1
|
Serrano-Coll H, Aristizábal-Parra LK. Plasmodium and Host Immunity: Evasion Strategies and Advances in Malaria Vaccination. Scand J Immunol 2025; 101:e70034. [PMID: 40432384 DOI: 10.1111/sji.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/12/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Malaria is an infectious disease caused by parasites of the Plasmodium genus. Its pathophysiology is highly complex, as it depends both on the host's immune response and the parasite's evasion mechanisms, which are often species-specific. This complexity has posed significant challenges to vaccine development and malaria control. Therefore, the aim of this review is to describe the host's immunological mechanisms, the parasite's evasion strategies and the available vaccines, as well as their relationship with the human immune response in controlling Plasmodium infection.
Collapse
Affiliation(s)
- Héctor Serrano-Coll
- Instituto Colombiano de Medicina Tropical-Universidad CES, Medellín, Colombia
| | | |
Collapse
|
2
|
Wang C, Zhang Q, Li Q, Wang Y, Chen X. From infection to tumor: genetic evidence of viral antibody immune response' role in urologic cancer development. Discov Oncol 2025; 16:947. [PMID: 40442531 PMCID: PMC12122962 DOI: 10.1007/s12672-025-02768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Urologic tumors are among the most common malignancies worldwide, and the association between chronic infections and the risk of developing these tumors has garnered significant attention. However, traditional observational studies are prone to confounding factors, making it challenging to establish a clear causal relationship. METHOD This study employs a two-sample bidirectional Mendelian randomization analysis, utilizing genetic data on antibody levels and urologic tumors obtained from GWAS databases. The inverse variance weighted (IVW) method was used to estimate causal relationships, while MR-Egger and MR-PRESSO methods were applied for sensitivity analyses to assess horizontal pleiotropy and heterogeneity. RESULT The results showed that antibody levels associated with various viral infections were significantly correlated with the risk of developing urologic tumors. For example, antibodies related to cytomegalovirus IgG and Epstein-Barr virus (EBV) were found to have complex associations with the risk of prostate cancer, bladder cancer, and testicular cancer. Some antibodies, such as those related to Varicella zoster virus, were associated with a reduced risk of clear cell renal carcinoma. Additionally, sensitivity analyses suggested the potential presence of horizontal pleiotropy in bladder and testicular cancers. CONCLUSION Through Mendelian randomization analysis, we revealed a potential causal relationship between antibody immune responses and urologic tumors. These findings provide new evidence for the role of chronic infections in the pathogenesis of urologic tumors, suggesting that prevention and treatment strategies targeting related pathogens, such as vaccination and antiviral therapies, could offer new avenues for the prevention and management of urologic cancers.
Collapse
Affiliation(s)
- Chen Wang
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qifa Zhang
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Qiang Li
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Yelong Wang
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Xin Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
3
|
Qian L, Yang Y, Zhao B, Xu P, Hu Z, Zhong L, Dai Q, Zhong Y, Yang C, Shu Q, Han RPS, Guan Y, Li Z, Chen L. Inhibition of colorectal carcinogenesis by sunitinib malate: disruption of the IL-6/STAT3/c-MYC/TWIST/MMP2 autocrine signaling axis. Discov Oncol 2025; 16:893. [PMID: 40410534 PMCID: PMC12102017 DOI: 10.1007/s12672-025-02498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 04/25/2025] [Indexed: 05/25/2025] Open
Abstract
Sunitinib, a multi-targeted receptor tyrosine kinase inhibitor with specificity for VEGFR, KIT, FLT3, and PDGFR, has demonstrated clinical efficacy as a first- to third-line treatment for refractory renal carcinoma. Our previous research indicated that sunitinib malate suppresses intestinal polyp proliferation by downregulating IL-6 mRNA expression, suggesting a potential analogous mechanism in colorectal carcinoma inhibition. This study aimed to elucidate the pharmacological effects and molecular mechanisms of sunitinib malate on colorectal carcinoma using HCT116, RKO, HT29, and SW480 cell lines in vitro and HCT116-derived xenografts in nude mice in vivo. We employed a comprehensive array of experimental techniques, including CCK-8/MTT assays for cell viability, Transwell and/or wound healing assays for migration, and Western blot and immunohistochemistry for protein expression analysis. Our findings demonstrate that sunitinib malate significantly inhibits colorectal cancer cell proliferation and migration in vitro. Moreover, in the xenograft model, sunitinib malate markedly suppressed colorectal tumor growth in vivo. Notably, we observed significant downregulation of c-MYC, TWIST, and MMP2 expression both in vitro and in vivo following sunitinib malate treatment. These results collectively suggest that sunitinib malate exerts its anti-colorectal carcinoma effects, at least in part, by disrupting the autocrine IL-6/STAT3/c-MYC/TWIST/MMP2 signaling axis.
Collapse
Affiliation(s)
- Ling Qian
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688, Meiling Road, Xinjian, Nanchang, 330004, Jiangxi, China
- The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Nanchang, 330004, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Nanchang, 330004, China
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Key Laboratory of Pharmacology of Chinese Medicine in Jiangxi, Nanchang, 330004, China
| | - Yi Yang
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688, Meiling Road, Xinjian, Nanchang, 330004, Jiangxi, China
- The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Nanchang, 330004, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Nanchang, 330004, China
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Key Laboratory of Pharmacology of Chinese Medicine in Jiangxi, Nanchang, 330004, China
| | - Bin Zhao
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688, Meiling Road, Xinjian, Nanchang, 330004, Jiangxi, China
- The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Nanchang, 330004, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Nanchang, 330004, China
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Key Laboratory of Pharmacology of Chinese Medicine in Jiangxi, Nanchang, 330004, China
| | - Pan Xu
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688, Meiling Road, Xinjian, Nanchang, 330004, Jiangxi, China
- The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Nanchang, 330004, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Nanchang, 330004, China
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Key Laboratory of Pharmacology of Chinese Medicine in Jiangxi, Nanchang, 330004, China
| | - Ziyan Hu
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688, Meiling Road, Xinjian, Nanchang, 330004, Jiangxi, China
- The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Nanchang, 330004, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Nanchang, 330004, China
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Key Laboratory of Pharmacology of Chinese Medicine in Jiangxi, Nanchang, 330004, China
| | - Liangwang Zhong
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688, Meiling Road, Xinjian, Nanchang, 330004, Jiangxi, China
- The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Nanchang, 330004, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Nanchang, 330004, China
- College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Qi Dai
- Hepatogastrosplenicobiliary Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Youbao Zhong
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Chao Yang
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688, Meiling Road, Xinjian, Nanchang, 330004, Jiangxi, China
- The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Nanchang, 330004, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Nanchang, 330004, China
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Key Laboratory of Pharmacology of Chinese Medicine in Jiangxi, Nanchang, 330004, China
- College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Qinglong Shu
- College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Ray P S Han
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688, Meiling Road, Xinjian, Nanchang, 330004, Jiangxi, China
- The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Nanchang, 330004, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Nanchang, 330004, China
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Key Laboratory of Pharmacology of Chinese Medicine in Jiangxi, Nanchang, 330004, China
| | - Yang Guan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Zhiming Li
- The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Nanchang, 330004, China.
- Oncology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, No. 445 Bayi Avenue, Nanchang, 330006, Jiangxi, China.
| | - Lai Chen
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688, Meiling Road, Xinjian, Nanchang, 330004, Jiangxi, China.
- The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Nanchang, 330004, China.
- Jiangxi Engineering Research Center for Translational Cancer Technology, Nanchang, 330004, China.
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
- Key Laboratory of Pharmacology of Chinese Medicine in Jiangxi, Nanchang, 330004, China.
- College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
4
|
Huang Y, Wang X, Chen H, Wu Y, Lv L, Chen F, Lei H, Xing C. Self-Assembly Oligomeric Anthocyanin-Based Core-Shell Structure of Nanoparticles Enhances the Delivery and Efficacy of Berberine in Osteoarthritis. ACS Biomater Sci Eng 2025; 11:2739-2752. [PMID: 40260578 DOI: 10.1021/acsbiomaterials.5c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that significantly contributes to functional disability, primarily due to inflammation and cell apoptosis. Berberine (BBR) has demonstrated notable anti-inflammatory and antiapoptotic effects in the treatment of OA. However, despite its promising pharmacological properties, the naturally occurring hydrophobic properties and limited solubility in water restrict the efficacy of BBR. Therefore, excipients are required to modify BBR. Oligomeric proanthocyanidins (OPAs) are dimers, trimers, and tetramers of proanthocyanidins (PAs). The unique interface properties of the OPAs underscore their potential as drug carriers. OPAs as natural carriers enhance medication effectiveness and significantly reduce the incidence of side effects. Herein, we developed natural self-assembled nanoparticles between BBR and the OPAs (BBR-OPAs NPs). By adopting the unification of medicines and excipients, the OPAs-based drug delivery system serves as an effective carrier and exerts therapeutic effects in OA treatment. The formation of BBR-OPAs NPs has been core-shell structure, as confirmed by transmission electron microscopy (TEM), 2D NOESY spectroscopy, and molecular dynamics (MD) simulation. The BBR-OPAs NPs exhibited good long-acting release capability due to their strong noncovalent interactions, making them competitive candidates for treating OA. Microcomputed tomography (micro-CT) scanning and histological evaluation further confirmed the efficacy of BBR-OPAs NPs in treating OA. In vivo assessments demonstrated that BBR-OPAs NPs inhibited inflammation and apoptosis, thereby preventing the progression of OA. Furthermore, treatment with BBR-OPAs NPs can inhibit synovial inflammation and protect chondrocytes. OPAs show broad prospects as drug delivery carriers and exhibit great potential in the treatment of OA.
Collapse
Affiliation(s)
- Yao Huang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Xie Wang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huikun Chen
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yu Wu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Lei Lv
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Feilong Chen
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Hanqi Lei
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Chengyuan Xing
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Zhou Y, Song W, Wang Y, Li S, Shan C, Dong J, Xu Z, Zou H, Pan Y, Chen X, Zhang Y, Song J. Calycosin regulates gut microbiota-bile acid-FXR axis to protect rats from cerebral ischemia-reperfusion injury. Eur J Pharmacol 2025; 1000:177707. [PMID: 40348321 DOI: 10.1016/j.ejphar.2025.177707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Recent reports have shown that metabolites derived from gut microbiota play a vital role in intestinal diseases, immune regulation, and neuroinflammation. Nowadays, calycosin has been revealed the protective mechanism from different perspectives on cerebral ischemia-reperfusion injury (CIRI), while the effect of gut microbiota-bile acid-farnesoid X receptor (FXR) axis on the inflammatory protection of CIRI has not been explored. To this end, we established a middle cerebral artery occlusion (MCAO) model firstly to assess the protection of calycosin in CIRI through neurological deficit scoring, TTC staining, and HE staining. Secondly, 16s RNA sequencing, ELISA, real-time qPCR, Western blot, and total bile acid (TBA) detection kit were utilized to detect the pharmacology of calycosin on MCAO rats. Our data indicated that calycosin could significantly improve nerve function scores, reduce cerebral infarction volume, lower serum levels of IL-10, IL-17 inflammatory factors, and TBA, increase mRNA and protein levels of ZO-1 and Occludin in brain, as well as FXR, ZO-1 and Occludin levels in colon. In summary, calycosin can exert a neuroinflammatory protective effect on CIRI in rats via regulating the gut microbiota to improve bile acid metabolism.
Collapse
Affiliation(s)
- Yujia Zhou
- the Second School of Clinical Medicine, Zhejiang Chinese Medical University, China.
| | - Wenke Song
- School of Life Sciences, Zhejiang Chinese Medical University, China.
| | - Yaru Wang
- School of Life Sciences, Zhejiang Chinese Medical University, China.
| | - Simeng Li
- School of Life Sciences, Zhejiang Chinese Medical University, China.
| | - Chuchu Shan
- School of Life Sciences, Zhejiang Chinese Medical University, China.
| | - Jingyi Dong
- School of Life Sciences, Zhejiang Chinese Medical University, China.
| | - Zhengyuan Xu
- School of Life Sciences, Zhejiang Chinese Medical University, China.
| | - Haonan Zou
- School of Life Sciences, Zhejiang Chinese Medical University, China.
| | - Yifeng Pan
- the Second Affiliated Hospital, Zhejiang University School of Medicine, China.
| | - Xingying Chen
- Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, China.
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, China.
| | - Jingmei Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, China.
| |
Collapse
|
6
|
Kai W, Takano Y, Kobayashi Y, Kanno H, Hanyu N, Eto K. Impact of osteosarcopenia on short- and long-term outcomes in patients with gastric cancer. Jpn J Clin Oncol 2025; 55:477-483. [PMID: 39827455 DOI: 10.1093/jjco/hyaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUNDS Osteopenia and sarcopenia are associated with adverse clinical outcomes. This study investigated the impact of osteosarcopenia on short- and long-term outcomes after gastrectomy for gastric cancer. METHODS The present study included patients who underwent gastrectomy for gastric cancer. Osteopenia was evaluated by bone mineral density measurement in the midvertebral core of the 11th thoracic vertebra on preoperative computed tomography images. Sarcopenia was evaluated by measuring the skeletal muscle cross-sectional area at the third lumbar vertebra level. Osteosarcopenia was defined as the coexistence of osteopenia and sarcopenia. We investigated the relationship of preoperative osteosarcopenia with short- and long-term outcomes after gastrectomy for gastric cancer. RESULTS Of all 122 patients, 38 (31%) patients were diagnosed with osteosarcopenia. Multivariate logistic regression analysis revealed that osteosarcopenia (P = .008) was an independent risk factor for postoperative complications. Furthermore, multivariate Cox regression analysis revealed that male sex (P = .007), and osteosarcopenia (P = .038) were independent predictors of disease-free survival, while osteosarcopenia (P = .045) and pathological T stage ≥3 (P = .033) were independent predictors of overall survival. CONCLUSIONS Osteosarcopenia was a strong predictor of short- and long-term outcomes after gastrectomy for gastric cancer. Preoperative screening of osteosarcopenia may be helpful for better management of patients with gastric cancer.
Collapse
Affiliation(s)
- Wataru Kai
- Department of Surgery, Tokyo Generel Hospital, Tokyo, Japan
| | - Yasuhiro Takano
- Department of Surgery, Tokyo Generel Hospital, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Hironori Kanno
- Department of Surgery, Tokyo Generel Hospital, Tokyo, Japan
| | | | - Ken Eto
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Wu H, Gong YY, Huntriss J, Routledge MN. Transcriptome profiling and DNA methylation analysis of human hepatocyte cell line HHL-16 in response to aflatoxin B1. Chem Biol Interact 2025; 416:111531. [PMID: 40288432 DOI: 10.1016/j.cbi.2025.111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Dietary exposure to aflatoxin B1 (AFB1) can cause acute aflatoxicosis and liver cancer, and is associated with immune suppression and growth impairment, but the molecular mechanisms of the health effects are not fully understood. A non-neoplastic human hepatocyte cell line 16 (HHL-16) was utilized to understand the effects of AFB1 on transcriptome and DNA methylation changes, identifying molecular pathways underlying toxicity and health effects. RNA sequencing and bioinformatic analysis (RNA-Seq) was applied to find the genes and pathways affected by AFB1. Bisulfite pyrosequencing was used to assess DNA methylation levels of CpG sites around promoter regions of gene of interest. RNA-sequencing revealed 280 significantly up-regulated and 296 significantly down-regulated genes in HHL-16 cells after 20 μg/ml AFB1 treatment for 24 h. KEGG pathway enrichment analysis indicated that differentially expressed genes (DEGs) were significantly enriched in the following pathways: cytokine-cytokine receptor interaction, NF-kappa B signalling pathway, TNF signalling pathway, IL-17 signalling pathway, amoebiasis, MAPK signalling pathway, and lipid and atherosclerosis. Further DNA methylation analysis found that there was significant hypomethylation at one CpG site of CCL20 after 20 μg/ml AFB1 treatment on HHL-16 cells for 24 h. In conclusion, AFB1 modulates the expression of genes related to the pathways that play important roles in inflammatory response, growth, and cancers, and demonstrates the effects of AFB1 on DNA methylation.
Collapse
Affiliation(s)
- Hang Wu
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK; School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - John Huntriss
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael N Routledge
- Leicester Medical School, University of Leicester, Leicester, LE1 7RH, UK; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
8
|
Li H, Wu Y, Xiang L, Zhao Q, Liu L, Zhu Z, Lin W, Li Z, Yang Y, Ze Y, Zhang L, Fu P, Guo Y, Zhang P, Shao B. A20 attenuates oxidized self-DNA-mediated inflammation in acute kidney injury. Signal Transduct Target Ther 2025; 10:154. [PMID: 40280946 PMCID: PMC12032302 DOI: 10.1038/s41392-025-02194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 02/03/2025] [Accepted: 02/20/2025] [Indexed: 04/29/2025] Open
Abstract
The ubiquitin-editing enzyme A20 is known to regulate inflammation and maintain homeostasis, but its role in self-DNA-mediated inflammation in acute kidney injury (AKI) is not well understood. Here, our study demonstrated that oxidized self-DNA accumulates in the serum of AKI mice and patients. This oxidized self-DNA exacerbates the progression of AKI by activating the cGAS-STING pathway and NLRP3 inflammasome. While inhibition of the STING pathway only slightly attenuates AKI progression, suppression of NLRP3 inflammasome-mediated pyroptosis significantly alleviates AKI progression and improves the survival of AKI mice. Subsequently, we found that Tnfaip3 (encoding A20) is significantly upregulated following oxidized self-DNA treatment. A20 significantly alleviates AKI development by dampening STING signaling pathway and NLRP3-mediated pyroptosis. Moreover, A20-derived peptide (P-II) also significantly alleviates ox-dsDNA-induced pyroptosis and improves the survival and renal injury of AKI mice. Mechanistically, A20 competitively binds with NEK7 and thus inhibiting NLRP3 inflammasome. A20 and P-II interfere with the interaction between NEK7 and NLRP3 through Lys140 of NEK7. Mutation of Lys140 effects on the interaction of NEK7 with A20 and/or NLRP3 complex. Conditional knockout of NEK7 in macrophages or pharmacological inhibition of NEK7 both significantly rescue AKI mouse models. This study reveals a new mechanism by which A20 attenuates oxidized self-DNA-mediated inflammation and provides a new therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Hanwen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China
| | - Yongyao Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China
| | - Lisha Xiang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Qing Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China
| | - Lu Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Zhixiong Zhu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China
| | - Zhan Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Yang Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yiting Ze
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China
| | - Lulu Zhang
- College of Foreign Languages and Cultures, Sichuan University. Sichuan University, Chengdu, Sichuan, PR China
| | - Ping Fu
- Kidney Research Institute, National Clinical Research Center for Geriatrics and Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Ping Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China.
| | - Bin Shao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
9
|
Yu H, Yang R, Li M, Li D, Xu Y. The role of Treg cells in colorectal cancer and the immunotherapy targeting Treg cells. Front Immunol 2025; 16:1574327. [PMID: 40308582 PMCID: PMC12040624 DOI: 10.3389/fimmu.2025.1574327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Colorectal cancer (CRC) is among the most prevalent and lethal cancers globally, accounting for approximately 10% of all cancer cases and deaths. Regulatory T (Treg) cells, which accumulate in CRC tissue, suppress anti-tumor immune responses and facilitate tumor progression. This review discusses Treg cell origins and functions, along with the mechanisms by which Tregs influence CRC development. In addition, we highlight therapeutic strategies targeting Tregs-such as immune checkpoint inhibitors and combinatorial approaches-to enhance effector T cell responses. A deeper understanding of Treg-mediated immunosuppression in CRC may inform the design of more effective immunotherapies and precision medicine strategies.
Collapse
Affiliation(s)
- Hanqing Yu
- Department of General Surgery, The Sixth People’s Hospital of Huizhou, Huizhou, China
| | - Ruiliang Yang
- Department of General Surgery, The Sixth People’s Hospital of Huizhou, Huizhou, China
| | - Meixiang Li
- Department of General Surgery, The Sixth People’s Hospital of Huizhou, Huizhou, China
| | - Dan Li
- Department of Internal Medicine, The Sixth People’s Hospital of Huizhou, Huizhou, China
| | - Yuanqing Xu
- Department of General Surgery, The Sixth People’s Hospital of Huizhou, Huizhou, China
| |
Collapse
|
10
|
Zhou Y, Ding Y, Xu B, Fei H, Wang Z. Genetically druggable targets for MAPK-activated colorectal cancer by a two-sample mendelian randomization analysis. Sci Rep 2025; 15:12239. [PMID: 40210889 PMCID: PMC11986099 DOI: 10.1038/s41598-024-82567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 12/06/2024] [Indexed: 04/12/2025] Open
Abstract
Colorectal cancer (CRC) is a significant worldwide health issue, ranking second in women and third in men. Predictions estimate a rise to 2.5 million cases by 2035, with CRC being the fourth deadliest cancer due to delayed diagnosis and the scarcity of effective treatment options. Over 60% of CRC cases involve MAPK-activated signal pathways, particularly driven by RAS oncogene mutations, which hinder treatment responses, making them 'undruggable.' This study conducts a two-sample Mendelian randomization protein quantitative trait loci (pQTL) analysis to investigate the causal association between plasma proteins and MAPK-activated CRCs. The study indicates that four plasma proteins-MHC class I polypeptide-related sequence B (MICB), complement C4A, C4B, and interleukin-21 (IL-21) are associated with an increased risk of MAPK-activated CRCs. These findings highlight the possibility of utilizing plasma proteins as therapeutic targets and diagnostic markers to advance the fight against CRCs, indicating promising results for more effective interventions. To ascertain and expand upon these discoveries, further research is imperative to fully harness the potential of these discoveries.
Collapse
Affiliation(s)
- Yuxuan Zhou
- Department of Gastrointestinal Surgery/Hernia Surgery, Jilin Province People's Hospital, No. 1183 Gongnong Road, Changchun, Jilin, China
| | - Yunlong Ding
- Department of Emergency General Surgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Bangyue Xu
- Jilin Central General Hospital, Changchun, Jilin, China
| | - Hongyang Fei
- Department of Hepatobiliary and Pancreatic Surgery, Jilin Province People's Hospital, No. 1183 Gongnong Road, Changchun, Jilin, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery/Hernia Surgery, Jilin Province People's Hospital, No. 1183 Gongnong Road, Changchun, Jilin, China.
| |
Collapse
|
11
|
Yu G, Lin S, Huang X, Gao S, Song C, Khalilov F, Chen Q, Issaro N, Xiao J, Xu X, Wang J, Zhao W, Wang Y, Xu N. Expression of an epidermal growth factor-transdermal peptide fusion protein in Arabidopsis thaliana and its therapeutic effects on skin barrier repair. FRONTIERS IN PLANT SCIENCE 2025; 16:1573193. [PMID: 40256601 PMCID: PMC12007040 DOI: 10.3389/fpls.2025.1573193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/14/2025] [Indexed: 04/22/2025]
Abstract
Epidermal growth factor (EGF) is recognized for its role in regulating keratinocyte proliferation and differentiation, thereby facilitating the restoration of impaired skin barriers. Nevertheless, challenges related to the penetration and safety of EGF remain to be resolved. In this study, we evaluated the efficacy of TDP1, a transdermal peptide, in enhancing the penetration of EGF through murine skin, utilizing EGF expressed in A. thaliana. The coding sequences of the TDP1 and EGF genes were cloned as a fusion construct into a plant expression vector. The resulting plasmid, pGM3301-TDP1-EGF, was introduced into A. thaliana via the floral dip method. Positive clones were identified using polymerase chain reaction (PCR). High-expression strains were selected through Western-blot analysis and enzyme-linked immunosorbent assay (ELISA). Homozygotes plants were obtained through self-pollination. The impact of the TDP1-EGF fusion protein on the restoration of a compromised epidermal barrier was assessed using dermatoscopy. Keratinocyte (KC) proliferation was examined via hematoxylin and eosin (H&E) staining, while KC differentiation, lipid synthesis, and inflammatory factors were analyzed using reverse transcription quantitative PCR (RT-qPCR) and immunohistochemistry. Compared to other expression systems, the A. thaliana system utilized for TDP1-EGF expression offers the advantages of being devoid of toxicity from endogenous plant substances, rendering it both safe and suitable for scalable production of the recombinant protein. The yield of the TDP1-EGF fusion protein expressed in A. thaliana accounted for 0.0166% of the total soluble protein. EGF conjugated with TDP1 displayed enhanced transdermal activity compared to unconjugated EGF, as evidenced by the Franz diffusion cell assay. Furthermore, the biological efficacy of the TDP1-EGF fusion protein surpassed that of EGF alone in ameliorating epidermal barrier damage in a murine skin injury model. This research has the potential to revolutionize the development and delivery of skincare products and establishes a foundation for the application of molecular farming in skin health.
Collapse
Affiliation(s)
- Guangdong Yu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Shisheng Lin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Xulong Huang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Shuang Gao
- Technology Development Department, Zhejiang Tianqu Beiben Instrument Technology Co., Ltd, Wenzhou, China
| | - Chengyang Song
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Farid Khalilov
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Qiongzhen Chen
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Nipatha Issaro
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Chonburi, Thailand
| | - Jiali Xiao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Xiashun Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Junchao Wang
- Technology Development Department, Zhejiang Tianqu Beiben Instrument Technology Co., Ltd, Wenzhou, China
| | - Wengang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- Technology Development Department, Zhejiang Tianqu Beiben Instrument Technology Co., Ltd., Wenzhou, China
| |
Collapse
|
12
|
Huang J, Xiao R, Shi S, Li Q, Li M, Xiao M, Wang Y, Yang Y, Li W, Tang Y. Circulating IL6 is involved in the infiltration of M2 macrophages and CD8+ T cells. Sci Rep 2025; 15:8681. [PMID: 40082587 PMCID: PMC11906812 DOI: 10.1038/s41598-025-92817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
To elucidate the relationship between circulating cytokines and the prognosis of microsatellite-stable(MSS) colorectal cancer (CRC) patients, we examined the correlation between circulating cytokine levels and tumor immune infiltration microenvironment in this patient population. By conducting a preliminary analysis of the GEO database, we identified five core genes associated with colorectal cancer and further analyzed their impact on immune infiltration. We measured serum cytokine levels and validated the immune infiltration results through immunohistochemical staining of common inflammatory cell markers, including CD3, CD4, CD8, CD163, and FOXP3. Our findings indicate that serum cytokine levels significantly influence immune infiltration in colorectal cancer, particularly IL6 and IFNγ, which play crucial roles. Specifically, the infiltration of M2-type macrophages and CD8 + T cells is correlated with serum levels of IL6 and IFNγ. MSS CRC patients with elevated IL6 expression exhibit improved prognosis.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Rui Xiao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Suyujie Shi
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Qingshu Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Xiao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yalan Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaying Yang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwen Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China.
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yi Tang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China.
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Liu S, Zhou M, Huang X, Chen P, Li Q, Wang Y, Ge X, Wang F, Xu J, Gu J, Miao L, Deng X. A Mechanistic Study of the Feasibility of Ursodeoxycholic Acid in the Treatment of Colon Adenocarcinoma. Drug Des Devel Ther 2025; 19:1839-1852. [PMID: 40093647 PMCID: PMC11910939 DOI: 10.2147/dddt.s500721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose Bile acids promote the progression of colon adenocarcinoma (COAD), and ursodeoxycholic acid (UDCA) is a key drug in promoting bile acid excretion, but its role in COAD unclear. Our study aims to investigate the relationship between COAD and bile acid metabolism and to assess the feasibility of UDCA for the treatment of COAD. Methods Firstly, biological targets closely related to COAD were identified: Based on the cancer genome atlas (TCGA) database, the core genes of COAD were obtained by differential expression analysis and weighted gene-coexpression network analysis (WGCNA), and subjected to gene ontology (GO) function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Secondly, finding a drug by target, after identifying UDCA as a candidate drug, the feasibility of UDCA in treating COAD was verified in reverse: Using databases to collect potential targets for COAD and UDCA, and the intersecting genes were the potential targets for UDCA to exert anti-tumor effects. Then Autodock was used for molecular docking to analyze the interaction between UDCA and core target proteins. Finally, experimental validation was performed: MTT assay, wound healing, transwell migration, and angiogenesis assays were used to detect the effects of UDCA on cell proliferation, migration, invasion, and neovascularization. Results 2064 differential genes were screened from TCGA. WGCNA obtained the module most relevant to CRC, containing 493 genes. KEGG analysis found that overlapping genes were mainly concentrated in bile acid metabolic pathways. A total of 26 UDCA anti-tumor targets were obtained in database, and 5 core targets were selected by STRING database and Cytoscape software: TNF, CYP27B1, MDM2, MMP2, CASP3. Molecular docking results showed that UDCA had good binding activity with the core targets. In vitro experiment showed UDCA effectively inhibited the proliferation, migration, invasion and neovascularization in colon cancer cells. Conclusion The antitumor activity of ursodeoxycholic acid may be related to cell apoptosis, proliferation, migration and vascular neogenesis.
Collapse
Affiliation(s)
- Shuyu Liu
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Mengyue Zhou
- Department of Gastroenterology, Nanjing Pukou Hospital of Traditional Chinese Medicine, Nanjing, People’s Republic of China
| | - Xiaoli Huang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Peng Chen
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Quanpeng Li
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yuting Wang
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xianxiu Ge
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Fei Wang
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianing Xu
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jiayi Gu
- Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lin Miao
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xueting Deng
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
14
|
Deng Y, Jia X, Liu L, He Q, Liu L. The role of intestinal macrophage polarization in colitis-associated colon cancer. Front Immunol 2025; 16:1537631. [PMID: 40109347 PMCID: PMC11919874 DOI: 10.3389/fimmu.2025.1537631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Chronic inflammation of the intestine is a significant risk factor in the development of colorectal cancer. The emergence of colitis and colorectal cancer is a complex, multifactorial process involving chronic inflammation, immune regulation, and tumor microenvironment remodeling. Macrophages represent one of the most prevalent cells in the colorectal cancer microenvironment and play a pivotal role in maintaining intestinal health and the development of colitis-associated colon cancer (CAC). Macrophages are activated mainly in two ways and resulted in three phenotypes: classically activated macrophages (M1), alternatively activated macrophages (M2). The most characteristic of these cells are the pro-inflammatory M1 and anti-inflammatory M2 types, which play different roles at different stages of the disease. During chronic inflammation progresses to cancer, the proportion of M2 macrophages gradually increases. The M2 macrophages secrete cytokines such as IL-10 and TGF-β, which promote angiogenesis and matrix remodeling, and create the favorable conditions for cancer cell proliferation, infiltration, and migration. Therefore, macrophage polarization has a dual effect on the progression of colitis to CAC. The combination of immunotherapy with reprogrammed macrophages and anti-tumor drugs may provide an effective means for enhancing the therapeutic effect. It may represent a promising avenue for developing novel treatments for CAC. In this review, we focus on the process of intestinal macrophage polarization in CAC and the role of intestinal macrophage polarization in the progression of colitis to colon cancer, and review the immunotherapy targets and relevant drugs targeting macrophages in CAC.
Collapse
Affiliation(s)
- Yujie Deng
- Medical Research Center, The Third People’s Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University), College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xiaobing Jia
- The First Outpatient Department, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Liu Liu
- Department of Gastroenterology, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Qiao He
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Scie Technology of China, Chengdu, Sichuan, China
| | - Lei Liu
- Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Khizar H, Ali K, Wang J. From silent partners to potential therapeutic targets: macrophages in colorectal cancer. Cancer Immunol Immunother 2025; 74:121. [PMID: 39998578 PMCID: PMC11861851 DOI: 10.1007/s00262-025-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
Cancer cells grow and survive in the tumor microenvironment, which is a complicated process. As a key part of how colorectal cancer (CRC) progresses, tumor-associated macrophages (TAMs) exhibit a double role. Through angiogenesis, this TAM can promote the growth of cancers. Although being able to modify and adjust immune cells is a great advantage, these cells can also exhibit anti-cancer properties including direct killing of cancer cells, presenting antigens, and aiding T cell-mediated responses. The delicate regulatory mechanisms between the immune system and tumors are composed of a complex network of pathways regulated by several factors including hypoxia, metabolic reprogramming, cytokine/chemokine signaling, and cell interactions. Decoding and figuring out these complex systems become significant in building targeted treatment programs. Targeting TAMs in CRC involves disrupting chemokine signaling or adhesion molecules, reprogramming them to an anti-tumor phenotype using TLR agonists, CD40 agonists, or metabolic modulation, and selectively removing TAM subsets that promote tumor growth. Multi-drug resistance, the absence of an accurate biomarker, and drug non-specificity are also major problems. Combining macrophage-targeted therapies with chemotherapy and immunotherapy may revolutionize treatment. Macrophage studies will advance with new technology and multi-omics methodologies to help us understand CRC and build specific and efficient treatments.
Collapse
Affiliation(s)
- Hayat Khizar
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Kamran Ali
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
| |
Collapse
|
16
|
Hou Z, Qin N, He Y, Chen J, Cao Y, Xie W, Xiao T. Association between colorectal cancer and arthritis among Americans in 2005-2016. BMC Cancer 2025; 25:140. [PMID: 39856605 PMCID: PMC11758720 DOI: 10.1186/s12885-025-13557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks among the most prevalent cancers globally. Some studies have found that arthritis could reduce the risk of CRC through inflammatory immune mediation. However, there have been no reports on whether arthritis is related to CRC. Therefore, the correlation between arthritis and CRC was investigated to provide some theoretical support for understanding the prevention and diagnosis of CRC. METHODS This study utilized data from the National Health and Nutrition Examination Survey (NHANES) to investigate the relationship between arthritis and CRC among Americans. A total of 300,106 adults participated in the study, and through a questionnaire survey, they were categorized into the control group and the CRC group. In this study, arthritis was considered the exposure variable, and 17 covariates were included. The relationship between the variables and CRC was then revealed through baseline characteristic analysis, association analysis, and stratified analysis. The predictive efficiency of arthritis for the CRC was assessed using the receiver operating characteristic curve (ROC) analysis. Finally, nomogram was created to evaluate the predictive capacity. RESULTS A total of 297,681 control subjects and 2,425 CRC subjects within this survey. Significant disparities were observed between the two groups for all variables except for drink and poverty income ratio (PIR). Three models demonstrated a clear association between arthritis and CRC (model 1: odds ratio (OR) = 3.57, 95% confidence interval (CI) = 2.5-5.1, P = 0.00000000025; model 2: OR = 1.71, 95% CI = 1.15-2.53, P = 0.008; model 3: OR = 1.56, 95% CI = 1.03-2.38, P = 0.0369), indicating that the effect of arthritis on CRC was not significantly confounded by other covariates across the three models. Stratified analysis showed that arthritis was positively associated with CRC, and the area under the curve (AUC) was 0.818, indicating that arthritis was more effective in the prognosis of CRC. Finally, the decision curve and calibration curve indicated that the nomogram could effectively predict CRC. CONCLUSION This study found that arthritis had a strong association with the occurrence of CRC, providing ideas and strategies for its early detection.
Collapse
Affiliation(s)
- Zhongbo Hou
- Colorectal and Anal Surgery, Qiannan Hospital of Traditional Chinese Medicine, Duyun, 558000, China
| | - Niping Qin
- Colorectal and Anal Surgery, Qiannan Hospital of Traditional Chinese Medicine, Duyun, 558000, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, 030600, China
| | - Yanlin He
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Jiang Chen
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
- Department of Nursing, the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Yunyan District, Guiyang, 550001, China
| | - Yibo Cao
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Wei Xie
- Department of Nursing, the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Yunyan District, Guiyang, 550001, China.
| | - Tianbao Xiao
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, 030600, China.
| |
Collapse
|
17
|
Wang Y, Zhao S, Du S, Xia T, Song L, Xia M, Zhang B. Identification of PANoptosis associated lncRNAs associated with clinical prognosis and immune infiltration microenvironment in colon adenocarcinoma. Discov Oncol 2025; 16:83. [PMID: 39853491 PMCID: PMC11759722 DOI: 10.1007/s12672-025-01838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/20/2025] [Indexed: 01/26/2025] Open
Abstract
Early diagnosis and disease management based on risk stratification have a very positive impact on colon adenocarcinoma (COAD) prognosis. It is of positive significance to further explore risk stratification of COAD patients and identify predictive molecular biomarkers. PANoptosis is defined as a form of inflammatory cell death regulated by PANoptosome, with common features of pyroptosis, apoptosis and necroptosis. The role of PANoptosis in COAD has not been fully studied. In this study, we analyzed significant differences in the expression of PANoptosis-related gene (PRG) features in COAD. Subsequently, the PANoptosis associated lncRNAs (PALs) associated with PRGs were analyzed by LASSO algorithm and multivariate Cox analysis, and PALs related to the prognosis of COAD were selected. Based on the expression patterns of prognostic PAL features, we performed unsupervised consensus cluster analysis to categorize COAD samples into distinct PAL molecular subtypes and investigate their associated immune infiltration characteristics. We subsequently constructed PAL score model based on prognostic characteristics and verified its independent prognostic value for COAD. The nomogram diagnostic model was established to confirm the prognostic value of PAL scoring system again. Pathway enrichment analysis, somatic mutation profiling, and drug sensitivity analysis were employed to comprehensively assess the clinical value of the PAL score. Additionally, qRT-PCR was used to further validate the abnormal expression of the selected targets in COAD. Our results provide a new idea for clinical risk stratification and new evidence for the role of PANoptosis in COAD.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shihui Zhao
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Songtao Du
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Tianyi Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Liqiang Song
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Mingyu Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Bomiao Zhang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
18
|
Lai X, Liu B, Wan Y, Zhou P, Li W, Hu W, Gong W. Metformin alleviates colitis-associated colorectal cancer via inhibition of the TLR4/MyD88/NFκB/MAPK pathway and macrophage M2 polarization. Int Immunopharmacol 2025; 144:113683. [PMID: 39602956 DOI: 10.1016/j.intimp.2024.113683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Colon inflammation plays an essential role in the development and progression of colorectal cancer. Emerging evidence from clinical and animal studies indicates that metformin may reduce the risk of colorectal cancer through its anti-inflammatory effects. AIMS To investigate the efficacy of metformin in reducing the risk of colorectal cancer and the possible pathways and mechanisms. METHODS The Enterotoxigenic Bacteroides Fragilis (ETBF)/azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model was established and low-dose metformin (125 mg/kg) or high-dose metformin (250 mg/kg) was administered daily by gavage. Colon tumors were counted, and colon tissue was stained with hematoxylin and eosin (HE) and Periodic Acid-Schiff's and Alcian Blue (PAS-AB). Colon Ki67, ZO-1 Muc2, Claudin-1, Occludin, MPO, reactive oxygen species (ROS), E-cadherin, CD206 and Arg-1 expression were detected by immunohistochemistry or immunofluorescence staining. NF-κB pathway-related protein expression was assessed by Western blot. Fecal short-chain fatty acid (SCFA) levels were also examined. RESULTS Our results showed that low- or high-dose metformin ameliorates colonic mucosal damage, reduces colonic inflammation, and eventually inhibits colorectal tumorigenesis in the ETBF/AOM/DSS mouse model. Our further research found that metformin suppresses the expression of TLR4/MyD88/NFκB/MAPK pathway-related proteins, modulates macrophage M2 polarization and increases SCFA levels in colon contents, which may be the mechanisms by which metformin exerts a protective effect against colon carcinogenesis. CONCLUSION Metformin inhibited colorectal tumorigenesis by suppressing the TLR4/MyD88/NFκB/MAPK pathway, modulating macrophage M2 polarization and increasing SCFA levels. It holds promise as a potentially effective treatment for colorectal cancer.
Collapse
Affiliation(s)
- Xueying Lai
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China; Department of Gastroenterology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - Bin Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Wan
- Department of Gastroenterology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - Ping Zhou
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China
| | - Wanjun Li
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China.
| |
Collapse
|
19
|
Antonczyk A, Kluzek K, Herbich N, Boroujeni ME, Krist B, Wronka D, Karlik A, Przybyl L, Plewinski A, Wesoly J, Bluyssen HAR. Identification of ALEKSIN as a novel multi-IRF inhibitor of IRF- and STAT-mediated transcription in vascular inflammation and atherosclerosis. Front Pharmacol 2025; 15:1471182. [PMID: 39840103 PMCID: PMC11747033 DOI: 10.3389/fphar.2024.1471182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
Cardiovascular diseases (CVDs) include atherosclerosis, which is an inflammatory disease of large and medium vessels that leads to atherosclerotic plaque formation. The key factors contributing to the onset and progression of atherosclerosis include the pro-inflammatory cytokines interferon (IFN)α and IFNγ and the pattern recognition receptor (PRR) Toll-like receptor 4 (TLR4). Together, they trigger the activation of IFN regulatory factors (IRFs) and signal transducer and activator of transcription (STAT)s. Based on their promoting role in atherosclerosis, we hypothesized that the inhibition of pro-inflammatory target gene expression through multi-IRF inhibitors may be a promising strategy to treat CVDs. Using comparative in silico docking of multiple IRF-DNA-binding domain (DBD) models on a multi-million natural compound library, we identified the novel multi-IRF inhibitor, ALEKSIN. This compound targets the DBD of IRF1, IRF2, and IRF8 with the same affinity and simultaneously inhibits the expression of multiple IRF target genes in human microvascular endothelial cells (HMECs) in response to IIFNα and IFNγ. Under the same conditions, ALEKSIN also inhibited the phosphorylation of STATs, potentially through low-affinity STAT-SH2 binding but with lower potency than the known multi-STAT inhibitor STATTIC. This was in line with the common inhibition of ALEKSIN and STATTIC observed on the genome-wide expression of pro-inflammatory IRF/STAT/NF-κB target genes, as well as on the migration of HMECs. Finally, we identified a novel signature of 46 ALEKSIN and STATTIC commonly inhibited pro-atherogenic target genes, which was upregulated in atherosclerotic plaques in the aortas of high-fat diet-fed ApoEKO mice and associated with inflammation, proliferation, adhesion, chemotaxis, and response to lipids. Interestingly, the majority of these genes could be linked to macrophage subtypes present in aortic plaques in HFD-fed LDLR-KO mice. Together, this suggests that ALEKSIN represents a novel class of multi-IRF inhibitors, which inhibits IRF-, STAT-, and NF-κB-mediated transcription and could offer great promise for the treatment of CVDs. Furthermore, the ALEKSIN and STATTIC commonly inhibited pro-inflammatory gene signature could help monitor plaque progression during experimental atherosclerosis.
Collapse
Affiliation(s)
- Aleksandra Antonczyk
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Kluzek
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Natalia Herbich
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mahdi Eskandarian Boroujeni
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Bart Krist
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Dorota Wronka
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Karlik
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Lukasz Przybyl
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Adam Plewinski
- Animal Facility, Center for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Hans A. R. Bluyssen
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
20
|
Yin J, Liao Y, Liu S, Che B, Zhu H, Yang B, Shi B. Titanium nanotubes modulate immunophenotyping and cytokine secretion of T cells via IL-17A: a bioinformatic analysis and experimental validation. Front Immunol 2025; 15:1381158. [PMID: 39840051 PMCID: PMC11747796 DOI: 10.3389/fimmu.2024.1381158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Object We aim to explore the immunomodulatory properties of T cells on different titanium nanotubes and the key immunological factors involved in this process. Methods Transcriptome data from GEO database of healthy people and healthy implants were used to analyze cell infiltration and factor distribution of adaptive immune using bioinformatics tools. T cells from activated rat were cultured on titanium nanotubes that were prepared by anodization with different diameters (P-0, NT15-30 nm, NT40-100 nm, NT70-200 nm). The proliferation and expressions of the main transcription factors and cytokines of T-cells were detected. Magnetic bead sorting of CD3+ T cells and transcriptome sequencing were performed to explore the signaling pathways and key immune factors that may influence the related immune responses. Results Bioinformatics analysis showed that healthy peri-implant tissues were enriched by the most of T-cell subtypes. T-cell-mediated adaptive immunological responses involved IL-17A. On the third day, the NT15 and NT40 groups showed significantly higher pro-proliferative effects than the NT70 group (P<0.05). Notably, the NT40 group exhibited the lowest T-bet expression (P<0.05) along with the highest levels of Rorγt, Gata3, and Foxp3(P<0.05), followed by the NT15 group. Additionally, the NT40 group demonstrated reduced RANKL, TNF-α, and IL-6 (P<0.05) and increased OPG and IL-10 (P<0.05). Meanwhile, the NT15 group had lower IFN-γ expression(P>0.05) but higher IL-4, and TGF-β1 expressions(P<0.05). Differential expressed genes (DGEs) of T-cell related to the morphologies of titanium nanotubes were mostly enriched in the IL-17 signaling pathway mediated by IL-17A/F. Gene and protein expressions indicated that the NT40 group had the highest secretion in IL-17A of T cells. Conclusion Titanium nanotube morphologies in medium (100 nm) and small (30 nm) sizes significantly influence T cell differentiation and immune factor secretion, with T-cell-derived IL-17A likely playing a key regulatory role.
Collapse
Affiliation(s)
- Jingju Yin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Oral Medicine Center, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Disease, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yunyang Liao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Oral Medicine Center, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Disease, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shaofeng Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Oral Medicine Center, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Disease, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Bangwei Che
- Department of Urology & Andrology, The First Affiliated of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hanghang Zhu
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Disease, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Bingbing Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Oral Medicine Center, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Disease, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Bin Shi
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Oral Medicine Center, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Fang S, Jiang M, Jiao J, Zhao H, Liu D, Gao D, Wang T, Yang Z, Yuan H. Unraveling the ROS-Inflammation-Immune Balance: A New Perspective on Aging and Disease. Aging Dis 2025:AD.2024.1253. [PMID: 39812539 DOI: 10.14336/ad.2024.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Increased entropy is a common cause of disease and aging. Lifespan entropy is the overall increase in disorder caused by a person over their lifetime. Aging leads to the excessive production of reactive oxygen species (ROS), which damage the antioxidant system and disrupt redox balance. Organ aging causes chronic inflammation, disrupting the balance of proinflammatory and anti-inflammatory factors. Inflammaging, which is a chronic low-grade inflammatory state, is activated by oxidative stress and can lead to immune system senescence. During this process, entropy increases significantly as the body transitions from a state of low order to high disorder. However, the connection among inflammation, aging, and immune system activity is still not fully understood. This review introduces the idea of the ROS-inflammation-immune balance for the first time and suggests that this balance may be connected to aging and the development of age-related diseases. We also explored how the balance of these three factors controls and affects age-related diseases. Moreover, imbalance in the relationship described above disrupts the regular structures of cells and alters their functions, leading to cellular damage and the emergence of a disorganized state marked by increased entropy. Maintaining a low entropy state is crucial for preventing and reversing aging processes. Consequently, we examined the current preclinical evidence for antiaging medications that target this balance. Ultimately, comprehending the intricate relationships between these three factors and the risk of age-related diseases in organisms will aid in the development of clinical interventions that promote long-term health.
Collapse
Affiliation(s)
- Sihang Fang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Mingjun Jiang
- Respiratory Department, Beijing Children's Hospital, Capital Medical University, China National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Juan Jiao
- Department of Clinical Laboratory, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Hongye Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dizhi Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Danni Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Tenger Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| |
Collapse
|
22
|
Kapoor G, Prakash S, Jaiswal V, Singh AK. Chronic Inflammation and Cancer: Key Pathways and Targeted Therapies. Cancer Invest 2025; 43:1-23. [PMID: 39648223 DOI: 10.1080/07357907.2024.2437614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Recent research has underscored the pivotal role of chronic inflammation in cancer development. Investigations have elucidated key molecular mechanisms underpinning inflammation-related cancer. Extrinsic pathway, driven by inflammatory conditions and intrinsic pathway, propelled by genetic events, emerged as critical links between inflammation and carcinogenesis. The persistent inflammation exacerbates genomic instability, providing a mechanistic link between inflammation and cancer. Targeting crucial inflammatory pathways such as NFκB, JAK-STAT, MAPK/ERK, PI3K/AKT, Wnt and TGF-β, holds promise for advancing cancer treatment modalities. Hence, understanding the key signalling pathways will highlight the intricate interplay between inflammation and cancer recognizing it as a potential target for interventions.
Collapse
Affiliation(s)
- Gauri Kapoor
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Swati Prakash
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Vishakha Jaiswal
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Ashok K Singh
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
23
|
Bahrami A, Khalaji A, Bahri Najafi M, Sadati S, Raisi A, Abolhassani A, Eshraghi R, Khaksary Mahabady M, Rahimian N, Mirzaei H. NF-κB pathway and angiogenesis: insights into colorectal cancer development and therapeutic targets. Eur J Med Res 2024; 29:610. [PMID: 39702532 DOI: 10.1186/s40001-024-02168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Colorectal cancer (CRC) is currently ranked as the third most common type of cancer, contributing significantly to mortality and morbidity worldwide. Epigenetic and genetic changes occurred during CRC progression resulted in the cell proliferation, cancer progression, angiogenesis, and invasion. Angiogenesis is one of the crucial steps during cancer progression required for the delivery of essential nutrients to cancer cells and removes metabolic waste. During angiogenesis, different molecules are secreted from tumoral cells to trigger vascular formation including epidermal growth factor and the vascular endothelial growth factor (VEGF). The production and regulation of the secretion of these molecules are modulated by different subcellular pathways such as NF-κB. NF-κB is involved in regulation of different homeostatic pathways including apoptosis, cell proliferation, inflammation, differentiation, tumor migration, and angiogenesis. Investigation of different aspects of this pathway and its role in angiogenesis could provide a comprehensive overview about the underlying mechanisms and could be used for development of further therapeutic targets. In this review of literature, we comprehensively reviewed the current understanding and potential of NF-κB-related angiogenesis in CRC. Moreover, we explored the treatments that are based on the NF-κB pathway.
Collapse
Affiliation(s)
- Ashkan Bahrami
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majed Bahri Najafi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Sadati
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Neda Rahimian
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
24
|
Mercuţ R, Ciurea ME, Traşcă ET, Ionescu M, Mercuţ MF, Rădulescu PM, Călăraşu C, Streba L, Ionescu AG, Rădulescu D. Applying Neural Networks to Analyse Inflammatory, Sociodemographic, and Psychological Factors in Non-Melanoma Skin Cancer and Colon Cancer: A Statistical and Artificial Intelligence Approach. Diagnostics (Basel) 2024; 14:2759. [PMID: 39682667 DOI: 10.3390/diagnostics14232759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Chronic inflammation and psychosocial factors significantly influence cancer progression and patient behavior in seeking medical care. Understanding their interplay is essential for enhancing early detection and developing personalized treatment strategies. This study aims to develop a comprehensive patient profiling model by comparing non-melanoma skin cancer (NMSC) and colorectal cancer (CRC). The goal is to identify common and distinct patterns in inflammation and psychosocial factors that affect disease progression and clinical presentation. Methods: We conducted a comparative analysis of patients diagnosed with NMSC and CRC, integrating clinical data with sociodemographic and psychological assessments. Advanced neural network algorithms were employed to detect subtle patterns and interactions among these factors. Based on the analysis, a cancer risk assessment questionnaire was developed to stratify patients into low-, moderate-, and high-risk categories. Results: Patients with low systemic inflammation and adequate vagal tone, supported by a stable family environment, demonstrated heightened sensitivity to subclinical symptoms, enabling earlier diagnosis and timely intervention. Conversely, patients with high systemic inflammation and reduced vagal tone, often influenced by chronic stress and unstable family environments, presented at more advanced disease stages. The developed risk assessment tool effectively classified patients into distinct risk categories, facilitating targeted preventive measures and personalized therapeutic strategies. Neural network profiling revealed significant interactions between biological and psychosocial factors, enhancing our understanding of their combined impact on cancer progression. Conclusions: The integrated profiling approach and the newly developed risk assessment questionnaire have the potential to transform cancer management by improving early detection, personalizing treatment strategies, and addressing psychosocial factors. This model not only enhances clinical outcomes and patient quality of life but also offers a framework adaptable to other cancer types, promoting a holistic and patient-centered approach in oncology.
Collapse
Affiliation(s)
- Răzvan Mercuţ
- Department of Plastic and Reconstructive Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marius Eugen Ciurea
- Department of Plastic and Reconstructive Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Emil Tiberius Traşcă
- The Surgery Clinic of "Dr. Ștefan Odobleja Emergency Military Hospital", General Surgery Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Ionescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Maria Filoftea Mercuţ
- Department of Ophthalmology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - Cristina Călăraşu
- Department of Pneumology, University of Pharmacy and Medicine Craiova, 200349 Craiova, Romania
| | - Liliana Streba
- Department of Oncology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Alin Gabriel Ionescu
- Department of Medical History, University of Pharmacy and Medicine Craiova, 200349 Craiova, Romania
| | - Dumitru Rădulescu
- The Surgery Clinic of "Dr. Ștefan Odobleja Emergency Military Hospital", General Surgery Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
25
|
Wang Z, Shu Q, Wu J, Cheng Y, Liang X, Huang X, Liu Y, Tao Z, Wang J, Bai F, Liu N, Xie N. Evaluating the association between immunological proteins and common intestinal diseases using a bidirectional two-sample Mendelian randomization study. Cytokine 2024; 184:156788. [PMID: 39467484 DOI: 10.1016/j.cyto.2024.156788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/06/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Dysregulation of intestinal homeostasis, characterized by imbalanced immunological proteins, contributes to the pathogenesis of common intestinal diseases, e.g., irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and colorectal cancer (CRC). However, the potential causal relationships between specific immunological proteins and these diseases remain to be fully elucidated. In this study, we employed the bidirectional two-sample Mendelian randomization analysis to infer potential causal relationships between representative immunological proteins and these intestinal diseases. Genome-wide association study (GWAS) summary statistics of IBS, IBD, and CRC were obtained from public databases and utilized in MR analysis. Multiple sensitivity analyses were performed to evaluate the robustness, with p-values adjusted using the Benjamini-Hochberg method for multiple comparisons. Our findings revealed a significant association between IL-1β (OR = 0.783, 95 % CI: 0.676 to 0.908, adjusted P = 0.048) and a decreased risk of IBS. Furthermore, genetic predisposition to IBS was related to the reduced levels of IL-25 (β = - 0.233, 95 % CI: -0.372 to -0.094, adjusted P = 0.047). Additionally, genetic predisposition to IBD was correlated with elevated levels of IL-6 (β = 0.046, 95 % CI: 0.022-0.069, adjusted P = 0.010). The levels of TNF-α (OR = 1.252, 95 % CI: 1.102 to 1.423, adjusted P = 0.047) were associated with an increased risk of CRC. Our study suggests associations between specific immunological proteins and intestinal diseases, which would provide valuable insights for developing targeted immunomodulation therapies for these conditions. Further investigation into underlying mechanisms remains a research priority in the future.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qiuai Shu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Jian Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yutong Cheng
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Xiru Liang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Xindi Huang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Yixin Liu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Zhiwei Tao
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Jinhai Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Feihu Bai
- The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Na Liu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China.
| | - Ning Xie
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
26
|
Dean LS, Threatt AN, Jones K, Oyewole EO, Pauly M, Wahl M, Barahona M, Reiter RW, Nordgren TM. I don't know about you, but I'm feeling IL-22. Cytokine Growth Factor Rev 2024; 80:1-11. [PMID: 39537498 PMCID: PMC12097143 DOI: 10.1016/j.cytogfr.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Defense of the human body against damaging and pathogenic insults is a heavily regulated affair. A primary mechanism of defense at sites of insult are soluble mediators whose defensive maneuvers increase barrier integrity and promote pro-reparative and resolution processes. IL-22 is a cytokine in the IL-10 cytokine family that has garnered increased attention in recent years due to its intimate link in promoting resolution of inflammatory insults, while simultaneously being over expressed in certain fibrotic and chronic inflammatory-skewed diseases. The spatial action of IL-22 centers around the barrier sites of the body, including the skin, lungs, and gut mucosa. As such, a detailed understanding of the role of this cytokine, the producers and responders, and the diseases resulting from over- or under-expression have prominent impacts on a variety of disease outcomes. Herein we present a comprehensive review of IL-22; from historical perspectives and initial discovery, as well as more recent data that dramatically expands on the cellular sources and impact of this cytokine. We aim to showcase the duality of IL-22 and highlight addressable gaps in the field of IL-22 crosstalk and impacts at the ever-important mucosal and tissue barrier sites.
Collapse
Affiliation(s)
- Logan S Dean
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Alissa N Threatt
- Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Kaylee Jones
- Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Emmanuel O Oyewole
- Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Morgan Pauly
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Maëlis Wahl
- Department of Biochemistry and Molecular Biology, Colorado State University, CO 80521, United States
| | - Melea Barahona
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States
| | - Rose W Reiter
- Department of Molecular, Cellular, and Integrative Neuroscience, Colorado State University, CO 80521, United States
| | - Tara M Nordgren
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Toxicology Graduate Program, Colorado State University, Fort Collins, CO 80521, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80521, United States.
| |
Collapse
|
27
|
Krzysztofik M, Brzewski P, Kulbat A, Masajada M, Richter K, Wysocki WM. The IL-23/Th17 pathway inhibitors in the treatment of psoriasis and the risk of skin malignancies: a review. Postepy Dermatol Alergol 2024; 41:552-559. [PMID: 39877117 PMCID: PMC11770571 DOI: 10.5114/ada.2024.143428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 01/31/2025] Open
Abstract
Psoriasis and psoriatic arthritis are chronic inflammatory conditions that constitute a significant global health burden due to their prevalence and impact on quality of life. A deeper comprehension of psoriasis and psoriatic arthritis pathogenesis has recently led to the emergence of novel classes of biologics targeting the IL-23/Th17 pathway. The specific role of interleukin-12, -23, and -17 in cancer as either promoters or inhibitors is under investigation in various studies. Here, we explore the potential role of interleukin-12, -23, and -17 in the development of skin tumours as well as the safety of using their inhibitors in the treatment of psoriasis and psoriatic arthritis, particularly in relation to the risk of melanoma and non-melanoma skin cancer (NMSC) development.
Collapse
Affiliation(s)
- Marta Krzysztofik
- Department of Dermatology and Venereology, Stefan Zeromski Municipal Hospital, Krakow, Poland
| | - Paweł Brzewski
- Department of Dermatology and Venereology, Stefan Zeromski Municipal Hospital, Krakow, Poland
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Aleksandra Kulbat
- Department of Oncological Surgery, 5 Military Clinical Hospital, Krakow, Poland
- National Institute of Oncology, Maria Sklodowska-Curie Memorial, Warsaw, Poland
| | - Magdalena Masajada
- Department of Dermatology and Venereology, Stefan Zeromski Municipal Hospital, Krakow, Poland
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Karolina Richter
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Wojciech M. Wysocki
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
- Department of Oncological Surgery, 5 Military Clinical Hospital, Krakow, Poland
- National Institute of Oncology, Maria Sklodowska-Curie Memorial, Warsaw, Poland
| |
Collapse
|
28
|
Liu J, Liu H, Tang H, Ran L, Wang D, Yang F, Zhang H, Teng X, Chen D. Golgi apparatus regulated pyroptosis through the miR-32-5p/Golga7/NLRP3 axis in chicken splenic lymphocytes exposure to ammonia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124923. [PMID: 39260552 DOI: 10.1016/j.envpol.2024.124923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Ammonia, a common toxic gas, posed a hazard to both human and chickens. The Golgi apparatus, an essential organelle, helped maintain the internal environment of the organism and supported the protein foundation for the endoplasmic reticulum to be involved in pyroptosis. Thus, the Golgi apparatus has garnered significant attention. The purpose of our research was to explore the mechanisms of Golgin A7 (Golga7) involved in pyroptosis after chicken exposure to ammonia. To reach our goal, we first created an in vitro ammonia model to study the effect of ammonia on chicken splenic lymphocyte pyroptosis. Then, leveraging this model, we established Golga7 and miR-32-5p knockdown and overexpression models to investigate their roles in ammonia-induced pyroptosis. We found the ultrastructural changes in the nucleus, Golgi apparatus, and mitochondria of chicken splenic lymphocytes exposure to ammonia. The damage of mitochondria increased the level of Reactive Oxygen Species (ROS), which caused the down-regulation of miR-32-5p. The miR-32-5p inhibitor increased the expression of Golga7 and pyroptosis-related genes (NOD-like receptor protein 3 (NLRP3), Cysteine aspartase-1 (Caspase-1), Golgin A3 (Golga3), Nuclear Factor-kappa B (NF-κB), and Tumor Necrosis Factor-alpha (TNF-α)), which induced the pyroptosis, but when miR-32-5p mimic/si-Golga7 (Golga7 inhibitor) was utilized, these effects were reduced. Our research demonstrated that miR-32-5p/Golga7 regulated NLRP3 involving in the pyroptosis of chicken splenic cells exposed to ammonia. Our study provided a valuable foundation for the prevention and treatment chickens ammonia poisoning in the livestock production.
Collapse
Affiliation(s)
- Jiahao Liu
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haojinming Tang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Longjun Ran
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Danni Wang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Falong Yang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Huanrong Zhang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Dechun Chen
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
29
|
Ochman B, Kot A, Mielcarska S, Kula A, Dawidowicz M, Koszewska D, Hudy D, Szrot M, Piecuch J, Waniczek D, Czuba Z, Świętochowska E. Association of SIGLEC9 Expression with Cytokine Expression, Tumor Grading, KRAS, NRAS, BRAF, PIK3CA, AKT Gene Mutations, and MSI Status in Colorectal Cancer. Curr Issues Mol Biol 2024; 46:13617-13646. [PMID: 39727942 PMCID: PMC11726853 DOI: 10.3390/cimb46120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
SIGLEC9 (sialic acid-binding Ig-like lectin 9) is a molecule thought to have a significant influence on the immune properties of the colorectal cancer (CRC) tumor microenvironment (TME). In our study, we assessed the expression of the SIGLEC9 protein in CRC tissue and the surgical margin tissue. Using RT-PCR, we analyzed mutations in the KRAS, NRAS, BRAF, PIK3CA, and AKT genes. We observed a significantly elevated expression of the SIGLEC9 protein in CRC tissue compared to the control group. No significant differences were observed in SIGLEC9 protein expression depending on mutations in the KRAS, NRAS, BRAF, PIK3CA, and AKT genes or microsatellite instability (MSI) status. However, we found a significantly higher expression of the SIGLEC9 protein in high-grade tumors compared to the low-grade tumors group. SIGLEC9 expression was significantly associated with the expression of multiple cytokines, chemokines, and growth factors in the CRC TME. These associations suggest the significant potential of SIGLEC9 as a molecule that plays a crucial role in shaping the immune properties of the CRC TME, as well as its potential therapeutic relevance, particularly in the group of high-grade CRC tumors.
Collapse
Affiliation(s)
- Błażej Ochman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| | - Anna Kot
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Dominika Koszewska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| | - Monika Szrot
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland; (M.S.); (J.P.)
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland; (M.S.); (J.P.)
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland;
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (A.K.); (S.M.); (D.K.); (D.H.)
| |
Collapse
|
30
|
Wang D, Zhu L, Liu H, Feng X, Zhang C, Li T, Liu B, Liu L, Sun J, Chang H, Chen S, Guo S, Yang W. Huangqin tang alleviates colitis-associated colorectal cancer via amino acids homeostasisand PI3K/AKT/mtor pathway modulation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118597. [PMID: 39034016 DOI: 10.1016/j.jep.2024.118597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqin Tang (HQT), a traditional Chinese medicine formula, is commonly used in clinical practice for the treatment of inflammatory bowel diseases. It has been reported that HQT exerts antitumor effects on colitis-associated colorectal cancer (CAC). However, the mechanism by which HQT interferes with the inflammation-to-cancer transformation remains unclear. AIMS OF THE STUDY The purpose of this study was to dynamically evaluate the efficacy of HQT in alleviating or delaying CAC and to reveal the underlying mechanism. METHODS We established a mouse model of CAC using azoxymethane combined with 1.5% dextran sodium sulphate. The efficacy of HQT was evaluated based on pathological sections and serum biochemical indices. Subsequently, amino acids (AAs) metabolism analyses were performed using ultra-performance liquid chromatography-tandem mass spectrometry, and the phosphatidylinositol 3 kinase/protein kinase B/mechanistic target of rapamycin (PI3K/AKT/mTOR) pathway was detected by western blotting. RESULTS The data demonstrated that HQT could alleviate the development of CAC in the animal model. HQT effectively reduced the inflammatory response, particularly interleukin-6 (IL-6), in the inflammation induction stage, as well as in the stages of proliferation initiation and tumorigenesis. During the proliferation initiation and tumorigenesis stages, immunohistochemistry staining showed that the expression of the proliferation marker Ki67 was reduced, while apoptosis was increased in the HQT group. Accordingly, HQT substantially decreased the levels of specific AAs in the colon with CAC, including glutamic acid, glutamine, arginine, and isoleucine. Furthermore, HQT significantly inhibited the activated PI3K/AKT/mTOR pathway, which may contribute to suppression of cell proliferation and enhancement of apoptosis. CONCLUSION HQT is effective in alleviating and delaying the colon "inflammation-to-cancer". The mechanism of action may involve HQT maintained AAs metabolism homeostasis and regulated PI3K/AKT/mTOR pathway, so as to maintain the balance between proliferation and apoptosis, and then interfere in the occurrence and development of CAC.
Collapse
Affiliation(s)
- Dunfang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Haifan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Caijuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Tao Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Bin Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jingwei Sun
- Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hao Chang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Siyuan Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
31
|
Cui H, Yang H, Qi X, Zhao Y, Huang T, Miao L. Immunologic Effects of a Novel Bovine Lactoferrin-Derived Peptide on the Gut and Clinical Perspectives. Vet Sci 2024; 11:545. [PMID: 39591319 PMCID: PMC11599047 DOI: 10.3390/vetsci11110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Bovine lactoferrin is a natural iron-binding glycoprotein known for its antimicrobial, antiviral, antitumor, anti-inflammatory, and immunomodulatory properties. In this study, we artificially recombined a fragment of bovine lactoferrin with immunomodulatory and antimicrobial properties to create a novel peptide named LF-MQL. The primary objective was to investigate the effects of LF-MQL on the intestinal tract and immune cells in animals. First, we assessed the in vitro activation effects of LF-MQL on mouse peritoneal macrophages. The results indicated that LF-MQL enhanced the macrophage phagocytic activity and increased IL-1β mRNA expression without significantly affecting IL-6 mRNA levels. Next, we examined the effects of LF-MQL on mucosal immunity by administering LF-MQL orally at doses of 300 mg/kg, 30 mg/kg, and 3 mg/kg to mice. The results demonstrated that different doses of LF-MQL modulated IL-6 and IL-10 mRNA levels in the small intestine. Low doses enhanced the intestinal immune response, while higher doses reduced the inflammatory response. In conclusion, LF-MQL exerts immunomodulatory effects rather than simply boosting immune activity in animal models.
Collapse
Affiliation(s)
| | | | | | | | | | - Liguang Miao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (H.C.)
| |
Collapse
|
32
|
Peng D, Wang Y, Yao Y, Yang Z, Wu S, Zeng K, Hu X, Zhao Y. Long-chain polyunsaturated fatty acids influence colorectal cancer progression via the interactions between the intestinal microflora and the macrophages. Mol Cell Biochem 2024; 479:2895-2906. [PMID: 38217838 DOI: 10.1007/s11010-023-04904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
The metabolism of long-chain polyunsaturated fatty acids (LCPUFAs) is closely associated with the risk and progression of colorectal cancer (CRC). This paper aims to investigate the role of LCPUFA in the crosstalk between intestinal microflora and macrophages, as well as the effects of these three parties on the progression of CRC. The metabolism and function of LCPUFA play important roles in regulating the composition of the human gut microflora and participating in the regulation of inflammation, ultimately affecting macrophage function and polarization, which is crucial in the tumor microenvironment. The effects of LCPUFA on cellular interactions between the two species can ultimately influence the progression of CRC. In this review, we explore the molecular mechanisms and clinical applications of LCPUFA in the interactions between intestinal microflora and intestinal macrophages, as well as its significance for CRC progression. Furthermore, we reveal the role of LCPUFA in the construction of the CRC microenvironment and explore the key nodes of the interactions between intestinal flora and intestinal macrophages in the environment. It provides potential targets for the metabolic diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Duo Peng
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Yan Wang
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Yunhong Yao
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Zisha Yang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Shuang Wu
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Kaijing Zeng
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Xinrong Hu
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China.
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China.
| | - Yi Zhao
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China.
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, 523808, China.
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
33
|
Pacifico T, Stolfi C, Tomassini L, Luiz‐Ferreira A, Franzè E, Ortenzi A, Colantoni A, Sica GS, Sambucci M, Monteleone I, Monteleone G, Laudisi F. Rafoxanide negatively modulates STAT3 and NF-κB activity and inflammation-associated colon tumorigenesis. Cancer Sci 2024; 115:3596-3611. [PMID: 39239848 PMCID: PMC11531958 DOI: 10.1111/cas.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
In the colorectal cancer (CRC) niche, the transcription factors signal transducer and activator of transcription 3 (STAT3) and nuclear factor-κB (NF-κB) are hyperactivated in both malignant cells and tumor-infiltrating leukocytes (TILs) and cooperate to maintain cancer cell proliferation/survival and drive protumor inflammation. Through drug repositioning studies, the anthelmintic drug rafoxanide has recently emerged as a potent and selective antitumor molecule for different types of cancer, including CRC. Here, we investigate whether rafoxanide could negatively modulate STAT3/NF-κB and inflammation-associated CRC. The antineoplastic effect of rafoxanide was explored in a murine model of CRC resembling colitis-associated disease. Cell proliferation and/or STAT3/NF-κB activation were evaluated in colon tissues taken from mice with colitis-associated CRC, human CRC cells, and CRC patient-derived explants and organoids after treatment with rafoxanide. The STAT3/NF-κB activation and cytokine production/secretion were assessed in TILs isolated from CRC specimens and treated with rafoxanide. Finally, we investigated the effects of TIL-derived supernatants cultured with or without rafoxanide on CRC cell proliferation and STAT3/NF-κB activation. The results showed that rafoxanide restrains STAT3/NF-κB activation and inflammation-associated colon tumorigenesis in vivo without apparent effects on normal intestinal cells. Rafoxanide markedly reduces STAT3/NF-κB activation in cultured CRC cells, CRC-derived explants/organoids, and TILs. Finally, rafoxanide treatment impairs the ability of TILs to produce protumor cytokines and promote CRC cell proliferation. We report the novel observation that rafoxanide negatively affects STAT3/NF-κB oncogenic activity at multiple levels in the CRC microenvironment. Our data suggest that rafoxanide could potentially be deployed as an anticancer drug in inflammation-associated CRC.
Collapse
Affiliation(s)
- Teresa Pacifico
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Carmine Stolfi
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Lorenzo Tomassini
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Anderson Luiz‐Ferreira
- Inflammatory Bowel Disease Research Laboratory, Department of Biological Sciences, Institute of BiotechnologyFederal University of Catalão (UFCAT)CatalãoBrazil
| | - Eleonora Franzè
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Angela Ortenzi
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Alfredo Colantoni
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | | | | | - Ivan Monteleone
- Department of Biomedicine and PreventionUniversity of Rome “Tor Vergata”RomeItaly
| | | | - Federica Laudisi
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| |
Collapse
|
34
|
Kang J, Lee M, Park M, Lee J, Lee S, Park J, Koyanagi A, Smith L, Nehs CJ, Yon DK, Kim T. Slow gut transit increases the risk of Alzheimer's disease: An integrated study of the bi-national cohort in South Korea and Japan and Alzheimer's disease model mice. J Adv Res 2024; 65:283-295. [PMID: 38097171 PMCID: PMC11518944 DOI: 10.1016/j.jare.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 01/02/2024] Open
Abstract
INTRODUCTION Although the association between Alzheimer's disease (AD) and constipation is controversial, its causality and underlying mechanisms remain unknown. OBJECTIVES To investigate the potential association between slow gut transit and AD using epidemiological data and a murine model. METHODS We conducted a bi-national cohort study in South Korea (discovery cohort, N=3,130,193) and Japan (validation cohort, N=4,379,285) during the pre-observation period to determine the previous diagnostic history (2009-2010) and the follow-up period (2011-2021). To evaluate the causality, we induced slow gut transit using loperamide in 5xFAD transgenic mice. Changes in amyloid-beta (Aβ) and other markers were examined using ELISA, qRT-PCR, RNA-seq, and behavioral tests. RESULTS Constipation was associated with an increased risk of AD in the discovery cohort (hazard ratio, 2.04; 95% confidence interval [CI], 2.01-2.07) and the validation cohort (hazard ratio; 2.82; 95% CI, 2.61-3.05). We found that loperamide induced slower gut transit in 5xFAD mice, increased Aβ and microglia levels in the brain, increased transcription of genes related to norepinephrine secretion and immune responses, and decreased the transcription of defense against bacteria in the colonic tissue. CONCLUSION Impaired gut transit may contribute to AD pathogenesis via the gut-brain axis, thus suggesting a cyclical relationship between intestinal barrier disruption and Aβ accumulation in the brain. We propose that gut transit or motility may be a modifiable lifestyle factor in the prevention of AD, and further clinical investigations are warranted.
Collapse
Affiliation(s)
- Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Myeongcheol Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea; Department of Regulatory Science, Kyung Hee University, Seoul, Republic of Korea
| | - Mincheol Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jibeom Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jaeyu Park
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea; Department of Regulatory Science, Kyung Hee University, Seoul, Republic of Korea
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Deu, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Christa J Nehs
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea; Department of Regulatory Science, Kyung Hee University, Seoul, Republic of Korea; Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea.
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| |
Collapse
|
35
|
Shen C, Zhu X, Chang H, Li C, Hou M, Chen L, Lu Chen, Zhou Z, Ji M, Xu Z. The rebalancing of the immune system at the maternal-fetal interface ameliorates autism-like behavior in adult offspring. Cell Rep 2024; 43:114787. [PMID: 39321022 DOI: 10.1016/j.celrep.2024.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Maternal immune activation (MIA) is critical for imparting neuropathology and altered behaviors in offspring; however, maternal-fetal immune cell populations have not been thoroughly investigated in MIA-induced autism spectrum disorders (ASDs). Here, we report the single-cell transcriptional landscape of placental cells in both PBS- and poly(I:C)-induced MIA dams. We observed a decrease in regulatory T (Treg) cells but an increase in the M1 macrophage population at the maternal-fetal interface in MIA dams. Based on the Treg-targeting approach, we investigate an immunoregulatory protein, the helminth-derived heat shock protein 90α (Sjp90α), that induces maternal Treg cells and subsequently rescues the autism-like behaviors in adult offspring. Furthermore, in vivo depletion of maternal macrophages attenuates placental inflammatory reaction and reverses behavioral abnormalities in adult offspring. Notably, Sjp90α induces CD4+ T cell differentiation via scavenger receptor A (SR-A) on the macrophage in vitro. Our findings suggest a maternal Treg-targeted approach to alleviate MIA-induced autism-like behavior in adult offspring.
Collapse
Affiliation(s)
- Chunxiang Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hao Chang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Chen Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Min Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lin Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lu Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Zikai Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P.R. China.
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| |
Collapse
|
36
|
Chen Y, Zheng Y, Liu S. KRAS mutation promotes the colonization of Fusobacterium nucleatum in colorectal cancer by down-regulating SERTAD4. J Cell Mol Med 2024; 28:e70182. [PMID: 39462261 PMCID: PMC11512757 DOI: 10.1111/jcmm.70182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
This study explores and verifies potential molecular targets through which KRAS mutations regulate the colonization of Fusobacterium nucleatum (FN) in colorectal cancer (CRC). This study combined multiple bioinformatics methods and biological assays. Through The Cancer Genome Atlas, Gene Expression Omnibus, Human Protein Atlas, immunohistochemistry, and co-culture assays, we further confirmed the differential expression of SERTAD4 in CRC. We delved deeper into examining how expression of SERTAD4 is linked with immune cell infiltration and the enrichment of potential pathways. Lastly, through bacterial phenotypic assays, we validated the function of SERTAD4. As a molecule associated with KRAS mutations and FN infection, the expression levels of SERTAD4 were downregulated in CRC. The diagnostic efficacy of SERTAD4 for CRC is not inferior to that of CEA. Low expression of SERTAD4 is associated with poorer overall survival in CRC. Correlation analysis found that increased expression of SERTAD4 is associated with various immune cell infiltrations and immune checkpoint genes. Finally, bacterial adhesion and invasion assays verify that SERTAD4 inhibits the adhesion and invasion abilities of FN in CRC. This study demonstrates that SERTAD4 exerts a protective role in CRC by inhibiting the colonization of FN.
Collapse
Affiliation(s)
- Yizhen Chen
- Department of Geriatric Medicine, Fujian Key Laboratory of Geriatrics Diseases, Fujian Provincial Center for Geriatrics, Fujian Provincial HospitalFuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou UniversityFuzhouFujianChina
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouFujianChina
| | - Yuanyuan Zheng
- Department of Geriatric Medicine, Fujian Key Laboratory of Geriatrics Diseases, Fujian Provincial Center for Geriatrics, Fujian Provincial HospitalFuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou UniversityFuzhouFujianChina
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouFujianChina
| | - Shaolin Liu
- Department of Geriatric Medicine, Fujian Key Laboratory of Geriatrics Diseases, Fujian Provincial Center for Geriatrics, Fujian Provincial HospitalFuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou UniversityFuzhouFujianChina
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
37
|
Chang X, Zhang S, Li C, Zhang H, Yang W, Zhang W, Ye Z, Liang Y, Qiu X, Zeng J. Inhibitory Effect of Lactobacillus Paracasei CMU-Pb-L5 In a Subcutaneous Transplanted Tumor Model of Colorectal Cancer. Int J Med Sci 2024; 21:2525-2536. [PMID: 39439459 PMCID: PMC11492875 DOI: 10.7150/ijms.99646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Lactobacillus paracasei (L.p) is a prevalent probiotic strain within the Lactobacillus genus, which has robust intestinal colonization capabilities. Previous studies have demonstrated the anticancer properties of L.p both in vivo and in vitro. However, the mechanisms underlying its anticancer activity in vivo remain unclear. This study established a subcutaneous transplanted tumor model of colorectal cancer (CRC) in mice to investigate the impact of L.p CMU-Pb-L5. Various parameters including tumor volume, tumor weight, histological alterations in tumor tissue, levels of polyamines and immune-related cytokines in serum, as well as the expression of polyamine metabolism-related and apoptosis-related proteins were evaluated. The results suggested that L.p CMU-Pb-L5 exhibited inhibitory effects on tumor cell proliferation, promotion of tumor cell apoptosis, reduction in polyamine levels, and enhancement of the immune response in CRC mice. To sum up, these results suggested that L.p CMU-Pb-L5 holds promise for potential clinical applications in the treatment of CRC.
Collapse
Affiliation(s)
- Xiaodan Chang
- Department of Neonatology, The Second Central Hospital of Baoding, Baoding 071051, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Shaobing Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Cong Li
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Metabolic Immunology and Oral Disease, Department of Stomatology, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Hailiang Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Weiqing Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Weijian Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Community health service center of Dongguan Dalang Town, Dongguan 523000, China
| | - Ziyu Ye
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, China
| | - Yanfang Liang
- Dongguan Key Laboratory of Molecular Immunopathology, Department of Pathology, Binhaiwan Central Hospital of Dongguan, Dongguan 523000, China
| | - Xianxiu Qiu
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, China
| |
Collapse
|
38
|
Martinez-Bernabe T, Morla-Barcelo PM, Melguizo-Salom L, Munar-Gelabert M, Maroto-Blasco A, Torrens-Mas M, Oliver J, Roca P, Nadal-Serrano M, Pons DG, Sastre-Serra J. Tumorspheres as In Vitro Model for Identifying Predictive Chemoresistance and Tumor Aggressiveness Biomarkers in Breast and Colorectal Cancer. BIOLOGY 2024; 13:724. [PMID: 39336151 PMCID: PMC11429065 DOI: 10.3390/biology13090724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Chemoresistance remains a major challenge in the treatment of breast and colorectal cancer. For this reason, finding reliable predictive biomarkers of response to chemotherapy has become a significant research focus in recent years. However, validating in vitro results may be problematic due to the outcome heterogeneity. In this study, we evaluate the use of tumorspheres as an in vitro model for validating biomarkers of chemoresistance in breast and colorectal cancer. Our investigation highlights the crucial role of inflammation-related pathways in modulating the response to chemotherapy. Using in silico approaches, we identified specific markers elevated in responders versus non-responders patients. These markers were consistently higher in three-dimensional (3D) tumorsphere models compared to traditional adherent cell culture models. Furthermore, the number of tumorspheres from breast and colorectal cancer cells increased in response to cisplatin and oxaliplatin treatment, respectively, whereas cell viability decreased in adherent cell culture. This differential response underscores the importance of the 3D tumorsphere model in mimicking the tumor microenvironment more accurately than adherent cell culture. The enhanced chemoresistance observed in the 3D tumorspheres model and their correlation of data with the in silico study suggest that 3D culture models are a better option to approach the in vivo model and also to validate in silico data. Our findings indicate that tumorspheres are an ideal model for validating chemoresistance biomarkers and exploring the interplay between inflammation and chemoresistance in breast and colon cancer.
Collapse
Affiliation(s)
- Toni Martinez-Bernabe
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (T.M.-B.); (P.M.M.-B.); (L.M.-S.); (M.M.-G.); (A.M.-B.); (M.T.-M.); (J.O.); (P.R.); (M.N.-S.); (J.S.-S.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Pere Miquel Morla-Barcelo
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (T.M.-B.); (P.M.M.-B.); (L.M.-S.); (M.M.-G.); (A.M.-B.); (M.T.-M.); (J.O.); (P.R.); (M.N.-S.); (J.S.-S.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Lucas Melguizo-Salom
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (T.M.-B.); (P.M.M.-B.); (L.M.-S.); (M.M.-G.); (A.M.-B.); (M.T.-M.); (J.O.); (P.R.); (M.N.-S.); (J.S.-S.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Margalida Munar-Gelabert
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (T.M.-B.); (P.M.M.-B.); (L.M.-S.); (M.M.-G.); (A.M.-B.); (M.T.-M.); (J.O.); (P.R.); (M.N.-S.); (J.S.-S.)
| | - Alba Maroto-Blasco
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (T.M.-B.); (P.M.M.-B.); (L.M.-S.); (M.M.-G.); (A.M.-B.); (M.T.-M.); (J.O.); (P.R.); (M.N.-S.); (J.S.-S.)
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (T.M.-B.); (P.M.M.-B.); (L.M.-S.); (M.M.-G.); (A.M.-B.); (M.T.-M.); (J.O.); (P.R.); (M.N.-S.); (J.S.-S.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (T.M.-B.); (P.M.M.-B.); (L.M.-S.); (M.M.-G.); (A.M.-B.); (M.T.-M.); (J.O.); (P.R.); (M.N.-S.); (J.S.-S.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (T.M.-B.); (P.M.M.-B.); (L.M.-S.); (M.M.-G.); (A.M.-B.); (M.T.-M.); (J.O.); (P.R.); (M.N.-S.); (J.S.-S.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Mercedes Nadal-Serrano
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (T.M.-B.); (P.M.M.-B.); (L.M.-S.); (M.M.-G.); (A.M.-B.); (M.T.-M.); (J.O.); (P.R.); (M.N.-S.); (J.S.-S.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (T.M.-B.); (P.M.M.-B.); (L.M.-S.); (M.M.-G.); (A.M.-B.); (M.T.-M.); (J.O.); (P.R.); (M.N.-S.); (J.S.-S.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (T.M.-B.); (P.M.M.-B.); (L.M.-S.); (M.M.-G.); (A.M.-B.); (M.T.-M.); (J.O.); (P.R.); (M.N.-S.); (J.S.-S.)
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
39
|
Park KH, Kim HC, Won YS, Yoon WK, Choi I, Han SB, Kang JS. Vitamin D 3 Upregulated Protein 1 Deficiency Promotes Azoxymethane/Dextran Sulfate Sodium-Induced Colorectal Carcinogenesis in Mice. Cancers (Basel) 2024; 16:2934. [PMID: 39272794 PMCID: PMC11394134 DOI: 10.3390/cancers16172934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/24/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
VDUP1 acts as a tumor suppressor gene in various cancers. VDUP1 is expressed at low levels in sporadic and ulcerative-colitis-associated colorectal cancer. However, the effects of VDUP1 deficiency on CAC remain unclear. In this study, we found that VDUP1 deficiency promoted CAC development in mice. Wild-type (WT) and VDUP1 KO mice were used to investigate the role of VDUP1 in the development of azoxymethane (AOM)- and dextran sulfate sodium (DSS)-induced CAC. VDUP1 levels significantly decreased in the colonic tumor and adjacent nontumoral tissues of WT mice after AOM/DSS treatment. Moreover, AOM/DSS-treated VDUP1 KO mice exhibited a worse survival rate, disease activity index, and tumor burden than WT mice. VDUP1 deficiency significantly induced cell proliferation and anti-apoptosis in tumor tissues of VDUP1 KO mice compared to WT littermates. Additionally, mRNA levels of interleukin-6 and tumor necrosis factor-alpha and active forms of signal transducer and activator of transcription 3 and nuclear factor-kappa B p65 were significantly increased in the tumor tissues of VDUP1 KO mice. Overall, this study demonstrated that the loss of VDUP1 promoted AOM/DSS-induced colon tumorigenesis in mice, highlighting the potential of VDUP1-targeting strategies for colon cancer prevention and treatment.
Collapse
Affiliation(s)
- Ki Hwan Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Won Kee Yoon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseoung-gu, Daejeon-si 34141, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 194-21 Osongsaemgmyung-1-ro, Heungdeok-gu, Cheongju-si 28160, Chungcheongbuk-do, Republic of Korea
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
40
|
Vitale S, Calapà F, Colonna F, Luongo F, Biffoni M, De Maria R, Fiori ME. Advancements in 3D In Vitro Models for Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405084. [PMID: 38962943 PMCID: PMC11348154 DOI: 10.1002/advs.202405084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 07/05/2024]
Abstract
The process of drug discovery and pre-clinical testing is currently inefficient, expensive, and time-consuming. Most importantly, the success rate is unsatisfactory, as only a small percentage of tested drugs are made available to oncological patients. This is largely due to the lack of reliable models that accurately predict drug efficacy and safety. Even animal models often fail to replicate human-specific pathologies and human body's complexity. These factors, along with ethical concerns regarding animal use, urge the development of suitable human-relevant, translational in vitro models.
Collapse
Affiliation(s)
- Sara Vitale
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Federica Calapà
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
| | - Francesca Colonna
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Francesca Luongo
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
- Fondazione Policlinico Universitario “A. Gemelli” – IRCCSLargo F. Vito 1RomeItaly
| | - Micol E. Fiori
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| |
Collapse
|
41
|
Waki Y, Nobeyama Y, Nakagawa H, Asahina A. High prevalence of dermatophytosis of the feet in acral melanoma of the foot. J Dermatol 2024; 51:1098-1103. [PMID: 38711284 DOI: 10.1111/1346-8138.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
The clinical characteristics and pathogenesis of acral melanoma of the foot (AMF) have not been sufficiently elucidated. Clinical or subclinical persistent inflammation of the feet is caused by dermatophytosis of the feet (DPF). Persistent inflammation is potentially associated with oncogenesis. Moreover, diabetes has been reported to be associated with the development of dermatophytosis and cancer. The present study aimed to elucidate the clinical association between DPF and AMF, with consideration of diabetes. The medical records of 114 Japanese patients were retrospectively examined and divided into an AMF group (n = 30) and a control group consisting of patients with foot diseases other than melanoma (n = 84). Microscopic DPF screening was performed on all patients who reported symptoms in the foot, with or without AMF. Patients underwent a microscopic test to detect the presence of dermatophytes, and the diagnosis of DPF was made based on a positive result. In the AMF group, 18 (60.0%) and eight (26.7%) patients had DPF and diabetes, respectively. Four patients (13.3%) had both DPF and diabetes. In the control group, 25 (29.8%) and 11 (13.1%) patients had DPF and diabetes, respectively. Five patients (6.0%) had both DPF and diabetes. Univariate analyses showed a significantly higher prevalence of DPF in the AMF group than in the control group (odds ratio, 3.540; p = 0.003, Pearson χ2 test). Furthermore, multivariate analyses of sex, body mass index, DPF, and diabetes revealed DPF as a significant factor associated with AMF (odds ratio, 4.285; p = 0.002, logistic regression analysis). The hyperkeratotic type of DPF was more frequently observed in patients with AMF than in control patients (odds ratio, 11.083; p < 0.001, Pearson χ2 test). In conclusion, the present study found a significantly higher prevalence of DPF, especially its hyperkeratotic type, in patients with AMF. DPF may be associated with AMF pathogenesis.
Collapse
Affiliation(s)
- Yuma Waki
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshimasa Nobeyama
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hidemi Nakagawa
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Akihiko Asahina
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Yang YZ, Cheng QH, Zhang AR, Qiu Y, Guo HZ. Progress in the treatment of Osteoarthritis with avocado-soybean unsaponifiable. Inflammopharmacology 2024; 32:2177-2184. [PMID: 38814416 DOI: 10.1007/s10787-024-01496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/30/2024] [Indexed: 05/31/2024]
Abstract
Osteoarthritis (OA) is one of the leading causes of joint dysfunction and disability in the elderly, posing serious social problems and a huge socio-economic burden. Existing pharmacological treatments have significant drawbacks, and searching for an effective pharmacological intervention is an urgent priority. Recent studies have demonstrated the chondroprotective, anabolic, and anti-catabolic properties of avocado-soybean unsaponifiable (ASU), a natural plant extract made from avocado and soybean oils, consisting of the remainder of the saponified portion of the product that cannot be made into soap. The main components of ASU are phytosterols, beta-sitosterol, canola stanols, and soya stanols, which are rapidly incorporated into cells. Studies have confirmed the anti-inflammatory, antioxidant, and analgesic properties of phytosterols. ASU slows down the progression of OA primarily by inhibiting pathways involved in the development of OA disease. ASU prevents cartilage degradation by inhibiting the release and activity of matrix metalloproteinases and by increasing the tissue inhibition of these catabolic enzymes; ASU is also involved in the inhibition of the activation of nuclear factor κB (NF-κB) which is a transcriptional inhibitor that regulates the inflammatory response of chondrocytes. NF-κB is a transcription factor that regulates the inflammatory response of chondrocytes, and inhibition of the transfer of the transcription factor NF-κB from the cytoplasm to the nucleus regulates the transcription of many pro-inflammatory factors. By appealing to the mechanism of action and thus achieving anti-inflammatory, anti-catabolic, and pro-synthetic effects on cartilage tissues, AUS is clinically responsive to the reduction of acute pain and OA symptom progression. This paper aims to summarize the studies on the use of avocado-soybean unsaponifiable in the pharmacological treatment of osteoarticular.
Collapse
Affiliation(s)
- Yong-Ze Yang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Qing-Hao Cheng
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - An-Ren Zhang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Yi Qiu
- Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Hong-Zhang Guo
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
43
|
Liu J, Li H, Wang L, Wang S, Tang Q. Spatial transcriptome and single-cell reveal the role of nucleotide metabolism in colorectal cancer progression and tumor microenvironment. J Transl Med 2024; 22:702. [PMID: 39075485 PMCID: PMC11288102 DOI: 10.1186/s12967-024-05495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The intricacies of nucleotide metabolism within tumor cells specific to colorectal cancer (CRC) remain insufficiently characterized. A nuanced examination of particular tumor clusters and their dynamic interplay with the tumor microenvironment (TME) may yield profound insights into these therapeutically auspicious communicative networks. METHODS By integrating ten types of single-cell enrichment scoring methods, we carried out enrichment analysis on CRC cell types, which was validated through four additional single-cell cohorts. Groups of tumor cells were determined using the average values of the scores. Using cellphonedb, monocle, inferCNV, SCENIC, and Cytotrace, functional analyses were performed. Utilizing the RCTD approach, single-cell groupings were mapped onto spatial transcriptomics, analyzing cell dependency and pathway activity to distinguish between tumor cell subtypes. Differential expression analysis identified core genes in nucleotide metabolism, with single-cell and spatial transcriptomics analyses elucidating the function of these genes in tumor cells and the immune microenvironment. Prognostic models were developed from bulk transcriptome cohorts to forecast responses to immune therapy. Laboratory experiments were conducted to verify the biological function of the core gene. RESULTS Nucleotide metabolism is significantly elevated in tumor cells, dividing them into two groups: NUhighepi and NUlowepi. The phenotype NUhighepi was discerned to exhibit pronounced malignant attributes. Utilizing the analytical tool stlearn for cell-to-cell communication assessment, it was ascertained that NUhighepi engages in intimate interactions with fibroblasts. Corroborating this observation, spatial transcriptome cell interaction assessment through MISTy unveiled a particular reliance of NUhighepi on fibroblasts. Subsequently, we pinpointed NME1, a key gene in nucleotide metabolism, affirming its role in thwarting metastasis via in vitro examination. Utilizing multiple machine learning algorithms, a stable prognostic model (NRS) has been developed, capable of predicting survival and responses to immune therapy. In addition, targeted drugs have been identified for both high and low scoring groups. Laboratory experiments have revealed that NME1 can inhibit the proliferation and invasion of CRC tumor cells. CONCLUSION Our study elucidates the potential pro-tumor mechanism of NUhighepi and the role of NME1 in inhibiting metastasis, further deepening the understanding of the role of nucleotide metabolism in colorectal cancer, and providing valuable targets for disrupting its properties.
Collapse
Affiliation(s)
- Junzhi Liu
- The Second Affiliated Hospital of Zhejiang University School Medicine, Hang Zhou, 310000, China
| | - Huimin Li
- The Second Affiliated Hospital of Zhejiang University School Medicine, Hang Zhou, 310000, China
| | - Lantian Wang
- The Second Affiliated Hospital of Zhejiang University School Medicine, Hang Zhou, 310000, China.
| | - Shurui Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Qiang Tang
- The Second Affiliated Hospital of Zhejiang University School Medicine, Hang Zhou, 310000, China.
| |
Collapse
|
44
|
Wang X, Wu M, Liu Q, He W, Tian Y, Zhang Y, Li C, Liu Y, Yu A, Jin H. Impact of osteopenia and osteosarcopenia on the outcomes after surgery of hepatobiliary-pancreatic cancers. Front Oncol 2024; 14:1403822. [PMID: 39099698 PMCID: PMC11294096 DOI: 10.3389/fonc.2024.1403822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Objective The purpose of this study is to investigate potential associations between osteopenia, osteosarcopenia, and postoperative outcomes in patients with hepatobiliary-pancreatic cancer (HBPC). Methods Three online databases, including Embase, PubMed, and the Cochrane Library, were thoroughly searched for literature describing the relationship between osteopenia, osteosarcopenia, and outcomes of surgical treatment of HBPC patients from the start of each database to September 29, 2023. The Newcastle-Ottawa Scale was used to rate the quality of the studies. Results This analysis included a total of 16 articles with a combined patient cohort of 2,599 individuals. The results demonstrated that HBPC patients with osteopenia had significantly inferior OS (HR: 2.27, 95% CI: 1.70-3.03, p < 0.001) and RFS (HR: 1.96, 95% CI: 1.42-2.71, p < 0.001) compared to those without osteopenia. Subgroup analysis demonstrated that these findings were consistent across univariate and multivariate analyses, as well as hepatocellular carcinoma, biliary tract cancer, and pancreatic cancer. The risk of postoperative major complications was significantly higher in patients with osteopenia compared to those without osteopenia (OR: 1.66, 95% CI: 1.19-2.33, p < 0.001). Besides, we also found that the presence of osteosarcopenia in HBPC patients was significantly related to poorer OS (HR: 3.31, 95% CI: 2.00-5.48, p < 0.001) and PFS (HR: 2.50, 95% CI: 1.62-3.84, p < 0.001) in comparison to those without osteosarcopenia. Conclusion Preoperative osteopenia and osteosarcopenia can predict poorer OS and RFS with HBPC after surgery.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Min Wu
- Department of Oncology, Third People’s Hospital of Honghe Prefecture, Gejiu, China
| | - Qian Liu
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Wei He
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yong Tian
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zhang
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Cuiping Li
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yanni Liu
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Anqi Yu
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Hongyan Jin
- Department of Oncology, Wuhan Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
45
|
Ma Q, Hao S, Hong W, Tergaonkar V, Sethi G, Tian Y, Duan C. Versatile function of NF-ĸB in inflammation and cancer. Exp Hematol Oncol 2024; 13:68. [PMID: 39014491 PMCID: PMC11251119 DOI: 10.1186/s40164-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Nuclear factor-kappaB (NF-ĸB) plays a crucial role in both innate and adaptive immune systems, significantly influencing various physiological processes such as cell proliferation, migration, differentiation, survival, and stemness. The function of NF-ĸB in cancer progression and response to chemotherapy has gained increasing attention. This review highlights the role of NF-ĸB in inflammation control, biological mechanisms, and therapeutic implications in cancer treatment. NF-ĸB is instrumental in altering the release of inflammatory factors such as TNF-α, IL-6, and IL-1β, which are key in the regulation of carcinogenesis. Specifically, in conditions including colitis, NF-ĸB upregulation can intensify inflammation, potentially leading to the development of colorectal cancer. Its pivotal role extends to regulating the tumor microenvironment, impacting components such as macrophages, fibroblasts, T cells, and natural killer cells. This regulation influences tumorigenesis and can dampen anti-tumor immune responses. Additionally, NF-ĸB modulates cell death mechanisms, notably by inhibiting apoptosis and ferroptosis. It also has a dual role in stimulating or suppressing autophagy in various cancers. Beyond these functions, NF-ĸB plays a role in controlling cancer stem cells, fostering angiogenesis, increasing metastatic potential through EMT induction, and reducing tumor cell sensitivity to chemotherapy and radiotherapy. Given its oncogenic capabilities, research has focused on natural products and small molecule compounds that can suppress NF-ĸB, offering promising avenues for cancer therapy.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, P.R. China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, P.R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, 60532, USA.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
46
|
Meng C, Sun L, Shi J, Li Y, Gao J, Liu Y, Wei P, Yang Z, Yao H, Zhang Z. Exploring causal correlations between circulating levels of cytokines and colorectal cancer risk: A Mendelian randomization analysis. Int J Cancer 2024; 155:159-171. [PMID: 38385833 DOI: 10.1002/ijc.34891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
Colorectal cancer has the highest mortality rate of all digestive system diseases. Considering the debate about cytokines and biases that exist in traditional observational study designs, we performed a two-sample Mendelian randomization (MR) analysis to explore the association of circulating cytokines with CRC risk. In this study, we used cytokine genetic variants from a recently published genome-wide association study (GWAS) including 14,824 European-ancestry participants. Summary-level data for colorectal cancer were obtained from genome-wide association analyses of the FinnGen consortium. In addition, we conducted independent supplementary analyses using genetic variation data of colorectal cancer and cytokines from a large public GWAS in 2021. Among 91 circulating factors, we only found IL-12B to be significantly associated with CRC risk (odds ratio [OR]: 1.19; 95% confidence interval [CI]: 1.00-1.42; p = .046). We used 2021 data for analysis and found that higher Interleukin-12p70 levels (IL-12p70) were revealed to have a significant positive association with CRC risk (OR: 1.27; 95% CI: 1.13-1.43; p < 1.22 × 10-3). Moreover, CRC was suggestively correlated with an elevated level of vascular endothelial growth factor (VEGF) (OR: 1.17; 95% CI: 1.02-1.35; p = .026), macrophage colony-stimulating factor (M-CSF) (OR: 0.85; 95% CI: 0.76-0.96; p = .005), IL-13 (OR: 1.15; 95% CI: 1.02-1.30; p = .028), IL-10 (OR: 1.23; 95% CI: 1.01-1.49; p = .037), and IL-7 (OR: 1.19; 95% CI: 1.02-1.39; p = .024). Our MR studies support that one cytokine IL-12 is significantly associated with CRC risk and that five cytokines VEGF, M-CSF, IL-13, IL-10, and IL-7 are associated with CRC risk.
Collapse
Affiliation(s)
- Cong Meng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Liting Sun
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jinyao Shi
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yang Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jiale Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yishan Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Pengyu Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
47
|
Colella M, Iannucci A, Maresca C, Albano F, Mazzoccoli C, Laudisi F, Monteleone I, Monteleone G. SMAD7 Sustains XIAP Expression and Migration of Colorectal Carcinoma Cells. Cancers (Basel) 2024; 16:2370. [PMID: 39001432 PMCID: PMC11240366 DOI: 10.3390/cancers16132370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The reorganization of the cell cytoskeleton and changes in the content of cell adhesion molecules are crucial during the metastatic spread of tumor cells. Colorectal cancer (CRC) cells express high SMAD7, a protein involved in the control of CRC cell growth. In the present study, we evaluated whether SMAD7 regulates the cytoskeleton reorganization and dynamics in CRC. Knockdown of SMAD7 with a specific antisense oligonucleotide (AS) in HCT116 and DLD1, two human CRC cell lines, reduced the migration rate and the content of F-ACTIN filaments. A gene array, real-time PCR, and Western blotting of SMAD7 AS-treated cells showed a marked down-regulation of the X-linked inhibitor of apoptosis protein (XIAP), a member of the inhibitor of apoptosis family, which has been implicated in cancer cell migration. IL-6 and IL-22, two cytokines that activate STAT3, enhanced XIAP in cancer cells, and such induction was attenuated in SMAD7-deficient cells. Finally, in human CRC, SMAD7 mRNA correlated with XIAP expression. Our data show that SMAD7 positively regulates XIAP expression and migration of CRC cells, and suggest a mechanism by which SMAD7 controls the architecture components of the CRC cell cytoskeleton.
Collapse
Affiliation(s)
- Marco Colella
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Andrea Iannucci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Francesco Albano
- Department of Biology, Laboratorio di Biologia Delle Cellule Staminali, University of Naples Federico II, 80126 Naples, Italy
| | - Carmela Mazzoccoli
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Gastroenterology Unit, Fondazione Policlinico "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
48
|
Mohamed AH, Ahmed AT, Al Abdulmonem W, Bokov DO, Shafie A, Al-Hetty HRAK, Hsu CY, Alissa M, Nazir S, Jamali MC, Mudhafar M. Interleukin-6 serves as a critical factor in various cancer progression and therapy. Med Oncol 2024; 41:182. [PMID: 38900329 DOI: 10.1007/s12032-024-02422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Interleukin-6 (IL-6), a pro-inflammatory cytokine, plays a crucial role in host immune defense and acute stress responses. Moreover, it modulates various cellular processes, including proliferation, apoptosis, angiogenesis, and differentiation. These effects are facilitated by various signaling pathways, particularly the signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). However, excessive IL-6 production and dysregulated signaling are associated with various cancers, promoting tumorigenesis by influencing all cancer hallmarks, such as apoptosis, survival, proliferation, angiogenesis, invasiveness, metastasis, and notably, metabolism. Emerging evidence indicates that selective inhibition of the IL-6 signaling pathway yields therapeutic benefits across diverse malignancies, such as multiple myeloma, prostate, colorectal, renal, ovarian, and lung cancers. Targeting key components of IL-6 signaling, such as IL-6Rs, gp130, STAT3, and JAK via monoclonal antibodies (mAbs) or small molecules, is a heavily researched approach in preclinical cancer studies. The purpose of this study is to offer an overview of the role of IL-6 and its signaling pathway in various cancer types. Furthermore, we discussed current preclinical and clinical studies focusing on targeting IL-6 signaling as a therapeutic strategy for various types of cancer.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil, Hilla, 51001, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq.
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, Russian Federation, 109240
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | | | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shahid Nazir
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mohammad Chand Jamali
- Faculty of Medical and Health Sciences, Liwa College, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mustafa Mudhafar
- Department of Medical Physics, College of Applied Medical Sciences, University of Kerbala, Karbala, 56001, Iraq
- Department of Anesthesia Techniques and Intensive Care, Al-Taff University College, Kerbala, 56001, Iraq
| |
Collapse
|
49
|
Huang J, Liu J, Lan J, Sun J, Zhou K, Deng Y, Liang L, Liu L, Liu X. Guanine-Rich RNA Sequence Binding Factor 1 Deficiency Promotes Colorectal Cancer Progression by Regulating PI3K/AKT Signaling Pathway. Cancer Manag Res 2024; 16:629-638. [PMID: 38881789 PMCID: PMC11179673 DOI: 10.2147/cmar.s451066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/11/2024] [Indexed: 06/18/2024] Open
Abstract
Background Guanine-rich RNA sequence binding factor 1 (GRSF1), part of the RNA-binding protein family, is now attracting interest due to its potential association with the progression of a variety of human cancers. The precise contribution and molecular mechanism of GRSF1 to colorectal cancer (CRC) progression, however, have yet to be clarified. Methods Immunohistochemistry and Western Blot analysis was carried out to detect the expression of GRSF1 in CRC at both mRNA and protein levels and its subsequent effects on prognosis. A series of functional tests were performed to understand its influence on proliferation, migration, and invasion of CRC cells. Results The universal downregulation of GRSF1 in CRC was identified, indicating a correlation with poor prognosis. Our functional studies unveiled that the elimination of GRSF1 enhances tumour activities such as proliferation, migration, and invasion of CRC cells, while GRSF1 overexpression curtailed these abilities. Conclusion Notably, we uncovered that GRSF1 insufficiency modulates the PI3K/Akt signaling pathway and Ras activation in CRC. Therefore, our data suggest GRSF1 operates as a tumor suppressor gene in CRC and may offer promise as a potential biomarker and novel therapeutic target in CRC management.
Collapse
Affiliation(s)
- Jingzhan Huang
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jialong Liu
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jin Lan
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jingbo Sun
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Kun Zhou
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yunyao Deng
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Li Liang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lixin Liu
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaolong Liu
- Department of General Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
50
|
El-Tanani M, Rabbani SA, Aljabali AA, Matalka II, El-Tanani Y, Rizzo M, Tambuwala MM. The Complex Connection between Obesity and Cancer: Signaling Pathways and Therapeutic Implications. Nutr Cancer 2024; 76:683-706. [PMID: 38847479 DOI: 10.1080/01635581.2024.2361964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 08/02/2024]
Abstract
Obesity has emerged as an important global health challenge, significantly influencing the incidence and progression of various cancers. This comprehensive review elucidates the complex relationship between obesity and oncogenesis, focusing particularly on the role of dysregulated signaling pathways as central mediators of this association. We delve into the contributions of obesity-induced alterations in key signaling cascades, including PI3K/AKT/mTOR, JAK/STAT, NF-κB, and Wnt/β-catenin to carcinogenesis. These alterations facilitate unchecked cellular proliferation, chronic inflammation and apoptosis resistance. Epidemiological evidence links obesity with increased cancer susceptibility and adverse prognostic outcomes, with pronounced risks for specific cancers such as breast, colorectal, endometrial and hepatic malignancies. This review synthesizes data from both animal and clinical studies to underscore the pivotal role of disrupted signaling pathways in shaping innovative therapeutic strategies. We highlight the critical importance of lifestyle modifications in obesity management and cancer risk mitigation, stressing the benefits of dietary changes, physical activity, and behavioral interventions. Moreover, we examine targeted pharmacological strategies addressing aberrant pathways in obesity-related tumors and discuss the integration of cutting-edge treatments, including immunotherapy and precision medicine, into clinical practice.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Syed Arman Rabbani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Yahia El-Tanani
- Medical School, St George's University of London, Tooting, London
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, UK
| |
Collapse
|