1
|
Chen H, Wang X, Xing J, Pu Y, Ye H, Ma Y, Zhang J. Role and mechanisms of cuproptosis in the pathogenesis of Wilson's disease (Review). Int J Mol Med 2025; 56:117. [PMID: 40476570 PMCID: PMC12140093 DOI: 10.3892/ijmm.2025.5558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 05/21/2025] [Indexed: 06/11/2025] Open
Abstract
Copper, an indispensable trace element in living organisms, plays a pivotal role in human physiological processes. Wilson's disease (WD), an inherited disorder of copper metabolism, is caused by mutations in the ATP7B gene. This genetic malfunction disrupts the dynamics of copper transport and metabolism, thereby impairing ceruloplasmin synthesis and copper excretion. The resultant accumulation of copper in various tissues and organs precipitates a cascade of cellular demise and functional impairment. Notably, cuproptosis, a recently discovered copper‑dependent regulated cell death mechanism, distinctly deviates from conventional cell death paradigms. This novel mode of cell death involves the interaction of copper with lipoacylated proteins within the tricarboxylic acid cycle, leading to proteinotoxic stress and culminating in cell death. In the realm of pathophysiology, cuproptosis has emerged as a pivotal player in a spectrum of diseases, with WD standing as a paradigm closely intertwined with the dysregulation of copper metabolism. This study aimed to encapsulate the pivotal molecular underpinnings of cuproptosis and delve into its crucial involvement in the etiopathogenesis of WD. By elucidating these mechanisms, the present analysis contributes significantly to the nuanced understanding of the pathological underpinnings of WD, thereby providing fresh insights and evidence that may direct innovative therapeutic strategies for this condition.
Collapse
Affiliation(s)
| | | | - Jin Xing
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yue Pu
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Hao Ye
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Ying Ma
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
2
|
Dai Y, Li X, He Y, Zhu L, Bi Y, Song F, Li D. The E3 ubiquitin ligase SlATL2 suppresses tomato immunity by promoting SlCSN5a degradation during Pseudomonas syringae pv. tomato DC3000 infection. HORTICULTURE RESEARCH 2025; 12:uhaf078. [PMID: 40303438 PMCID: PMC12038897 DOI: 10.1093/hr/uhaf078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/02/2025] [Indexed: 05/02/2025]
Abstract
Plant immunity involves complex regulatory mechanisms that mediate the activation of defense responses against pathogens. Protein degradation via ubiquitination plays a crucial role in modulating these defenses, with E3 ubiquitin ligases functioning as central regulators. This study investigates the role of SlATL2, an ARABIDOPSIS TÓXICOS EN LEVADURA (ATL)-type E3 ubiquitin ligase localized in the plasma membrane, in the immune response of tomato plants against Pseudomonas syringae pv. tomato (Pst) DC3000. Our findings demonstrate that SlATL2 expression is induced upon Pst DC3000 infection and treatment with defense hormones salicylic acid and jasmonic acid. Functionally, SlATL2 negatively regulates immune responses, impairing resistance to Pst DC3000 and suppressing flg22-triggered immunity. In addition, SlATL2 limits pathogen-induced reactive oxygen species and callose accumulation by targeting the COP9 signalosome subunit 5a (SlCSN5a), a key positive regulator of tomato defense responses against Pst DC3000. This interaction, which occurs via the N-terminal residue of SlATL2, results in the ubiquitination and 26S proteasomal degradation of SlCSN5a, thereby suppressing SA-dependent expression of defense response genes associated and limiting reactive oxygen species production. This work sheds light on the molecular mechanism through which the E3 ubiquitin ligase SlATL2 attenuates tomato immune responses by targeting a COP9 signalosome subunit for degradation. These discoveries deepen our insights into the post-translational mechanisms governing plant immune responses and provide fresh opportunities to bolster crop resistance against bacterial pathogens.
Collapse
Affiliation(s)
- Yujie Dai
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaodan Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yeling He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liya Zhu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Bi
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengming Song
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dayong Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Sun S, Liu P, Xie G, Zheng J. CB-5083 and luteolin synergistically induce the apoptosis of bladder cancer cells via multiple mechanisms. Toxicol Appl Pharmacol 2025; 499:117333. [PMID: 40194745 DOI: 10.1016/j.taap.2025.117333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
PURPOSE Bladder cancer (BC) is a common urological malignancy for which effective treatments are lacking. In recent years, valosin-containing protein (VCP) has emerged as a potential target for the treatment of cancers. CB-5083 is a VCP inhibitor that has been evaluated in phase I clinical trials. However, drug resistance and severe side effects hamper the application of CB-5083. Mounting evidence suggests that combined treatment is a useful strategy to improve anticancer efficiency with lower toxicity. The aim of this study was to evaluate the combined effects of CB-5083 and luteolin (Lut), a natural flavonoid, on BC cells. METHODS Cellular viability was measured via MTT assays. The cell cycle distribution, degree of cell death and mitochondrial membrane potential were assayed via flow cytometry. mRNA levels were assayed via qRT-PCR. Protein levels were measured via western blotting. RNA interference was applied to knockdown genes. Xenograft experiments were conducted to evaluate the toxicity in vivo. RESULTS Cotreatment with CB-5083 and luteolin synergistically reduced the viability of BC cells. In addition, cotreatment with CB-5083 and Lut synergistically induced cell cycle arrest at the G1 phase and apoptosis in BC cells. Mechanistically, CB-5083/Lut cooperatively reduced the expression of Bcl-xl and Mcl-1 in BC cells. Moreover, CB-5083 and Lut synergistically induced endoplasmic reticulum (ER) stress in BC cells. The genetic or pharmacological inhibition of ER stress markedly reduced the degree of apoptosis induced by CB-5083, Lut or their combination in BC cells. In addition, combined treatment with CB-5083 and Lut synergistically repressed the growth of BC cells in vivo. CONCLUSION Our data suggest that combined treatment with CB-5083 and Lut might be applied to treat BC.
Collapse
Affiliation(s)
- Shuben Sun
- Department of Urology Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China; Department of Urology Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Ping Liu
- Department of Urology Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Guohai Xie
- Department of Urology Surgery, The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Junhua Zheng
- Department of Urology Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China; Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200121, China.
| |
Collapse
|
4
|
Zhang X, Zhang H, Zhang Y, Lin Z. Linear Ubiquitination of Hemocyanin Mediated by LUBEL Regulates Innate Immunity in Penaeus vannamei. Int J Mol Sci 2025; 26:5110. [PMID: 40507921 PMCID: PMC12154395 DOI: 10.3390/ijms26115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/10/2025] [Accepted: 05/20/2025] [Indexed: 06/16/2025] Open
Abstract
Penaeus vannamei hemocyanin (PvHMC) exhibits multifunctional roles in immunity, often mediated by various post-translational modifications. While linear ubiquitination catalyzed by LUBAC in mammals regulates immune signaling, its role in crustacean immunity remains unclear. Here, we investigated the regulatory mechanism of PvHMC linear ubiquitination mediated by an E3 ligase PvLUBEL (a HOIP homolog), with emphasis on its role in shrimp immunity defending against diverse pathogens. We detected linear ubiquitination of PvHMC in multiple tissues, including hemocytes and the hepatopancreas. During Vibrio parahaemolyticus infection, the expression of PvLUBEL and the level of PvHMC linear ubiquitination were suppressed, whereas infection by white spot syndrome virus (WSSV) led to their upregulation. Structural analyses revealed that PvLUBEL, which shares a conserved RING-IBR-RING (RBR) domain with mammalian HOIP, serves as the catalytic subunit. Notably, inhibition of PvLUBEL via HOIPIN-1 (a covalent inhibitor) or RNA interference (RNAi) significantly reduced PvHMC linear ubiquitination, thereby increasing pathogen proliferation and decreasing host survival. These findings unveil a novel post-translational regulatory mechanism in which PvLUBEL-mediated linear ubiquitination of PvHMC underpins the shrimp immune response against aquaculture pathogens.
Collapse
Affiliation(s)
| | | | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (X.Z.); (H.Z.)
| | - Zhongyang Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (X.Z.); (H.Z.)
| |
Collapse
|
5
|
Meng X, Hu X, Gao S, Jia W, Zhang S, Zhang S, Wang X, Ma S, Qin C. PSMA-Guided PROTAC Degraders for Tumor-Specific Protein Degradation in Prostate Cancer. J Med Chem 2025; 68:10139-10155. [PMID: 40312858 DOI: 10.1021/acs.jmedchem.5c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
PROTACs that degrade target proteins to treat diseases represent a highly promising strategy in drug design. However, the degradation of target proteins in nondisease tissues may lead to systemic toxicity. Herein, capitalizing on the characteristic overexpression of PSMA in prostate cancer, we devised PSMA-guided PROTACs-specific targeting to prostate cancer. By conjugation of AR degraders and BET degraders separately with PSMA ligands via cleavable linkers, two classes of PSMA-guided PROTACs were obtained. In vitro experiments demonstrated that PSMA-guided PROTACs selectively degraded target proteins in PSMA-overexpressing prostate cancer cells without affecting target proteins in other cells. In vivo studies revealed that compared to conventional PROTACs, PSMA-guided PROTACs enhanced drug exposure in prostate cancer tissues and prolonged half-life and consequently achieved stronger and more sustained therapeutic effects. This work provides a novel avenue for disease tissue-specific PROTAC research, holding significant implications for targeted therapy in prostate cancer.
Collapse
Affiliation(s)
- Xiaolei Meng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaolin Hu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shan Gao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenrui Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Sai Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao 266003, Shandong, China
| | - Siqi Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao 266003, Shandong, China
| | - Xiao Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao 266003, Shandong, China
| | - Shumin Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao 266003, Shandong, China
| | - Chong Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao 266003, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
6
|
Ling J, Chen H, Huang M, Wang J, Du X. An mRNA vaccine encoding proteasome-targeted antigen enhances CD8 + T cell immunity. J Control Release 2025; 381:113578. [PMID: 40015339 DOI: 10.1016/j.jconrel.2025.02.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
The efficient induction of antigen-specific CD8+ T cell activation is crucial in the development of mRNA tumor vaccines. Endogenous antigens are primarily degraded through the ubiquitin-proteasome system, followed by antigen presentation via major histocompatibility complex class I (MHC-I) molecules, leading to the activation of CD8+ T cells. Therefore, in this study, a novel mRNA vaccine was developed by fusing the mRNA sequence encoding the antigen with a proteasome-targeting peptide (PTP), aiming to enhance proteasomal targeting of the antigen and facilitate its degradation through the ubiquitin-proteasome system, thereby inducing a stronger CD8+ T cell immune response. This study confirmed a significant increase in antigen expression of the antigen-PTP fused mRNA vaccine upon treatment with a VHL inhibitor, as well as notable upregulation of genes associated with the MHC-I antigen-presenting pathway following treatment with the antigen-PTP fused mRNA vaccine. The intramuscular administration of the antigen-PTP fused mRNA vaccine significantly promoted the activation of dendritic cells, macrophages, and T cells in draining lymph nodes and spleens. Additionally, in TC-1 tumor-bearing mice, it markedly suppressed tumor growth, facilitated infiltration of intratumoral antigen-specific CD8+ T cells, and induced immune memory.
Collapse
Affiliation(s)
- Jin Ling
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Hongwei Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Mengwen Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Xiaojiao Du
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Yang X, Zhu J, Tao X, Gao F, Cai Y, Lv Y, Xie S, Xie K, Lan T, Han J, Wu H. Challenges and opportunities for the diverse substrates of SPOP E3 ubiquitin ligase in cancer. Theranostics 2025; 15:6111-6145. [PMID: 40521202 PMCID: PMC12159753 DOI: 10.7150/thno.113356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/26/2025] [Indexed: 06/18/2025] Open
Abstract
The Speckle-type POZ protein (SPOP), a substrate adaptor of the cullin-RING E3 ligase complex, mediates both the degradation and non-degradative ubiquitination of substrates, which are crucial for regulating various biological functions and cellular processes. Dysregulation of SPOP-mediated ubiquitination has been implicated in several cancers. Emerging evidence suggests that SPOP functions as a double-edged sword: acting as a tumor suppressor in prostate cancer (PCa), hepatocellular carcinoma (HCC), and colorectal cancer (CRC), while potentially serving as an oncoprotein in kidney cancer (KC). Therefore, SPOP's role in tumorigenesis appears to be tissue- or context-dependent. Numerous downstream substrates of SPOP have been identified across various cancers, where they regulate carcinogenesis, metabolic reprogramming, cell death, immune evasion, therapy resistance, and tumor microenvironment (TME) remodeling. However, the definitive role of SPOP in these cancers requires further investigation. A comprehensive understanding of the molecular mechanisms of SPOP in different cancer types will provide new insights into its function in oncogenesis, potentially advancing anti-cancer drug development. Here, we summarize the latest findings on SPOP's functions and structural features, its regulatory mechanisms, the roles of its substrates in various cancers, and SPOP-targeting strategies.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiang Zhu
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
- Breast Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Tao
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
- Liver Transplantation Center, Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Fengwei Gao
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
- Liver Transplantation Center, Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yunshi Cai
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
- Liver Transplantation Center, Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yinghao Lv
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
- Liver Transplantation Center, Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Sinan Xie
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
- Liver Transplantation Center, Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Kunlin Xie
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
- Liver Transplantation Center, Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Tian Lan
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
- Liver Transplantation Center, Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Wu
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
- Liver Transplantation Center, Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
8
|
He H, Wang L, Xian B, Xia Y. Regulatory Roles of E3 Ubiquitin Ligases and Deubiquitinases in Bone. Biomolecules 2025; 15:679. [PMID: 40427572 PMCID: PMC12108743 DOI: 10.3390/biom15050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) are pivotal regulators of bone homeostasis, orchestrating osteoblast differentiation, proliferation, and osteoclast activity by controlling protein degradation and stability. This review delineates the roles of key E3 ligases (e.g., Smurf1, Smurf2, TRIM family) and DUBs (e.g., USP family) in bone formation and resorption. E3 ligases such as Smurf1/2 inhibit osteogenesis by degrading BMP/Smad signaling components, while TRIM proteins and HERC ligases promote osteoblast differentiation. Conversely, DUBs like USP2 and USP34 stabilize β-catenin and Smad1/RUNX2, enhancing osteogenic pathways, whereas USP10 and USP12 suppress differentiation. Dysregulation of these enzymes contributes to osteoporosis, fracture non-union, and other bone disorders. The interplay between ubiquitination and deubiquitination, alongside the regulatory role of miRNA and environmental factors, underscores their therapeutic potential. Future research should focus on developing therapies targeting E3 ubiquitin ligases, deubiquitinases, miRNA regulators, and small-molecule inhibitors to restore bone homeostasis in osteoporosis and fracture healing disorders.
Collapse
Affiliation(s)
- Haotian He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (H.H.); (L.W.); (B.X.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Lifei Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (H.H.); (L.W.); (B.X.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Bao Xian
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (H.H.); (L.W.); (B.X.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (H.H.); (L.W.); (B.X.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
9
|
Gupta H, Gupta A. Post-translational modifications of epigenetic modifier TIP60: their role in cellular functions and cancer. Epigenetics Chromatin 2025; 18:18. [PMID: 40186325 PMCID: PMC11969907 DOI: 10.1186/s13072-025-00572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/27/2025] [Indexed: 04/07/2025] Open
Abstract
TIP60 is a crucial lysine acetyltransferase protein that catalyzes the acetylation of histone and non-histone proteins. This enzyme plays a crucial role in maintaining genomic integrity, by participating in DNA damage repair, ensuring accurate chromosomal segregation, and regulating a myriad of cellular processes such as apoptosis, autophagy, and wound-induced cell migration. One of the primary mechanisms through which TIP60 executes these diverse cellular functions is via post-translational modifications (PTMs). Over the years, extensive studies have demonstrated the importance of PTMs in controlling protein functions. This review aims to summarize the findings on PTMs occurring on the TIP60 protein and their functional implications. We also discuss previously uncharacterized PTM sites identified on TIP60 and examine their relationship with cancer-associated mutations, with a particular focus on residues potentially modified by various PTMs, to understand the cause of deregulation of TIP60 in various cancers.
Collapse
Affiliation(s)
- Himanshu Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, deemed to be University, Delhi-NCR, 201314, Uttar Pradesh, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, deemed to be University, Delhi-NCR, 201314, Uttar Pradesh, India.
| |
Collapse
|
10
|
Zhou X, Zhang H, Wang Y, Wang D, Lin Z, Zhang Y, Tang Y, Liu J, Yao YF, Zhang Y, Pan L. Shigella effector IpaH1.4 subverts host E3 ligase RNF213 to evade antibacterial immunity. Nat Commun 2025; 16:3099. [PMID: 40164614 PMCID: PMC11958729 DOI: 10.1038/s41467-025-58432-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
Ubiquitination plays vital roles in modulating pathogen-host cell interactions. RNF213, a E3 ligase, can catalyze the ubiquitination of lipopolysaccharide (LPS) and is crucial for antibacterial immunity in mammals. Shigella flexneri, an LPS-containing pathogenic bacterium, has developed mechanisms to evade host antibacterial defenses during infection. However, the precise strategies by which S. flexneri circumvents RNF213-mediated antibacterial immunity remain poorly understood. Here, through comprehensive biochemical, structural and cellular analyses, we reveal that the E3 effector IpaH1.4 of S. flexneri can directly target human RNF213 via a specific interaction between the IpaH1.4 LRR domain and the RING domain of RNF213, and mediate the ubiquitination and proteasomal degradation of RNF213 in cells. Furthermore, we determine the cryo-EM structure of human RNF213 and the crystal structure of the IpaH1.4 LRR/RNF213 RING complex, elucidating the molecular mechanism underlying the specific recognition of RNF213 by IpaH1.4. Finally, our cell based functional assays demonstrate that the targeting of host RNF213 by IpaH1.4 promotes S. flexneri proliferation within infected cells. In summary, our work uncovers an unprecedented strategy employed by S. flexneri to subvert the key host immune factor RNF213, thereby facilitating bacterial proliferation during invasion.
Collapse
Affiliation(s)
- Xindi Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Huijing Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yaru Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiqiao Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuchao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yubin Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianping Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yixiao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
11
|
Yamamoto R, Sahashi Y, Shimo-Kon R, Sakato-Antoku M, Suzuki M, Luo L, Tanaka H, Ishikawa T, Yagi T, King SM, Kurisu G, Kon T. Chlamydomonas FBB18 is a ubiquitin-like protein essential for the cytoplasmic preassembly of various ciliary dyneins. Proc Natl Acad Sci U S A 2025; 122:e2423948122. [PMID: 40106351 PMCID: PMC11962417 DOI: 10.1073/pnas.2423948122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Motile cilia are organelles found on many eukaryotic cells that play critical roles in development and fertility. Human CFAP298 has been implicated in the transport/assembly of ciliary dyneins, and defects in this protein cause primary ciliary dyskinesia. However, neither the exact function nor the structure of CFAP298 have been elucidated. Here, we took advantage of Chlamydomonas, a ciliated alga, to study the structure and function of FBB18, an ortholog of CFAP298. Multiple ciliary dyneins were greatly reduced in cilia of Chlamydomonas fbb18 mutants. In addition, we found that both the stability of ciliary dynein heavy chains (HCs) and the association between HCs and intermediate/light chains (IC/LCs) are greatly reduced in fbb18 cytoplasm, strongly suggesting that FBB18 functions in the cytoplasmic assembly (the so-called "preassembly") of dynein complexes from HC/IC/LCs. Furthermore, X-ray crystallography revealed that FBB18 forms a bilobed structure with globular domains at both ends of the molecule, connected by an α-helical bundle. Unexpectedly, one globular domain shows high similarity to ubiquitin, a small protein critical for the modification of a variety of protein complexes, and this ubiquitin-like domain is indispensable for the molecular function of FBB18. Our results demonstrate that FBB18, a specialized member of the ubiquitin-like protein family, plays a critical role in dynein preassembly, most likely by mediating diverse interactions between dynein HCs, molecular chaperone(s), and other preassembly factor(s) using the ubiquitin-like domain as well as other regions, and by facilitating the proper folding of dynein HCs.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka560-0043, Japan
| | - Yui Sahashi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka560-0043, Japan
| | - Rieko Shimo-Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka560-0043, Japan
| | - Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT06030-3305
| | - Miyuka Suzuki
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka560-0043, Japan
| | - Leo Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen5232, Switzerland
- Department of Biology, ETH Zurich, Zurich8093, Switzerland
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Osaka565-0871, Japan
| | - Takashi Ishikawa
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen5232, Switzerland
- Department of Biology, ETH Zurich, Zurich8093, Switzerland
| | - Toshiki Yagi
- Department of Life and Environmental Sciences, Faculty of Bioresource Sciences, Prefectural University of Hiroshima, Hiroshima727-0023, Japan
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT06030-3305
| | - Genji Kurisu
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka560-0043, Japan
- Institute for Protein Research, Osaka University, Osaka565-0871, Japan
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka560-0043, Japan
| |
Collapse
|
12
|
Qian W, Zhang X, Yuan D, Wu Y, Li H, Wei L, Li Z, Dai Z, Song P, Sun Q, Zhou Z, Xia Q, Cheng D. USP8 and Hsp70 regulate endoreplication by synergistically promoting Fzr deubiquitination and stabilization. SCIENCE ADVANCES 2025; 11:eadq9111. [PMID: 40106570 PMCID: PMC11922063 DOI: 10.1126/sciadv.adq9111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Endoreplication is characterized by multiple rounds of DNA replication without cell division and determines the growth and final size of endoreplicating cells and tissues in eukaryotes. The cyclic ubiquitination and degradation of several cell cycle regulators are required for endoreplication progression. However, the deubiquitinase that deubiquitinates and stabilizes key factors to modulate endoreplication remains unknown. Here, we found in the endoreplicating Drosophila salivary gland and Bombyx silk gland that the depletion of ubiquitin-specific peptidase 8 (USP8) led to endoreplication arrest and a decrease in gland size. Mechanistically, we showed that USP8 interacted with the Fizzy-related (Fzr) protein, a conserved master regulator of endoreplication, thereby deubiquitinating and stabilizing Fzr to modulate endoreplication. Moreover, the molecular chaperone heat shock protein 70 (Hsp70) mediated proper folding of Fzr and increased the interaction between Fzr and USP8, thereby promoting the deubiquitination and stabilization of Fzr. Together, our study demonstrates that USP8 and Hsp70 regulate endoreplication by synergistically maintaining Fzr stability though deubiquitination.
Collapse
Affiliation(s)
- Wenliang Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xing Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Dongqin Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yuting Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Hao Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Ling Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zheng Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Zongcai Dai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Pei Song
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Qiaoling Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Daojun Cheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| |
Collapse
|
13
|
Enenkel C, Ernst OP. Proteasome dynamics in response to metabolic changes. Front Cell Dev Biol 2025; 13:1523382. [PMID: 40099196 PMCID: PMC11911490 DOI: 10.3389/fcell.2025.1523382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Proteasomes, essential protease complexes in protein homeostasis, adapt to metabolic changes through intracellular movements. As the executive arm of the ubiquitin-proteasome system, they selectively degrade poly-ubiquitinated proteins in an ATP-dependent process. The primary proteasome configuration involved in this degradation is the 26S proteasome, which is composed of a proteolytically active core particle flanked by two regulatory particles. In metabolically active cells, such as proliferating yeast and mammalian cancer cells, 26S proteasomes are predominantly nuclear and actively engaged in protein degradation. However, during nutrient deprivation or stress-induced quiescence, proteasome localization changes. In quiescent yeast, proteasomes initially accumulate at the nuclear envelope. During prolonged quiescence with decreased ATP levels, proteasomes exit the nucleus and are sequestered into cytoplasmic membraneless organelles, so-called proteasome storage granules (PSGs). In mammalian cells, starvation and stress trigger formation of membraneless organelles containing proteasomes and poly-ubiquitinated substrates. The proteasome condensates are motile, reversible, and contribute to stress resistance and improved fitness during aging. Proteasome condensation may involve liquid-liquid phase separation, a mechanism underlying the assembly of membraneless organelles.
Collapse
Affiliation(s)
- Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Oliver P. Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Huang H, Zhu W, Huang B, Fu Z, Xiong Y, Cao D, Ye Y, Chang Q, Li W, Li L, Zhou H, Niu X, Zhang W. Structural insights into the biochemical mechanism of the E2/E3 hybrid enzyme UBE2O. Structure 2025; 33:274-288.e4. [PMID: 39740670 DOI: 10.1016/j.str.2024.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
The E2/E3 hybrid enzyme UBE2O plays important roles in key biological events, but its autoubiquitination mechanism remains largely unclear. In this study, we determined the crystal structures of full-length (FL) UBE2O from Trametes pubescens (tp) and its ubiquitin-conjugating (UBC) domain. The dimeric FL-tpUBE2O structure revealed interdomain interactions between the conserved regions (CR1-CR2) and UBC. The dimeric intermolecular and canonical ubiquitin/UBC interactions are mechanistically important for UBE2O functions in catalyzing the formation of free polyubiquitin chains and substrate ubiquitination. Beyond dimerization, autoubiquitination within the CR1-CR2 domain also regulates tpUBE2O activity. Additionally, we show that tpUBE2O catalyzes the formation of all seven types of polyubiquitin chains in vitro. The CR1-CR2/UBC and canonical ubiquitin/UBC interactions are important for the polyubiquitination of AMP-activated protein kinase α2 (AMPKα2) by human UBE2O (hUBE2O), which leads to tumorigenesis. These structural insights lay the groundwork for understanding UBE2O's mechanisms and developing structure-based therapeutics targeting UBE2O.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China.
| | - Wenning Zhu
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bin Huang
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ziyang Fu
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuxian Xiong
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dan Cao
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuxin Ye
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qing Chang
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenqi Li
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Long Li
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China
| | - Huan Zhou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Xiaogang Niu
- College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
15
|
Du C, Bai H, Yan Y, Liu Y, Wang X, Zhang Z. Exploring ABI5 regulation: Post-translational control and cofactor interactions in ABA signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17232. [PMID: 39911030 DOI: 10.1111/tpj.17232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/07/2025]
Abstract
Abscisic acid insensitive 5 (ABI5) is a pivotal transcription factor in abscisic acid (ABA) signaling, playing an essential role in plant growth and responses to abiotic stress. This key regulator is subject to multifaceted regulation, especially on post-translational mechanisms. Recent research has shed light on the post-translational regulation of ABI5, encompassing both post-translational modifications (PTMs) and the modulation of its transcriptional activity. In this review, we provide a comprehensive overview of the current knowledge surrounding the post-translational regulation of ABI5, along with the influence of various cofactors on its transcriptional activity and protein stability. The potential biological roles of PTMs of ABI5 in the context of ABA signaling and plant stress responses are also explored. As ABI5 is one of the most extensively studied proteins in the context of plant ABA signaling and environmental stress responses, a sophisticated and precise understanding of the regulatory mechanisms that govern ABI5 is not only beneficial for its application in genetic engineering but also helpful for our exploration in the fundamental principles of post-translational regulation.
Collapse
Affiliation(s)
- Chang Du
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Haiyan Bai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yujie Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yurui Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xiangying Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
16
|
Buttari B, Tramutola A, Rojo AI, Chondrogianni N, Saha S, Berry A, Giona L, Miranda JP, Profumo E, Davinelli S, Daiber A, Cuadrado A, Di Domenico F. Proteostasis Decline and Redox Imbalance in Age-Related Diseases: The Therapeutic Potential of NRF2. Biomolecules 2025; 15:113. [PMID: 39858508 PMCID: PMC11764413 DOI: 10.3390/biom15010113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular homeostasis, overseeing the expression of a wide array of genes involved in cytoprotective processes such as antioxidant and proteostasis control, mitochondrial function, inflammation, and the metabolism of lipids and glucose. The accumulation of misfolded proteins triggers the release, stabilization, and nuclear translocation of NRF2, which in turn enhances the expression of critical components of both the proteasomal and lysosomal degradation pathways. This process facilitates the clearance of toxic protein aggregates, thereby actively maintaining cellular proteostasis. As we age, the efficiency of the NRF2 pathway declines due to several factors including increased activity of its repressors, impaired NRF2-mediated antioxidant and cytoprotective gene expression, and potential epigenetic changes, though the precise mechanisms remain unclear. This leads to diminished antioxidant defenses, increased oxidative damage, and exacerbated metabolic dysregulation and inflammation-key contributors to age-related diseases. Given NRF2's role in mitigating proteotoxic stress, the pharmacological modulation of NRF2 has emerged as a promising therapeutic strategy, even in aged preclinical models. By inducing NRF2, it is possible to mitigate the damaging effects of oxidative stress, metabolic dysfunction, and inflammation, thus reducing protein misfolding. The review highlights NRF2's therapeutic implications for neurodegenerative diseases and cardiovascular conditions, emphasizing its role in improving proteostasis and redox homeostasis Additionally, it summarizes current research into NRF2 as a therapeutic target, offering hope for innovative treatments to counteract the effects of aging and associated diseases.
Collapse
Affiliation(s)
- Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Antonella Tramutola
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| | - Ana I. Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), National Institute of Health Carlos III (ISCIII), Instituto de Investigación Sanitaria La Paz (IdiPaz), 28049 Madrid, Spain; (A.I.R.); (A.C.)
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece;
| | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India;
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (L.G.)
| | - Letizia Giona
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (L.G.)
- PhD Program in Science of Nutrition, Metabolism, Aging and Gender-Related Diseases, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andreas Daiber
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Antonio Cuadrado
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), National Institute of Health Carlos III (ISCIII), Instituto de Investigación Sanitaria La Paz (IdiPaz), 28049 Madrid, Spain; (A.I.R.); (A.C.)
| | - Fabio Di Domenico
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
17
|
Pauzaite T, Nathan JA. A closer look at the role of deubiquitinating enzymes in the Hypoxia Inducible Factor pathway. Biochem Soc Trans 2024; 52:2253-2265. [PMID: 39584532 PMCID: PMC11668284 DOI: 10.1042/bst20230861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
Hypoxia Inducible transcription Factors (HIFs) are central to the metazoan oxygen-sensing response. Under low oxygen conditions (hypoxia), HIFs are stabilised and govern an adaptive transcriptional programme to cope with prolonged oxygen starvation. However, when oxygen is present, HIFs are continuously degraded by the proteasome in a process involving prolyl hydroxylation and subsequent ubiquitination by the Von Hippel Lindau (VHL) E3 ligase. The essential nature of VHL in the HIF response is well established but the role of other enzymes involved in ubiquitination is less clear. Deubiquitinating enzymes (DUBs) counteract ubiquitination and provide an important regulatory aspect to many signalling pathways involving ubiquitination. In this review, we look at the complex network of ubiquitination and deubiquitination in controlling HIF signalling in normal and low oxygen tensions. We discuss the relative importance of DUBs in opposing VHL, and explore roles of DUBs more broadly in hypoxia, in both VHL and HIF independent contexts. We also consider the catalytic and non-catalytic roles of DUBs, and elaborate on the potential benefits and challenges of inhibiting these enzymes for therapeutic use.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| | - James A. Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| |
Collapse
|
18
|
Soni KK, Gurjar K, Ranjan A, Sinha S, Srivastava M, Verma V. Post-translational modifications control the signal at the crossroads of plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6957-6979. [PMID: 39177255 DOI: 10.1093/jxb/erae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
The co-evolution of plants and pathogens has enabled them to 'outsmart' each other by promoting their own defence responses and suppressing those of the other. While plants are reliant on their sophisticated immune signalling pathways, pathogens make use of effector proteins to achieve the objective. This entails rapid regulation of underlying molecular mechanisms for prompt induction of associated signalling events in both plants as well as pathogens. The past decade has witnessed the emergence of post-translational modification (PTM) of proteins as a key a factor in modulating cellular responses. The ability of PTMs to expand the functional diversity of the proteome and induce rapid changes at the appropriate time enables them to play crucial roles in the regulation of plant-pathogen interactions. Therefore, this review will delve into the intricate interplay of five major PTMs involved in plant defence and pathogen countermeasures. We discuss how plants employ PTMs to fortify their immune networks, and how pathogen effectors utilize/target host modification systems to gain entry into plants and cause disease. We also emphasize the need for identification of novel PTMs and propose the use of PTM pathways as potential targets for genome editing approaches.
Collapse
Affiliation(s)
- Kamlesh Kumar Soni
- Department of Biotechnology, AKS University, Satna, Madhya Pradesh-485001, India
| | - Kishan Gurjar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Aastha Ranjan
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Shashank Sinha
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Moumita Srivastava
- Plant Biotechnology and Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Thiruvananthapuram, Kerala-695014, India
| | - Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
- Plant Biotechnology Department, Gujarat Biotechnology University, Near Gujarat International Finance Tec City, Gandhinagar, Gujarat-382355, India
| |
Collapse
|
19
|
Xu R, Huang F, Liu Q, Lv Y, Hu L, Zhang Q. USP25 attenuates anti-GBM nephritis in mice by negative feedback regulation of Th17 cell differentiation. Ren Fail 2024; 46:2338932. [PMID: 38616174 PMCID: PMC11018034 DOI: 10.1080/0886022x.2024.2338932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/30/2024] [Indexed: 04/16/2024] Open
Abstract
PURPOSE This study aimed to elucidate the role of USP25 in a mouse model of anti-glomerular basement membrane glomerulonephritis (anti-GBM GN). METHODS USP25-deficient anti-GBM GN mice were generated, and their nephritis progression was monitored. Naïve CD4+ T cells were isolated from spleen lymphocytes and stimulated to differentiate into Th1, Th2, and Th17 cells. This approach was used to investigate the impact of USP25 on CD4+ T lymphocyte differentiation in vitro. Furthermore, changes in USP25 expression were monitored during Th17 differentiation, both in vivo and in vitro. RESULTS USP25-/- mice with anti-GBM GN exhibited accelerated renal function deterioration, increased infiltration of Th1 and Th17 cells, and elevated RORγt transcription. In vitro experiments demonstrated that USP25-/- CD4+ T lymphocytes had a higher proportion for Th17 cell differentiation and exhibited higher RORγt levels upon stimulation. Wild-type mice with anti-GBM GN showed higher USP25 levels compared to healthy mice, and a positive correlation was observed between USP25 levels and Th17 cell counts. Similar trends were observed in vitro. CONCLUSION USP25 plays a crucial role in mitigating renal histopathological and functional damage during anti-GBM GN in mice. This protective effect is primarily attributed to USP25's ability to inhibit the differentiation of naïve CD4+ T cells into Th17 cells. The underlying mechanism may involve the downregulation of RORγt. Additionally, during increased inflammatory responses or Th17 cell differentiation, USP25 expression is activated, forming a negative feedback regulatory loop that attenuates immune activation.
Collapse
Affiliation(s)
- Ranran Xu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Fei Huang
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qingquan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yongman Lv
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Health Management Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Liu Hu
- Health Management Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qian Zhang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
20
|
Behera A, Sachan D, Barik GK, Reddy ABM. Role of MARCH E3 ubiquitin ligases in cancer development. Cancer Metastasis Rev 2024; 43:1257-1277. [PMID: 39037545 DOI: 10.1007/s10555-024-10201-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Membrane-associated RING-CH (MARCH) E3 ubiquitin ligases, a family of RING-type E3 ubiquitin ligases, have garnered increased attention for their indispensable roles in immune regulation, inflammation, mitochondrial dynamics, and lipid metabolism. The MARCH E3 ligase family consists of eleven distinct members, and the dysregulation of many of these members has been documented in several human malignancies. Over the past two decades, extensive research has revealed that MARCH E3 ligases play pivotal roles in cancer progression by ubiquitinating key oncogenes and tumor suppressors and orchestrating various signaling pathways. Some MARCH E3s act as oncogenes, while others act as tumor suppressors, and the majority of MARCH E3s play both oncogenic and tumor suppressive roles in a context-dependent manner. Notably, there is special emphasis on the sole mitochondrial MARCH E3 ligase MARCH5, which regulates mitochondrial homeostasis within cancer cells. In this review, we delve into the diverse functions of MARCH E3 ligases across different cancer types, shedding light on the underlying molecular mechanisms mediating their effects, their regulatory effects on cancer and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepanshi Sachan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | | |
Collapse
|
21
|
Lei H, Xu H, Wu Y. Role of UCHL3 in health and disease. Biochem Biophys Res Commun 2024; 734:150626. [PMID: 39226739 DOI: 10.1016/j.bbrc.2024.150626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Ubiquitin C-terminal hydrolase 3 (UCHL3) is a cysteine protease that plays a crucial role in cell cycle regulation, DNA repair, and apoptosis by carrying out deubiquitination and deneddylation activities. It has emerged as a promising therapeutic target for certain cancers due to its ability to stabilize oncoproteins. The dysregulation of UCHL3 also has been associated with neurodegenerative diseases, underscoring its significance in maintaining protein homeostasis within cells. Research on UCHL3, including studies on Uchl3 knockout mice, has revealed its involvement in learning deficits, cellular stress responses, and retinal degeneration. This review delves into the cellular processes controlled by UCHL3 and its role in health and disease progression, as well as the development of UCHL3 inhibitors. Further investigation into the molecular mechanisms and physiological functions of UCHL3 is crucial for a comprehensive understanding of its impact on health and disease.
Collapse
Affiliation(s)
- Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Pathophysiology, Research Unit of Stress and Cancer, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Shanghai Jiao Tong University, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Sch Med, Shanghai 200025, China.
| |
Collapse
|
22
|
Kar A, Mukherjee S, Mukherjee S, Biswas A. Ubiquitin: A double-edged sword in hepatitis B virus-induced hepatocellular carcinoma. Virology 2024; 599:110199. [PMID: 39116646 DOI: 10.1016/j.virol.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Hepatitis B virus is one of the leading causes behind the neoplastic transformation of liver tissue and associated mortality. Despite the availability of many therapies and vaccines, the pathogenic landscape of the virus remains elusive; urging the development of novel strategies based on the fundamental infectious and transformative modalities of the virus-host interactome. Ubiquitination is a widely observed post-translational modification of several proteins, which either regulates the proteins' turnover or impacts their functionalities. In recent years, ample amount of literature has accumulated regarding the ubiquitination dynamics of the HBV proteins as well as the host proteins during HBV infection and carcinogenesis; with direct and detailed characterization of the involvement of HBV in these processes. Interestingly, while many of these ubiquitination events restrict HBV life cycle and carcinogenesis, several others promote the emergence of hepatocarcinoma by putting the virus in an advantageous position. This review sums up the snowballing literature on ubiquitination-mediated regulation of the host-HBV crosstalk, with special emphasis on its influence on the establishment and progression of hepatocellular carcinoma on a molecular level. With the advent of cutting-edge ubiquitination-targeted therapeutic approaches, the findings emanating from this review may potentiate the identification of novel anti-HBV targets for the formulation of novel anticancer strategies to control the HBV-induced hepato-carcinogenic process on a global scale.
Collapse
Affiliation(s)
- Arpita Kar
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sandipan Mukherjee
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Soumyadeep Mukherjee
- Department of in Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avik Biswas
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India.
| |
Collapse
|
23
|
Farnung J, Schulman BA. Ubiquitin is a chemist's playground. Nat Chem 2024; 16:1918. [PMID: 39482375 DOI: 10.1038/s41557-024-01660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Affiliation(s)
- Jakob Farnung
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
24
|
Bonelli S, Lo Pinto M, Ye Y, Müller SA, Lichtenthaler SF, Scilabra SD. Proteomic Characterization of Ubiquitin Carboxyl-Terminal Hydrolase 19 Deficient Cells Reveals a Role for USP19 in the Secretion of Lysosomal Proteins. Mol Cell Proteomics 2024; 23:100854. [PMID: 39389361 PMCID: PMC11617723 DOI: 10.1016/j.mcpro.2024.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Ubiquitin carboxyl-terminal hydrolase 19 (USP19) is a unique deubiquitinase, characterized by multiple variants generated by alternative splicing. Several variants bear a C-terminal transmembrane domain that anchors them to the endoplasmic reticulum. Other than regulating protein stability by preventing proteasome degradation, USP19 has been reported to rescue substrates from endoplasmic reticulum-associated protein degradation in a catalytic-independent manner, promote autophagy, and address proteins to lysosomal degradation via endosomal microautophagy. USP19 has recently emerged as the protein responsible for the unconventional secretion of misfolded proteins including Parkinson's disease-associated protein α-synuclein. Despite mounting evidence that USP19 plays crucial roles in several biological processes, the underlying mechanisms are unclear due to lack of information on the physiological substrates of USP19. Herein, we used high-resolution quantitative proteomics to analyze changes in the secretome and cell proteome induced by the loss of USP19 to identify proteins whose secretion or turnover is regulated by USP19. We found that ablation of USP19 induced significant proteomic alterations both in and out of the cell. Loss of USP19 impaired the release of several lysosomal proteins, including legumain (LGMN) and several cathepsins. In order to understand the underlaying mechanism, we dissected the USP19-regulated secretion of LGMN in several cell types. We found that LGMN was not a deubiquitinase substrate of USP19 and that its USP19-dependent release did not require their direct interaction. LGMN secretion occurred by a mechanism that involved the Golgi apparatus, autophagosome formation, and lysosome function. This mechanism resembled the recently described "lysosomal exocytosis," by which lysosomal hydrolases are secreted, when ubiquitination of p62 is increased in cells lacking deubiquitinases such as USP15 and USP17. In conclusion, our proteomic characterization of USP19 has identified a collection of proteins in the secretome and within the cell that are regulated by USP19, which link USP19 to the secretion of lysosomal proteins, including LGMN.
Collapse
Affiliation(s)
- Simone Bonelli
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Margot Lo Pinto
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephan A Müller
- Neuroproteomics Department, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- Neuroproteomics Department, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Simone Dario Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy.
| |
Collapse
|
25
|
Zhou J, Sang X, Wu M, Qian T, Ciechanover A, An J, Xu Y, Huang Z. Discovery of Novel Nonpeptidic Proteasome Inhibitors Using Covalent Virtual Screening and Biological Evaluation. ACS Med Chem Lett 2024; 15:1741-1748. [PMID: 39411540 PMCID: PMC11472392 DOI: 10.1021/acsmedchemlett.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Many reported proteasome inhibitors, including the three clinically approved inhibitors, bortezomib, carfilzomib, and ixazomib, have peptidic structures. In this study, using a hybrid and versatile strategy for covalent virtual screening by combining warhead screening and preprocessing with GOLD and CovDock software that were applied to the ZINC virtual library, we identified multiple proteasome inhibitors with new nonpeptidic structural scaffolds. Proteasome inhibition assays confirmed the inhibitory activities of these new compounds. These results demonstrate the effectiveness of our computational strategy for large-scale covalent virtual screening. Furthermore, these identified proteasome inhibitors may serve as starting points for the development of a new class of nonpeptidic therapeutic agents.
Collapse
Affiliation(s)
- Jiao Zhou
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xiaohong Sang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Meixian Wu
- Department
of Medicine, Division of Infectious Diseases and Global Public Health,
School of Medicine, University of California
at San Diego, La Jolla, California 92037, United States
| | - Tingli Qian
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Aaron Ciechanover
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Technion
Rappaport Integrated Cancer Center, The Rappaport Faculty of Medicine
and Research Institute, Technion-Israel
Institute of Technology, Haifa 3109601, Israel
| | - Jing An
- Department
of Medicine, Division of Infectious Diseases and Global Public Health,
School of Medicine, University of California
at San Diego, La Jolla, California 92037, United States
| | - Yan Xu
- Department
of Medicine, Division of Infectious Diseases and Global Public Health,
School of Medicine, University of California
at San Diego, La Jolla, California 92037, United States
| | - Ziwei Huang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Department
of Medicine, Division of Infectious Diseases and Global Public Health,
School of Medicine, University of California
at San Diego, La Jolla, California 92037, United States
| |
Collapse
|
26
|
Zhang R, Li C, Zhang S, Kong L, Liu Z, Guo Y, Sun Y, Zhang C, Yong Y, Lv J, Lu M, Liu M, Wu D, Zhang T, Yang H, Wei D, Chen Z, Bian H. UBE2S promotes glycolysis in hepatocellular carcinoma by enhancing E3 enzyme-independent polyubiquitination of VHL. Clin Mol Hepatol 2024; 30:771-792. [PMID: 38915206 PMCID: PMC11540382 DOI: 10.3350/cmh.2024.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND/AIMS Ubiquitination is widely involved in the progression of hepatocellular carcinoma (HCC) by regulating various cellular processes. However, systematic strategies for screening core ubiquitin-related genes, clarifying their functions and mechanisms, and ultimately developing potential therapeutics for patients with HCC are still lacking. METHODS Cox and LASSO regression analyses were performed to construct a ubiquitin-related gene prediction model for HCC. Loss- and gain-of-function studies, transcriptomic and metabolomics analysis were used to explore the function and mechanism of UBE2S on HCC cell glycolysis and growth. RESULTS Based on 1,423 ubiquitin-related genes, a four-gene signature was successfully constructed to evaluate the prognosis of patients with HCC. UBE2S was identified in this signature with the potential to predict the survival of patients with HCC. E2F2 transcriptionally upregulated UBE2S expression by directly binding to its promoter. UBE2S positively regulated glycolysis in a HIF-1α-dependent manner, thus promoting the proliferation of HCC cells. Mechanistically, UBE2S enhanced K11-linkage polyubiquitination at lysine residues 171 and 196 of VHL independent of E3 ligase, thereby indirectly stabilizing HIF-1α protein levels by mediating the degradation of VHL by the proteasome. In particular, the combination of cephalomannine, a small molecule compound that inhibits the expression of UBE2S, and PX-478, an inhibitor of HIF-1α, significantly improved the anti-tumor efficacy. CONCLUSION UBE2S is identified as a key biomarker in HCC among the thousands of ubiquitin-related genes and promotes glycolysis by E3 enzyme-independent ubiquitination, thus serving as a therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Renyu Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Can Li
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Shuai Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Lingmin Kong
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Zekun Liu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Yixiao Guo
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Ying Sun
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Cong Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Yule Yong
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Jianjun Lv
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Meng Lu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Man Liu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Dong Wu
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Tianjiao Zhang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Haijiao Yang
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Ding Wei
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Zhinan Chen
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| | - Huijie Bian
- Department of Cell Biology, National Translational Science
Center for Molecular Medicine, Fourth Military Medical University, Xi’an,
China
- State Key Laboratory of New Targets Discovery and Drug
Development for Major Diseases, Fourth Military Medical University, Xi’an,
China
| |
Collapse
|
27
|
Xie CK, Liao CY, Lin HY, Wu YD, Lu FC, Huang XX, Wang ZW, Li G, Lin CF, Hu JF, Chen YH, Li QW, Chen LQ, Chen HX, Chen S. Sulindac (K-80003) with nab-paclitaxel and gemcitabine overcomes drug-resistant pancreatic cancer. Mol Cancer 2024; 23:215. [PMID: 39350121 PMCID: PMC11441089 DOI: 10.1186/s12943-024-02128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
The Nab-paclitaxel combined with gemcitabine (AG) regimen is the main chemotherapy regimen for pancreatic cancer, but drug resistance often occurs. Currently, the ability to promote sensitization in drug-resistant cases is an important clinical issue, and the strategy of repurposing conventional drugs is a promising strategy. This study aimed to identify a classic drug that targets chemotherapy resistance's core signaling pathways and combine it with the AG regimen to enhance chemosensitivity. We also aimed to find reliable predictive biomarkers of drug combination sensitivity. Using RNA sequencing, we found that abnormal PI3K/Akt pathway activation plays a central role in mediating resistance to the AG regimen. Subsequently, through internal and external verification of randomly selected AG-resistant patient-derived organoid (PDO) and PDO xenograft models, we discovered for the first time that the classic anti-inflammatory drug sulindac K-80003, an inhibitor of the PI3K/Akt pathway that we focused on, promoted sensitization in half (14/28) of AG-resistant pancreatic ductal adenocarcinoma cases. Through RNA-sequencing, multiplex immunofluorescent staining, and immunohistochemistry experiments, we identified cFAM124A as a novel biomarker through which sulindac K-80003 promotes AG sensitization. Its role as a sensitization marker is explained via the following mechanism: cFAM124A enhances both the mRNA expression of cathepsin L and the activity of the cathepsin L enzyme. This dual effect stimulates the cleavage of RXRα, leading to large amounts of truncated RXRα, which serves as a direct target of K-80003. Consequently, this process results in the pathological activation of the PI3K/Akt pathway. In summary, our study provides a new treatment strategy and novel biological target for patients with drug-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Cheng-Ke Xie
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Cheng-Yu Liao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
- Fuzhou University, Fuzhou, 350001, China
| | - Hong-Yi Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yong-Ding Wu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Feng-Chun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiao-Xiao Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
- Fuzhou University, Fuzhou, 350001, China
| | - Zu-Wei Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
- Fuzhou University, Fuzhou, 350001, China
| | - Ge Li
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Cai-Feng Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
- Fuzhou University, Fuzhou, 350001, China
| | - Jian-Fei Hu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yin-Hao Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Qiao-Wei Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Fujian Provincial Center for Geriatrics, Fuzhou, 350001, China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, China
| | - Li-Qun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
- Institute of Applied Genomics, Fuzhou University, Fuzhou, 350108, China.
| | - Hui-Xing Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Fujian Medical University Cancer Center, Fuzhou, 350001, China.
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China.
- Fuzhou University, Fuzhou, 350001, China.
- Fujian Provincial Center for Geriatrics, Fuzhou, 350001, China.
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, China.
| |
Collapse
|
28
|
Ruscitti P, Currado D, Rivellese F, Vomero M, Navarini L, Cipriani P, Pitzalis C, Giacomelli R. Diminished expression of the ubiquitin-proteasome system in early treatment-naïve patients with rheumatoid arthritis and concomitant type 2 diabetes may be linked to IL-1 pathway hyper-activity; results from PEAC cohort. Arthritis Res Ther 2024; 26:171. [PMID: 39342401 PMCID: PMC11437779 DOI: 10.1186/s13075-024-03392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE Based on the recent evidence of IL-1 inhibition in patients with rheumatoid arthritis (RA) and concomitant type 2 diabetes (T2D), we evaluated the synovial tissue expression of IL-1 related genes in relationship to the ubiquitin-proteasome system and the effects of insulin on ubiquitinated proteins in fibroblast-like synoviocytes (FLSs). METHODS The synovial expression of IL-1 pathway genes was compared in early (< 1 year) treatment-naïve RA patients with T2D (RA/T2D n = 16) and age- and sex-matched RA patients without T2D (n = 16), enrolled in the Pathobiology of Early Arthritis Cohort (PEAC). The synovial expression of ubiquitin in macrophages and synovial lining fibroblasts was also assessed by Immunohistochemistry/immunofluorescence and correlated with synovial pathotypes. Finally, FLSs from RA patients (n = 5) were isolated and treated with human insulin (200 and 500 nM) and ubiquitinated proteins were assessed by western blot. RESULTS Synovial tissues of RA/T2D patients were characterised by a consistent reduced expression of ubiquitin-proteasome genes. More specifically, ubiquitin genes (UBB, UBC, and UBA52) and genes codifying proteasome subunits (PSMA2, PSMA6, PSMA7, PSMB1, PSMB3, PSMB4, PSMB6, PSMB8, PSMB9, PSMB10, PSMC1, PSMD9, PSME1, and PSME2) were significantly lower in RA/T2D patients. On the contrary, genes regulating fibroblast functions (FGF7, FGF10, FRS2, FGFR3, and SOS1), and genes linked to IL-1 pathway hyper-activity (APP, IRAK2, and OSMR) were upregulated in RA/T2D. Immunohistochemistry showed a significant reduction of the percentage of ubiquitin-positive cells in synovial tissues of RA/T2D patients. Ubiquitin-positive cells were also increased in patients with a lympho-myeloid pathotype compared to diffuse myeloid or pauci-immune-fibroid. Finally, in vitro experiments showed a reduction of ubiquitinated proteins in RA-FLSs treated with a high concentration of insulin (500 nM). CONCLUSIONS A different IL-1 pathway gene expression was observed in the synovial tissues of early treatment-naïve RA/T2D patients, linked to decreased expression of the ubiquitin-proteasome system. These findings may provide a mechanistic explanation of the observed clinical benefits of IL-1 inhibition in patients with RA and concomitant T2D.
Collapse
Affiliation(s)
- Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Delta 6 Building, PO box 67100, L'Aquila, Italy.
| | - Damiano Currado
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust & Barts Biomedical Research Centre (BRC) National Institute for Health and Care Research (NIHR), London, UK
| | - Marta Vomero
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Luca Navarini
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Paola Cipriani
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Delta 6 Building, PO box 67100, L'Aquila, Italy
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust & Barts Biomedical Research Centre (BRC) National Institute for Health and Care Research (NIHR), London, UK
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberto Giacomelli
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| |
Collapse
|
29
|
Guo Y, He H, Guan Y, Zhang L. Rad6 Regulates Conidiation by Affecting the Biotin Metabolism in Beauveria bassiana. J Fungi (Basel) 2024; 10:613. [PMID: 39330373 PMCID: PMC11433481 DOI: 10.3390/jof10090613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
Rad6 is a canonical ubiquitin-conjugating enzyme known for its role in regulating chromosome-related cellular processes in yeast and has been proven to have multiple functions in Beauveria bassiana, including insect-pathogenic lifestyle, UV damage repair, and conidiation. However, previous studies have only reported the key role of Rad6 in regulating conidial production in a nutrient-rich medium, without any deep mechanism analyses. In this study, we found that the disruption of Rad6 leads to a profound reduction in conidial production, irrespective of whether the fungus is cultivated in nutrient-rich or nutrient-poor environments. The absence of rad6 exerts a suppressive effect on the transcription of essential genes in the central developmental pathway, namely, brlA, abaA, and wetA, resulting in a direct downregulation of conidiation capacity. Additionally, mutant strains exhibited a more pronounced decline in both conidial generation and hyphal development when cultured in nutrient-rich conditions. This observation correlates with the downregulation of the central developmental pathway (CDP) downstream gene vosA and the upregulation of flaA in nutrient-rich cultures. Moreover, single-transcriptomics analyses indicated that irregularities in biotin metabolism, DNA repair, and tryptophan metabolism are the underlying factors contributing to the reduced conidial production. Comprehensive dual transcriptomics analyses pinpointed abnormal biotin metabolism as the primary cause of conidial production decline. Subsequently, we successfully restored conidial production in the Rad6 mutant strain through the supplementation of biotin, further confirming the transcriptomic evidence. Altogether, our findings underscore the pivotal role of Rad6 in influencing biotin metabolism, subsequently impacting the expression of CDP genes and ultimately shaping the asexual life cycle of B. bassiana.
Collapse
Affiliation(s)
- Yuhan Guo
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou 350108, China
| | - Haomin He
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yi Guan
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou 350108, China
| | - Longbin Zhang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
30
|
Nijhawan AK, Leshchev D, Hsu DJ, Chan AM, Rimmerman D, Hong J, Kosheleva I, Henning R, Kohlstedt KL, Chen LX. Unlocking the unfolded structure of ubiquitin: Combining time-resolved x-ray solution scattering and molecular dynamics to generate unfolded ensembles. J Chem Phys 2024; 161:035101. [PMID: 39007394 PMCID: PMC11257700 DOI: 10.1063/5.0217013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024] Open
Abstract
The unfolding dynamics of ubiquitin were studied using a combination of x-ray solution scattering (XSS) and molecular dynamics (MD) simulations. The kinetic analysis of the XSS ubiquitin signals showed that the protein unfolds through a two-state process, independent of the presence of destabilizing salts. In order to characterize the ensemble of unfolded states in atomic detail, the experimental XSS results were used as a constraint in the MD simulations through the incorporation of x-ray scattering derived potential to drive the folded ubiquitin structure toward sampling unfolded states consistent with the XSS signals. We detail how biased MD simulations provide insight into unfolded states that are otherwise difficult to resolve and underscore how experimental XSS data can be combined with MD to efficiently sample structures away from the native state. Our results indicate that ubiquitin samples unfolded in states with a high degree of loss in secondary structure yet without a collapse to a molten globule or fully solvated extended chain. Finally, we propose how using biased-MD can significantly decrease the computational time and resources required to sample experimentally relevant nonequilibrium states.
Collapse
Affiliation(s)
- Adam K. Nijhawan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Denis Leshchev
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Darren J. Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Arnold M. Chan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Dolev Rimmerman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Jiyun Hong
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kevin L. Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Lin X. Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
31
|
Tang Y, Wang T, Gu L, Xu Y, Yang Z, Zhu W, Zhang Q, Luo J, Cao J, Jiao Y. USP11 Exacerbates Radiation-Induced Pneumonitis by Activating Endothelial Cell Inflammatory Response via OTUD5-STING Signaling. Int J Radiat Oncol Biol Phys 2024; 119:1261-1274. [PMID: 38364946 DOI: 10.1016/j.ijrobp.2024.01.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE Radiation-induced pneumonitis (RIP) seriously limits the application of radiation therapy in the treatment of thoracic tumors, and its etiology and pathogenesis remain elusive. This study aimed to elucidate the role of ubiquitin-specific peptidase 11 (USP11) in the progression of RIP and the associated underlying mechanisms. METHODS AND MATERIALS Changes in cytokines and infiltrated immune cells were detected by enzyme-linked immunosorbent assays and immunohistochemistry after exposure to 20 Gy x-ray with whole-thorax irradiation. The effects of USP11 expression on endothelial cell proliferation and apoptosis were analyzed by costaining of CD31/Ki67 and CD31/caspase-3 in vivo, and the production of cytokines and reactive oxygen species was confirmed by reverse-transcription polymerase chain reaction and flow cytometry in vitro. Comprehensive proteome and ubiquitinome analyses were used for USP11 substrate screening after radiation. Results were verified by Western blotting and coimmunoprecipitation experiments. Recombinant adeno-associated virus lung vectors expressing OTUD5 were used for localized overexpression of OTUD5 in mouse pulmonary tissue, and immunohistochemistry was conducted to analyze cytokine expression. RESULTS The progression of RIP was significantly alleviated by reduced expression of proinflammatory cytokines in both Usp11-knockout (Usp11-/-) mice and in mice treated with the USP11 inhibitor mitoxantrone. Likewise, the absence of USP11 resulted in decreased permeability of pulmonary vessels and neutrophils and macrophage infiltration. The proliferation rates of endothelial cells were prominently increased in the Usp11-/- lung, whereas apoptosis in Usp11-/- lungs decreased after irradiation compared with that observed in Usp11+/+ lungs. Conversely, USP11 overexpression increased proinflammatory cytokine expression and reactive oxygen species production in endothelial cells after radiation. Comprehensive proteome and ubiquitinome analyses indicated that USP11 overexpression upregulates the expression of several deubiquitinating enzymes, including USP22, USP33, and OTUD5. We demonstrate that USP11 deubiquitinates OTUD5 and implicates the OTUD5-STING signaling pathway in the progression of the inflammatory response in endothelial cells. CONCLUSIONS USP11 exacerbates RIP by triggering an inflammatory response in endothelial cells both in vitro and in vivo, and the OTUD5-STING pathway is involved in the USP11-dependent promotion of RIP. This study provides experimental support for the development of precision intervention strategies targeting USP11 to mitigate RIP.
Collapse
Affiliation(s)
- Yiting Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Tingya Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Liming Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Zhao Yang
- Department of Respiratory Medicine, Suzhou Science & Technology Town Hospital, Suzhou, China
| | - Wei Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Qi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Judong Luo
- Department of Radiotherapy, Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China.
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
32
|
Lin Q, Zhu J, Zhu W, Zhu H, Li M, Zhao J, Jia S, Nie S. Prognostic value and drug sensitivity of F‑box and leucine‑rich repeat protein 6 in glioma. Oncol Lett 2024; 28:320. [PMID: 38807668 PMCID: PMC11130608 DOI: 10.3892/ol.2024.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/22/2024] [Indexed: 05/30/2024] Open
Abstract
Gliomas are highly malignant and invasive tumors lacking clear boundaries. Previous bioinformatics and experimental analyses have indicated that F-box and leucine-rich repeat protein 6 (FBXL6), a protein crucial for the cell cycle and tumorigenesis, is highly expressed in certain types of tumors. The high expression level of FBXL6 is reported to promote tumor growth and adversely affect patient survival. However, the molecular mechanism, prognostic value and drug sensitivity of FBXL6 in glioma remain unclear. To address this, the present study analyzed FBXL6 expression in gliomas, utilizing data from The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases. Analysis of FBXL6 mRNA expression levels, combined with patient factors such as age, sex and tumor grade using Kaplan-Meier plots and nomograms, demonstrated a strong correlation between FBXL6 expression and glioma progression. Co-expression networks provided further insights into the biological function of FBXL6. Additionally, using CIBERSORT and TISDB tools, the correlation between FBXL6 expression correlation tumor-infiltrating immune cells and immune genes was demonstrated to be statistically significant. These findings were validated by examining FBXL6 mRNA and protein levels in glioma tissues using various techniques, including western blot, reverse transcription-quantitative PCR and immunohistochemistry. These assays demonstrated the role of FBXL6 in glioma progression. Furthermore, drug sensitivity analysis demonstrated a strong correlation between FBXL6 expression and various drugs, which indicated that FBXL6 may potentially act as a future promising therapeutic target in glioma treatment. Therefore, the present study identified FBXL6 as a diagnostic and prognostic marker in patients with gliomas and highlighted its potential role in glioma progression.
Collapse
Affiliation(s)
- Qingyuan Lin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
- Department of Pathology, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jinchao Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
- Department of Pathology, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Weiyao Zhu
- Department of Pathology, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Honglin Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Meijun Li
- Department of Pathology, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jiaqi Zhao
- Department of Ultrasound, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200000, P.R. China
| | - Shouqiang Jia
- Department of Imaging, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250102, P.R. China
| | - Shengdong Nie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| |
Collapse
|
33
|
García‐Gomis D, López J, Calderón A, Andrés M, Ponte I, Roque A. Proteasome-dependent degradation of histone H1 subtypes is mediated by its C-terminal domain. Protein Sci 2024; 33:e4970. [PMID: 38591484 PMCID: PMC11002908 DOI: 10.1002/pro.4970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Histone H1 is involved in chromatin compaction and dynamics. In human cells, the H1 complement is formed by different amounts of somatic H1 subtypes, H1.0-H1.5 and H1X. The amount of each variant depends on the cell type, the cell cycle phase, and the time of development and can be altered in disease. However, the mechanisms regulating H1 protein levels have not been described. We have analyzed the contribution of the proteasome to the degradation of H1 subtypes in human cells using two different inhibitors: MG132 and bortezomib. H1 subtypes accumulate upon treatment with both drugs, indicating that the proteasome is involved in the regulation of H1 protein levels. Proteasome inhibition caused a global increase in cytoplasmatic H1, with slight changes in the composition of H1 bound to chromatin and chromatin accessibility and no alterations in the nucleosome repeat length. The analysis of the proteasome degradation pathway showed that H1 degradation is ubiquitin-independent. The whole protein and its C-terminal domain can be degraded directly by the 20S proteasome in vitro. Partial depletion of PA28γ revealed that this regulatory subunit contributes to H1 degradation within the cell. Our study shows that histone H1 protein levels are under tight regulation to prevent its accumulation in the nucleus. We revealed a new regulatory mechanism for histone H1 degradation, where the C-terminal disordered domain is responsible for its targeting and degradation by the 20S proteasome, a process enhanced by the regulatory subunit PA28γ.
Collapse
Affiliation(s)
- D. García‐Gomis
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - J. López
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - A. Calderón
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - M. Andrés
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - I. Ponte
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - A. Roque
- Biochemistry and Molecular Biology Department, Biosciences FacultyUniversitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
34
|
Gong Y, Dai L. Decoding Ubiquitin Modifications by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:1-18. [PMID: 39546132 DOI: 10.1007/978-981-97-7288-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Protein ubiquitination is a critical and widely distributed post-translational modification (PTM) involved in the regulation of almost every cellular process and pathway in cells, such as proteostasis, DNA repair, trafficking, and immunity. Mass spectrometry (MS)-based proteomics is a robust tool to decode the complexity of ubiquitin networks by disclosing the proteome-wide ubiquitination sites, the length, linkage and topology of ubiquitin chains, the chemical modification of ubiquitin chains, and the crosstalk between ubiquitination and other PTMs. In this chapter, we discuss the application of MS in the interpretation of the ubiquitin code.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
35
|
Ma M, Cao R, Tian Y, Fu X. Ubiquitination and Metabolic Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:47-79. [PMID: 39546135 DOI: 10.1007/978-981-97-7288-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The increasing incidence of metabolic diseases, including obesity, type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD), in the past decade is a serious concern worldwide. Disruption of cellular protein homeostasis has been considered as a crucial contributor to the pathogenesis of metabolic diseases. To maintain protein homeostasis, cells have evolved multiple dynamic and self-regulating quality control processes to adapt new environmental conditions and prevent prolonged damage. Among them, the ubiquitin proteasome system (UPS), the primary proteolytic pathway for degradation of aberrant proteins via ubiquitination, has an essential role in maintaining cellular homeostasis in response to intracellular stress. Correspondingly, accumulating evidences have shown that dysregulation of ubiquitination can aggravate various metabolic derangements in many tissues, including the liver, skeletal muscle, pancreas, and adipose tissue, and is involved in the initiation and progression of diverse metabolic diseases. In this part, we will summarize the role of ubiquitination in the pathogenesis of metabolic diseases, including obesity, T2DM and NAFLD, and discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Meilin Ma
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Rong Cao
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yan Tian
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
36
|
Xiu L, Ma B, Ding L. Antioncogenic roles of USP9Y and DDX3Y in lung cancer: USP9Y stabilizes DDX3Y by preventing its degradation through deubiquitination. Acta Histochem 2024; 126:152132. [PMID: 38217953 DOI: 10.1016/j.acthis.2023.152132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/29/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
In previous studies, downregulation of USP9Y and DDX3Y in lung cancer (LC) tissues was identified, while their function in LC progression remains elusive. In our current work, we intended to elucidate the effect and mechanisms of USP9Y and DDX3Y in LC. Gene downregulation has been confirmed in our LC tissues and cells. The effect of USP9Y or DDX3Y on LC cell malignancies was analyzed by functional assay. Both USP9Y and DDX3Y overexpression showed suppressive impact on LC cell malignancies. USP9Y overexpression has also been demonstrated to inhibit tumorigenesis in vivo. Based on GEPIA database, it was found that there was a positive correlation between the levels of USP9Y and DDX3Y in LC tissues. The mRNA expression of DDX3Y was not affected by USP9Y overexpression, while its protein levels were significantly up-regulated in USP9Y overexpressed LC cells. Moreover, USP9Y interacted with DDX3Y and has been demonstrated to stabilize DDX3Y expression by preventing its degradation via deubiquitination. In conclusion, USP9Y and DDX3Y exerted antioncogenic effects on the cell proliferation potential, cell cycle process, apoptosis, and tumorigenesis of LC. USP9Y binds to DDX3Y to prevent DDX3Y degradation through deubiquitination.
Collapse
Affiliation(s)
- Lei Xiu
- Department of Thoracic and Cardiac Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Bo Ma
- Department of General Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Lili Ding
- Department of Obstetrics and Gynecology Examination, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001 China.
| |
Collapse
|
37
|
Glab-Ampai K, Mahasongkram K, Chulanetra M, Saenlom T, Thueng-In K, Sookrung N, Chaicumpa W. Human super antibody to viral RNA-dependent RNA polymerase produced by a modified Sortase self-cleave-bacteria surface display system. Microb Cell Fact 2023; 22:260. [PMID: 38110987 PMCID: PMC10726597 DOI: 10.1186/s12934-023-02267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND RNA-dependent RNA polymerase (RdRp) is a good target of anti-RNA virus agents; not only it is pivotal for the RNA virus replication cycle and highly conserved among RNA viruses across different families, but also lacks human homolog. Recently, human single-chain antibody (HuscFv) that bound to thumb domain of hepatitis C virus (HCV) RNA-dependent RNA polymerase (functionalized NS5B protein) was produced and engineered into cell-penetrating antibody (super antibody) in the form of cell-penetrating peptide (penetratin, PEN)-linked HuscFv (PEN-HuscFv34). The super antibody was produced and purified from inclusion body (IB) of a pen-huscfv34-vector-transformed Escherichia coli. The super antibody inhibited replication of alpha- and beta- coronaviruses, flaviviruses, and picornaviruses that were tested (broadly effective); thus, it has high potential for developing further towards a pan-anti-RNA virus agent. However, production, purification, and refolding of the super antibody molecules from the bacterial IB are laborious and hurdles to large-scale production. Therefore, in this study, Sortase-self-cleave method and bacteria surface display system were combined and modified for the super antibody production. METHODS AND RESULTS BL21 (DE3) ΔA E. coli, a strain lacking predominant outer membrane protein (OmpA) and ion and OmpT proteases, that displayed a membrane-anchored fusion protein, i.e., chimeric lipoprotein (Lpp')-OmpA', SUMO, Sortase protease, Sortase cleavage site (LPET↓G) and PEN-HuscFv34-6× His was generated. The soluble PEN-HuscFv34-6× His with glycine at the N-terminus could be released from the E. coli surface, simply by incubating the bacterial cells in a Sortase-cleavage buffer. After centrifugation, the G-PEN-HuscFv34-6× His could be purified from the supernatant. The purified G-PEN-HuscFv34-6× retained original cell-penetrating ability (being super antibody) and the broadly effective anti-RNA virus activity of the original IB-derived-PEN-HuscFv34. CONCLUSION The functionalized super antibody to RNA virus RdRp was successfully produced by using combined Sortase self-cleave and bacterial surface display systems with modification. The display system is suitable for downstream processing in a large-scale production of the super antibody. It is applicable also for production of other recombinant proteins in soluble free-folding form.
Collapse
Affiliation(s)
- Kantaphon Glab-Ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kodchakorn Mahasongkram
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thanatsaran Saenlom
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kanyarat Thueng-In
- School of Pathology, Translational Medicine Program, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Nitat Sookrung
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Biomedical Research Incubation Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
38
|
Kudriaeva AA, Yakubova LA, Saratov GA, Vladimirov VI, Lipkin VM, Belogurov AA. Topology of Ubiquitin Chains in the Chromatosomal Environment of the E3 Ubiquitin Ligase RNF168. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2063-2072. [PMID: 38462450 DOI: 10.1134/s000629792312009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 03/12/2024]
Abstract
Genome stability is critical for normal functioning of cells, it depends on accuracy of DNA replication, chromosome segregation, and DNA repair. Cellular defense mechanisms against DNA damage are important for preventing cancer development and aging. The E3 ubiquitin ligase RNF168 of the RING superfamily is an essential component of the complex responsible for ubiquitination of the H2A/H2A.X histones near DNA double-strand breaks, which is a key step in attracting repair factors to the damage site. In this study, we unequivocally showed that RNF168 does not have the ability to directly distinguish architecture of polyubiquitin chains, except for the tropism of its two ubiquitin-binding domains UDM1/2 to K63 ubiquitin chains. Analysis of intracellular chromatosomal environment of the full-length RNF168 and its domains using the ligand-induced bioluminescence resonance energy transfer (BRET) revealed that the C-terminal part of UDM1 is associated with the K63 ubiquitin chains; RING and the N-terminal part of UDM2 are sterically close to the K63- and K48-ubiquitin chains, while the C-terminal part of UDM1 is co-localized with all possible ubiquitin variants. Our observations together with the available structural data suggest that the C-terminal part of UDM1 binds the K63 polyubiquitin chains on the linker histone H1; RING and the N-terminal part of UDM2 are located in the central part of nucleosome and sterically close to H1 and K48-ubiquitinated alternative substrates of RNF168, such as JMJD2A/B demethylases, while the C-terminal part of UDM1 is in the region of activated ubiquitin residue associated with E2 ubiquitin ligase, engaged by RNF168.
Collapse
Affiliation(s)
- Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Lyudmila A Yakubova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - George A Saratov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Vasiliy I Vladimirov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Valeriy M Lipkin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexey A Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
39
|
Vela-Rodríguez C, Scarpulla I, Ashok Y, Lehtiö L. Discovery of DTX3L inhibitors through a homogeneous FRET-based assay that monitors formation and removal of poly-ubiquitin chains. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:365-375. [PMID: 37579950 DOI: 10.1016/j.slasd.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Ubiquitination is a reversible protein post-translational modification in which consequent enzymatic activity results in the covalent linking of ubiquitin to a target protein. Once ubiquitinated, a protein can undergo multiple rounds of ubiquitination on multiple sites or form poly-ubiquitin chains. Ubiquitination regulates various cellular processes, and dysregulation of ubiquitination has been associated with more than one type of cancer. Therefore, efforts have been carried out to identify modulators of the ubiquitination cascade. Herein, we present the development of a FRET-based assay that allows us to monitor ubiquitination activity of DTX3L, a RING-type E3 ubiquitin ligase. Our method shows a good signal window with a robust average Z' factor of 0.76 on 384-well microplates, indicating a good assay for screening inhibitors in a high-throughput setting. From a validatory screening experiment, we have identified the first molecules that inhibit DTX3L with potencies in the low micromolar range. We also demonstrate that the method can be expanded to study deubiquitinases, such as USP28, that reduce FRET due to hydrolysis of fluorescent poly-ubiquitin chains.
Collapse
Affiliation(s)
- Carlos Vela-Rodríguez
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Ilaria Scarpulla
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Yashwanth Ashok
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland.
| |
Collapse
|
40
|
He T, Wen C, Yang G, Yang X. Targeted Protein Degradation: Principles, Strategies, and Applications. Adv Biol (Weinh) 2023; 7:e2300083. [PMID: 37518856 DOI: 10.1002/adbi.202300083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/11/2023] [Indexed: 08/01/2023]
Abstract
Protein degradation is a general process to maintain cell homeostasis. The intracellular protein quality control system mainly includes the ubiquitin-proteasome system and the lysosome pathway. Inspired by the physiological process, strategies to degrade specific proteins have developed, which emerge as potent and effective tools in biological research and drug discovery. This review focuses on recent advances in targeted protein degradation techniques, summarizing the principles, advantages, and challenges. Moreover, the potential applications and future direction in biological science and clinics are also discussed.
Collapse
Affiliation(s)
- Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Chenxi Wen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
41
|
Xu H, Hu R, Zhao Z. DegronMD: Leveraging Evolutionary and Structural Features for Deciphering Protein-Targeted Degradation, Mutations, and Drug Response to Degrons. Mol Biol Evol 2023; 40:msad253. [PMID: 37992195 PMCID: PMC10701100 DOI: 10.1093/molbev/msad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
Protein-targeted degradation is an emerging and promising therapeutic approach. The specificity of degradation and the maintenance of cellular homeostasis are determined by the interactions between E3 ubiquitin ligase and degradation signals, known as degrons. The human genome encodes over 600 E3 ligases; however, only a small number of targeted degron instances have been identified so far. In this study, we introduced DegronMD, an open knowledgebase designed for the investigation of degrons, their associated dysfunctional events, and drug responses. We revealed that degrons are evolutionarily conserved and tend to occur near the sites of protein translational modifications, particularly in the regions of disordered structure and higher solvent accessibility. Through pattern recognition and machine learning techniques, we constructed the degrome landscape across the human proteome, yielding over 18,000 new degrons for targeted protein degradation. Furthermore, dysfunction of degrons disrupts the degradation process and leads to the abnormal accumulation of proteins; this process is associated with various types of human cancers. Based on the estimated phenotypic changes induced by somatic mutations, we systematically quantified and assessed the impact of mutations on degron function in pan-cancers; these results helped to build a global mutational map on human degrome, including 89,318 actionable mutations that may induce the dysfunction of degrons and disrupt protein degradation pathways. Multiomics integrative analysis unveiled over 400 drug resistance events associated with the mutations in functional degrons. DegronMD, accessible at https://bioinfo.uth.edu/degronmd, is a useful resource to explore the biological mechanisms, infer protein degradation, and assist with drug discovery and design on degrons.
Collapse
Affiliation(s)
- Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ruifeng Hu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Advanced Parkinson Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
42
|
Radmall KS, Shukla PK, Leng AM, Chandrasekharan MB. Structure-function analysis of histone H2B and PCNA ubiquitination dynamics using deubiquitinase-deficient strains. Sci Rep 2023; 13:16731. [PMID: 37794081 PMCID: PMC10550974 DOI: 10.1038/s41598-023-43969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023] Open
Abstract
Post-translational covalent conjugation of ubiquitin onto proteins or ubiquitination is important in nearly all cellular processes. Steady-state ubiquitination of individual proteins in vivo is maintained by two countering enzymatic activities: conjugation of ubiquitin by E1, E2 and E3 enzymes and removal by deubiquitinases. Here, we deleted one or more genes encoding deubiquitinases in yeast and evaluated the requirements for ubiquitin conjugation onto a target protein. Our proof-of-principle studies demonstrate that absence of relevant deubiquitinase(s) provides a facile and versatile method that can be used to study the nuances of ubiquitin conjugation and deubiquitination of target proteins in vivo. We verified our method using mutants lacking the deubiquitinases Ubp8 and/or Ubp10 that remove ubiquitin from histone H2B or PCNA. Our studies reveal that the C-terminal coiled-domain of the adapter protein Lge1 and the C-terminal acidic tail of Rad6 E2 contribute to monoubiquitination of histone H2BK123, whereas the distal acidic residues of helix-4 of Rad6, but not the acidic tail, is required for monoubiquitination of PCNA. Further, charged substitution at alanine-120 in the H2B C-terminal helix adversely affected histone H2BK123 monoubiquitination by inhibiting Rad6-Bre1-mediated ubiquitin conjugation and by promoting Ubp8/Ubp10-mediated deubiquitination. In summary, absence of yeast deubiquitinases UBP8 and/or UBP10 allows uncovering the regulation of and requirements for ubiquitin addition and removal from their physiological substrates such as histone H2B or PCNA in vivo.
Collapse
Affiliation(s)
- Kaitlin S Radmall
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Prakash K Shukla
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Andrew M Leng
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
- Huntsman Cancer Institute, University of Utah School of Medicine, 2000, Circle of Hope, Room 3715, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
43
|
Radmall KS, Shukla PK, Leng AM, Chandrasekharan MB. Structure-function analysis of histone H2B and PCNA ubiquitination dynamics using deubiquitinase-deficient strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.18.545485. [PMID: 37873190 PMCID: PMC10592830 DOI: 10.1101/2023.06.18.545485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Post-translational covalent conjugation of ubiquitin onto proteins or ubiquitination is important in nearly all cellular processes. Steady-state ubiquitination of individual proteins in vivo is maintained by two countering enzymatic activities: conjugation of ubiquitin by E1, E2 and E3 enzymes and removal by deubiquitinases. Here, we deleted one or more genes encoding deubiquitinases in yeast and evaluated the requirements for ubiquitin conjugation onto a target protein. Our proof-of-principle studies demonstrate that absence of relevant deubiquitinase(s) provides a facile and versatile method that can be used to study the nuances of ubiquitin conjugation and deubiquitination of target proteins in vivo . We verified our method using mutants lacking the deubiquitinases Ubp8 and/or Ubp10 that remove ubiquitin from histone H2B or PCNA. Our studies reveal that the C-terminal coiled-domain of the adapter protein Lge1 and the C-terminal acidic tail of Rad6 E2 contribute to monoubiquitination of histone H2BK123, whereas the distal acidic residues of helix-4 of Rad6, but not the acidic tail, is required for monoubiquitination of PCNA. Further, charged substitution at alanine-120 in the H2B C-terminal helix adversely affected histone H2BK123 monoubiquitination by inhibiting Rad6-Bre1-mediated ubiquitin conjugation and by promoting Ubp8/Ubp10-mediated deubiquitination. In summary, absence of yeast deubiquitinases UBP8 and/or UBP10 allows uncovering the regulation of and requirements for ubiquitin addition and removal from their physiological substrates such as histone H2B or PCNA in vivo .
Collapse
|
44
|
Wang X, Jiang Y, Feng B, Ma X, Zhang K, Yang F, Liu Z, Yang L, Yue J, Lu L, Song D, Guo Q, Qi J, Li X, Wang M, Zhang H, Huang J, Zhao M, Liu S. PJA1 mediates the effects of astrocytic GPR30 on learning and memory in female mice. J Clin Invest 2023; 133:e165812. [PMID: 37712419 PMCID: PMC10503807 DOI: 10.1172/jci165812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/19/2023] [Indexed: 09/16/2023] Open
Abstract
Hormone replacement therapy (HRT) is not recommended for treating learning and memory decline in menopausal women because it exerts adverse effects by activating classic estrogen receptors ERα and ERβ. The membrane estrogen receptor G protein-coupled receptor 30 (GPR30) has been reported to be involved in memory modulation; however, the underlying mechanisms are poorly understood. Here, we found that GPR30 deletion in astrocytes, but not in neurons, impaired learning and memory in female mice. Astrocytic GPR30 depletion induced A1 phenotype transition, impairing neuronal function. Further exploration revealed that Praja1 (PJA1), a RING ubiquitin ligase, mediated the effects of astrocytic GPR30 on learning and memory by binding to Serpina3n, which is a molecular marker of neuroinflammation in astrocytes. GPR30 positively modulated PJA1 expression through the CREB signaling pathway in cultured murine and human astrocytes. Additionally, the mRNA levels of GPR30 and PJA1 were reduced in exosomes isolated from postmenopausal women while Serpina3n levels were increased in the plasma. Together, our findings suggest a key role for astrocytic GPR30 in the learning and memory abilities of female mice and identify GPR30/PJA1/Serpina3n as potential therapeutic targets for learning and memory loss in peri- and postmenopausal women.
Collapse
Affiliation(s)
| | - Yongli Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy and
| | - Xue Ma
- Department of Pharmacology, School of Pharmacy and
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy and
| | - Fan Yang
- Department of Pharmacology, School of Pharmacy and
| | - Zhenguo Liu
- Department of Pharmacy, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiao Yue
- Department of Pharmacology, School of Pharmacy and
| | - Liang Lu
- Department of Pharmacology, School of Pharmacy and
| | - Dake Song
- Department of Pharmacology, School of Pharmacy and
| | - Qingjuan Guo
- Department of Pharmacology, School of Pharmacy and
| | - Jingyu Qi
- Department of Pharmacology, School of Pharmacy and
| | - Xubo Li
- Department of Pharmacology, School of Pharmacy and
| | - Min Wang
- Department of Pharmacology, School of Pharmacy and
| | - Huinan Zhang
- Department of Health Management, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jing Huang
- Department of Health Management, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Shuibing Liu
- Department of Pharmacology, School of Pharmacy and
| |
Collapse
|
45
|
Jiang Q, Zhu Z, Mao X. Ubiquitination is a major modulator for the activation of inflammasomes and pyroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194955. [PMID: 37331650 DOI: 10.1016/j.bbagrm.2023.194955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Inflammasomes are a central node of the innate immune defense system against the threat of homeostatic perturbance caused by pathogenic organisms or host-derived molecules. Inflammasomes are generally composed of multimeric protein complexes that assemble in the cytosol after sensing danger signals. Activated inflammasomes promote downstream proteolytic activation, which triggers the release of pro-inflammatory cytokines therefore inducing pyroptotic cell death. The inflammasome pathway is finely tuned by various mechanisms. Recent studies found that protein post-translational modifications such as ubiquitination also modulate inflammasome activation. Targeting the ubiquitination modification of the inflammasome pathway might be a promising strategy for related diseases. In this review, we extensively discuss the advances in inflammasome activation and pyroptosis modulated by ubiquitination which help in-depth understanding and controlling the inflammasome and pyroptosis in various diseases.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhigang Zhu
- Division of Hematology & Oncology, Department of Geriatrics, Guangzhou First People's Hospital, College of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
46
|
Yan W, Zhong Y, Hu X, Xu T, Zhang Y, Kales S, Qu Y, Talley DC, Baljinnyam B, LeClair CA, Simeonov A, Polster BM, Huang R, Ye Y, Rai G, Henderson MJ, Tao D, Fang S. Auranofin targets UBA1 and enhances UBA1 activity by facilitating ubiquitin trans-thioesterification to E2 ubiquitin-conjugating enzymes. Nat Commun 2023; 14:4798. [PMID: 37558718 PMCID: PMC10412574 DOI: 10.1038/s41467-023-40537-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
UBA1 is the primary E1 ubiquitin-activating enzyme responsible for generation of activated ubiquitin required for ubiquitination, a process that regulates stability and function of numerous proteins. Decreased or insufficient ubiquitination can cause or drive aging and many diseases. Therefore, a small-molecule enhancing UBA1 activity could have broad therapeutic potential. Here we report that auranofin, a drug approved for the treatment of rheumatoid arthritis, is a potent UBA1 activity enhancer. Auranofin binds to the UBA1's ubiquitin fold domain and conjugates to Cys1039 residue. The binding enhances UBA1 interactions with at least 20 different E2 ubiquitin-conjugating enzymes, facilitating ubiquitin charging to E2 and increasing the activities of seven representative E3s in vitro. Auranofin promotes ubiquitination and degradation of misfolded ER proteins during ER-associated degradation in cells at low nanomolar concentrations. It also facilitates outer mitochondrial membrane-associated degradation. These findings suggest that auranofin can serve as a much-needed tool for UBA1 research and therapeutic exploration.
Collapse
Affiliation(s)
- Wenjing Yan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Tuan Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yinghua Zhang
- Center for Innovative Biomedical Resources, Biosensor Core, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Stephen Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yanyan Qu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Daniel C Talley
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Christopher A LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA.
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Program in Oncology, UM Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
47
|
Han D, Wang L, Jiang S, Yang Q. The ubiquitin-proteasome system in breast cancer. Trends Mol Med 2023:S1471-4914(23)00096-5. [PMID: 37328395 DOI: 10.1016/j.molmed.2023.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Ubiquitin-proteasome system (UPS) is a selective proteolytic system that is associated with the expression or function of target proteins and participates in various physiological and pathological processes of breast cancer. Inhibitors targeting the 26S proteasome in combination with other drugs have shown promising therapeutic effects in the clinical treatment of breast cancer. Moreover, several inhibitors/stimulators targeting other UPS components are also effective in preclinical studies, but have not yet been applied in the clinical treatment of breast cancer. Therefore, it is vital to comprehensively understand the functions of ubiquitination in breast cancer and to identify potential tumor promoters or tumor suppressors among UPS family members, with the aim of developing more effective and specific inhibitors/stimulators targeting specific components of this system.
Collapse
Affiliation(s)
- Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shan Jiang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Research Institute of Breast Cancer, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
48
|
Luo W, Zhang G, Wang Z, Wu Y, Xiong Y. Ubiquitin-specific proteases: Vital regulatory molecules in bone and bone-related diseases. Int Immunopharmacol 2023; 118:110075. [PMID: 36989900 DOI: 10.1016/j.intimp.2023.110075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Stabilization of bone structure and function involves multiple cell-to-cell and molecular interactions, in which the regulatory functions of post-translational modifications such as ubiquitination and deubiquitination shouldn't be underestimated. As the largest family of deubiquitinating enzymes, the ubiquitin-specific proteases (USPs) participate in the development of bone homeostasis and bone-related diseases through multiple classical osteogenic and osteolytic signaling pathways, such as BMP/TGF-β pathway, NF-κB/p65 pathway, EGFR-MAPK pathway and Wnt/β-catenin pathway. Meanwhile, USPs may also broadly regulate regulate hormone expression level, cell proliferation and differentiation, and may further influence bone homeostasis from gene fusion and nuclear translocation of transcription factors. The number of patients with bone-related diseases is currently enormous, making exploration of their pathogenesis and targeted therapy a hot topic. Pathological increases in the levels of inflammatory mediators such as IL-1β and TNF-α lead to inflammatory bone diseases such as osteoarthritis, rheumatoid arthritis and periodontitis. While impaired body metabolism greatly increases the probability of osteoporosis. Abnormal physiological activity of bone-associated cells results in a variety of bone tumors. The regulatory role of USPs in bone-related disease has received particular attention from academics in recent studies. In this review, we focuse on the roles and mechanisms of USPs in bone homeostasis and bone-related diseases, with the expectation of informing targeted therapies in the clinic.
Collapse
Affiliation(s)
- Wenxin Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhanqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
49
|
Teng L, Zhang X, Wang R, Lin K, Zeng M, Chen H, Cao F. miRNA transcriptome reveals key miRNAs and their targets contributing to the difference in Cd tolerance of two contrasting maize genotypes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114881. [PMID: 37030049 DOI: 10.1016/j.ecoenv.2023.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Soil cadmium (Cd) contamination is a global environmental and food safety production issue. microRNAs (miRNAs) are proven to be involved in plant growth and development, and abiotic/biotic stress response, but their role in Cd tolerance is largely unknown in maize. To understand the genetic basis of Cd tolerance, two maize genotypes differing in Cd tolerance (L42, a sensitive genotype and L63, a tolerant genotype) were selected, and miRNA sequencing was carried out at nine-day-old seedlings exposed to 24 h Cd stress (5 μM CdCl2). A total of 151 differentially expressed miRNAs were identified, including 20 known miRNAs and 131 novel miRNAs. The results revealed that 90 and 22 miRNAs were up-regulated and down-regulated by Cd in Cd-tolerant genotype L63, and there were 23 and 43 miRNAs in Cd-sensitive genotype L42, respectively. Twenty-six miRNAs were up-regulated in L42 and unchanged or down-regulated in L63, or unchanged in L42 and down-regulated in L63. There were 108 miRNAs that were up-regulated in L63 and unchanged or down-regulated in L42, or unchanged in L63 and down-regulated in L42. Their target genes were enriched mainly in peroxisomes, glutathione (GSH) metabolism, ABC transporter, and ubiquitin-protease system. Among them, target genes involved in the peroxisome pathway and GSH metabolism might play key roles in Cd tolerance in L63. Besides, several ABC transporters which might involve in Cd uptake and transport were identified. The differentially expressed miRNAs or target genes could be used for breeding low grain Cd accumulation and high Cd tolerance cultivars in maize.
Collapse
Affiliation(s)
- Lidong Teng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xueqing Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Runfeng Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Kaina Lin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Meng Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Hao Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
50
|
Deficiency of Carbamoyl Phosphate Synthetase 1 Engenders Radioresistance in Hepatocellular Carcinoma via Deubiquitinating c-Myc. Int J Radiat Oncol Biol Phys 2023; 115:1244-1256. [PMID: 36423742 DOI: 10.1016/j.ijrobp.2022.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Tumor radiation resistance is the main obstacle to effective radiation therapy for patients with hepatocellular carcinoma (HCC). We identified the role of urea cycle key enzyme carbamoyl phosphate synthetase 1 (CPS1) in radioresistance of HCC and explored its mechanism, aiming to provide a novel radiosensitization strategy for the CPS1-deficiency HCC subtype. METHODS AND MATERIALS The expression of CPS1 was measured by western blot and immunohistochemistry. Cell growth assay, EdU assay, cell apoptosis assay, cell cycle assay, clone formation assay, and subcutaneous tumor assay were performed to explore the relationship between CPS1 and radioresistance of HCC cells. Lipid metabonomic analysis was used for investigating the effects of CPS1 on lipid synthesis of HCC cells. RNA sequencing and coimmunoprecipitation assay were carried out to reveal the mechanism of CPS1 participating in the regulation of HCC radiation therapy resistance. Furthermore, 10074-G5, the specific inhibitor of c-Myc, was administered to HCC cells to investigate the role of c-Myc in CPS1-deficiency HCC cells. RESULTS We found that urea cycle key enzyme CPS1 was frequently lower in human HCC samples and positively associated with the patient's prognosis. Functionally, the present study proved that CPS1 depletion could accelerate the development of HCC and induce radiation resistance of HCC in vitro and in vivo, and deficiency of CPS1 promoted the synthesis of some lipid molecules. Regarding the mechanism, we uncovered that inhibition of CPS1 upregulated CyclinA2 and CyclinD1 by stabilizing oncoprotein c-Myc at the posttranscriptional level and generated radioresistance of HCC cells. Moreover, inactivation of c-Myc using 10074-G5, a specific c-Myc inhibitor, could partially attenuate the proliferation and radioresistance induced by depletion of CPS1. CONCLUSIONS Our results recapitulated that silencing CPS1 could promote HCC progression and radioresistance via c-Myc stability mediated by the ubiquitin-proteasome system, suggesting that targeting c-Myc in CPS1-deficiency HCC subtype may be a valuable radiosensitization strategy in the treatment of HCC.
Collapse
|