1
|
Wu Y, Ye Q, Chen D, Huang L, Mo R, Cai X. METTL14-mediated lncRNA NEAT1 promotes asthma progression by regulating the miR-302a-3p/March5 axis. Int Immunopharmacol 2025; 158:114850. [PMID: 40359886 DOI: 10.1016/j.intimp.2025.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/17/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
Asthma is a chronic inflammatory airway disease with airway remodeling as its main pathological basis. LncRNA NEAT1 has been reported to be up-regulated in asthma, but its upstream and downstream regulatory mechanisms are unclear. This study explored the role and functional mechanism of lncRNA NEAT1 in asthma. Airway smooth muscle cells (ASMCs) isolated from the bronchial tissues of asthmatic patients and healthy volunteers were employed and transfected with an overexpression lentivirus and short hairpin lentivirus. Real-time quantitative PCR (qRT-PCR) and western blotting were used to determine the expression levels of genes. The proliferation and migration of ASMCs were evaluated, and the levels of pro-inflammatory cytokines, inflammasomes, and ROS were determined. Mitophagy was observed by transmission electron microscopy (TEM). An asthma model was established to further confirm the effects of lncRNA NEAT1 on asthma. Our results showed that lncRNA NEAT1 was highly expressed in asthma patient-derived ASMCs. LncRNA NEAT1 enhanced ASMC proliferation and migration, promoted inflammation, and inhibited mitophagy. Treatment with a mitophagy inducer reversed the effects of lncRNA NEAT1. The regulatory axis of lncRNA NEAT1/miR-302a-3p/March5 was confirmed, and lncRNA NEAT1 was found to influence ASMC function via the miR-302a-3p/March5 axis. Moreover, METTL14 was found to enhance lncRNA NEAT1 m6A modification and promote its expression, and thereby participate in the functional regulation of ASMCs. The role of lncRNA NEAT1 was also confirmed in an asthma mouse model, where it alleviated asthma pathology in lncRNA NEAT1 knockdown mice. Collectively, our present study confirmed that METTL14 mediated m6A modification of lncRNA NEAT1 and improved lncRNA NEAT1 expression, which further inhibited mitophagy and promoted asthma progression by regulating the miR-302a-3p/March5 axis. Our study elucidated the mechanism by which lncRNA NEAT1 affects airway remodeling. It also provides valuable insights into the pathogenesis of asthma, and suggests lncRNA NEAT1 as a possible biomarker for asthma.
Collapse
Affiliation(s)
- Yawei Wu
- Department of Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, China
| | - Qiuyun Ye
- Department of Pulmonary and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, China
| | - Dandan Chen
- Department of Critical Care Medicine, Haikou Hospital, Xiangya Medical College, Central South University, China
| | - Linhui Huang
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, China
| | - Rubing Mo
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, China
| | - Xingjun Cai
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, China.
| |
Collapse
|
2
|
Franczak E, Kugler BA, Salathe SF, Allen JA, Sardiu ME, McCoin CS, Hevener AL, Morris EM, Thyfault JP. Loss of ovarian function prevents exercise-induced activation of hepatic mitophagic flux. Am J Physiol Endocrinol Metab 2025; 328:E869-E884. [PMID: 40293097 PMCID: PMC12148014 DOI: 10.1152/ajpendo.00107.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/07/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
Exercise effectively treats metabolic dysfunction-associated steatotic liver disease (MASLD) by enhancing hepatic mitochondria energy metabolism. However, the efficiency of exercise in treating MASLD in postmenopausal women may be reduced. Previously, we showed acute treadmill exercise activates hepatic mitophagy, the selective degradation of low-functioning mitochondria. Mitophagic flux is differentially regulated in female mice compared with males, possibly by estrogen. Here, we tested if loss of ovarian function via ovariectomy (OVX), which reduces estrogen, drives MASLD, and compromised hepatic mitochondrial energetics, would blunt activation of hepatic mitophagy induced by exercise. Following OVX, 12- to 15-wk-old female mice were placed on a low-fat diet (LFD) or high-fat diet (HFD) for 4 wk to induce MASLD, after which half of the mice performed a single acute bout of treadmill exercise to exhaustion or remained sedentary. Two hours post exercise, isolated hepatic mitochondria were examined via Western blotting and proteomics for accumulation of known mitophagy proteins. After exercise, reduced basal mitophagic flux in LFD-fed OVX was restored to levels found in sham mice. However, exercise possessed blunted capacity to promote mitochondrial recruitment of DRP1 (regulator of fission) and accumulation mitophagy-associated proteins (E3-ubiquitin ligase, ubiquitin, autophagy adaptor proteins, and autophagosome cargo receptors) in OVX versus sham mice on HFD. Mitochondrial H2O2 production, which putatively activates mitophagy, was elevated following exercise in all conditions except OVX + HFD. In summary, OVX reduces mitophagic flux, blunting the stimulatory effects of exercise on these factors. The impaired regulation of mitophagy following the cessation of ovarian function likely contributes to the pathogenesis of MASLD post menopause.NEW & NOTEWORTHY Loss of ovarian function reduces hepatic mitochondrial respiratory capacity, but mechanisms are unknown. Here, we leverage exercise-induced hepatic mitophagy activation to determine if loss of ovarian function impairs mitochondrial quality control mechanisms. Our data reveal that loss of ovarian function reduces both ubiquitin-mediated hepatic mitophagy and mitochondrial recruitment of Drp1 (mitochondrial fission protein) following acute exercise. These impairments to hepatic mitophagy coincided with alterations in hepatic mitochondrial respiratory capacity and mitochondrial-derived H2O2 production.
Collapse
Affiliation(s)
- Edziu Franczak
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, United States
| | - Benjamin A Kugler
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States
- KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Sebastian F Salathe
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Julie A Allen
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, United States
| | - Mihaela E Sardiu
- Department of Biostatistics and Data Science, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Colin S McCoin
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, United States
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, California, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System GRECC, Los Angeles, California, United States
| | - E Matthew Morris
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States
- KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John P Thyfault
- Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas Center for Metabolism and Obesity Research, Kansas City, Missouri, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States
- Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, United States
- KU Diabetes Institute, The University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
3
|
Huang CL, Qi-En S, Cen XF, Ye T, Qu HS, Chen SJ, Liu D, Xia HG, Xu CF, Zhu JS. TJ0113 attenuates fibrosis in metabolic dysfunction-associated steatohepatitis by inducing mitophagy. Int Immunopharmacol 2025; 156:114678. [PMID: 40252468 DOI: 10.1016/j.intimp.2025.114678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH) fibrosis is a liver disease accompanied by inflammatory cell infiltration. There is growing evidence that insufficient mitophagy can exacerbate inflammation and liver fibrosis (LF). TJ0113 is a novel mitophagy inducer. The study aimed to explore the role of TJ0113 in ameliorating fibrosis in MASH and its mechanisms. METHODS A high-fat diet (HFD)-induced MASH mice model and a transforming growth factor (TGF)-β1-induced LX-2 cells model were used, and then they were treated with TJ0113. Changes in hepatocyte damage were observed using electron microscopy. Expression of key molecules related to mitophagy, mitochondrial damage and inflammation in liver was detected by immunofluorescence staining (IF), immunohistochemistry (IHC) and western blotting (WB). RESULT TJ0113 induces mitophagy through parkin/PINK1 and ATG5 signaling pathways and reduces lipid accumulation, inflammation and fibrosis in the liver of MASH mice. TJ0113 attenuated hepatic injury and lowered serum ALT, AST, TC and TG levels. TJ0113 reduced pro-inflammatory factors (IL-1β, IL-6, TNF-α), TGF-β1/Smad pathway activation and typical fibrosis-related molecules (α-SMA, Collagen-1) expression. In addition, NF-κB/NLRP3 signaling pathway activation after MASH was significantly attenuated by enhanced Mitophagy. We found that TJ0113 was able to effectively and safely induce mitophagy in vitro and reduce TGF-β1/Smad signaling and downstream pro-fibrotic responses in TGF-β1-treated LX-2 cells. CONCLUSION TJ0113 enhances mitophagy to inhibit lipid accumulation, inflammation and fibrosis formation in MASH, and is a candidate for MASH treatment.
Collapse
Affiliation(s)
- Chun-Lian Huang
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Shen Qi-En
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xu-Feng Cen
- Research Center of Clinical Pharmacy of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Ting Ye
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Hang-Shuai Qu
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China.
| | - Si-Jia Chen
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Dong Liu
- Hangzhou PhecdaMed Co., Ltd., Third Floor, Building 2, No. 2626. Yuhangtang Road, Yuhang District, Hangzhou 310003, China.
| | - Hong-Guang Xia
- Research Center of Clinical Pharmacy of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Cheng-Fu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Jian-Sheng Zhu
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China.
| |
Collapse
|
4
|
Yin W, Gao W, Yang Y, Lin W, Chen W, Zhu X, Zhu R, Zhu L, Jiao N. Disrupted host-microbiota crosstalk promotes nonalcoholic fatty liver disease progression by impaired mitophagy. Microbiol Spectr 2025:e0010025. [PMID: 40401922 DOI: 10.1128/spectrum.00100-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/05/2025] [Indexed: 05/23/2025] Open
Abstract
The intricate interplay between host genes and intrahepatic microbes is vital in shaping the hepatic microenvironment. This study aims to elucidate how host-microbiota interactions contribute to the progression of nonalcoholic fatty liver disease (NAFLD). Hepatic gene and microbial profiles were analyzed from 570 samples across five cohorts, including 72 control, 124 nonalcoholic fatty liver (NAFL), 143 Borderline, and 231 nonalcoholic steatohepatitis (NASH) samples. Least absolute shrinkage and selection operator penalized regression and sparse canonical correlation analysis were utilized to identify host-microbiota interactions and their function. Validation was performed using a bulk transcriptomic data set comprising 1,332 samples and a single-cell transcriptomic data set of seven samples. We observed stage-specific gene expression changes of disrupting energy metabolism and immune responses, alongside microbial shifts shaping the NAFLD microenvironment. Additionally, we identified 5,537, 1,937, 1,485, and 2,933 host-microbiota interactions in control, NAFL, Borderline, and NASH samples, respectively. Escherichia coli and Actinomyces naeslundii dominated the interaction network in control but were replaced by Sphingomonadales and Sphingomonadaceae in disease stages from NAFL, preceding the transcriptomic tipping point observed in Borderline. In NASH, interactions significantly weakened, accompanied by the loss of mutualistic interactions between bacteria such as Bacillales, Ralstonia insidiosa, Sphingomonadaceae, and host mitophagy genes including SQSTM1, OPTN, and BNIP3L. Single-cell data sets confirmed these interactions were co-localized in macrophages and monocytes in control, which shifted to hepatocytes and endothelial cells in NAFLD. Shifts in host-microbial interaction signal early microenvironment changes. Disturbed host-microbiota interactions impacting mitophagy can trigger a pro-inflammatory hepatic microenvironment, potentially driving disease progression.IMPORTANCEThis study integrated multiple cohorts to uncover fundamental and generalizable signals in the progression of nonalcoholic fatty liver disease. Key changes in both liver gene expression and microbiota were identified across disease stages, with microbial composition and interactions with host offering earlier insights into microenvironmental changes. Notably, host-microbiota interactions related to mitophagy, crucial in early stages, were destroyed in nonalcoholic steatohepatitis. This disruption may contribute to the worsening inflammation and disease progression.
Collapse
Affiliation(s)
- Wenjing Yin
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenxing Gao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuwei Yang
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weili Lin
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wanning Chen
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinyue Zhu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ruixin Zhu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lixin Zhu
- Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Na Jiao
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Kuchay MS, Choudhary NS, Ramos-Molina B. Pathophysiological underpinnings of metabolic dysfunction-associated steatotic liver disease. Am J Physiol Cell Physiol 2025; 328:C1637-C1666. [PMID: 40244183 DOI: 10.1152/ajpcell.00951.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 01/31/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is emerging as the leading cause of chronic liver disease worldwide, reflecting the global epidemics of obesity, metabolic syndrome, and type 2 diabetes. Beyond its strong association with excess adiposity, MASLD encompasses a heterogeneous population that includes individuals with normal body weight ("lean MASLD") highlighting the complexity of its pathogenesis. This disease results from a complex interplay between genetic susceptibility, epigenetic modifications, and environmental factors, which converge to disrupt metabolic homeostasis. Adipose tissue dysfunction and insulin resistance trigger an overflow of lipids to the liver, leading to mitochondrial dysfunction, oxidative stress, and hepatocellular injury. These processes promote hepatic inflammation and fibrogenesis, driven by cross talk among hepatocytes, immune cells, and hepatic stellate cells, with key contributions from gut-liver axis perturbations. Recent advances have unraveled pivotal molecular pathways, such as transforming growth factor-β signaling, Notch-induced osteopontin, and sphingosine kinase 1-mediated responses, that orchestrate fibrogenic activation. Understanding these interconnected mechanisms is crucial for developing targeted therapies. This review integrates current knowledge on the pathophysiology of MASLD, emphasizing emerging concepts such as lean metabolic dysfunction-associated steatohepatitis (MASH), epigenetic alterations, hepatic extracellular vesicles, and the relevance of extrahepatic signals. It also discusses novel therapeutic strategies under investigation, aiming to provide a comprehensive and structured overview of the evolving MASLD landscape for both basic scientists and clinicians.
Collapse
Affiliation(s)
| | - Narendra Singh Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta-The Medicity Hospital, Gurugram, India
| | - Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
6
|
Ozlu Karahan T, Yilmaz Akyuz E, Yilmaz Karadag D, Yilmaz Y, Eren F. Effects of Intermittent Fasting on Liver Steatosis and Fibrosis, Serum FGF-21 and Autophagy Markers in Metabolic Dysfunction-Associated Fatty Liver Disease: A Randomized Controlled Trial. Life (Basel) 2025; 15:696. [PMID: 40430125 PMCID: PMC12113254 DOI: 10.3390/life15050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND This randomized controlled study sought to determine the effect of intermittent fasting on anthropometric measurements, fibroblast growth factor (FGF)-21, and autophagy markers, as well as on hepatic steatosis and fibrosis levels in overweight or obese patients with metabolic dysfunction-associated fatty liver disease (MAFLD). METHODS Patients were randomly assigned into two groups: received a dietary treatment involving 22-25 kcal/kg/day of energy for 8 weeks and followed the same dietary intervention and a 16:8 pattern. The extent of hepatic steatosis and fibrosis was determined using transient elastography on a FibroScan® device. The controlled attenuation parameter (CAP) and liver stiffness measurement (LSM), determined by transient elastography, reflect hepatic steatosis and fibrosis, respectively. In duplicate, serum levels of FGF-21, Beclin-1, and ATG-5 were determined using enzyme-linked immunosorbent assay. RESULTS The study included 48 patients with a mean age of 48.2 ± 1.4 years (27 female and 21 male). Improvements in anthropometric measurement and CAP and LSM levels and a decrease in serum FGF-21 levels were found in both groups (p < 0.05). Changes in the CAP and FGF-21 levels were higher in the energy + time-restricted diet group (p < 0.05). Autophagy-related protein (ATG)-5 levels increased only in the energy + time-restricted diet group [(0.74 (0.46-1.29) ng/mL vs. 0.95 (0.73-1.32) ng/mL, p = 0.03]. CONCLUSIONS Intermittent fasting was potentially practical in the management of MAFLD. In particular, changes in FGF-21 and ATG-5 levels indicate the potential of intermittent fasting to regulate metabolic processes and autophagy. However, methodological limitations should be taken into consideration when interpreting the study results.
Collapse
Affiliation(s)
- Tugce Ozlu Karahan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Bilgi University, Istanbul 34440, Turkey;
| | - Elvan Yilmaz Akyuz
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul 34668, Turkey;
| | | | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize 53100, Turkey;
| | - Fatih Eren
- Department of Medical Biology, School of Medicine, Recep Tayyip Erdoğan University, Rize 53100, Turkey
| |
Collapse
|
7
|
Tang L, Zhang W, Liao Y, Wang W, Deng X, Wang C, Shi W. Autophagy: a double-edged sword in ischemia-reperfusion injury. Cell Mol Biol Lett 2025; 30:42. [PMID: 40197222 PMCID: PMC11978130 DOI: 10.1186/s11658-025-00713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Ischemia-reperfusion (I/R) injury describes the pathological process wherein tissue damage, initially caused by insufficient blood supply (ischemia), is exacerbated upon the restoration of blood flow (reperfusion). This phenomenon can lead to irreversible tissue damage and is commonly observed in contexts such as cardiac surgery and stroke, where blood supply is temporarily obstructed. During ischemic conditions, the anaerobic metabolism of tissues and organs results in compromised enzyme activity. Subsequent reperfusion exacerbates mitochondrial dysfunction, leading to increased oxidative stress and the accumulation of reactive oxygen species (ROS). This cascade ultimately triggers cell death through mechanisms such as autophagy and mitophagy. Autophagy constitutes a crucial catabolic mechanism within eukaryotic cells, facilitating the degradation and recycling of damaged, aged, or superfluous organelles and proteins via the lysosomal pathway. This process is essential for maintaining cellular homeostasis and adapting to diverse stress conditions. As a cellular self-degradation and clearance mechanism, autophagy exhibits a dualistic function: it can confer protection during the initial phases of cellular injury, yet potentially exacerbate damage in the later stages. This paper aims to elucidate the fundamental mechanisms of autophagy in I/R injury, highlighting its dual role in regulation and its effects on both organ-specific and systemic responses. By comprehending the dual mechanisms of autophagy and their implications for organ function, this study seeks to explore the potential for therapeutic interventions through the modulation of autophagy within clinical settings.
Collapse
Affiliation(s)
- Lingxuan Tang
- Basic Medical University, Naval Medical University, Shanghai, 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Weijie Wang
- Basic Medical University, Naval Medical University, Shanghai, 200433, China
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Wenwen Shi
- School of Nursing, Navy Military Medical University, Shanghai, China.
| |
Collapse
|
8
|
Zhu D, Li Y, Liu M, Yang Y, Fu J, Su L, Wang F, Cen Y, Zhou Y, Li Y. Study on the role of mitophagy and pyroptosis induced by nano-silver in testicular injury. Food Chem Toxicol 2025; 197:115245. [PMID: 39788479 DOI: 10.1016/j.fct.2025.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Silver nanoparticles(AgNPs)have been widely used in biomedicine and industry. Growing studies have shown that AgNPs can induce sperm motility decrease and spermiogenesis disorders. In this study, animal experiments were used to investigate the role of mitophagy and pyroptosis caused by AgNPs (25.93 nm) in testicular injury. Results showed that AgNPs induced the production of NLRP3, IL-1β and IL-18, activated Caspase-1, increased the expression of GSDMD protein, and activated the PINK1/Parkin signaling pathway, which induced in mitophagy in mice testicle tissue. In summary, AgNPs induced mitophagy and pyroptosis in mice testis at the highest dose, which lead to damage of testis tissue.
Collapse
Affiliation(s)
- Deyu Zhu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, 563000, PR China
| | - Yingyi Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Min Liu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Yufen Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jiayu Fu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Liyu Su
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Feng Wang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Yuyan Cen
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Yanna Zhou
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Yan Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, 563000, PR China
| |
Collapse
|
9
|
Chen TH, Lin SH, Lee MY, Wang HC, Tsai KF, Chou CK. Mitochondrial alterations and signatures in hepatocellular carcinoma. Cancer Metastasis Rev 2025; 44:34. [PMID: 39966277 PMCID: PMC11836208 DOI: 10.1007/s10555-025-10251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer worldwide. Its primary risk factors are chronic liver diseases such as metabolic fatty liver disease, non-alcoholic steatohepatitis, and hepatitis B and C viral infections. These conditions contribute to a specific microenvironment in liver tumors which affects mitochondrial function. Mitochondria are energy producers in cells and are responsible for maintaining normal functions by controlling mitochondrial redox homeostasis, metabolism, bioenergetics, and cell death pathways. HCC involves abnormal mitochondrial functions, such as accumulation of reactive oxygen species, oxidative stress, hypoxia, impairment of the mitochondrial unfolded protein response, irregularities in mitochondrial dynamic fusion/fission mechanisms, and mitophagy. Cell death mechanisms, such as necroptosis, pyroptosis, ferroptosis, and cuproptosis, contribute to hepatocarcinogenesis and play a significant role in chemoresistance. The relationship between mitochondrial dynamics and HCC is thus noteworthy. In this review, we summarize the recent advances in mitochondrial alterations and signatures in HCC and attempt to elucidate its molecular biology. Here, we provide an overview of the mitochondrial processes involved in hepatocarcinogenesis and offer new insights into the molecular pathology of the disease. This may help guide future research focused on improving patient outcomes using innovative therapies.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan
| | - Shu-Hsien Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan
| | - Ming-Yang Lee
- Division of Hemato-Oncology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan
- Min-Hwei Junior College of Health Care Management, Tainan, 73658, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Kun-Feng Tsai
- Department of Internal Medicine, Gastroenterology and Hepatology Section, An Nan Hospital, China Medical University, Tainan, 70965, Taiwan.
- Department of Medical Sciences Industry, Chang Jung Christian University, Tainan, 71101, Taiwan.
| | - Chu-Kuang Chou
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan.
- Obesity Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan.
- Department of Medical Quality, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan.
| |
Collapse
|
10
|
Yang S, Zou Y, Zhong C, Zhou Z, Peng X, Tang C. Dual role of pyroptosis in liver diseases: mechanisms, implications, and therapeutic perspectives. Front Cell Dev Biol 2025; 13:1522206. [PMID: 39917567 PMCID: PMC11798966 DOI: 10.3389/fcell.2025.1522206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Pyroptosis, a form of programmed cell death induced by inflammasome with a mechanism distinct from that of apoptosis, occurs via one of the three pathway types: classical, non-classical, and granzyme A/B-dependent pyroptosis pathways. Pyroptosis is implicated in various diseases, notably exhibiting a dual role in liver diseases. It facilitates the clearance of damaged hepatocytes, preventing secondary injury, and triggers immune responses to eliminate pathogens and damaged cells. Conversely, excessive pyroptosis intensifies inflammatory responses, exacerbates hepatocyte damage and promotes the activation and proliferation of hepatic stellate cells, accelerating liver fibrosis. Furthermore, by sustaining an inflammatory state, impacts the survival and proliferation of cancer cells. This review comprehensively summarizes the dual role of pyroptosis in liver diseases and its therapeutic strategies, offering new theoretical foundations and practical guidance for preventing and treating of liver diseases.
Collapse
Affiliation(s)
| | | | | | - Zuoqiong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiyang Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Changfa Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| |
Collapse
|
11
|
Liao Z, Yang L, Cheng X, Huang X, Zhang Q, Wen D, Song Z, Li Y, Wen S, Li Y, Ou M, Huang Z, Liu T, He M. pir-hsa-216911 inhibit pyroptosis in hepatocellular carcinoma by suppressing TLR4 initiated GSDMD activation. Cell Death Discov 2025; 11:11. [PMID: 39824843 PMCID: PMC11742400 DOI: 10.1038/s41420-024-02285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a global health concern, ranking as the fourth leading cause of cancer-related deaths worldwide. However, the role of piwi-interacting RNAs (piRNAs) in HCC processes has not been extensively explored. Through small RNA sequencing, our study identified a specific piRNA, pir-hsa-216911, which is highly expressed in HCC cells. This overexpression of pir-hsa-216911 promotes HCC cell invasion and inhibits cell death, particularly pyroptosis. Knocking out pir-hsa-216911 led to increased cell pyroptosis activity, resulting in the activation of caspase-1 and GSDMD. Further analysis revealed that pir-hsa-216911 targets and suppresses TLR4, a key gene associated with pyroptosis in HCC. In the Huh7 cell line, pir-hsa-216911 knockout confirmed its role in suppressing the TLR4/NFκB/NLRP3 pathway by silencing TLR4. Knocking out pir-hsa-216911 significantly inhibited the formation of Huh7 xenograft tumor. In HCC patients, pir-hsa-216911 was highly expressed in HCC tumor samples with steatosis, suppressing TLR4 expression and inhibiting GSDMD activation. This study introduces pir-hsa-216911 as a new high-expressing piRNA in HCC, which inhibits pyroptosis by silencing TLR4 to suppress GSDMD activation. These findings have significant implications for HCC molecular subtyping and as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Zhouxiang Liao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Lichao Yang
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Xiaojing Cheng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute of Guangxi Medical University, Nanning, 530021, China
| | - Xuejing Huang
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Qi Zhang
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Daoqiang Wen
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Zhenyu Song
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Yasi Li
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Sha Wen
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Yongfeng Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Meizhen Ou
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Zhangnan Huang
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Tianqi Liu
- Department of Hepatobiliary Surgery, Hospital of Guangxi Jiang Bing, Nanning, 530021, China.
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China.
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
12
|
Jin S, Li Y, Xia T, Liu Y, Zhang S, Hu H, Chang Q, Yan M. Mechanisms and therapeutic implications of selective autophagy in nonalcoholic fatty liver disease. J Adv Res 2025; 67:317-329. [PMID: 38295876 PMCID: PMC11725165 DOI: 10.1016/j.jare.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide, whereas there is no approved drug therapy due to its complexity. Studies are emerging to discuss the role of selective autophagy in the pathogenesis of NAFLD, because the specificity among the features of selective autophagy makes it a crucial process in mitigating hepatocyte damage caused by aberrant accumulation of dysfunctional organelles, for which no other pathway can compensate. AIM OF REVIEW This review aims to summarize the types, functions, and dynamics of selective autophagy that are of particular importance in the initiation and progression of NAFLD. And on this basis, the review outlines the therapeutic strategies against NAFLD, in particular the medications and potential natural products that can modulate selective autophagy in the pathogenesis of this disease. KEY SCIENTIFIC CONCEPTS OF REVIEW The critical roles of lipophagy and mitophagy in the pathogenesis of NAFLD are well established, while reticulophagy and pexophagy are still being identified in this disease due to the insufficient understanding of their molecular details. As gradual blockage of autophagic flux reveals the complexity of NAFLD, studies unraveling the underlying mechanisms have made it possible to successfully treat NAFLD with multiple pharmacological compounds that target associated pathways. Overall, it is convinced that the continued research into selective autophagy occurring in NAFLD will further enhance the understanding of the pathogenesis and uncover novel therapeutic targets.
Collapse
Affiliation(s)
- Suwei Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yujia Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tianji Xia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yongguang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Shanshan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, China.
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Mingzhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| |
Collapse
|
13
|
Corbalan JJ, Jagadeesan P, Frietze KK, Taylor R, Gao GL, Gallagher G, Nickels JT. Humanized monoacylglycerol acyltransferase 2 mice develop metabolic dysfunction-associated steatohepatitis. J Lipid Res 2024; 65:100695. [PMID: 39505262 DOI: 10.1016/j.jlr.2024.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Mice lacking monoacylglycerol acyltransferase 2 (mMGAT21) are resistant to diet-induced fatty liver, suggesting hMOGAT2 inhibition is a viable option for treating metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH). We generated humanized hMOGAT2 mice (HuMgat2) for use in pre-clinical studies testing the efficacy of hMOGAT2 inhibitors for treating MASLD/MASH. HuMgat2 mice developed MASH when fed a steatotic diet. Computer-aided histology revealed the presence of hepatocyte cell ballooning, immune cell infiltration, and fibrosis. Hepatocytes accumulated Mallory-Denk bodies containing phosphorylated p62/sequestosome-1-ubiquitinated protein aggregates likely caused by defects in autophagy. Metainflammation and apoptotic cell death were seen in the livers of HuMgat2 mice. Treating HuMgat2 mice with elafibranor reduced several MASH phenotypes. RNASeq analysis predicted changes in bile acid transporter expression that correlated with altered bile acid metabolism indicative of cholestasis. Our results suggest that HuMgat2 mice will serve as a pre-clinical model for testing hMOGAT2 inhibitor efficacy and toxicity and allow for the study of hMOGAT2 in the context of MASH.
Collapse
Affiliation(s)
- J Jose Corbalan
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Pranavi Jagadeesan
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Karla K Frietze
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Rulaiha Taylor
- Department of Pharmacology and Toxicology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Grace L Gao
- Department of Pharmacology and Toxicology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA
| | - Grant Gallagher
- Oncoveda, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Joseph T Nickels
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
14
|
Mao D, Guo J, Yang K, Yang F, Peng J, Jia X, Luo Z, Liu L, Yang E, Tang R, Lan H, Zheng Q. Mechanism of epigallocatechin gallate in treating non-alcoholic fatty liver disease: Insights from network pharmacology and experimental validation. Biochem Biophys Res Commun 2024; 734:150424. [PMID: 39083974 DOI: 10.1016/j.bbrc.2024.150424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
To explore the therapeutic effects along with the molecular mechanisms of epigallocatechin gallate (EGCG) in non-alcoholic fatty liver disease (NAFLD) treatment using network pharmacology as well as animal experiments. Firstly, the Traditional Chinese Medicine (TCM) Systems Pharmacology Database was searched to identify the potential targets of EGCG. The DisGeNET Database was used to screen the potential targets of NAFLD. The GeneCards Database was searched to identify related genes involved in pyroptosis. Subsequently, the intersecting genes of EGCG targeting pyroptosis to regulate NAFLD were obtained using a Venn diagram. Simultaneously, the aforementioned intersecting genes were used to construct a drug-disease target protein-protein interaction (PPI) network. The DAVID database was adopted for Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The main pathway-target network was determined. Next, the potential mechanism of EGCG targeting pyroptosis to regulate NAFLD was investigated and validated through in vivo experiments. 626 potential targets of EGCG, 447 target genes of NAFLD, and 568 potential targets of pyroptosis were identified. The number of common targets between EGCG, NAFLD, and pyroptosis was 266. GO biological process items and 92 KEGG pathways were determined based on the analysis results. Animal experiments demonstrated that EGCG could ameliorate body weight, glucolipid metabolism, steatosis, and liver injury, enhance insulin sensitivity, and improve glucose tolerance in NAFLD mice through the classical pathway of pyroptosis. EGCG could effectively treat NAFLD through multiple targets and pathways. It was concluded that EGCG ameliorates hepatocyte steatosis, pyroptosis, dyslipidemia, and inflammation in NAFLD mice fed a high-fat diet (HFD), and the protective mechanism could be associated with the NLRP3-Caspase-1-GSDMD classical pyroptosis pathway.
Collapse
Affiliation(s)
- Danting Mao
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Jianwei Guo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Kunli Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Fan Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Jiaojiao Peng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Xu Jia
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Ziren Luo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Lu Liu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Enjie Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Rui Tang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Haitao Lan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Qian Zheng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
15
|
Zhu L, Tong H, Ren C, Chen K, Luo S, Wang Q, Guo M, Xu Y, Hu M, Fang J, Xu J, Shi P. Inflammation unleashed: The role of pyroptosis in chronic liver diseases. Int Immunopharmacol 2024; 141:113006. [PMID: 39213865 DOI: 10.1016/j.intimp.2024.113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Pyroptosis, a newly identified form of programmed cell death intertwined with inflammatory responses, is facilitated by the Gasdermin family's pore-forming activity, leading to cell lysis and the release of pro-inflammatory cytokines. This process is a double-edged sword in innate immunity, offering protection against pathogens while risking excessive inflammation and tissue damage when dysregulated. Specifically, pyroptosis operates through two distinct signaling pathways, namely the Caspase-1 pathway and the Caspase-4/5/11 pathway. In the context of chronic liver diseases like fibrosis and cirrhosis, inflammation emerges as a central contributing factor to their pathogenesis. The identification of inflammation is characterized by the activation of innate immune cells and the secretion of pro-inflammatory cytokines such as IL-1α, IL-1β, and TNF-α. This review explores the interrelationship between pyroptosis and the inflammasome, a protein complex located in liver cells that recognizes danger signals and initiates Caspase-1 activation, resulting in the secretion of IL-1β and IL-18. The article delves into the influence of the inflammasome and pyroptosis on various liver disorders, with a specific focus on their molecular and pathophysiological mechanisms. Additionally, the potential therapeutic implications of targeting pyroptosis for liver diseases are highlighted for future consideration.
Collapse
Affiliation(s)
- Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongjie Tong
- Department of Intensive Care Unit, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chao Ren
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Kun Chen
- Department of Intensive Care Unit, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shengnan Luo
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Qin Wang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Maodong Guo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yichen Xu
- Department of Gerontology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jinyong Fang
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jinxian Xu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Peifei Shi
- Department of Intensive Care Unit, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China.
| |
Collapse
|
16
|
Lian CY, Li HJ, Xia WH, Li Y, Zhou XL, Yang DB, Wan XM, Wang L. Insufficient FUNDC1-dependent mitophagy due to early environmental cadmium exposure triggers mitochondrial redox imbalance to aggravate diet-induced lipotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124724. [PMID: 39142430 DOI: 10.1016/j.envpol.2024.124724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Cadmium (Cd) is a toxic contaminant widely spread in natural and industrial environments. Adolescent exposure to Cd increases risk for obesity-related morbidity in young adults including type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD). Despite this recognition, the direct impact of adolescent Cd exposure on the progression of MASLD later in life, and the mechanisms underlying these effects, remain unclear. Here, adolescent rats received control diet or diets containing 2 mg Cd2+/kg feed for 4 weeks, and then HFD containing 15% lard or control diet in young adult rats was selected for 6 weeks to clarify this issue. Data firstly showed that HFD-fed rats in young adulthood due to adolescent Cd exposure exhibited more severe MASLD, evidenced by increased liver damage, disordered serum and hepatic lipid levels, and activated NLRP3 inflammasome. Hepatic transcriptome analysis revealed the potential effects of mitochondrial dysfunction in aggravated MASLD due to Cd exposure. Verification data further confirmed that mitochondrial structure and function were targeted and disrupted during this process, shown by broken mitochondrial ridges, decreased mitochondrial membrane potential, imbalanced mitochondrial dynamic, insufficient ATP concentration, and enhanced mitochondrial ROS generation. However, mitophagy is inactively involved in clearance of damaged mitochondria induced by early Cd in HFD condition due to inhibited mitophagy receptor FUNDC1. In contrast, FUNDC1-dependent mitophagy activation prevents lipotoxicity aggravated by early Cd via suppressing mitochondrial ROS generation. Collectively, our data show that insufficient FUNDC1-dependent mitophagy can drive the transition from HFD-induced MASLD to MASH, and accordingly, these findings will provide a better understanding of potential mechanism of diet-induced metabolic diseases in the context of early environmental Cd exposure.
Collapse
Affiliation(s)
- Cai-Yu Lian
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China
| | - Hui-Jia Li
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China
| | - Wei-Hao Xia
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China
| | - Yue Li
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China
| | - Xue-Lei Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, 610072, China
| | - Du-Bao Yang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China
| | - Xue-Mei Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, 610072, China
| | - Lin Wang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China.
| |
Collapse
|
17
|
Feng Y, Huang Y, Lu B, Xu J, Wang H, Wang F, Lin N. The role of Drp1 - Pink1 - Parkin - mediated mitophagy in perfluorobutane sulfonate- induced hepatocyte damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117066. [PMID: 39305773 DOI: 10.1016/j.ecoenv.2024.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 10/17/2024]
Abstract
Perfluorobutane sulfonate (PFBS) is recognized as a highly persistent environmental contaminant, notorious for its chemical stability and enduring presence in ecosystems. Its propensity for persistence and environmental mobility allows PFBS to infiltrate the human body, predominantly accumulating in the liver where it poses a potential risk for hepatic damage. This investigation aimed to explore the outcomes of PFBS on the physiological functionalities of hepatocytes in vitro. To this end, hepatocytes were exposed to 750 ug/ml PFBS, followed by an analysis of various cellular phenotypes and functionalities, including assessments of cell viability and mitochondrial integrity. The findings indicated that PFBS exposure led to a suppression of cell proliferation and an increase in apoptotic cell death. Moreover, PFBS exposure was found to augment the generation of reactive oxygen species (ROS) and induce significant mitochondrial dysfunction. Gene expression analysis identified significant changes in genes associated with numerous tumor signaling pathways and autophagy signaling pathways. Further examinations revealed an increase in cellular mitophagy following PFBS exposure, coupled with the activation of the mitophagy-associated Drp1/Pink1/Parkin pathway. Inhibition of mitophagy was observed to concurrently amplify cellular damage and inhibit the Drp1/Pink1/Parkin pathway. Together, these findings highlight PFBS's capacity to inflict hepatocyte injury through mitochondrial disruption, positioning Drp1/Pink1/Parkin-mediated mitophagy as a crucial cellular defense mechanism against PFBS-induced toxicity.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongheng Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Lu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianliang Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Wang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China.
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
18
|
Wu Y, Kuang Y, Wu Y, Dai H, Bi R, Hu J, Sun L. Yang-Gan-Jiang-Mei formula alleviates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome through mitophagy. Biotechnol Genet Eng Rev 2024; 40:1314-1333. [PMID: 36960758 DOI: 10.1080/02648725.2023.2193482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
As an effective formula of traditional Chinese medicine, Yang-Gan-Jiang-Mei (YGJM) formula exhibited a unique advantage in ameliorating liver injury and hepatic steatosis of non-alcoholic steatohepatitis (NASH). Nevertheless, the related pharmacological mechanism needs to be elucidated. This study aimed to explore the molecular mechanism of YGJM formula on mitophagy mediated by PINK1/parkin signaling pathway and NOD-like receptor protein 3 (NLRP3) inflammasome in NASH. High-fat-diet rats and HepG2 cells induced by free fatty acid were used as NASH models in vivo and in vitro. Liver pathology and serum indicator embodying liver function (aspartate transferase, alanine transferase, triglyceride, and total cholesterol) were applied to evaluate the extent of hepatic damage and lipid accumulation. Besides, transmission electron microscopy, JC-1 and 2',7'-dichlorofluorescein diacetate were utilized to observe hepatic mitochondrial morphology, as well as cellular mitochondrial membrane potential and reactive oxygen species level. Additionally, expression of PINK1/parkin-mediated mitophagy and NLRP3 inflammasome was detected to elucidate the underlying mechanism of YGJM formula by immunohistochemistry, immunofluorescence, RT-PCR (reverse transcription-polymerase chain reaction) and Western blot. The manifestations of pathology and biochemical detection confirmed the efficacy of YGJM formula in relieving hepatic damage and lipid deposition. Simultaneously, YGJM formula could obviously improve mitochondrial function. In addition, YGJM formula exhibited the promotion of PINK1/parkin-mediated mitophagy, which could perturb NLRP3 inflammasome activation, and as a result, the hepatocyte inflammation was also suppressed both in vitro and in vivo. Our preliminary results indicate that YGJM formula can ameliorate NASH mechanistically by interfering with PINK1/parkin-mediated mitophagy and NLRP3 inflammasome to exert anti-inflammation ability and promote mitochondrial function restoration.
Collapse
Affiliation(s)
- Yuanyuan Wu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yufeng Kuang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunbang Wu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Heng Dai
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruiqi Bi
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaming Hu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lixia Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
19
|
Zhu L, Xu Y, Lei J. Molecular mechanism and potential role of mitophagy in acute pancreatitis. Mol Med 2024; 30:136. [PMID: 39227768 PMCID: PMC11373529 DOI: 10.1186/s10020-024-00903-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Acute pancreatitis (AP) is a multifaceted inflammatory disorder stemming from the aberrant activation of trypsin within the pancreas. Despite the contribution of various factors to the pathogenesis of AP, such as trypsin activation, dysregulated increases in cytosolic Ca2+ levels, inflammatory cascade activation, and mitochondrial dysfunction, the precise molecular mechanisms underlying the disease are still not fully understood. Mitophagy, a cellular process that preserves mitochondrial homeostasis under stress, has emerged as a pivotal player in the context of AP. Research suggests that augmenting mitophagy can mitigate pancreatic injury by clearing away malfunctioning mitochondria. Elucidating the role of mitophagy in AP may pave the way for novel therapeutic strategies. This review article aims to synthesize the current research findings on mitophagy in AP and underscore its significance in the clinical management of the disorder.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yunfei Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- Postdoctoral Research Station of Biology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Jian Lei
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
20
|
Lacombe A, Scorrano L. The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology. Semin Cell Dev Biol 2024; 161-162:1-19. [PMID: 38430721 DOI: 10.1016/j.semcdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
The complex relationship between mitochondrial dynamics and autophagy illustrates how two cellular housekeeping processes are intimately linked, illuminating fundamental principles of cellular homeostasis and shedding light on disparate pathological conditions including several neurodegenerative disorders. Here we review the basic tenets of mitochondrial dynamics i.e., the concerted balance between fusion and fission of the organelle, and its interplay with macroautophagy and selective mitochondrial autophagy, also dubbed mitophagy, in the maintenance of mitochondrial quality control and ultimately in cell viability. We illustrate how conditions of altered mitochondrial dynamics reverberate on autophagy and vice versa. Finally, we illustrate how altered interplay between these two key cellular processes participates in the pathogenesis of human disorders affecting multiple organs and systems.
Collapse
Affiliation(s)
- Alice Lacombe
- Dept. of Biology, University of Padova, Padova, Italy
| | - Luca Scorrano
- Dept. of Biology, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
21
|
Wang YL, Liu C, Yang YY, Zhang L, Guo X, Niu C, Zhang NP, Ding J, Wu J. Dynamic changes of gut microbiota in mouse models of metabolic dysfunction-associated steatohepatitis and its transition to hepatocellular carcinoma. FASEB J 2024; 38:e23766. [PMID: 38967214 DOI: 10.1096/fj.202400573rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Dysbiosis of gut microbiota may account for pathobiology in simple fatty liver (SFL), metabolic dysfunction-associated steatohepatitis (MASH), fibrotic progression, and transformation to MASH-associated hepatocellular carcinoma (MASH-HCC). The aim of the present study is to investigate gut dysbiosis in this progression. Fecal microbial rRNA-16S sequencing, absolute quantification, histopathologic, and biochemical tests were performed in mice fed high fat/calorie diet plus high fructose and glucose in drinking water (HFCD-HF/G) or control diet (CD) for 2, 16 weeks, or 14 months. Histopathologic examination verified an early stage of SFL, MASH, fibrotic, or MASH-HCC progression with disturbance of lipid metabolism, liver injury, and impaired gut mucosal barrier as indicated by loss of occludin in ileum mucosa. Gut dysbiosis occurred as early as 2 weeks with reduced α diversity, expansion of Kineothrix, Lactococcus, Akkermansia; and shrinkage in Bifidobacterium, Lactobacillus, etc., at a genus level. Dysbiosis was found as early as MAHS initiation, and was much more profound through the MASH-fibrotic and oncogenic progression. Moreover, the expansion of specific species, such as Lactobacillus johnsonii and Kineothrix alysoides, was confirmed by an optimized method for absolute quantification. Dynamic alterations of gut microbiota were characterized in three stages of early SFL, MASH, and its HCC transformation. The findings suggest that the extent of dysbiosis was accompanied with MASH progression and its transformation to HCC, and the shrinking or emerging of specific microbial species may account at least in part for pathologic, metabolic, and immunologic alterations in fibrogenic progression and malignant transition in the liver.
Collapse
Affiliation(s)
- Yu-Li Wang
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Chang Liu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yong-Yu Yang
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Li Zhang
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiao Guo
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Chen Niu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Ning-Ping Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Jia Ding
- Department of Gastroenterology, Shanghai Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Jian Wu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
22
|
Li SJ, Liu AB, Yu YY, Ma JH. The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD). Front Cell Dev Biol 2024; 12:1407738. [PMID: 39022762 PMCID: PMC11251954 DOI: 10.3389/fcell.2024.1407738] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.
Collapse
Affiliation(s)
- Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Hai Ma
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
23
|
Chen J, Jian L, Guo Y, Tang C, Huang Z, Gao J. Liver Cell Mitophagy in Metabolic Dysfunction-Associated Steatotic Liver Disease and Liver Fibrosis. Antioxidants (Basel) 2024; 13:729. [PMID: 38929168 PMCID: PMC11200567 DOI: 10.3390/antiox13060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects approximately one-third of the global population. MASLD and its advanced-stage liver fibrosis and cirrhosis are the leading causes of liver failure and liver-related death worldwide. Mitochondria are crucial organelles in liver cells for energy generation and the oxidative metabolism of fatty acids and carbohydrates. Recently, mitochondrial dysfunction in liver cells has been shown to play a vital role in the pathogenesis of MASLD and liver fibrosis. Mitophagy, a selective form of autophagy, removes and recycles impaired mitochondria. Although significant advances have been made in understanding mitophagy in liver diseases, adequate summaries concerning the contribution of liver cell mitophagy to MASLD and liver fibrosis are lacking. This review will clarify the mechanism of liver cell mitophagy in the development of MASLD and liver fibrosis, including in hepatocytes, macrophages, hepatic stellate cells, and liver sinusoidal endothelial cells. In addition, therapeutic strategies or compounds related to hepatic mitophagy are also summarized. In conclusion, mitophagy-related therapeutic strategies or compounds might be translational for the clinical treatment of MASLD and liver fibrosis.
Collapse
Affiliation(s)
- Jiaxin Chen
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linge Jian
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangkun Guo
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyin Huang
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Peng Y, Tao Y, Liu L, Zhang J, Wei B. Crosstalk among Reactive Oxygen Species, Autophagy and Metabolism in Myocardial Ischemia and Reperfusion Stages. Aging Dis 2024; 15:1075-1107. [PMID: 37728583 PMCID: PMC11081167 DOI: 10.14336/ad.2023.0823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Myocardial ischemia is the most common cardiovascular disease. Reperfusion, an important myocardial ischemia tool, causes unexpected and irreversible damage to cardiomyocytes, resulting in myocardial ischemia/reperfusion (MI/R) injury. Upon stress, especially oxidative stress induced by reactive oxygen species (ROS), autophagy, which degrades the intracellular energy storage to produce metabolites that are recycled into metabolic pathways to buffer metabolic stress, is initiated during myocardial ischemia and MI/R injury. Excellent cardioprotective effects of autophagy regulators against MI and MI/R have been reported. Reversing disordered cardiac metabolism induced by ROS also exhibits cardioprotective action in patients with myocardial ischemia. Herein, we review current knowledge on the crosstalk between ROS, cardiac autophagy, and metabolism in myocardial ischemia and MI/R. Finally, we discuss the possible regulators of autophagy and metabolism that can be exploited to harness the therapeutic potential of cardiac metabolism and autophagy in the diagnosis and treatment of myocardial ischemia and MI/R.
Collapse
Affiliation(s)
- Yajie Peng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yachuan Tao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of Pharmacology, School of Pharmaceutical Sciences, Fudan University, Shanghai, China
| | - Lingxu Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Ji Zhang
- The First Affiliated Hospital of Zhengzhou University, Department of Pharmacy, Zhengzhou, Henan, China.
| | - Bo Wei
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
25
|
Dashti Z, Yousefi Z, Kiani P, Taghizadeh M, Maleki MH, Borji M, Vakili O, Shafiee SM. Autophagy and the unfolded protein response shape the non-alcoholic fatty liver landscape: decoding the labyrinth. Metabolism 2024; 154:155811. [PMID: 38309690 DOI: 10.1016/j.metabol.2024.155811] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) is on the rise, mirroring a global surge in diabetes and metabolic syndrome, as its major leading causes. NAFLD represents a spectrum of liver disorders, ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), which can potentially progress to cirrhosis and hepatocellular carcinoma (HCC). Mechanistically, we know the unfolded protein response (UPR) as a protective cellular mechanism, being triggered under circumstances of endoplasmic reticulum (ER) stress. The hepatic UPR is turned on in a broad spectrum of liver diseases, including NAFLD. Recent data also defines molecular mechanisms that may underlie the existing correlation between UPR activation and NAFLD. More interestingly, subsequent studies have demonstrated an additional mechanism, i.e. autophagy, to be involved in hepatic steatosis, and thus NAFLD pathogenesis, principally by regulating the insulin sensitivity, hepatocellular injury, innate immunity, fibrosis, and carcinogenesis. All these findings suggest possible mechanistic roles for autophagy in the progression of NAFLD and its complications. Both UPR and autophagy are dynamic and interconnected fluxes that act as protective responses to minimize the harmful effects of hepatic lipid accumulation, as well as the ER stress during NAFLD. The functions of UPR and autophagy in the liver, together with findings of decreased hepatic autophagy in correlation with conditions that predispose to NAFLD, such as obesity and aging, suggest that autophagy and UPR, alone or combined, may be novel therapeutic targets against the disease. In this review, we discuss the current evidence on the interplay between autophagy and the UPR in connection to the NAFLD pathogenesis.
Collapse
Affiliation(s)
- Zahra Dashti
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeynab Yousefi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahareh Taghizadeh
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hasan Maleki
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Borji
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
26
|
Sun HJ, Jiao B, Wang Y, Zhang YH, Chen G, Wang ZX, Zhao H, Xie Q, Song XH. Necroptosis contributes to non-alcoholic fatty liver disease pathoetiology with promising diagnostic and therapeutic functions. World J Gastroenterol 2024; 30:1968-1981. [PMID: 38681120 PMCID: PMC11045491 DOI: 10.3748/wjg.v30.i14.1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent type of chronic liver disease. However, the disease is underappreciated as a remarkable chronic disorder as there are rare managing strategies. Several studies have focused on determining NAFLD-caused hepatocyte death to elucidate the disease pathoetiology and suggest functional therapeutic and diagnostic options. Pyroptosis, ferroptosis, and necroptosis are the main subtypes of non-apoptotic regulated cell deaths (RCDs), each of which represents particular characteristics. Considering the complexity of the findings, the present study aimed to review these types of RCDs and their contribution to NAFLD progression, and subsequently discuss in detail the role of necroptosis in the pathoetiology, diagnosis, and treatment of the disease. The study revealed that necroptosis is involved in the occurrence of NAFLD and its progression towards steatohepatitis and cancer, hence it has potential in diagnostic and therapeutic approaches. Nevertheless, further studies are necessary.
Collapse
Affiliation(s)
- Hong-Ju Sun
- Department of General Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Bo Jiao
- Department of General Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Yan Wang
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Yue-Hua Zhang
- Department of Medical Administration, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Ge Chen
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
- Qingdao Medical College, Qingdao University, Qingdao 266042, Shandong Province, China
| | - Zi-Xuan Wang
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
- Qingdao Medical College, Qingdao University, Qingdao 266042, Shandong Province, China
| | - Hong Zhao
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Hua Song
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| |
Collapse
|
27
|
Zimmermann A, Madeo F, Diwan A, Sadoshima J, Sedej S, Kroemer G, Abdellatif M. Metabolic control of mitophagy. Eur J Clin Invest 2024; 54:e14138. [PMID: 38041247 DOI: 10.1111/eci.14138] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Mitochondrial dysfunction is a major hallmark of ageing and related chronic disorders. Controlled removal of damaged mitochondria by the autophagic machinery, a process known as mitophagy, is vital for mitochondrial homeostasis and cell survival. The central role of mitochondria in cellular metabolism places mitochondrial removal at the interface of key metabolic pathways affecting the biosynthesis or catabolism of acetyl-coenzyme A, nicotinamide adenine dinucleotide, polyamines, as well as fatty acids and amino acids. Molecular switches that integrate the metabolic status of the cell, like AMP-dependent protein kinase, protein kinase A, mechanistic target of rapamycin and sirtuins, have also emerged as important regulators of mitophagy. In this review, we discuss how metabolic regulation intersects with mitophagy. We place special emphasis on the metabolic regulatory circuits that may be therapeutically targeted to delay ageing and mitochondria-associated chronic diseases. Moreover, we identify outstanding knowledge gaps, such as the ill-defined distinction between basal and damage-induced mitophagy, which must be resolved to boost progress in this area.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Abhinav Diwan
- Division of Cardiology and Center for Cardiovascular Research, Washington University School of Medicine, and John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Simon Sedej
- BioTechMed Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, Paris, France
| | - Mahmoud Abdellatif
- BioTechMed Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| |
Collapse
|
28
|
Kunlayawutipong T, Apaijai N, Tepmalai K, Kongkarnka S, Leerapun A, Pinyopornpanish K, Soontornpun A, Chattipakorn SC, Chattipakorn N, Pinyopornpanish K. Imbalance of mitochondrial fusion in peripheral blood mononuclear cells is associated with liver fibrosis in patients with metabolic dysfunction-associated steatohepatitis. Heliyon 2024; 10:e27557. [PMID: 38496899 PMCID: PMC10944232 DOI: 10.1016/j.heliyon.2024.e27557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Mitochondrial dysfunction and inflammation contribute to the pathophysiology of metabolic dysfunction-associated steatohepatitis (MASH). This study aims to evaluate the potential association between mitochondrial dynamics and cell death markers from peripheral blood mononuclear cells (PBMCs) and the presence of MASH with significant liver fibrosis among metabolic dysfunction-associated steatotic liver disease (MASLD) patients. Consecutive patients undergoing bariatric surgery from January to December 2022 were included. Patients with histologic steatosis were classified into MASH with significant fibrosis (F2-4) group or MASLD/MASH without significant fibrosis group (F0-1). Mitochondrial dynamic proteins and cell death markers were extracted from PBMCs. A total of 23 MASLD/MASH patients were included (significant fibrosis group, n = 7; without significant fibrosis group, n = 16). Of the mitochondrial dynamics and cell death markers evaluated, OPA1 protein, a marker of mitochondrial fusion is higher in MASH patients with significant fibrosis compared to those without (0.861 ± 0.100 vs. 0.560 ± 0.260 proportional to total protein, p = 0.001). Mitochondrial fusion/fission (OPA1/DRP1) ratio is significantly higher in MASH patients with significant fibrosis (1.072 ± 0.307 vs. 0.634 ± 0.313, p = 0.009). OPA1 (per 0.01 proportional to total protein) was associated with the presence of significant liver fibrosis with an OR of 1.08 (95%CI, 1.01-1.15, p = 0.035), and adjusted OR of 1.10 (95%CI, 1.00-1.21, p = 0.042). OPA1 from PBMCs is associated with MASH and substantial fibrosis. Future studies should explore if OPA1 could serve as a novel non-invasive liver fibrosis marker.
Collapse
Affiliation(s)
- Thanaput Kunlayawutipong
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokkan Tepmalai
- Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sarawut Kongkarnka
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Apinya Leerapun
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Atiwat Soontornpun
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokwan Pinyopornpanish
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
29
|
Zhao X, Yin F, Huang Y, Fu L, Ma Y, Ye L, Fan W, Gao W, Cai Y, Mou X. Oral administration of grape-derived nanovesicles for protection against LPS/D-GalN-induced acute liver failure. Int J Pharm 2024; 652:123812. [PMID: 38237707 DOI: 10.1016/j.ijpharm.2024.123812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
Although the exploration of the molecular mechanisms of Acute liver failure (ALF) is supported by a growing number of studies, the lack of effective therapeutic agents and measures indicates an urgent clinical need for the development of new drugs and treatment strategies. Herein, we focused on the treatment of ALF with grape-derived nanovesicles (GDNVs), and assessed its protective effects and molecular mechanisms against liver injury. In the mice model of ALF, prophylactic administration for three consecutive days and treatment with GDNVs after successful induction of ALF showed a significant reduction of ALT and AST activity in mouse serum, as well as a blockade of the release of inflammatory cytokines IL6, IL-1β and TNF-α. Treatment with GDNVs significantly prevented the massive apoptosis of hepatocytes caused by LPS/D-GalN and down-regulated the activation and expression of the mitochondrial apoptosis-related proteins p53, Caspase 9, Caspase 8, Caspase 3 and Bax. GDNVs downregulated the release of chemokines during the inflammatory eruption in mice and inhibited the infiltration of peripheral monocytes into the liver by inhibiting CCR2/CCR5. Moreover, the pro-inflammatory phenotype of macrophages in the liver was reversed by GDNVs. GDNVs further reduced the activation of NLRP3-related pathways, and treatment with GDNVs activated the expression of autophagy-related proteins Foxo3a, Sirt1 and LC3-II in the damaged mouse liver, inducing autophagy to occur. GDNVs could exert hepatoprotective and inflammatory suppressive functions by increasing nuclear translocation of Nrf2 and upregulating HO-1 expression against exogenous toxin-induced oxidative stress in the liver. In conclusion, these results demonstrate that GDNVs alleviate LPS/D-GalN-induced ALF and have the potential to be used as a novel hepatoprotective agent for clinical treatment.
Collapse
Affiliation(s)
- Xin Zhao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Fang Yin
- Shanghai Engineering Research Center of Human Intestinal Microflora Function Development, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - Yilin Huang
- College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China
| | - Luoqin Fu
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yingyu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Luyi Ye
- College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China
| | - Weijiao Fan
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Wenxue Gao
- Clinical Research Unit, Shanghai Tenth People's Hospital, Shanghai 200072, China.
| | - Yu Cai
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
30
|
Tang X, Guo J, Qi F, Rezaei MJ. Role of non-coding RNAs and exosomal non-coding RNAs in vasculitis: A narrative review. Int J Biol Macromol 2024; 261:129658. [PMID: 38266857 DOI: 10.1016/j.ijbiomac.2024.129658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
A category of very uncommon systemic inflammatory blood vessel illnesses known as vasculitides. The pathogenesis and etiology of vasculitis are still poorly known. Despite all of the progress made in understanding the genetics and causes behind vasculitis, there is still more to learn. Epigenetic dysregulation is a significant contributor to immune-mediated illnesses, and epigenetic aberrancies in vasculitis are becoming more widely acknowledged. Less than 2 % of the genome contains protein-encoding DNA. Studies have shown that a variety of RNAs originating from the non-coding genome exist. Long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) have attracted the most attention in recent years as they are becoming more and more important regulators of different biological processes, such as diseases of the veins. Extracellular vehicles (EVs) such as exosomes, are membrane-bound vesicular structures that break free either during programmed cell death, such as apoptosis, pyroptosis, and necroptosis or during cell activation. Exosomes may be involved in harmful ways in inflammation, procoagulation, autoimmune reactions, endothelial dysfunction/damage, intimal hyperplasia and angiogenesis, all of which may be significant in vasculitis. Herein, we summarized various non-coding RNAs that are involved in vasculitides pathogenesis. Moreover, we highlighted the role of exosomes in vasculitides.
Collapse
Affiliation(s)
- Xiuming Tang
- Department of Cardiology, The affiliated hospital to Changchun University of Chinise Medicine, Changchun, Jilin 130021, China.
| | - Jiajuan Guo
- Department of Cardiology, The affiliated hospital to Changchun University of Chinise Medicine, Changchun, Jilin 130021, China
| | - Feng Qi
- Department of Cardiology, The affiliated hospital to Changchun University of Chinise Medicine, Changchun, Jilin 130021, China
| | - Mohammad J Rezaei
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
31
|
Hu J, Chen Z, Zhou Y, Li Y, Liu J, Mi Y, Wang L, Jiang F, Li P. Unveiling global research trends and hotspots on mitochondria in NAFLD from 2000 to 2023: A bibliometric analysis. Immun Inflamm Dis 2024; 12:e1226. [PMID: 38533910 PMCID: PMC10966917 DOI: 10.1002/iid3.1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has garnered significant attention in the past decade as a prevalent chronic liver condition. Despite a growing body of evidence implicating mitochondria in NAFLD development, comprehensive bibliometric analyses within this research domain are scarce. This study aims to provide a thorough overview of the knowledge framework and key research areas related to mitochondria in the context of NAFLD, utilizing bibliometric techniques. METHODS A comprehensive search of publications on mitochondria in NAFLD from 2000 to 2023 was conducted using the Web of Science Core Collection database. VOSviewers, CiteSpace, and the R package "bibliometrix" were employed for a precise assessment of the literature. RESULTS Examining 2530 articles from 77 countries, primarily led by the United States and China, revealed a consistent increase in publications on mitochondria's role in NAFLD. Leading research institutions include the University of Coimbra, the University of Missouri, the Chinese Academy of Sciences, Fudan University, and Shanghai Jiao Tong University. Notably, the International Journal of Molecular Sciences emerged as the most popular journal, and Hepatology was the most frequently cited. With contributions from 14,543 authors, Michael Roden published the highest number of papers, and A. J. Samyal was the most frequently cocited author. Key focus areas include investigating mitochondrial mechanisms impacting NAFLD and developing therapeutic strategies targeting mitochondria. Emerging research hotspots are associated with keywords such as "inflammation," "mitochondrial dysfunction," "autophagy," "obesity," and "insulin resistance." CONCLUSION This study, the first comprehensive bibliometric analysis, synthesizes research trends and advancements in the role of mitochondria in NAFLD. Insights derived from this analysis illuminate current frontiers and emerging areas of interest, providing a valuable reference for scholars dedicated to mitochondrial studies.
Collapse
Affiliation(s)
- Jingqin Hu
- Clinical School of the Second People's HospitalTianjin Medical UniversityTianjinChina
- Department of HepatologyTianjin Second People's HospitalTianjinChina
| | - Ze Chen
- Clinical School of the Second People's HospitalTianjin Medical UniversityTianjinChina
- Department of HepatologyTianjin Second People's HospitalTianjinChina
| | - Yibing Zhou
- Clinical School of the Second People's HospitalTianjin Medical UniversityTianjinChina
- Department of HepatologyTianjin Second People's HospitalTianjinChina
| | - Yinglun Li
- Clinical School of the Second People's HospitalTianjin Medical UniversityTianjinChina
- Department of HepatologyTianjin Second People's HospitalTianjinChina
| | - Jing Liu
- Clinical School of the Second People's HospitalTianjin Medical UniversityTianjinChina
- Department of HepatologyTianjin Second People's HospitalTianjinChina
| | - Yuqiang Mi
- Department of HepatologyTianjin Second People's HospitalTianjinChina
| | - Li Wang
- Department of PharmacyTianjin Second People's HospitalTianjinChina
| | - Feng Jiang
- Department of NeonatologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Ping Li
- Department of HepatologyTianjin Second People's HospitalTianjinChina
| |
Collapse
|
32
|
Sun M, Zhang Y, Guo A, Xia Z, Peng L. Progress in the Correlation Between Inflammasome NLRP3 and Liver Fibrosis. J Clin Transl Hepatol 2024; 12:191-200. [PMID: 38343611 PMCID: PMC10851067 DOI: 10.14218/jcth.2023.00231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 01/04/2025] Open
Abstract
Liver fibrosis is a reversible condition that occurs in the early stages of chronic liver disease. To develop effective treatments for liver fibrosis, understanding the underlying mechanism is crucial. The NOD-like receptor protein 3 (NLRP3) inflammasome, which is a part of the innate immune system, plays a crucial role in the progression of various inflammatory diseases. NLRP3 activation is also important in the development of various liver diseases, including viral hepatitis, alcoholic or nonalcoholic liver disease, and autoimmune liver disease. This review discusses the role of NLRP3 and its associated molecules in the development of liver fibrosis. It also highlights the signal pathways involved in NLRP3 activation, their downstream effects on liver disease progression, and potential therapeutic targets in liver fibrosis. Further research is encouraged to develop effective treatments for liver fibrosis.
Collapse
Affiliation(s)
- Meihua Sun
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yanqing Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Anbing Guo
- Department of Gastroenterology, Linyi People’s Hospital, Linyi, Shandong, China
| | - Zongting Xia
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Lijun Peng
- Department of Gastroenterology, Linyi People’s Hospital, Linyi, Shandong, China
| |
Collapse
|
33
|
Chen H, Jin C, Xie L, Wu J. Succinate as a signaling molecule in the mediation of liver diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166935. [PMID: 37976628 DOI: 10.1016/j.bbadis.2023.166935] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Succinate, one of the intermediates of the tricarboxylic acid (TCA) cycle, plays an essential role in the metabolism of mitochondria and the production of energy, and is considered as a signaling molecule in metabolism as well as in initiation and progression of hepatic diseases. Of note, succinate activates a downstream signaling pathway through GPR91, and elicits a variety of intracellular responses, such as succinylation, production of reactive oxygen species (ROS), stabilization of hypoxia-inducible factor-1α (HIF-1α), and significant impact in cellular metabolism because of the pivotal role in the TCA cycle. Therefore, it is intriguing to deeply elucidate signaling mechanisms of succinate in hepatic fibrosis, metabolic reprogramming in inflammatory or immune responses, as well as carcinogenesis. This manuscript intends to review current understanding of succinate in mediating metabolism, inflammatory and immunologic reactions in liver diseases in order to establish molecular basis for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Cheng Jin
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; College of Clinical College, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
34
|
Mishra SR, Behera BP, Singh VK, Mahapatra KK, Mundkinajeddu D, Bhat D, Minz AM, Sethi G, Efferth T, Das S, Bhutia SK. Anticancer activity of Bacopa monnieri through apoptosis induction and mitophagy-dependent NLRP3 inflammasome inhibition in oral squamous cell carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155157. [PMID: 37951147 DOI: 10.1016/j.phymed.2023.155157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Bacopa monnieri (BM) is traditionally used in human diseases for its antioxidant, anti-inflammatory and neuroprotective effects. However, its anticancer potential has been poorly understood. AIM The aim of this study was to explore the detailed anticancer mechanism of BM against oral cancer and to identify the bioactive BM fraction for possible cancer therapeutics. RESULTS We performed bioactivity-guided fractionation and identified that the aqueous fraction of the ethanolic extract of BM (BM-AF) had a potent anticancer potential in both in vitro and in vivo oral cancer models. BM-AF inhibited cell viability, colony formation, cell migration and induced apoptotic cell death in Cal33 and FaDu cells. BM-AF at low doses promoted mitophagy and BM-AF mediated mitophagy was PARKIN dependent. In addition, BM-AF inhibited arecoline induced reactive oxygen species production in Cal33 cells. Moreover, BM-AF supressed arecoline-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation through mitophagy in Cal33 cells. The in vivo antitumor effect of BM-AF was further validated in C57BL/6J mice through a 4-nitroquinolin-1-oxide and arecoline-induced oral cancer model. The tumor incidence was significantly reduced in the BM-AF treated group. Further, data obtained from western blot and immunohistochemistry analysis showed increased expression of apoptotic markers and decreased expression of inflammasome markers in the tongue tissue obtained from BM-AF treated mice in comparison with the non-treated tumor bearing mice. CONCLUSION In conclusion, BM-AF exhibited potent anticancer activity through apoptosis induction and mitophagy-dependent inhibition of NLRP3 inflammasome activation in both in vitro and in vivo oral cancer models. Moreover, we have investigated apoptosis and mitophagy-inducing compounds from this plant extract having anticancer activity against oral cancer cells.
Collapse
Affiliation(s)
- Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | | | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India; Current affiliation: Department of Agriculture and Allied Sciences (Zoology), C. V Raman Global University, Bhubaneswar, 752054, Odisha, India
| | | | - Deeksha Bhat
- Research and Development Department, Natural Remedies Pvt. Ltd, India
| | - Aruna Mukti Minz
- Department of Pathology, Ispat General Hospital, Rourkela, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology Rourkela, 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
35
|
Raza S, Rajak S, Singh R, Zhou J, Sinha RA, Goel A. Cell-type specific role of autophagy in the liver and its implications in non-alcoholic fatty liver disease. World J Hepatol 2023; 15:1272-1283. [PMID: 38192406 PMCID: PMC7615497 DOI: 10.4254/wjh.v15.i12.1272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023] Open
Abstract
Autophagy, a cellular degradative process, has emerged as a key regulator of cellular energy production and stress mitigation. Dysregulated autophagy is a common phenomenon observed in several human diseases, and its restoration offers curative advantage. Non-alcoholic fatty liver disease (NAFLD), more recently renamed metabolic dysfunction-associated steatotic liver disease, is a major metabolic liver disease affecting almost 30% of the world population. Unfortunately, NAFLD has no pharmacological therapies available to date. Autophagy regulates several hepatic processes including lipid metabolism, inflammation, cellular integrity and cellular plasticity in both parenchymal (hepatocytes) and non-parenchymal cells (Kupffer cells, hepatic stellate cells and sinusoidal endothelial cells) with a profound impact on NAFLD progression. Understanding cell type-specific autophagy in the liver is essential in order to develop targeted treatments for liver diseases such as NAFLD. Modulating autophagy in specific cell types can have varying effects on liver function and pathology, making it a promising area of research for liver-related disorders. This review aims to summarize our present understanding of cell-type specific effects of autophagy and their implications in developing autophagy centric therapies for NAFLD.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Rajani Singh
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Jin Zhou
- CVMD, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Amit Goel
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India.
| |
Collapse
|
36
|
Zhang Y, Chen Q, Fu X, Zhu S, Huang Q, Li C. Current Advances in the Regulatory Effects of Bioactive Compounds from Dietary Resources on Nonalcoholic Fatty Liver Disease: Role of Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17554-17569. [PMID: 37955247 DOI: 10.1021/acs.jafc.3c04692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease characterized by lipid metabolic disorder primarily due to sedentary lifestyles and excessive food consumption. However, there are currently no approved and effective drugs available to treat NAFLD. In recent years, research has shown that dietary bioactive compounds, such as polysaccharides, polyphenols, flavones, and alkaloids, have the potential to improve NAFLD by regulating autophagy. However, there is no up-to-date review of research progress in this field. This review aims to systematically summarize and discuss the regulatory effects and molecular mechanisms of dietary bioactive compounds on NAFLD through the modulation of autophagy. The existing research has demonstrated that some dietary bioactive compounds can effectively improve various aspects of NAFLD progression, such as lipid metabolism, insulin resistance (IR), endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial homeostasis, and inflammation. Molecular mechanism studies have revealed that they exert their beneficial effects on NAFLD through autophagy-mediated signaling pathways, predominantly involving transcription factor EB (TFEB), mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptors (PPARs), SIRT, and PTEN-induced kinase 1 (PINK1)/parkin. Furthermore, the challenges and prospects of current research in this field are highlighted. Overall, this review provides valuable insights into the potential treatment of NAFLD using dietary bioactive compounds that can modulate autophagy.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- School of Food Science and Dietetics, Guangzhou City Polytechnic, Guangzhou 510405, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Siming Zhu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chao Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
37
|
Abstract
Studies have found that intermittent fasting (IF) can prevent diabetes, cancer, heart disease, and neuropathy, while in humans it has helped to alleviate metabolic syndrome, asthma, rheumatoid arthritis, Alzheimer's disease, and many other disorders. IF involves a series of coordinated metabolic and hormonal changes to maintain the organism's metabolic balance and cellular homeostasis. More importantly, IF can activate hepatic autophagy, which is important for maintaining cellular homeostasis and energy balance, quality control, cell and tissue remodeling, and defense against extracellular damage and pathogens. IF affects hepatic autophagy through multiple interacting pathways and molecular mechanisms, including adenosine monophosphate (AMP)-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), silent mating-type information regulatory 2 homolog-1 (SIRT1), peroxisomal proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR), as well as signaling pathways and molecular mechanisms such as glucagon and fibroblast growth factor 21 (FGF21). These pathways can stimulate the pro-inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), play a cytoprotective role, downregulate the expression of aging-related molecules, and prevent the development of steatosis-associated liver tumors. By influencing the metabolism of energy and oxygen radicals as well as cellular stress response systems, IF protects hepatocytes from genetic and environmental factors. By activating hepatic autophagy, IF has a potential role in treating a variety of liver diseases, including non-alcoholic fatty liver disease, drug-induced liver injury, viral hepatitis, hepatic fibrosis, and hepatocellular carcinoma. A better understanding of the effects of IF on liver autophagy may lead to new approaches for the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Ya-Nan Ma
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Xuemei Jiang
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Tang
- International Health Care Center, National Center for Global Health and Medicine, Tokyo, Japan
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Peipei Song
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Atici AE, Crother TR, Noval Rivas M. Mitochondrial quality control in health and cardiovascular diseases. Front Cell Dev Biol 2023; 11:1290046. [PMID: 38020895 PMCID: PMC10657886 DOI: 10.3389/fcell.2023.1290046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the primary causes of mortality worldwide. An optimal mitochondrial function is central to supplying tissues with high energy demand, such as the cardiovascular system. In addition to producing ATP as a power source, mitochondria are also heavily involved in adaptation to environmental stress and fine-tuning tissue functions. Mitochondrial quality control (MQC) through fission, fusion, mitophagy, and biogenesis ensures the clearance of dysfunctional mitochondria and preserves mitochondrial homeostasis in cardiovascular tissues. Furthermore, mitochondria generate reactive oxygen species (ROS), which trigger the production of pro-inflammatory cytokines and regulate cell survival. Mitochondrial dysfunction has been implicated in multiple CVDs, including ischemia-reperfusion (I/R), atherosclerosis, heart failure, cardiac hypertrophy, hypertension, diabetic and genetic cardiomyopathies, and Kawasaki Disease (KD). Thus, MQC is pivotal in promoting cardiovascular health. Here, we outline the mechanisms of MQC and discuss the current literature on mitochondrial adaptation in CVDs.
Collapse
Affiliation(s)
- Asli E. Atici
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R. Crother
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
39
|
Ramos-Tovar E, Muriel P. NLRP3 inflammasome in hepatic diseases: A pharmacological target. Biochem Pharmacol 2023; 217:115861. [PMID: 37863329 DOI: 10.1016/j.bcp.2023.115861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway is mainly responsible for the activation and release of a cascade of proinflammatory mediators that contribute to the development of hepatic diseases. During alcoholic liver disease development, the NLRP3 inflammasome pathway contributes to the maturation of caspase-1, interleukin (IL)-1β, and IL-18, which induce a robust inflammatory response, leading to fibrosis by inducing profibrogenic hepatic stellate cell (HSC) activation. Substantial evidence demonstrates that nonalcoholic fatty liver disease (NAFLD) progresses to nonalcoholic steatohepatitis (NASH) via NLRP3 inflammasome activation, ultimately leading to fibrosis and hepatocellular carcinoma (HCC). Activation of the NLRP3 inflammasome in NASH can be attributed to several factors, such as reactive oxygen species (ROS), gut dysbiosis, leaky gut, which allow triggers such as cardiolipin, cholesterol crystals, endoplasmic reticulum stress, and uric acid to reach the liver. Because inflammation triggers HSC activation, the NLRP3 inflammasome pathway performs a central function in fibrogenesis regardless of the etiology. Chronic hepatic activation of the NLRP3 inflammasome can ultimately lead to HCC; however, inflammation also plays a role in decreasing tumor growth. Some data indicate that NLRP3 inflammasome activation plays an important role in autoimmune hepatitis, but the evidence is scarce. Most researchers have reported that NLRP3 inflammasome activation is essential in liver injury induced by a variety of drugs and hepatotropic virus infection; however, few reports indicate that this pathway can play a beneficial role by inducing liver regeneration. Modulation of the NLRP3 inflammasome appears to be a suitable strategy to treat liver diseases.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-IPN, Apartado Postal 11340, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, México
| | - Pablo Muriel
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Cinvestav-IPN, Apartado Postal 14-740, Ciudad de México, México.
| |
Collapse
|
40
|
Luo K, Chen Y, Fang S, Wang S, Wu Z, Li H. Study on inflammation and fibrogenesis in MAFLD from 2000 to 2022: a bibliometric analysis. Front Endocrinol (Lausanne) 2023; 14:1231520. [PMID: 37720529 PMCID: PMC10500306 DOI: 10.3389/fendo.2023.1231520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Chronic inflammation and fibrosis are significant factors in the pathogenesis of metabolic-associated fatty liver disease (MAFLD). In this study, we conducted a bibliometric analysis of publications on inflammation and fibrogenesis in MAFLD, with a focus on reporting publication trends. Our findings indicate that the USA and China are the most productive countries in the field, with the University of California San Diego being the most productive institution. Over the past 23 years, Prof. Diehl AM has published 25 articles that significantly contributed to the research community. Notably, the research focus of the field has shifted from morbid obesity and adiponectin to metabolic syndrome, genetics, and microbiome. Our study provides a comprehensive and objective summary of the historical characteristics of research on inflammation and fibrogenesis in MAFLD, which will be of interest to scientific researchers in this field.
Collapse
Affiliation(s)
- Kuanhong Luo
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuzheng Fang
- College of Art and Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Siqi Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixin Wu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqing Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 223] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
42
|
Lin J, Chang Y, Hu M, Gu Q, Dai J, Nan J, Wang Z, Chen J, Zhong D, Zhou E, Wang Y, Cai X. Global trends in research of mitophagy in liver diseases over past two decades: A bibliometric analysis. Heliyon 2023; 9:e18843. [PMID: 37600363 PMCID: PMC10432990 DOI: 10.1016/j.heliyon.2023.e18843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
Increasing evidence indicated that mitophagy might play a crucial role in the occurrence and progression of liver diseases. In order to enhance our understanding of the intricate relationship between mitophagy and liver diseases, a comprehensive bibliometric analysis of the existing literature in this field was conducted. This analysis aimed to identify key trends, potential areas of future research, and forecast the development of this specific field. We systematically searched the Web of Science Core Collection (WoSCC) for publications related to mitophagy in liver diseases from 2000 to 2022. We conducted the bibliometric analysis and data visualization through VOSviewer and CiteSpace. The analysis of publication growth revealed a substantial increase in articles published in this field over the past years, indicating mitophagy's growing interest and significance in liver diseases. China and USA emerged as the leading contributors in the number of papers, with 294 and 194 independent papers, respectively. Exploring the mechanism of mitophagy in the initiation and procession of liver diseases was the main content of studies in this field, and Parkin-independent mediated mitophagy has attracted much attention recently. "Lipid metabolism," "cell death," "liver fibrosis" and "oxidative stress" were the primary keywords clusters. Additionally, "nlrp3 inflammasome", "toxicity" and "nonalcoholic steatohepatitis" were emerging research hotspots in this area and have the potential to continue to be focal areas of investigation in the future. This study represents the first systematic bibliometric analysis of research on mitophagy in liver diseases conducted over the past 20 years. By providing an overview of the existing literature and identifying current research trends, this analysis sheds light on the critical areas of investigation and paves the way for future studies in this field.
Collapse
Affiliation(s)
- Jie Lin
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yushun Chang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Meiling Hu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgery, Cixi People's Hospital of Zhejiang, Ningbo, China
| | - Qiuxia Gu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Jinyao Dai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjie Nan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Ziyuan Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Jiachen Chen
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Danyang Zhong
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Enjie Zhou
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - YiFan Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - XiuJun Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
43
|
Khanmohammadi S, Ramos-Molina B, Kuchay MS. NOD-like receptors in the pathogenesis of metabolic (dysfunction)-associated fatty liver disease: Therapeutic agents targeting NOD-like receptors. Diabetes Metab Syndr 2023; 17:102788. [PMID: 37302383 DOI: 10.1016/j.dsx.2023.102788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS In metabolic (dysfunction)-associated fatty liver disease (MAFLD), activation of inflammatory processes marks the transition of simple steatosis to steatohepatitis, which can further evolve to advanced fibrosis or hepatocellular carcinoma. Under the stress of chronic overnutrition, the innate immune system orchestrates hepatic inflammation through pattern recognition receptors (PRRs). Cytosolic PRRs that include NOD-like receptors (NLRs) are crucial for inducing inflammatory processes in the liver. METHODS A literature search was performed with Medline (PubMed), Google Scholar and Scopus electronic databases till January 2023, using relevant keywords to extract studies describing the role of NLRs in the pathogenesis of MAFLD. RESULTS Several NLRs operate through the formation of inflammasomes, which are multimolecular complexes that generate pro-inflammatory cytokines and induce pyroptotic cell death. A multitude of pharmacological agents target NLRs and improve several aspects of MAFLD. In this review, we discuss the current concepts related to the role of NLRs in the pathogenesis of MAFLD and its complications. We also discuss the latest research on MAFLD therapeutics functioning through NLRs. CONCLUSIONS NLRs play a significant role in the pathogenesis of MAFLD and its consequences, especially through generation of inflammasomes, such as NLRP3 inflammasomes. Lifestyle changes (exercise, coffee consumption) and therapeutic agents (GLP-1 receptor agonists, sodium-glucose cotransporter-2 inhibitors, obeticholic acid) improve MAFLD and its complications partly through blockade of NLRP3 inflammasome activation. New studies are required to explore these inflammatory pathways fully for the treatment of MAFLD.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Mohammad Shafi Kuchay
- Divison of Endocrinology and Diabetes, Medanta the Medicity Hospital, Gurugram 122001, Haryana, India.
| |
Collapse
|
44
|
Abstract
Numerous mitochondrial constituents and metabolic products can function as damage-associated molecular patterns (DAMPs) and promote inflammation when released into the cytosol or extracellular milieu. Several safeguards are normally in place to prevent mitochondria from eliciting detrimental inflammatory reactions, including the autophagic disposal of permeabilized mitochondria. However, when the homeostatic capacity of such systems is exceeded or when such systems are defective, inflammatory reactions elicited by mitochondria can become pathogenic and contribute to the aetiology of human disorders linked to autoreactivity. In addition, inefficient inflammatory pathways induced by mitochondrial DAMPs can be pathogenic as they enable the establishment or progression of infectious and neoplastic disorders. Here we discuss the molecular mechanisms through which mitochondria control inflammatory responses, the cellular pathways that are in place to control mitochondria-driven inflammation and the pathological consequences of dysregulated inflammatory reactions elicited by mitochondrial DAMPs.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
45
|
The PTP1B selective inhibitor MSI-1436 mitigates Tunicamycin-induced ER stress in human hepatocarcinoma cell line through XBP1 splicing modulation. PLoS One 2023; 18:e0278566. [PMID: 36649358 PMCID: PMC9844924 DOI: 10.1371/journal.pone.0278566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/18/2022] [Indexed: 01/18/2023] Open
Abstract
Protein tyrosine phosphatase PTP1B is considered as a key metabolic enzyme that has been reported to be associated with insulin resistance onset, and underlying cellular metabolic malfunctions, including ER stress and mitochondrial failure. In this study, effects of selective PTP1B inhibition using MSI-1436 on cellular apoptosis, oxidative stress, mitochondrial dysfunction and ER stress have been assessed using an in vitro model of Tunicamycin induced ER stress in HepG2 cell line. Inhibition of PTP1B using MSI-1436 significantly increased cell viability and reduced the number of apoptotic cells as well as the expression of key apoptosis initiators and effectors. MSI-1436 further mitigated ER stress, by downregulating the expression of IRE1, ATF6 and PERK transcripts, all being key ER stress sensors. Interestingly, MSI-1436 inhibited the XBP1 splicing, and thus its UPR-associated transcriptional activity. PTP1B inhibition further enabled to restore proper mitochondrial biogenesis, by improving transmembrane potential, and diminishing intracellular ROS while restoring of endogenous antioxidant enzymes genes expression. PTP1B inhibition using MSI-1436 could improve cellular apoptosis and metabolic integrity through the mitigation of ER and mitochondrial stress signalling pathways, and excessive ROS accumulation. This strategy may be useful for the treatment of metabolic disorders including IR, NAFLD and diabetes.
Collapse
|
46
|
Liu Y, Guo ZW, Li J, Li AH, Huo TG. Insight into the regulation of NLRP3 inflammasome activation by mitochondria in liver injury and the protective role of natural products. Biomed Pharmacother 2022; 156:113968. [DOI: 10.1016/j.biopha.2022.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
47
|
Li H, Wang Y, Su X, Wang Q, Zhang S, Sun W, Zhang T, Dong M, Zhang Z, Lv S. San-Huang-Yi-Shen Capsule Ameliorates Diabetic Kidney Disease through Inducing PINK1/Parkin-Mediated Mitophagy and Inhibiting the Activation of NLRP3 Signaling Pathway. J Diabetes Res 2022; 2022:2640209. [PMID: 36425593 PMCID: PMC9681560 DOI: 10.1155/2022/2640209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
San-Huang-Yi-Shen capsule (SHYS) has been used in the treatment of diabetic kidney disease (DKD) in clinics. However, the mechanism of SHYS on DKD remains unclear. In this study, we used a high-fat diet combined with streptozocin (STZ) injection to establish a rat model of DKD, and different doses of SHYS were given by oral gavage to determine the therapeutic effects of SHYS on DKD. Then, we studied the effects of SHYS on PINK1/Parkin-mediated mitophagy and the activation of NLRP3 inflammasome to study the possible mechanisms of SHYS on DKD. Our result showed that SHYS could alleviate DKD through reducing the body weight loss, decreasing the levels of fasting blood glucose (FBG), and improving the renal function, insulin resistance (IR), and inhibiting inflammatory response and oxidative stress in the kidney. Moreover, transmission electron microscopy showed SHYS treatment improved the morphology of mitochondria in the kidney. In addition, western blot and immunoflourescence staining showed that SHYS treatment induced the PINK1/Parkin-mediated mitophagy and inhibited the activation of NLRP3 signaling pathway. In conclusion, our study demonstrated the therapeutic effects of SHYS on DKD. Additionally, our results indicated that SHYS promoted PINK1/Parkin-mediated mitophagy and inhibited NLRP3 inflammasome activation to improve mitochondrial injury and inflammatory responses.
Collapse
Affiliation(s)
- Hanzhou Li
- Chengde Medical University, Chengde, China
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province, Cangzhou, China
| | - Yuansong Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province, Cangzhou, China
| | - Xiuhai Su
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province, Cangzhou, China
| | - Qinghai Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province, Cangzhou, China
| | - Shufang Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province, Cangzhou, China
| | - Wenjuan Sun
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province, Cangzhou, China
| | - Tianyu Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province, Cangzhou, China
| | - Mengxue Dong
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaiyi Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuquan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province, Cangzhou, China
| |
Collapse
|
48
|
Zhu L, Wu X, Liao R. Mechanism and regulation of mitophagy in nonalcoholic fatty liver disease (NAFLD): A mini-review. Life Sci 2022; 312:121162. [PMID: 36372213 DOI: 10.1016/j.lfs.2022.121162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of nonalcoholic fatty liver disease (NAFLD). Thus, maintenance of mitochondria homeostasis and function is important for NAFLD treatment. Mitophagy, a process that selectively clears damaged or dysfunctional mitochondria through autophagic machinery, is beneficial for mitochondrial homeostasis. Notably, strategies that regulate mitophagy exert beneficial effects in preclinical experiments. Traditional Chinese medicine (TCM) is a natural product including active ingredients, extracts, and has great potential in the prevention and treatment of liver diseases. Given the importance of mitophagy, this review summarizes mitophagy-related pathways and the latest findings on the regulation of mitophagy in NAFLD. We also highlight the potential of TCM targeting mitophagy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Lihui Zhu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, Shanghai, China.
| | - Xiao Wu
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, Shanghai, China.
| | - Rongrong Liao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, Shanghai, China.
| |
Collapse
|
49
|
Lawrence GMEP, Holley CL, Schroder K. Parkinson's disease: connecting mitochondria to inflammasomes. Trends Immunol 2022; 43:877-885. [PMID: 36229358 DOI: 10.1016/j.it.2022.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 02/06/2023]
Abstract
Activated microglia foster a neurotoxic, inflammatory environment in the mammalian central nervous system (CNS) that drives the pathology of neurodegenerative diseases including Parkinson's disease (PD). Moreover, mitochondrial fission promotes microglial inflammatory responses in vitro. Given that the NLRP3 inflammasome and mitochondria are central regulators of both inflammation and PD, we explore potential functions for the NLRP3 inflammasome and mitochondrial dynamics in PD. Specifically, we propose that inducible microglial mitochondrial fission can promote NLRP3-dependent neuroinflammation in hereditary and idiopathic PD. Further in-depth exploration of this topic can prompt valuable discoveries of the underlying molecular mechanisms of PD neuroinflammation, identify novel candidate anti-inflammatory therapeutics for PD, and ideally provide better outcomes for PD patients.
Collapse
Affiliation(s)
- Grace M E P Lawrence
- Institute for Molecular Bioscience (IMB) Centre for Inflammation and Disease Research, University of Queensland, St Lucia, QLD, Australia
| | - Caroline L Holley
- Institute for Molecular Bioscience (IMB) Centre for Inflammation and Disease Research, University of Queensland, St Lucia, QLD, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB) Centre for Inflammation and Disease Research, University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
50
|
Kemper C, Sack MN. Linking nutrient sensing, mitochondrial function, and PRR immune cell signaling in liver disease. Trends Immunol 2022; 43:886-900. [PMID: 36216719 PMCID: PMC9617785 DOI: 10.1016/j.it.2022.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 01/12/2023]
Abstract
Caloric overconsumption in vertebrates promotes adipose and liver fat accumulation while perturbing the gut microbiome. This triad triggers pattern recognition receptor (PRR)-mediated immune cell signaling and sterile inflammation. Moreover, immune system activation perpetuates metabolic consequences, including the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic hepatic steatohepatitis (NASH). Recent findings show that sensing of nutrient overabundance disrupts the activity and homeostasis of the central cellular energy-generating organelle, the mitochondrion. In parallel, whether caloric excess-initiated PRR signaling and mitochondrial perturbations are coordinated to amplify this inflammatory process in NASH progression remains in question. We hypothesize that altered mitochondrial function, classic PRR signaling, and complement activation in response to nutrient overload together play an integrated role across the immune cell landscape, leading to liver inflammation and NASH progression.
Collapse
Affiliation(s)
- Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|