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Anita L. Kozyrskyj
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
9
|
Tezcan ME, Ekici F, Ugur C, Can Ü, Karatoprak S, Sağlıyan GA, Uçak EF, Güleç A, Erbasan V, Sen B, Simsek F, Atas AE. Do specific myelin autoantibodies and increased cerebral dopamine neurotrophic factor in the context of inflammation predict the diagnosis of attention deficit hyperactivity disorder in medication-free children? Brain Behav Immun 2025; 124:125-136. [PMID: 39617068 DOI: 10.1016/j.bbi.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 11/22/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND The aim of this study was to investigate the serum levels of anti-myelin basic protein (anti-MBP), anti-myelin oligodentrocyte glycoprotein (anti-MOG), myelin-associated glycoprotein (MAG), high-sensitivity C-reactive protein (hs-CRP), cerebral dopamine neurotrophic factor (CDNF), cerebellin-1, and reelin and their relationships with clinical severity and irritability behaviours in children with attention deficit (AD) hyperactivity disorder (ADHD) and typically developing (TD) healthy controls. METHODS In this study, 141 children with ADHD between the ages of 8 and 14 years who were medication-free and 135 TD healthy controls were included. The serum levels of anti-MBP, anti-MOG, MAG, CDNF, hs-CRP, cerebellin, and reelin were measured using enzyme-linked immunosorbent assay kits. The Turgay Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV)-based Screening and Evaluation Scale for Attention Deficit and Disruptive Behavior Disorders-Parent Form (TDSM-IV-O) and the affective reactivity index (ARI) scale were used to assess clinical severity and irritability behaviours in the children. RESULTS The MAG, CDNF, hs-CRP, reelin, and cerebellin levels were significantly higher in the ADHD group than in the control group, but no significant differences in anti-MBP and anti-MOG levels were found between the groups. Compared with the controls, the patients with ADHD showed significantly higher scores on the ARI self- and parent-report scales. The reelin, hs-CRP, and MAG levels were significantly associated with the TDSM-IV-O AD scores, AD and oppositional defiant (OD) disorder scores and hyperactivity, and OD and conduct disorder scores, respectively. Hs-CRP was significantly associated with anti-MBP and cerebellin levels. In an analysis of covariance, the results were unchanged even after controlling for potential confounders such as age, body mass index, and sex. CONCLUSION This study demonstrates that MAG, CDNF, hs-CRP, reelin, and cerebellin levels may play a potential role in the pathogenesis of ADHD.
Collapse
Affiliation(s)
- Mustafa Esad Tezcan
- Department of Child and Adolescent Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Fatih Ekici
- Department of Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Cüneyt Ugur
- Department of Pediatrics, Konya City Health Application and Research, University of Health Sciences Turkey, Karatay-Konya 42020, Turkey.
| | - Ümmügülsüm Can
- Department of Medical Biochemistry, Konya City Health Application and Research, University of Health Sciences Turkey, Karatay-Konya 42020, Turkey.
| | - Serdar Karatoprak
- Department of Child and Adolescent Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | | | - Ekrem Furkan Uçak
- Department of Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Ahmet Güleç
- Department of Child and Adolescent Psychiatry, Balıkesir City Hospital, Altıeylül, Balıkesir, Turkey.
| | - Vefa Erbasan
- Department of Psychiatry, İzmir City Hospital, Bayraklı, 35540 Izmir, Turkey.
| | - Barıs Sen
- Department of Psychiatry, Manavgat State Hospital, Manavgat-Antalya, Turkey.
| | - Fulya Simsek
- Department of Child and Adolescent Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Abdullah Enes Atas
- Department of Radiology, Konya City Hospital, Karatay-Konya 42020, Turkey.
| |
Collapse
|
10
|
Lu J, Jiang M, Chai D, Sun Y, Wu L. Integrative analysis of intestinal flora and untargeted metabolomics in attention-deficit/hyperactivity disorder. Front Microbiol 2025; 16:1452423. [PMID: 39944648 PMCID: PMC11817268 DOI: 10.3389/fmicb.2025.1452423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a clinically common neurodevelopmental disorder of the brain. In addition to genetic factors, an imbalance in gut flora may also play a role in the development of ADHD. Currently, it is critical to investigate the function of gut flora and related metabolites, which may form the fundamental basis of bidirectional cross-linking between the brain and the gut, in addition to focusing on the changed gut flora in ADHD. This study aimed to investigate the possible relationship between changes in gut flora and metabolites and ADHD by analyzing metagenome and untargeted metabolomics of fecal samples from ADHD patients. Specifically, we attempted to identify key metabolites and the metabolic pathways they are involved in, as well as analyze in detail the structure and composition of the gut flora of ADHD patients. In order to further investigate the relationship between gut flora and ADHD symptoms, some behavioral studies were conducted following the transplantation of gut flora from ADHD patients into rats. The results of the metagenome analysis revealed several distinct strains, including Bacteroides cellulosilyticus, which could be important for diagnosing ADHD. Additionally, the ADHD group showed modifications in several metabolic pathways and metabolites, including the nicotinamide and nicotinic acid metabolic pathways and the metabolite nicotinamide in this pathway. The behavioral results demonstrated that rats with ADHD gut flora transplants displayed increased locomotor activity and interest, indicating that the onset of behaviors such as ADHD could be facilitated by the flora associated with ADHD. This research verified the alterations in gut flora and metabolism observed in ADHD patients and provided a list of metabolites and flora that were significantly altered in ADHD. Simultaneously, our findings revealed that modifications to the microbiome could potentially trigger behavioral changes in animals, providing an experimental basis for comprehending the function and influence of gut flora on ADHD. These results might provide new perspectives for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Jiamin Lu
- Departments of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Maoying Jiang
- Behavioral Pediatric Department and Child Primary Care Department, Hangzhou Children’s Hospital, Hangzhou, China
| | - Dingyue Chai
- Departments of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yuzi Sun
- Departments of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Lihui Wu
- Departments of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
11
|
Davias A, Lyon-Caen S, Rolland M, Iszatt N, Thomsen C, Haug LS, Sakhi AK, Monot C, Rayah Y, Ilhan ZE, Jovanovic N, Philippat C, Eggesbo M, Lepage P, Slama R. Perinatal Exposure to Phenols and Poly- and Perfluoroalkyl Substances and Gut Microbiota in One-Year-Old Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15395-15414. [PMID: 39173114 DOI: 10.1021/acs.est.3c09927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The role of the gut microbiota in human health calls for a better understanding of its determinants. In particular, the possible effects of chemicals with widespread exposure other than pharmaceuticals are little known. Our aim was to characterize the sensitivity of the early-life gut microbiota to specific chemicals with possible antimicrobial action. Within the SEPAGES French couple-child cohort, we assessed 12 phenols in repeated urine samples from 356 pregnant women and their offspring and 19 poly- and perfluoroalkyl substances (PFASs) in serum from the pregnant women. We collected stool samples from the children at one year of age, in which the V3-V4 region of the 16S rRNA gene was sequenced, allowing for gut bacterial profiling. Associations of each chemical with α- and β-diversity indices of the gut microbiota and with the relative abundance of the most abundant taxa were assessed using single-pollutant and mixture (BKMR) models. Perinatal exposure to certain parabens was associated with gut microbiota α- and β-diversity and with Firmicutes and Proteobacteria. Suggestive associations of certain phenols with genera of the Lachnospiraceae and Enterobacteriaceae families were observed, but these were not maintained after correction for multiple testing. Parabens, which have known antimicrobial properties, might disrupt the child gut microbiota, but larger studies are required to confirm these findings.
Collapse
Affiliation(s)
- Aline Davias
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Sarah Lyon-Caen
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Matthieu Rolland
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Line Småstuen Haug
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Amrit Kaur Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Celine Monot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Yamina Rayah
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Zehra Esra Ilhan
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Nicolas Jovanovic
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Claire Philippat
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Merete Eggesbo
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Rémy Slama
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| |
Collapse
|
12
|
Weyns AS, Ahannach S, Van Rillaer T, De Bruyne T, Lebeer S, Hermans N. Enhancing pediatric attention-deficit hyperactivity disorder treatment: exploring the gut microbiota effects of French maritime pine bark extract and methylphenidate intervention. Front Nutr 2024; 11:1422253. [PMID: 39257605 PMCID: PMC11385872 DOI: 10.3389/fnut.2024.1422253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/26/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction The pathogenesis of Attention-Deficit Hyperactivity Disorder (ADHD) is thought to be multifactorial, with a potential role for the bidirectional communication between the gut microbiome and brain development and function. Since the "golden-standard" medication therapy with methylphenidate (MPH) is linked to multiple adverse effects, there is a need for alternative treatment options such as dietary polyphenols. These secondary plant metabolites exert antioxidant and anti-inflammatory effects, but much less is known about their impact on the gut microbiota. Since polyphenols are believed to modulate gut microbial composition, interventions might be advantageous in ADHD therapy. Therefore, intervention studies with polyphenols in ADHD therapy investigating the gut microbial composition are highly relevant. Methods Besides the primary research questions addressed previously, this study explored a potential prebiotic effect of the polyphenol-rich French Maritime Pine Bark Extract (PBE) compared to MPH and a placebo in pediatric ADHD patients by studying their impact on the gut microbiota via amplicon sequencing of the full length 16S rRNA gene ribosomal subunit (V1-V9). Results One interesting finding was the high relative abundance of Bifidobacteria among all patients in our study cohort. Moreover, our study has identified that treatment (placebo, MPH and PBE) explains 3.94% of the variation in distribution of microbial taxa (adjusted p-value of 0.011). Discussion Our small sample size (placebo: n = 10; PBE: n = 13 and MPH: n = 14) did not allow to observe clear prebiotic effects in the patients treated with PBE. Notwithstanding this limitation, subtle changes were noticeable and some limited compositional changes could be observed. Clinical Trial Registration doi: 10.1186/S13063-017-1879-6.
Collapse
Affiliation(s)
- Anne-Sophie Weyns
- Natural Products and Food Research and Analysis - Pharmaceutical Technology (NatuRA-PT), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Ahannach
- Laboratorium of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tim Van Rillaer
- Laboratorium of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tess De Bruyne
- Natural Products and Food Research and Analysis - Pharmaceutical Technology (NatuRA-PT), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Laboratorium of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Nina Hermans
- Natural Products and Food Research and Analysis - Pharmaceutical Technology (NatuRA-PT), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
You M, Chen N, Yang Y, Cheng L, He H, Cai Y, Liu Y, Liu H, Hong G. The gut microbiota-brain axis in neurological disorders. MedComm (Beijing) 2024; 5:e656. [PMID: 39036341 PMCID: PMC11260174 DOI: 10.1002/mco2.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Previous studies have shown a bidirectional communication between human gut microbiota and the brain, known as the microbiota-gut-brain axis (MGBA). The MGBA influences the host's nervous system development, emotional regulation, and cognitive function through neurotransmitters, immune modulation, and metabolic pathways. Factors like diet, lifestyle, genetics, and environment shape the gut microbiota composition together. Most research have explored how gut microbiota regulates host physiology and its potential in preventing and treating neurological disorders. However, the individual heterogeneity of gut microbiota, strains playing a dominant role in neurological diseases, and the interactions of these microbial metabolites with the central/peripheral nervous systems still need exploration. This review summarizes the potential role of gut microbiota in driving neurodevelopmental disorders (autism spectrum disorder and attention deficit/hyperactivity disorder), neurodegenerative diseases (Alzheimer's and Parkinson's disease), and mood disorders (anxiety and depression) in recent years and discusses the current clinical and preclinical gut microbe-based interventions, including dietary intervention, probiotics, prebiotics, and fecal microbiota transplantation. It also puts forward the current insufficient research on gut microbiota in neurological disorders and provides a framework for further research on neurological disorders.
Collapse
Affiliation(s)
- Mingming You
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Nan Chen
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yuanyuan Yang
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Lingjun Cheng
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hongzhang He
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yanhua Cai
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yating Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Guolin Hong
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
14
|
Arteaga-Henríquez G, Ramos-Sayalero C, Ibañez-Jimenez P, Karina Rosales-Ortiz S, Kilencz T, Schiweck C, Schnorr I, Siegl A, Arias-Vasquez A, Bitter I, Fadeuilhe C, Ferrer M, Lavebratt C, Matura S, Reif A, Réthelyi JM, Richarte V, Rommelse N, Antoni Ramos-Quiroga J. Efficacy of a synbiotic in the management of adults with Attention-Deficit and Hyperactivity Disorder and/or Borderline Personality Disorder and high levels of irritability: Results from a multicenter, randomized, placebo-controlled, "basket" trial. Brain Behav Immun 2024; 120:360-371. [PMID: 38885746 DOI: 10.1016/j.bbi.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Irritability worsens prognosis and increases mortality in individuals with Attention-Deficit and Hyperactivity Disorder (ADHD) and/or Borderline Personality Disorder (BPD). However, treatment options are still insufficient. The aim of this randomized, double blind, placebo-controlled study was to investigate the superiority of a synbiotic over placebo in the management of adults with ADHD and/or BPD and high levels of irritability. The study was conducted between February 2019 and October 2020 at three European clinical centers located in Hungary, Spain and Germany. Included were patients aged 18-65 years old diagnosed with ADHD and/or BPD and high levels of irritability (i.e., an Affectivity Reactivity Index (ARI-S) ≥ 5, plus a Clinical Global Impression-Severity Scale (CGI-S) score ≥ 4). Subjects were randomized 1(synbiotic):1(placebo); the agent was administered each day, for 10 consecutive weeks. The primary outcome measure was end-of-treatment response (i.e., a reduction ≥ 30 % in the ARI-S total score compared to baseline, plus a Clinical Global Impression-Improvement (CGI-I) total score of < 3 (very much, or much improved) at week 10). Between-treatment differences in secondary outcomes, as well as safety were also investigated. Of the 231 included participants, 180 (90:90) were randomized and included in the intention-to-treat-analyses. Of these, 117 (65 %) were females, the mean age was 38 years, ADHD was diagnosed in 113 (63 %), BPD in 44 (24 %), both in 23 (13 %). The synbiotic was well tolerated. At week 10, patients allocated to the synbiotic experienced a significantly higher response rate compared to those allocated to placebo (OR: 0.2, 95 % CI:0.1 to 0.7; P = 0.01). These findings suggest that that (add-on) treatment with a synbiotic may be associated with a clinically meaningful improvement in irritability in, at least, a subgroup of adults with ADHD and/or BPD. A superiority of the synbiotic over placebo in the management of emotional dysregulation (-3.6, 95 % CI:-6.8 to -0.3; P = 0.03), emotional symptoms (-0.6, 95 % CI:-1.2 to -0.05; P = 0.03), inattention (-1.8, 95 % CI: -3.2 to -0.4; P = 0.01), functioning (-2.7, 95 % CI: -5.2 to -0.2; P = 0.03) and perceived stress levels (-0.6, 95 % CI: -1.2 to -0.05; P = 0.03) was also suggested. Higher baseline RANK-L protein levels were associated with a significantly lower response rate, but only in the synbiotic group (OR: 0.1, 95 % CI: -4.3 to - 0.3, P = 0.02). In the placebo group, higher IL-17A levels at baseline were significantly associated with a higher improvement in in particular, emotional dysregulation (P = 0.04), opening a door for new (targeted) drug intervention. However, larger prospective studies are warranted to confirm the findings. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03495375.
Collapse
Affiliation(s)
- Gara Arteaga-Henríquez
- Department of Mental Health, Hospital Universitari Vall d́Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health, and Addictions, Vall d́Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain; NCRR-The National Center for Register-Based Research, Aahrus University. Aahrus, Denmark.
| | - Carolina Ramos-Sayalero
- Group of Psychiatry, Mental Health, and Addictions, Vall d́Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
| | - Pol Ibañez-Jimenez
- Group of Psychiatry, Mental Health, and Addictions, Vall d́Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
| | - Silvia Karina Rosales-Ortiz
- Group of Psychiatry, Mental Health, and Addictions, Vall d́Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
| | - Tünde Kilencz
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary
| | - Carmen Schiweck
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Isabel Schnorr
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Anne Siegl
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Alejandro Arias-Vasquez
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands; Department of Psychiatry, Radboudd University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - István Bitter
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary
| | - Christian Fadeuilhe
- Department of Mental Health, Hospital Universitari Vall d́Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health, and Addictions, Vall d́Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | - Marc Ferrer
- Department of Mental Health, Hospital Universitari Vall d́Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health, and Addictions, Vall d́Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autónoma de Barcelona, Barcelona, Catalonia, Spain
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Instituet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Silke Matura
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Andreas Reif
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - János M Réthelyi
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary
| | - Vanesa Richarte
- Department of Mental Health, Hospital Universitari Vall d́Hebron, Barcelona, Catalonia, Spain; Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autónoma de Barcelona, Barcelona, Catalonia, Spain
| | - Nanda Rommelse
- Karakter Child and Adolescent Psychiatry University Center, Stockholm, the Netherlands
| | - Josep Antoni Ramos-Quiroga
- Department of Mental Health, Hospital Universitari Vall d́Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health, and Addictions, Vall d́Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autónoma de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Wang LJ, Tsai CS, Chou WJ, Kuo HC, Huang YH, Lee SY, Dai HY, Yang CY, Li CJ, Yeh YT. Add-On Bifidobacterium Bifidum Supplement in Children with Attention-Deficit/Hyperactivity Disorder: A 12-Week Randomized Double-Blind Placebo-Controlled Clinical Trial. Nutrients 2024; 16:2260. [PMID: 39064703 PMCID: PMC11279422 DOI: 10.3390/nu16142260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
We conducted a 12-week randomized double-blind placebo-controlled clinical trial to investigate the potential impact of Bifidobacterium bifidum (Bf-688) supplementation on attention-deficit/hyperactivity disorder (ADHD). Children with ADHD who were already receiving a stable dose of methylphenidate (MPH) treatment were enrolled and were randomly assigned to two groups: one receiving add-on Bf-688 (daily bacterial count of 5 × 109 CFUs) (n = 51) and the other receiving a placebo (n = 51). All participants underwent assessments using Conners' Continuous Performance Test (CPT) and Conners' Continuous Auditory Test of Attention (CATA). Additionally, fecal samples were collected at the beginning of the trial (week 0) and at the endpoint (week 12). Remarkably, the group receiving Bf-688 supplementation, but not the placebo group, exhibited significant improvements in omission errors in CPT as well as Hit reaction time in both CPT and CATA. Gut microbiome analysis revealed a significant increase in the Firmicutes to Bacteroidetes ratio (F/B ratio) only in the Bf-688 group. Furthermore, we identified significant negative correlations between N-Glycan biosynthesis and Hit reaction time in both CPT and CATA. Our results demonstrate that the probiotic Bf-688 supplement can enhance neuropsychological performance in children with ADHD, possibly by altering the composition of the gut microbiota, ultimately leading to reduced N-Glycan biosynthesis.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-J.W.); (C.-S.T.); (W.-J.C.); (C.-J.L.)
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Ching-Shu Tsai
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-J.W.); (C.-S.T.); (W.-J.C.); (C.-J.L.)
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-J.W.); (C.-S.T.); (W.-J.C.); (C.-J.L.)
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-C.K.); (Y.-H.H.)
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-C.K.); (Y.-H.H.)
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Hong-Ying Dai
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan;
| | - Chia-Yu Yang
- Department of Microbiology and Immunology/Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chia-Jung Li
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (L.-J.W.); (C.-S.T.); (W.-J.C.); (C.-J.L.)
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan;
| |
Collapse
|
16
|
Borrego-Ruiz A, Borrego JJ. Neurodevelopmental Disorders Associated with Gut Microbiome Dysbiosis in Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:796. [PMID: 39062245 PMCID: PMC11275248 DOI: 10.3390/children11070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The formation of the human gut microbiome initiates in utero, and its maturation is established during the first 2-3 years of life. Numerous factors alter the composition of the gut microbiome and its functions, including mode of delivery, early onset of breastfeeding, exposure to antibiotics and chemicals, and maternal stress, among others. The gut microbiome-brain axis refers to the interconnection of biological networks that allow bidirectional communication between the gut microbiome and the brain, involving the nervous, endocrine, and immune systems. Evidence suggests that the gut microbiome and its metabolic byproducts are actively implicated in the regulation of the early brain development. Any disturbance during this stage may adversely affect brain functions, resulting in a variety of neurodevelopmental disorders (NDDs). In the present study, we reviewed recent evidence regarding the impact of the gut microbiome on early brain development, alongside its correlation with significant NDDs, such as autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, cerebral palsy, fetal alcohol spectrum disorders, and genetic NDDs (Rett, Down, Angelman, and Turner syndromes). Understanding changes in the gut microbiome in NDDs may provide new chances for their treatment in the future.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, 29010 Málaga, Spain
| |
Collapse
|
17
|
Obeagu EI, Bluth MH. Eosinophils and Cognitive Impairment in Schizophrenia: A New Perspective. J Blood Med 2024; 15:227-237. [PMID: 38800637 PMCID: PMC11127652 DOI: 10.2147/jbm.s451988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia is a complex psychiatric disorder characterized by a wide array of cognitive impairments. While research has predominantly focused on the neurological aspects of schizophrenia, emerging evidence suggests that the immune system, specifically eosinophils, may play a significant role in the cognitive deficits associated with the disorder. This review presents a novel perspective on the interplay between eosinophils and cognitive impairment in schizophrenia. Eosinophils, traditionally associated with allergic responses and inflammation, have garnered limited attention within the realm of neuropsychiatry. Recent studies have hinted at a potential link between eosinophil activation and the pathogenesis of schizophrenia. In this comprehensive review, we delve into the world of eosinophils, elucidating their nature, functions, and interactions with the immune system. We examine the cognitive deficits observed in individuals with schizophrenia and discuss existing theories on the etiology of these impairments, focusing on immune system involvement. The paper also highlights the evolving body of research that supports the idea of eosinophilic influence on schizophrenia-related cognitive deficits. Furthermore, we explore potential mechanisms through which eosinophils may exert their effects on cognitive function in schizophrenia, including interactions with other immune cells and inflammatory pathways. By discussing the clinical implications and potential therapeutic avenues stemming from this newfound perspective, we underscore the practical significance of this emerging field of research. While this paper acknowledges the limitations and challenges inherent in studying eosinophils within the context of schizophrenia, it serves as a posit for novel thought in this vexing disease space as well as a call to action for future research endeavors. By providing a comprehensive survey of the existing literature and posing unanswered questions, we aim to inspire a reimagining of the relationship between eosinophils and cognitive impairment in schizophrenia, ultimately advancing our understanding and treatment of this debilitating disorder.
Collapse
Affiliation(s)
| | - Martin H Bluth
- Department of Pathology, Division of Blood Transfusion Medicine, Maimonides Medical Center, Brooklyn, NY, USA
| |
Collapse
|
18
|
Li C, Chen H, Gu Y, Chen W, Liu M, Lei Q, Li Y, Liang X, Wei B, Huang D, Liu S, Su L, Zeng X, Wang L. Causal effects of PM 2.5 exposure on neuropsychiatric disorders and the mediation via gut microbiota: A Mendelian randomization study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116257. [PMID: 38564871 DOI: 10.1016/j.ecoenv.2024.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/03/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Growing evidence has revealed the impacts of exposure to fine particulate matter (PM2.5) and dysbiosis of gut microbiota on neuropsychiatric disorders, but the causal inference remains controversial due to residual confounders in observational studies. METHODS This study aimed to examine the causal effects of exposure to PM2.5 on 4 major neuropsychiatric disorders (number of cases = 18,381 for autism spectrum disorder [ASD], 38,691 for attention deficit hyperactivity disorder [ADHD], 67,390 for schizophrenia, and 21,982 cases for Alzheimer's disease [AD]), and the mediation pathway through gut microbiota. Two-sample Mendelian randomization (MR) analyses were performed, in which genetic instruments were identified from genome-wide association studies (GWASs). The included GWASs were available from (1) MRC Integrative Epidemiology Unit (MRC-IEU) for PM2.5, PMcoarse, PM10, and NOX; (2) the Psychiatric Genomics Consortium (PGC) for ASD, ADHD, and schizophrenia; (3) MRC-IEU for AD; and (4) MiBioGen for gut microbiota. Multivariable MR analyses were conducted to adjust for exposure to NOX, PMcoarse, and PM10. We also examined the mediation effects of gut microbiota in the associations between PM2.5 exposure levels and neuropsychiatric disorders, using two-step MR analyses. RESULTS Each 1 standard deviation (1.06 ug/m3) increment in PM2.5 concentrations was associated with elevated risk of ASD (odds ratio [OR] 1.42, 95% confidence interval [CI] 1.00-2.02), ADHD (1.51, 1.15-1.98), schizophrenia (1.47, 1.15-1.87), and AD (1.57, 1.16-2.12). For all the 4 neurodevelopmental disorders, the results were robust under various sensitivity analyses, while the MR-Egger method yielded non-significant outcomes. The associations remained significant for all the 4 neuropsychiatric disorders after adjusting for PMcoarse, while non-significant after adjusting for NOX and PM10. The effects of PM2.5 exposure on ADHD and schizophrenia were partially mediated by Lachnospiraceae and Barnesiella, with the proportions ranging from 8.31% to 15.77%. CONCLUSIONS This study suggested that exposure to PM2.5 would increase the risk of neuropsychiatric disorders, partially by influencing the profile of gut microbiota. Comprehensive regulations on air pollutants are needed to help prevent neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chanhua Li
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hao Chen
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ye Gu
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wanling Chen
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Meiliang Liu
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qinggui Lei
- The Eighth People's Hospital of Nanning, Nanning, Guangxi 530001, China
| | - Yujun Li
- Nanning Children's Rehabilitation Center, Nanning, Guangxi 530005, China
| | - Xiaomei Liang
- Nanning Children's Rehabilitation Center, Nanning, Guangxi 530005, China
| | - Binyuan Wei
- Nanning Children's Rehabilitation Center, Nanning, Guangxi 530005, China
| | - Dongping Huang
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shun Liu
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Li Su
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoyun Zeng
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lijun Wang
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
19
|
Kim E, Huh JR, Choi GB. Prenatal and postnatal neuroimmune interactions in neurodevelopmental disorders. Nat Immunol 2024; 25:598-606. [PMID: 38565970 DOI: 10.1038/s41590-024-01797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
The intricate relationship between immune dysregulation and neurodevelopmental disorders (NDDs) has been observed across the stages of both prenatal and postnatal development. In this Review, we provide a comprehensive overview of various maternal immune conditions, ranging from infections to chronic inflammatory conditions, that impact the neurodevelopment of the fetus during pregnancy. Furthermore, we examine the presence of immunological phenotypes, such as immune-related markers and coexisting immunological disorders, in individuals with NDDs. By delving into these findings, we shed light on the potential underlying mechanisms responsible for the high occurrence of immune dysregulation alongside NDDs. We also discuss current mouse models of NDDs and their contributions to our understanding of the immune mechanisms underlying these diseases. Additionally, we discuss how neuroimmune interactions contribute to shaping the manifestation of neurological phenotypes in individuals with NDDs while also exploring potential avenues for mitigating these effects.
Collapse
Affiliation(s)
- Eunha Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gloria B Choi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
Wang N, Wang H, Bai Y, Zhao Y, Zheng X, Gao X, Zhang Z, Yang L. Metagenomic Analysis Reveals Difference of Gut Microbiota in ADHD. J Atten Disord 2024; 28:872-879. [PMID: 38327077 DOI: 10.1177/10870547231225491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Although ADHD is highly heritable, some environmental factors contribute to its development. Given the growing evidence that gut microbiota was involved in psychiatric disorders, we aimed to identify the characteristic composition of the gut microbiota in ADHD. METHODS We recruited 47 medication-naive children and adolescents with ADHD, and 60 healthy controls (HCs). We used shotgun metagenomics to measure the structure of the gut microbiota and analyzed the difference in bacterial taxa between ADHD and HCs. RESULTS Significant differences were found between the ADHD and HC groups in both alpha diversity indices (Simpson index, p = .025 and Shannon index, p = .049) and beta diversity indices (Euclidean distance, Bray-Curtis distance, and JSD distance, p < 2.2e-16). Nine representative species best explain the difference. CONCLUSION Patients with ADHD showed significant differences in the composition of the gut microbiota compared with HCs. These results may help identify potential biomarkers of ADHD.
Collapse
Affiliation(s)
- Ning Wang
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Haibin Wang
- Yan'an Third People's Hospital, Shanxi Province, China
| | - Yu Bai
- Yan'an Third People's Hospital, Shanxi Province, China
| | - Yilu Zhao
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Xiangyu Zheng
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Xuping Gao
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Zifeng Zhang
- Yan'an Third People's Hospital, Shanxi Province, China
| | - Li Yang
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| |
Collapse
|
21
|
Nagamine T. Beware of attention-deficit/hyperactivity disorder (ADHD) in older adults. Psychogeriatrics 2024; 24:148-149. [PMID: 37967582 DOI: 10.1111/psyg.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Affiliation(s)
- Takahiko Nagamine
- Sunlight Brain Research Centre, Hofu, Japan
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
22
|
Tanır Y, Cahid Örengül A, Esad Özdemir Y, Karayağmurlu A, Bilbay Kaynar T, Merve Baki A, Vural P, Coşkun M. Serum Zonulin and Claudin-5 but not Interferon-Gamma and Interleukin-17A Levels Increased in Children with Specific Learning Disorder: A Case-Control Study. PSYCHIAT CLIN PSYCH 2023; 33:211-217. [PMID: 38765314 PMCID: PMC11082564 DOI: 10.5152/pcp.2023.23660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/16/2023] [Indexed: 05/22/2024] Open
Abstract
Background Gut-blood and blood-brain barrier permeabilty (gut-brain axis) has been attracting increased attention in the etiology of neurodevelopmental disorders. In this study, we aimed to investigate serum levels of zonulin (a biomarker of intestinal permeability), claudin-5 (a biomarker of blood-brain barrier permeability), and interferon-gamma and interleukin-17A in children with specific learning disorder. Methods Forty-three children with DSM-5 diagnosis of specific learning disorder and 43 healthy children were included in this study. Serum levels of zonulin, claudin-5, interferon-gamma, and interleukin-17A were measured using commercial enzyme-linked immunosorbent assay kits. Results Serum zonulin and claudin-5 levels of the study group were significantly higher than the control group according to the multivariate analysis of covariance test while controlling for age, gender, and body mass index. However, serum interferon-gamma and interleukin-17A levels were not significantly different between the two groups. There was no correlation either between zonulin and interferon-gamma and interleukin-17A or claudin-5 and interferon-gamma and interleukin-17A. Conclusion Gut-blood and blood-brain barrier permeability may be disrupted in subjects with special learning disorder. Further research is needed to determine whether zonulin and claudin-5 may be biomarkers, and some dietary interventions or specific agents such as zonulin or claudin-5 inhibitors could be used in the management of neurodevelopmental disorders including special learning disorder.
Collapse
Affiliation(s)
- Yaşar Tanır
- Department of Child and Adolescent Psychiatry, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | - Abdurrahman Cahid Örengül
- Department of Child and Adolescent Psychiatry, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | - Yahya Esad Özdemir
- Department of Child and Adolescent Psychiatry, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | - Ali Karayağmurlu
- Department of Child and Adolescent Psychiatry, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | - Tuba Bilbay Kaynar
- Department of Child and Adolescent Psychiatry, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | - Adile Merve Baki
- Department of Biochemistry, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | - Pervin Vural
- Department of Biochemistry, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | - Murat Coşkun
- Department of Child and Adolescent Psychiatry, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| |
Collapse
|
23
|
Cickovski T, Mathee K, Aguirre G, Tatke G, Hermida A, Narasimhan G, Stollstorff M. Attention Deficit Hyperactivity Disorder (ADHD) and the gut microbiome: An ecological perspective. PLoS One 2023; 18:e0273890. [PMID: 37594987 PMCID: PMC10437823 DOI: 10.1371/journal.pone.0273890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is an increasingly prevalent neuropsychiatric disorder characterized by hyperactivity, inattention, and impulsivity. Symptoms emerge from underlying deficiencies in neurocircuitry, and recent research has suggested a role played by the gut microbiome. The gut microbiome is an ecosystem of interdependent taxa involved in an exponentially complex web of interactions, plus host gene and reaction pathways, some of which involve neurotransmitters with roles in ADHD neurocircuitry. Studies have analyzed the ADHD gut microbiome using macroscale metrics such as diversity and differential abundance, and have proposed several taxa as elevated or reduced in ADHD compared to Control. Few studies have delved into the complex underlying dynamics ultimately responsible for the emergence of such metrics, leaving a largely incomplete, sometimes contradictory, and ultimately inconclusive picture. We aim to help complete this picture by venturing beyond taxa abundances and into taxa relationships (i.e. cooperation and competition), using a publicly available gut microbiome dataset (targeted 16S, v3-4 region, qPCR) from an observational, case-control study of 30 Control (15 female, 15 male) and 28 ADHD (15 female, 13 male) undergraduate students. We first perform the same macroscale analyses prevalent in ADHD gut microbiome literature (diversity, differential abundance, and composition) to observe the degree of correspondence, or any new trends. We then estimate two-way ecological relationships by producing Control and ADHD Microbial Co-occurrence Networks (MCNs), using SparCC correlations (p ≤ 0.01). We perform community detection to find clusters of taxa estimated to mutually cooperate along with their centroids, and centrality calculations to estimate taxa most vital to overall gut ecology. We finally summarize our results, providing conjectures on how they can guide future experiments, some methods for improving our experiments, and general implications for the field.
Collapse
Affiliation(s)
- Trevor Cickovski
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL United States of America
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States of America
| | - Gloria Aguirre
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Gorakh Tatke
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Alejandro Hermida
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Melanie Stollstorff
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| |
Collapse
|
24
|
Martín-Hernández D, Muñoz-López M, Tendilla-Beltrán H, Caso JR, García-Bueno B, Menchén L, Leza JC. Immune System and Brain/Intestinal Barrier Functions in Psychiatric Diseases: Is Sphingosine-1-Phosphate at the Helm? Int J Mol Sci 2023; 24:12634. [PMID: 37628815 PMCID: PMC10454107 DOI: 10.3390/ijms241612634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Over the past few decades, extensive research has shed light on immune alterations and the significance of dysfunctional biological barriers in psychiatric disorders. The leaky gut phenomenon, intimately linked to the integrity of both brain and intestinal barriers, may play a crucial role in the origin of peripheral and central inflammation in these pathologies. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates both the immune response and the permeability of biological barriers. Notably, S1P-based drugs, such as fingolimod and ozanimod, have received approval for treating multiple sclerosis, an autoimmune disease of the central nervous system (CNS), and ulcerative colitis, an inflammatory condition of the colon, respectively. Although the precise mechanisms of action are still under investigation, the effectiveness of S1P-based drugs in treating these pathologies sparks a debate on extending their use in psychiatry. This comprehensive review aims to delve into the molecular mechanisms through which S1P modulates the immune system and brain/intestinal barrier functions. Furthermore, it will specifically focus on psychiatric diseases, with the primary objective of uncovering the potential of innovative therapies based on S1P signaling.
Collapse
Affiliation(s)
- David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Marina Muñoz-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 72570 Puebla, Mexico;
| | - Javier R. Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Departamento de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III (CIBEREHD, ISCIII), 28029 Madrid, Spain
| | - Juan C. Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| |
Collapse
|
25
|
Xiong RG, Li J, Cheng J, Zhou DD, Wu SX, Huang SY, Saimaiti A, Yang ZJ, Gan RY, Li HB. The Role of Gut Microbiota in Anxiety, Depression, and Other Mental Disorders as Well as the Protective Effects of Dietary Components. Nutrients 2023; 15:3258. [PMID: 37513676 PMCID: PMC10384867 DOI: 10.3390/nu15143258] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The number of individuals experiencing mental disorders (e.g., anxiety and depression) has significantly risen in recent years. Therefore, it is essential to seek prevention and treatment strategies for mental disorders. Several gut microbiota, especially Firmicutes and Bacteroidetes, are demonstrated to affect mental health through microbiota-gut-brain axis, and the gut microbiota dysbiosis can be related to mental disorders, such as anxiety, depression, and other mental disorders. On the other hand, dietary components, including probiotics (e.g., Lactobacillus and Bifidobacterium), prebiotics (e.g., dietary fiber and alpha-lactalbumin), synbiotics, postbiotics (e.g., short-chain fatty acids), dairy products, spices (e.g., Zanthoxylum bungeanum, curcumin, and capsaicin), fruits, vegetables, medicinal herbs, and so on, could exert protective effects against mental disorders by enhancing beneficial gut microbiota while suppressing harmful ones. In this paper, the mental disorder-associated gut microbiota are summarized. In addition, the protective effects of dietary components on mental health through targeting the gut microbiota are discussed. This paper can be helpful to develop some dietary natural products into pharmaceuticals and functional foods to prevent and treat mental disorders.
Collapse
Affiliation(s)
- Ruo-Gu Xiong
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Jiahui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Jin Cheng
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Dan-Dan Zhou
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Si-Xia Wu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Si-Yu Huang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Adila Saimaiti
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Zhi-Jun Yang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Hua-Bin Li
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| |
Collapse
|
26
|
Langmajerová M, Roubalová R, Šebela A, Vevera J. The effect of microbiome composition on impulsive and violent behavior: A systematic review. Behav Brain Res 2023; 440:114266. [PMID: 36549572 DOI: 10.1016/j.bbr.2022.114266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The impact of the microbiome on brain function and behavior has recently become an important research topic. We searched for a link between the gut microbiome and impulsive and violent behavior. We focused on critical factors influencing the microbiome establishment that may affect human health later in life, i.e., delivery mode, early-life feeding, and early antibiotic exposure. We searched PubMed, Web of Science, and the Cochrane Library. We included original human studies examining adults and children with impulsive and/or violent behavior that assessed the gut microbiota composition of participants, delivery mode, infant feeding mode, or early antibiotic exposure. Bibliographic searches yielded 429 articles, and 21 met the eligibility criteria. Two studies reported data on patients with schizophrenia with violent behavior, while 19 studies reported data on patients with attention-deficit hyperactivity disorder (ADHD). The results showed several bacterial taxa associated with ADHD symptomatology and with violent behavior in patients with schizophrenia. No association was found between delivery mode and impulsive behavior, nor did any articles relate infant feeding mode to violent human behavior. Those studies investigating early antibiotic exposure yielded ambiguous results. The heterogeneity of the data and the different methodologies of the included studies limited the external validity of the results. We found few studies that addressed the possible microbiome involvement in the pathophysiology of impulsive and violent behavior in humans. Our review revealed a gap in knowledge regarding links between the gut microbiome and these extreme behavioral patterns.
Collapse
Affiliation(s)
- Michaela Langmajerová
- Department of Psychiatry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic.
| | - Radka Roubalová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Antonín Šebela
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic; Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic.
| | - Jan Vevera
- Department of Psychiatry, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic; Department of Psychiatry, University Hospital Pilsen, alej Svobody 80, 304 60 Pilsen, Czech Republic.
| |
Collapse
|
27
|
Panchal SK, Brown L. Potential Benefits of Anthocyanins in Chronic Disorders of the Central Nervous System. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010080. [PMID: 36615279 PMCID: PMC9822395 DOI: 10.3390/molecules28010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Anthocyanins have been shown to be effective in chronic diseases because of their antioxidant and anti-inflammatory effects together with changes in the gut microbiota and modulation of neuropeptides such as insulin-like growth factor-1. This review will examine whether these mechanisms may be effective to moderate the symptoms of disorders of the central nervous system in humans, including schizophrenia, Parkinson's disease, Alzheimer's disease, autism spectrum disorder, depression, anxiety, attention-deficit hyperactivity disorder and epilepsy. Thus, anthocyanins from fruits and berries should be considered as complementary interventions to improve these chronic disorders.
Collapse
Affiliation(s)
- Sunil K. Panchal
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence: ; Tel.: +61-433-062-123
| |
Collapse
|
28
|
Soltysova M, Tomova A, Ostatnikova D. Gut Microbiota Profiles in Children and Adolescents with Psychiatric Disorders. Microorganisms 2022; 10:2009. [PMID: 36296284 PMCID: PMC9608804 DOI: 10.3390/microorganisms10102009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of our work is to summarize the current state of knowledge on gut microbiota differences in children and adolescents with psychiatric disorders. To find the relevant articles, the PubMed, Web of Science, and Google Scholar databases were searched. Articles in English presenting original data and comparing the composition of gut microbiota in child psychiatric patients with gut microbiota in healthy children and adolescents were selected. Finally, we identified 55 articles eligible for our purpose. The majority of patients with autism spectrum disorders (ASD) were investigated. A smaller number of studies evaluating the gut microbiota in children and adolescents with attention-deficit/hyperactivity disorder (ADHD), Rett syndrome, anorexia nervosa, depressive disorder (DD), and tic disorders were found. The main findings of this research are discussed in our review, focusing on the age-related gut microbiota specificity for psychiatric disorders and the differences between individual diagnosis. To conclude, the gut microbiota in children and adolescents with psychiatric disorders is evidently different from that in controls. The most pronounced differences are seen in children with ASD, less in ADHD. Moreover, the changes are not identical to those in adult psychiatric patients, as Ruminococcus, Turicibacter, and Bilophila were increased in adults, and decreased in children with ASD, and Parabacteroides and Alistipes were more frequently represented in adults, but less frequently represented in children with depression. The available data suggest some genera have a different abundance in individual psychiatric disorders (e.g., Bilophila, Bifidobacterium, Clostridium, Coprococcus, Faecalibacterium, and Ruminococcus), suggesting their importance for the gut-brain axis. Other bacterial genera might be more important for the pathophysiology of specific disorder in children and adolescents, as Akkermansia and Desulfovibrio for ASD, or Romboutsia for DD. Based on the research findings, we assume that gut microbiota corrections have the potential to improve clinical symptoms in psychiatric patients.
Collapse
Affiliation(s)
- Marcela Soltysova
- Academic Research Center for Autism, Institute of Physiology, Faculty of Medicine in Bratislava, Comenius University, 813 72 Bratislava, Slovakia
- Child Psychiatry Outpatient Care Unit, Zvolen Hospital, 960 01 Zvolen, Slovakia
| | - Aleksandra Tomova
- Child Psychiatry Outpatient Care Unit, Zvolen Hospital, 960 01 Zvolen, Slovakia
| | - Daniela Ostatnikova
- Child Psychiatry Outpatient Care Unit, Zvolen Hospital, 960 01 Zvolen, Slovakia
| |
Collapse
|
29
|
Lee MJ, Lai HC, Kuo YL, Chen VCH. Association between Gut Microbiota and Emotional-Behavioral Symptoms in Children with Attention-Deficit/Hyperactivity Disorder. J Pers Med 2022; 12:jpm12101634. [PMID: 36294773 PMCID: PMC9605220 DOI: 10.3390/jpm12101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies have explored the role of the microbiome in attention-deficit/hyperactivity disorder (ADHD). However, whether the microbiome is correlated with emotional-behavioral disturbances, the most common comorbid symptom of ADHD, remains unclear. We established a cross-sectional study in which 6- to 18-year-old children with ADHD who were receiving no medication and a healthy control group of children without ADHD were recruited to analyze their microbiome composition. Microbiota of fecal samples were collected and analyzed using a 16s rRNA gene sequencing approach. In comparison with the healthy control group, the gut microbiota in children with ADHD exhibited significantly lower beta diversity. The abundance of the phylum Proteobacteria and the genera Agathobacter, Phascolarctobacterium, Prevotella_2, Acidaminococcus, Roseburia, and Ruminococcus gnavus group was increased in the ADHD group compared with the healthy group. Linear discriminant effect size (LEfSe) analysis was used to highlight specific bacteria phylotypes that were differentially altered between the ADHD and control groups. A regression analysis was performed to investigate the association between microbiota and emotional-behavioral symptoms in children with ADHD. A significant association was noted between withdrawal and depression symptoms and Agathobacter (p = 0.044), and between rule-breaking behavior and the Ruminococcus gnavus group (p = 0.046) after adjusting for sex, age, and the ADHD core symptoms score. This study advances the knowledge of how gut microbiota composition may contribute to emotional-behavioral symptoms in children with ADHD. The detailed mechanisms underlying the role of the gut microbiota in ADHD pathophysiology still require further investigation.
Collapse
Affiliation(s)
- Min-Jing Lee
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi 613, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Central Research Laboratory, Xiamen Chang Gung Hospital, Xiamen 361, China
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Yu-Lun Kuo
- Biotools Co., Ltd., New Taipei City 221, Taiwan
| | - Vincent Chin-Hung Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi 613, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-5-3621000 (ext. 2315); Fax: +886-5-3623002
| |
Collapse
|
30
|
Chang SJ, Kuo HC, Chou WJ, Tsai CS, Lee SY, Wang LJ. Cytokine Levels and Neuropsychological Function among Patients with Attention-Deficit/Hyperactivity Disorder and Atopic Diseases. J Pers Med 2022; 12:jpm12071155. [PMID: 35887652 PMCID: PMC9316989 DOI: 10.3390/jpm12071155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Since atopic disease and inflammatory cytokines are both involved in attention deficit hyperactivity disorder (ADHD), in this study, we examined the relationship among cytokine levels, neuropsychological function, and behavioral manifestations in patients with ADHD and atopic diseases. Participants were categorized into individuals with ADHD and atopic disease (n = 41), those with ADHD without allergy (n = 74), individuals without ADHD but with allergy (n = 23), and those without ADHD or allergy (n = 49). We used the Swanson, Nolan, and Pelham IV Scale (SNAP-IV), Conners’ Continuous Performance Test (Conners CPT), and Conners’ Continuous Auditory Test of Attention (CATA) to assess patients’ behavioral symptoms, visual attention, and auditory attention, respectively. Participants’ IFN-γ, IL-1B, IL-6, IL-10, IL-13, IL-17, MCP-1, and TNF-α plasma levels were assessed using multiplex assays. We found that the prevalence rates of atopic diseases (asthma, allergic rhinitis, or atopic dermatitis) were similar between individuals with ADHD and those without ADHD. ADHD behavioral symptoms (SNAP-IV), CPT omission scores, and CATA detectability scores demonstrated significant differences between individuals with ADHD and those without ADHD, regardless of atopic diseases. However, plasma levels of cytokines (TNF-α, IFN-γ, and IL-17) were negatively correlated with inattention symptoms. This study demonstrates a potential relationship between cytokine levels and neuropsychological function among patients with ADHD and atopic diseases.
Collapse
Affiliation(s)
- Shung-Jie Chang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (S.-J.C.); (W.-J.C.); (C.-S.T.)
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (S.-J.C.); (W.-J.C.); (C.-S.T.)
| | - Ching-Shu Tsai
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (S.-J.C.); (W.-J.C.); (C.-S.T.)
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung 83301, Taiwan;
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung 83301, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (S.-J.C.); (W.-J.C.); (C.-S.T.)
- Correspondence: ; Tel.: +886-7-7317123 (ext. 8753); Fax: +886-7-7326817
| |
Collapse
|