1
|
Han Y, Wang S, Xiong Y, Sha T, Xiong Z, Li S, She W, Zhang Y, He X, Zou S, Cheng J, Meng J, Yuan Q, Huang L, Xie Y, Tao L, Peng Z. Peroxiredoxin-1 aggravates hypoxia-induced renal injury by promoting inflammation through the TLR4/MAPK/NF-κB signaling pathway. Free Radic Biol Med 2025:S0891-5849(25)00682-3. [PMID: 40398686 DOI: 10.1016/j.freeradbiomed.2025.05.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/28/2025] [Accepted: 05/19/2025] [Indexed: 05/23/2025]
Abstract
Hypoxia can induce pathological alterations to the kidneys, such as activation of inflammatory signaling pathways. This form of inflammation is pathogen-free and is referred to as aseptic inflammation. Currently, the mechanisms leading to aseptic inflammation under hypoxia are not well understood. Emerging evidence has indicated that Prdx1, a member of the peroxidase family, contributes to the development of various diseases by stimulating aseptic inflammation. This study was conducted to reveal the potential role of Prdx1 in the pathogenesis of hypoxia-induced renal injury. A mouse model of systemic hypoxia was developed, which revealed that Prdx1 levels were elevated in injured kidneys and peripheral circulation. A comparable increase was also observed in hypoxia-treated immortalized bone marrow-derived macrophages (iBMDMs). Knock-down of Prdx1 in mice caused a significant reduction in renal tissue injury and inflammation induced by hypoxic injury. In addition, we demonstrated that Prdx1 modulates inflammatory responses by activating the TLR4/MAPK/NF-κB signaling pathways. Recombinant Prdx1 promoted the activation of these pathways in macrophages, whereas genetic knockout of Prdx1 or pharmacological inhibition suppressed their activity. Altogether, we found a previously unrecognized role for Prdx1 in the regulation of inflammation in hypoxia-induced renal injury. These findings suggest that Prdx1 can be a potential target for treating this severe disease.
Collapse
Affiliation(s)
- Yuanyuan Han
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China; Key Laboratory of Organ Fibrosis of Hunan Province, Central South University, Changsha Hunan, China
| | - Songkai Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China; Key Laboratory of Organ Fibrosis of Hunan Province, Central South University, Changsha Hunan, China
| | - Yiwei Xiong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China; Key Laboratory of Organ Fibrosis of Hunan Province, Central South University, Changsha Hunan, China
| | - Tu Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital,Guangzhou Guangdong,China
| | - Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Shenglan Li
- Key Laboratory of Organ Fibrosis of Hunan Province, Central South University, Changsha Hunan, China; Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Wenzhe She
- Key Laboratory of Organ Fibrosis of Hunan Province, Central South University, Changsha Hunan, China; Department of Cell biology, School of Life Sciences, Central South University, Changsha Hunan, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China; Key Laboratory of Organ Fibrosis of Hunan Province, Central South University, Changsha Hunan, China
| | - Xin He
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China; Key Laboratory of Organ Fibrosis of Hunan Province, Central South University, Changsha Hunan, China
| | - Sijue Zou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China; Key Laboratory of Organ Fibrosis of Hunan Province, Central South University, Changsha Hunan, China
| | - Jiawei Cheng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China; Key Laboratory of Organ Fibrosis of Hunan Province, Central South University, Changsha Hunan, China
| | - Jie Meng
- Key Laboratory of Organ Fibrosis of Hunan Province, Central South University, Changsha Hunan, China; Department of Respiratory Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China; Key Laboratory of Organ Fibrosis of Hunan Province, Central South University, Changsha Hunan, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China; Key Laboratory of Organ Fibrosis of Hunan Province, Central South University, Changsha Hunan, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China; Key Laboratory of Organ Fibrosis of Hunan Province, Central South University, Changsha Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China; Key Laboratory of Organ Fibrosis of Hunan Province, Central South University, Changsha Hunan, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha Hunan, China; Key Laboratory of Organ Fibrosis of Hunan Province, Central South University, Changsha Hunan, China.
| |
Collapse
|
2
|
Zhao L, Guo J, Xu S, Duan M, Liu B, Zhao H, Wang Y, Liu H, Yang Z, Yuan H, Jiang X, Jiang X. Abnormal changes in metabolites caused by m 6A methylation modification: The leading factors that induce the formation of immunosuppressive tumor microenvironment and their promising potential for clinical application. J Adv Res 2025; 70:159-186. [PMID: 38677545 PMCID: PMC11976433 DOI: 10.1016/j.jare.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) RNA methylation modifications have been widely implicated in the metabolic reprogramming of various cell types within the tumor microenvironment (TME) and are essential for meeting the demands of cellular growth and maintaining tissue homeostasis, enabling cells to adapt to the specific conditions of the TME. An increasing number of research studies have focused on the role of m6A modifications in glucose, amino acid and lipid metabolism, revealing their capacity to induce aberrant changes in metabolite levels. These changes may in turn trigger oncogenic signaling pathways, leading to substantial alterations within the TME. Notably, certain metabolites, including lactate, succinate, fumarate, 2-hydroxyglutarate (2-HG), glutamate, glutamine, methionine, S-adenosylmethionine, fatty acids and cholesterol, exhibit pronounced deviations from normal levels. These deviations not only foster tumorigenesis, proliferation and angiogenesis but also give rise to an immunosuppressive TME, thereby facilitating immune evasion by the tumor. AIM OF REVIEW The primary objective of this review is to comprehensively discuss the regulatory role of m6A modifications in the aforementioned metabolites and their potential impact on the development of an immunosuppressive TME through metabolic alterations. KEY SCIENTIFIC CONCEPTS OF REVIEW This review aims to elaborate on the intricate networks governed by the m6A-metabolite-TME axis and underscores its pivotal role in tumor progression. Furthermore, we delve into the potential implications of the m6A-metabolite-TME axis for the development of novel and targeted therapeutic strategies in cancer research.
Collapse
Affiliation(s)
- Liang Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Colorectal Anal Surgery, Shenyang Coloproctology Hospital, Shenyang 110002, China.
| | - Junchen Guo
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Shasha Xu
- Department of Gastroendoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Baiming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - He Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Yihan Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Haiyang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Hexue Yuan
- Department of Colorectal Anal Surgery, Shenyang Coloproctology Hospital, Shenyang 110002, China.
| | - Xiaodi Jiang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110020, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
3
|
Shao L, Wang Q, Chen B, Zheng Y. The Roles and Molecular Mechanisms of HIF-1α in Pulpitis. J Dent Res 2025:220345251320970. [PMID: 40102725 DOI: 10.1177/00220345251320970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Pulpitis is characterized by inflammation within dental pulp tissue, primarily triggered by bacterial infection. Hypoxia-inducible factor-1α (HIF-1α), a key transcriptional regulator, is stabilized under the hypoxic conditions associated with pulpitis. This review examines the roles and molecular mechanisms of HIF-1α in the pathogenesis and progression of pulpitis. Hypoxia in pulpitis prevents the degradation of HIF-1α, leading to its elevated expression. Furthermore, lipopolysaccharide from invading bacteria upregulates HIF-1α transcription through nuclear factor kappa B and mitogen-activated protein kinase pathways. HIF-1α regulates immunity and pulp remodeling in a stage-dependent manner by controlling various cytokines. During the inflammation stage, HIF-1α promotes recruitment of neutrophils and enhances their bactericidal effects by facilitating neutrophil extracellular trap release and M1 macrophage polarization. Concurrently, HIF-1α contributes to programmed cell death by increasing mitophagy. In the proliferation stage, HIF-1α stimulates immune responses involving T cells and dendritic cells. In the remodeling stage, HIF-1α supports angiogenesis and pulp-dentin regeneration. However, excessive pulpitis-induced hypoxia may disrupt vascular dynamics within the pulp chamber. This disruption highlights a critical threshold for HIF-1α, beyond which its effects might accelerate pulp necrosis. Overall, HIF-1α plays a central role in regulating immunity and tissue remodeling during pulpitis. A comprehensive understanding of the physiological and pathological roles of HIF-1α is essential for the advancement of effective strategies to manage irreversible pulpitis.
Collapse
Affiliation(s)
- L Shao
- Capital Medical University School of Stomatology, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Q Wang
- Department of Stomatology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Capital Medical University School of Stomatology, Beijing, China
| | - B Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Y Zheng
- Department of Stomatology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Zeng R, Wang Y, Wen J, Cen Z, Wang T, Duan M, Huang X, Zhao Z, Zhang Z, Yang C, Chen S. Hypoxia-inducible factor-1α inhibitor promotes non-alcoholic steatohepatitis development and increases hepatocellular lipid accumulation via TSKU upregulation. Arch Biochem Biophys 2025; 765:110313. [PMID: 39832609 DOI: 10.1016/j.abb.2025.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Non-alcoholic steatohepatitis (NASH) is the progressive form of non-alcoholic fatty liver disease (NAFLD) which is the most common chronic liver disease worldwide. Hypoxia-inducible factor-1α (HIF1α) inhibitor is emerging as a promising therapeutic strategy for diseases. However, the role of HIF1α inhibitor in NASH is still unclear. A choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) -induced NASH mouse model was established to identify the impacts of HIF1α inhibitor KC7F2 on the development of NASH. We found that KC7F2 treatment substantially aggravated lipid accumulation, inflammation, and fibrosis in the liver of NASH mice presumably via increasing Tsukushi (TSKU) expression in the liver. Mechanistically, KC7F2 up-regulated expression of TSKU in hepatocyte in vitro, which led to increased hepatocellular lipid accumulation and was reversed when TSKU was knockdown in hepatocyte. Our findings indicated that HIF1α inhibitor promotes the development of NASH presumably via increasing TSKU expression in the liver, suggesting that HIF1α attenuates NASH, and that we should assess the potential liver toxicity when use HIF1α inhibitor or medicines that can decrease the expression of HIF1α to therapy other diseases.
Collapse
Affiliation(s)
- Renli Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Yuxin Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Meng Duan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510000, China.
| | - Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Zhengde Zhao
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Zhongyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Chuan Yang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
5
|
Ye W, Yang P, Jin M, Zou J, Zheng Z, Li Y, Zhang D, Ye W, Huang Z, Wang J, Liu Z. Dihydromyricetin mitigates abdominal aortic aneurysm via transcriptional and post-transcriptional regulation of heme oxygenase-1 in vascular smooth muscle cells. Acta Pharm Sin B 2025; 15:1514-1534. [PMID: 40370559 PMCID: PMC12069254 DOI: 10.1016/j.apsb.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/15/2024] [Accepted: 11/26/2024] [Indexed: 05/16/2025] Open
Abstract
Abdominal aortic aneurysm (AAA) is a deadly condition of the aorta, carrying a significant risk of death upon rupture. Currently, there is a dearth of efficacious pharmaceutical interventions to impede the advancement of AAA and avert it from rupturing. Here, we investigated dihydromyricetin (DHM), one of the predominant bioactive flavonoids in Ampelopsis grossedentata (A. grossedentata), as a potential agent for inhibiting AAA. DHM effectively blocked the formation of AAA in angiotensin II-infused apolipoprotein E-deficient (ApoE-/-) mice. A combination of network pharmacology and whole transcriptome sequencing analysis revealed that DHM's anti-AAA action is linked to heme oxygenase (HO)-1 (Hmox-1 for the rodent gene) and hypoxia-inducible factor (HIF)-1α in vascular smooth muscle cells (VSMCs). Remarkably, DHM caused a robust rise (∼10-fold) of HO-1 protein expression in VSMCs, thereby suppressing VSMC inflammation and oxidative stress and preserving the VSMC contractile phenotype. Intriguingly, the therapeutic effect of DHM on AAA was largely abrogated by VSMC-specific Hmox1 knockdown in mice. Mechanistically, on one hand, DHM increased the transcription of Hmox-1 by triggering the nuclear translocation and activation of HIF-1α, but not nuclear factor erythroid 2-related factor 2 (NRF2). On the other hand, molecular docking, combined with cellular thermal shift assay (CETSA), isothermal titration calorimetry (ITC), drug affinity responsive target stability (DARTS), co-immunoprecipitation (Co-IP), and site mutant experiments revealed that DHM bonded to HO-1 at Lys243 and prevented its degradation, thereby resulting in considerable HO-1 buildup. In summary, our findings suggest that naturally derived DHM has the capacity to markedly enhance HO-1 expression in VSMCs, which may hold promise as a therapeutic strategy for AAA.
Collapse
Affiliation(s)
- Weile Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Pinglian Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Mei Jin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Jiami Zou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Zhihua Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Yuanyuan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Wencai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jiaojiao Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 511436, China
| |
Collapse
|
6
|
Vinokurov A, Popov S, Belyakov D, Popov D, Nikulin A, Zakrzhevskaya V, Guseinov R, Sivak K, Dunaev A, Potapova E, Abramov A. Cytoprotective Action of Sodium Fumarate in an in vitro Model of Hypoxia Using Sodium Dithionite. Sovrem Tekhnologii Med 2025; 17:93-106. [PMID: 40071074 PMCID: PMC11892570 DOI: 10.17691/stm2025.17.1.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Indexed: 03/14/2025] Open
Abstract
Hypoxia is a part of many pathological and some physiological processes. It also occurs as a result of surgical techniques associated with limiting the blood supply to the operated organs and tissues. Hypoxia leads to a significant decrease in the ability of cells to implement energy-dependent processes due to a reduced contribution of mitochondria to the synthesis of adenosine triphosphate (ATP). In order to protect cells and increase the time of surgery, infusion of a solution of sodium fumarate for several days before the surgical procedure is suggested. However, the mechanism of the observed protective effect is still a subject of discussion. The aim of the research was to study the mechanism of the sodium fumarate cytoprotective effect on renal epithelial cells in acute hypoxia modeling in vitro by reducing oxygen in the medium using sodium dithionite. Materials and Methods The study was conducted using the MDCK renal epithelial cell line with sodium dithionite at a concentration of 5 mM to create hypoxic conditions. The parameters of cellular metabolism (including the value of mitochondrial membrane potential, the state of mitochondrial NADH and FAD, the content of Ca2+ and Mg2+ and the pH level in the cytosol, the rate of glucose absorption by cells, and cell death) were assessed by means of confocal and wide-field fluorescence microscopy. The concentration of dissolved oxygen was established using the polarographic method with a Clark electrode. Results It was demonstrated that the use of sodium dithionite allows modeling acute hypoxia in vitro with a rapid decrease in the oxygen concentration in the cell incubation medium, which resulted in a change in mitochondrial function and the apoptosis progression. At that, sodium fumarate reduces the level of cell death, which is associated not with the restoration of the ATP-producing ability of mitochondria, but rather with an increase in the contribution of alternative sources of high-energy compounds. Conclusion At the cellular level, using an optimized hypoxia model, the study revealed the mechanism of the protective role of sodium fumarate, which explained the antihypoxant effectiveness in assisted ischemia of organs and tissues.
Collapse
Affiliation(s)
- A.Yu. Vinokurov
- PhD, Senior Researcher, Research and Development Center of Biomedical Photonics; Orel State University, 95 Komsomolskaya St., Orel, 302026, Russia
| | - S.V. Popov
- MD, DSc, Professor, Chief Physician; Clinical Hospital of St. Luke, 46 letter A, Chugunnaya St., Saint Petersburg, 194044, Russia; Head of the City Center for Endoscopic Urology and New Technologies; Clinical Hospital of St. Luke, 46 letter A, Chugunnaya St., Saint Petersburg, 194044, Russia; Professor, Department of Urology; Military Medical Academy, 6 letter Zh, Akademika Lebedeva St., Saint Petersburg, 194044, Russia; Head of the Department of Surgery and Urology; Saint Petersburg Medical and Social Institute, 72 letter A, Kondratyevsky Prospekt, Saint Petersburg, 195271, Russia
| | - D.Yu. Belyakov
- Laboratory Assistant, Laboratory of Cell Physiology and Pathology, Research and Development Center of Biomedical Photonics; Orel State University, 95 Komsomolskaya St., Orel, 302026, Russia
| | - D.Yu. Popov
- Research Intern, Laboratory of Cell Physiology and Pathology, Research and Development Center of Biomedical Photonics; Orel State University, 95 Komsomolskaya St., Orel, 302026, Russia
| | - A.S. Nikulin
- Student; Novosibirsk State University, 1 Pirogova St., Novosibirsk, 630090, Russia
| | - V.D. Zakrzhevskaya
- Laboratory Assistant, Laboratory of Cell Physiology and Pathology, Research and Development Center of Biomedical Photonics; Orel State University, 95 Komsomolskaya St., Orel, 302026, Russia
| | - R.G. Guseinov
- MD, PhD, Deputy Chief Physician for Research; Clinical Hospital of St. Luke, 46 letter A, Chugunnaya St., Saint Petersburg, 194044, Russia; Senior Lecturer, Department of Surgery and Urology; Saint Petersburg Medical and Social Institute, 72 letter A, Kondratyevsky Prospekt, Saint Petersburg, 195271, Russia; Assistant Professor, Department of Hospital Surgery; Saint Petersburg State University, 7/9 Universitetskaya naberezhnaya St., Saint Petersburg, 199034, Russia
| | - K.V. Sivak
- DSc, Leading Researcher; Clinical Hospital of St. Luke, 46 letter A, Chugunnaya St., Saint Petersburg, 194044, Russia; Head of the Department of Preclinical Studies of Medications; A.A. Smorodintsev Research Institute of Influenza of the Ministry of Healthcare of the Russian Federation, 15/17 Professora Popova St., Saint Petersburg, 197376, Russia
| | - A.V. Dunaev
- DSc, Leading Researcher, Research and Development Center of Biomedical Photonics; Orel State University, 95 Komsomolskaya St., Orel, 302026, Russia
| | - E.V. Potapova
- PhD, Senior Researcher, Research and Development Center of Biomedical Photonics; Orel State University, 95 Komsomolskaya St., Orel, 302026, Russia
| | - A.Yu. Abramov
- DSc, Head of the Laboratory of Cell Physiology and Pathology, Research and Development Center of Biomedical Photonics; Orel State University, 95 Komsomolskaya St., Orel, 302026, Russia; Professor; UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
7
|
Dickmeiß J, Henning Y, Stahlke S, Weber T, Theiss C, Matschke V. Differential Protective Effects of Edaravone in Cerebellar and Hippocampal Ischemic Injury Models. CEREBELLUM (LONDON, ENGLAND) 2025; 24:49. [PMID: 39964549 PMCID: PMC11835913 DOI: 10.1007/s12311-025-01804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Ischemic stroke is a leading cause of mortality and disability, with cerebellar strokes posing severe complications such as herniation and brainstem compression. Edaravone, a radical scavenger known for reducing oxidative stress, has shown neuroprotective effects in cerebral strokes, but its impact on cerebellar strokes remains unclear. This study investigates Edaravone's protective properties in organotypic slice cultures of rat cerebellum and hippocampus, employing an oxygen-glucose deprivation (OGD) model to simulate ischemic stroke. The hippocampus served as comparative structure due to its high hypoxia sensitivity. Our results confirmed effective hypoxic induction with increases in HIF-1α and HIF-2α expression. Edaravone significantly reduced lactate dehydrogenase (LDH) levels, indicating diminished cellular damage, with cerebellar tissues showing greater vulnerability. Additionally, Edaravone reduced reactive oxygen species (ROS) in both tissues, though its efficacy may be limited by higher oxidative stress in cerebellar cultures. Seahorse XF analysis revealed that Edaravone preserved mitochondrial respiration and tissue integrity in cerebellar and hippocampal slice cultures. However, Edaravone was more effective in preserving mitochondrial respiration in hippocampal slices, suggesting that OGD-induced damage is more severe in cerebellar tissue. In conclusion, Edaravone demonstrates significant cell protective effects in both cerebellar and hippocampal tissues under OGD conditions, preserving tissue integrity and enhancing mitochondrial function in a tissue-dependent manner. These findings suggest Edaravone as a promising therapeutic candidate for cerebellar stroke. Further in vivo studies are required to assess its full clinical potential.
Collapse
Affiliation(s)
- Jens Dickmeiß
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Yoshiyuki Henning
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Weber
- Department of Anesthesiology and Intensive Care Medicine, Ruhr University Bochum, St. Josef Hospital, D-44791, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, 44801, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr-University Bochum, Bochum, Germany.
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, 44801, Bochum, Germany.
| |
Collapse
|
8
|
Nisar A, Khan S, Pan Y, Hu L, Yang P, Gold NM, Zhou Z, Yuan S, Zi M, Mehmood SA, He Y. The Role of Hypoxia in Longevity. Aging Dis 2025:AD.2024.1630. [PMID: 39965249 DOI: 10.14336/ad.2024.1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/15/2025] [Indexed: 02/20/2025] Open
Abstract
Aging is marked by a progressive decrease in physiological function and reserve capacity, which results in increased susceptibility to diseases. Understanding the mechanisms of driving aging is crucial for extending health span and promoting human longevity. Hypoxia, marked by reduced oxygen availability, has emerged as a promising area of study within aging research. This review explores recent findings on the potential of oxygen restriction to promote healthy aging and extend lifespan. While the role of hypoxia-inducible factor 1 (HIF-1) in cellular responses to hypoxia is well-established, its impact on lifespan remains complex and context-dependent. Investigations in invertebrate models suggest a role for HIF-1 in longevity, while evidence in mammalian models is limited. Hypoxia extends the lifespan independent of dietary restriction (DR), a known intervention underlying longevity. However, both hypoxia and DR converge on common downstream effectors, such as forkhead box O (FOXO) and flavin-containing monooxygenase (FMOs) to modulate the lifespan. Further work is required to elucidate the molecular mechanisms underlying hypoxia-induced longevity and optimize clinical applications. Understanding the crosstalk between HIF-1 and other longevity-associated pathways is crucial for developing interventions to enhance lifespan and healthspan. Future studies may uncover novel therapeutic strategies to promote healthy aging and longevity in human populations.
Collapse
Affiliation(s)
- Ayesha Nisar
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410083, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Yongzhang Pan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li Hu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Pengyun Yang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Naheemat Modupeola Gold
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhen Zhou
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shengjie Yuan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Meiting Zi
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | | - Yonghan He
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
9
|
Ha H, Choi Y, Kim NH, Kim J, Jang J, Niepa THR, Tanaka M, Lee HY, Choi J. Lipid Nanoparticle Delivery System for Normalization of Tumor Microenvironment and Tumor Vascular Structure. Biomater Res 2025; 29:0144. [PMID: 39935791 PMCID: PMC11811622 DOI: 10.34133/bmr.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 02/13/2025] Open
Abstract
Tumors grow by receiving oxygen and nutrients from the surrounding blood vessels, leading to rapid angiogenesis. This results in functionally and structurally abnormal vasculature characterized by high permeability and irregular blood flow, causing hypoxia within the tumor microenvironment (TME). Hypoxia exacerbates the secretion of pro-angiogenic factors such as vascular endothelial growth factor (VEGF), further perpetuating abnormal vessel formation. This environment compromises the efficacy of radiotherapy, immunotherapy, and chemotherapy. In this study, we developed a pH-sensitive liposome (PSL) system, termed OD_PSL@AKB, to co-deliver oxygen (OD) and razuprotafib (AKB-9778) to tumors. This system rapidly responds to the acidic TME to alleviate hypoxia and inhibit VEGF secretion, restoring VE-cadherin expression in hypoxic endothelial cell/cancer cell cocultures. Our findings highlight the potential of OD_PSL@AKB in normalizing tumor vasculature and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Heejin Ha
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Chemical Science and Engineering,
Institute of Science Tokyo, Kanagawa 226-8503, Japan
| | - Na-Hyeon Kim
- Department of Chemical Engineering,
Kumoh National Institute of Technology, Gumi 39177, Korea
| | - Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jaehee Jang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Tagbo H. R. Niepa
- Department of Chemical Engineering,
Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering,
Carnegie Mellon University, Pittsburgh, PA, USA
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering,
Institute of Science Tokyo, Kanagawa 226-8503, Japan
| | - Hee-Young Lee
- Department of Chemical Engineering,
Kumoh National Institute of Technology, Gumi 39177, Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea
| |
Collapse
|
10
|
Ascui G, Cedillo-Castelan V, Mendis A, Phung E, Liu HY, Verstichel G, Chandra S, Murray MP, Luna C, Cheroutre H, Kronenberg M. Innateness transcriptome gradients characterize mouse T lymphocyte populations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:223-237. [PMID: 40073243 PMCID: PMC11878997 DOI: 10.1093/jimmun/vkae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/01/2024] [Indexed: 03/14/2025]
Abstract
A fundamental dichotomy in lymphocytes separates adaptive T and B lymphocytes, with clonally expressed antigen receptors, from innate lymphocytes, which carry out more rapid responses. Some T cell populations, however, are intermediates between these 2 poles, with the capacity to respond rapidly through T cell receptor activation or by cytokine stimulation. Here, using publicly available datasets, we constructed linear mixed models that not only define a gradient of innate gene expression in common for mouse innate-like T cells, but also are applicable to other mouse T lymphoid populations. A similar gradient could be identified for chromatin landscape based on ATAC-seq (assay for transposase-accessible chromatin using sequencing) data. The gradient included increased transcripts related to many traits of innate immune responses, with increased scores related to evidence for antigen experience. While including genes typical for T helper 1 (Th1) responses, the innateness gene program could be separated from Th1, Th2, and Th17 responses. Lymphocyte populations with higher innateness scores correlated with lower calcium-dependent T cell receptor-mediated cell activation, with some downstream signaling proteins dependent on calcium or affecting metabolism prephosphorylation. Therefore, as a group, different mouse innate-like T cell populations had related gene expression programs and activation pathways that are different from naive CD4 and CD8 T cells.
Collapse
Affiliation(s)
- Gabriel Ascui
- La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | | | - Alba Mendis
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Eleni Phung
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Hsin-Yu Liu
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Shilpi Chandra
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Cindy Luna
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Hilde Cheroutre
- La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
11
|
Ma YT, Laga T, Zhong CN, Zhuang BQ, Quan HL, Hong L. ANP Increases Zn 2⁺ Accumulation During Reperfusion in Ex Vivo and In Vivo Hearts. Curr Med Sci 2025; 45:35-50. [PMID: 40014195 DOI: 10.1007/s11596-025-00019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVE Atrial natriuretic peptide (ANP) and Zn2⁺ have been shown to confer cardioprotection against ischemia/reperfusion (I/R) injury. Zn2⁺ alleviates myocardial hypertrophy and pulmonary hypertension by regulating ANP expression, but its precise role in ANP-mediated cardioprotection remains unclear. This study aimed to investigate whether ANP protects the heart during reperfusion by modulating Zn2⁺ levels and to explore the underlying mechanisms involved. METHODS In this study, we utilized an isolated reperfused heart model in rats, as well as wild-type (WT) and ANP knockout (ANP-/-) mouse models, for in vivo I/R experiments. For clinical investigations, plasma samples were collected from 216 patients with ischemia-related diseases. Evans blue and TTC staining, radioimmunoassay, ICP‒OES, echocardiography, Hydro-Cy3-mediated ROS detection, and Western blotting were employed to evaluate the effect of ANP on Zn2⁺ homeostasis. RESULTS Plasma ANP levels were significantly elevated in patients with ST-elevation myocardial infarction (STEMI), non-ST-elevation myocardial infarction (NSTEMI), and heart failure (HF). ANP secretion increased during reperfusion, rather than infarction, both ex vivo and in vivo, promoting Zn2⁺ accumulation in reperfused tissue. ANP and Zn2⁺ protected mitochondria and reduced infarct size; these effects were reversed by the Zn2⁺ chelator TPEN. In WT and ANP-/- mice, EF% and FS% decreased after reperfusion, with ANP-/- mice exhibiting significantly worse cardiac function. ANP pretreatment alone improved cardiac function, but combined pretreatment with ANP and TPEN decreased EF% and FS% while increasing LVID. Reperfusion increased ROS levels in both WT and ANP-/- hearts, which were reduced by ANP pretreatment. I/R injury elevated Zn2⁺ transporter 8 (ZnT8) expression, an effect that was counteracted by ANP, although this effect was reversed by TPEN. Hypoxia-inducible factor 1-alpha (HIF-1α) expression was elevated in I/R rats and ANP-/- mice, and it was inhibited by both Zn2⁺ and ANP pretreatment. However, the HIF-1α inhibitor 2-Me did not reverse the effect of ANP on ZnT8 expression. Additionally, ANP increased PI3K expression in both WT and ANP-/- I/R mice, but this effect was blocked by the PI3K inhibitor LY294002. CONCLUSIONS ANP modulates Zn2⁺ homeostasis during reperfusion injury by downregulating ZnT8 through the PI3K signalling pathway, thereby reducing myocardial I/R injury.
Collapse
Affiliation(s)
- Yu-Ting Ma
- Department of Physiology and Pathophysiology, School of Medicine, Yanbian University, Yanji, 133002, China
| | - Tong Laga
- Department of General Practice, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Chong-Ning Zhong
- Department of Physiology and Pathophysiology, School of Medicine, Yanbian University, Yanji, 133002, China
| | - Bing-Qi Zhuang
- Department of Physiology and Pathophysiology, School of Medicine, Yanbian University, Yanji, 133002, China
| | - Hai-Lian Quan
- Department of Physiology and Pathophysiology, School of Medicine, Yanbian University, Yanji, 133002, China.
| | - Lan Hong
- Department of Physiology and Pathophysiology, School of Medicine, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
12
|
Huynh PM, Wang F, An YA. Hypoxia signaling in the adipose tissue. J Mol Cell Biol 2025; 16:mjae039. [PMID: 39363240 PMCID: PMC11892559 DOI: 10.1093/jmcb/mjae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024] Open
Abstract
Obesity per se is rapidly emerging all over the planet and further accounts for many other life-threatening conditions, such as diabetes, cardiovascular diseases, and cancers. Decreased oxygen supply or increased relative oxygen consumption in the adipose tissue results in adipose tissue hypoxia, which is a hallmark of obesity. This review aims to provide an up-to-date overview of the hypoxia signaling in the adipose tissue. First, we summarize literature evidence to demonstrate that hypoxia is regularly observed during adipose tissue remodeling in humans and rodent models with obesity. Next, we discuss how hypoxia-inducible factors (HIFs) are regulated and how adipose tissues behave in response to hypoxia. Then, the differential roles of adipose HIF-1α and HIF-2α in adipose tissue biology and obesity pathology are highlighted. Finally, the review emphasizes the importance of modulating adipose hypoxia as a therapeutic avenue to assist adipose tissues in functionally adapting to hypoxic conditions, ultimately promoting adipose health and improving outcomes due to obesity.
Collapse
Affiliation(s)
- Phu M Huynh
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fenfen Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
13
|
Al-Noshokaty TM, El-Sayyad GS, Abdelhamid R, Mansour A, Abdellatif N, Alaaeldien A, Reda T, Gendi D, Abdelmaksoud NM, Elshaer SS, Doghish AS, Mohammed OA, Abulsoud AI. Long non-coding RNAs and their role in breast cancer pathogenesis and drug resistance: Navigating the non-coding landscape review. Exp Cell Res 2025; 444:114365. [PMID: 39626864 DOI: 10.1016/j.yexcr.2024.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/27/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Despite the progress made in the development of targeted therapies, breast cancer (BC) continues to pose a significant threat to the health of women. Transcriptomics has emerged due to the advancements in high-throughput sequencing technology. This provides crucial information about the role of non-coding RNAs (ncRNAs) in human cells, particularly long ncRNAs (lncRNAs), in disease development and function. When the control of these ncRNAs is disrupted, various illnesses emerge, including cancer. Numerous studies have produced empirical data on the function of lncRNAs in tumorigenesis and disease development. However, the roles and mechanisms of numerous lncRNAs remain unidentified at the molecular level because their regulatory role and the functional implications of abnormalities in cancer biology have yet to be thoroughly defined. The review gives an itemized summary of the most current developments in the role of lncRNA in BC, focusing on three main pathways, PI3K, MAPK, NF-kB, and hypoxia, and their resistance mechanisms.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Gharieb S El-Sayyad
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 6th October City, Giza, Egypt.
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - David Gendi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
14
|
Ashique S, Mishra N, Mantry S, Garg A, Kumar N, Gupta M, Kar SK, Islam A, Mohanto S, Subramaniyan V. Crosstalk between ROS-inflammatory gene expression axis in the progression of lung disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:417-448. [PMID: 39196392 DOI: 10.1007/s00210-024-03392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat. Endogenic antioxidant systems are not enough to avert free radical-mediated damage due to the induced overproduction of ROS. Pro-inflammatory mediators are then produced due to intracellular signaling events, which can harm the tissue and worsen the inflammatory response. Overproduction of ROS causes oxidative stress, which causes lung damage and various disease conditions. Invasive microorganisms or hazardous substances that are inhaled repeatedly can cause an excessive amount of ROS to be produced. By starting signal transduction pathways, increased ROS generation during inflammation may cause recurrent DNA damage and apoptosis and activate proto-oncogenes. This review provides information about new targets for conducting research in related domains or target factors to prevent, control, or treat such inflammatory oxidative stress-induced inflammatory lung disorders.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, 713212, India.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Sanjeeb Kumar Kar
- Department of Pharmaceutical Chemistry, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
15
|
Zhang Z, Wang D, Xu R, Li X, Wang Z, Zhang Y. The Physiological Functions and Therapeutic Potential of Hypoxia-Inducible Factor-1α in Vascular Calcification. Biomolecules 2024; 14:1592. [PMID: 39766299 PMCID: PMC11674127 DOI: 10.3390/biom14121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
HIF-1α plays a crucial regulatory role in vascular calcification (VC), primarily influencing the osteogenic differentiation of VSMCs through oxygen-sensing mechanisms. Under hypoxic conditions, the stability of HIF-1α increases, avoiding PHD and VHL protein-mediated degradation, which promotes its accumulation in cells and then activates gene expressions related to calcification. Additionally, HIF-1α modulates the metabolic state of VSMCs by regulating the pathways that govern the switch between glycolysis and oxidative phosphorylation, thereby further advancing the calcification process. The interaction between HIF-1α and other signaling pathways, such as nuclear factor-κB, Notch, and Wnt/β-catenin, creates a complex regulatory network that serves as a critical driving force in VC. Therefore, a deeper understanding of the role and regulatory mechanism of the HIF-1α signaling during the development and progression of VC is of great significance, as it is not only a key molecular marker for understanding the pathological mechanisms of VC but also represents a promising target for future anti-calcification therapies.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
16
|
Cui Y, Du X, Li Y, Wang D, Lv Z, Yuan H, Chen Y, Liu J, Sun Y, Wang W. Imbalanced and Unchecked: The Role of Metal Dyshomeostasis in Driving COPD Progression. COPD 2024; 21:2322605. [PMID: 38591165 DOI: 10.1080/15412555.2024.2322605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 04/10/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory condition characterized by persistent inflammation and oxidative stress, which ultimately leads to progressive restriction of airflow. Extensive research findings have cogently suggested that the dysregulation of essential transition metal ions, notably iron, copper, and zinc, stands as a critical nexus in the perpetuation of inflammatory processes and oxidative damage within the lungs of COPD patients. Unraveling the intricate interplay between metal homeostasis, oxidative stress, and inflammatory signaling is of paramount importance in unraveling the intricacies of COPD pathogenesis. This comprehensive review aims to examine the current literature on the sources, regulation, and mechanisms by which metal dyshomeostasis contributes to COPD progression. We specifically focus on iron, copper, and zinc, given their well-characterized roles in orchestrating cytokine production, immune cell function, antioxidant depletion, and matrix remodeling. Despite the limited number of clinical trials investigating metal modulation in COPD, the advent of emerging methodologies tailored to monitor metal fluxes and gauge responses to chelation and supplementation hold great promise in unlocking the potential of metal-based interventions. We conclude that targeted restoration of metal homeostasis represents a promising frontier for ameliorating pathological processes driving COPD progression.
Collapse
Affiliation(s)
- Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xinqian Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yunqi Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
17
|
Fangal VD, Saferali A, Castaldi PJ, Hersh CP, Weiss ST. Distinct physiological, transcriptomic, and imaging characteristics of asthma-COPD overlap compared to asthma and COPD in smokers. EBioMedicine 2024; 110:105453. [PMID: 39580967 PMCID: PMC11621799 DOI: 10.1016/j.ebiom.2024.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND The clinical and pathological features of asthma and chronic obstructive pulmonary disease (COPD) can converge in smokers and elderly individuals as asthma-COPD overlap (ACO). This overlap challenges the diagnosis and treatment of the distinct aetiologies underlying these conditions. METHODS We analysed 2453 smokers (≥10 pack-years), aged 45-80 years, from the Genetic Epidemiology of COPD (COPDGene) Study, stratified as Control, Asthma, COPD, and ACO based on Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria. A comprehensive assessment was performed, encompassing symptomatology, pulmonary function tests (PFTs), complete blood counts (CBCs), bulk RNA sequencing (RNA-seq), and high-resolution quantitative computed tomography (QCT) imaging to evaluate clinical impact, lung function, systemic inflammation, and structural alterations contributing to disease progression across respiratory phenotypes. Differential expression (DE) analysis was performed using whole blood RNA-seq (BH-corrected FDR < 0.01), followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Group differences were assessed using the Mann-Whitney U-test (MWU) or Chi-squared test (χ2), with Bonferroni correction applied for multiple comparisons. Multivariate linear regression models were used to adjust the associations between disease status and specific clinical outcomes for confounders, with one-way ANOVA and Tukey's Honest Significant Difference (HSD) post-hoc test applied for pairwise comparisons. Our analysis aimed to delineate the extent and variability of clinical features among disease phenotypes to guide targeted therapeutic strategies. FINDINGS Our study highlights distinct yet overlapping profiles across ACO, asthma, and COPD. We effectively isolated disease-specific mechanisms by comparing each phenotype to smoking controls (GOLD 0) while accounting for baseline smoking-related inflammation. ACO exhibited the most severe symptom burden, with significantly higher COPD Assessment Test (CAT) score (18.32, 95% CI: [17.02, 19.63], P < 0.0001) and Modified Medical Research Council (mMRC) Dyspnea score (2.14, 95% CI: [1.92, 2.35], P < 0.0001) compared to COPD and asthma. ACO also displayed reduced lung capacity (forced expiratory volume in 1 s [FEV1]: 52.5%, 95% CI: [50.08, 54.93], P < 0.0001) and airflow limitation (FEV1/forced vital capacity [FVC]: 0.55, 95% CI: [0.5471, 0.5546], P < 0.0001), closely resembling COPD but significantly worse than asthma. The inflammatory profile of ACO exhibited a mixed response, featuring elevated neutrophil counts (4.57 K/μL, 95% CI: [4.28, 4.86], P < 0.0001) and eosinophil levels (0.22 K/μL, 95% CI: [0.20, 0.25], P < 0.01), contrasting with the predominantly neutrophilic inflammation in COPD and the absence of systemic inflammation in asthma. Structurally, ACO demonstrated significant airway remodelling (Pi10: 2.87, 95% CI: [2.83, 2.91], P < 0.0001), intermediate emphysema (5.66%, 95% CI: [4.72, 6.60], P < 0.0001), and moderate small airway disease (parametric response mapping for functional small airway disease [PRMfSAD]: 22.94%, 95% CI: [21.53, 24.34], P < 0.0001), reflecting features of both asthma and COPD. COPD was characterised by more extensive emphysema (8.9%, 95% CI: [8.34, 9.45], P < 0.0001), small airway disease (PRMfSAD: 27.09%, 95% CI: [26.51, 27.66], P < 0.0001), and gas trapping (37.34%, 95% CI: [36.33, 38.35], P < 0.0001), alongside moderate airway remodelling. At a molecular level, DE analysis revealed enrichment of the Hypoxia-Inducible Factor 1 (HIF-1) pathway in ACO, highlighting unique hypoxia-driven metabolic adaptations, while COPD was associated with neutrophil extracellular trap (NET) formation and necroptosis. In contrast, asthma exhibited significant airway remodelling (Pi10: 2.09, 95% CI: [2.05, 2.13], P < 0.0001), minimal parenchymal damage, and no systemic gene expression changes. INTERPRETATION Collectively, our findings underscore the lung function impairments, systemic inflammation, molecular mechanisms, and structural correlates distinguishing ACO from COPD and asthma, emphasising the need for precise clinical management and the potential for novel therapeutic interventions. FUNDING This work was supported by National Heart, Lung, and Blood Institute (NHLBI) grants U01 HL089897 and U01 HL089856, as well as by National Institutes of Health (NIH) contract 75N92023D00011. Additional support was provided by grants R01 HL166231 (C.P.H.) and K01 HL157613 (A.S.).
Collapse
Affiliation(s)
- Vrushali D Fangal
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| | - Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
18
|
Bou-Gharios J, Noël G, Burckel H. The neglected burden of chronic hypoxia on the resistance of glioblastoma multiforme to first-line therapies. BMC Biol 2024; 22:278. [PMID: 39609830 PMCID: PMC11603919 DOI: 10.1186/s12915-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common adult primary brain tumor. The standard of care involves maximal surgery followed by radiotherapy and concomitant chemotherapy with temozolomide (TMZ), in addition to adjuvant TMZ. However, the recurrence rate of GBM within 1-2 years post-diagnosis is still elevated and has been attributed to the accumulation of multiple factors including the heterogeneity of GBM, genomic instability, angiogenesis, and chronic tumor hypoxia. Tumor hypoxia activates downstream signaling pathways involved in the adaptation of GBM to the newly oxygen-deprived environment, thereby contributing to the resistance and recurrence phenomena, despite the multimodal therapeutic approach used to eradicate the tumor. Therefore, in this review, we will focus on the development and implication of chronic or limited-diffusion hypoxia in tumor persistence through genetic and epigenetic modifications. Then, we will detail the hypoxia-induced activation of vital biological pathways and mechanisms that contribute to GBM resistance. Finally, we will discuss a proteomics-based approach to encourage the implication of personalized GBM treatments based on a hypoxia signature.
Collapse
Affiliation(s)
- Jolie Bou-Gharios
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France
| | - Georges Noël
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France
- Institut de Cancérologie Strasbourg Europe (ICANS), Department of Radiation Oncology, UNICANCER, 17 Rue Albert Calmette, Strasbourg, 67200, France
| | - Hélène Burckel
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France.
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France.
| |
Collapse
|
19
|
Xu J, Tang Z. Progress on angiogenic and antiangiogenic agents in the tumor microenvironment. Front Oncol 2024; 14:1491099. [PMID: 39629004 PMCID: PMC11611712 DOI: 10.3389/fonc.2024.1491099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
The development of tumors and their metastasis relies heavily on the process of angiogenesis. When the volume of a tumor expands, the resulting internal hypoxic conditions trigger the body to enhance the production of various angiogenic factors. These include vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and transforming growth factor-α (TGF-α), all of which work together to stimulate the activation of endothelial cells and catalyze angiogenesis. Antiangiogenic therapy (AAT) aims to normalize tumor blood vessels by inhibiting these angiogenic signals. In this review, we will explore the molecular mechanisms of angiogenesis within the tumor microenvironment, discuss traditional antiangiogenic drugs along with their limitations, examine new antiangiogenic drugs and the advantages of combination therapy, and consider future research directions in the field of antiangiogenic drugs. This comprehensive overview aims to provide insights that may aid in the development of more effective anti-tumor treatments.
Collapse
Affiliation(s)
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
20
|
Cecchi R, Camatti J, Bonasoni MP, Clemente GM, Nicolì S, Campanini N, Mozzoni P. HIF-1α expression by immunohistochemistry and mRNA-210 levels by real time polymerase chain reaction in post-mortem cardiac tissues: A pilot study. Leg Med (Tokyo) 2024; 71:102508. [PMID: 39137459 DOI: 10.1016/j.legalmed.2024.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION The postmortem diagnosis of acute myocardial ischemia (AMI) represents a challenging issue in forensic practice. Immunohistochemical studies and gene expression studies are becoming a promising field of research in forensic pathology. The present study aims to evaluate HIF-1α expression through immunohistochemistry (IHC), and mRNA-210 level using real-time polymerase chain reaction (RT-PCR), in order to define if HIF-1α and mRNA-210 in post-mortem myocardium could be adopted in the diagnosis of AMI. MATERIALS AND METHODS Thirty-five deceased individuals, who underwent forensic autopsy at the Legal Medicine Service of the University of Parma, between 2010 and 2018, were investigated. The cohort was divided into two groups according to the cause of death (sudden deaths caused by AMI vs control cases). Cardiac specimens were collected during autopsy, then samples were processed for morphological evaluation using haematoxylin-eosin staining, for IHC, and for RT-PCR. HIF-1α expression and mRNA-210 levels were investigated. RESULTS Statistical evaluation demonstrated statistically significant differences in terms of number of IHC positive vessels, leukocytes, and cardiomyocytes between the two groups. Moreover, in the majority of cases, immunostaining positivity was observed only in myocardial and subendocardial samples. With reference to mRNA-210, the difference between the two groups proved to be statistically significant. CONCLUSIONS The present study indicates that HIF-1α and mRNA-210 in post-mortem cardiac specimens could represent appropriate biomarkers in the diagnosis of AMI. The current study was primarily limited by the scarcity of the cohort, so further research is required to confirm these preliminary observations.
Collapse
|
21
|
Liu QY, Liu HF, Ye LQ, Li T, Chen ZM, Wang Y, Peng Z, Wan L. Vascular Endothelial Growth Factor a Promotes Chronic Itch via VEGFA-VEGFR2-PI3K-TRPV1 Axis in Allergic Contact Dermatitis. J Inflamm Res 2024; 17:7423-7439. [PMID: 39435259 PMCID: PMC11492922 DOI: 10.2147/jir.s470094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Allergic contact dermatitis (ACD), a prevalent skin disorder affecting up to 20% of the population, triggers significant discomfort and health implications. Our research investigates the pivotal role of Vascular Endothelial Growth Factor A (VEGFA) in chronic itching associated with ACD. Methods Bioinformatics methods were utilized to identify differentially expressed genes (DEGs) between ACD models and patients. In vivo models of chronic pruritus in mice induced by 2,4-dinitrofluorobenzene (DNFB) were employed. Mice were administered subcutaneously with a VEGFA inhibitor, sFlt1, and compared to a control group. Real-time RT-PCR, Western blot, and immunohistochemical staining were performed to evaluate VEGFA expression and the impact of sFlt1 on itching behavior. Results The analysis revealed that VEGFA is significantly upregulated in ACD skin, primarily expressed by keratinocytes. Administration of the VEGFA inhibitor sFlt1 in the ACD mouse model led to a substantial reduction in scratching behavior, indicating that VEGFA may mediate pruritus through the VEGFA-VEGFR2-PI3K-TRPV1 signaling pathway. Discussion These findings suggest that VEGFA plays a crucial role in ACD-associated pruritus and may serve as a potential therapeutic target. However, further research is required to validate these findings and to explore additional molecular pathways involved in the pruritic response in ACD.
Collapse
Affiliation(s)
- Qin-Yu Liu
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People’s Republic of China
- Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People’s Republic of China
| | - Hua-Feng Liu
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People’s Republic of China
- Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People’s Republic of China
| | - Liu-Qing Ye
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People’s Republic of China
- Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People’s Republic of China
| | - Tian Li
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People’s Republic of China
- Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People’s Republic of China
| | - Zuo-Ming Chen
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People’s Republic of China
- Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People’s Republic of China
| | - Yu Wang
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People’s Republic of China
- Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People’s Republic of China
| | - Zhe Peng
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People’s Republic of China
- Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, People’s Republic of China
| | - Li Wan
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People’s Republic of China
| |
Collapse
|
22
|
Findley TO, Palei AC, Cho KS, Zhao Z, Shi C, Mahajan G, Corno AF, Salazar J, McCullough L. Sex differences in metabolic adaptation in infants with cyanotic congenital heart disease. Pediatr Res 2024; 96:1201-1209. [PMID: 38839995 PMCID: PMC11524789 DOI: 10.1038/s41390-024-03291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Female infants with congenital heart disease (CHD) face significantly higher postoperative mortality rates after adjusting for cardiac complexity. Sex differences in metabolic adaptation to cardiac stressors may be an early contributor to cardiac dysfunction. In adult diseases, hypoxic/ischemic cardiomyocytes undergo a cardioprotective metabolic shift from oxidative phosphorylation to glycolysis which appears to be regulated in a sexually dimorphic manner. We hypothesize sex differences in cardiac metabolism are present in cyanotic CHD and detectable as early as the infant period. METHODS RNA sequencing was performed on blood samples (cyanotic CHD cases, n = 11; controls, n = 11) and analyzed using gene set enrichment analysis (GSEA). Global plasma metabolite profiling (UPLC-MS/MS) was performed using a larger representative cohort (cyanotic CHD, n = 27; non-cyanotic CHD, n = 11; unaffected controls, n = 12). RESULTS Hallmark gene sets in glycolysis, fatty acid metabolism, and oxidative phosphorylation were significantly enriched in cyanotic CHD females compared to male counterparts, which was consistent with metabolomic differences between sexes. Minimal sex differences in metabolic pathways were observed in normoxic patients (both controls and non-cyanotic CHD cases). CONCLUSION These observations suggest underlying differences in metabolic adaptation to chronic hypoxia between males and females with cyanotic CHD. IMPACT Children with cyanotic CHD exhibit sex differences in utilization of glycolysis vs. fatty acid oxidation pathways to meet the high-energy demands of the heart in the neonatal period. Transcriptomic and metabolomic results suggest that under hypoxic conditions, males and females undergo metabolic shifts that are sexually dimorphic. These sex differences were not observed in neonates in normoxic conditions (i.e., non-cyanotic CHD and unaffected controls). The involved metabolic pathways are similar to those observed in advanced heart failure, suggesting metabolic adaptations beginning in the neonatal period may contribute to sex differences in infant survival.
Collapse
Affiliation(s)
- Tina O Findley
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, Houston, TX, USA.
| | - Ana Carolina Palei
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kyung Serk Cho
- Center for Precision Health, School of Biomedical Informatics at the University of Texas Health Science Center Houston, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics at the University of Texas Health Science Center Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health at the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Caleb Shi
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Gouri Mahajan
- Department of Pharmacology and Toxicology/Biobank, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Jorge Salazar
- Children's Heart Institute, McGovern Medical School at the University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Louise McCullough
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
23
|
Cai H, Tian C, Chen L, McCracken K, Tchieu J, Gu M, Mackie K, Guo F. Vascular network-inspired diffusible scaffolds for engineering functional neural organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610649. [PMID: 39282292 PMCID: PMC11398381 DOI: 10.1101/2024.08.31.610649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Organoids, three-dimensional in vitro organ-like tissue cultures derived from stem cells, show promising potential for developmental biology, drug discovery, and regenerative medicine. However, the function and phenotype of current organoids, especially neural organoids, are still limited by insufficient diffusion of oxygen, nutrients, metabolites, signaling molecules, and drugs. Herein, we present Vascular network-Inspired Diffusible (VID) scaffolds to fully recapture the benefits of physiological diffusion physics for generating functional organoids and phenotyping their drug response. In a proof-of-concept application, the VID scaffolds, 3D-printed meshed tubular channel networks, support the successful generation of engineered human midbrain organoids almost without necrosis and hypoxia in commonly used well-plates. Compared to conventional organoids, these engineered organoids develop with more physiologically relevant features and functions including midbrain-specific identity, oxygen metabolism, neuronal maturation, and network activity. Moreover, these engineered organoids also better recapitulate pharmacological responses, such as neural activity changes to fentanyl exposure, compared to conventional organoids with significant diffusion limits. Combining these unique scaffolds and engineered organoids may provide insights for organoid development and therapeutic innovation.
Collapse
|
24
|
Nwaduru C, Ovalle LA, Hoareau GL, Baker E, Buff M, Selim M, Baker TB, Zimmerman MA. Ectonucleotidases in Ischemia Reperfusion Injury: Unravelling the Interplay With Mitochondrial Dysfunction in Liver Transplantation. Transplant Proc 2024; 56:1598-1606. [PMID: 39183080 DOI: 10.1016/j.transproceed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024]
Abstract
Ischemia-reperfusion injury (IRI) profoundly impacts organ transplantation, especially in orthotopic liver transplantation (OLT). Disruption of the mitochondrial respiratory chain during ischemia leads to ATP loss and ROS production. Reperfusion exacerbates mitochondrial damage, triggering the release of damage-associated molecular patterns (DAMPs) and inflammatory responses. Mitochondrial dysfunction, a pivotal aspect of IRI, is explored in the context of the regulatory role of ectonucleotidases in purinergic signaling and immune responses. CD39, by hydrolyzing ATP and ADP; and CD73, by converting AMP to adenosine, emerge as key players in mitigating liver IRI, particularly through ischemic preconditioning and adenosine receptor signaling. Despite established roles in vascular health and immunity, the impact of ectonucleotidases on mitochondrial function during hepatic IRI is unclear. This review aims to elucidate the interplay between CD39/73 and mitochondria, emphasizing their potential as therapeutic targets for liver transplantation. This article explores the role of CD39/73 in tissue hypoxia, emphasizing adenosine production during inflammation. CD39 and CD73 upregulation under hypoxic conditions regulate immune responses, demonstrating protective effects in various organ-specific ischemic models. However, prolonged adenosine activation may have dual effects, beneficial in acute settings but detrimental in chronic hypoxia. Herein, we raise questions about ectonucleotidases influencing mitochondrial function during hepatic IRI, drawing parallels with cancer cell responses to chemotherapy. The review underscores the need for comprehensive research into the intricate interplay between ectonucleotidases, mitochondrial dynamics, and their therapeutic implications in hepatic IRI, providing valuable insights for advancing transplantation outcomes.
Collapse
Affiliation(s)
- Chinedu Nwaduru
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| | - Leo Aviles Ovalle
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guillaume L Hoareau
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Emma Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michelle Buff
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Motaz Selim
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Talia B Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael A Zimmerman
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
25
|
Zhang H, Shah A, Ravandi A. Cardiogenic shock-sex-specific risk factors and outcome differences. Can J Physiol Pharmacol 2024; 102:530-537. [PMID: 38663027 DOI: 10.1139/cjpp-2023-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Cardiogenic shock (CS) remains a high-mortality condition despite technological and therapeutic advances. One key to potentially improving CS prognosis is understanding patient heterogeneity and which patients may benefit most from different treatment options, a key element of which is sex differences. While cardiovascular diseases (CVDs) have historically been considered a male-dominant condition, the field is increasingly aware that females are also a substantial portion of the patient population. While estrogen has been implicated in protective roles against CVD and tissue hypoxia, its role in CS remains unclear. Clinically, female CS patients tend to be older, have more severe comorbidities and are more likely to have non-acute myocardial infarction etiologies with preserved ejection fractions. Female CS patients are more likely to receive pharmacotherapy while less likely to receive mechanical circulatory support. There is increased short-term mortality in females, although long-term mortality is similar between the sexes. More sex-specific and age-stratified research needs to be done to fully understand the relevant pathophysiological differences in CS, to better recognize and manage CS patients and reduce its mortality.
Collapse
Affiliation(s)
- Hannah Zhang
- Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Precision Cardiovascular Medicine Group, Institute of Cardiovascular Sciences, Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Ashish Shah
- Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Precision Cardiovascular Medicine Group, Institute of Cardiovascular Sciences, Boniface Hospital Research Centre, Winnipeg, MB, Canada
- Section of Cardiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Amir Ravandi
- Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Precision Cardiovascular Medicine Group, Institute of Cardiovascular Sciences, Boniface Hospital Research Centre, Winnipeg, MB, Canada
- Section of Cardiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
26
|
Alanova P, Alan L, Opletalova B, Bohuslavova R, Abaffy P, Matejkova K, Holzerova K, Benak D, Kaludercic N, Menabo R, Di Lisa F, Ostadal B, Kolar F, Pavlinkova G. HIF-1α limits myocardial infarction by promoting mitophagy in mouse hearts adapted to chronic hypoxia. Acta Physiol (Oxf) 2024; 240:e14202. [PMID: 39016532 DOI: 10.1111/apha.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/24/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
AIM The transcriptional factor HIF-1α is recognized for its contribution to cardioprotection against acute ischemia/reperfusion injury. Adaptation to chronic hypoxia (CH) is known to stabilize HIF-1α and increase myocardial ischemic tolerance. However, the precise role of HIF-1α in mediating the protective effect remains incompletely understood. METHODS Male wild-type (WT) mice and mice with partial Hif1a deficiency (hif1a +/-) were exposed to CH for 4 weeks, while their respective controls were kept under normoxic conditions. Subsequently, their isolated perfused hearts were subjected to ischemia/reperfusion to determine infarct size, while RNA-sequencing of isolated cardiomyocytes was performed. Mitochondrial respiration was measured to evaluate mitochondrial function, and western blots were performed to assess mitophagy. RESULTS We demonstrated enhanced ischemic tolerance in WT mice induced by adaptation to CH compared with their normoxic controls and chronically hypoxic hif1a +/- mice. Through cardiomyocyte bulk mRNA sequencing analysis, we unveiled significant reprogramming of cardiomyocytes induced by CH emphasizing mitochondrial processes. CH reduced mitochondrial content and respiration and altered mitochondrial ultrastructure. Notably, the reduced mitochondrial content correlated with enhanced autophagosome formation exclusively in chronically hypoxic WT mice, supported by an increase in the LC3-II/LC3-I ratio, expression of PINK1, and degradation of SQSTM1/p62. Furthermore, pretreatment with the mitochondrial division inhibitor (mdivi-1) abolished the infarct size-limiting effect of CH in WT mice, highlighting the key role of mitophagy in CH-induced cardioprotection. CONCLUSION These findings provide new insights into the contribution of HIF-1α to cardiomyocyte survival during acute ischemia/reperfusion injury by activating the selective autophagy pathway.
Collapse
Affiliation(s)
- Petra Alanova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lukas Alan
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Biology, University of Padova, Padova, Italy
| | - Barbora Opletalova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Katerina Matejkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Kristyna Holzerova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nina Kaludercic
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy
| | - Roberta Menabo
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Bohuslav Ostadal
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Kolar
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| |
Collapse
|
27
|
Dittfeld C, Schmieder F, Behrens S, Jannasch A, Matschke K, Sonntag F, Tugtekin SM. Oxygenator assisted dynamic microphysiological culture elucidates the impact of hypoxia on valvular interstitial cell calcification. J Biol Eng 2024; 18:45. [PMID: 39180097 PMCID: PMC11342540 DOI: 10.1186/s13036-024-00441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
INTRODUCTION Microphysiological systems (MPS) offer simulation of (patho)physiological parameters. Investigation includes items which lead to fibrosis and calcification in development and progress of calcific aortic valve disease, based e.g. on culturing of isolated valvular interstitial cells (VICs). Hypoxia regulated by hypoxia inducible factors impacts pathological differentiation in aortic valve (AV) disease. This is mimicked via an MPS implemented oxygenator in combination with calcification inducing medium supplementation. METHODS Human valvular interstitial cells were isolated and dynamically cultured in MPS at hypoxic, normoxic, arterial blood oxygen concentration and cell incubator condition. Expression profile of fibrosis and calcification markers was monitored and calcification was quantified in induction and control media with and without hypoxia and in comparison to statically cultured counterparts. RESULTS Hypoxic 24-hour culture of human VICs leads to HIF1α nuclear localization and induction of EGLN1, EGLN3 and LDHA mRNA expression but does not directly impact expression of fibrosis and calcification markers. Dependent on medium formulation, induction medium induces monolayer calcification and elevates RUNX2, ACTA2 and FN1 but reduces SOX9 mRNA expression in dynamic and static MPS culture. But combining hypoxic oxygen concentration leads to higher calcification potential of human VICs in calcification and standard medium formulation dynamically cultured for 96 h. CONCLUSION In hypoxic oxygen concentration an increased human VIC calcification in 2D VIC culture in an oxygenator assisted MPS was detected. Oxygen regulation therefore can be combined with calcification induction media to monitor additional effects of pathological marker expression. Validation of oxygenator dependent VIC behavior envisions future advancement and transfer to long term aortic valve tissue culture MPS.
Collapse
Affiliation(s)
- Claudia Dittfeld
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany.
| | - Florian Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Stephan Behrens
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Anett Jannasch
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Sems-Malte Tugtekin
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| |
Collapse
|
28
|
Li D, Li D, Wang Z, Li J, Shahzad KA, Wang Y, Tan F. Signaling pathways activated and regulated by stem cell-derived exosome therapy. Cell Biosci 2024; 14:105. [PMID: 39164778 PMCID: PMC11334359 DOI: 10.1186/s13578-024-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
Stem cell-derived exosomes exert comparable therapeutic effects to those of their parental stem cells without causing immunogenic, tumorigenic, and ethical disadvantages. Their therapeutic advantages are manifested in the management of a broad spectrum of diseases, and their dosing versatility are exemplified by systemic administration and local delivery. Furthermore, the activation and regulation of various signaling cascades have provided foundation for the claimed curative effects of exosomal therapy. Unlike other relevant reviews focusing on the upstream aspects (e.g., yield, isolation, modification), and downstream aspects (e.g. phenotypic changes, tissue response, cellular behavior) of stem cell-derived exosome therapy, this unique review endeavors to focus on various affected signaling pathways. After meticulous dissection of relevant literature from the past five years, we present this comprehensive, up-to-date, disease-specific, and pathway-oriented review. Exosomes sourced from various types of stem cells can regulate major signaling pathways (e.g., the PTEN/PI3K/Akt/mTOR, NF-κB, TGF-β, HIF-1α, Wnt, MAPK, JAK-STAT, Hippo, and Notch signaling cascades) and minor pathways during the treatment of numerous diseases encountered in orthopedic surgery, neurosurgery, cardiothoracic surgery, plastic surgery, general surgery, and other specialties. We provide a novel perspective in future exosome research through bridging the gap between signaling pathways and surgical indications when designing further preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Ding Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Danni Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Yanhong Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China.
- The Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Royal College of Surgeons of England, London, UK.
| |
Collapse
|
29
|
Di Mattia M, Sallese M, Neri M, Lopetuso LR. Hypoxic Functional Regulation Pathways in the GI Tract: Focus on the HIF-1α and Microbiota's Crosstalk. Inflamm Bowel Dis 2024; 30:1406-1418. [PMID: 38484200 DOI: 10.1093/ibd/izae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 08/02/2024]
Abstract
Hypoxia is an essential gastrointestinal (GI) tract phenomenon that influences both physiologic and pathologic states. Hypoxia-inducible factors (HIFs), the primary drivers of cell adaptation to low-oxygen environments, have been identified as critical regulators of gut homeostasis: directly, through the induction of different proteins linked to intestinal barrier stabilization (ie, adherent proteins, tight junctions, mucins, integrins, intestinal trefoil factor, and adenosine); and indirectly, through the regulation of several immune cell types and the modulation of autophagy and inflammatory processes. Furthermore, hypoxia and HIF-related sensing pathways influence the delicate relationship existing between bacteria and mammalian host cells. In turn, gut commensals establish and maintain the physiologic hypoxia of the GI tract and HIF-α expression. Based on this premise, the goals of this review are to (1) highlight hypoxic molecular pathways in the GI tract, both in physiologic and pathophysiologic settings, such as inflammatory bowel disease; and (2) discuss a potential strategy for ameliorating gut-related disorders, by targeting HIF signaling, which can alleviate inflammatory processes, restore autophagy correct mechanisms, and benefit the host-microbiota equilibrium.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Matteo Neri
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
30
|
Fayyad-Kazan M, ElDirani R, Ghassibe-Sabbagh M, Hamade E, Hadifeh N, El Majzoub R, Fayyad-Kazan H, Badran B. MicroRNA-138 inhibits hypoxia-inducible factor 1α expression in breast cancer cells. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:302-317. [PMID: 39004901 DOI: 10.1080/15257770.2024.2351134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Hypoxia, a critical feature during cancer development, leads to the stabilization and activation of the hypoxia-inducible factor 1-alpha (HIF-1α) to drive the expression of many target genes which in turn can promote many aspects of breast cancer biology, mainly metastasis and resistance to therapy. MicroRNAs are known to modulate the expression of many genes involved in breast cancer tumorigenesis. In this study, we examined the regulatory effect of miRNAs on HIF1α expression. METHODS MCF-7 and MDA-MB-231 were cultivated under normoxia or hypoxia conditions. TaqMan-Low Density Array (TLDA) was used to characterize the miRNA signatures. Wild-Type (WT) or mutated fragments of HIF-1α 3'UTR containing the miR-138 potential target site were cloned downstream of the Renilla luciferase gene in the psiCHECK-1 plasmid. Luciferase assays were then carried out. A lentiviral vector containing copGFP as a reporter gene was prepared and transduced into MCF-7 and MDA-MB-231 cells to assess the effect of identified deregulated miRNAs on HIF-1α expression. RESULTS Under hypoxic conditions, MCF-7 cells showed deregulated expression for 12 miRNAs. In the case of MDA-MB-231 cells, 16 miRNAs were deregulated in response to hypoxia. Interestingly, miR-138 that was downregulated in both MCF-7 and MDA-MB-231 cells cultivated under hypoxic conditions appeared to have a binding site in 3'UTR of HIF-1α. Moreover, our results indicated that miR-138 could down regulate HIF-1α expression, upon binding directly to its 3'UTR. CONCLUSIONS Interestingly, our data highlights miR-138 as a potential therapeutic target to reduce HIF-1α expression and subsequently restrain breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Mohammad Fayyad-Kazan
- College of Arts and Sciences, Department of Natural and Applied Sciences, The American University of Iraq-Baghdad (AUIB), Baghdad, Iraq
| | - Rim ElDirani
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Eva Hamade
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
| | - Nader Hadifeh
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
| | - Rania El Majzoub
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Mazraa, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
| | - Bassam Badran
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
| |
Collapse
|
31
|
Laird M, Ku JC, Raiten J, Sriram S, Moore M, Li Y. Mitochondrial metabolism regulation and epigenetics in hypoxia. Front Physiol 2024; 15:1393232. [PMID: 38915781 PMCID: PMC11194441 DOI: 10.3389/fphys.2024.1393232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
The complex and dynamic interaction between cellular energy control and gene expression modulation is shown by the intersection between mitochondrial metabolism and epigenetics in hypoxic environments. Poor oxygen delivery to tissues, or hypoxia, is a basic physiological stressor that sets off a series of reactions in cells to adapt and endure oxygen-starved environments. Often called the "powerhouse of the cell," mitochondria are essential to cellular metabolism, especially regarding producing energy through oxidative phosphorylation. The cellular response to hypoxia entails a change in mitochondrial metabolism to improve survival, including epigenetic modifications that control gene expression without altering the underlying genome. By altering the expression of genes involved in angiogenesis, cell survival, and metabolism, these epigenetic modifications help cells adapt to hypoxia. The sophisticated interplay between mitochondrial metabolism and epigenetics in hypoxia is highlighted by several important points, which have been summarized in the current article. Deciphering the relationship between mitochondrial metabolism and epigenetics during hypoxia is essential to understanding the molecular processes that regulate cellular adaptation to reduced oxygen concentrations.
Collapse
Affiliation(s)
- Madison Laird
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Jacob Raiten
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Sashwat Sriram
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Megan Moore
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Department of Orthopaedic Surgery, Biomedical Engineering, Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
32
|
Li W, Han Z, Yin X, Zhou R, Liu H. CDX2 alleviates hypoxia-induced apoptosis and oxidative stress in spermatogenic cells through suppression of reactive oxygen species-mediated Wnt/β-catenin pathway. J Appl Toxicol 2024; 44:853-862. [PMID: 38295844 DOI: 10.1002/jat.4580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/08/2023] [Accepted: 12/28/2023] [Indexed: 05/21/2024]
Abstract
Hypoxia-induced apoptosis and oxidative stress in spermatogenic cells are considered to be important factors leading to male infertility. It was reported that CDX2 expression was downregulated in hypoxia-stimulated spermatogenic cells. However, the effects of CDX2 on hypoxia-induced apoptosis and oxidative stress in spermatogenic cells are still unknown. This study aimed to explore the roles of CDX2 in hypoxia-induced injury of spermatogenic cells, as well as its mechanism of action. Spermatogenic cells were cultured under 1% oxygen for 48 h to established hypoxia damage model. Reactive oxygen species (ROS) generation was determined using 2',7'-dichlorofluorescein diacetate assay. Apoptosis was assessed using flow cytometry. Enzyme-linked immunosorbent assay was used to evaluate oxidative stress markers, including malondialdehyde (MDA) content and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidases (GSH-Px). Protein levels were detected using western blotting. Hypoxia exposure induced increase in ROS generation, apoptosis rate, and oxidative stress in spermatogenic cells. ROS scavenger inhibited hypoxia-induced apoptosis, oxidative stress, and Wnt/β-catenin pathway activation. Hypoxia exposure induced CDX2 downregulation. CDX2 overexpression suppressed hypoxia-induced ROS generation, apoptosis rate, oxidative stress, and Wnt/β-catenin pathway activation. Moreover, CDX2 knockdown restores the inhibitory effects of si-β-catenin or NAC on hypoxia-induced activation of the Wnt/β-catenin pathway, apoptosis, and oxidative stress. In conclusion, our study suggests that CDX2 overexpression alleviates hypoxia-induced apoptosis and oxidative stress by suppression of ROS-mediated Wnt/β-catenin pathway in spermatogenic cells.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Reproductive Medicine, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| | - Zhonghou Han
- Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| | - Xiurong Yin
- Department of Reproductive Medicine, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| | - Rongjuan Zhou
- Department of Audit Section, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| | - Hongfeng Liu
- Department of Women's Health, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| |
Collapse
|
33
|
You M, Fu M, Shen Z, Feng Y, Zhang L, Zhu X, Zhuang Z, Mao Y, Hua W. HIF2A mediates lineage transition to aggressive phenotype of cancer-associated fibroblasts in lung cancer brain metastasis. Oncoimmunology 2024; 13:2356942. [PMID: 38778816 PMCID: PMC11110709 DOI: 10.1080/2162402x.2024.2356942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Brain metastasis is the most devasting form of lung cancer. Recent studies highlight significant differences in the tumor microenvironment (TME) between lung cancer brain metastasis (LCBM) and primary lung cancer, which contribute significantly to tumor progression and drug resistance. Cancer-associated fibroblasts (CAFs) are the major component of pro-tumor TME with high plasticity. However, the lineage composition and function of CAFs in LCBM remain elusive. By reanalyzing single-cell RNA sequencing (scRNA-seq) data (GSE131907) from lung cancer patients with different stages of metastasis comprising primary lesions and brain metastasis, we found that CAFs undergo distinctive lineage transition during LCBM under a hypoxic situation, which is directly driven by hypoxia-induced HIF-2α activation. Transited CAFs enhance angiogenesis through VEGF pathways, trigger metabolic reprogramming, and promote the growth of tumor cells. Bulk RNA sequencing data was utilized as validation cohorts. Multiplex immunohistochemistry (mIHC) assay was performed on four paired samples of brain metastasis and their primary lung cancer counterparts to validate the findings. Our study revealed a novel mechanism of lung cancer brain metastasis featuring HIF-2α-induced lineage transition and functional alteration of CAFs, which offers potential therapeutic targets.
Collapse
Affiliation(s)
- Muyuan You
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Zhewei Shen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Yuan Feng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Licheng Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Xianmin Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|
34
|
Zhang T, Luo L, He Q, Xiao S, Li Y, Chen J, Qin T, Xiao Z, Ge Q. Research advances on molecular mechanism and natural product therapy of iron metabolism in heart failure. Eur J Med Res 2024; 29:253. [PMID: 38659000 PMCID: PMC11044586 DOI: 10.1186/s40001-024-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The progression of heart failure (HF) is complex and involves multiple regulatory pathways. Iron ions play a crucial supportive role as a cofactor for important proteins such as hemoglobin, myoglobin, oxidative respiratory chain, and DNA synthetase, in the myocardial energy metabolism process. In recent years, numerous studies have shown that HF is associated with iron dysmetabolism, and deficiencies in iron and overload of iron can both lead to the development of various myocarditis diseases, which ultimately progress to HF. Iron toxicity and iron metabolism may be key targets for the diagnosis, treatment, and prevention of HF. Some iron chelators (such as desferrioxamine), antioxidants (such as ascorbate), Fer-1, and molecules that regulate iron levels (such as lactoferrin) have been shown to be effective in treating HF and protecting the myocardium in multiple studies. Additionally, certain natural compounds can play a significant role by mediating the imbalance of iron-related signaling pathways and expression levels. Therefore, this review not only summarizes the basic processes of iron metabolism in the body and the mechanisms by which they play a role in HF, with the aim of providing new clues and considerations for the treatment of HF, but also summarizes recent studies on natural chemical components that involve ferroptosis and its role in HF pathology, as well as the mechanisms by which naturally occurring products regulate ferroptosis in HF, with the aim of providing reference information for the development of new ferroptosis inhibitors and lead compounds for the treatment of HF in the future.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Li Luo
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang City, China
| | - Sijie Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Yuwei Li
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Junpeng Chen
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Tao Qin
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Zhenni Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qingliang Ge
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China.
| |
Collapse
|
35
|
Meng H, Zhang D, Que Y, Hu P, Wang R, Liao Y, Xu G. Intermittent hypoxic pretreatment exacerbates house dust mite-induced asthma airway inflammation. Immun Inflamm Dis 2024; 12:e1253. [PMID: 38629734 PMCID: PMC11022611 DOI: 10.1002/iid3.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Asthma is widely recognized as an inflammatory disorder. In the context of this inflammatory microenvironment, the involvement of hypoxia and its impact on related pathways have drawn considerable attention. However, the exact role of hypoxia, a prevalent environmental factor, in the development and progression of asthma remains poorly understood. METHODS Mice were treated with house dust mite (HDM) extracts for 23 days to induce asthma. Mice were divided into room air (RA) group and intermittent hypoxic (IH) group by exposing to different conditions and IH preconditioning (IHP) were underwent to the above groups before the hypoxic regimen. Airway inflammation in mice was evaluated by airway hyperresponsiveness, excessive mucus secretion, and recruitment of inflammatory cells. Immunohistochemistry was employed to quantify the expression levels of NF-κB. Subsequently, the dose of allergen was modified to investigate whether the impact of hypoxia on asthma is affected by different doses of allergens. RESULT Compared to the RA and IH groups, HDM-treated mice in the IHP group exhibited aggravated inflammatory cell infiltration and airway hyperresponsiveness (p<.05). Moreover, there was an increased release of inflammatory mediators and higher expression levels of NF-κB (p<.05). Importantly, the impact ia on asthma was found to be influenced by high dose of allergen (p<.05). CONCLUSION IHP treatment potentially exacerbates HDM-induced airway inflammation in asthma, with the involvement of NF-κB, particularly under high-dose allergen stimulation.
Collapse
Affiliation(s)
- Hao Meng
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Dongxue Zhang
- Department of Endocrinology, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Yifan Que
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Peng Hu
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Runsheng Wang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic DisordersWuhanChina
| | - Guogang Xu
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General HospitalMedical School of Chinese PLABeijingChina
| |
Collapse
|
36
|
Ping X, Li Q, Ding M, Wang X, Tang C, Yu Z, Yi Q, He Y, Zheng L. Effects of hypoxic compound exercise to promote HIF-1α expression on cardiac pumping function, sleep activity behavior, and exercise capacity in Drosophila. FASEB J 2024; 38:e23499. [PMID: 38430222 DOI: 10.1096/fj.202302269r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Alteration of HIF-1α expression levels under hypoxic conditions affects the sequence of its downstream target genes thereby producing different effects. In order to investigate whether the effect of hypoxic compound exercise (HE) on HIF-1α expression alters cardiac pumping function, myocardial structure, and exercise capacity, we developed a suitable model of hypoxic exercise using Drosophila, a model organism, and additionally investigated the effect of hypoxic compound exercise on nocturnal sleep and activity behavior. The results showed that hypoxic compound exercise at 6% oxygen concentration for five consecutive days, lasting 1 h per day, significantly improved the cardiac stress resistance of Drosophila. The hypoxic complex exercise promoted the whole-body HIF-1α expression in Drosophila, and improved the jumping ability, climbing ability, moving speed, and moving distance. The expression of HIF-1α in the heart was increased after hypoxic exercise, which made a closer arrangement of myofilaments, an increase in the diameter of cardiac tubules, and an increase in the pumping function of the heart. The hypoxic compound exercise improved the sleep quality of Drosophila by increasing its nocturnal sleep time, the number of deep sleeps, and decreasing its nocturnal awakenings and activities. Therefore, we conclude that hypoxic compound exercise promoted the expression of HIF-1α to enhance the exercise capacity and heart pumping function of Drosophila, and improved the quality of sleep.
Collapse
Affiliation(s)
- Xu Ping
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Qiufang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Meng Ding
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Xiaoya Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Zhengwen Yu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Qin Yi
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Yupeng He
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| |
Collapse
|
37
|
Dai Y, Yang W, Song H, He X, Guan R, Wu Z, Jiang X, Li M, Liu P, Chen J. Long-term effects of chronic exposure to electronic cigarette aerosol on the cardiovascular and pulmonary system in mice: A comparative study to cigarette smoke. ENVIRONMENT INTERNATIONAL 2024; 185:108521. [PMID: 38508052 DOI: 10.1016/j.envint.2024.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024]
Abstract
Electronic cigarettes (e-cigarettes) have rapidly gained popularity as alternatives to traditional combustible cigarettes. However, their long-term health impact remains uncertain. This study aimed to investigate the effects of chronic exposure to e-cigarette aerosol (ECA) in mice compared to conventional cigarette smoke (CS) exposure. The mice were exposed to air (control), low, medium, or high doses of ECA, or a reference CS dose orally and nasally for eight months. Various cardiovascular and pulmonary assessments have been conducted to determine the biological and prosthetic effects. Histopathological analysis was used to determine structural changes in the heart and lungs. Biological markers associated with fibrosis, inflammation, and oxidative stress were investigated. Cardiac proteomic analysis was applied to reveal the shared and unique protein expression changes in ECA and CS groups, which related to processes such as immune activation, lipid metabolism, and intracellular transport. Overall, chronic exposure to ECA led to adverse cardiovascular and pulmonary effects in mice, although they were less pronounced than those of CS exposure. This study provides evidence that e-cigarettes may be less harmful than combustible cigarettes for the long-term health of the cardiovascular and respiratory systems in mice. However, further human studies are needed to clarify the long-term health risks associated with e-cigarette use.
Collapse
Affiliation(s)
- Yuxing Dai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wanchun Yang
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, Guangdong, China
| | - Hongjia Song
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiangjun He
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruoqing Guan
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zehong Wu
- RELX Science Center, Shenzhen RELX Tech. Co. Ltd., Shenzhen 518101, China
| | - Xingtao Jiang
- RELX Science Center, Shenzhen RELX Tech. Co. Ltd., Shenzhen 518101, China
| | - Min Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jianwen Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
38
|
A R N, G K R. A deep learning and docking simulation-based virtual screening strategy enables the rapid identification of HIF-1α pathway activators from a marine natural product database. J Biomol Struct Dyn 2024; 42:629-651. [PMID: 37038705 DOI: 10.1080/07391102.2023.2194997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023]
Abstract
Artificial Intelligence is hailed as a cutting-edge technology for accelerating drug discovery efforts, and our goal was to validate its potential in predicting pharmacological inhibitors of EGLN1 using a deep learning-based architecture, one of its subsidiaries. Egl nine homolog 1 (EGLN1) inhibition prevents poly ubiquitination-mediated proteosomal destruction HIF-1α. The pharmacological interventions aimed at stabilizing HIF-1α have the potential to be a promising treatment option for a range of human diseases, including ischemic stroke. To unveil a novel EGLN1 inhibitor from marine natural products, a custom-based virtual screening was carried out using a Deep Convolutional Neural Network (DCNN) architecture, docking, and molecular dynamics simulation. The custom DCNN model was optimized and further employed to screen marine natural products from the CMNPD database. The docking was performed as a secondary strategy for screened hits. Molecular dynamics (MD) and molecular mechanics/generalized Born surface area (MM-GBSA) were used to analyze inhibitor binding and identify key interactions. The findings support the claim that deep learning-based virtual screening is a rapid, reliable and accurate method of identifying highly contributing drug candidates (EGLN1 inhibitors). This study demonstrates that deep learning architecture can significantly accelerate drug discovery and development, and provides a solid foundation for using (Z)-2-ethylhex-2-enedioic acid [(Z)-2-ethylhex-2-enedioic acid] as a potential EGLN1 inhibitor for treating various health complications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neelakandan A R
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Rajanikant G K
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
39
|
Wang Y, Yang Y, Yang Y, Dang Y, Guo Z, Zhuang Q, Zheng X, Wang F, Cheng N, Liu X, Guo W, Zhao B. Hypoxia induces hepatocellular carcinoma metastasis via the HIF-1α/METTL16/lnc-CSMD1-7/RBFOX2 axis. iScience 2023; 26:108495. [PMID: 38089592 PMCID: PMC10711500 DOI: 10.1016/j.isci.2023.108495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/16/2023] [Indexed: 01/23/2025] Open
Abstract
Hypoxic microenvironment is clinically associated with metastasis and poor prognosis of numerous cancers. The mechanisms by which intratumoral hypoxia regulates metastasis are not fully understood. Our study identifies a downregulation of Lnc-CSMD1-7 in hepatocellular carcinoma (HCC) and correlated with poor prognosis of HCC patients. Lnc-CSMD1-7 negatively regulated HCC cell migration and invasion in vitro and suppressed lung metastasis in vivo. Mechanistically, Lnc-CSMD1-7 directly binds to RBFOX2, thereby affecting RBFOX2-regulated alternative splicing in epithelial and mesenchymal-specific events. More importantly, hypoxic microenvironment and m6A methylation mediate the downregulation of Lnc-CSMD1-7 expression. Specifically, hypoxia transcriptionally upregulates the expression of the m6A methyltransferase METTL16 via HIF-1α, and METTL16 directly binds to Lnc-CSMD1-7 and downregulates the RNA stability of Lnc-CSMD1-7 via m6A methylation, ultimately promoting HCC metastasis. Our findings highlight the regulatory function of the METTL16/Lnc-CSMD1-7/RBFOX2 axis in modulating hypoxia-induced HCC progression, which may provide potential prognostic and therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yong Yang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Ye Yang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yuan Dang
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Zhiting Guo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Niangmei Cheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
| | - Wuhua Guo
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
- Department of Interventional Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
| |
Collapse
|
40
|
Chen X, Haribowo AG, Baik AH, Fossati A, Stevenson E, Chen YR, Reyes NS, Peng T, Matthay MA, Traglia M, Pico AR, Jarosz DF, Buchwalter A, Ghaemmaghami S, Swaney DL, Jain IH. In vivo protein turnover rates in varying oxygen tensions nominate MYBBP1A as a mediator of the hyperoxia response. SCIENCE ADVANCES 2023; 9:eadj4884. [PMID: 38064566 PMCID: PMC10708181 DOI: 10.1126/sciadv.adj4884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Oxygen deprivation and excess are both toxic. Thus, the body's ability to adapt to varying oxygen tensions is critical for survival. While the hypoxia transcriptional response has been well studied, the post-translational effects of oxygen have been underexplored. In this study, we systematically investigate protein turnover rates in mouse heart, lung, and brain under different inhaled oxygen tensions. We find that the lung proteome is the most responsive to varying oxygen tensions. In particular, several extracellular matrix (ECM) proteins are stabilized in the lung under both hypoxia and hyperoxia. Furthermore, we show that complex 1 of the electron transport chain is destabilized in hyperoxia, in accordance with the exacerbation of associated disease models by hyperoxia and rescue by hypoxia. Moreover, we nominate MYBBP1A as a hyperoxia transcriptional regulator, particularly in the context of rRNA homeostasis. Overall, our study highlights the importance of varying oxygen tensions on protein turnover rates and identifies tissue-specific mediators of oxygen-dependent responses.
Collapse
Affiliation(s)
- Xuewen Chen
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Augustinus G. Haribowo
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Alan H. Baik
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Fossati
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Erica Stevenson
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Yiwen R. Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Nabora S. Reyes
- Department of Medicine and Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tien Peng
- Department of Medicine and Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Michael A. Matthay
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
| | - Michela Traglia
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Alexander R. Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, CA, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Sina Ghaemmaghami
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Danielle L. Swaney
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Isha H. Jain
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
Luo H, Wang Q, Yang F, Liu R, Gao Q, Cheng B, Lin X, Huang L, Chen C, Xiang J, Wang K, Qin B, Tang N. Signaling metabolite succinylacetone activates HIF-1α and promotes angiogenesis in GSTZ1-deficient hepatocellular carcinoma. JCI Insight 2023; 8:e164968. [PMID: 37906252 PMCID: PMC10896004 DOI: 10.1172/jci.insight.164968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Aberrant angiogenesis in hepatocellular carcinoma (HCC) is associated with tumor growth, progression, and local or distant metastasis. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor that plays a major role in regulating angiogenesis during adaptation of tumor cells to nutrient-deprived microenvironments. Genetic defects in Krebs cycle enzymes, such as succinate dehydrogenase and fumarate hydratase, result in elevation of oncometabolites succinate and fumarate, thereby increasing HIF-1α stability and activating the HIF-1α signaling pathway. However, whether other metabolites regulate HIF-1α stability remains unclear. Here, we reported that deficiency of the enzyme in phenylalanine/tyrosine catabolism, glutathione S-transferase zeta 1 (GSTZ1), led to accumulation of succinylacetone, which was structurally similar to α-ketoglutarate. Succinylacetone competed with α-ketoglutarate for prolyl hydroxylase domain 2 (PHD2) binding and inhibited PHD2 activity, preventing hydroxylation of HIF-1α, thus resulting in its stabilization and consequent expression of vascular endothelial growth factor (VEGF). Our findings suggest that GSTZ1 may serve as an important tumor suppressor owing to its ability to inhibit the HIF-1α/VEGFA axis in HCC. Moreover, we explored the therapeutic potential of HIF-1α inhibitor combined with anti-programmed cell death ligand 1 therapy to effectively prevent HCC angiogenesis and tumorigenesis in Gstz1-knockout mice, suggesting a potentially actionable strategy for HCC treatment.
Collapse
Affiliation(s)
- Huating Luo
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
- Department of Geriatrics, The First Affiliated Hospital
| | - Qiujie Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Fan Yang
- Department of Infectious Diseases, The First Affiliated Hospital
| | - Rui Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital; and
| | - Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Bin Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Xue Lin
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jin Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| |
Collapse
|
42
|
Villamil-Parra W, Cristancho-Mejía É, Ramon Torrella J, Mancera-Soto EM. Effects of a physical exercise program on HIF-1α in people with Chronic Obstructive Pulmonary Disease living at high altitude: study protocol for a clinical trial. Trials 2023; 24:698. [PMID: 37899477 PMCID: PMC10614311 DOI: 10.1186/s13063-023-07698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is a chronic, noncommunicable disease characterized by hypoxemia, with altered lung function, dyspnea on mild exertion, limited tolerance to physical exertion, and functional impairment. Physical exercise has been recommended worldwide as an efficient strategy to improve the autonomy and quality of life of patients affected by COPD. However, the adaptive molecular mechanisms occurring in these patients after the exposure to the hypoxic stimulus triggered by physical exercise have currently not been described in populations living at high altitude. METHODS The clinical trial we are presenting here consists of a quasi-experimental design with longitudinal analysis of repeated measures, with intra- and inter-group comparisons, measuring primary and secondary variables in 4 temporal points. Participants will be people with a diagnosis of COPD residing at high altitudes (> 2600 m), without oncological, renal, cardiac, or musculoskeletal comorbidities with a low level of physical activity. The intervention will be an 8-week program of physical exercise of resistance and muscular strength (8-WVP) which will be carried out at home. Primary outcome variables will be the expression of HIF-1α, VEGF, and EPO. As secondary outcome variables, we will consider lung function (measured by spirometry), physical performance (measured by ergospirometry and dynamometry), and hematological parameters. DISCUSSION The results obtained after the clinical trial proposed here will promote knowledge on the expression of signaling proteins as an adaptive response to hypoxia in people with COPD living at high altitude, which will be relevant because there are not data on this population group. The knowledge generated from the application of this protocol will increase the pathophysiological understanding of the disease and future medical and therapeutic decision-making based on physical exercise prescription. TRIAL REGISTRATION {2A}: NCT04955977 [ClinicalTrials.gov]-NCT04955977 [WHO ICRTP]. First Posted: July 9, 2021.
Collapse
Affiliation(s)
- Wilder Villamil-Parra
- Department of Human Body Movement, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá Campus, Street 30 No. 45-03 No. 45-03 Building 471, Bogotá, D.C., 110821, Colombia.
- Department of Biology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá Campus, Street 30 No. 45-03, Bogotá, D.C., 110821, Colombia.
| | - Édgar Cristancho-Mejía
- Department of Biology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá Campus, Street 30 No. 45-03, Bogotá, D.C., 110821, Colombia
| | - Joan Ramon Torrella
- Physiology Section, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Avenue Diagonal, Barcelona, 643, 08028, Spain
| | - Erica Mabel Mancera-Soto
- Department of Human Body Movement, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá Campus, Street 30 No. 45-03 No. 45-03 Building 471, Bogotá, D.C., 110821, Colombia
| |
Collapse
|
43
|
Liu W, Fan X, Jian B, Wen D, Wang H, Liu Z, Li B. The signaling pathway of hypoxia inducible factor in regulating gut homeostasis. Front Microbiol 2023; 14:1289102. [PMID: 37965556 PMCID: PMC10641782 DOI: 10.3389/fmicb.2023.1289102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Hypoxia represent a condition in which an adequate amount of oxygen supply is missing in the body, and it could be caused by a variety of diseases, including gastrointestinal disorders. This review is focused on the role of hypoxia in the maintenance of the gut homeostasis and related treatment of gastrointestinal disorders. The effects of hypoxia on the gut microbiome and its role on the intestinal barrier functionality are also covered, together with the potential role of hypoxia in the development of gastrointestinal disorders, including inflammatory bowel disease and irritable bowel syndrome. Finally, we discussed the potential of hypoxia-targeted interventions as a novel therapeutic approach for gastrointestinal disorders. In this review, we highlighted the importance of hypoxia in the maintenance of the gut homeostasis and the potential implications for the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xueni Fan
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Boshuo Jian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| |
Collapse
|
44
|
An Y, Talwar CS, Park KH, Ahn WC, Lee SJ, Go SR, Cho JH, Kim DY, Kim YS, Cho S, Kim JH, Kim TJ, Woo EJ. Design of hypoxia responsive CRISPR-Cas9 for target gene regulation. Sci Rep 2023; 13:16763. [PMID: 37798384 PMCID: PMC10556097 DOI: 10.1038/s41598-023-43711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
The CRISPR-Cas9 system is a widely used gene-editing tool, offering unprecedented opportunities for treating various diseases. Controlling Cas9/dCas9 activity at specific location and time to avoid undesirable effects is very important. Here, we report a conditionally active CRISPR-Cas9 system that regulates target gene expression upon sensing cellular environmental change. We conjugated the oxygen-sensing transcription activation domain (TAD) of hypoxia-inducing factor (HIF-1α) with the Cas9/dCas9 protein. The Cas9-TAD conjugate significantly increased endogenous target gene cleavage under hypoxic conditions compared with that under normoxic conditions, whereas the dCas9-TAD conjugate upregulated endogenous gene transcription. Furthermore, the conjugate system effectively downregulated the expression of SNAIL, an essential gene in cancer metastasis, and upregulated the expression of the tumour-related genes HNF4 and NEUROD1 under hypoxic conditions. Since hypoxia is closely associated with cancer, the hypoxia-dependent Cas9/dCas9 system is a novel addition to the molecular tool kit that functions in response to cellular signals and has potential application for gene therapeutics.
Collapse
Affiliation(s)
- Yan An
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Chandana S Talwar
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Kwang-Hyun Park
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Woo-Chan Ahn
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Su-Jin Lee
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Seong-Ryeong Go
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Jin Hwa Cho
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Do Yon Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Yong-Sam Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeong-Hoon Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | - Tae-Jip Kim
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Eui-Jeon Woo
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea.
- Department of Bioscience, University of Science and Technology, Daejeon, 305-333, Republic of Korea.
| |
Collapse
|
45
|
Foresto-Neto O, da Silva ARPA, Cipelli M, Santana-Novelli FPR, Camara NOS. The impact of hypoxia-inducible factors in the pathogenesis of kidney diseases: a link through cell metabolism. Kidney Res Clin Pract 2023; 42:561-578. [PMID: 37448286 PMCID: PMC10565456 DOI: 10.23876/j.krcp.23.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 07/15/2023] Open
Abstract
Kidneys are sensitive to disturbances in oxygen homeostasis. Hypoxia and activation of the hypoxia-inducible factor (HIF) pathway alter the expression of genes involved in the metabolism of renal and immune cells, interfering with their functioning. Whether the transcriptional activity of HIF protects the kidneys or participates in the pathogenesis of renal diseases is unclear. Several studies have indicated that HIF signaling promotes fibrosis in experimental models of kidney disease. Other reports showed a protective effect of HIF activation on kidney inflammation and injury. In addition to the direct effect of HIF on the kidneys, experimental evidence indicates that HIF-mediated metabolic shift activates inflammatory cells, supporting the HIF cascade as a link between lung or gut damage and worsening of renal disease. Although hypoxia and HIF activation are present in several scenarios of renal diseases, further investigations are needed to clarify whether interfering with the HIF pathway is beneficial in different pathological contexts.
Collapse
Affiliation(s)
- Orestes Foresto-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Marcella Cipelli
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Tao ZQ, Wei BZ, Zhao M, Zhang XX, Zhong Y, Wan J. Hypoxia Affects Autophagy in Human Umbilical Vein Endothelial Cells via the IRE1 Unfolded Protein Response. Curr Med Sci 2023; 43:689-695. [PMID: 37558862 DOI: 10.1007/s11596-023-2749-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/02/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the role of the unfolded protein response, specifically the inositol-requiring enzyme 1 (IRE1) signaling pathway, in hypoxia-induced autophagy in human umbilical venous endothelial cells (HUVECs). METHODS The expression of IRE1 and autophagy relative protein in HUVECs with hypoxia was explored by Western blotting, qRT-PCR and confocal microscopy. Further, we evaluated the biological effects of HUVECs by tube formation assay and wound healing assay in vitro. Finally, we examined the function of IRE1 in local blood vessels through animal models. RESULTS Hypoxia activated the IRE1 signaling pathway and induced autophagy in a time-dependent manner in HUVECs and further influenced the biological effects of HUVECs. Intraperitoneal injection of IRE1 inhibitors inhibited local vascular autophagy levels and lipid accumulation in model animals. CONCLUSION Hypoxia can induce autophagy and activate the IRE1 signaling pathway in HUVECs and the IRE1 signaling pathway is involved in autophagy in hypoxic conditions.
Collapse
Affiliation(s)
- Zi-Qi Tao
- Department of Cardiology, Wuhan University Zhongnan Hospital, Wuhan, 430072, China
| | - Bao-Zhu Wei
- Department of Cardiology, Wuhan University Zhongnan Hospital, Wuhan, 430072, China
| | - Min Zhao
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin-Xin Zhang
- Department of Cardiology, Wuhan No.1 Hospital, Wuhan, 430030, China
| | - Ya Zhong
- Department of Cardiology, Wuhan University Zhongnan Hospital, Wuhan, 430072, China.
| | - Jing Wan
- Department of Cardiology, Wuhan University Zhongnan Hospital, Wuhan, 430072, China.
| |
Collapse
|
47
|
H. Al-Zuaini H, Rafiq Zahid K, Xiao X, Raza U, Huang Q, Zeng T. Hypoxia-driven ncRNAs in breast cancer. Front Oncol 2023; 13:1207253. [PMID: 37583933 PMCID: PMC10424730 DOI: 10.3389/fonc.2023.1207253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023] Open
Abstract
Low oxygen tension, or hypoxia is the driving force behind tumor aggressiveness, leading to therapy resistance, metastasis, and stemness in solid cancers including breast cancer, which now stands as the leading cause of cancer-related mortality in women. With the great advancements in exploring the regulatory roles of the non-coding genome in recent years, the wide spectrum of hypoxia-responsive genome is not limited to just protein-coding genes but also includes multiple types of non-coding RNAs, such as micro RNAs, long non-coding RNAs, and circular RNAs. Over the years, these hypoxia-responsive non-coding molecules have been greatly implicated in breast cancer. Hypoxia drives the expression of these non-coding RNAs as upstream modulators and downstream effectors of hypoxia inducible factor signaling in the favor of breast cancer through a myriad of molecular mechanisms. These non-coding RNAs then contribute in orchestrating aggressive hypoxic tumor environment and regulate cancer associated cellular processes such as proliferation, evasion of apoptotic death, extracellular matrix remodeling, angiogenesis, migration, invasion, epithelial-to-mesenchymal transition, metastasis, therapy resistance, stemness, and evasion of the immune system in breast cancer. In addition, the interplay between hypoxia-driven non-coding RNAs as well as feedback and feedforward loops between these ncRNAs and HIFs further contribute to breast cancer progression. Although the current clinical implications of hypoxia-driven non-coding RNAs are limited to prognostics and diagnostics in breast cancer, extensive explorations have established some of these hypoxia-driven non-coding RNAs as promising targets to treat aggressive breast cancers, and future scientific endeavors hold great promise in targeting hypoxia-driven ncRNAs at clinics to treat breast cancer and limit global cancer burden.
Collapse
Affiliation(s)
| | - Kashif Rafiq Zahid
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiangyan Xiao
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Qiyuan Huang
- Department of Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
48
|
Li L, Shen S, Bickler P, Jacobson MP, Wu LF, Altschuler SJ. Searching for molecular hypoxia sensors among oxygen-dependent enzymes. eLife 2023; 12:e87705. [PMID: 37494095 PMCID: PMC10371230 DOI: 10.7554/elife.87705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
The ability to sense and respond to changes in cellular oxygen levels is critical for aerobic organisms and requires a molecular oxygen sensor. The prototypical sensor is the oxygen-dependent enzyme PHD: hypoxia inhibits its ability to hydroxylate the transcription factor HIF, causing HIF to accumulate and trigger the classic HIF-dependent hypoxia response. A small handful of other oxygen sensors are known, all of which are oxygen-dependent enzymes. However, hundreds of oxygen-dependent enzymes exist among aerobic organisms, raising the possibility that additional sensors remain to be discovered. This review summarizes known and potential hypoxia sensors among human O2-dependent enzymes and highlights their possible roles in hypoxia-related adaptation and diseases.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Susan Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Department of Psychiatry, University of California, San FranciscoSan FranciscoUnited States
| | - Philip Bickler
- Hypoxia Research Laboratory, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Center for Health Equity in Surgery and Anesthesia, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Anesthesia and Perioperative Care, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| |
Collapse
|
49
|
Stampone E, Bencivenga D, Capellupo MC, Roberti D, Tartaglione I, Perrotta S, Della Ragione F, Borriello A. Genome editing and cancer therapy: handling the hypoxia-responsive pathway as a promising strategy. Cell Mol Life Sci 2023; 80:220. [PMID: 37477829 PMCID: PMC10361942 DOI: 10.1007/s00018-023-04852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
The precise characterization of oxygen-sensing pathways and the identification of pO2-regulated gene expression are both issues of critical importance. The O2-sensing system plays crucial roles in almost all the pivotal human processes, including the stem cell specification, the growth and development of tissues (such as embryogenesis), the modulation of intermediate metabolism (including the shift of the glucose metabolism from oxidative to anaerobic ATP production and vice versa), and the control of blood pressure. The solid cancer microenvironment is characterized by low oxygen levels and by the consequent activation of the hypoxia response that, in turn, allows a complex adaptive response characterized mainly by neoangiogenesis and metabolic reprogramming. Recently, incredible advances in molecular genetic methodologies allowed the genome editing with high efficiency and, above all, the precise identification of target cells/tissues. These new possibilities and the knowledge of the mechanisms of adaptation to hypoxia suggest the effective development of new therapeutic approaches based on the manipulation, targeting, and exploitation of the oxygen-sensor system molecular mechanisms.
Collapse
Affiliation(s)
- Emanuela Stampone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Maria Chiara Capellupo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Domenico Roberti
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Immacolata Tartaglione
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Silverio Perrotta
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| |
Collapse
|
50
|
Copeland CA, Olenchock BA, Ziehr D, McGarrity S, Leahy K, Young JD, Loscalzo J, Oldham WM. MYC overrides HIF-1α to regulate proliferating primary cell metabolism in hypoxia. eLife 2023; 12:e82597. [PMID: 37428010 DOI: 10.7554/elife.82597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Hypoxia requires metabolic adaptations to sustain energetically demanding cellular activities. While the metabolic consequences of hypoxia have been studied extensively in cancer cell models, comparatively little is known about how primary cell metabolism responds to hypoxia. Thus, we developed metabolic flux models for human lung fibroblast and pulmonary artery smooth muscle cells proliferating in hypoxia. Unexpectedly, we found that hypoxia decreased glycolysis despite activation of hypoxia-inducible factor 1α (HIF-1α) and increased glycolytic enzyme expression. While HIF-1α activation in normoxia by prolyl hydroxylase (PHD) inhibition did increase glycolysis, hypoxia blocked this effect. Multi-omic profiling revealed distinct molecular responses to hypoxia and PHD inhibition, and suggested a critical role for MYC in modulating HIF-1α responses to hypoxia. Consistent with this hypothesis, MYC knockdown in hypoxia increased glycolysis and MYC over-expression in normoxia decreased glycolysis stimulated by PHD inhibition. These data suggest that MYC signaling in hypoxia uncouples an increase in HIF-dependent glycolytic gene transcription from glycolytic flux.
Collapse
Affiliation(s)
- Courtney A Copeland
- Department of Medicine, Brigham and Women's Hospital, Boston, United States
- Department of Medicine, Harvard Medical School, Boston, United States
| | - Benjamin A Olenchock
- Department of Medicine, Brigham and Women's Hospital, Boston, United States
- Department of Medicine, Harvard Medical School, Boston, United States
| | - David Ziehr
- Department of Medicine, Brigham and Women's Hospital, Boston, United States
- Department of Medicine, Harvard Medical School, Boston, United States
- Department of Medicine, Massachusetts General Hospital, Boston, United States
| | - Sarah McGarrity
- Department of Medicine, Brigham and Women's Hospital, Boston, United States
- Department of Medicine, Harvard Medical School, Boston, United States
- Center for Systems Biology, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Kevin Leahy
- Department of Medicine, Brigham and Women's Hospital, Boston, United States
- Department of Medicine, Harvard Medical School, Boston, United States
| | - Jamey D Young
- Departments of Chemical & Biomolecular Engineering and Molecular Physiology & Biophysics, Vanderbilt University, Nashville, United States
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Boston, United States
- Department of Medicine, Harvard Medical School, Boston, United States
| | - William M Oldham
- Department of Medicine, Brigham and Women's Hospital, Boston, United States
- Department of Medicine, Harvard Medical School, Boston, United States
| |
Collapse
|