1
|
Elgohary HH, Kamal MM, Rizk SM, Maurice NW. The Expression Profile of the RANK/RANKL/OPG Pathway in Breast Cancer Stem Cells Isolated From Breast Cancer Cell Lines. J Cell Biochem 2025; 126:e70028. [PMID: 40159409 DOI: 10.1002/jcb.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/23/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
The RANK/RANKL/OPG signaling pathway plays a crucial role in breast cancer progression and metastasis. However, its expression patterns and potential implications in breast cancer stem cells remain poorly understood. This study aimed to characterize the expression profile of this pathway in breast cancer stem cells isolated from two distinct breast cancer cell lines: MDA-MB-231 and MCF-7. Mammospheres (MS), representing breast cancer stem cells, were generated using agar-coated 6 well tissue culture plates in suitable mammospheres culture conditions. Flow cytometric analysis showed enrichment of the CD44+/CD24- subpopulations in the mammospheres cultures, with MDA-MB-231 exhibiting a higher percentage compared to MCF-7. The isolated MS from both cell lines showed upregulation of stemness markers OCT4 and SOX2, with MS. MDA-MB-231 demonstrating higher expression levels. Analysis of the RANK/RANKL/OPG axis revealed differential expression patterns between the two cell lines. RANK expression was significantly upregulated in MS. MDA-MB-231 but not in MS. MCF-7. Interestingly, while OPG mRNA levels were elevated in mammospheres from both cell lines, secreted OPG protein levels were paradoxically reduced in the mammospheres conditioned media. Additionally, RUNX2, an osteoblastic marker, and a downstream target of RANK signaling, showed a decreased expression in both mammospheres compared to adherent cells. These findings suggest a complex, context-dependent regulation of the RANK/RANKL/OPG pathway in breast cancer stem cells, potentially contributing to the aggressive nature and metastatic propensity of triple-negative breast cancer. This study provides novel insights into the molecular characteristics of breast cancer stem cells and underscores the complexity of OPG/RANK/RANKL axis expression in them; a role yet to be fully elucidated.
Collapse
Affiliation(s)
- Hassnaa H Elgohary
- Health Research Centre of Excellence, Drug Research and Development Group, The British University in Egypt, Cairo, Egypt
| | - Mohamed M Kamal
- Health Research Centre of Excellence, Drug Research and Development Group, The British University in Egypt, Cairo, Egypt
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sherine Maher Rizk
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nadine W Maurice
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Worley J, Noh H, You D, Turunen MM, Ding H, Paull E, Griffin AT, Grunn A, Zhang M, Guillan K, Bush EC, Brosius SJ, Hibshoosh H, Mundi PS, Sims P, Dalerba P, Dela Cruz FS, Kung AL, Califano A. Identification and Pharmacological Targeting of Treatment-Resistant, Stem-like Breast Cancer Cells for Combination Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.08.562798. [PMID: 38798673 PMCID: PMC11118419 DOI: 10.1101/2023.11.08.562798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tumors frequently harbor isogenic yet epigenetically distinct subpopulations of multi-potent cells with high tumor-initiating potential-often called Cancer Stem-Like Cells (CSLCs). These can display preferential resistance to standard-of-care chemotherapy. Single-cell analyses can help elucidate Master Regulator (MR) proteins responsible for governing the transcriptional state of these cells, thus revealing complementary dependencies that may be leveraged via combination therapy. Interrogation of single-cell RNA sequencing profiles from seven metastatic breast cancer patients, using perturbational profiles of clinically relevant drugs, identified drugs predicted to invert the activity of MR proteins governing the transcriptional state of chemoresistant CSLCs, which were then validated by CROP-seq assays. The top drug, the anthelmintic albendazole, depleted this subpopulation in vivo without noticeable cytotoxicity. Moreover, sequential cycles of albendazole and paclitaxel-a commonly used chemotherapeutic -displayed significant synergy in a patient-derived xenograft (PDX) from a TNBC patient, suggesting that network-based approaches can help develop mechanism-based combinatorial therapies targeting complementary subpopulations. Statement of significance Network-based approaches, as shown in a study on metastatic breast cancer, can develop effective combinatorial therapies targeting complementary subpopulations. By analyzing scRNA-seq data and using clinically relevant drugs, researchers identified and depleted chemoresistant Cancer Stem-Like Cells, enhancing the efficacy of standard chemotherapies.
Collapse
Affiliation(s)
- Jeremy Worley
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Heeju Noh
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mikko M Turunen
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Hongxu Ding
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, Arizona, USA 85721
| | - Evan Paull
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Aaron T Griffin
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Adina Grunn
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Mingxuan Zhang
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Kristina Guillan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erin C Bush
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Samantha J Brosius
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA 10032
| | - Prabhjot S Mundi
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
| | - Peter Sims
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Piero Dalerba
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA 10032
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Califano
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| |
Collapse
|
3
|
Filippi A, Deculescu-Ioniță T, Hudiță A, Baldasici O, Gălățeanu B, Mocanu MM. Molecular Mechanisms of Dietary Compounds in Cancer Stem Cells from Solid Tumors: Insights into Colorectal, Breast, and Prostate Cancer. Int J Mol Sci 2025; 26:631. [PMID: 39859345 PMCID: PMC11766403 DOI: 10.3390/ijms26020631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer stem cells (CSC) are known to be the main source of tumor relapse, metastasis, or multidrug resistance and the mechanisms to counteract or eradicate them and their activity remain elusive. There are different hypotheses that claim that the origin of CSC might be in regular stem cells (SC) and, due to accumulation of mutations, these normal cells become malignant, or the source of CSC might be in any malignant cell that, under certain environmental circumstances, acquires all the qualities to become CSC. Multiple studies indicate that lifestyle and diet might represent a source of wellbeing that can prevent and ameliorate the malignant phenotype of CSC. In this review, after a brief introduction to SC and CSC, we analyze the effects of phenolic and non-phenolic dietary compounds and we highlight the molecular mechanisms that are shown to link diets to CSC activation in colon, breast, and prostate cancer. We focus the analysis on specific markers such as sphere formation, CD surface markers, epithelial-mesenchymal transition (EMT), Oct4, Nanog, Sox2, and aldehyde dehydrogenase 1 (ALDH1) and on the major signaling pathways such as PI3K/Akt/mTOR, NF-κB, Notch, Hedgehog, and Wnt/β-catenin in CSC. In conclusion, a better understanding of how bioactive compounds in our diets influence the dynamics of CSC can raise valuable awareness towards reducing cancer risk.
Collapse
Affiliation(s)
- Alexandru Filippi
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| | - Teodora Deculescu-Ioniță
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.H.); (B.G.)
| | - Oana Baldasici
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuță”, 400015 Cluj-Napoca, Romania;
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.H.); (B.G.)
| | - Maria-Magdalena Mocanu
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| |
Collapse
|
4
|
Niharika, Roy A, Sadhukhan R, Patra SK. Screening and identification of gene expression in large cohorts of clinical tissue samples unveils the major involvement of EZH2 and SOX2 in lung cancer. Cancer Genet 2025; 290-291:16-35. [PMID: 39647236 DOI: 10.1016/j.cancergen.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Lung adenocarcinoma (LUAD), the primary subtype of Non-Small Cell Lung Cancer (NSCLC), accounts for 80 % to 85 % of cases. Due to suboptimal screening method, LUAD is often detected in late stage, leading to aggressive progression and poor outcomes. Therefore, early disease prognosis for the LUAD is high priority. In order to identify early detection biomarkers, we conducted a meta-analysis of mRNA expression TCGA and GTEx datasets from LUAD patients. A total of 795 differentially expressed genes (DEGs) were identified by exploring the Network-Analyst tool and utilizing combined effect size methods. DEGs refer to genes whose expression levels are significantly different (either higher or lower) compared to their normal baseline expression levels. KEGG pathway enrichment analysis highlighted the TNF signaling pathway as being prominently associated with these DEGs. Subsequently, using the MCODE and CytoHubba plugins in Cytoscape software, we filtered out the top 10 genes. Among these, SOX2 was the only gene exhibiting higher expression, while the others were downregulated. Consequently, our subsequent research focused on SOX2. Further transcription factor-gene network analysis revealed that enhancer of zeste homolog 2 (EZH2) is a significant partner of SOX2, potentially playing a crucial role in euchromatin-heterochromatin dynamics. Structure of SOX2 protein suggest that it is a non-druggable transcription factor, literature survey suggests the same. SOX2 is considered challenging to target directly, or "non-druggable," because of several intrinsic properties that make it difficult to design effective therapeutic agents against it. The primary function of SOX2 is to bind DNA and regulates gene expression. Unlike enzymes or receptors with defined active sites or binding pockets, transcription factors typically have relatively flat or diffuse surfaces that do not offer obvious "pockets" for small molecules to bind effectively. Hence, we drove our focus to investigate on potential drug(s) targeting EZH2. Molecular docking analyses predicted most probable inhibitors of EZH2. We employed several predictive analysis tools and identified GSK343, as a promising inhibitor of EZH2.
Collapse
Affiliation(s)
- Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ratan Sadhukhan
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
5
|
Abatti LE, Gillespie ZE, Lado-Fernández P, Collado M, Mitchell JA. A role for NFIB in SOX2 downregulation and epigenome accessibility changes due to long-term estrogen treatment of breast cancer epithelial cells. Biochem Cell Biol 2025; 103:1-14. [PMID: 40009831 DOI: 10.1139/bcb-2024-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
Estrogen (E2) regulates the differentiation and proliferation of mammary progenitor cells by modulating the transcription of multiple genes. One of the genes that is downregulated by E2 is SOX2, a transcription factor associated with stem and progenitor cells that is overexpressed during breast tumourigenesis. To elucidate the mechanisms underlying E2-mediated SOX2 repression, we investigated epigenome and transcriptome changes following short- and long-term E2 exposure in breast cancer cells. We found that short-term E2 exposure reduces chromatin accessibility at the downstream SOX2 SRR134 enhancer, decreasing SOX2 expression. In contrast, long-term E2 exposure completely represses SOX2 transcription while maintaining accessibility at the SRR124-134 enhancer cluster, keeping it poised for reactivation. This repression was accompanied by widespread epigenome and transcriptome changes associated with commitment towards a more differentiated and less invasive luminal phenotype. Finally, we identified a role for the transcription factor NFIB in this process, suggesting it collaborates with the estrogen receptor to mediate SOX2 repression and genome-wide epigenome accessibility changes.
Collapse
Affiliation(s)
- Luis E Abatti
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Zoe E Gillespie
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Patricia Lado-Fernández
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Collado
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Wang Z, Li R, Yang G, Wang Y. Cancer stem cell biomarkers and related signalling pathways. J Drug Target 2024; 32:33-44. [PMID: 38095181 DOI: 10.1080/1061186x.2023.2295222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/10/2023] [Indexed: 12/20/2023]
Abstract
Cancer stem cells (CSCs) represent a distinct subset of neoplastic cells characterised by their heightened capacity for tumorigenesis. These cells are implicated in the facilitation of cancer metastasis, recurrence, and resistance to conventional therapeutic interventions. Extensive scientific research has been devoted to the identification of biomarkers and the elucidation of molecular mechanisms in order to improve targeted therapeutic approaches. Accurate identification of cancer stem cells based on biomarkers can provide a theoretical basis for drug combinations of malignant tumours. Targeted biomarker-based therapies also offer a silver lining for patients with advanced malignancies. This review aims comprehensively to consolidate the latest findings on CSCs biomarkers, targeted agents as well as biomarkers associated signalling pathways in well-established cancer types, thereby contributing to improved prognostic outcomes.
Collapse
Affiliation(s)
- Zhe Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Infectious Disease, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Rui Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guilin Yang
- Department of Infectious Disease, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
7
|
Mandal T, Shukla D, Khan MMA, Ganesan SK, Srivastava AK. The EXO1/Polη/Polι axis as a promising target for miR-3163-mediated attenuation of cancer stem-like cells in non-small cell lung carcinoma. Br J Cancer 2024; 131:1668-1682. [PMID: 39369054 PMCID: PMC11554650 DOI: 10.1038/s41416-024-02840-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Cancer stem-like cells (CSLCs) drive tumour progression and chemoresistance. The concerted efforts of EXO1 and TLS polymerases safeguard DNA integrity against chemotherapeutic drugs. In absence of potential drug targets, non-small cell lung carcinoma (NSCLC) patients have few therapeutic options. In current scenario, microRNAs offer a potential avenue for eradicating CSLCs. METHODS EXO1 downregulation impact on CSLCs expansion was assessed via flow cytometry. Co-localisation of EXO1, Polη and Polι was validated through co-immunoprecipitation and confocal-imaging. The effects of co-downregulation of Polη and Polι on CSLC survival, repair synthesis, and mutagenesis were evaluated using flow cytometry and immunohistochemistry in cell lines and xenografts. MicroRNA targeting EXO1 was studied for its role in CSLCs regulation. RESULTS EXO1 downregulation in NSCLC CSLCs induces DNA lesions, triggering apoptosis and enhances cisplatin sensitivity. It collaborates with Polη and Polι in DNA repair, contributing to cisplatin resistance in CSLCs. Absence of Polη and Polι impairs repair and reduces cisplatin-induced mutagenesis. Co-downregulation of Polη and Polι in xenografts reduces tumour proliferation significantly. MiR-3163 overexpression sensitises CSLCs to cisplatin via targeting EXO1/Polη/Polι axis, as shown in mechanistic studies. CONCLUSION This study unveils a novel regulatory pathway involving EXO1/Polη/Polι axis and miR-3163, providing insights into CSLCs regulation in NSCLC. EXO1/Polη/Polι axis targeted by miR-3163, resulting in the inhibition of cell growth and induction of apoptosis in NSCLC CSLCs.
Collapse
Affiliation(s)
- Tanima Mandal
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devendra Shukla
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Md Maqsood Ahamad Khan
- Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Senthil Kumar Ganesan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Fang T, Hu S, Song X, Wang J, Zuo R, Yun S, Jiang S, Guo D. Combination of monensin and erlotinib synergistically inhibited the growth and cancer stem cell properties of triple-negative breast cancer by simultaneously inhibiting EGFR and PI3K signaling pathways. Breast Cancer Res Treat 2024; 207:435-451. [PMID: 38958784 DOI: 10.1007/s10549-024-07374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Cancer stem cells (CSCs) in triple-negative breast cancer (TNBC) are recognized as a highly challenging subset of cells, renowned for their heightened propensity for relapse and unfavorable prognosis. Monensin, an ionophoric antibiotic, has been reported to exhibit significant therapeutic efficacy against various cancers, especially CSCs. Erlotinib is classified as one of the EGFR-TKIs and has been previously identified as a promising therapeutic target for TNBC. Our research aims to assess the effectiveness of combination of monensin and erlotinib as a potential treatment strategy for TNBC. METHODS The combination of monensin and erlotinib was assessed for its potential anticancer activity through various in vitro assays, including cytotoxicity assay, colony formation assay, wound healing assay, transwell assay, mammosphere formation assay, and proportion of CSCs assay. Additionally, an in vivo study using tumor-bearing nude mice was conducted to evaluate the inhibitory effect of the monensin and erlotinib combination on tumor growth. RESULTS The results indicated that combination of monensin with erlotinib synergistically inhibited cell proliferation, the migration rate, the invasion ability and decreased the CSCs proportion, and CSC markers SOX2 and CD133 in vivo and in vitro. Furthermore, the primary proteins involved in the signaling pathways of the EGFR/ERK and PI3K/AKT are simultaneously inhibited by the combination treatment of monensin and erlotinib in vivo and in vitro. CONCLUSIONS The simultaneous inhibition of the EGFR/ERK and PI3K/AKT/mTOR signaling pathways by the combination of monensin and erlotinib exhibited a synergistic effect on suppressing tumor proliferation and cancer cell stemness in TNBC.
Collapse
Affiliation(s)
- Tian Fang
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Department of Comparative Medicine, Affiliated Hospital of Medicine School, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Shiheng Hu
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xinhao Song
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Junqi Wang
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Runan Zuo
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Shifeng Yun
- Department of Comparative Medicine, Affiliated Hospital of Medicine School, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Shanxiang Jiang
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| | - Dawei Guo
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
9
|
Niharika, Ureka L, Roy A, Patra SK. Dissecting SOX2 expression and function reveals an association with multiple signaling pathways during embryonic development and in cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189136. [PMID: 38880162 DOI: 10.1016/j.bbcan.2024.189136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
SRY (Sex Determining Region) box 2 (SOX2) is an essential transcription factor that plays crucial roles in activating genes involved in pre- and post-embryonic development, adult tissue homeostasis, and lineage specifications. SOX2 maintains the self-renewal property of stem cells and is involved in the generation of induced pluripotency stem cells. SOX2 protein contains a particular high-mobility group domain that enables SOX2 to achieve the capacity to participate in a broad variety of functions. The information about the involvement of SOX2 with gene regulatory elements, signaling networks, and microRNA is gradually emerging, and the higher expression of SOX2 is functionally relevant to various cancer types. SOX2 facilitates the oncogenic phenotype via cellular proliferation and enhancement of invasive tumor properties. Evidence are accumulating in favor of three dimensional (higher order) folding of chromatin and epigenetic control of the SOX2 gene by chromatin modifications, which implies that the expression level of SOX2 can be modulated by epigenetic regulatory mechanisms, specifically, via DNA methylation and histone H3 modification. In view of this, and to focus further insights into the roles SOX2 plays in physiological functions, involvement of SOX2 during development, precisely, the advances of our knowledge in pre- and post-embryonic development, and interactions of SOX2 in this scenario with various signaling pathways in tumor development and cancer progression, its potential as a therapeutic target against many cancers are summarized and discussed in this article.
Collapse
Affiliation(s)
- Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lina Ureka
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
10
|
Hushmandi K, Saadat SH, Mirilavasani S, Daneshi S, Aref AR, Nabavi N, Raesi R, Taheriazam A, Hashemi M. The multifaceted role of SOX2 in breast and lung cancer dynamics. Pathol Res Pract 2024; 260:155386. [PMID: 38861919 DOI: 10.1016/j.prp.2024.155386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Breast and lung cancers are leading causes of death among patients, with their global mortality and morbidity rates increasing. Conventional treatments often prove inadequate due to resistance development. The alteration of molecular interactions may accelerate cancer progression and treatment resistance. SOX2, known for its abnormal expression in various human cancers, can either accelerate or impede cancer progression. This review focuses on examining the role of SOX2 in breast and lung cancer development. An imbalance in SOX2 expression can promote the growth and dissemination of these cancers. SOX2 can also block programmed cell death, affecting autophagy and other cell death mechanisms. It plays a significant role in cancer metastasis, mainly by regulating the epithelial-to-mesenchymal transition (EMT). Additionally, an imbalanced SOX2 expression can cause resistance to chemotherapy and radiation therapy in these cancers. Genetic and epigenetic factors may affect SOX2 levels. Pharmacologically targeting SOX2 could improve the effectiveness of breast and lung cancer treatments.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, the Islamic Republic of Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Seyedalireza Mirilavasani
- Campus Venlo, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, The Netherlands
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University of Medical Sciences,Jiroft, the Islamic Republic of Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6 Canada
| | - Rasoul Raesi
- Department of Health Services Management, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran.
| |
Collapse
|
11
|
Johari B, Tavangar-Roosta S, Gharbavi M, Sharafi A, Kaboli S, Rezaeejam H. Suppress the cell growth of cancer stem-like cells (NTERA-2) using Sox2-Oct4 decoy oligodeoxynucleotide-encapsulated niosomes-zinc hybrid nanocarriers under X-irradiation. Heliyon 2024; 10:e34096. [PMID: 39071677 PMCID: PMC11277410 DOI: 10.1016/j.heliyon.2024.e34096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Sox2 and Oct4 dysregulations could significantly increase in the cancer stem cell (CSC) population in some cancer cells and resistance to common treatments. In this study, the synergistic effects of Sox2-Oct4 decoy oligodeoxynucleotides-encapsulated Niosomes-zinc hybrid nanocarriers along with X-irradiation conditions as a combinational therapy tool were investigated in the treatment of cancer-like stem cells (NTERA-2). The NTERA-2 cell line known as a cancer-like stem cell line was used in this investigation. Sox2-Oct4 decoy oligodeoxynucleotides were designed based on the sequence of the Sox2 promoter and synthesized. Physicochemical characteristics of ODNs-encapsulated niosomes-zinc hybrid nanocarriers (NISM@BSA-DEC-Zn) investigated with FT-IR, DLS, FESEM, and ODNs release kinetic estimation assays. Further investigations such as hemolysis, uptake, cell viability, apoptosis, cell cycle, and scratch repair tests were performed. All the above assays were completed with and without X-ray exposure conditions (fractionated 2Gy). Physicochemical characteristics results showed that the Niosomes-Zn nanocarriers were successfully synthesized. NISM@BSA-DEC-Zn was efficiently taken up by NTERA-2 cells and significantly inhibited cell growth, increased apoptosis, and reduced cell migration in both conditions (with and without X-ray exposure). Furthermore, NISM@BSA-DEC-Zn treatment resulted in G1 and G2/M cell cycle arrest without and with X-irradiation, respectively. The prepared nanocarrier system can be a promising tool for drug delivery in cancer treatment. Decoy ODN strategy along with zinc nanoparticles could increase the sensitivity of cancer cells toward irradiation, which has the potential for combinational cancer therapies.
Collapse
Affiliation(s)
- Behrooz Johari
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shabnam Tavangar-Roosta
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmoud Gharbavi
- Nanotechnology Research Center, Medical Basic Scinces Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Kaboli
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology Technology, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
12
|
Chikhirzhina E, Tsimokha A, Tomilin AN, Polyanichko A. Structure and Functions of HMGB3 Protein. Int J Mol Sci 2024; 25:7656. [PMID: 39062899 PMCID: PMC11276821 DOI: 10.3390/ijms25147656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
HMGB3 protein belongs to the group of HMGB proteins from the superfamily of nuclear proteins with high electrophoretic mobility. HMGB proteins play an active part in almost all cellular processes associated with DNA-repair, replication, recombination, and transcription-and, additionally, can act as cytokines during infectious processes, inflammatory responses, and injuries. Although the structure and functions of HMGB1 and HMGB2 proteins have been intensively studied for decades, very little attention has been paid to HMGB3 until recently. In this review, we summarize the currently available data on the molecular structure, post-translational modifications, and biological functions of HMGB3, as well as the possible role of the ubiquitin-proteasome system-dependent HMGB3 degradation in tumor development.
Collapse
Affiliation(s)
- Elena Chikhirzhina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia; (A.T.); (A.N.T.); (A.P.)
| | | | | | | |
Collapse
|
13
|
Fotinós J, Marks MP, Barberis L, Vellón L. Assessing the distribution of cancer stem cells in tumorspheres. Sci Rep 2024; 14:11013. [PMID: 38745039 PMCID: PMC11094167 DOI: 10.1038/s41598-024-61558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Cancer Stem Cells presumably drive tumor growth and resistance to conventional cancer treatments. From a previous computational model, we inferred that these cells are not uniformly distributed in the bulk of a tumorsphere. To confirm this result, we cultivated tumorspheres enriched in stem cells, and performed immunofluorescent detection of the stemness marker SOX2 using confocal microscopy. In this article, we present an image processing method that reconstructs the amount and location of the Cancer Stem Cells in the spheroids. Its advantage is the use of a statistical criterion to classify the cells in Stem and Differentiated, instead of setting an arbitrary threshold. Moreover, the analysis of the experimental images presented in this work agrees with the results from our computational models, thus enforcing the notion that the distribution of Cancer Stem Cells in a tumorsphere is non-homogeneous. Additionally, the method presented here provides a useful tool for analyzing any image in which different kinds of cells are stained with different markers.
Collapse
Affiliation(s)
- Jerónimo Fotinós
- IFEG-CONICET and FAMAF, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Lucas Barberis
- IFEG-CONICET and FAMAF, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | |
Collapse
|
14
|
Lin YC, Ku CC, Wuputra K, Liu CJ, Wu DC, Satou M, Mitsui Y, Saito S, Yokoyama KK. Possible Strategies to Reduce the Tumorigenic Risk of Reprogrammed Normal and Cancer Cells. Int J Mol Sci 2024; 25:5177. [PMID: 38791215 PMCID: PMC11120835 DOI: 10.3390/ijms25105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The reprogramming of somatic cells to pluripotent stem cells has immense potential for use in regenerating or redeveloping tissues for transplantation, and the future application of this method is one of the most important research topics in regenerative medicine. These cells are generated from normal cells, adult stem cells, or neoplastic cancer cells. They express embryonic stem cell markers, such as OCT4, SOX2, and NANOG, and can differentiate into all tissue types in adults, both in vitro and in vivo. However, tumorigenicity, immunogenicity, and heterogeneity of cell populations may hamper the use of this method in medical therapeutics. The risk of cancer formation is dependent on mutations of these stemness genes during the transformation of pluripotent stem cells to cancer cells and on the alteration of the microenvironments of stem cell niches at genetic and epigenetic levels. Recent reports have shown that the generation of induced pluripotent stem cells (iPSCs) derived from human fibroblasts could be induced using chemicals, which is a safe, easy, and clinical-grade manufacturing strategy for modifying the cell fate of human cells required for regeneration therapies. This strategy is one of the future routes for the clinical application of reprogramming therapy. Therefore, this review highlights the recent progress in research focused on decreasing the tumorigenic risk of iPSCs or iPSC-derived organoids and increasing the safety of iPSC cell preparation and their application for therapeutic benefits.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Cha-Chien Ku
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Maki Satou
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
| | - Yukio Mitsui
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
| | - Shigeo Saito
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
- Saito Laboratory of Cell Technology, Yaita 329-1571, Tochigi, Japan
| | - Kazunari K. Yokoyama
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| |
Collapse
|
15
|
Naso FD, Bruqi K, Manzini V, Chiurchiù V, D'Onofrio M, Arisi I, Strappazzon F. miR-218-5p and doxorubicin combination enhances anticancer activity in breast cancer cells through Parkin-dependent mitophagy inhibition. Cell Death Discov 2024; 10:149. [PMID: 38514650 PMCID: PMC10957887 DOI: 10.1038/s41420-024-01914-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Breast Cancer (BC) is one of the most common tumours, and is known for its ability to develop resistance to chemotherapeutic treatments. Autophagy has been linked to chemotherapeutic response in several types of cancer, highlighting its contribution to this process. However, the role of mitophagy, a selective form of autophagy responsible for damaged mitochondria degradation, in the response to therapies in BC is still unclear. In order to address this point, we analysed the role of mitophagy in the treatment of the most common anticancer drug, doxorubicin (DXR), in different models of BC, such as a luminal A subtype-BC cell line MCF7 cells, cultured in 2-Dimension (2D) or in 3-Dimension (3D), and the triple negative BC (TNBC) cell line MDA-MB-231. Through a microarray analysis, we identified a relationship between mitophagy gene expressions related to the canonical PINK1/Parkin-mediated pathway and DXR treatment in BC cells. Afterwards, we demonstrated that the PINK1/Parkin-dependent mitophagy is indeed induced following DXR treatment and that exogenous expression of a small non-coding RNA, the miRNA-218-5p, known to target mRNA of Parkin, was sufficient to inhibit the DXR-mediated mitophagy in MCF7 and in MDA-MB-231 cells, thereby increasing their sensitivity to DXR. Considering the current challenges involved in BC refractory to treatment, our work could provide a promising approach to prevent tumour resistance and recurrence, potentially leading to the development of an innovative approach to combine mitophagy inhibition and chemotherapy.
Collapse
Affiliation(s)
| | - Krenare Bruqi
- IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64/65, 00143, Rome, Italy
- Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène, Univ Lyon, Univ Lyon 1, CNRS, INSERM, 69008, Lyon, France
| | - Valeria Manzini
- European Brain Research Institute (EBRI) "Rita Levi-Montalcini", Viale Regina Elena 295, 00161, Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, CNR, Via del Fosso del Cavaliere, 100, 00133, Rome, Italy
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia, Foundation, Via del Fosso di Fiorano 64/65, 00143, Rome, Italy
| | - Mara D'Onofrio
- European Brain Research Institute (EBRI) "Rita Levi-Montalcini", Viale Regina Elena 295, 00161, Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute (EBRI) "Rita Levi-Montalcini", Viale Regina Elena 295, 00161, Rome, Italy
- Institute of Translational Pharmacology, CNR, Via del Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Flavie Strappazzon
- IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64/65, 00143, Rome, Italy.
- Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène, Univ Lyon, Univ Lyon 1, CNRS, INSERM, 69008, Lyon, France.
| |
Collapse
|
16
|
Sun H, Zhang H. Lysine Methylation-Dependent Proteolysis by the Malignant Brain Tumor (MBT) Domain Proteins. Int J Mol Sci 2024; 25:2248. [PMID: 38396925 PMCID: PMC10889763 DOI: 10.3390/ijms25042248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Lysine methylation is a major post-translational protein modification that occurs in both histones and non-histone proteins. Emerging studies show that the methylated lysine residues in non-histone proteins provide a proteolytic signal for ubiquitin-dependent proteolysis. The SET7 (SETD7) methyltransferase specifically transfers a methyl group from S-Adenosyl methionine to a specific lysine residue located in a methylation degron motif of a protein substrate to mark the methylated protein for ubiquitin-dependent proteolysis. LSD1 (Kdm1a) serves as a demethylase to dynamically remove the methyl group from the modified protein. The methylated lysine residue is specifically recognized by L3MBTL3, a methyl-lysine reader that contains the malignant brain tumor domain, to target the methylated proteins for proteolysis by the CRL4DCAF5 ubiquitin ligase complex. The methylated lysine residues are also recognized by PHF20L1 to protect the methylated proteins from proteolysis. The lysine methylation-mediated proteolysis regulates embryonic development, maintains pluripotency and self-renewal of embryonic stem cells and other stem cells such as neural stem cells and hematopoietic stem cells, and controls other biological processes. Dysregulation of the lysine methylation-dependent proteolysis is associated with various diseases, including cancers. Characterization of lysine methylation should reveal novel insights into how development and related diseases are regulated.
Collapse
Affiliation(s)
| | - Hui Zhang
- Department of Chemistry and Biochemistry, Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, P.O. Box 454003, Las Vegas, NV 89154-4003, USA;
| |
Collapse
|
17
|
Bell D. Top IHC/ISH Hacks for and Molecular Surrogates of Poorly Differentiated Sinonasal Small Round Cell Tumors. Head Neck Pathol 2024; 18:2. [PMID: 38315310 PMCID: PMC10844182 DOI: 10.1007/s12105-023-01608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Poorly differentiated sinonasal small round cell tumors (SRCTs) are rare and heterogeneous, posing challenges in diagnosis and treatment. METHODS Recent advances in molecular findings and diagnostic refinement have promoted better understanding and management of these tumors. RESULTS The newly defined and emerging sinonasal entities demonstrate diverse morphologies, specific genomic signatures, and clinical behavior from conventional counterparts. In this review of SRCTs, emphasis is placed on the diagnostic approach with the employment of a pertinent panel of immunohistochemistry studies and/or molecular tests, fine-tuned to the latest WHO 5 classification of sinonasal/paranasal tumors and personalized treatment. CONCLUSION Specifically, this review focuses on tumors with epithelial and neuroectodermal derivation.
Collapse
Affiliation(s)
- Diana Bell
- Anatomic Pathology, Disease Team Alignment: Head and Neck, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA, 91010, USA.
| |
Collapse
|
18
|
Mousa NA, Hussein A, Elemam NM, Mohammed G, Elwany M, Basha T, AlHammadi AA, Majzob RS, Talaat IM. Are embryonic stem cell markers and ALDH1A1 relevant in the context of breast cancer estrogen positivity? Cancer Med 2024; 13:e7004. [PMID: 38400679 PMCID: PMC10891463 DOI: 10.1002/cam4.7004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Embryonic pluripotency markers are recognized for their role in ER- BC aggressiveness, but their significance in ER+ BC remains unclear. This study aims to investigate the prevalence of expression of pluripotency markers in ER+ BC and their effect on survival and prognostic indicators. METHODS We analyzed data of ER+ BC patients from three large cancer datasets to assess the expression of three pluripotency markers (NANOG, SOX-2, and OCT4), and the stem cell marker ALDH1A1. Additionally, we investigated associations between gene expression, through mRNA-Seq analysis, and overall survival (OS). The prevalence of mutational variants within these genes was explored. Using immunohistochemistry (IHC), we examined the expression and associations with clinicopathologic prognostic indicators of the four markers in 81 ER+ BC patients. RESULTS Through computational analysis, NANOG and ALDH1A1 genes were significantly upregulated in ER+ BC compared to ER- BC patients (p < 0.001), while POU5F1 (OCT4) was downregulated (p < 0.001). NANOG showed an adverse impact on OS whereas ALDH1A1 was associated with a highly significant improved survival in ER+ BC (p = 4.7e-6), except for the PR- and HER2+ subgroups. Copy number alterations (CNAs) ranged from 0.4% to 1.6% in these genes, with the highest rate detected in SOX2. In the IHC study, approximately one-third of tumors showed moderate to strong expression of each of the four markers, with 2-4 markers strongly co-expressed in 56.8% of cases. OCT-4 and ALDH1A1 showed a significant association with a high KI-67 index (p = 0.009 and 0.008, respectively), while SOX2 showed a significant association with perinodal fat invasion (p = 0.017). CONCLUSION Pluripotency markers and ALDH1A1 are substantially expressed in ER+ BC tumors with different, yet significant, associations with prognostic and survival outcomes. This study suggests these markers as targets for prospective clinical validation studies of their prognostic value and their possible therapeutic roles.
Collapse
Affiliation(s)
- Noha A. Mousa
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Amal Hussein
- Family and Community Medicine and Behavioural Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Noha M. Elemam
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
- Research Institute for Medical and Health Sciences, University of SharjahSharjahUnited Arab Emirates
| | - Ghada Mohammed
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Mona Elwany
- Medical Research Institute, Alexandria UniversityAlexandriaEgypt
| | - Tasneem Basha
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Amal A. AlHammadi
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Rana S. Majzob
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Iman M. Talaat
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
- Medical Research Institute, Alexandria UniversityAlexandriaEgypt
- Pathology Department, Faculty of MedicineAlexandria UniversityAlexandriaEgypt
| |
Collapse
|
19
|
Ortmann BM. Hypoxia-inducible factor in cancer: from pathway regulation to therapeutic opportunity. BMJ ONCOLOGY 2024; 3:e000154. [PMID: 39886164 PMCID: PMC11203102 DOI: 10.1136/bmjonc-2023-000154] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2025]
Abstract
Cancer remains one of the most formidable challenges in modern medicine, due to its complex and dynamic nature, which demands innovative therapeutic approaches. One major challenge to cancer treatment is the tumour microenvironment and in particular tumour hypoxia (low oxygen levels), which contributes to tumour progression and immune evasion. At the cellular level, this is primarily governed by hypoxia-inducible factor (HIF). HIF is a transcription factor that orchestrates cellular responses to low oxygen levels, driving angiogenesis, metabolic adaptation and immune regulation. HIF's dysregulation is frequently observed in various cancer types and correlates with increased aggressiveness, metastasis, resistance to therapy and poor patient prognosis. Consequently, understanding the cellular mechanisms underlying HIF activation and its downstream effects has become crucial to developing targeted cancer therapies for improving cancer patient outcomes and represents a key step towards precision medicine. Recent advancements in drug development have led to the emergence of HIF inhibitors, which aim to disrupt HIF-driven processes in cancer providing therapeutic benefit. Here, we provide a review of the molecular mechanisms through which HIF promotes tumour growth and resistance, emphasising the potential clinical benefits of HIF-targeted therapies. This review will discuss the challenges and opportunities associated with translating HIF inhibition into clinical practice, including ongoing clinical trials and future directions in the development of HIF-based cancer treatments.
Collapse
Affiliation(s)
- Brian M Ortmann
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
20
|
Borlongan MC, Saha D, Wang H. Tumor Microenvironment: A Niche for Cancer Stem Cell Immunotherapy. Stem Cell Rev Rep 2024; 20:3-24. [PMID: 37861969 DOI: 10.1007/s12015-023-10639-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Tumorigenic Cancer Stem Cells (CSCs), often called tumor-initiating cells (TICs), represent a unique subset of cells within the tumor milieu. They stand apart from the bulk of tumor cells due to their exceptional self-renewal, metastatic, and differentiation capabilities. Despite significant progress in classifying CSCs, these cells remain notably resilient to conventional radiotherapy and chemotherapy, contributing to cancer recurrence. In this review, our objective is to explore novel avenues of research that delve into the distinctive characteristics of CSCs within their surrounding tumor microenvironment (TME). We will start with an overview of the defining features of CSCs and then delve into their intricate interactions with cells from the lymphoid lineage, namely T cells, B cells, and natural killer (NK) cells. Furthermore, we will discuss their dynamic interplay with myeloid lineage cells, including macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs). Moreover, we will illuminate the crosstalk between CSCs and cells of mesenchymal origin, specifically fibroblasts, adipocytes, and endothelial cells. Subsequently, we will underscore the pivotal role of CSCs within the context of the tumor-associated extracellular matrix (ECM). Finally, we will highlight pre-clinical and clinical studies that target CSCs within the intricate landscape of the TME, including CAR-T therapy, oncolytic viruses, and CSC-vaccines, with the ultimate goal of uncovering novel avenues for CSC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Mia C Borlongan
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| | - Hongbin Wang
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Master Program of Pharmaceutical Sciences College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| |
Collapse
|
21
|
Sun R, Lee EJ, Lee S, Kim G, Kim J. KPT6566 induces apoptotic cell death and suppresses the tumorigenicity of testicular germ cell tumors. Front Cell Dev Biol 2023; 11:1220179. [PMID: 38020885 PMCID: PMC10652286 DOI: 10.3389/fcell.2023.1220179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) frequently affect adolescent and young adult males. Although TGCT is more responsive to cisplatin-based chemotherapy than other solid tumors, some patients are nonresponders, and following treatment, many patients continue to experience acute and long-term cytotoxic effects from cisplatin-based chemotherapy. Consequently, it is imperative to develop new therapeutic modalities for treatment-resistant TGCTs. Peptidyl-prolyl isomerase (Pin1) regulates the activity and stability of many cancer-associated target proteins. Prior findings suggest that Pin1 contributes to the pathogenesis of multiple human cancers. However, the specific function of Pin1 in TGCTs has not yet been elucidated. TGCT cell proliferation and viability were examined using cell cycle analysis and apoptosis assays following treatment with KPT6566, a potent, selective Pin1 inhibitor that covalently binds to the catalytic domain of Pin1. A xenograft mouse model was used to assess the effect of KPT6566 on tumor growth in vivo. KPT6566 effectively suppressed cell proliferation, colony formation, and ATP production in P19 and NCCIT cells. Further, KPT6566 induced apoptotic cell death by generating cellular reactive oxygen species and downregulating the embryonic transcription factors Oct-4 and Sox2. Finally, KPT6566 treatment significantly reduced tumor volume and mass in P19 cell xenografts. The Pin1 inhibitor KPT6566 has significant antiproliferative and antitumor effects in TGCT cells. These findings suggest that Pin1 inhibitors could be considered as a potential therapeutic approach for TGCTs.
Collapse
Affiliation(s)
| | | | | | | | - Jungho Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Agüero EI, Belgorosky D, García-Silva JI, Booth R, Lerner B, Pérez MS, Eiján AM. Microdevices for cancer stem cell culture as a predictive chemotherapeutic response platform. J Mol Med (Berl) 2023; 101:1465-1475. [PMID: 37755493 DOI: 10.1007/s00109-023-02375-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Microfluidic platforms for clinical use are a promising translational strategy for cancer research specially for drug screening. Identifying cancer stem cells (CSC) using sphere culture techniques in microfluidic devices (MDs) showed to be better reproducing physiological responses than other in vitro models and allow the optimization of samples and reagents. We evaluated individual sphere proliferation and stemness toward chemotherapeutic treatment (CT) with doxorubicin and cisplatin in bladder cancer cell lines (MB49-I and J82) cultured in MDs used as CSC treatment response platform. Our results confirm the usefulness of this device to evaluate the CT effect in sphere-forming efficiency, size, and growth rate from individual spheres within MDs and robust information comparable to conventional culture plates was obtained. The expression of pluripotency genetic markers (Oct4, Sox2, Nanog, and CD44) could be analyzed by qPCR and immunofluorescence in spheres growing directly in MDs. MDs are a suitable platform for sphere isolation from tumor samples and can provide information about CT response. Microfluidic-based CSC studies could provide information about treatment response of cancer patients from small samples and can be a promising tool for CSC-targeted specific treatment with potential in precision medicine. KEY MESSAGES: We have designed a microfluidic platform for CSC enriched culture by tumor sphere formation. Using MDs, we could quantify and determine sphere response after CT using murine and human cell lines as a proof of concept. MDs can be used as a tumor-derived sphere isolation platform to test the effect of antitumoral compounds in sphere proliferation.
Collapse
Affiliation(s)
- Eduardo Imanol Agüero
- Facultad de Ciencias Médicas, Instituto de Oncología "Ángel H. Roffo", Área de Investigación, Universidad de Buenos Aires, C1417DTB, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Denise Belgorosky
- Facultad de Ciencias Médicas, Instituto de Oncología "Ángel H. Roffo", Área de Investigación, Universidad de Buenos Aires, C1417DTB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julio Israel García-Silva
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ross Booth
- Roche Sequencing Solutions, Santa Clara, CA, 95050, USA
| | - Betiana Lerner
- Department of Electrical and Computer Engineering, Florida International University (FIU), Miami, FL, 33174, USA
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg im Breisgau, Germany
- Universidad Tecnológica Nacional (UTN), Centro IREN, B1706EAH, Buenos Aires, Argentina
- Facultad de Ingeniería, Instituto de Ingeniería Biomédica, Universidad de Buenos Aires, C1063ACV, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maximiliano Sebastián Pérez
- Department of Electrical and Computer Engineering, Florida International University (FIU), Miami, FL, 33174, USA.
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg im Breisgau, Germany.
- Universidad Tecnológica Nacional (UTN), Centro IREN, B1706EAH, Buenos Aires, Argentina.
- Facultad de Ingeniería, Instituto de Ingeniería Biomédica, Universidad de Buenos Aires, C1063ACV, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Ana María Eiján
- Facultad de Ciencias Médicas, Instituto de Oncología "Ángel H. Roffo", Área de Investigación, Universidad de Buenos Aires, C1417DTB, Ciudad Autónoma de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
23
|
Chen Y, Zhang K, Zhang R, Wang Z, Yang L, Zhao T, Zhang S, Lin Y, Zhao H, Liu Y, Wei Y, Zhou Y, Zhang J, Ye X, Zhao J, Li X, Que J, Shi S, Liu K. Targeting the SOX2/CDP protein complex with a peptide suppresses the malignant progression of esophageal squamous cell carcinoma. Cell Death Discov 2023; 9:399. [PMID: 37891174 PMCID: PMC10611744 DOI: 10.1038/s41420-023-01693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Emerging evidence indicates that SOX2 is an oncogene for esophageal squamous cell carcinoma (ESCC). However, direct targeting of SOX2 is not feasible given that this transcription factor plays important roles in the maintenance of tissues such as the brain. Here, we identified CDP (Homeobox protein cut-like 1 or CASP) as a unique SOX2 binding partner enriched in ESCC with Duolink proximity ligation assay, bimolecular fluorescence complementation (BiFc) and immunoprecipitation. We then screened a peptide aptamer library using BiFc and immunoprecipitation and identified several peptide aptamers, including P58, that blocked the CDP/SOX2 interaction, leading to the inhibition of ESCC progress in vitro and in vivo. Upon administration, synthetic peptide P58, containing the YGRKKRRQRRR cell-penetrating peptide and the fluorophore TAMRA, also blocked the growth and metastasis of ESCC in both mice and zebrafish. Therefore, targeting the SOX2 binding partner CDP with peptide P58 offers an alternative avenue to treat ESCC with increased SOX2 levels.
Collapse
Affiliation(s)
- Yunyun Chen
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Kun Zhang
- Department of General Surgery, Fuzhou First General Hospital affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, P. R. China
| | - Rui Zhang
- Department of Laboratory Medicine, The Second Hospital of Fuzhou, Fuzhou, Fujian, 350007, P. R. China
| | - Zhuo Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Liang Yang
- Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
| | - Tingting Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Shihui Zhang
- Centre for Translational Stem Cell Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, 999077, P. R. China
| | - Yong Lin
- Science and Technology Service Center, Fujian Health College, Fuzhou, Fujian, 350101, P. R. China
| | - Hongzhou Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Yongpan Liu
- School of Life Science, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Yuxuan Wei
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Yijian Zhou
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Jiaying Zhang
- School of Life Science, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Xianzong Ye
- Department of Pathology, 900 Hospital of the Joint Logistics Team (Dongfang Hospital, Xiamen University), Fuzhou, Fujian, 350025, P. R. China
| | - Jing Zhao
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Xinxin Li
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Songlin Shi
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China.
| | - Kuancan Liu
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China.
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China.
- School of Life Science, Nanchang Normal University, Nanchang, Jiangxi, 330032, P. R. China.
| |
Collapse
|
24
|
Abatti LE, Lado-Fernández P, Huynh L, Collado M, Hoffman M, Mitchell J. Epigenetic reprogramming of a distal developmental enhancer cluster drives SOX2 overexpression in breast and lung adenocarcinoma. Nucleic Acids Res 2023; 51:10109-10131. [PMID: 37738673 PMCID: PMC10602899 DOI: 10.1093/nar/gkad734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
Enhancer reprogramming has been proposed as a key source of transcriptional dysregulation during tumorigenesis, but the molecular mechanisms underlying this process remain unclear. Here, we identify an enhancer cluster required for normal development that is aberrantly activated in breast and lung adenocarcinoma. Deletion of the SRR124-134 cluster disrupts expression of the SOX2 oncogene, dysregulates genome-wide transcription and chromatin accessibility and reduces the ability of cancer cells to form colonies in vitro. Analysis of primary tumors reveals a correlation between chromatin accessibility at this cluster and SOX2 overexpression in breast and lung cancer patients. We demonstrate that FOXA1 is an activator and NFIB is a repressor of SRR124-134 activity and SOX2 transcription in cancer cells, revealing a co-opting of the regulatory mechanisms involved in early development. Notably, we show that the conserved SRR124 and SRR134 regions are essential during mouse development, where homozygous deletion results in the lethal failure of esophageal-tracheal separation. These findings provide insights into how developmental enhancers can be reprogrammed during tumorigenesis and underscore the importance of understanding enhancer dynamics during development and disease.
Collapse
Affiliation(s)
- Luis E Abatti
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Lado-Fernández
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Linh Huynh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Manuel Collado
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Zeng Z, Fu M, Hu Y, Wei Y, Wei X, Luo M. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer 2023; 22:172. [PMID: 37853437 PMCID: PMC10583419 DOI: 10.1186/s12943-023-01877-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem cells (CSCs), initially identified in leukemia in 1994, constitute a distinct subset of tumor cells characterized by surface markers such as CD133, CD44, and ALDH. Their behavior is regulated through a complex interplay of networks, including transcriptional, post-transcriptional, epigenetic, tumor microenvironment (TME), and epithelial-mesenchymal transition (EMT) factors. Numerous signaling pathways were found to be involved in the regulatory network of CSCs. The maintenance of CSC characteristics plays a pivotal role in driving CSC-associated tumor metastasis and conferring resistance to therapy. Consequently, CSCs have emerged as promising targets in cancer treatment. To date, researchers have developed several anticancer agents tailored to specifically target CSCs, with some of these treatment strategies currently undergoing preclinical or clinical trials. In this review, we outline the origin and biological characteristics of CSCs, explore the regulatory networks governing CSCs, discuss the signaling pathways implicated in these networks, and investigate the influential factors contributing to therapy resistance in CSCs. Finally, we offer insights into preclinical and clinical agents designed to eliminate CSCs.
Collapse
Affiliation(s)
- Zhen Zeng
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Min Luo
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
26
|
Wu J, Li J, Xu H, Qiu N, Huang X, Li H. Periostin drives extracellular matrix degradation, stemness, and chemoresistance by activating the MAPK/ERK signaling pathway in triple-negative breast cancer cells. Lipids Health Dis 2023; 22:153. [PMID: 37716956 PMCID: PMC10504790 DOI: 10.1186/s12944-023-01912-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Adipose tissue, which is mainly composed of adipocytes, is a crucial component of the tumor microenvironment, particularly in breast cancer. Adipocytes surround breast cancer cells and may participate in cell‒cell interactions in the breast microenvironment. However, little is currently known about how adipocytes influence the biological behavior of the surrounding breast cancer cells. Hence, this study sought to investigate the role and underlying mechanisms of periostin in triple-negative breast cancer (TNBC) cells cocultured with adipogenic conditioned medium (ACM) and palmitic acid (PA). METHODS Human TNBC cell lines (MDA‒MB‒231 and SUM159PT) were treated with ACM and PA, then the expression of periostin, matrix metalloproteinases (MMPs) and stemness-related molecules were assessed by Western blotting and RT‒qPCR. The cellular viability was assessed using CCK‒8 assay. Plasmid transfection, RNA sequencing, and pathway inhibitor were used to explore the specific mechanisms of periostin. RESULTS ACM and PA elevated the expression of both MMPs and stemness-related molecules in TNBCs. MMPs can promote tumor cell infiltration and migration by degrading the extracellular matrix, and stemness expression increases the development of tumor chemoresistance. Additionally, ACM and PA increased periostin expression, while inhibiting periostin disrupted the involvement of ACM and PA in promoting extracellular matrix degradation, stemness, and chemoresistance in TNBCs. Furthermore, this study found that periostin promoted TNBC progression by activating the MAPK/ERK signaling pathway and that inhibition of MAPK/ERK signaling reduced the phenotype caused by periostin upregulation in TNBCs treated with ACM or PA. Finally, the present results showed that the high expression of POSTN, which encodes periostin, was substantially related to worse survival in TNBC patients. CONCLUSIONS The results of the study elucidated for the first time how periostin is the key protein secreted in TNBCs in response to the adipocyte-regulated tumor microenvironment, while periostin-neutralizing antibodies may serve as potential therapeutic agents in relation to TNBC progression.
Collapse
Affiliation(s)
- Jinna Wu
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Jia Li
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Huiya Xu
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Ni Qiu
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Xiaojia Huang
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hongsheng Li
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
27
|
Garimella SV, Gampa SC, Chaturvedi P. Mitochondria in Cancer Stem Cells: From an Innocent Bystander to a Central Player in Therapy Resistance. Stem Cells Cloning 2023; 16:19-41. [PMID: 37641714 PMCID: PMC10460581 DOI: 10.2147/sccaa.s417842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer continues to rank among the world's leading causes of mortality despite advancements in treatment. Cancer stem cells, which can self-renew, are present in low abundance and contribute significantly to tumor recurrence, tumorigenicity, and drug resistance to various therapies. The drug resistance observed in cancer stem cells is attributed to several factors, such as cellular quiescence, dormancy, elevated aldehyde dehydrogenase activity, apoptosis evasion mechanisms, high expression of drug efflux pumps, protective vascular niche, enhanced DNA damage response, scavenging of reactive oxygen species, hypoxic stability, and stemness-related signaling pathways. Multiple studies have shown that mitochondria play a pivotal role in conferring drug resistance to cancer stem cells, through mitochondrial biogenesis, metabolism, and dynamics. A better understanding of how mitochondria contribute to tumorigenesis, heterogeneity, and drug resistance could lead to the development of innovative cancer treatments.
Collapse
Affiliation(s)
- Sireesha V Garimella
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Siri Chandana Gampa
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
28
|
Manogaran P, Anandan A, Vijaya Padma V. Isoliensinine augments the therapeutic potential of paclitaxel in multidrug-resistant colon cancer stem cells and induced mitochondria-mediated cell death. J Biochem Mol Toxicol 2023; 37:e23395. [PMID: 37424111 DOI: 10.1002/jbt.23395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023]
Abstract
Previously we have reported the isoliensinine (ISO) potentates the therapeutic potential of cisplatin in cisplatin resistant colorectal cancer stem cells. The present study evaluates the chemo-sensitizing potential of the combinatorial regimen of ISO and Paclitaxcel (PTX) on multidrug-resistant (MDR)-HCT-15 cells to reduce the dose requirement of both ISO and PTX. The results of the present study suggest that treatment with the combinatorial regimen of ISO and PTX enhanced the cytotoxic effect with resultant increase in apoptosis in MDR-HCT-15 cells as evident from the altered cellular morphology, G2/M cell cycle arrest, propidium iodide uptake, Annexin V, increased intracellular Ca2+ accumulation, decreased mitochondrial membrane potential, diminished ATP production, PARP-1 cleavage, altered expression of ERK1/2, and apoptotic proteins. Treatment with combinatorial regimen of ISO and PTX also modulated the expression of the transcription factors SOX2, OCT4 which determine the stemness of cancer cells. Thus, results of the present study suggest that ISO and PTX combination regimen induces apoptosis in MDR-HCT-15 in a synergistic manner.
Collapse
Affiliation(s)
- Prasath Manogaran
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Aparna Anandan
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | |
Collapse
|
29
|
Jahandideh A, Yarizadeh M, Noei-Khesht Masjedi M, Fatehnejad M, Jahandideh R, Soheili R, Eslami Y, Zokaei M, Ahmadvand A, Ghalamkarpour N, Kumar Pandey R, Nabi Afjadi M, Payandeh Z. Macrophage's role in solid tumors: two edges of a sword. Cancer Cell Int 2023; 23:150. [PMID: 37525217 PMCID: PMC10391843 DOI: 10.1186/s12935-023-02999-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
The tumor microenvironment is overwhelmingly dictated by macrophages, intimately affiliated with tumors, exercising pivotal roles in multiple processes, including angiogenesis, extracellular matrix reconfiguration, cellular proliferation, metastasis, and immunosuppression. They further exhibit resilience to chemotherapy and immunotherapy via meticulous checkpoint blockades. When appropriately stimulated, macrophages can morph into a potent bidirectional component of the immune system, engulfing malignant cells and annihilating them with cytotoxic substances, thus rendering them intriguing candidates for therapeutic targets. As myelomonocytic cells relentlessly amass within tumor tissues, macrophages rise as prime contenders for cell therapy upon the development of chimeric antigen receptor effector cells. Given the significant incidence of macrophage infiltration correlated with an unfavorable prognosis and heightened resistance to chemotherapy in solid tumors, we delve into the intricate role of macrophages in cancer propagation and their promising potential in confronting four formidable cancer variants-namely, melanoma, colon, glioma, and breast cancers.
Collapse
Affiliation(s)
- Arian Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Usern Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Yarizadeh
- Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Maryam Noei-Khesht Masjedi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Fatehnejad
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Romina Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roben Soheili
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardavan Ahmadvand
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nogol Ghalamkarpour
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Rajan Kumar Pandey
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
30
|
Bobbitt JR, Seachrist DD, Keri RA. Chromatin Organization and Transcriptional Programming of Breast Cancer Cell Identity. Endocrinology 2023; 164:bqad100. [PMID: 37394919 PMCID: PMC10370366 DOI: 10.1210/endocr/bqad100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
The advent of sequencing technologies for assessing chromosome conformations has provided a wealth of information on the organization of the 3-dimensional genome and its role in cancer progression. It is now known that changes in chromatin folding and accessibility can promote aberrant activation or repression of transcriptional programs that can drive tumorigenesis and progression in diverse cancers. This includes breast cancer, which comprises several distinct subtypes defined by their unique transcriptomes that dictate treatment response and patient outcomes. Of these, basal-like breast cancer is an aggressive subtype controlled by a pluripotency-enforcing transcriptome. Meanwhile, the more differentiated luminal subtype of breast cancer is driven by an estrogen receptor-dominated transcriptome that underlies its responsiveness to antihormone therapies and conveys improved patient outcomes. Despite the clear differences in molecular signatures, the genesis of each subtype from normal mammary epithelial cells remains unclear. Recent technical advances have revealed key distinctions in chromatin folding and organization between subtypes that could underlie their transcriptomic and, hence, phenotypic differences. These studies also suggest that proteins controlling particular chromatin states may be useful targets for treating aggressive disease. In this review, we explore the current state of understanding of chromatin architecture in breast cancer subtypes and its potential role in defining their phenotypic characteristics.
Collapse
Affiliation(s)
- Jessica R Bobbitt
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Darcie D Seachrist
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ruth A Keri
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
31
|
Lučić I, Kurtović M, Mlinarić M, Piteša N, Čipak Gašparović A, Sabol M, Milković L. Deciphering Common Traits of Breast and Ovarian Cancer Stem Cells and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:10683. [PMID: 37445860 DOI: 10.3390/ijms241310683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer (BC) and ovarian cancer (OC) are among the most common and deadly cancers affecting women worldwide. Both are complex diseases with marked heterogeneity. Despite the induction of screening programs that increase the frequency of earlier diagnosis of BC, at a stage when the cancer is more likely to respond to therapy, which does not exist for OC, more than 50% of both cancers are diagnosed at an advanced stage. Initial therapy can put the cancer into remission. However, recurrences occur frequently in both BC and OC, which are highly cancer-subtype dependent. Therapy resistance is mainly attributed to a rare subpopulation of cells, named cancer stem cells (CSC) or tumor-initiating cells, as they are capable of self-renewal, tumor initiation, and regrowth of tumor bulk. In this review, we will discuss the distinctive markers and signaling pathways that characterize CSC, their interactions with the tumor microenvironment, and the strategies they employ to evade immune surveillance. Our focus will be on identifying the common features of breast cancer stem cells (BCSC) and ovarian cancer stem cells (OCSC) and suggesting potential therapeutic approaches.
Collapse
Affiliation(s)
- Ivan Lučić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Matea Kurtović
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Monika Mlinarić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Nikolina Piteša
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lidija Milković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
32
|
Le Minh G, Esquea EM, Dhameliya TT, Merzy J, Lee MH, Ball LE, Reginato MJ. Kruppel-like factor 8 regulates triple negative breast cancer stem cell-like activity. Front Oncol 2023; 13:1141834. [PMID: 37152043 PMCID: PMC10155275 DOI: 10.3389/fonc.2023.1141834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Breast tumor development is regulated by a sub-population of breast cancer cells, termed cancer stem-like cells (CSC), which are capable of self-renewing and differentiating, and are involved in promoting breast cancer invasion, metastasis, drug resistance and relapse. CSCs are highly adaptable, capable of reprogramming their own metabolism and signaling activity in response to stimuli within the tumor microenvironment. Recently, the nutrient sensor O-GlcNAc transferase (OGT) and O-GlcNAcylation was shown to be enriched in CSC populations, where it promotes the stemness and tumorigenesis of breast cancer cells in vitro and in vivo. This enrichment was associated with upregulation of the transcription factor Kruppel-like-factor 8 (KLF8) suggesting a potential role of KLF8 in regulating CSCs properties. Methods Triple-negative breast cancer cells were genetically modified to generate KLF8 overexpressing or KLF8 knock-down cells. Cancer cells, control or with altered KLF8 expression were analyzed to assess mammosphere formation efficiency, CSCs frequency and expression of CSCs factors. Tumor growth in vivo of control or KLF8 knock-down cells was assessed by fat-pad injection of these cell in immunocompromised mice. Results Here, we show that KLF8 is required and sufficient for regulating CSC phenotypes and regulating transcription factors SOX2, NANOG, OCT4 and c-MYC. KLF8 levels are associated with chemoresistance in triple negative breast cancer patients and overexpression in breast cancer cells increased paclitaxel resistance. KLF8 and OGT co-regulate each other to form a feed-forward loop to promote CSCs phenotype and mammosphere formation of breast cancer cells. Discussion These results suggest a critical role of KLF8 and OGT in promoting CSCs and cancer progression, that may serve as potential targets for developing strategy to target CSCs specifically.
Collapse
Affiliation(s)
- Giang Le Minh
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Emily M. Esquea
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Tejsi T. Dhameliya
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jessica Merzy
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Mi-Hye Lee
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Mauricio J. Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
- Translational and Cellular Oncology Program, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
33
|
Das S, Kundu M, Hassan A, Parekh A, Jena BC, Mundre S, Banerjee I, Yetirajam R, Das CK, Pradhan AK, Das SK, Emdad L, Mitra P, Fisher PB, Mandal M. A novel computational predictive biological approach distinguishes Integrin β1 as a salient biomarker for breast cancer chemoresistance. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166702. [PMID: 37044238 DOI: 10.1016/j.bbadis.2023.166702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Chemoresistance is a primary cause of breast cancer treatment failure, and protein-protein interactions significantly contribute to chemoresistance during different stages of breast cancer progression. In pursuit of novel biomarkers and relevant protein-protein interactions occurring during the emergence of breast cancer chemoresistance, we used a computational predictive biological (CPB) approach. CPB identified associations of adhesion molecules with proteins connected with different breast cancer proteins associated with chemoresistance. This approach identified an association of Integrin β1 (ITGB1) with chemoresistance and breast cancer stem cell markers. ITGB1 activated the Focal Adhesion Kinase (FAK) pathway promoting invasion, migration, and chemoresistance in breast cancer by upregulating Erk phosphorylation. FAK also activated Wnt/Sox2 signaling, which enhanced self-renewal in breast cancer. Activation of the FAK pathway by ITGB1 represents a novel mechanism linked to breast cancer chemoresistance, which may lead to novel therapies capable of blocking breast cancer progression by intervening in ITGB1-regulated signaling pathways.
Collapse
Affiliation(s)
- Subhayan Das
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Moumita Kundu
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Atif Hassan
- Department of Computer Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Aditya Parekh
- Anant National University, Ahmedabad, Gujarat, India
| | - Bikash Ch Jena
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Swati Mundre
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Indranil Banerjee
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; School of Pharmacy, Sister Nivedita University (Techno India Group), Kolkata, West Bengal, India
| | - Rajesh Yetirajam
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Chandan K Das
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Pralay Mitra
- Department of Computer Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Mahitosh Mandal
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
34
|
Lee JH, An JH, Youn HY. Tumour necrosis factor stimulated gene 6 intrinsically regulates PD-L1 expressions in breast cancer cells, leading to modulation of tumour microenvironment. Vet Comp Oncol 2023; 21:255-269. [PMID: 36807440 DOI: 10.1111/vco.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
Recent studies have shown that tumour cells express tumour necrosis factor-inducible gene 6 (TSG-6) and its protein, which is known to play a key role in regulating excessive immune responses and proliferation and growth of mesenchymal stem cells (MSCs). It has not been confirmed whether the inhibition of TSG-6 for tumour cells can suppress tumour cell growth and regulate the activation of immune cells in the tumour microenvironment (TME). TSG-6-specific small interfering RNA was transfected into canine and human breast cancer cells (CIPp, CIPm and BT-20). TSG-6-down-regulated (siTSG-6) cells showed decreased cell proliferation, migration, and invasion abilities. Decreased mRNA expressions of NF-κB, STAT3 and Sox2, confirming that TSG-6 is an upper factor governing tumour growth and metastasis. Notably, siTSG-6 cells showed significantly decreased expression levels of CD44 and PD-L1. Direct and indirect co-culture of canine peripheral blood mononuclear cells (cPBMCs) and the siTSG-6 cells showed significant activation in M1 type macrophages and cytotoxic T cells. They also showed a tendency to decrease in the expression of CTLA-4 and increase in the expression of PD-1. In conclusion, this study suggests that the down-regulation of TSG-6 in breast cancer cells could not only suppress tumour growth and metastasis, and but also regulate TME. Since modulation of immune checkpoint proteins occurs in both tumour cells and immune cells, inhibiting TSG-6 and its protein within the TME could be novel therapeutic target for anticancer treatment.
Collapse
Affiliation(s)
- Jeong-Hwa Lee
- K-BIO KIURI Center, Seoul National University, Seoul, Republic of Korea.,Laboratory of Veterinary Theriogenology, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Gómez-Gallegos AA, Ramírez-Vidal L, Becerril-Rico J, Pérez-Islas E, Hernandez-Peralta ZJ, Toledo-Guzmán ME, García-Carrancá A, Langley E, Hernández-Guerrero A, López-Casillas F, Herrera-Goepfert R, Oñate-Ocaña LF, Ortiz-Sánchez E. CD24+CD44+CD54+EpCAM+ gastric cancer stem cells predict tumor progression and metastasis: clinical and experimental evidence. Stem Cell Res Ther 2023; 14:16. [PMID: 36737794 PMCID: PMC9898964 DOI: 10.1186/s13287-023-03241-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide. Specific and thorough identification of cancer cell subsets with higher tumorigenicity and chemoresistance, such as cancer stem cells (CSCs), could lead to the development of new and promising therapeutic targets. For better CSC identification, a complete or extended surface marker phenotype is needed to provide increased specificity for new cell targeting approaches. Our goal is to identify and characterize a putative extended phenotype for CSCs derived from patients with GC before treatment, as well as to evaluate its clinical value. In addition, we aim to ensure that cells with this phenotype have stemness and self-renewal capabilities. METHODS This is a cohort study including 127 treatment-naïve patients with GC who attended the Instituto Nacional de Cancerología. Multiparametric flow cytometry analysis was performed to determine the extended phenotype of cells derived from gastric biopsies. The tumorigenic capability of cells identified in patients was assessed in a zebrafish model. RESULTS CD24+CD44+CD54+EpCAM+ cells were present in all treatment-naïve patients included, with a median abundance of 1.16% (0.57-1.89%). The percentage of CD24+CD44+CD54+EpCAM+ cells was categorized as high or low using 1.19% as the cutoff for the CD24+CD44+CD54+EpCAM+ cell subset. Additionally, a higher TNM stage correlated with a higher percentage of CD24+CD44+CD54+EpCAM+ cells (Rho coefficient 0.369; p < 0.0001). We also demonstrated that a higher percentage of CD24+CD44+CD54+EpCAM+ cells was positively associated with metastasis. The metastatic potential of these cells was confirmed in a zebrafish model. Ultimately, under our conditions, we conclude that CD24+CD44+CD54+EpCAM+ cells are true gastric cancer stem cells (GCSCs). CONCLUSION The CD24+CD44+CD54+EpCAM+ cells present in tissue samples from patients are true GCSCs. This extended phenotype results in better and more specific characterization of these highly tumorigenic cells. The relative quantification of CD24+CD44+CD54+EpCAM+ cells has potential clinical value, as these cells are associated with metastatic disease, making their presence an additional prognostic marker and possibly a target for the design of new antineoplastic treatments in the era of precision oncology. Overall, the extended CD24+CD44+CD54+EpCAM+ phenotype of GCSCs could support their isolation for the study of their stemness mechanisms, leading to the identification of better molecular targets for the development of both new therapeutic approaches such as oncoimmunotherapy and new diagnostic and clinical prognostic strategies for GC.
Collapse
Affiliation(s)
- Angel A Gómez-Gallegos
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, C.P. 04510, Coyoacán, Distrito Federal, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Seccion XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Lizbeth Ramírez-Vidal
- Posgrado de Ciencias Biomédicas. Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Jared Becerril-Rico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, C.P. 04510, Coyoacán, Distrito Federal, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Seccion XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Elizabeth Pérez-Islas
- Departamento de Patología, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Zuly J Hernandez-Peralta
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Seccion XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Mariel E Toledo-Guzmán
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Seccion XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Seccion XVI, Tlalpan, 14080, Mexico City, Mexico
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Elizabeth Langley
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Seccion XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Angélica Hernández-Guerrero
- Unidad de Endoscopia, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Fernando López-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Roberto Herrera-Goepfert
- Departamento de Patología, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Luis F Oñate-Ocaña
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Seccion XVI, Tlalpan, 14080, Mexico City, Mexico.
| |
Collapse
|
36
|
Pershina AG, Nevskaya KV, Morozov KR, Litviakov NV. Methods for assessing the effect of microRNA on stemness genes. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-170-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
According to the latest concepts, for micrometastasis to develop into macrometastasis, differentiated cancer cells must revert to a dedifferentiated state. Activation of stemness genes plays a key role in this transition. Suppression of stemness gene expression using microRNAs can become the basis for the development of effective anti-metastatic drugs. This article provides an overview of the existing methods for assessing the effect of microRNAs on stemness genes and cancer cell dedifferentiation.
Collapse
Affiliation(s)
| | | | | | - N. V. Litviakov
- Siberian State Medical University;
Cancer Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| |
Collapse
|
37
|
Re-Sensitizing Cancer Stem Cells to Conventional Chemotherapy Agents. Int J Mol Sci 2023; 24:ijms24032122. [PMID: 36768445 PMCID: PMC9917165 DOI: 10.3390/ijms24032122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer stem cells are found in many cancer types. They comprise a distinct subpopulation of cells within the tumor that exhibit properties of stem cells. They express a number of cell surface markers, such as CD133, CD44, ALDH, and EpCAM, as well as embryonic transcription factors Oct4, Nanog, and SOX2. CSCs are more resistant to conventional chemotherapy and can potentially drive tumor relapse. Therefore, it is essential to understand the molecular mechanisms that drive chemoresistance and to target them with specific therapy effectively. Highly conserved developmental signaling pathways such as Wnt, Hedgehog, and Notch are commonly reported to play a role in CSCs chemoresistance development. Studies show that particular pathway inhibitors combined with conventional therapy may re-establish sensitivity to the conventional therapy. Another significant contributor of chemoresistance is a specific tumor microenvironment. Surrounding stroma in the form of cancer-associated fibroblasts, macrophages, endothelial cells, and extracellular matrix components produce cytokines and other factors, thus creating a favorable environment and decreasing the cytotoxic effects of chemotherapy. Anti-stromal agents may potentially help to overcome these effects. Epigenetic changes and autophagy were also among the commonly reported mechanisms of chemoresistance. This review provides an overview of signaling pathway components involved in the development of chemoresistance of CSCs and gathers evidence from experimental studies in which CSCs can be re-sensitized to conventional chemotherapy agents across different cancer types.
Collapse
|
38
|
Chaudhary A, Raza SS, Haque R. Transcriptional factors targeting in cancer stem cells for tumor modulation. Semin Cancer Biol 2023; 88:123-137. [PMID: 36603792 DOI: 10.1016/j.semcancer.2022.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Cancer Stem Cells (CSCs) are now considered the primary "seeds" for the onset, development, metastasis, and recurrence of tumors. Despite therapeutic breakthroughs, cancer remains the leading cause of death worldwide. This is because the tumor microenvironment contains a key population of cells known as CSCs, which promote tumor aggression. CSCs are self-renewing cells that aid tumor recurrence by promoting tumor growth and persisting in patients after many traditional cancer treatments. According to reports, numerous transcription factors (TF) play a key role in maintaining CSC pluripotency and its self-renewal property. The understanding of the functions, structures, and interactional dynamics of these transcription factors with DNA has modified the hypothesis, paving the way for novel transcription factor-targeted therapies. These TFs, which are crucial and are required by cancer cells, play a vital function in the etiology of human cancer. Such CSC TFs will help with gene expression profiling, which provides crucial data for predicting the prognosis of patients. To overcome anti-cancer medication resistance and completely eradicate cancer, a potent therapy combining TFs-based CSC targets with traditional chemotherapy may be developed. In order to develop therapies that could eliminate CSCs, we here concentrated on the effect of TFs and other components of signalling pathways on cancer stemness.
Collapse
Affiliation(s)
- Archana Chaudhary
- Department of Biotechnology, School of Earth Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Rizwanul Haque
- Department of Biotechnology, School of Earth Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
39
|
Chen G, Chen Y, Xu R, Zhang G, Zou X, Wu G. Impact of SOX2 function and regulation on therapy resistance in bladder cancer. Front Oncol 2022; 12:1020675. [PMID: 36465380 PMCID: PMC9709205 DOI: 10.3389/fonc.2022.1020675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2024] Open
Abstract
Bladder cancer (BC) is a malignant disease with high rates of recurrence and mortality. It is mainly classified as non-muscle-invasive BC and muscle-invasive BC (MIBC). Often, MIBC is chemoresistant, which, according to cancer stem cells (CSCs) theory, is linked to the presence of bladder cancer stem cells (BCSCs). Sex-determining region Y- (SRY) Box transcription factor 2 (SOX2), which is a molecular marker of BCSCs, is aberrantly over-expressed in chemoresistant BC cell lines. It is one of the standalone prognostic factors for BC, and it has an inherently significant function in the emergence and progression of the disease. This review first summarizes the role of SRY-related high-mobility group protein Box (SOX) family genes in BC, focusing on the SOX2 and its significance in BC. Second, it discusses the mechanisms relevant to the regulation of SOX2. Finally, it summarizes the signaling pathways related to SOX2 in BC, suggests current issues to be addressed, and proposes potential directions for future research to provide new insights for the treatment of BC.
Collapse
Affiliation(s)
- Guodong Chen
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yan Chen
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiquan Xu
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guoxi Zhang
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Gengqing Wu
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
40
|
Wong GL, Manore SG, Doheny DL, Lo HW. STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol 2022; 86:84-106. [PMID: 35995341 PMCID: PMC9714692 DOI: 10.1016/j.semcancer.2022.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.
Collapse
Affiliation(s)
- Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
41
|
The oncogenic JAG1 intracellular domain is a transcriptional cofactor that acts in concert with DDX17/SMAD3/TGIF2. Cell Rep 2022; 41:111626. [DOI: 10.1016/j.celrep.2022.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
|
42
|
Xie Q, Hua X, Huang C, Liao X, Tian Z, Xu J, Zhao Y, Jiang G, Huang H, Huang C. SOX2 Promotes Invasion in Human Bladder Cancers through MMP2 Upregulation and FOXO1 Downregulation. Int J Mol Sci 2022; 23:ijms232012532. [PMID: 36293387 PMCID: PMC9604292 DOI: 10.3390/ijms232012532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
SOX2, a member of the SRY-related HMG-box (SOX) family, is abnormally expressed in many tumors and associated with cancer stem cell-like properties. Previous reports have shown that SOX2 is a biomarker for cancer stem cells in human bladder cancer (BC), and our most recent study has indicated that the inhibition of SOX2 by anticancer compound ChlA-F attenuates human BC cell invasion. We now investigated the mechanisms through which SOX2 promotes the invasive ability of BC cells. Our studies revealed that SOX2 promoted SKP2 transcription and increased SKP2-accelerated Sp1 protein degradation. As Sp1 is a transcriptionally regulated gene, HUR transcription was thereby attenuated, and, in the absence of HUR, FOXO1 mRNA was degraded fast, which promoted BC cell invasion. In addition, SOX2 promoted BC invasion through the upregulation of nucleolin transcription, which resulted in increased MMP2 mRNA stability and expression. Collectively, our findings show that SOX2 promotes BC invasion through both SKP2-Sp1-HUR-FOXO1 and nucleolin-MMP2 dual axes.
Collapse
Affiliation(s)
- Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
- Department of Clinical Laboratory, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (C.H.); (C.H.); Tel.: +86-135-2288-7554 (Chuanshu Huang)
| | - Xin Liao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haishan Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
- Correspondence: (C.H.); (C.H.); Tel.: +86-135-2288-7554 (Chuanshu Huang)
| |
Collapse
|
43
|
Fialova JL, Hönigova K, Raudenska M, Miksatkova L, Zobalova R, Navratil J, Šmigová J, Moturu TR, Vicar T, Balvan J, Vesela K, Abramenko N, Kejik Z, Kaplanek R, Gumulec J, Rosel D, Martasek P, Brábek J, Jakubek M, Neuzil J, Masarik M. Pentamethinium salts suppress key metastatic processes by regulating mitochondrial function and inhibiting dihydroorotate dehydrogenase respiration. Biomed Pharmacother 2022; 154:113582. [DOI: 10.1016/j.biopha.2022.113582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022] Open
|
44
|
Go RE, Lee HK, Kim CW, Kim S, Choi KC. A fungicide, fenhexamid, is involved in the migration and angiogenesis in breast cancer cells expressing estrogen receptors. Life Sci 2022; 305:120754. [PMID: 35780843 DOI: 10.1016/j.lfs.2022.120754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Fenhexamid (Fen) is used to eradicate gray mold of fruits and vegetables leading to greater detection of its residual concentration in wine than other fungicides. Here, we further investigated the malign influence of Fen on the migration and angiogenesis via regulation of the estrogen receptor (ER) and phosphoinositide 3-kinase (PI3K) pathways in breast cancer models. ER-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells were exposed to 17β-estradiol (E2, 10-9 M), Fen (10-5 M and 10-7 M), ICI 182,780 (ICI; an ER antagonist, 10-8 M) or/and Pictilisib (Pic; a PI3K inhibitor, 10-7 M), and subsequently subjected to migration assay, live cell motility monitoring, trans-chamber assay, immunofluorescence, angiogenesis assay, tumor spheroid formation, and Western blot analysis. In MCF-7 cells, E2 and Fen induced cell migration by regulating the cell migration-related proteins. Although expressions of N-cadherin and Vimentin remained unchanged E2 and Fen induced the decrease of E-cadherin and Occludin in the immunofluorescence assay and Western blot analysis. In addition, Fen increased vessel formation in HUVEC cells. Furthermore, Fen treatment induced the formation of larger and denser tumor spheroids in MCF-7 cells. Western blot further confirmed the increased expressions of vascular endothelial growth factor (VEGF) and sex-determining region Y-box 2 (SOX2) after exposure to Fen. We conclude that Fen plays an important role as an endocrine-disrupting chemical in breast cancer migration and metastasis through the regulation of ER and PI3K signaling pathways.
Collapse
Affiliation(s)
- Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Soochong Kim
- Laboratory of Pathology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
45
|
Doxorubicin resistant choriocarcinoma cell line derived spheroidal cells exhibit stem cell markers but reduced invasion. 3 Biotech 2022; 12:184. [PMID: 35875180 PMCID: PMC9300786 DOI: 10.1007/s13205-022-03243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/25/2022] [Indexed: 11/06/2022] Open
Abstract
Cell cycle-specific cancer chemotherapy is based on the ability of a drug to halt, minimise or destroy rapidly dividing cells. However, their efficacy is limited by the emergence of a self-renewing cell pool called “cancer stem cells” (CSC). Choriocarcinoma is a tumour of trophoblastic tissue. We, in this study, analysed whether spheroids generated from doxorubicin-treated and non-treated choriocarcinoma cell lines exhibit markers of stem cells. Two choriocarcinoma cell lines, namely JEG-3 and BeWo, were used in this study. Spheroids were generated from doxorubicin-treated cells and the non-treated cells under non-adherent condition, followed by analysis of stem-cell markers’ expression, namely NANOG, OCT4 and SOX2. Immunofluorescence analysis suggested a general increase in the markers’ concentration in spheroids relative to the parental cells. RT-qPCR and immunoblots showed an increase in the stem-cell marker expression in spheroids generated from doxorubicin-treated when compared to non-treated cells. In spheroids, Sox2 was significantly upregulated in doxorubicin-treated spheroids, whereas Nanog and Oct4 were generally downregulated when compared to non-treated spheroids. Both 2D and 3D invasion assays showed that the spheroids treated with doxorubicin exhibited reduced invasion. Our data suggest that choriocarcinoma cell lines may have the potential to produce spheroidal cells, yet the drug-treatment affected the invasion potential of spheroids.
Collapse
|
46
|
Pietrobono S, De Paolo R, Mangiameli D, Marranci A, Battisti I, Franchin C, Arrigoni G, Melisi D, Poliseno L, Stecca B. p38 MAPK-dependent phosphorylation of transcription factor SOX2 promotes an adaptive response to BRAF inhibitors in melanoma cells. J Biol Chem 2022; 298:102353. [PMID: 35944584 PMCID: PMC9463537 DOI: 10.1016/j.jbc.2022.102353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 10/26/2022] Open
|
47
|
Wang L, Jin Z, Master RP, Maharjan CK, Carelock ME, Reccoppa TBA, Kim MC, Kolb R, Zhang W. Breast Cancer Stem Cells: Signaling Pathways, Cellular Interactions, and Therapeutic Implications. Cancers (Basel) 2022; 14:3287. [PMID: 35805056 PMCID: PMC9265870 DOI: 10.3390/cancers14133287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer stem cells (BCSCs) constitute a small population of cells within breast cancer and are characterized by their ability to self-renew, differentiate, and recapitulate the heterogeneity of the tumor. Clinically, BCSCs have been correlated with cancer progression, metastasis, relapse, and drug resistance. The tumorigenic roles of BCSCs have been extensively reviewed and will not be the major focus of the current review. Here, we aim to highlight how the crucial intrinsic signaling pathways regulate the fate of BCSCs, including the Wnt, Notch, Hedgehog, and NF-κB signaling pathways, as well as how different cell populations crosstalk with BCSCs within the TME, including adipocytes, endothelial cells, fibroblasts, and immune cells. Based on the molecular and cellular activities of BCSCs, we will also summarize the targeting strategies for BCSCs and related clinical trials. This review will highlight that BCSC development in breast cancer is impacted by both BCSC endogenous signaling and external factors in the TME, which provides an insight into how to establish a comprehensively therapeutic strategy to target BCSCs for breast cancer treatments.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Immunology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zeng Jin
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rohan P. Master
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Madison E. Carelock
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany B. A. Reccoppa
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Department of Biology, College of Liberal Arts & Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
48
|
Wang Z, Wang J, Zhao H, Zhao T, Chen Y, Jiang M, Zhang S, Wei Y, Zhang J, Zhou Y, Shi S, Fu Z, Yang Y, Zhang Y, Yang L, Que J, Liu K. Targeting the SOX2/PARP1 complex to intervene in the growth of esophageal squamous cell carcinoma. Biomed Pharmacother 2022; 153:113309. [PMID: 35738180 DOI: 10.1016/j.biopha.2022.113309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Elevated SOX2 protein levels are closely correlated with the increased incidence of esophageal squamous cell carcinoma (ESCC). However, establishing effective target measures for ESCC treatments continue to be researched. It has been previously proposed that SOX2 represents a potential therapeutic target for ESCC. Here, we found that the enzyme Poly(ADP-Ribose) polymerase 1 (PARP1) enriched in ESCCs interact with SOX2. Inhibition of PARP1 with 3-aminobenzamide (3-ABA) or shRNA knockdown reduced the proliferation of ESCCs, accompanied by decreased protein levels of SOX2. RNA sequencing demonstrated that PARP1 inhibition affected multiple signaling pathways involved in cancer cell proliferation. Additionally, 3-ABA synergistically suppressed the growth of ESCC cells when combined with cisplatin, and metformin potentiated the suppressive effect of 3-ABA on ESCC cell growth. Together these findings suggest that targeting SOX2 binding partner PARP1 provides a possible avenue to treat patients with high levels of SOX2.
Collapse
Affiliation(s)
- Zhuo Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Junkai Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongzhou Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Tingting Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yunyun Chen
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Ming Jiang
- Department of Gastroenterology of The Children's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihui Zhang
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Yuxuan Wei
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiaying Zhang
- School of Life Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Yijian Zhou
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Songlin Shi
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhichao Fu
- Department of radiotherapy, 900 Hospital of the Joint Logistics Team (Dongfang Hospital, Xiamen University), Fuzhou, Fujian 350025, China
| | - Yaxin Yang
- Department of Biology, University of Rochester, NY 14627, USA
| | - Yujun Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Ling Yang
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
| | - Kuancan Liu
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
49
|
Ma G, Babarinde IA, Zhou X, Hutchins AP. Transposable Elements in Pluripotent Stem Cells and Human Disease. Front Genet 2022; 13:902541. [PMID: 35719395 PMCID: PMC9201960 DOI: 10.3389/fgene.2022.902541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that can randomly integrate into other genomic sites. They have successfully replicated and now occupy around 40% of the total DNA sequence in humans. TEs in the genome have a complex relationship with the host cell, being both potentially deleterious and advantageous at the same time. Only a tiny minority of TEs are still capable of transposition, yet their fossilized sequence fragments are thought to be involved in various molecular processes, such as gene transcriptional activity, RNA stability and subcellular localization, and chromosomal architecture. TEs have also been implicated in biological processes, although it is often hard to reveal cause from correlation due to formidable technical issues in analyzing TEs. In this review, we compare and contrast two views of TE activity: one in the pluripotent state, where TEs are broadly beneficial, or at least mechanistically useful, and a second state in human disease, where TEs are uniformly considered harmful.
Collapse
|
50
|
Wicks EE, Semenza GL. Hypoxia-inducible factors: cancer progression and clinical translation. J Clin Invest 2022; 132:159839. [PMID: 35642641 PMCID: PMC9151701 DOI: 10.1172/jci159839] [Citation(s) in RCA: 299] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are master regulators of oxygen homeostasis that match O2 supply and demand for each of the 50 trillion cells in the adult human body. Cancer cells co-opt this homeostatic system to drive cancer progression. HIFs activate the transcription of thousands of genes that mediate angiogenesis, cancer stem cell specification, cell motility, epithelial-mesenchymal transition, extracellular matrix remodeling, glucose and lipid metabolism, immune evasion, invasion, and metastasis. In this Review, the mechanisms and consequences of HIF activation in cancer cells are presented. The current status and future prospects of small-molecule HIF inhibitors for use as cancer therapeutics are discussed.
Collapse
Affiliation(s)
| | - Gregg L Semenza
- Department of Genetic Medicine.,Institute for Cell Engineering, and.,Stanley Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|