1
|
Zuo CJ, Tian J. Advancing the understanding of the role of apoptosis in lung cancer immunotherapy: Global research trends, key themes, and emerging frontiers. Hum Vaccin Immunother 2025; 21:2488074. [PMID: 40186454 PMCID: PMC11980473 DOI: 10.1080/21645515.2025.2488074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/12/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025] Open
Abstract
Apoptosis is vital for improving the efficacy of lung cancer (LC) immunotherapy by targeting cancer cell elimination. Despite its importance, there is a lack of comprehensive bibliometric studies analyzing global research on apoptosis in LC immunotherapy. This analysis aims to address this gap by highlighting key trends, contributors, and future directions. A total of 969 publications from 1996 to 2024 were extracted from the Web of Science Core Collection. Analysis was conducted using VOSviewer, CiteSpace, and the R package 'bibliometrix.' The study included contributions from 6,894 researchers across 1,469 institutions in 61 countries, with research published in 356 journals. The volume of publications has steadily increased, led by China and the United States, with Sichuan University as the top contributor. The journal Cancers published the most articles, while Cancer Research had the highest co-citations. Yu-Quan Wei was the leading author, and Jemal, A. was the most frequently co-cited. Key research themes include "cell death mechanisms," "immune regulation," "combination therapies," "gene and nanomedicine applications," and "traditional Chinese medicine (TCM)." Future research is likely to focus on "coordinated regulation of multiple cell death pathways," "modulation of the tumor immune microenvironment," "optimization of combination therapies," "novel strategies in gene regulation," and the "integration of TCM" for personalized treatment. This is the first bibliometric analysis on the role of apoptosis in LC immunotherapy, providing an landscape of global research patterns and emerging therapeutic strategies. The findings offer insights to guide future research and optimize treatment approaches.
Collapse
Affiliation(s)
- Chun-Jian Zuo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Peura A, Turpin R, Liu R, Heilala M, Salmela M, Aung J, Mikkonen P, Mutka M, Kovanen PE, Niinikoski L, Meretoja T, Mattson J, Heikkilä P, Palanne P, Kantanen T, Kilpeläinen M, Ukkonen O, Hollmén M, Tervonen TA, Klefström J, Munne PM. Soft matrix promotes immunosuppression in tumor-resident immune cells via COX-FGF2 signaling. Nat Commun 2025; 16:4908. [PMID: 40425576 PMCID: PMC12116891 DOI: 10.1038/s41467-025-60092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Mechanical forces of the tumor microenvironment change dynamically during key events of tumorigenesis such as invasion and metastasis. These changes in compressive forces often affect the breast cancer cell phenotype. However, it is lesser known how these dynamic mechanical forces in the tumor microenvironment affect the phenotypes of tumor infiltrated leukocytes (TIL) and their subsequent anticancer activities. Here we find, in primary patient-derived explant cultures (PDEC) containing resident TILs, that low compression promotes a change in the original identity of breast cancer cells from luminal to a more mesenchymal and undifferentiated state. These altered tumor cells induce an upregulation of immunosuppressive cytokines such as interleukin-10 (IL-10) and Transforming Growth Factor Beta (TGF-β), as well as polarization of macrophages towards pro-tumor M2(Gc)-type and depletion of CD8+ effector memory T-cells. These immunosuppressive events are mediated by tumor cell derived fibroblast growth factor 2 (FGF2) and prostaglandin E2 (PGE2). We also find that FGF2 rich areas in primary tumors show enrichment in M2-like-macrophages and diminished numbers of CD8 + T and B-cells. Our results suggest that low compressive forces in the tumor microenvironment induce local immunosuppression via FGF2 secretion arising from phenotypic plasticity of tumor cells.
Collapse
Affiliation(s)
- Aino Peura
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, & Medicum, University of Helsinki, Helsinki, Finland
| | - Rita Turpin
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, & Medicum, University of Helsinki, Helsinki, Finland
- Medicity Research Laboratory, University of Turku, Tykistökatu 6A, Turku, Finland
| | - Ruixian Liu
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, & Medicum, University of Helsinki, Helsinki, Finland
| | - Maria Heilala
- Department of Applied Physics, Aalto University, Espoo, Finland
| | - Maria Salmela
- Finnish Genome Editing Center, HiLIFE infrastructures, University of Helsinki and Biocenter Finland, Helsinki, Finland
| | - July Aung
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, & Medicum, University of Helsinki, Helsinki, Finland
| | - Piia Mikkonen
- UPM Biomedicals, UPM-Kymmene Corporation, Helsinki, Finland
| | - Minna Mutka
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Panu E Kovanen
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Laura Niinikoski
- Breast Surgery Unit, Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tuomo Meretoja
- Breast Surgery Unit, Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Johanna Mattson
- Comprehensive Cancer Center, University of Helsinki & Helsinki University Hospital, Helsinki, Finland
| | - Päivi Heikkilä
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Päivi Palanne
- Department of Surgery, Kymenlaakso Central Hospital, KYMSOTE, Kotka, Finland
| | - Tiina Kantanen
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Mikko Kilpeläinen
- Department of Surgery, Kymenlaakso Central Hospital, KYMSOTE, Kotka, Finland
| | - Outi Ukkonen
- Department of Surgery, Kymenlaakso Central Hospital, KYMSOTE, Kotka, Finland
| | - Maija Hollmén
- Medicity Research Laboratory, University of Turku, Tykistökatu 6A, Turku, Finland
| | - Topi A Tervonen
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, & Medicum, University of Helsinki, Helsinki, Finland
- Finnish Genome Editing Center, HiLIFE infrastructures, University of Helsinki and Biocenter Finland, Helsinki, Finland
| | - Juha Klefström
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, & Medicum, University of Helsinki, Helsinki, Finland.
- Finnish Cancer Institute, Helsinki, Finland.
- FICAN South, Helsinki University Hospital, Helsinki, Finland.
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, UCSF Campus, San Francisco, CA, USA.
| | - Pauliina M Munne
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine Research Program, Research Programs Unit, & Medicum, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Zhou Y, Lu Y, Czubayko F, Chen J, Zheng S, Mo H, Liu R, Weber GF, Grützmann R, Pilarsky C, David P. Identification of Cancer Associated Fibroblasts Related Genes Signature to Facilitate Improved Prediction of Prognosis and Responses to Therapy in Patients with Pancreatic Cancer. Int J Mol Sci 2025; 26:4876. [PMID: 40430018 PMCID: PMC12112120 DOI: 10.3390/ijms26104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/30/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic cancer (PC) is highly aggressive, with a 5-year survival rate of 12.8%, making early detection vital. However, non-specific symptoms and precursor lesions complicate diagnosis. Existing tools for the early detection of PC are limited. CAFs are crucial in cancer progression, invasion, and metastasis, yet their role in PC is poorly understood. This study analyzes mRNA data from PC samples to identify CAF-related genes and drugs for PC treatment using algorithms like EPIC, xCell, MCP-counter, and TIDE to quantify CAF infiltration. Weighted gene co-expression network analysis (WGCNA) identified 26 hub genes. Our analyses revealed eight prognostic genes, leading to establishing a six-gene model for assessing prognosis. Correlation analysis showed that the CAF risk score correlates with CAF infiltration and related markers. We also identified six potential drugs, observing significant differences between high-CAF and low-CAF risk groups. High CAF risk scores were associated with lower responses to immunotherapy and higher tumor mutation burdens. GSEA indicated that these scores are enriched in tumor microenvironment pathways. In summary, these six model genes can predict overall survival and responses to chemotherapy and immunotherapy for pancreatic cancer, offering valuable insights for future clinical strategies.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (Y.Z.); (Y.L.); (F.C.); (J.C.); (S.Z.); (H.M.); (R.L.); (G.F.W.); (R.G.)
| | - Yanxi Lu
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (Y.Z.); (Y.L.); (F.C.); (J.C.); (S.Z.); (H.M.); (R.L.); (G.F.W.); (R.G.)
| | - Franziska Czubayko
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (Y.Z.); (Y.L.); (F.C.); (J.C.); (S.Z.); (H.M.); (R.L.); (G.F.W.); (R.G.)
| | - Jisheng Chen
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (Y.Z.); (Y.L.); (F.C.); (J.C.); (S.Z.); (H.M.); (R.L.); (G.F.W.); (R.G.)
| | - Shuwen Zheng
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (Y.Z.); (Y.L.); (F.C.); (J.C.); (S.Z.); (H.M.); (R.L.); (G.F.W.); (R.G.)
| | - Huaqing Mo
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (Y.Z.); (Y.L.); (F.C.); (J.C.); (S.Z.); (H.M.); (R.L.); (G.F.W.); (R.G.)
| | - Rui Liu
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (Y.Z.); (Y.L.); (F.C.); (J.C.); (S.Z.); (H.M.); (R.L.); (G.F.W.); (R.G.)
| | - Georg F. Weber
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (Y.Z.); (Y.L.); (F.C.); (J.C.); (S.Z.); (H.M.); (R.L.); (G.F.W.); (R.G.)
- Deutsches Zentrum für Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (Y.Z.); (Y.L.); (F.C.); (J.C.); (S.Z.); (H.M.); (R.L.); (G.F.W.); (R.G.)
- Deutsches Zentrum für Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (Y.Z.); (Y.L.); (F.C.); (J.C.); (S.Z.); (H.M.); (R.L.); (G.F.W.); (R.G.)
| | - Paul David
- Department of Surgery, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (Y.Z.); (Y.L.); (F.C.); (J.C.); (S.Z.); (H.M.); (R.L.); (G.F.W.); (R.G.)
| |
Collapse
|
4
|
Wang Y, Zhu N, Liu J, Chen F, Song Y, Ma Y, Yang Z, Wang D. Role of tumor microenvironment in ovarian cancer metastasis and clinical advancements. J Transl Med 2025; 23:539. [PMID: 40369674 PMCID: PMC12079989 DOI: 10.1186/s12967-025-06508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy worldwide, characterized by heterogeneity at the molecular, cellular and anatomical levels. Most patients are diagnosed at an advanced stage, characterized by widespread peritoneal metastasis. Despite optimal cytoreductive surgery and platinum-based chemotherapy, peritoneal spread and recurrence of OC are common, resulting in poor prognoses. The overall survival of patients with OC has not substantially improved over the past few decades, highlighting the urgent necessity of new treatment options. Unlike the classical lymphatic and hematogenous metastasis observed in other malignancies, OC primarily metastasizes through widespread peritoneal seeding. Tumor cells (the "seeds") exhibit specific affinities for certain organ microenvironments (the "soil"), and metastatic foci can only form when there is compatibility between the "seeds" and "soil." Recent studies have highlighted the tumor microenvironment (TME) as a critical factor influencing the interactions between the "seeds" and "soil," with ascites and the local peritoneal microenvironment playing pivotal roles in the initiation and progression of OC. Prior to metastasis, the interplay among tumor cells, immunosuppressive cells, and stromal cells leads to the formation of an immunosuppressive pre-metastatic niche in specific sites. This includes characteristic alterations in tumor cells, recruitment and functional anomalies of immune cells, and dysregulation of stromal cell distribution and function. TME-mediated crosstalk between cancer and stromal cells drives tumor progression, therapy resistance, and metastasis. In this review, we summarize the current knowledge on the onset and metastatic progression of OC. We provide a comprehensive discussion of the characteristics and functions of TME related to OC metastasis, as well as its association with peritoneal spread. We also outline ongoing relevant clinical trials, aiming to offer new insights for identifying potential effective biomarkers and therapeutic targets in future clinical practice.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Na Zhu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Jing Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Fang Chen
- Department of Gynecology, People's Hospital of Liaoning Province, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Yang Song
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yue Ma
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Zhuo Yang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| |
Collapse
|
5
|
Cai W, Fan T, Xiao C, Deng Z, Liu Y, Li C, He J. Neutrophils in cancer: At the crucial crossroads of anti-tumor and pro-tumor. Cancer Commun (Lond) 2025. [PMID: 40296668 DOI: 10.1002/cac2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Neutrophils are important components of the immune system and play a key role in defending against pathogenic infections and responding to inflammatory cues, including cancer. Their dysregulation indicates potential disease risk factors. However, their functional importance in disease progression has often been underestimated due to their short half-life, especially as there is limited information on the role of intratumoral neutrophils. Recent studies on their prominent role in cancer have led to a paradigm shift in our understanding of the functional diversity of neutrophils. These studies highlight that neutrophils have emerged as key components of the tumor microenvironment, where they can play a dual role in promoting and suppressing cancer. Moreover, several approaches to therapeutically target neutrophils have emerged, and clinical trials are investigating their efficacy. In this review, we discussed the involvement of neutrophils in cancer initiation and progression. We summarized recent advances in therapeutic strategies targeting neutrophils and, most importantly, suggested future research directions that could facilitate the manipulation of neutrophils for therapeutic purposes in cancer patients.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
6
|
Ji S, Cao L, Gao J, Du Y, Ye Z, Lou X, Liu F, Zhang Y, Xu J, Shi X, Wang H, Li P, Li Y, Chen H, Yang Z, Gao S, Zhang W, Huang D, Ni S, Wei M, Wang F, Wang Y, Ding T, Jing D, Fan G, Gong Z, Lu R, Qin Y, Chen J, Xu X, Wang P, Zhang B, Ding L, Robles AI, Rodriguez H, Chang DK, Hruban RH, Gao D, Gao D, Jin G, Zhou H, Wu J, Yu X. Proteogenomic characterization of non-functional pancreatic neuroendocrine tumors unravels clinically relevant subgroups. Cancer Cell 2025; 43:776-796.e14. [PMID: 40185092 DOI: 10.1016/j.ccell.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/27/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
The majority of neuroendocrine neoplasms in pancreas are non-functional pancreatic neuroendocrine tumors (NF-PanNETs), which exhibit a high occurrence of distant metastases with limited therapeutic options. Here, we perform a comprehensive molecular characterization of 108 NF-PanNETs through integrative analysis of genomic, transcriptomic, proteomic, and phosphoproteomic profiles. Proteogenomic analysis provides functional insights into the genomic driver alterations of NF-PanNETs, revealing a potential mediator of MEN1 alterations using Men1-conditional knockout mice. Machine-learning-based modeling uncovers a three-protein signature as an independent prognostic factor, which is validated by an independent external cohort. Proteomic and phosphoproteomic-based stratification identifies four subtypes with distinct molecular characteristics, immune microenvironments, and clinicopathological features. Drug screening using patient-derived tumor organoids identifies cyclin-dependent kinase (CDK) 5 and Calcium Voltage-Gated Channel Subunit Alpha1 D (CACNA1D) as ubiquitous and subtype-specific targets, respectively, with in vivo validation using xenograft models. Together, our proteogenomic analyses illustrate a comprehensive molecular landscape of NF-PanNETs, revealing biological insights and therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Lihua Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jing Gao
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Du
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Fen Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yehan Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junfeng Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Penghao Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Yikai Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Hongxu Chen
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhicheng Yang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Dan Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Shujuan Ni
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Miaoyan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Fei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Tian Ding
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Desheng Jing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Zhiyun Gong
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Renquan Lu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Jie Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NewYork, NY 10029, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Ding
- Department of Medicine, McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Ralph H Hruban
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Daming Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China.
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shanghai Institute of Materia Medica-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Jianmin Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing 100142, China; Peking University International Cancer Institute, Peking University, Beijing 100191, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China.
| |
Collapse
|
7
|
Wachter E, Fox LH, Lu Z, Jones AD, Casto ND, Waltz SE. RON Receptor Signaling and the Tumor Microenvironment. Genes (Basel) 2025; 16:437. [PMID: 40282397 PMCID: PMC12026484 DOI: 10.3390/genes16040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
The immune microenvironment plays a critical role in tumor growth and development. Immune activation within the tumor microenvironment is dynamic and can be modulated by tumor intrinsic and extrinsic signaling. The RON receptor tyrosine kinase is canonically associated with growth signaling and wound healing, and this receptor is frequently overexpressed in a variety of cancers. Epithelial cells, macrophages, dendritic cells, and fibroblasts express RON, presenting an important axis by which RON overexpressing tumors influence the tumor microenvironment. This review synthesizes the existing literature on the roles of tumor cell-intrinsic and -extrinsic RON signaling, highlighting areas of interest and gaps in knowledge that show potential for future studies.
Collapse
Affiliation(s)
- Emily Wachter
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Levi H. Fox
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Zhixin Lu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Angelle D. Jones
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Nicholas D. Casto
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
- Research Service, Cincinnati Veterans Affairs Hospital Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
8
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2025; 292:1520-1557. [PMID: 39083441 PMCID: PMC11970718 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of BiologyComplutense UniversityMadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sCanada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Nima Taefehshokr
- Apoptosis Research CentreChildren's Hospital of Eastern Ontario Research InstituteOttawaCanada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Faculty Academy of Silesia, Faculty of MedicineKatowicePoland
- Children Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
| |
Collapse
|
9
|
Li M, Liu Y, Liu F, Chen Q, Xu L, Cheng Z, Tan Y, Liu Z. Extracellular Vesicle-Based Antitumor Nanomedicines. Adv Healthc Mater 2025; 14:e2403903. [PMID: 39935134 DOI: 10.1002/adhm.202403903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/30/2024] [Indexed: 02/13/2025]
Abstract
Extracellular vesicles (EVs) have emerged as promising bioactive carriers for delivering therapeutic agents, including nucleic acids, proteins, and small-molecule drugs, owing to their excellent physicochemical stability and biocompatibility. However, comprehensive reviews on the various types of EV-based nanomedicines for cancer therapy remain scarce. This review explores the potential of EVs as antitumor nanomedicines. Methods for EV extraction, drug loading, and engineering modifications are systematically examined, and the strengths and limitations of these technical approaches are critically assessed. Additionally, key strategies for developing EV-based antitumor therapies are highlighted. Finally, the opportunities and challenges associated with advancing EVs toward clinical translation are discussed. With the integration of multiple disciplines, robust EV-based therapeutic platforms are expected to be manufactured to provide more personalized and effective solutions for oncology patients.
Collapse
Affiliation(s)
- Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Fei Liu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhongyu Cheng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, 410008, P. R. China
| |
Collapse
|
10
|
Shi Z, Hu C, Li Q, Sun C. Cancer-Associated Fibroblasts as the "Architect" of the Lung Cancer Immune Microenvironment: Multidimensional Roles and Synergistic Regulation with Radiotherapy. Int J Mol Sci 2025; 26:3234. [PMID: 40244052 PMCID: PMC11989671 DOI: 10.3390/ijms26073234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs), as the "architect" of the immune microenvironment in lung cancer, play a multidimensional role in tumor progression and immune regulation. In this review, we summarize the heterogeneity of the origin and the molecular phenotype of CAFs in lung cancer, and explore the complex interactions between CAFs and multiple components of the tumor microenvironment, including the regulatory relationships with innate immune cells (e.g., tumor-associated macrophages, tumor-associated neutrophils), adaptive immune cells (e.g., T cells), and extracellular matrix (ECM). CAFs significantly influence tumor progression and immunomodulation through the secretion of cytokines, remodeling of the ECM, and the regulation of immune cell function significantly affects the immune escape and treatment resistance of tumors. In addition, this review also deeply explored the synergistic regulatory relationship between CAF and radiotherapy, revealing the key role of CAF in radiotherapy-induced remodeling of the immune microenvironment, which provides a new perspective for optimizing the comprehensive treatment strategy of lung cancer. By comprehensively analyzing the multidimensional roles of CAF and its interaction with radiotherapy, this review aims to provide a theoretical basis for the precise regulation of the immune microenvironment and clinical treatment of lung cancer.
Collapse
Affiliation(s)
- Zheng Shi
- School of Biopharmaceutical and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
11
|
Novizio N, Belvedere R, Palazzo M, Varricchio S, Merolla F, Staibano S, Ilardi G, Petrella A. Annexin A1 Is Involved in the Antitumor Effects of 5-Azacytidine in Human Oral Squamous Carcinoma Cells. Cancers (Basel) 2025; 17:1058. [PMID: 40227604 PMCID: PMC11988024 DOI: 10.3390/cancers17071058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Background: the treatment of squamous cell carcinomas of the oral cavity (OSCCs) is limited by the lack of reliable diagnostic/prognostic, and predictive markers, as well as by intrinsic tumor cell heterogeneity. 5-azacytidine (5-AZA) offers opportunities for cancer cell reprogramming to develop new target-specific treatments. The protein annexin A1 (ANXA1) is downregulated in head and neck squamous cell carcinoma (HNSCC), correlated with pathological differentiation grade. Objectives: this work aimed to further investigate the role of ANXA1 in OSCC progression based on 5-AZA activity. Methods: we used CAL27 and CAL33 cell lines, which differ in drug sensitivity and differentiation status. Results: CAL27 showed a higher expression of the stemness markers compared to CAL33 cells, but this positivity was lost after treatment with 5-AZA. This drug also decreased CAL27 cell motility, promoting a less aggressive phenotype. Moreover, 5-AZA increased ANXA1 expression only in CAL27. After siRNA-mediated downmodulation, we witnessed a significant rise in cell motility and the inversion of E-/N-cadherin expression, which was reverted again by 5-AZA. To investigate the role of exogenous ANXA1 derived from the tumor microenvironment, we treated CAL27 with Ac2-26, an ANXA1 mimetic peptide. Interestingly, we found that this peptide alone showed impacts similar to 5-AZA in reversing the aggressive phenotype. All these effects were not evidenced in CAL33 cells. Finally, to prove the loop of the exogenous protein, we detected increased expression of its receptors, formyl peptide receptors (FPRs), and their activation, leading to oncosuppressor effects. Conclusions: we propose that ANXA1 mediates the effects of 5-AZA only in poorly differentiated stemlike CAL27 cell lines. This suggests the relevance of ANXA1 as a diagnostic/prognostic biomarker in OSCCs, paving the way for personalized therapies to overcome treatment difficulties.
Collapse
Affiliation(s)
- Nunzia Novizio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (M.P.)
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (M.P.)
| | - Mariangela Palazzo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (M.P.)
| | - Silvia Varricchio
- Pathology Section, Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (S.V.); (S.S.); (G.I.)
| | - Francesco Merolla
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy;
| | - Stefania Staibano
- Pathology Section, Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (S.V.); (S.S.); (G.I.)
| | - Gennaro Ilardi
- Pathology Section, Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (S.V.); (S.S.); (G.I.)
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (M.P.)
| |
Collapse
|
12
|
Zheng D, Qin L, Lv J, Che M, He B, Zheng Y, Lin S, Qi Y, Li M, Tang Z, Wang BC, Wu YL, Weinkove R, Carson G, Yao Y, Wong N, Lau J, Thiery JP, Qin D, Pan B, Xu K, Zhang Z, Li P. CD4 + anti-TGF-β CAR T cells and CD8 + conventional CAR T cells exhibit synergistic antitumor effects. Cell Rep Med 2025; 6:102020. [PMID: 40107245 PMCID: PMC11970399 DOI: 10.1016/j.xcrm.2025.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/02/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Transforming growth factor (TGF)-β1 restricts the expansion, survival, and function of CD4+ T cells. Here, we demonstrate that CD4+ but not CD8+ anti-TGF-β CAR T cells (T28zT2 T cells) can suppress tumor growth partly through secreting Granzyme B and interferon (IFN)-γ. TGF-β1-treated CD4+ T28zT2 T cells persist well in peripheral blood and tumors, maintain their mitochondrial form and function, and do not cause in vivo toxicity. They also improve the expansion and persistence of untransduced CD8+ T cells in vivo. Tumor-infiltrating CD4+ T28zT2 T cells are enriched with TCF-1+IL7R+ memory-like T cells, express NKG2D, and downregulate T cell exhaustion markers, including PD-1 and LAG3. Importantly, a combination of CD4+ T28zT2 T cells and CD8+ anti-glypican-3 (GPC3) or anti-mesothelin (MSLN) CAR T cells exhibits augmented antitumor effects in xenografts. These findings suggest that rewiring TGF-β signaling with T28zT2 in CD4+ T cells is a promising strategy for eradicating solid tumors.
Collapse
Affiliation(s)
- Diwei Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Le Qin
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiang Lv
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Meihui Che
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bingjia He
- Department of Radiology, Translational Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongfang Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shouheng Lin
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuekun Qi
- Blood Disease Institution, Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ming Li
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhaoyang Tang
- Guangdong Zhaotai Cell Biology Technology Ltd., Foshan, China
| | - Bin-Chao Wang
- Guangdong Lung Cancer Institute, Guangdong General Hospital (GGH) & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital (GGH) & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Georgia Carson
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Yao Yao
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Nathalie Wong
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - James Lau
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Dajiang Qin
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Pan
- Blood Disease Institution, Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Blood Disease Institution, Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenfeng Zhang
- Department of Radiology, Translational Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| |
Collapse
|
13
|
Yuan Z, Wang JH, Cui H, Wang SY, Wei B, Cui JX. Mapping the landscape of gastric cancer immunotherapy: Bibliometric insights into advances and hotspots. World J Gastrointest Oncol 2025; 17:100997. [PMID: 40092931 PMCID: PMC11866247 DOI: 10.4251/wjgo.v17.i3.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Immunotherapy has surfaced as a promising therapeutic modality for gastric cancer (GC). A comprehensive review of advancements, current status, and research trends in GC immunotherapy is essential to inform future investigative efforts. AIM To delineate the trends, advancements, and focal points in immunotherapy for GC. METHODS We performed a bibliometric analysis of 2906 articles in English concerning GC immunotherapy published from 2000 to December 20, 2023, indexed in the Web of Science Core Collection. Data analysis and visualization were facilitated by CiteSpace (6.1.6R), VOSviewer v.1.6.17, and GraphPad Prism v8.0.2. RESULTS There has been an increase in the annual publication rate of GC immunotherapy research. China leads in publication volume, while the United States demonstrates the highest citation impact. Fudan University is notable for its citation frequency and publication output. Co-citation analysis and keyword frequency revealed and highlighted a focus on GC prognosis, the tumor microenvironment (TME), and integrative immunotherapy with targeted therapy. Emerging research areas include gastroesophageal junction cancer, adoptive immunotherapy, and the role of Treg cell in immunotherapy. CONCLUSION GC immunotherapy research is an expanding field attracting considerable scientific interest. With the clinical adoption of immunotherapy in GC, the primary goals are to enhance treatment efficacy and patient outcomes. Unlike hematological malignancies, GC's solid TME presents distinct immunological challenges that may attenuate the cytotoxic effects of immune cells on cancer cells. For instance, although CAR-T therapy is effective in hematological malignancies, it has underperformed in GC settings. Current research is centered on overcoming immunosuppression within the TME, with a focus on combinations of targeted therapy, adoptive immunotherapy, Treg cell dynamics, and precise prognosis prediction in immunotherapy. Additionally, immunotherapy's role in treating gastroesophageal junction cancer has become a novel research focus.
Collapse
Affiliation(s)
- Zhen Yuan
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing-Hang Wang
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Cui
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shu-Yuan Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wei
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jian-Xin Cui
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
14
|
Cui X, Song Y, Han J, Yuan Z. The multifaceted role of SMAD4 in immune cell function. Biochem Biophys Rep 2025; 41:101902. [PMID: 39802394 PMCID: PMC11721226 DOI: 10.1016/j.bbrep.2024.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The Transforming Growth Factor-beta (TGF-β) signaling pathway, with SMAD4 as its central mediator, plays a pivotal role in regulating cellular functions, including growth, differentiation, apoptosis, and immune responses. While extensive research has elucidated SMAD4's role in tumorigenesis, its functions within immune cells remain underexplored. This review synthesizes current knowledge on SMAD4's diverse roles in various immune cells such as T cells, B cells, dendritic cells, and macrophages, highlighting its impact on immune homeostasis and pathogen response. Understanding SMAD4's role in immune cells is crucial, as its dysregulation can lead to autoimmune disorders, chronic inflammation, and immune deficiencies. The review emphasizes the significance of SMAD4 in immune regulation, proposing that deeper investigation could reveal novel therapeutic targets for immune-mediated conditions. Insights into SMAD4's involvement in processes like T cell differentiation, B cell class switch recombination, and macrophage polarization underscore its potential as a therapeutic target for a range of diseases, including autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Xinmu Cui
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Yu Song
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Jianfeng Han
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
- Cellular Biomedicine Group Inc, Shanghai, 201203, China
| | - Zhaoxin Yuan
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| |
Collapse
|
15
|
Sererols-Viñas L, Garcia-Vicién G, Ruiz-Blázquez P, Lee TF, Lee YA, Gonzalez-Sanchez E, Vaquero J, Moles A, Filliol A, Affò S. Hepatic Stellate Cells Functional Heterogeneity in Liver Cancer. Semin Liver Dis 2025; 45:33-51. [PMID: 40043738 DOI: 10.1055/a-2551-0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Hepatic stellate cells (HSCs) are the liver's pericytes, and play key roles in liver homeostasis, regeneration, fibrosis, and cancer. Upon injury, HSCs activate and are the main origin of myofibroblasts and cancer-associated fibroblasts (CAFs) in liver fibrosis and cancer. Primary liver cancer has a grim prognosis, ranking as the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) being the predominant type, followed by intrahepatic cholangiocarcinoma (iCCA). Moreover, the liver hosts 35% of all metastatic lesions. The distinct spatial distribution and functional roles of HSCs across these malignancies represent a significant challenge for universal therapeutic strategies, requiring a nuanced and tailored understanding of their contributions. This review examines the heterogeneous roles of HSCs in liver cancer, focusing on their spatial localization, dynamic interactions within the tumor microenvironment (TME), and emerging therapeutic opportunities, including strategies to modulate their activity, and harness their potential as targets for antifibrotic and antitumor interventions.
Collapse
Affiliation(s)
- Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paloma Ruiz-Blázquez
- University of Barcelona, Barcelona, Spain
- Tissue Remodeling Fibrosis and Cancer Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IDIBAPS), Barcelona, Spain
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Ting-Fang Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Youngmin A Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ester Gonzalez-Sanchez
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| | - Javier Vaquero
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Anna Moles
- Tissue Remodeling Fibrosis and Cancer Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IDIBAPS), Barcelona, Spain
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Aveline Filliol
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Silvia Affò
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
16
|
Kao CC, Shih JW, Huynh HTLK, Chang CH, Lawal B, Iamsaard S, Azizah N, Ritmaleni R, Lin JKY, Huang PY, Wu AT, Liu MC. Nutraceutical Evaluation of Trigonelline's Therapeutic Potential by Targeting Bladder Cancer Stem Cells and Cancer-Associated Fibroblasts via Downregulation of TGFβ3/GLI2/YAP1 Signaling Hub. Int J Med Sci 2025; 22:1194-1207. [PMID: 40027190 PMCID: PMC11866525 DOI: 10.7150/ijms.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Trigonelline (TGN), an alkaloid identified in medicinal plants such as coffee (Coffea spp.) and fenugreek (Trigonella foenum-graecum), has demonstrated significant anticancer properties across various malignancies, yet its efficacy in bladder cancer (BLCA) remains underappreciated. This study investigates TGN's role in modulating cancer stem cells (CSCs) and the tumor microenvironment (TME), two key contributors to BLCA progression and chemoresistance. Through comprehensive bioinformatics analyses of BLCA patient datasets, a TGY signature (TGFβ3, GLI2, YAP1) was identified as a critical signaling hub associated with poor prognosis, therapeutic resistance, and CSC generation. Computational docking studies revealed TGN's high binding affinity to the TGY signature, TGFβ3 (ΔG = -3.9 kcal/mol), GLI2 (ΔG = -4.2 kcal/mol), YAP1 (ΔG = -3.4 kcal/mol), suggesting its potential to disrupt this signaling axis. In vitro experiments demonstrated that TGN effectively inhibited BLCA cell proliferation, colony formation, and tumorspheroid growth while significantly enhancing cisplatin sensitivity in resistant cell lines. Notably, TGN reduced the transformation of fibroblasts into cancer-associated fibroblasts (CAFs) through the downregulation of α-SMA and FAP (Fibroblast activation protein) expression, indicating its capacity to normalize the TME. Real-time PCR analysis revealed that TGN treatment significantly reduced markers of epithelial-mesenchymal transition and stemness pathways. Our preclinical mouse study demonstrated that combining TGN and cisplatin significantly reduced tumorigenesis in cisplatin-resistant bladder tumoroids harboring CAFs. Importantly, this combination therapy showed no apparent systematic toxicity, suggesting a favorable safety profile. Our findings reveal novel molecular targets of TGN in bladder cancer; TGN acts as a potent disruptor of the TGY signaling axis and a normalizer of the TME by reducing CAF transformation. In sum, our findings advocate for TGN's further exploration as a candidate for combination therapy in drug-resistant BLCA, with the potential to improve patient outcomes by simultaneously targeting both CSCs and the TME, serving as a foundation for future clinical trials.
Collapse
Affiliation(s)
- Chien-Chang Kao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jing-Wen Shih
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Huong Thi Luu Kim Huynh
- International PhD Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Hsin Chang
- Institute of Microbiology and Immunology, National Yang-Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
| | - Bashir Lawal
- UPMC Hillman Cancer Center, University of Pittsburgh, USA
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nur Azizah
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Jl. Sekip Utara,Yogyakarta, 55281, Indonesia
- Curcumin Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Jl. Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Ritmaleni Ritmaleni
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Jl. Sekip Utara,Yogyakarta, 55281, Indonesia
- Curcumin Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Jl. Sekip Utara, Yogyakarta, 55281, Indonesia
| | | | - Po-Yang Huang
- The Ph.D. Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Alexander T.H. Wu
- International PhD Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- The Ph.D. Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ming-Che Liu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University Taipei 11031, Taiwan
- Department of Urology, Taipei Medical University Hospital Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University Taipei 11031, Taiwan
| |
Collapse
|
17
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1265-1282. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
18
|
Li Y, Huang H, Xie H, Cao R, Li X, Huang F, Lin L, Chen L. Akkermansia muciniphila activates natural killer cells by suppressing the TGF-β signaling pathway in lung adenocarcinoma cells. Cytokine 2025; 186:156833. [PMID: 39700665 DOI: 10.1016/j.cyto.2024.156833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Lung adenocarcinoma (LUAD) stands out as a prevalent malignant tumor necessitating innovative strategies to enhance therapeutic outcomes. Akkermansia muciniphila (AKK) has emerged as intricately linked to tumor immunotherapy, yet its impact on natural killer (NK) cells, which play a crucial role in immunotherapy, remains unclear. This study aims to investigate the effects of AKK outer membrane proteins on NK cells in LUAD and elucidate potential associated molecular mechanisms. 16S rRNA sequencing was employed to analyze bacterial genera and their abundance in fecal samples from LUAD patients. Co-culturing of NK-92 cells with LUAD cells, with or without treatment of AKK outer membrane protein Amuc_1100, was conducted to investigate the mechanisms of AKK on LUAD. Additionally, a xenograft mouse model was established to validate the effects of AKK in an in vivo setting. The experimental findings indicated that LUAD patients with elevated AKK levels in their fecal samples demonstrated increased NK cell infiltration and reduced TGF-β levels. Treatment with Amuc_1100 elevated TNF-α and IL-15 cytokine levels, decreased TGF-β levels and proteins associated with TGF-β pathway, enhanced NK cell cytotoxicity, upregulated perforin and granzyme B expression, induced apoptosis and cell cycle arrest, thereby inhibiting cancer cell proliferation. Amuc_1100 also impeded tumor growth in vivo. In summary, these results suggest that AKK activates NK cells to target tumor cells by suppressing the TGF-β signaling pathway in LUAD cells, underscoring the potential of Akk as an effective immunotherapeutic agent in LUAD NK cell-directed therapies.
Collapse
Affiliation(s)
- Yong Li
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Huiqin Huang
- Fujian Provincial Key Laboratory of Medical Testing, Fujian Academy Of Medical Sciences, Fuzhou, Fujian 350000, China
| | - Hang Xie
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Rongxiang Cao
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Xiuling Li
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Feijian Huang
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Lu Lin
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Limin Chen
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China.
| |
Collapse
|
19
|
Xu Y, Chen L, Liu W, Chen L. [Advances in inflammaging in liver disease]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025; 54:90-98. [PMID: 39828280 PMCID: PMC11956859 DOI: 10.3724/zdxbyxb-2024-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025]
Abstract
Inflammaging is a process of cellular dysfunction associated with chronic inflammation, which plays a significant role in the onset and progression of liver diseases. Research on its mechanisms has become a hotspot. In viral hepatitis, inflammaging primarily involve oxidative stress, cell apoptosis and necrosis, as well as gut microbiota dysbiosis. In non-alcoholic fatty liver disease, inflammaging is more complex, involving insulin resistance, fat deposition, lipid metabolism disorders, gut microbiota dysbiosis, and abnormalities in NAD+ metabolism. In liver tumors, inflammaging is characterized by weakening of tumor suppressive mechanisms, remodeling of the liver microenvironment, metabolic reprogramming, and enhanced immune evasion. Therapeutic strategies targeting inflammaging have been developing recently, and antioxidant therapy, metabolic disorder improvement, and immunotherapy are emerging as important interventions for liver diseases. This review focuses on the mechanisms of inflammaging in liver diseases, aiming to provide novel insights for the prevention and treatment of liver diseases.
Collapse
Affiliation(s)
- Yanping Xu
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Luyi Chen
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Weili Liu
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Liying Chen
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
20
|
Liu Z, Zhang C, Xiao J, He Y, Liang H, Huang J, Cai Z, Yi Z, Chen M, Li Y, Zhang J, liu F, Ren P, Li H, Chen J, Fan B, Hu J, Zu X, Deng D. TBX3 shapes an immunosuppressive microenvironment and induces immunotherapy resistance. Theranostics 2025; 15:1966-1986. [PMID: 39897553 PMCID: PMC11780534 DOI: 10.7150/thno.103175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025] Open
Abstract
Background: Identifying biomarkers that predict immunotherapy efficacy and discovering new targets for combination therapies are critical elements for improving the prognosis of bladder cancer (BLCA) patients. Methods: Firstly, we explored the expression patterns of TBX3 in normal and pan-cancer tissues and the correlation between TBX3 and the immune microenvironment using data from multiple public databases. Then, we combined various techniques, including bulk RNA sequencing, single-cell RNA sequencing, high-throughput cytokine arrays, functional experiments, ProcartaPlex multiplex immunoassays and TissueFAXS panoramic tissue quantification assays, to demonstrate that TBX3 shapes an immunosuppressive tumor microenvironment (TME) in BLCA. Results: We identified TBX3 as a key factor associated with the immunosuppressive microenvironment in BLCA through a systematic multi-omics analysis. We found that TBX3 is primarily expressed in malignant cells, where TBX3high tumor cells increase the secretion of TGFβ1, which promotes the infiltration of cancer-associated fibroblasts (CAFs), thereby forming an immunosuppressive microenvironment. We further demonstrated that TBX3 enhances TGFβ1 expression by binding to the TGFβ1 promoter, and blocking TGFβ1 counteracts the immunosuppressive effects of TBX3. Moreover, TBX3 reduced the cancer-killing efficiency of CD8+ T cells by decreasing the proportion of GZMB+ CD8+ T cells, and knocking down TBX3 combined with anti-PD-1 treatment increased CD8+ T cell infiltration and reduced CAFs in vivo. We also validated the inverse relationship between TBX3+ malignant cells and CD8+ T cells and the positive relationship with CAFs in tissue microarrays. Lastly, we found that TBX3 predicted immunotherapy efficacy in our real-world immunotherapy cohort and multiple public cohorts. Conclusion: In summary, TBX3 promotes BLCA progression and immunotherapy resistance by inducing an immunosuppressive microenvironment, and targeting TBX3 could enhance the efficacy of immunotherapy for BLCA.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Chunyu Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiatong Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yunbo He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Haisu Liang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jinliang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyong Cai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenglin Yi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Mingfeng Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yixiao Li
- Department of Urology, The second people's Hospital of Hunan province, Changsha, China
| | - Jun Zhang
- Department of Imaging, The first people's Hospital of Kaili city, Kaili, China
| | - Fenglian liu
- Department of Urology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Peng Ren
- Department of Urology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Benyi Fan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, China
| | - Dingshan Deng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders and FuRong Laboratory, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Salminen A. GDF15/MIC-1: a stress-induced immunosuppressive factor which promotes the aging process. Biogerontology 2024; 26:19. [PMID: 39643709 PMCID: PMC11624233 DOI: 10.1007/s10522-024-10164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The GDF15 protein, a member of the TGF-β superfamily, is a stress-induced multifunctional protein with many of its functions associated with the regulation of the immune system. GDF15 signaling provides a defence against the excessive inflammation induced by diverse stresses and tissue injuries. Given that the aging process is associated with a low-grade inflammatory state, called inflammaging, it is not surprising that the expression of GDF15 gradually increases with aging. In fact, the GDF15 protein is a core factor secreted by senescent cells, a state called senescence-associated secretory phenotype (SASP). Many age-related stresses, e.g., mitochondrial and endoplasmic reticulum stresses as well as inflammatory, metabolic, and oxidative stresses, induce the expression of GDF15. Although GDF15 signaling is an effective anti-inflammatory modulator, there is robust evidence that it is a pro-aging factor promoting the aging process. GDF15 signaling is not only an anti-inflammatory modulator but it is also a potent immunosuppressive enhancer in chronic inflammatory states. The GDF15 protein can stimulate immune responses either non-specifically via receptors of the TGF-β superfamily or specifically through the GFRAL/HPA/glucocorticoid pathway. GDF15 signaling stimulates the immunosuppressive network activating the functions of MDSCs, Tregs, and M2 macrophages and triggering inhibitory immune checkpoint signaling in senescent cells. Immunosuppressive responses not only suppress chronic inflammatory processes but they evoke many detrimental effects in aged tissues, such as cellular senescence, fibrosis, and tissue atrophy/sarcopenia. It seems that the survival functions of GDF15 go awry in persistent inflammation thus promoting the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
22
|
Trugilo KP, Cebinelli GCM, Castilha EP, da Silva MR, Berti FCB, de Oliveira KB. The role of transforming growth factor β in cervical carcinogenesis. Cytokine Growth Factor Rev 2024; 80:12-23. [PMID: 39482191 DOI: 10.1016/j.cytogfr.2024.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Human papillomavirus (HPV) is involved in virtually all cases of cervical cancer. However, HPV alone is not sufficient to cause malignant development. The effects of chronic inflammation and the interaction of immune components with the microenvironment infected with the high-risk HPV type (HR) may contribute to cancer development. Transforming growth factor β (TGFB) appears to play an important role in cervical carcinogenesis. Protein and mRNA levels of this cytokine gradually increase as normal tissue develops into malignant tissue and are closely related to the severity of HPV infection. At the onset of infection, TGFB can inhibit the proliferation of infected cells and viral amplification by inhibiting cell growth and downregulating the transcriptional activity of the long control region (LCR) of HPV, thereby reducing the expression of early genes. When infected cells progress to a malignant phenotype, the response to the cell growth inhibitory effect of TGFB1 is lost and the suppression of E6 and E7 expression decreases. Subsequently, TGFB1 expression is upregulated by high levels of E6 and E7 oncoproteins, leading to an increase in TGFB1 in the tumor microenvironment, where this molecule promotes epithelial-to-mesenchymal transition (EMT), cell motility, angiogenesis, and immunosuppression. This interaction between HPV oncoproteins and TGFB1 is an important mechanism promoting the development and progression of cervical cancer.
Collapse
Affiliation(s)
- Kleber Paiva Trugilo
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | | | - Eliza Pizarro Castilha
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | - Mariane Ricciardi da Silva
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | | | - Karen Brajão de Oliveira
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| |
Collapse
|
23
|
Feng D, Pu D, Ren J, Liu M, Zhang Z, Liu Z, Li J. CD8 + T-cell exhaustion: Impediment to triple-negative breast cancer (TNBC) immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189193. [PMID: 39413858 DOI: 10.1016/j.bbcan.2024.189193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
CD8+ T-cell exhaustion has been identified as a significant contributor to immunosuppression and immune escape in triple-negative breast cancer (TNBC). Dysfunction due to cell exhaustion is characterized by reduced effector capacity and sustained expression of inhibitory receptors (IRs). The factors contributing to CD8+ T-cell exhaustion are multifaceted, encompassing external influences such as the upregulation of IRs, reduction of effector cytokines, and internal changes within the immune cell, including transcriptomic alterations, epigenetic landscape remodeling, and metabolomic shifts. The impact of the altered TNBC tumor microenvironment (TME) on Tex is also a critical consideration. The production of exhausted CD8+ T-cells (CD8+ Tex) is positively correlated with poor prognosis and reduced response rates to immunotherapy in TNBC patients, underscoring the urgent need for the development of novel TNBC immunotherapeutic strategies that target the mechanisms of CD8+ T-cell exhaustion. This review delineates the dynamic trajectory of CD8+ T-cell exhaustion development in TNBC, provides an update on the latest research advancements in understanding its pathogenesis, and offers insights into potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dandan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dongqing Pu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Jinlu Ren
- Shandong Xiandai University, Jinan 250104, China
| | - Ming Liu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyong Liu
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China; Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jingwei Li
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China.
| |
Collapse
|
24
|
Choi JY, Seok HJ, Lee DH, Kwon J, Shin US, Shin I, Bae IH. miR-1226-5p is involved in radioresistance of colorectal cancer by activating M2 macrophages through suppressing IRF1. J Transl Med 2024; 22:980. [PMID: 39472937 PMCID: PMC11523791 DOI: 10.1186/s12967-024-05797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Although the representative treatment for colorectal cancer (CRC) is radiotherapy, cancer cells survive due to inherent radioresistance or resistance acquired after radiation treatment, accelerating tumor malignancy and causing local recurrence and metastasis. However, the detailed mechanisms of malignancy induced after radiotherapy are not well understood. To develop more effective and improved radiotherapy and diagnostic methods, it is necessary to clearly identify the mechanisms of radioresistance and discover related biomarkers. METHODS To analyze the expression pattern of miRNAs in radioresistant CRC, sequence analysis was performed in radioresistant HCT116 cells using Gene Expression Omnibus, and then miR-1226-5p, which had the highest expression in resistant cells compared to parental cells, was selected. To confirm the effect of miR-1226-5 on tumorigenicity, Western blot, qRT-PCR, transwell migration, and invasion assays were performed to confirm the expression of EMT factors, cell mobility and invasiveness. Additionally, the tumorigenic ability of miR-1226-5p was confirmed in organoids derived from colorectal cancer patients. In CRC cells, IRF1, a target gene of miR-1226-5p, and circSLC43A1, which acts as a sponge for miR-1226-5p, were discovered and the mechanism was analyzed by confirming the tumorigenic phenotype. To analyze the effect of tumor-derived miR-1226-5p on macrophages, the expression of M2 marker in co-cultured cells and CRC patient tissues were confirmed by qRT-PCR and immunohistochemical (IHC) staining analyses. RESULTS This study found that overexpressed miR-1226-5p in radioresistant CRC dramatically promoted epithelial-mesenchymal transition (EMT), migration, invasion, and tumor growth by suppressing the expression of its target gene, IRF1. Additionally, we discovered circSLC43A1, a factor that acts as a sponge for miR-1226-5p and suppresses its expression, and verified that EMT, migration, invasion, and tumor growth are suppressed by circSLC43A1 in radioresistant CRC cells. Resistant CRC cells-derived miR-1226-5p was transferred to macrophages and contributed to tumorigenicity by inducing M2 polarization and secretion of TGF-β. CONCLUSIONS This study showed that the circSLC43A1/miR-1226-5p/IRF1 axis is involved in radioresistance and cancer aggressiveness in CRC. It was suggested that the discovered signaling factors could be used as potential biomarkers for diagnosis and treatment of radioresistant CRC.
Collapse
Affiliation(s)
- Jae Yeon Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Hyun Jeong Seok
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea
| | - Dong Hyeon Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea
| | - Junhye Kwon
- Medical Sciences Substantiation Center, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Ui Sup Shin
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - In Hwa Bae
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea.
| |
Collapse
|
25
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
26
|
Gujarathi R, Franses JW, Pillai A, Liao CY. Targeted therapies in hepatocellular carcinoma: past, present, and future. Front Oncol 2024; 14:1432423. [PMID: 39267840 PMCID: PMC11390354 DOI: 10.3389/fonc.2024.1432423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Targeted therapies are the mainstay of systemic therapies for patients with advanced, unresectable, or metastatic hepatocellular carcinoma. Several therapeutic targets, such as c-Met, TGF-β, and FGFR, have been evaluated in the past, though results from these clinical studies failed to show clinical benefit. However, these remain important targets for the future with novel targeted agents and strategies. The Wnt/β-catenin signaling pathway, c-Myc oncogene, GPC3, PPT1 are exciting novel targets, among others, currently undergoing evaluation. Through this review, we aim to provide an overview of previously evaluated and potentially novel therapeutic targets and explore their continued relevance in ongoing and future studies for HCC.
Collapse
Affiliation(s)
- Rushabh Gujarathi
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Joseph W Franses
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anjana Pillai
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Chicago, Chicago, IL, United States
| | - Chih-Yi Liao
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
27
|
Wang H, Yung MM, Xuan Y, Chen F, Chan W, Siu MK, Long R, Jia S, Liang Y, Xu D, Song Z, Tsui SK, Ngan HY, Chan KK, Chan DW. Polyunsaturated fatty acids promote M2-like TAM deposition via dampening RhoA-YAP1 signaling in the ovarian cancer microenvironment. Exp Hematol Oncol 2024; 13:90. [PMID: 39198883 PMCID: PMC11360340 DOI: 10.1186/s40164-024-00558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Peritoneal metastases frequently occur in epithelial ovarian cancer (EOC), resulting in poor prognosis and survival rates. Tumor-associated-macrophages (TAMs) massively infiltrate into ascites spheroids and are multi-polarized as protumoral M2-like phenotype, orchestrating the immunosuppression and promoting tumor progression. However, the impact of omental conditioned medium/ascites (OCM/AS) on TAM polarization and its function in tumor progression remains elusive. METHODS The distribution and polarization of TAMs in primary and omental metastatic EOC patients' tumors and ascites were examined by m-IHC, FACS analysis, and immunofluorescence. QPCR, immunofluorescence, FACS analysis, lipid staining assay, ROS assay, and Seahorse real-time cell metabolic assay characterized TAMs as being polarized in the ascites microenvironment. The oncogenic role of TAMs in tumor cells was demonstrated by co-cultured migration/invasion, proliferation, and spheroid formation assays. Mechanistic studies of the regulations of TAM polarization were performed by using RNA-Seq, GTPase pull-down, G-LISA activation assays, and other biochemical assays. A Yap1 macrophages (MФs) conditional knockout (cKO) mouse model demonstrated the roles of YAP1 in TAM polarization status and its pro-metastatic function. Finally, the anti-metastatic potential of targeting TAMs through restoring YAP1 by pharmacological agonist XMU MP1 was demonstrated in vitro and in vivo. RESULTS Abundant polyunsaturated fatty acids (PUFAs) in OCM/AS suppressed RhoA-GTPase activities, which, in turn, downregulated nuclear YAP1 in MФs, leading to increased protumoral TAM polarization accompanied by elevated OXPHOS metabolism. Abolishment of YAP1 in MФs further confirmed that a higher M2/M1 ratio of TAM polarization could alleviate CD8+ T cell infiltration and cytotoxicity in vivo. Consistently, the loss of YAP1 has been observed in EOC metastatic tissues, suggesting its clinical relevance. On the contrary, restoration of YAP1 expression by pharmaceutical inhibition of MST1/2 induced conversion of M2-to-M1-like polarized MФs, elevating the infiltration of CD8+ T cells and attenuating tumor growth. CONCLUSION This study revealed that PUFAs-enriched OCM/AS of EOC promotes M2-like TAM polarization through RhoA-YAP1 inhibition, where YAP1 downregulation is required for accelerating protumoral M2-like TAM polarization, thereby causing immunosuppression and enhancing tumor progression. Conversion of M2-to-M1-like polarized MФs through Yap1 activation inhibits tumor progression and contributes to developing potential TAMs-targeted immunotherapies in combating EOC peritoneal metastases.
Collapse
Affiliation(s)
- Huogang Wang
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, P.R. China
| | - Mingo Mh Yung
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Yang Xuan
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Fushun Chen
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Waisun Chan
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Michelle Ky Siu
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Runying Long
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Shuo Jia
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P.R. China
| | - Yonghao Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Dakang Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, P.R. China
| | - Stephen Kw Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Hextan Ys Ngan
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Karen Kl Chan
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China.
| | - David W Chan
- Department of Obstetrics & Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China.
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, P.R. China.
| |
Collapse
|
28
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
29
|
Liu H, Huang M, Xin D, Wang H, Yu H, Pu W. Natural products with anti-tumorigenesis potential targeting macrophage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155794. [PMID: 38875811 DOI: 10.1016/j.phymed.2024.155794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Inflammation is a risk factor for tumorigenesis. Macrophage, a subset of immune cells with high plasticity, plays a multifaceted role in this process. Natural products, which are bioactive compounds derived from traditional herbs or foods, have exhibited diverse effects on macrophages and tumorigenesis making them a valuable resource of drug discovery or optimization in tumor prevention. PURPOSE Provide a comprehensive overview of the various roles of macrophages in tumorigenesis, as well as the effects of natural products on tumorigenesis by modulating macrophage function. METHODS A thorough literature search spanning the past two decades was carried out using PubMed, Web of Science, Elsevier, and CNKI following the PRISMA guidelines. The search terms employed included "macrophage and tumorigenesis", "natural products, macrophages and tumorigenesis", "traditional Chinese medicine and tumorigenesis", "natural products and macrophage polarization", "macrophage and tumor related microenvironment", "macrophage and tumor signal pathway", "toxicity of natural products" and combinations thereof. Furthermore, certain articles are identified through the tracking of citations from other publications or by accessing the websites of relevant journals. Studies that meet the following criteria are excluded: (1) Articles not written in English or Chinese; (2) Full texts were not available; (3) Duplicate articles and irrelevant studies. The data collected was organized and summarized based on molecular mechanisms or compound structure. RESULTS This review elucidates the multifaceted effect of macrophages on tumorigenesis, encompassing process such as inflammation, angiogenesis, and tumor cell invasion by regulating metabolism, non-coding RNA, signal transduction and intercellular crosstalk. Natural products, including vitexin, ovatodiolide, ligustilide, and emodin, as well as herbal remedies, have demonstrated efficacy in modulating macrophage function, thereby attenuating tumorigenesis. These interventions mainly focus on mitigating the initial inflammatory response or modifying the inflammatory environment within the precancerous niche. CONCLUSIONS These mechanistic insights of macrophages in tumorigenesis offer valuable ideas for researchers. The identified natural products facilitate the selection of promising candidates for future cancer drug development.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Manru Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Dandan Xin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
30
|
Tang M, Zhang Z, Wang P, Zhao F, Miao L, Wang Y, Li Y, Li Y, Gao Z. Advancements in precision nanomedicine design targeting the anoikis-platelet interface of circulating tumor cells. Acta Pharm Sin B 2024; 14:3457-3475. [PMID: 39220884 PMCID: PMC11365446 DOI: 10.1016/j.apsb.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tumor metastasis, the apex of cancer progression, poses a formidable challenge in therapeutic endeavors. Circulating tumor cells (CTCs), resilient entities originating from primary tumors or their metastases, significantly contribute to this process by demonstrating remarkable adaptability. They survive shear stress, resist anoikis, evade immune surveillance, and thwart chemotherapy. This comprehensive review aims to elucidate the intricate landscape of CTC formation, metastatic mechanisms, and the myriad factors influencing their behavior. Integral signaling pathways, such as integrin-related signaling, cellular autophagy, epithelial-mesenchymal transition, and interactions with platelets, are examined in detail. Furthermore, we explore the realm of precision nanomedicine design, with a specific emphasis on the anoikis‒platelet interface. This innovative approach strategically targets CTC survival mechanisms, offering promising avenues for combatting metastatic cancer with unprecedented precision and efficacy. The review underscores the indispensable role of the rational design of platelet-based nanomedicine in the pursuit of restraining CTC-driven metastasis.
Collapse
Affiliation(s)
- Manqing Tang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuming Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
31
|
Ye J, Baer JM, Faget DV, Morikis VA, Ren Q, Melam A, Delgado AP, Luo X, Bagchi SM, Belle JI, Campos E, Friedman M, Veis DJ, Knudsen ES, Witkiewicz AK, Powers S, Longmore GD, DeNardo DG, Stewart SA. Senescent CAFs Mediate Immunosuppression and Drive Breast Cancer Progression. Cancer Discov 2024; 14:1302-1323. [PMID: 38683161 PMCID: PMC11216870 DOI: 10.1158/2159-8290.cd-23-0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/26/2024] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
The tumor microenvironment (TME) profoundly influences tumorigenesis, with gene expression in the breast TME capable of predicting clinical outcomes. The TME is complex and includes distinct cancer-associated fibroblast (CAF) subtypes whose contribution to tumorigenesis remains unclear. Here, we identify a subset of myofibroblast CAFs (myCAF) that are senescent (senCAF) in mouse and human breast tumors. Utilizing the MMTV-PyMT;INK-ATTAC (INK) mouse model, we found that senCAF-secreted extracellular matrix specifically limits natural killer (NK) cell cytotoxicity to promote tumor growth. Genetic or pharmacologic senCAF elimination unleashes NK cell killing, restricting tumor growth. Finally, we show that senCAFs are present in HER2+, ER+, and triple-negative breast cancer and in ductal carcinoma in situ (DCIS) where they predict tumor recurrence. Together, these findings demonstrate that senCAFs are potently tumor promoting and raise the possibility that targeting them by senolytic therapy could restrain breast cancer development. Significance: senCAFs limit NK cell-mediated killing, thereby contributing to breast cancer progression. Thus, targeting senCAFs could be a clinically viable approach to limit tumor progression. See related article by Belle et al., p. 1324.
Collapse
Affiliation(s)
- Jiayu Ye
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John M. Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Douglas V. Faget
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vasilios A. Morikis
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qihao Ren
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anupama Melam
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ana Paula Delgado
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York
| | - Xianmin Luo
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Satarupa Mullick Bagchi
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jad I. Belle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Edward Campos
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael Friedman
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deborah J. Veis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | | | | | - Scott Powers
- Department of Pathology and Cancer Center, Renaissance School of Medicine, Stony Brook, New York
| | - Gregory D. Longmore
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- ICCE Institute, Washington University School of Medicine, St Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David G. DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- ICCE Institute, Washington University School of Medicine, St Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sheila A. Stewart
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- ICCE Institute, Washington University School of Medicine, St Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
32
|
Wang L, Liu H, Wu Q, Liu Y, Yan Z, Chen G, Shang Y, Xu S, Zhou Q, Yan T, Cheng X. miR-451a was selectively sorted into exosomes and promoted the progression of esophageal squamous cell carcinoma through CAB39. Cancer Gene Ther 2024; 31:1060-1069. [PMID: 38649419 DOI: 10.1038/s41417-024-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Exosomes are emerging mediators of cell-cell communication, which are secreted from cells and may be delivered into recipient cells in cell biological processes. Here, we examined microRNA (miRNA) expression in esophageal squamous cell carcinoma (ESCC) cells. We performed miRNA sequencing in exosomes and cells of KYSE150 and KYSE450 cell lines. Among these differentially expressed miRNAs, 20 of the miRNAs were detected in cells and exosomes. A heat map indicated that the level of miR-451a was higher in exosomes than in ESCC cells. Furthermore, miRNA pull-down assays and combined exosomes proteomic data showed that miR-451a interacts with YWHAE. Over-expression of YWHAE leads to miR-451a accumulation in the exosomes instead of the donor cells. We found that miR-451a was sorted into exosomes. However, the biological function of miR-451a remains unclear in ESCC. Here, Dual-luciferase reporter assay was conducted and it was proved that CAB39 is a target gene of miR-451a. Moreover, CAB39 is related to TGF-β1 from RNA-sequencing data of 155 paired of ESCC tissues and the matched tissues. Western Blot and qPCR revealed that CAB39 and TGF-β1 were positively correlated in ESCC. Over-expression of CAB39 were cocultured with PBMCs from the blood from healthy donors. Flow cytometry assays showed that apoptotic cells were significantly reduced after CAB39 over-expression and significantly increased after treated with TGF-β1 inhibitors. Thus, our data indicate that CAB39 weakens antitumor immunity through TGF-β1 in ESCC. In summary, YWHAE selectively sorted miR-451a into exosomes and it can weaken antitumor immunity promotes tumor progression through CAB39.
Collapse
Affiliation(s)
- Lu Wang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huijuan Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qinglu Wu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yiqian Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhenpeng Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Guohui Chen
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yao Shang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Songrui Xu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qichao Zhou
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Xiaolong Cheng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
33
|
Nepal MR, Shah S, Kang KT. Dual roles of myeloid-derived suppressor cells in various diseases: a review. Arch Pharm Res 2024; 47:597-616. [PMID: 39008186 DOI: 10.1007/s12272-024-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that originate from bone marrow stem cells. In pathological conditions, such as autoimmune disorders, allergies, infections, and cancer, normal myelopoiesis is altered to facilitate the formation of MDSCs. MDSCs were first shown to promote cancer initiation and progression by immunosuppression with the assistance of various chemokines and cytokines. Recently, various studies have demonstrated that MDSCs play two distinct roles depending on the physiological and pathological conditions. MDSCs have protective roles in autoimmune disorders (such as uveoretinitis, multiple sclerosis, rheumatoid arthritis, ankylosing spondylitis, type 1 diabetes, autoimmune hepatitis, inflammatory bowel disease, alopecia areata, and systemic lupus erythematosus), allergies, and organ transplantation. However, they play negative roles in infections and various cancers. Several immunosuppressive functions and mechanisms of MDSCs have been determined in different disease conditions. This review comprehensively discusses the associations between MDSCs and various pathological conditions and briefly describes therapeutic approaches.
Collapse
Affiliation(s)
- Mahesh Raj Nepal
- College of Pharmacy, Duksung Women's University, Seoul, South Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, South Korea
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Sajita Shah
- College of Pharmacy, Duksung Women's University, Seoul, South Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, South Korea
- The Comprehensive Cancer Center, Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Kyu-Tae Kang
- College of Pharmacy, Duksung Women's University, Seoul, South Korea.
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, South Korea.
| |
Collapse
|
34
|
Li MY, Ye W, Luo KW. Immunotherapies Targeting Tumor-Associated Macrophages (TAMs) in Cancer. Pharmaceutics 2024; 16:865. [PMID: 39065562 PMCID: PMC11280177 DOI: 10.3390/pharmaceutics16070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are one of the most plentiful immune compositions in the tumor microenvironment, which are further divided into anti-tumor M1 subtype and pro-tumor M2 subtype. Recent findings found that TAMs play a vital function in the regulation and progression of tumorigenesis. Moreover, TAMs promote tumor vascularization, and support the survival of tumor cells, causing an impact on tumor growth and patient prognosis. Numerous studies show that reducing the density of TAMs, or modulating the polarization of TAMs, can inhibit tumor growth, indicating that TAMs are a promising target for tumor immunotherapy. Recently, clinical trials have found that treatments targeting TAMs have achieved encouraging results, and the U.S. Food and Drug Administration has approved a number of drugs for use in cancer treatment. In this review, we summarize the origin, polarization, and function of TAMs, and emphasize the therapeutic strategies targeting TAMs in cancer treatment in clinical studies and scientific research, which demonstrate a broad prospect of TAMs-targeted therapies in tumor immunotherapy.
Collapse
Affiliation(s)
- Mei-Ye Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Wei Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Ke-Wang Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
- People’s Hospital of Longhua, The affiliated hospital of Southern Medical University, Shenzhen 518109, China
| |
Collapse
|
35
|
Li Z, Duan D, Li L, Peng D, Ming Y, Ni R, Liu Y. Tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for hepatocellular carcinoma: recent research progress. Front Pharmacol 2024; 15:1382256. [PMID: 38957393 PMCID: PMC11217528 DOI: 10.3389/fphar.2024.1382256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the cancers that seriously threaten human health. Immunotherapy serves as the mainstay of treatment for HCC patients by targeting the programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) axis. However, the effectiveness of anti-PD-1/PD-L1 treatment is limited when HCC becomes drug-resistant. Tumor-associated macrophages (TAMs) are an important factor in the negative regulation of PD-1 antibody targeted therapy in the tumor microenvironment (TME). Therefore, as an emerging direction in cancer immunotherapy research for the treatment of HCC, it is crucial to elucidate the correlations and mechanisms between TAMs and PD-1/PD-L1-mediated immune tolerance. This paper summarizes the effects of TAMs on the pathogenesis and progression of HCC and their impact on HCC anti-PD-1/PD-L1 immunotherapy, and further explores current potential therapeutic strategies that target TAMs in HCC, including eliminating TAMs in the TME, inhibiting TAMs recruitment to tumors and functionally repolarizing M2-TAMs (tumor-supportive) to M1-TAMs (antitumor type).
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
36
|
Salminen A. The role of the immunosuppressive PD-1/PD-L1 checkpoint pathway in the aging process and age-related diseases. J Mol Med (Berl) 2024; 102:733-750. [PMID: 38600305 PMCID: PMC11106179 DOI: 10.1007/s00109-024-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
The accumulation of senescent cells within tissues is a hallmark of the aging process. Senescent cells are also commonly present in many age-related diseases and in the cancer microenvironment. The escape of abnormal cells from immune surveillance indicates that there is some defect in the function of cytotoxic immune cells, e.g., CD8+ T cells and natural killer (NK) cells. Recent studies have revealed that the expression of programmed death-ligand 1 (PD-L1) protein is abundantly increased in senescent cells. An increase in the amount of PD-L1 protein protects senescent cells from clearance by the PD-1 checkpoint receptor in cytotoxic immune cells. In fact, the activation of the PD-1 receptor suppresses the cytotoxic properties of CD8+ T and NK cells, promoting a state of immunosenescence. The inhibitory PD-1/PD-L1 checkpoint pathway acts in cooperation with immunosuppressive cells; for example, activation of PD-1 receptor can enhance the differentiation of regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and M2 macrophages, whereas the cytokines secreted by immunosuppressive cells stimulate the expression of the immunosuppressive PD-L1 protein. Interestingly, many signaling pathways known to promote cellular senescence and the aging process are crucial stimulators of the expression of PD-L1 protein, e.g., epigenetic regulation, inflammatory mediators, mTOR-related signaling, cGAS-STING pathway, and AhR signaling. It seems that the inhibitory PD-1/PD-L1 immune checkpoint axis has a crucial role in the accumulation of senescent cells and thus it promotes the aging process in tissues. Thus, the blockade of the PD-1/PD-L1 checkpoint signaling might be a potential anti-aging senolytic therapy. KEY MESSAGES: Senescent cells accumulate within tissues during aging and age-related diseases. Senescent cells are able to escape immune surveillance by cytotoxic immune cells. Expression of programmed death-ligand 1 (PD-L1) markedly increases in senescent cells. Age-related signaling stimulates the expression of PD-L1 protein in senescent cells. Inhibitory PD-1/PD-L1 checkpoint pathway suppresses clearance of senescent cells.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
37
|
Salminen A, Kaarniranta K, Kauppinen A. Tissue fibroblasts are versatile immune regulators: An evaluation of their impact on the aging process. Ageing Res Rev 2024; 97:102296. [PMID: 38588867 DOI: 10.1016/j.arr.2024.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibroblasts are abundant stromal cells which not only control the integrity of extracellular matrix (ECM) but also act as immune regulators. It is known that the structural cells within tissues can establish an organ-specific immunity expressing many immune-related genes and closely interact with immune cells. In fact, fibroblasts can modify their immune properties to display both pro-inflammatory and immunosuppressive activities in a context-dependent manner. After acute insults, fibroblasts promote tissue inflammation although they concurrently recruit immunosuppressive cells to enhance the resolution of inflammation. In chronic pathological states, tissue fibroblasts, especially senescent fibroblasts, can display many pro-inflammatory and immunosuppressive properties and stimulate the activities of different immunosuppressive cells. In return, immunosuppressive cells, such as M2 macrophages and myeloid-derived suppressor cells (MDSC), evoke an excessive conversion of fibroblasts into myofibroblasts, thus aggravating the severity of tissue fibrosis. Single-cell transcriptome studies on fibroblasts isolated from aged tissues have confirmed that tissue fibroblasts express many genes coding for cytokines, chemokines, and complement factors, whereas they lose some fibrogenic properties. The versatile immune properties of fibroblasts and their close cooperation with immune cells indicate that tissue fibroblasts have a crucial role in the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, KYS FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
38
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
39
|
Yu FF, Yu SY, Duan LZ, Yang S, Hou XB, Du YH, Gao MH, Zuo J, Sun L, Fu XL, Li ZY, Huang H, Zhou GY, Jia DL, Chen RQ, Ba Y. Proteomics Sequencing Reveals the Role of TGF-β Signaling Pathway in the Peripheral Blood of Offspring Rats Exposed to Fluoride. Biol Trace Elem Res 2024; 202:2100-2110. [PMID: 37582921 DOI: 10.1007/s12011-023-03805-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
The underlying mechanism of fluorosis has not been fully elucidated. The purpose of this study was to explore the mechanism of fluorosis induced by sodium fluoride (NaF) using proteomics. Six offspring rats exposed to fluoride without dental fluorosis were defined as group A, 8 offspring rats without fluoride exposure were defined as control group B, and 6 offspring rats exposed to fluoride with dental fluorosis were defined as group C. Total proteins from the peripheral blood were extracted and then separated using liquid chromatography-tandem mass spectrometry. The identified criteria for differentially expressed proteins were fold change > 1.2 or < 0.83 and P < 0.05. Gene Ontology function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the oeCloud tool. The 177 upregulated and 22 downregulated proteins were identified in the A + C vs. B group. KEGG pathway enrichment analysis revealed that transforming growth factor-β (TGF-β) signaling pathway significantly enriched. PPI network constructed using Cytoscape confirmed RhoA may play a crucial role. The KEGG results of genes associated with fluoride and genes associated with both fluoride and inflammation in the GeneCards database also showed that TGF-β signaling pathway was significantly enriched. The immunofluorescence in HPA database showed that the main expression sites of RhoA are plasma membrane and cytosol, while the main expression site of Fbn1 is the Golgi apparatus. In conclusion, long-term NaF intake may cause inflammatory response in the peripheral blood of rats by upregulating TGF-β signaling pathway, in which RhoA may play a key role.
Collapse
Affiliation(s)
- Fang-Fang Yu
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shui-Yuan Yu
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Lei-Zhen Duan
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Shuo Yang
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xiang-Bo Hou
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yu-Hui Du
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Ming-Hui Gao
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Juan Zuo
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Lei Sun
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xiao-Li Fu
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Zhi-Yuan Li
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Hui Huang
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Guo-Yu Zhou
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Dao-Li Jia
- Outpatient Department, Zhengyang County People's Hospital, Zhumadian, Henan, China
| | - Rui-Qin Chen
- Jinshui District Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Environment and Health Innovation Team, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
40
|
Raguz J, Pinto C, Pölzlbauer T, Habbeddine M, Rosskopf S, Strauß J, Just V, Schmidt S, Bidet Huang K, Stemeseder F, Schippers T, Stewart E, Jez J, Berraondo P, Orlinger KK, Lauterbach H. Preclinical evaluation of two phylogenetically distant arenavirus vectors for the development of novel immunotherapeutic combination strategies for cancer treatment. J Immunother Cancer 2024; 12:e008286. [PMID: 38631709 PMCID: PMC11029282 DOI: 10.1136/jitc-2023-008286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Engineered arenavirus vectors have recently been developed to leverage the body's immune system in the fight against chronic viral infections and cancer. Vectors based on Pichinde virus (artPICV) and lymphocytic choriomeningitis virus (artLCMV) encoding a non-oncogenic fusion protein of human papillomavirus (HPV)16 E6 and E7 are currently being tested in patients with HPV16+ cancer, showing a favorable safety and tolerability profile and unprecedented expansion of tumor-specific CD8+ T cells. Although the strong antigen-specific immune response elicited by artLCMV vectors has been demonstrated in several preclinical models, PICV-based vectors are much less characterized. METHODS To advance our understanding of the immunobiology of these two vectors, we analyzed and compared their individual properties in preclinical in vivo and in vitro systems. Immunogenicity and antitumor effect of intratumoral or intravenous administration of both vectors, as well as combination with NKG2A blockade, were evaluated in naïve or TC-1 mouse tumor models. Flow cytometry, Nanostring, and histology analysis were performed to characterize the tumor microenvironment (TME) and T-cell infiltrate following treatment. RESULTS Despite being phylogenetically distant, both vectors shared many properties, including preferential infection and activation of professional antigen-presenting cells, and induction of potent tumor-specific CD8+ T-cell responses. Systemic as well as localized treatment induced a proinflammatory shift in the TME, promoting the infiltration of inducible T cell costimulator (ICOS)+CD8+ T cells capable of mediating tumor regression and prolonging survival in a TC-1 mouse tumor model. Still, there was evidence of immunosuppression built-up over time, and increased expression of H2-T23 (ligand for NKG2A T cell inhibitory receptor) following treatment was identified as a potential contributing factor. NKG2A blockade improved the antitumor efficacy of artARENA vectors, suggesting a promising new combination approach. This demonstrates how detailed characterization of arenavirus vector-induced immune responses and TME modulation can inform novel combination therapies. CONCLUSIONS The artARENA platform represents a strong therapeutic vaccine approach for the treatment of cancer. The induced antitumor immune response builds the backbone for novel combination therapies, which warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ethan Stewart
- Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Jakub Jez
- Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | | | | |
Collapse
|
41
|
Song L, Gong Y, Wang E, Huang J, Li Y. Unraveling the tumor immune microenvironment of lung adenocarcinoma using single-cell RNA sequencing. Ther Adv Med Oncol 2024; 16:17588359231210274. [PMID: 38606165 PMCID: PMC11008351 DOI: 10.1177/17588359231210274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/09/2023] [Indexed: 04/13/2024] Open
Abstract
Tumor immune microenvironment (TIME) and its indications for lung cancer patient prognosis and therapeutic response have become new hotspots in cancer research in recent years. Tumor cells, immune cells, various regulatory factors, and their interactions in the TIME have been suggested to commonly influence lung cancer development and therapeutic outcome. The heterogeneity of TIME is composed of dynamic immune-related components, including various cancer cells, immune cells, cytokine/chemokine environments, cytotoxic activity, or immunosuppressive factors. The specific composition of cell subtypes may facilitate or hamper the response to immunotherapy and influence patient prognosis. Various markers have been found to stratify the patient prognosis or predict the therapeutic outcome. In this article, we systematically reviewed the recent advancement of TIME studies in lung adenocarcinoma (LUAD) using single-cell RNA sequencing (scRNA-seq) techniques, with specific focuses on the roles of TIME in LUAD development, TIME heterogeneity, indications of TIME in patient prognosis and therapeutic response during immunotherapy and drug resistance. The main findings in TIME heterogeneity and relevant markers or models for prognosis stratification and response prediction have been summarized. We hope that this review provides an overview of TIME status in LUAD and an inspiration for future development of strategies and biomarkers in LUAD treatment.
Collapse
Affiliation(s)
- Lele Song
- Department of Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Yuan Gong
- Department of Gastroenterology, The Second Medical Center of the Chinese PLA General Hospital, Beijing, P.R. China
| | - Erpeng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong province, P.R. China
| | - Jianchun Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University. No. 295, Xichang Road, Wuhua District, Kunming, Yunnan Province 650032, P.R. China
| | - Yuemin Li
- Department of Oncology, Chinese PLA General Hospital. No.8, Dongdajie, Fengtai District, Beijing 100071, P.R. China
| |
Collapse
|
42
|
Cantallops Vilà P, Ravichandra A, Agirre Lizaso A, Perugorria MJ, Affò S. Heterogeneity, crosstalk, and targeting of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology 2024; 79:941-958. [PMID: 37018128 DOI: 10.1097/hep.0000000000000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/25/2022] [Indexed: 04/06/2023]
Abstract
Cholangiocarcinoma (CCA) comprises diverse tumors of the biliary tree and is characterized by late diagnosis, short-term survival, and chemoresistance. CCAs are mainly classified according to their anatomical location and include diverse molecular subclasses harboring inter-tumoral and intratumoral heterogeneity. Besides the tumor cell component, CCA is also characterized by a complex and dynamic tumor microenvironment where tumor cells and stromal cells crosstalk in an intricate network of interactions. Cancer-associated fibroblasts, one of the most abundant cell types in the tumor stroma of CCA, are actively involved in cholangiocarcinogenesis by participating in multiple aspects of the disease including extracellular matrix remodeling, immunomodulation, neo-angiogenesis, and metastasis. Despite their overall tumor-promoting role, recent evidence indicates the presence of transcriptional and functional heterogeneous CAF subtypes with tumor-promoting and tumor-restricting properties. To elucidate the complexity and potentials of cancer-associated fibroblasts as therapeutic targets in CCA, this review will discuss the origin of cancer-associated fibroblasts, their heterogeneity, crosstalk, and role during tumorigenesis, providing an overall picture of the present and future perspectives toward cancer-associated fibroblasts targeting CCA.
Collapse
Affiliation(s)
| | - Aashreya Ravichandra
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, Munich, Germany
| | - Aloña Agirre Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
- CIBERehd, Institute of Health Carlos III, Madrid, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Silvia Affò
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
43
|
Wang M, Xue W, Yuan H, Wang Z, Yu L. Nano-Drug Delivery Systems Targeting CAFs: A Promising Treatment for Pancreatic Cancer. Int J Nanomedicine 2024; 19:2823-2849. [PMID: 38525013 PMCID: PMC10959015 DOI: 10.2147/ijn.s451151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Currently, pancreatic cancer (PC) is one of the most lethal malignant tumors. PC is typically diagnosed at a late stage, exhibits a poor response to conventional treatment, and has a bleak prognosis. Unfortunately, PC's survival rate has not significantly improved since the 1960s. Cancer-associated fibroblasts (CAFs) are a key component of the pancreatic tumor microenvironment (TME). They play a vital role in maintaining the extracellular matrix and facilitating the intricate communication between cancer cells and infiltrated immune cells. Exploring therapeutic approaches targeting CAFs may reverse the current landscape of PC therapy. In recent years, nano-drug delivery systems have evolved rapidly and have been able to accurately target and precisely release drugs with little or no toxicity to the whole body. In this review, we will comprehensively discuss the origin, heterogeneity, potential targets, and recent advances in the nano-drug delivery system of CAFs in PC. We will also propose a novel integrated treatment regimen that utilizes a nano-drug delivery system to target CAFs in PC, combined with radiotherapy and immunotherapy. Additionally, we will address the challenges that this regimen currently faces.
Collapse
Affiliation(s)
- Mingjie Wang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Wenxiang Xue
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Hanghang Yuan
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Lei Yu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
44
|
Feng S, Ding B, Dai Z, Yin H, Ding Y, Liu S, Zhang K, Lin H, Xiao Z, Shen Y. Cancer-associated fibroblast-secreted FGF7 as an ovarian cancer progression promoter. J Transl Med 2024; 22:280. [PMID: 38491511 PMCID: PMC10941588 DOI: 10.1186/s12967-024-05085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is distinguished by its aggressive nature and the limited efficacy of current treatment strategies. Recent studies have emphasized the significant role of cancer-associated fibroblasts (CAFs) in OC development and progression. METHODS Employing sophisticated machine learning techniques on bulk transcriptomic datasets, we identified fibroblast growth factor 7 (FGF7), derived from CAFs, as a potential oncogenic factor. We investigated the relationship between FGF7 expression and various clinical parameters. A series of in vitro experiments were undertaken to evaluate the effect of CAFs-derived FGF7 on OC cell activities, such as proliferation, migration, and invasion. Single-cell transcriptomic analysis was also conducted to elucidate the interaction between FGF7 and its receptor. Detailed mechanistic investigations sought to clarify the pathways through which FGF7 fosters OC progression. RESULTS Our findings indicate that higher FGF7 levels correlate with advanced tumor stages, increased vascular invasion, and poorer prognosis. CAFs-derived FGF7 significantly enhanced OC cell proliferation, migration, and invasion. Single-cell analysis and in vitro studies revealed that CAFs-derived FGF7 inhibits the ubiquitination and degradation of hypoxia-inducible factor 1 alpha (HIF-1α) via FGFR2 interaction. Activation of the FGF7/HIF-1α pathway resulted in the upregulation of mesenchymal markers and downregulation of epithelial markers. Importantly, in vivo treatment with neutralizing antibodies targeting CAFs-derived FGF7 substantially reduced tumor growth. CONCLUSION Neutralizing FGF7 in the medium or inhibiting HIF-1α signaling reversed the effects of FGF7-mediated EMT, emphasizing the dependence of FGF7-mediated EMT on HIF-1α activation. These findings suggest that targeting the FGF7/HIF-1α/EMT axis may offer new therapeutic opportunities to intervene in OC progression.
Collapse
Affiliation(s)
- Songwei Feng
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bo Ding
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhu Dai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Han Yin
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yue Ding
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Sicong Liu
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ke Zhang
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hao Lin
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Yang Shen
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
45
|
Qin D, Zhang Y, Shu P, Lei Y, Li X, Wang Y. Targeting tumor-infiltrating tregs for improved antitumor responses. Front Immunol 2024; 15:1325946. [PMID: 38500876 PMCID: PMC10944859 DOI: 10.3389/fimmu.2024.1325946] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Immunotherapies have revolutionized the landscape of cancer treatment. Regulatory T cells (Tregs), as crucial components of the tumor immune environment, has great therapeutic potential. However, nonspecific inhibition of Tregs in therapies may not lead to enhanced antitumor responses, but could also trigger autoimmune reactions in patients, resulting in intolerable treatment side effects. Hence, the precision targeting and inhibition of tumor-infiltrating Tregs is of paramount importance. In this overview, we summarize the characteristics and subpopulations of Tregs within tumor microenvironment and their inhibitory mechanisms in antitumor responses. Furthermore, we discuss the current major strategies targeting regulatory T cells, weighing their advantages and limitations, and summarize representative clinical trials targeting Tregs in cancer treatment. We believe that developing therapies that specifically target and suppress tumor-infiltrating Tregs holds great promise for advancing immune-based therapies.
Collapse
Affiliation(s)
- Diyuan Qin
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yugu Zhang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei Shu
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanna Lei
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Li
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Kalli M, Stylianopoulos T. Toward innovative approaches for exploring the mechanically regulated tumor-immune microenvironment. APL Bioeng 2024; 8:011501. [PMID: 38390314 PMCID: PMC10883717 DOI: 10.1063/5.0183302] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Within the complex tumor microenvironment, cells experience mechanical cues-such as extracellular matrix stiffening and elevation of solid stress, interstitial fluid pressure, and fluid shear stress-that significantly impact cancer cell behavior and immune responses. Recognizing the significance of these mechanical cues not only sheds light on cancer progression but also holds promise for identifying potential biomarkers that would predict therapeutic outcomes. However, standardizing methods for studying how mechanical cues affect tumor progression is challenging. This challenge stems from the limitations of traditional in vitro cell culture systems, which fail to encompass the critical contextual cues present in vivo. To address this, 3D tumor spheroids have been established as a preferred model, more closely mimicking cancer progression, but they usually lack reproduction of the mechanical microenvironment encountered in actual solid tumors. Here, we review the role of mechanical forces in modulating tumor- and immune-cell responses and discuss how grasping the importance of these mechanical cues could revolutionize in vitro tumor tissue engineering. The creation of more physiologically relevant environments that better replicate in vivo conditions will eventually increase the efficacy of currently available treatments, including immunotherapies.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
47
|
Yang N, Hellevik T, Berzaghi R, Martinez‐Zubiaurre I. Radiation-induced effects on TGF-β and PDGF receptor signaling in cancer-associated fibroblasts. Cancer Rep (Hoboken) 2024; 7:e2018. [PMID: 38488488 PMCID: PMC10941573 DOI: 10.1002/cnr2.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) consist of heterogeneous connective tissue cells and are often constituting the most abundant cell type in the tumor stroma. Radiation effects on tumor stromal components like CAFs in the context of radiation treatment is not well-described. AIM This study explores potential changes induced by ionizing radiation (IR) on platelet-derived growth factor (PDGF)/PDGFRs and transforming growth factor-beta (TGF-β)/TGFβRs signaling systems in CAFs. METHODS AND RESULTS Experiments were carried out by employing primary cultures of human CAFs isolated from freshly resected non-small cell lung carcinoma tumor tissues. CAF cultures from nine donors were treated with one high (1 × 18 Gy) or three fractionated (3 × 6 Gy) radiation doses. Alterations in expression levels of TGFβRII and PDGFRα/β induced by IR were analyzed by western blots and flow cytometry. In the presence or absence of cognate ligands, receptor activation was studied in nonirradiated and irradiated CAFs. Radiation exposure did not exert changes in expression of PDGF or TGF-β receptors in CAFs. Additionally, IR alone was unable to trigger activation of either receptor. The radiation regimens tested did not affect PDGFRβ signaling in the presence of PDGF-BB. In contrast, signaling via pSmad2/3 and pSmad1/5/8 appeared to be down-regulated in irradiated CAFs after stimulation with TGF-β, as compared with controls. CONCLUSION Our data demonstrate that IR by itself is insufficient to induce measurable changes in PDGF or TGF-β receptor expression levels or to induce receptor activation in CAFs. However, in the presence of their respective ligands, exposure to radiation at certain doses appear to interfere with TGF-β receptor signaling.
Collapse
Affiliation(s)
- Nannan Yang
- Department of Community Medicine, Faculty of Health SciencesUiT The Arctic University of NorwayTromsøNorway
| | - Turid Hellevik
- Department of Radiation OncologyUniversity Hospital of North NorwayTromsøNorway
| | - Rodrigo Berzaghi
- Department of Clinical Medicine, Faculty of Health SciencesUiT The Arctic University of NorwayTromsøNorway
| | - Inigo Martinez‐Zubiaurre
- Department of Clinical Medicine, Faculty of Health SciencesUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
48
|
Xin X, Cheng X, Zeng F, Xu Q, Hou L. The Role of TGF-β/SMAD Signaling in Hepatocellular Carcinoma: from Mechanism to Therapy and Prognosis. Int J Biol Sci 2024; 20:1436-1451. [PMID: 38385079 PMCID: PMC10878151 DOI: 10.7150/ijbs.89568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, with high incidence and mortality, accounting for approximately 90% of liver cancer. The development of HCC is a complex process involving the abnormal activation or inactivation of multiple signaling pathways. Transforming growth factor-β (TGF-β)/Small mothers against decapentaplegic (SMAD) signaling pathway regulates the development of HCC. TGF-β activates intracellular SMADs protein through membrane receptors, resulting in a series of biological cascades. Accumulating studies have demonstrated that TGF-β/SMAD signaling plays multiple regulatory functions in HCC. However, there is still controversy about the role of TGF-β/SMAD in HCC. Because it involves different pathogenic factors, disease stages, and cell microenvironment, as well as upstream and downstream relationships with other signaling pathways. This review will summary the regulatory mechanism of the TGF-β/SMAD signaling pathway in HCC, involving the regulation of different pathogenic factors, different disease stages, different cell populations, microenvironments, and the interaction with microRNAs. In addition, we also introduced small molecule inhibitors, therapeutic vaccines, and traditional Chinese medicine extracts based on targeting the TGF-β/SMAD signaling pathway, which will provide future research direction for HCC therapy targeting the TGF-β/SMAD signaling pathway.
Collapse
Affiliation(s)
- Xin Xin
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiyu Cheng
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan province, China
| | - Qing Xu
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Lingling Hou
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
49
|
Liang C, Zhang G, Guo L, Ding X, Yang H, Zhang H, Zhang Z, Hou L. Spatiotemporal transformable nano-assembly for on-demand drug delivery to enhance anti-tumor immunotherapy. Asian J Pharm Sci 2024; 19:100888. [PMID: 38434719 PMCID: PMC10904913 DOI: 10.1016/j.ajps.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 03/05/2024] Open
Abstract
Induction of tumor cell senescence has become a promising strategy for anti-tumor immunotherapy, but fibrotic matrix severely blocks senescence inducers penetration and immune cells infiltration. Herein, we designed a cancer-associated fibroblasts (CAFs) triggered structure-transformable nano-assembly (HSD-P@V), which can directionally deliver valsartan (Val, CAFs regulator) and doxorubicin (DOX, senescence inducer) to the specific targets. In detail, DOX is conjugated with hyaluronic acid (HA) via diselenide bonds (Se-Se) to form HSD micelles, while CAFs-sensitive peptide is grafted onto the HSD to form a hydrophilic polymer, which is coated on Val nanocrystals (VNs) surface for improving the stability and achieving responsive release. Once arriving at tumor microenvironment and touching CAFs, HSD-P@V disintegrates into VNs and HSD micelles due to sensitive peptide detachment. VNs can degrade the extracellular matrix, leading to the enhanced penetration of HSD. HSD targets tumor cells, releases DOX to induce senescence, and recruits effector immune cells. Furthermore, senescent cells are cleared by the recruited immune cells to finish the integrated anti-tumor therapy. In vitro and in vivo results show that the nano-assembly remarkably inhibits tumor growth as well as lung metastasis, and extends tumor-bearing mice survival. This work provides a promising paradigm of programmed delivering multi-site nanomedicine for cancer immunotherapy.
Collapse
Affiliation(s)
- Chenglin Liang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Ge Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Linlin Guo
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyi Ding
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Heng Yang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Hou
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
50
|
Mishina T, Miyoshi H, Takeuchi M, Miyawaki K, Nakashima K, Yamada K, Moritsubo M, Inoue-Mitsuyama K, Shimasaki Y, Imamoto T, Kawamoto K, Furuta T, Kohno K, Kato K, Akashi K, Ohshima K. Co-expression of regulatory B-cell markers, transforming growth factor β and interleukin-10 as a prognostic factor in diffuse large B-cell lymphoma. Pathol Res Pract 2024; 254:155117. [PMID: 38262270 DOI: 10.1016/j.prp.2024.155117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Regulatory B cells (Bregs) suppress antitumor immunity by producing anti-inflammatory cytokines such as transforming growth factor β (TGF-β) and interleukin-10 (IL-10) and promoting tumor growth. It is unknown whether diffuse large B-cell lymphoma (DLBCL), a common subtype of B-cell malignancy, exhibits characteristics similar to those of Bregs. This study aimed to clarify the features of DLBCLs carrying Breg markers. In 123 DLBCL cases, we evaluated TGF-β and IL-10 expression in tumor biopsy samples using immunohistochemical staining and retrospectively analyzed their clinicopathological characteristics. Fifteen cases (12.2 %) classified as Breg-type DLBCL were positive for both TGF-β and IL-10. Breg-type DLBCL is mainly classified as having activated B cell-like cells of origin. Breg-type DLBCL cases showed significantly worse progression-free survival and overall survival (OS) than other DLBCL cases (P = 0.0016 and P = 0.042, respectively). In multivariate analysis, Breg-type DLBCL significantly affected OS (hazard ratio, 3.13; 95 % confidence interval 1.15-8.55; P = 0.025). Gene expression analysis showed that the expression of follicular dendritic cell-associated genes (FCER2, PIK3CD, FOXO1) was downregulated in Breg-type DLBCLs compared to other DLBCLs. These results suggest that the double expression of Breg markers, TGF-β and IL-10, in tumor cells indicates a poor prognosis in DLBCL patients. Further studies evaluating genomic abnormalities could confirm the characteristics of Breg-type DLBCL.
Collapse
Affiliation(s)
- Tatsuzo Mishina
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan; Division of Hematology-Oncology, Chiba Cancer Center, Chiba, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan.
| | - Mai Takeuchi
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazutaka Nakashima
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Kyohei Yamada
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Mayuko Moritsubo
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | | | - Yasumasa Shimasaki
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Teppei Imamoto
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan; Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Keisuke Kawamoto
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Takuya Furuta
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Kei Kohno
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| |
Collapse
|