1
|
Ge Y, Zhan H, Wu S, Wang J, Xu Y, Liang Y, Peng L, Gao L, Zhao J, He Z. GPR40 signaling in agouti-related peptide neurons mediates fat preference. Life Sci 2025; 373:123677. [PMID: 40320138 DOI: 10.1016/j.lfs.2025.123677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/18/2025] [Accepted: 05/01/2025] [Indexed: 05/17/2025]
Abstract
AIMS Fat preference is mediated by fatty acid receptors in the oral, intestinal, and central nervous systems, but their central nervous system roles remain unclear. Here, we investigated how GPR40, a medium- and long-chain fatty acid receptor, regulates fat preference via agouti-related peptide (AgRP) neurons in the hypothalamic arcuate nucleus (ARC). MATERIALS AND METHODS AgRP neuron-specific Gpr40 knockout mice were generated to investigate the role of GPR40 in dietary fat preference. Behavioral tests were conducted to assess dietary preferences, and metabolic analyses were performed after starvation. We also measured the activity of AgRP neurons and the expression levels of AgRP and neuropeptide Y (NPY) to explore the mechanisms. KEY FINDINGS Our results indicate that GPR40 is a novel signaling pathway that regulates fat preference in hypothalamic AgRP neurons, but not in pro-opiomelanocortin (POMC) neurons. AgRP-specific Gpr40 knockout mice displayed a reduced preference for fat. This alteration in dietary preference was not associated with behavioral anomalies such as anxiety, depression, or deficits in short-term memory. Additionally, Gpr40 deletion in ARC AgRP neurons resulted in a diminished metabolic state, increased AgRP neuronal activity, and elevated levels of AgRP and NPY peptides following starvation, leading to reduced fat intake and increased carbohydrate intake. Inhibition of AgRP neuronal activity in AgRP-specific Gpr40 knockout mice rescued the observed changes in fat preference. SIGNIFICANCE GPR40 signaling in AgRP neurons plays a critical role in regulating fat preference by modulating neuronal activity and the expression of AgRP and NPY peptides.
Collapse
Affiliation(s)
- Yueping Ge
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Huidong Zhan
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Shanshan Wu
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jing Wang
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yang Xu
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yixiao Liang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Li Peng
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
2
|
Chen T, Zhang H, Shan W, Zhou J, You Y. Liver sinusoidal endothelial cells in hepatic fibrosis: opportunities for future strategies. Biochem Biophys Res Commun 2025; 766:151881. [PMID: 40286764 DOI: 10.1016/j.bbrc.2025.151881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that form the interface between the hepatic vasculature and parenchymal cells, playing a crucial role in maintaining hepatic homeostasis. Under pathological conditions, LSECs undergo capillarization, marked by the loss of fenestrae and formation of a basement membrane, thereby impairing microcirculation and promoting fibrosis. Beyond capillarization, LSECs experience a spectrum of pathological changes-including angiogenesis, endothelial-to-mesenchymal transition (EndMT), autophagy, and senescence-all of which contribute to fibrogenesis through distinct molecular pathways. Moreover, LSECs orchestrate liver fibrotic remodeling through dynamic crosstalk with hepatic stellate cells (HSCs), hepatocytes, Kupffer cells, and immune cells, exerting both pro- and anti-fibrotic effects. This review comprehensively summarizes LSECs dysfunction in hepatic fibrosis, with a particular focus on intercellular communication and emerging therapeutic strategies. Elucidating the regulatory networks that govern LSECs behavior may uncover new opportunities for the diagnosis and treatment of chronic liver disease.
Collapse
Affiliation(s)
- Ting Chen
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Huan Zhang
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Wenqi Shan
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China.
| | - Yanwen You
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
3
|
Satta E, Strollo F, Borgia L, Guarino G, Romano C, Masarone M, Marfella R, Gentile S. Urinary L-FABP: A Novel Biomarker for Evaluating Diabetic Nephropathy Onset and Progression. A Narrative Review. Diabetes Ther 2025; 16:1107-1124. [PMID: 40178792 PMCID: PMC12085547 DOI: 10.1007/s13300-025-01731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Patients with diabetes mellitus (DM) are at risk of developing diabetic nephropathy (DN), a condition whose onset and progression are linked to increased morbidity and mortality. Therefore, early recognition is crucial. Presently, this relies on the albumin excretion rate (AER) and glomerular filtration rate (GFR). Nevertheless, DN eventually affects patients with normal AER and GFR. Thus, further easy-to-handle biomarkers of DN onset/worsening are needed. Liver-type fatty acid-binding protein (L-FABP) has been associated with renal damage and could help predict/diagnose DN. We performed a literature selection to evaluate the performance of urinary excretion of such biomarker (urinary-L-FABP:uL-FABP) in predicting/diagnosing DN and its progression in diabetes. We evaluated 635 publications, 21 of which were included. Of these, 14 have cross-sectional design/arms and ten longitudinal design/arms. Cross-sectional studies showed uL-FABP to correlate with DN onset and severity in type-1 DM and type-2 DM, besides being higher than in healthy controls in the case of normoalbuminuria. Longitudinal studies showed baseline uL-FABP to predict DN onset in normoalbuminuric patients with T1DM and DN progression independently of diabetes type. The results suggest that uL-FABP is a marker of tubular damage detectable before increased albumin excretion and can represent the earliest sign of DN. Indeed, it discloses its onset and often predicts its severity in T2DM and patients with T1DM. Currently, uL-FABP can be routinely assessed and, being available as a point-of-care fast-test kit, may also become an easy-to-handle diagnostic tool for outpatients. In conclusion, uL-FABP represents a user-friendly biomarker of DN and can even predict DN progression in T2DM and T1DM over time.
Collapse
Affiliation(s)
- Ersilia Satta
- Nefrocenter Research Network, Cava de´ Tirreni, Italy
| | - Felice Strollo
- Department of Endocrinology and Diabetes, IRCCS San Raffaele Pisana, Rome, Italy
| | - Luisa Borgia
- Bioethics, DISVA, Department of Life and Environmental Sciences, Biological Sciences Faculty, Marche Polytechnic University, 22, Piazza Roma, 60121, Ancona, Italy
| | - Giuseppina Guarino
- Nefrocenter Research Network, Cava de´ Tirreni, Italy
- Department of Precision Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| | | | - Mario Masarone
- Department of Medicine, Surgery and Odontostomatology "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.
| | - Raffaele Marfella
- Department of Precision Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| | - Sandro Gentile
- Nefrocenter Research Network, Cava de´ Tirreni, Italy
- Department of Precision Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
4
|
Liu B, Wang Z, Liang M, Yang L. Triglyceride-lowering effect of rice protein due to the regulation of fatty acid uptake and transport of triglyceride in rats fed normal/oil-enriched diets. FOOD CHEMISTRY. MOLECULAR SCIENCES 2025; 10:100253. [PMID: 40135185 PMCID: PMC11932864 DOI: 10.1016/j.fochms.2025.100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
Dysregulation of fatty acid uptake and triglyceride transport can induce excess triglyceride accumulation. We propose that rice protein might suppress fatty acid uptake and/or triglyceride transport. To elucidate potential mechanisms, expressions of cluster determinant 36 (CD36), microsomal triglyceride transfer protein (MTP), fatty acid transport protein-2 (FATP-2), fatty acid-binding protein-1 (FABP-1), lipoprotein lipase (LPL) and Niemann-Pick C1-like 1 (NPC1L1) were investigated in growing and adult male Wistar rats fed with caseins and rice proteins under normal and oil-enriched dietary conditions. After two weeks of feeding, rice protein depressed the gene and protein expressions of CD36, MTP, FATP-2, FABP-1 and NPC1L1, whereas rice protein up-regulated those of LPL. As a result, rice protein significantly reduced the concentrations of triglyceride and fatty acid in the plasma and liver (P < 0.05) as well as the deposit of perirenal, epididymal and mesenteric fat (P < 0.05). The present study demonstrates an association between the depression of fatty acid uptake and triglyceride transport and the triglyceride-lowering effect of rice protein.
Collapse
Affiliation(s)
- Bingxiao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhengxuan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Mingcai Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
5
|
Zhuang C, Cui F, Chen J, He D, Sun T, Wang P. Rbm39 ameliorates metabolic dysfunction-associated steatotic liver disease by regulating Apob and Fabp4. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167815. [PMID: 40147697 DOI: 10.1016/j.bbadis.2025.167815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/12/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Excessive hepatic lipid accumulation is the hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD), yet its underlying mechanisms still not fully understood. In this study, we identified RNA binding motif protein 39 (Rbm39) as a key modulator of hepatic lipid homeostasis during MASLD progression. To establish in vivo MASLD model, mice were fed either a high-fat diet (HFD) or a Gubra-Amylin NASH (GAN) diet. We employed adeno-associated virus to manipulate Rbm39 expression levels to assess its role in MASLD. Transcriptome analysis was conducted to pinpoint the genes targeted by Rbm39. Western blot, RT-PCR, dual-luciferase reporter gene assays, and alternative splicing analysis were utilized to delve into the molecular mechanisms. Our results showed that Rbm39 expression was notably decreased in the livers of MASLD mice. Knockdown of hepatic Rbm39 aggravated HFD-induced hepatic steatosis and GAN diet-induced MASH, along with a notable decrease in serum lipid levels. Conversely, overexpression of Rbm39 attenuated MASLD development and progression. RNA sequencing data analysis indicated that Rbm39 regulated the expression of apolipoprotein B (Apob) and fatty acid-binding protein 4 (Fabp4), both of which are crucial for lipid transport. Mechanistically, Rbm39 enhanced the transcription of Apob by upregulating hepatocyte nuclear factor 4α (Hnf4α), while it suppressed Fabp4 transcription by regulating alternative splicing of hypoxia inducible factor-1α (Hif-1α). These findings highlight the pivotal role of Rbm39 in maintaining hepatic lipid homeostasis and suggest its potential as a therapeutic target for MASLD.
Collapse
Affiliation(s)
- Chunbo Zhuang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Fangfang Cui
- Department of Gastroenterology, Kaifeng People's Hospital, Kaifeng, Henan 475000, PR China
| | - Jin Chen
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Dezhi He
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Ting Sun
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Pei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
6
|
Dumitru A, Tocia C, Bădescu AC, Trandafir A, Alexandrescu L, Popescu R, Dumitru E, Chisoi A, Manea M, Matei E, Cozaru GC, Rugină S. Linking gut permeability to liver steatosis: Noninvasive biomarker evaluation in MASLD patients - a prospective cross-sectional study. Medicine (Baltimore) 2025; 104:e42476. [PMID: 40419913 DOI: 10.1097/md.0000000000042476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
Recent research highlights a potential link between metabolic dysfunction-associated steatotic liver disease (MASLD) and intestinal barrier dysfunction. Increased intestinal permeability (IP) may facilitate the translocation of bacteria, endotoxins (e.g., lipopolysaccharides [LPS]), and pathogen-associated molecular patterns into the portal venous system, fostering a pro-inflammatory environment and contributing to liver inflammation. This study aimed to identify correlations between intestinal barrier biomarkers (occludin, LPS, and intestinal-type fatty-acid-binding proteins [I-FABP]) and MASLD. A single-center prospective cross-sectional study was conducted, including 72 MASLD patients and 68 healthy controls. Fibroscan-controlled attenuation parameter (CAP) was performed in all subjects. Blood samples were analyzed for biochemical parameters, and serum levels of occludin, LPS, and I-FABP were measured using the ELISA method with the Human occludin, LPS, and I-FABP ELISA Kit test systems (FineTest, Wuhan, China). LPS and I-FABP levels were significantly higher in MASLD patients compared to controls, with the highest LPS levels observed in the diabetic MASLD subgroup. Occludin levels showed no statistically significant differences between groups. All 3 biomarkers were positively correlated with BMI, with the highest levels in obese subjects. LPS was positively correlated with CRP levels. Using Fibroscan-CAP, we found a positive correlation between LPS and both liver stiffness and CAP score, as well as between I-FABP and liver stiffness. MASLD patients exhibit increased IP, with enterocyte injury present irrespective of diabetes status, though more pronounced in diabetic MASLD. Occludin does not appear to be a reliable biomarker for evaluating intestinal barrier function in MASLD. Obesity is linked to elevated biomarkers, suggesting an association between increased IP and obesity. I-FABP and LPS may serve as noninvasive biomarkers for assessing hepatic fibrosis and steatosis in MASLD patients. Notably, LPS, given its correlation with elevated CRP levels, could be utilized as a marker of disease progression and severity.
Collapse
Affiliation(s)
- Andrei Dumitru
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Cristina Tocia
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Alina-Cristina Bădescu
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Anamaria Trandafir
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Luana Alexandrescu
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Razvan Popescu
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Eugen Dumitru
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Anca Chisoi
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
- Medical Sciences Academy, Bucharest, Romania
| | - Mihaela Manea
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
| | - Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
| | - Georgeta Camelia Cozaru
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
- Medical Sciences Academy, Bucharest, Romania
| | - Sorin Rugină
- Academy of Romanian Scientists, Bucharest, Romania
- Medical Sciences Academy, Bucharest, Romania
- Clinical Hospital of Infectious Diseases, Constanta, Romania
| |
Collapse
|
7
|
Yan B, Bunch J. A straightforward method for measuring binding affinities of ligands to proteins of unknown concentration in biological tissues. Chem Sci 2025; 16:8673-8681. [PMID: 40313517 PMCID: PMC12042207 DOI: 10.1039/d5sc02460a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
The equilibrium dissociation constant (K d) is a quantitative measure of the strength with which a drug binds to its receptor. Methods for determining K d typically require a priori knowledge of protein concentration or mass. We report a simple dilution method for estimation of K d using native mass spectrometry which can be applied to protein-ligand complexes involving proteins of unknown concentration, from complex mixtures, including direct tissue sampling.
Collapse
Affiliation(s)
- Bin Yan
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory Hampton Road Teddington TW11 0LW UK
| | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory Hampton Road Teddington TW11 0LW UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| |
Collapse
|
8
|
He N, Li Y, Liu F, Dong X, Ma D. Adipocytes regulate monocyte development through the OGT-NEFA-CD36/FABP4 pathway in high-fat diet-induced obesity. Cell Death Dis 2025; 16:401. [PMID: 40389445 PMCID: PMC12089399 DOI: 10.1038/s41419-025-07721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/17/2025] [Accepted: 05/06/2025] [Indexed: 05/21/2025]
Abstract
Obesity, resulting from excessive adipocyte accumulation, is a primary risk for various diseases. Although its impact on hematopoietic stem cell (HSC) function has been reported, its effects on HSC differentiation remain controversial. O-GlcNAc transferase (OGT), which catalyzes the attachment of N-acetylglucosamine to serine and threonine residues in proteins, acts as a metabolic sensor capable of regulating diverse physiological processes. This study demonstrates that obesity is associated with higher peripheral monocyte levels. Adipocyte OGT is crucial for monocyte development in high-fat diet (HFD)-induced obesity, promoting an increase in peripheral blood monocytes through transcriptional activation of nonesterified fatty acids (NEFA), a critical energy substrate. Loss of adipocyte OGT decreases serum NEFA levels, reduces white adipose tissue, and inhibits HSC differentiation into monocytes in HFD-induced obesity. Mechanistically, the regulated effect of adipocyte OGT on monocyte development may be mediated by NEFA-cluster of differentiation 36/fatty acid binding protein 4 (CD36/FABP4) pathway in HSCs in HFD-induced obesity. These findings establish the critical role of adipocyte OGT in hematopoietic homeostasis and monocyte development.
Collapse
Affiliation(s)
- Na He
- Advanced Medical Research InstiTabletute, Shandong University, Shandong, 250012, China
- Department of Hematology, Qilu Hospital of Shandong University, Shandong, 250012, China
| | - Yingjie Li
- Department of Health Management Center, Qilu Hospital of Shandong University, Shandong, 250012, China
| | - Fabao Liu
- Advanced Medical Research InstiTabletute, Shandong University, Shandong, 250012, China
| | - Xifeng Dong
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Shandong, 250012, China.
| |
Collapse
|
9
|
Theivendren P, Pavadai P, Kunjiappan S, Ravi K, Kiruthiga N, Chidamabaram K, Alagarsamy S, Reddy NB. Emerging therapeutic strategies and opportunities in targeting protein pathways for breast cancer treatment: a critical review. NANOTECHNOLOGY 2025; 36:232001. [PMID: 40345214 DOI: 10.1088/1361-6528/add6ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 05/09/2025] [Indexed: 05/11/2025]
Abstract
Understanding breast cancer at a molecular level is essential for developing effective treatments due to its significant impact on women's mortality rates globally. Targeted medicines focus on specific proteins crucial to breast cancer progression, offering a promising treatment avenue. These proteins, often overexpressed or mutated in cancer cells, are vital for cell proliferation, division, and survival. Targeted drugs aim to inhibit these proteins, halting disease progression and sparing non-cancerous cells, which reduces side effects and improves patient quality of life. Key proteins in breast cancer treatment include HER2 (human epidermal growth factor receptor 2), ER (estrogen receptor), and PR (progesterone receptor). Drugs like Trastuzumab target HER2 to impede tumor growth in HER2-positive cancers, while hormone therapies targeting ER and PR improve outcomes for hormone receptor-positive cancers. Examining proteins such as EGFR, HER2/Neu, and ER reveals their roles in cancer pathways, with pathways like PI3K/Akt/mTOR (phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin) and MAPK (mitogen-activated protein kinase) being crucial targets for therapies, potentially revolutionizing breast cancer treatment.
Collapse
Affiliation(s)
- Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry & Analysis, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai, Tamil Nadu 600117, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, Karnataka 560054, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu 626126, India
| | - Kaveena Ravi
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamil Nadu 637205, India
| | - Natarajan Kiruthiga
- Department of Pharmaceutical Chemistry, KMCH College of Pharmacy, Kalappatti road, Coimbatore, Tamil Nadu 641048, India
| | - Kumarappan Chidamabaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Asir Province, Saudi Arabia
| | - Shanmugarathinam Alagarsamy
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Nagireddy Bhuvan Reddy
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602 105, India
| |
Collapse
|
10
|
He C, Huang Y, Rahayu S, Liu H, Huang Y, Shi G, Chen H, Li G, Zhu C, Jiang M. Transcriptomics analysis provides new insights into the ovarian lipid droplet formation and lipid deposition in Plectropomus leopardus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 56:101534. [PMID: 40398211 DOI: 10.1016/j.cbd.2025.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/23/2025]
Abstract
The leopard coral grouper (Plectropomus leopardus), an increasingly important species in marine aquaculture, has garnered significant research interest due to its high market value. Despite extensive research on ovarian growth and development in fish, the molecular mechanisms governing lipid droplet formation and lipid deposition in P. leopardus remain poorly understood. In this study, we conducted transcriptomic analyses of P. leopardus ovaries at three developmental stages: primary growth (PG), pre-vitellogenesis (PV), and mid-vitellogenesis (MV). A total of 534,847,090 raw reads were obtained from nine cDNA libraries, leading to the identification of 19,155 genes with 13,817 genes expressed at all stages. Differential analysis showed that 1012, 2609, and 4039 genes were up-regulated, while 168, 277, and 577 genes were down-regulated in the three comparisons, respectively. Functional enrichment analyses highlighting the critical roles of differentially expressed genes (DEGs) in lipid transport (such as fatp1, fatp4, fatp6, apoeb, lpl and fabps), fatty acid metabolism (such as elovl6, acsl1, dgat2 and gpat4) and phospholipid metabolism (such as ept1, chka and pla2g15). These findings underscore their contribution to lipid droplet formation and deposition. Furthermore, key signaling pathways, including Wnt, mTOR, PPAR and PI3K/Akt, were implicated in regulating these processes. The reliability of the RNA-seq data was confirmed through qPCR validation of 10 lipid-related genes. Based on these results, we propose a model for lipid droplet formation and lipid deposition during ovarian development in P. leopardus. This study advances our understanding of ovarian development in P. leopardus and provides a foundation for future research on marine fish reproduction, with potential applications in species conservation and aquaculture management.
Collapse
Affiliation(s)
- Changqing He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Youheng Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Silvana Rahayu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Hao Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yang Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Gang Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Huapu Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Guangli Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Agro-Tech Extension Center of Guangdong Province, Guangzhou, China
| | - Chunhua Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Agro-Tech Extension Center of Guangdong Province, Guangzhou, China
| | - Mouyan Jiang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China.
| |
Collapse
|
11
|
Oubraim S, Fauzan M, Studholme K, Gordon C, Glaser ST, Shen RY, Ojima I, Kaczocha M, Haj-Dahmane S. Astrocytic FABP5 mediates retrograde endocannabinoid transport at central synapses. iScience 2025; 28:112342. [PMID: 40292318 PMCID: PMC12033926 DOI: 10.1016/j.isci.2025.112342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/19/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Endocannabinoids (eCBs) regulate synaptic function via cannabinoid receptors. While eCB signaling is well understood, the mechanisms underlying eCB synaptic transport are poorly characterized. Using 2-arachidonoylglycerol (2-AG)-mediated depolarization-induced suppression of inhibition (DSI) in the hippocampus as a readout of retrograde eCB signaling, we demonstrate that the deletion of fatty acid binding protein 5 (FABP5) impairs DSI. In FABP5 KO mice, DSI was rescued by re-expressing wild-type FABP5 but not an FABP5 mutant that does not bind 2-AG. Importantly, the deletion of astrocytic FABP5 blunted DSI, which was rescued by its re-expression in the astrocytes of FABP5 KO mice. Neuronal FABP5 was dispensable for 2-AG signaling. DSI was also rescued by expressing a secreted FABP5 variant but not by FABP7, an astrocytic FABP that does not undergo secretion. Our results demonstrate that extracellular FABP5 of astrocytic origin controls 2-AG transport and that FABP5 is adapted to coordinate intracellular and synaptic eCB transport.
Collapse
Affiliation(s)
- Saida Oubraim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mohammad Fauzan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Keith Studholme
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Chris Gordon
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sherrye T. Glaser
- Department of Biological Sciences, Kingsborough Community College, Brooklyn, NY, USA
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- University at Buffalo Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
- Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- University at Buffalo Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
12
|
Severin M, Hansen RK, Rolver MG, Hels T, Maeda K, Pardo LA, Pedersen SF. Tumor acidosis supports cancer cell lipid uptake via a rapid transporter-independent mechanism. J Cell Sci 2025; 138:jcs263688. [PMID: 40190115 DOI: 10.1242/jcs.263688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/25/2025] [Indexed: 05/17/2025] Open
Abstract
Tumor acidosis alters cancer cell metabolism and favors aggressive disease progression. Cancer cells in acidic environments increase lipid droplet accumulation and oxidative phosphorylation, which are characteristics of aggressive cancers. Here, we used live imaging, shotgun lipidomics and immunofluorescence analyses of mammary and pancreatic cancer cells to demonstrate that both acute acidosis and adaptation to acidic growth drive rapid uptake of fatty acids (FAs), which are converted to triacylglycerols and stored in lipid droplets. Consistent with being independent of de novo synthesis, triacylglycerol and lipid droplet accumulation in acid-adapted cells was unaffected by FA synthetase (FAS, encoded by FASN) inhibitors. Macropinocytosis, which is upregulated in acid-adapted cells, partially contributed to FA uptake, which was independent of other protein-facilitated lipid uptake mechanisms, including uptake via CD36 and FATP2, and caveolin- and clathrin-dependent endocytosis. We propose that a major mechanism by which tumor acidosis drives FA uptake is through neutralizing protonation of negatively charged FAs allowing their diffusive, transporter-independent uptake. We suggest that this could be a major factor triggering acidosis-driven metabolic rewiring.
Collapse
Affiliation(s)
- Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rikke K Hansen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Michala G Rolver
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tove Hels
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kenji Maeda
- Section for Cell Death and Metabolism, Danish Cancer Institute, 2100 Copenhagen, Denmark
| | - Luis A Pardo
- Max Planck Institute for Multidisciplinary Sciences, Oncophysiology Group, 37077 Göttingen, Germany
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Chang R, Ye H, Dong X, Cao XY, Sue ACH. Biomimetic Metal-Organic Nanotubular Host for Straight-Chain Fatty Acids Recognition. J Am Chem Soc 2025. [PMID: 40372406 DOI: 10.1021/jacs.5c03334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Subtle structural variations among fatty acids significantly influence their biological roles and health effects. However, molecular recognition of their long, flexible, and chemically inert hydrocarbon chains remains a challenge. Inspired by natural fatty acid-binding proteins (FABPs), we designed and synthesized nanotubular metallo-cavitands, termed metal-organic pillars, through the coordination-driven assembly of pillararene-derived ligands with Ag(I) salts. These biomimetic hosts feature continuous interior channels exceeding 2.6 nm, selectively binding long-chain fatty acids through precise size and shape complementarity. Saturated and trans fatty acids, with linear conformations, are effectively encapsulated and stabilized by C-H···π and van der Waals interactions. In contrast, coiled cis-polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), cannot be accommodated due to structural incompatibility. This work highlights the ability of artificial receptors to emulate the recognition capabilities of natural proteins, enabling the targeting of "bad" fatty acids associated with adverse health effects.
Collapse
Affiliation(s)
- Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hongliang Ye
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Xue Dong
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Xiao-Yu Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
14
|
Twum E, Ofosu-Boateng M, Nnamani DO, Gebreyesus LH, Yadak N, Kharbanda KK, Gonzalez FJ, Gyamfi MA. Blockade of the estrogen receptor alpha-pregnane X receptor axis protects ovariectomized mice against ethanol-induced hepatotoxicity. J Biol Chem 2025:110238. [PMID: 40381698 DOI: 10.1016/j.jbc.2025.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025] Open
Abstract
Women develop alcohol-associated liver disease (ALD) faster than men at any level of alcohol consumption, implicating estrogen as a contributing factor. However, the precise mechanism remains unknown. Therefore, 12-weeks-old female C57BL/6N mice were subjected to either bilateral ovariectomy (OVX) or sham surgery. After a three-week recovery period, the mice were fed either a 5% ethanol (EtOH)-containing liquid diet or paired-fed control diet for 10 days followed by a single gavage dose of EtOH (5 g/kg, 30% EtOH solution). The mice were examined for serum biochemical parameters, hepatotoxicity, histology, expression of xenobiotic nuclear receptors PXR and CAR, and their target gene mRNAs and proteins in hepatic and perigonadal white adipose tissues (pgWAT). While OVX mice on a control diet significantly gained weight, EtOH significantly increased hepatotoxicity, residual EtOH levels, lipid peroxidation, and oxidative stress in sham-operated mice but not in their OVX counterparts. Additionally, in the livers and pgWAT of the sham mice, EtOH significantly increased the mRNA and/or protein levels of the major estrogen receptor ERα, PXR, CAR, and their target genes, proinflammatory cytokines and chemokines, lipogenic genes, and FGF21 levels, a predictive biomarker for ALD severity in humans, but inhibited NRF2 and its targets genes encoding NQO1 and BHMT. Unexpectedly, all these changes were attenuated in the EtOH-fed OVX mice by the upregulation of NRF2 and aryl hydrocarbon receptor (AhR) and their downstream antioxidant target genes. Together these results suggest the existence of an estrogen-regulated ERα-PXR-NRF2-signaling axis in liver and pgWAT which contributes to sexual dimorphism in ALD.
Collapse
Affiliation(s)
- Elizabeth Twum
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Malvin Ofosu-Boateng
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Daniel O Nnamani
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Lidya H Gebreyesus
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Nour Yadak
- Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105 USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, Building 37, Room 3106, Bethesda, MD, 20892, USA
| | - Maxwell A Gyamfi
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
15
|
Saha G, Bandyopadhyay S. Elucidating the microscopic properties of a β-barrel protein and the solvent confined in and around it. Phys Chem Chem Phys 2025; 27:9755-9766. [PMID: 40264279 DOI: 10.1039/d4cp04835k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Intracellular lipid binding proteins (iLBPs) possess different characteristics, including a rigid protein structure consisting of a β-barrel, an α-helix cap, and a substantial internalized water cluster. Despite X-ray crystallographic research providing insights into the three-dimensional structures of iLBPs, the protein conformations, and the function of the internal water molecules inside the protein remain uncertain. In this study, we conducted molecular dynamics (MD) simulations on free (apo) and oleate-bound (holo) rat liver fatty acid binding proteins (rLFABPs), which are common intracellular lipid binding proteins (iLBPs) found in the liver of rats. Efforts have been made to obtain a comprehensive microscopic understanding of the conformational motions of different segments of the protein, namely, the β-strands, the helix-turn-helix (HTH) motif, and the loop regions, along with the impact of ligand binding on the microscopic structure and ordering of water molecules confined within the core and at the exterior surface of the protein. The calculations revealed fluctuating nature of the HTH region, characterized by the development and disruption of distinct secondary structural components. Furthermore, the coexistence of spatially heterogeneous ordered and disordered water molecules within the core regions of the apo and holo forms has been observed. A high degree of ordering of core water molecules has been attributed to those that are doubly coordinated. In contrast, the randomly oriented ones are found to be surrounded by three neighboring water molecules in their first coordination shells. Such non-uniform ordering of core water molecules suggests their important role in the ligand binding process for this class of proteins.
Collapse
Affiliation(s)
- Gourab Saha
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India.
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India.
| |
Collapse
|
16
|
Hossain MJ, Romanov KA, Jian J, Swaby LC, Bandyopadhyay S, Guan I, Thomas SM, Olive AJ, O’Connor TJ. Bacterial pathogens hijack host cell peroxisomes for replication vacuole expansion and integrity. SCIENCE ADVANCES 2025; 11:eadr8005. [PMID: 40305606 PMCID: PMC12042894 DOI: 10.1126/sciadv.adr8005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Pathogens manipulate host cell organelles to establish infection. There is extensive evidence of pathogen modulation of the endoplasmic reticulum, Golgi apparatus, mitochondria, endosomes, lysosomes, and nucleus. However, one organelle that has been largely overlooked in connection with bacterial pathogenesis is peroxisomes. Here, we demonstrate that Legionella actively recruits peroxisomes to its replication vacuole using a secreted bacterial effector protein. Defects in peroxisome metabolic function restrict expansion of the Legionella vacuole membrane and cause rupture of this compartment, inhibiting bacterial replication and leading to bacterial degradation. Similarly, peroxisome dysfunction causes Salmonella replication vacuole destabilization and reduced bacterial burden within host cells. Thus, these two intracellular bacterial pathogens exploit host cell peroxisomes to maintain their replication compartments, establishing a critical role for this organelle in disease.
Collapse
Affiliation(s)
- Mohammad J. Hossain
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katerina A. Romanov
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey Jian
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Louis C. Swaby
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saumya Bandyopadhyay
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivan Guan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sean M. Thomas
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Tamara J. O’Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Zhang Y, Zhang R, Li C, Peng G. Exploring the causal association between fatty acid-binding proteins and anaphylactic shock due to adverse reactions to medications: A two-sample Mendelian randomization study. Medicine (Baltimore) 2025; 104:e42171. [PMID: 40324257 PMCID: PMC12055110 DOI: 10.1097/md.0000000000042171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 05/07/2025] Open
Abstract
Previous studies have identified a relationship between fatty acid-binding proteins (FABPs) and immune diseases. This study aimed to investigate whether a causal relationship exists between FABPs and anaphylactic shock resulting from adverse drug reactions. Single nucleotide polymorphisms associated with FABPs were utilized as instrumental variables, sourced from the National Human Genome Research Institute-European Bioinformatics Institute Catalog of human genome-wide association studies. Data on anaphylactic shock due to adverse effects of correctly administered drugs were obtained from the FinnGen database, which includes genomic and health data from 500,000 Finnish biobank donors. A two-sample Mendelian randomization analysis was conducted to explore the causality between FABPs and anaphylactic shock due to adverse drug reactions. The analysis revealed a negative causal relationship between FABP5 (odds ratio [OR] = 0.40; 95% confidence interval [CI] = 0.17-0.92; P = .032) and FABP12 (OR = 0.77; 95% CI = 0.63-0.94; P = .009) and anaphylactic shock due to adverse drug reactions. These findings were corroborated by Mendelian randomization-Egger, weighted median, and weighted mode methods. This study provides robust evidence supporting a protective relationship between FABP5 and FABP12 and anaphylactic shock due to adverse drug reactions. Further experimental studies are warranted to elucidate the causal mechanisms and associations between FABP5, FABP12, and anaphylactic shock in the context of adverse drug reactions.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, China
| | - Rusheng Zhang
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Cunyu Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, China
| | - Guoping Peng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, China
| |
Collapse
|
18
|
Liu B, Yang D. Validation and Optimization of PURE Ribosome Display for Screening Synthetic Nanobody Libraries. Antibodies (Basel) 2025; 14:39. [PMID: 40407691 PMCID: PMC12101283 DOI: 10.3390/antib14020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES PURE (Protein synthesis Using Recombinant Elements), an ideal system for ribosome display, has been successfully used for nanobody selection. However, its limitations in nanobody selection, especially for synthetic nanobody libraries, have not been clearly elucidated, thereby restricting its utilization. METHODS The PURE ribosome display selection process was closely monitored using RNA agarose gel electrophoresis to assess the presence of mRNA molecules in each fraction, including the flow-through, washing, and elution fractions. Additionally, a real-time validation method for monitoring each biopanning round was implemented, ensuring the successful enrichment of target protein-specific binders. The selection process was further optimized by introducing a target protein elution step prior to the EDTA-mediated disassembly, as well as by altering the immobilization surfaces. Finally, the efficiency of PURE ribosome display was enhanced by replacing the spacer gene. RESULTS The efficiency of PURE ribosome display was merely 4% with an unfavourable spacer gene. Using this spacer gene, EGFP- and human fatty acid-binding protein 4-specific nanobodies from a synthetic nanobody library were we successfully identified through optimizing the selection process. Choosing a spacer gene less prone to secondary structure formation increased significantly its efficiency in displaying synthetic nanobody libraries. CONCLUSIONS Implementing a target protein elution step prior to EDTA-mediated disassembly and modifying the immobilization surfaces effectively increase selection efficiency. For PURE ribosome display, efficiency was further improved using a suitable spacer gene, enabling the display of large libraries.
Collapse
Affiliation(s)
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore;
| |
Collapse
|
19
|
Ren X, Jin C, Li Q, Fu C, Fang Y, Xu Z, Liang Z, Wang T. Fatty acid binding proteins-mediated mitochondrial dysfunction in the development of age-related diseases: A review. Int J Biol Macromol 2025; 309:142913. [PMID: 40203912 DOI: 10.1016/j.ijbiomac.2025.142913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Fatty acid-binding proteins (FABPs) act as lipid chaperones and play a role in the pathological processes of various lipid signaling pathways. Mitochondria are crucial for the regulation of lipid metabolism. As an aging marker, lipid-mediated mitochondrial dysfunction has been observed in the etiology of numerous diseases, including neurodegenerative diseases, metabolic syndromes, cardiovascular diseases, and tumorigenesis. Members of the FABP family have been identified to regulate mitochondrial function. Targeting FABPs specifically may provide a promising approach to improve mitochondrial function and treat age-related diseases. This review summarizes the connection between FABPs and mitochondrial function and highlights certain FABPs involved in age-related diseases that hold significant therapeutic promise.
Collapse
Affiliation(s)
- Xingxing Ren
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Chaoyuan Jin
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qilin Li
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Congyi Fu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Yu Fang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Zihang Xu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Zi Liang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Tianshi Wang
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201207, China.
| |
Collapse
|
20
|
Costa RJS, Gaskell SK, Henningsen K, Jeacocke NA, Martinez IG, Mika A, Scheer V, Scrivin R, Snipe RMJ, Wallett AM, Young P. Sports Dietitians Australia and Ultra Sports Science Foundation Joint Position Statement: A Practitioner Guide to the Prevention and Management of Exercise-Associated Gastrointestinal Perturbations and Symptoms. Sports Med 2025; 55:1097-1134. [PMID: 40195264 DOI: 10.1007/s40279-025-02186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 04/09/2025]
Abstract
It is now well-established that exercise can disturb various aspects of gastrointestinal integrity and function. The pathophysiology of these perturbations, termed "exercise-induced gastrointestinal syndrome (EIGS)," can lead to exercise-associated gastrointestinal symptom (Ex-GIS) inconveniences. EIGS outcomes can impact physical performance and may lead to clinical manifestation warranting medical intervention, as well as systemic responses leading to fatality. Athlete support practitioners seek prevention and management strategies for EIGS and Ex-GIS. This current position statement aimed to critically appraise the role of EIGS and Ex-GIS prevention and management strategies to inform effective evidence-based practice and establish translational application. Intervention strategies with mostly consistent beneficial outcomes include macronutrient (i.e., carbohydrate and protein) intake and euhydration before and during exercise, dietary manipulation of fermentable oligo-, di-, and mono-saccharides and polyols (FODMAP), and gut training or feeding tolerance adjustments for the specific management of Ex-GIS from gastrointestinal functional issues. Strategies that may provide benefit and/or promising outcomes, but warrant further explorations include heat mitigating strategies and certain nutritional supplementation (i.e., prebiotics and phenols). Interventions that have reported negative outcomes included low-carbohydrate high-fat diets, probiotic supplementation, pharmaceutical administration, and feeding intolerances. Owing to individual variability in EIGS and Ex-GIS outcomes, athletes suffering from EIGS and/or support practitioners that guide athletes through managing EIGS, are encouraged to undertake gastrointestinal assessment during exercise to identify underlying causal and exacerbation factor/s, and adopt evidence-based strategies that provide individualized beneficial outcomes. In addition, abstaining from prevention and management strategies that present unclear and/or adverse outcomes is recommended.
Collapse
Affiliation(s)
- Ricardo J S Costa
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia.
| | - Stephanie K Gaskell
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Kayla Henningsen
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | | | - Isabel G Martinez
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Alice Mika
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Volker Scheer
- Ultra Sports Science Foundation, Pierre-Benite, France
| | - Rachel Scrivin
- University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Toi Ohomai Institute of Technology, Tauranga, New Zealand
| | - Rhiannon M J Snipe
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | | | - Pascale Young
- Department of Nutrition Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| |
Collapse
|
21
|
Krokengen OC, Raasakka A, Klenow MB, Pal A, Hetland Ø, Mularski A, Ruskamo S, Pedersen JS, Simonsen AC, Kursula P. On the synergy between myelin proteins P0, MBP, and P2 in peripheral nerve major dense line formation. FEBS J 2025. [PMID: 40299727 DOI: 10.1111/febs.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/04/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025]
Abstract
The proper formation and function of the myelin sheath, a proteolipid membrane multilayer, relies on the coordinated action of several key myelin proteins. We studied how proteins from the peripheral myelin cytoplasmic apposition-myelin basic protein (MBP), the cytoplasmic tail of myelin protein zero (P0ct), and peripheral myelin protein 2 (P2)-interact with each other and with myelin-like membranes using various techniques, such as small-angle X-ray diffraction, differential scanning calorimetry (DSC), surface plasmon resonance (SPR), and electron and live epifluorescence microscopy. DSC revealed changes in lipid interactions depending on the protein combination, with altered membrane fluidity and stability. These results were supported by SPR, which indicated that the myelin proteins may compete for membrane surface binding. Analysis of the Bragg peaks induced by the myelin proteins in lipidic environments showed both lamellar and nonlamellar phases in protein-lipid complexes, indicating the formation of nanoscale structures that may be relevant for myelin assembly. Microscopy experiments showed the formation of new membrane structures with each of the proteins separately and together. Our data indicate both synergy and competition between the three main proteins residing in the peripheral nervous system myelin major dense line. The observed direct effects of myelin proteins on lipid membrane structure and properties may be relevant to their function in myelinating cells as well as their role in myelin disorders.
Collapse
Affiliation(s)
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Norway
| | - Martin Berg Klenow
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Antara Pal
- Department of Chemistry, Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| | | | - Anna Mularski
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Jan Skov Pedersen
- Department of Chemistry, Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
- LINXS Institute of Advanced Neutron and X-Ray Science, Lund, Sweden
| |
Collapse
|
22
|
Valente LC, Riechelmann-Casarin L, Otton R, Delella FK, Barbisan LF, Romualdo GR. Transcriptomic implications of low herbicide concentrations in hepatic cells: Insights into the individual and combined effects of 2,4-D, glyphosate, and AMPA. Toxicol Lett 2025; 409:1-11. [PMID: 40294809 DOI: 10.1016/j.toxlet.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Glyphosate and 2,4-D are among the most widely used herbicides globally, leading to environmental presence, food contamination, and human contact. Investigations based on current toxicological limits or populational-based herbicide exposures are warranted, and in vitro bioassays provide useful tools for toxicological screening. Thus, this study evaluated the transcriptomic implications of non-cytotoxic exposures to glyphosate, its metabolite aminomethylphosphonic acid (AMPA), or 2,4-D - or to their mixes - on hepatic cells. The half maximal effective concentration (IC50) of each herbicide was calculated (cell viability) in human hepatic C3A cells and 1000-fold lower concentrations were used for transcriptomic analysis (RNA-Seq) after 48 h exposure, resembling current toxicological limits and considering herbicide water levels (glyphosate: 0.95 µg/mL; AMPA: 3.7 µg/mL; 2,4-D: 0.56 µg/mL). Glyphosate exposure enriched MAPK-related biological processes (upregulated TNF, FOS, IGF1, and PDGFB), and downregulated genes associated with lipid metabolism (CD36 and PPARA). Many AMPA exposure-related differentially expressed genes (DEGs, such as PFKFB3, HK2, and ALDOA) were associated with glucose metabolic pathways. Glyphosate and its metabolite yielded a common molecular signature, as illustrated by principal component analysis and the function of 212 shared DEGs. The exposure to 2,4-D was associated with the JNK cascade and the solute carrier family annotations. The herbicide mixtures had a discrete effect on enhancing the impact of individual herbicides, although important epithelial-mesenchymal transition genes were exclusively modified by the mixes (COL11A2, LOXL3, SNAI1). Altogether, our data reveals new perspectives on the short-term molecular effects of herbicide exposure in liver cells, emphasizing potential avenues for further exploration.
Collapse
Affiliation(s)
- Leticia Cardoso Valente
- São Paulo State University (UNESP), Experimental Research Unit (UNIPEX), Botucatu Medical School, Brazil
| | - Luana Riechelmann-Casarin
- São Paulo State University (UNESP), Experimental Research Unit (UNIPEX), Botucatu Medical School, Brazil
| | - Rosemari Otton
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Flávia Karina Delella
- São Paulo State University (UNESP), Department of Structural and Functional Biology, Botucatu Biosciences Institute, Brazil
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Department of Structural and Functional Biology, Botucatu Biosciences Institute, Brazil
| | - Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Experimental Research Unit (UNIPEX), Botucatu Medical School, Brazil.
| |
Collapse
|
23
|
Low YL, Kreutzer E, Chandrashekaran IR, Adams LA, Pun J, Doak BC, Pan Y, Short JL, Scanlon MJ, Nicolazzo JA. Evaluation of the Anti-Inflammatory Effects of Novel Fatty Acid-Binding Protein 4 Inhibitors in Microglia. J Neuroimmune Pharmacol 2025; 20:40. [PMID: 40234265 PMCID: PMC12000251 DOI: 10.1007/s11481-025-10191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
Fatty acid-binding protein 4 (FABP4) is a key lipid binding protein expressed in microglia, which has been demonstrated to play a critical role in microglial-mediated neuroinflammation, a component of many neurodegenerative diseases. Compounds able to inhibit the function of FABP4 have shown promise in reducing microglial-mediated neuroinflammation, however, their physicochemical properties would prevent their ability to be easily formulated and traverse the blood-brain barrier (BBB) in order to access microglial FABP4. To this end, this study assessed the ability of a series of FABP4 inhibitors, with more desirable physicochemical properties, to attenuate microglial inflammation in an in vitro setting. Four inhibitors with varying affinity to FABP4, as measured by isothermal titration calorimetry (MFP-0011462, MFP-0012314, MFP-0012318, and MFP-0012328), were assessed for their ability to induce toxicity and attenuate reactive oxygen species (ROS) generation and tumour necrosis factor-α (TNF-α) release from lipopolysaccharide (LPS)-activated BV-2 microglia. All FABP4 inhibitors were determined to be soluble in the aqueous buffers at the highest concentration used in the assays (100 µM). Isothermal titration calorimetry demonstrated that the compounds had varying affinities for FABP4 (KD values of 316 nM to > 100 µM). The ability of FABP4 inhibitors to reduce LPS-mediated ROS production aligned with their KD for FABP4, with the most effective inhibitor (MFP-0012328) also able to reduce TNF-α production (by RT-qPCR) and TNF-α release from LPS-activated BV-2 cells by 17% and 25%, respectively. These studies have demonstrated that a series of FABP4 inhibitors with more appropriate physicochemical properties for BBB penetration are able to reduce microglial-mediated inflammation, which may be of benefit in diseases where overactivation of microglia leads to neurodegeneration.
Collapse
Affiliation(s)
- Yi Ling Low
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Ethan Kreutzer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Indu R Chandrashekaran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Luke A Adams
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jason Pun
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Bradley C Doak
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Yijun Pan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Jennifer L Short
- Monash Centre for Advanced mRNA Medicines Manufacturing and Workforce Training, Monash University, Clayton, VIC, Australia
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
24
|
Zhang Y, Zhu WL, Wu M, Gao TY, Hu HX, Xu ZY. Using bioinformatics methods to elucidate fatty acid-binding protein 4 as a potential biomarker for colon adenocarcinoma. World J Gastrointest Oncol 2025; 17:103113. [PMID: 40235911 PMCID: PMC11995352 DOI: 10.4251/wjgo.v17.i4.103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/07/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Colon adenocarcinoma (COAD) ranks second in terms of cancer-related deaths. We found that fatty acid-binding protein 4 (FABP4), which is related to cell adhesion and immunity, affects the occurrence and development of COAD. This study focused on the possibility of using FABP4 as a biomarker for COAD and constructed a nomogram for predicting the survival of COAD patients. AIM To verify the possibility of using FABP4 as a biomarker for COAD. METHODS A total of 453 COAD tissue samples, along with 41 normal tissue samples, were obtained from The Cancer Genome Atlas database. The difference in FABP4 expression between COAD tissues and normal tissues was analyzed, and the results were verified by immunohistochemistry. The WGCNA algorithm links FABP4 expression with an enrichment analysis and with immune cell infiltration pathways. The biological functions of FABP4 and its coexpressed genes were explored through enrichment analyses. The ESTIMATE, CIBERSORT and ssGSEA methods were used for the immune infiltration analysis. Finally, risk scores were calculated by a Cox analysis. A nomogram was constructed by combining risk scores with routine clinicopathological factors. We assessed the accuracy of survival predictions based on the C-index. The C-index ranges from 0.5 to 1.0, and in general, a C-index value greater than 0.65 indicates a reasonable estimate. The results were validated using the Gene Expression Omnibus (GEO) database. RESULTS FABP4 was significantly differentially expressed in COAD. It is a promising auxiliary biomarker for screening and diagnosis. Enrichment analyses suggested that FABP4 may influence the invasion and progression of COAD through cell adhesion. The immunological analysis revealed that FABP4 expression in COAD was significantly positively correlated with immune cell infiltration. Moreover, a nomogram to predict the survival of COAD patients was successfully constructed by integrating the calculated risk scores of 15 candidate genes and routine clinicopathological factors. This nomogram could effectively predict 1-year, 3-year, and 5-year survival (C-index = 0.786) and was verified (C-index = 0.73). CONCLUSION This study established FABP4 as an effective biomarker for screening, assisting in the diagnosis and determining the prognosis.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Medical Engineering, Wannan Medical College, Wuhu 241002, Anhui Province, China
| | - Wen-Li Zhu
- Seven Inpatient Ward, The Fourth People's Hospital of Wuhu, Wuhu 241002, Anhui Province, China
| | - Min Wu
- Sixteen Inpatient Ward, The Fourth People's Hospital of Wuhu, Wuhu 241002, Anhui Province, China
| | - Tian-Yuan Gao
- Department of Pathology, The Second Affiliated Hospital of Wannan Medical College, Wuhu 241000, Anhui Province, China
| | - Hui-Xian Hu
- Department of Medical Engineering, Wannan Medical College, Wuhu 241002, Anhui Province, China
| | - Zheng-Yuan Xu
- Department of Medical Engineering, Wannan Medical College, Wuhu 241002, Anhui Province, China
| |
Collapse
|
25
|
Wang X, Zhang Y, Xu C, Li Q, Ji P, Liu H, Zhang Y, Jin J, Yuan Z, Yuan M, Feng P, Wu Y, Liu W, Shen H, Wang P. MGP regulates the adipogenic differentiation of mesenchymal stem cells in osteoporosis via the Ca2+/CaMKII/RIP140/FABP3 axis. Cell Death Discov 2025; 11:166. [PMID: 40216750 PMCID: PMC11992250 DOI: 10.1038/s41420-025-02472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
The dysregulation of bone marrow mesenchymal stem cells (BM-MSCs) is crucial in the pathogenesis of osteoporosis, and adipogenic differentiation of BM-MSCs is considered an essential factor in this process. However, the mechanisms underlying the regulation of MSC adipogenic differentiation require further investigation. MGP (Matrix Gla Protein) was reported to impair the osteogenic differentiation. However, the mechanisms through which MGP regulates osteoporosis and bone-fat imbalance in MSCs are still unclear. In this study, we confirmed that the expression of MGP upregulated in osteoporosis and has a negative correlation with BMD (bone mineral density). Gain- and loss-of-function experiments were performed to ensure the role of MGP in MSC adipogenic differentiation. Mechanistically, MGP increased intracellular free Ca2+ levels and enhanced CaMKII phosphorylation, which in turn activated RIP140 protein degradation. This led to an increase in the transcription of FABP3, ultimately promoting adipogenic differentiation in MSCs. Furthermore, we demonstrated that using recombinant adeno-associated virus 9 (rAAV9) to silence MGP has the effect of alleviating bone loss and reversing the excessive bone marrow adipose tissue in mice with osteoporosis. In summary, our research has unveiled the regulatory role of MGP/Ca2+/CaMKII/RIP140/FABP3 axis in adipogenic differentiation in MSC and it might be a promising approach for osteoporosis treatment.
Collapse
Affiliation(s)
- Xinglang Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Yunhui Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Chenhao Xu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Quanfeng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Pengfei Ji
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Huatao Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Yibin Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Jiahao Jin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Zihao Yuan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Miao Yuan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Pei Feng
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China.
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China.
| |
Collapse
|
26
|
Cao Y, Ng CA. High-throughput screening of protein interactions with per- and polyfluoroalkyl substances (PFAS) used in photolithography. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137235. [PMID: 39837032 DOI: 10.1016/j.jhazmat.2025.137235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used extensively across industries, including semiconductor manufacturing. Semiconductors are ubiquitous, and there is increasing global demand for semiconductors, e.g., for advanced technologies and the automotive industry. Despite their extensive use, the toxicity and bioaccumulation potential of PFAS used in photolithography, a critical process in semiconductor manufacturing, remain poorly understood. Moreover, most lack experimental data and standards for testing. Here, we identified 96 photolithography-relevant PFAS and developed a computational framework to evaluate their potential hazards through protein binding. By integrating molecular dynamics (MD) and docking, we predicted the binding affinities and positions of PFAS to five proteins-liver fatty acid binding protein (LFABP), serum albumin (SA), peroxisome proliferator-activated receptors α and γ (PPARα and PPARγ), and transthyretin (TTR). These proteins were chosen as their binding with PFAS has been linked to PFAS bioaccumulation and to hepatic, reproductive, developmental, and endocrine disruption. Comparisons with empirical data demonstrated our approach balances simulation speed and robustness, better estimating absolute and relative binding affinities than docking alone. PFAS-protein binding affinities were generally positively associated with fluorinated chain length and the presence of aromatic rings, but limited by the protein binding pocket dimensions. Notably, we identified 22 PFAS with stronger predicted binding than perfluorooctane sulfonic acid (PFOS), a known hazardous PFAS, to at least one target protein, suggesting the potential for toxicological concern. By enabling proactive evaluation of PFAS that are unavailable for experimental testing, this work contributes to safeguarding environmental and human health amidst rising semiconductor demands.
Collapse
Affiliation(s)
- Yuexin Cao
- Department of Civil & Environmental Engineering, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15261, USA.
| | - Carla A Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15261, USA; Department of Environmental and Occupational Health, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
27
|
Laghari F, Chang Q, Zhang H, Zhang J, Pan L, Pu Z, Bao J, Zhang R. Potential mechanisms and therapeutic effect of dietary resveratrol supplementation on the spleen organ of chicken in chronic unpredictable mild stress transcriptomic analysis. Poult Sci 2025; 104:104940. [PMID: 40031383 PMCID: PMC11919410 DOI: 10.1016/j.psj.2025.104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Chronic unpredictable mild stress (CUMS) affects chicken immune system and welfare, causing huge losses of growth performance and welfare. Resveratrol (RSV), an antioxidant and anti-inflammatory natural plant polyphenol, is widely used for the prevention of stress related disease. The aim of this study is to explore the therapeutic effect of RSV on spleen damage in CUMS. We successfully constructed a CUMS model. A total of 288 healthy one-day-old chicks were used in this study and were divided in 3 groups, control, CUMS and CUMS+RSV group. During 42 days of age, spleen tissue samples were collected and analyzed. Transmission electron microscope (TEM), Hematoxylin and eosin (H&E) staining, immunofluorescence, qRT- PCR, Western blots, immunohistochemical staining and RNA- sequencing (RNA-seq) technology was used to determine any changes and analyzed the mRNA and enrichment pathways. Histopathology and ultrastructure showed there was a severe damage of tissues. The results of RNA-seq showed that a total of 206, 267 and 211 DEGs were identified (log2 Fold Change| >1, P < 0.05) in control -vs- CUMS group, CUMS -vs- CUMS+RSV group and control -vs- CUMS+RSV group, respectively. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the SDEGs, two immune/stress- related pathways including PPAR signaling pathway and neuroactive ligand receptor interaction were selected. The genes related to PPAR signaling pathway identified were PLIN1, MMP1, ANGPTL4 and FABP4 and Neuroactive ligand-receptor interaction genes were GRPR, NTSR1, KNG1 and AGT. The PLIN1, MMP1, ANGPTL4, FABP4, GRPR, KNG1 and AGT were up regulated and NTSR1 was down regulated in CUMS group. When compared to CUMS -vs- CUMS+RSV group, PLIN1, FABP4, KNG1 and AGT were down regulated genes and NTSR1 was up regulated gene. Taken together, KEGG pathway analyses of DEGs, verified by qRT-PCR and Western blots, the current study suggested that these data reveal the promising role of RSV in the prevention and therapy of a wide variety of tissue damage and PPAR signaling pathway, neuroactive ligand-receptor interaction in chronic unpredictable mild stress.
Collapse
Affiliation(s)
- Farooque Laghari
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Qingqing Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Haoran Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jiaqi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Liying Pan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Zhaohong Pu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang 150030, PR China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
28
|
Tanaka M, Sato T, Gohda T, Kamei N, Murakoshi M, Ishiwata E, Nakata K, Akiyama Y, Endo K, Kawaharata W, Aida H, Suzuki T, Kubota M, Sanuki M, Suzuki Y, Furuhashi M. Elevated urinary fatty acid-binding protein 4 level predicts future renal dysfunction and poor prognosis in Japanese patients with diabetes: a longitudinal cohort study. Clin Kidney J 2025; 18:sfaf056. [PMID: 40207099 PMCID: PMC11980977 DOI: 10.1093/ckj/sfaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Indexed: 04/11/2025] Open
Abstract
Background Fatty acid-binding protein 4 (FABP4) is an adipokine secreted from adipocytes and macrophages and is also expressed in injured, but not normal, glomerular endothelial cells. Elevated levels of urinary FABP4 (U-FABP4) have been reported to be associated with glomerular damage and increased proteinuria. Methods The associations of levels of U-FABP4 at baseline with future events including renal dysfunction defined by a 30% decline in estimated glomerular filtration rate (eGFR) and all-cause death were investigated in 660 patients with diabetes (type 1/2, 57/603). Results During a follow-up period (median: 62 months), 90 patients (13.6%) developed renal dysfunction, and 66 patients (10.0%) died (median follow-up period 65 months). Kaplan-Meier survival curves showed that there were significant differences in cumulative incidences for a 30% decline in eGFR and all-cause death in patients divided by the tertiles of U-FABP4 level. Furthermore, multivariable Cox proportional hazard models with a restricted cubic spline showed that hazard ratios for a 30% decline in eGFR and all-cause death increased with a higher level of logarithmically transformed (log) U-FABP4 after adjustment for age, sex, type of diabetes, body mass index, current smoking habit, duration of diabetes, comorbidities of hypertension and dyslipidemia, eGFR, and the categorical classification of urinary albumin-creatinine ratio. The addition of log U-FABP4 to traditional risk factors significantly increased the discriminatory capacities for renal dysfunction in net reclassification improvement and integrated discrimination improvement and for all-cause death in NRI. Conclusion U-FABP4 is a predictive biomarker for future renal dysfunction and poor prognosis in patients with diabetes.
Collapse
Affiliation(s)
- Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Tanaka Medical Clinic, Yoichi, Japan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomohito Gohda
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Nozomu Kamei
- Department of Endocrinology and Metabolism, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
- Institute for Clinical Research, NHO Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Maki Murakoshi
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Erika Ishiwata
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kei Nakata
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yukinori Akiyama
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keisuke Endo
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Wataru Kawaharata
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Aida
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toru Suzuki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Natori Toru Internal Medicine and Diabetes Clinic, Natori, Japan
| | - Mitsunobu Kubota
- Department of Endocrinology and Diabetology, NHO Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Michiyoshi Sanuki
- Institute for Clinical Research, NHO Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
29
|
Tanaka M, Sato T, Gohda T, Kamei N, Murakoshi M, Ishiwata E, Endo K, Kawaharata W, Aida H, Nakata K, Akiyama Y, Kubota M, Sanuki M, Suzuki T, Suzuki Y, Furuhashi M. Urinary fatty acid-binding protein 4 is a promising biomarker for glomerular damage in patients with diabetes mellitus. J Diabetes Investig 2025; 16:670-679. [PMID: 39723798 PMCID: PMC11970305 DOI: 10.1111/jdi.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
AIMS/INTRODUCTION Fatty acid-binding protein (FABP) 4, which acts as an adipokine secreted by adipocytes, macrophages, and capillary endothelial cells, is expressed in injured glomerular cells. It has been reported that urinary (U-) FABP4 is associated with renal dysfunction and proteinuria in several glomerular kidney diseases. However, the clinical significance of U-FABP4 in diabetic kidney disease (DKD) remains undetermined. MATERIALS AND METHODS Immunohistological analyses of FABP4 and FABP1 (liver-type FABP), an established biomarker for impaired proximal tubules, were performed in the kidneys of patients with DKD and nonobese diabetic mice (KK-Ta/Akita mice). The associations between U-FABP4 and U-FABP1 with kidney function and metabolic indices were also investigated in patients with type 1 diabetes (n = 57, mean age: 61 years) and patients with type 2 diabetes (n = 608, mean age: 65 years). RESULTS In both patients with diabetes and diabetic mice, FABP4 was expressed in injured glomeruli with increased markers of endoplasmic reticulum stress in addition to peritubular capillaries, whereas FABP1 was mainly expressed in proximal tubules. Levels of U-FABP4 and U-FABP1 were independently associated with each other, and both levels were independently associated with estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio (UACR) after adjustment of age, sex, type of diabetes, duration of diabetes, and systolic blood pressure in patients with diabetes. CONCLUSIONS Urinary level of FABP4 derived from injured glomeruli with increased endoplasmic reticulum stress is independently associated with eGFR and UACR, suggesting a promising biomarker for glomerular damage in patients with diabetes.
Collapse
Affiliation(s)
- Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Tanaka Medical ClinicYoichiJapan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of Cellular Physiology and Signal TransductionSapporo Medical University School of MedicineSapporoJapan
| | - Tomohito Gohda
- Department of NephrologyJuntendo University Faculty of MedicineTokyoJapan
| | - Nozomu Kamei
- Department of Endocrinology and MetabolismHiroshima Red Cross Hospital & Atomic‐bomb Survivors HospitalHiroshimaJapan
- Institute for Clinical ResearchNHO Kure Medical Center and Chugoku Cancer CenterKureJapan
| | - Maki Murakoshi
- Department of NephrologyJuntendo University Faculty of MedicineTokyoJapan
| | - Erika Ishiwata
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Keisuke Endo
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Wataru Kawaharata
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Hiroki Aida
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Kei Nakata
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Yukinori Akiyama
- Department of NeurosurgerySapporo Medical University School of MedicineSapporoJapan
| | - Mitsunobu Kubota
- Department of Endocrinology and DiabetologyNHO Kure Medical Center and Chugoku Cancer CenterKureJapan
| | - Michiyoshi Sanuki
- Institute for Clinical ResearchNHO Kure Medical Center and Chugoku Cancer CenterKureJapan
| | - Toru Suzuki
- Natori Toru Internal Medicine and Diabetes ClinicNatoriJapan
| | - Yusuke Suzuki
- Department of NephrologyJuntendo University Faculty of MedicineTokyoJapan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
30
|
Yu H, Guo J, Li B, Ma J, Abebe BK, Mei C, Raza SHA, Cheng G, Zan L. Erucic acid promotes intramuscular fat deposition through the PPARγ-FABP4/CD36 pathway. Int J Biol Macromol 2025; 298:140121. [PMID: 39837435 DOI: 10.1016/j.ijbiomac.2025.140121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
The regulation of intramuscular fat (IMF) accumulation plays a crucial role in determining meat quality in the beef industry. In humans, fat deposition in skeletal muscle is closely associated with insulin resistance and obesity. However, its underlying mechanisms are not fully elucidated. We previously identified erucic acid (EA) as a key metabolite that may affect IMF deposition of beef using omics strategies. By utilizing bovine intramuscular preadipocytes in vitro, the study demonstrates a dose-dependent increase in lipid storage induced by EA, along with mRNA expression levels of transporters FABP4 and CD36. At a mechanistic level, EA triggers ERK1/2 phosphorylation and enhances the expression of PPARγ, FABP4, and CD36, thereby facilitating the formation of lipid droplets within preadipocytes. In vivo experiments conducted in mice support these findings, indicating that EA stimulates fat accumulation in skeletal muscles and enhances the levels of FABP4 and CD36 proteins. These outcomes not only enhance our comprehension of the molecular mechanisms governing IMF deposition but also provide insights into potential strategies for enhancing meat quality and addressing metabolic disorders linked to fat accumulation in skeletal muscles. The findings of the study contribute to existing scholarly knowledge and lay the groundwork for future research endeavors aimed at improving meat quality and metabolic well-being.
Collapse
Affiliation(s)
- Hengwei Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Bingzhi Li
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shaanxi Provinc, Yangling vocational & technical college, Yangling 712100, China
| | - Jing Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China; National Beef Cattle Improvement Center, Yangling 712100, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; National Beef Cattle Improvement Center, Yangling 712100, China.
| |
Collapse
|
31
|
Zhengkang S, Kirikae H, Xiaofeng H, Yoshimachi F, Ikuta M, Ohnishi T, Yamamoto Y, Miyazaki H, Kasahara Y, Sakai M, Yu Z, Osumi N, Tomita H, Owada Y, Maekawa M. Effects of pharmacological inhibition of FABP4 during gestation and lactation on offspring neurodevelopment and behavior. Neurosci Lett 2025; 853:138199. [PMID: 40090510 DOI: 10.1016/j.neulet.2025.138199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Fatty acid-binding protein 4 (FABP4), a key regulator of lipid metabolism and inflammation, has been implicated in neurodevelopmental disorders, including autism spectrum disorder (ASD). This study investigated the effects of FABP4 inhibition during gestation and lactation on offspring neurodevelopment using the selective FABP4 inhibitor BMS309403. Female mice received BMS309403 (15 mg/kg) via oral gavage from two weeks before mating to postnatal day 28 (P28). Administration of BMS309403 to mouse dams resulted in autism-like phenotypes in male offspring (behavioral tests: n = 7-10 per group; spine analysis: 6 mice per group, n = 26-38 dendrites per group), characterized by increased dendritic spine density in the prefrontal cortex, impaired vocal communication, increased repetitive behaviors, and depression-like symptoms. Fatty acid analysis (n = 4-6 per group) revealed significant alterations in maternal and fetal lipid profiles, including elevated arachidonic acid levels in maternal plasma and increased n6PUFAs in the fetal brain, suggesting a pro-inflammatory lipid environment. Principal component analysis demonstrated distinct clustering of lipid profiles between control and BMS309403-treated groups. Cytokine analysis (n = 6 per group) indicated reductions in IL-10 and IL-12(p40) in maternal plasma and decreased TNFα in the fetal plasma, suggesting dysregulation in systemic inflammatory signaling. These findings suggest that FABP4 inhibition during the perinatal period perturbs lipid metabolism and may influence neurodevelopment through systemic metabolic changes. Although the direct effects of BMS309403 on the fetal brain cannot be excluded, alteration in maternal metabolism and placental function may have contributed to the observed neurodevelopmental changes in offspring.
Collapse
Affiliation(s)
- Sun Zhengkang
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hinako Kirikae
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - He Xiaofeng
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiko Yoshimachi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Minori Ikuta
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuo Ohnishi
- Department of Nutrition, Akita Nutrition Junior College, Akita, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiyuki Kasahara
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mai Sakai
- Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, Sendai, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, Sendai, Japan; Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Motoko Maekawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
32
|
Shu Y, Wang Q, He J, Zhang H, Hong P, Leung KMY, Chen L, Wu H. Perfluorobutanesulfonate Interfering with the Intestinal Remodeling During Lithobates catesbeiana Metamorphosis via the Hypothalamic-Pituitary-Thyroid Axis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5463-5473. [PMID: 40085680 DOI: 10.1021/acs.est.4c12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The intestinal remodeling during amphibian metamorphosis is essential for adapting to various ecological niches of aquatic and terrestrial habitats. However, whether and how the widespread contaminant, perfluorobutanesulfonate (PFBS) affects intestinal remodeling remains unknown. In this study, tadpoles (Lithobates catesbeianus) at the G26 stage were exposed to environmentally relevant concentrations of PFBS (0, 1, 3, and 10 μg/L) until the end of metamorphosis. PFBS exposure resulted in reduced thyroid follicular glia; down-regulation of gene transcripts related to thyroid hormone synthesis; decreased blood hormone (corticotropin-releasing hormone, thyroid-stimulating hormone, and 3,5,3'-triiodothyronine (T3)) and transthyretin concentrations; and up-regulation of gene transcripts related to thyroid hormone degrading enzymes. Moreover, exposure to PFBS induced apoptosis in single-layer columnar epithelial cells, suppressed the proliferation of intestinal stem cells, and hindered their differentiation into adult epithelial cells during intestinal remodeling. The responses of Notch and Wnt signaling pathways regulated by T3 were downregulated, and key gene transcripts (msi, pcna, and lgr5) involved in intestinal remodeling regulated by these two pathways were also downregulated. This is the first report on the effects of PFBS on amphibian metamorphosis. Overall, PFBS reduced thyroid hormone synthesis and transport by interfering with the hypothalamic-pituitary-thyroid axis and transthyretin expression, inhibited downstream Notch and Wnt signaling pathway responses, and ultimately led to incomplete intestinal remodeling to some extent.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
33
|
Smith HA, Templeman I, Davis M, Slater T, Clayton DJ, Varley I, James LJ, Middleton B, Johnston JD, Karagounis LG, Tsintzas K, Thompson D, Gonzalez JT, Walhin JP, Betts JA. Characterizing 24-Hour Skeletal Muscle Gene Expression Alongside Metabolic and Endocrine Responses Under Diurnal Conditions. J Clin Endocrinol Metab 2025; 110:e1017-e1030. [PMID: 38779872 PMCID: PMC11913097 DOI: 10.1210/clinem/dgae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
CONTEXT Skeletal muscle plays a central role in the storage, synthesis, and breakdown of nutrients, yet little research has explored temporal responses of this human tissue, especially with concurrent measures of systemic biomarkers of metabolism. OBJECTIVE To characterize temporal profiles in skeletal muscle expression of genes involved in carbohydrate metabolism, lipid metabolism, circadian clocks, and autophagy and descriptively relate them to systemic metabolites and hormones during a controlled laboratory protocol. METHODS Ten healthy adults (9M/1F, [mean ± SD] age 30 ± 10 years; BMI 24.1 ± 2.7 kg·m-2) rested in the laboratory for 37 hours with all data collected during the final 24 hours (08:00-08:00 hours). Participants ingested hourly isocaloric liquid meal replacements alongside appetite assessments during waking before a sleep opportunity from 22:00 to 07:00 hours. Blood samples were collected hourly for endocrine and metabolite analyses, with muscle biopsies occurring every 4 hours from 12:00 to 08:00 hours the following day to quantify gene expression. RESULTS Plasma insulin displayed diurnal rhythmicity peaking at 18:04 hours. Expression of skeletal muscle genes involved in carbohydrate metabolism (Name, Acrophase [hours]: GLUT4, 14:40; PPARGC1A, 16:13; HK2, 18:24) and lipid metabolism (FABP3, 12:37; PDK4, 05:30; CPT1B, 12:58) displayed 24-hour rhythmicity that reflected the temporal rhythm of insulin. Equally, circulating glucose (00:19 hours), nonesterified fatty acids (04:56), glycerol (04:32), triglyceride (23:14), urea (00:46), C-terminal telopeptide (05:07), and cortisol (22:50) concentrations also all displayed diurnal rhythmicity. CONCLUSION Diurnal rhythms were present in human skeletal muscle gene expression as well systemic metabolites and hormones under controlled diurnal conditions. The temporal patterns of genes relating to carbohydrate and lipid metabolism alongside circulating insulin are consistent with diurnal rhythms being driven in part by the diurnal influence of cyclic feeding and fasting.
Collapse
Affiliation(s)
- Harry A Smith
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Iain Templeman
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Max Davis
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Tommy Slater
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG1 4FQ
| | - David J Clayton
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG1 4FQ
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG1 4FQ
| | - Lewis J James
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK, LE11 3TU
| | - Benita Middleton
- Section of Chronobiology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK, GU2 7XH
| | - Jonathan D Johnston
- Section of Chronobiology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK, GU2 7XH
| | - Leonidas G Karagounis
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
- Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University (ACU), Melbourne, VIC 3000, Australia
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK, NG7 2UH
| | - Dylan Thompson
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Javier T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Jean-Philippe Walhin
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - James A Betts
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| |
Collapse
|
34
|
Baya NA, Erdem IS, Venkatesh SS, Reibe S, Charles PD, Navarro-Guerrero E, Hill B, Lassen FH, Claussnitzer M, Palmer DS, Lindgren CM. Combining evidence from human genetic and functional screens to identify pathways altering obesity and fat distribution. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.09.19.24313913. [PMID: 39371160 PMCID: PMC11451655 DOI: 10.1101/2024.09.19.24313913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Overall adiposity and body fat distribution are heritable traits associated with altered risk of cardiometabolic disease and mortality. Performing rare variant (minor allele frequency<1%) association testing using exome-sequencing data from 402,375 participants in the UK Biobank (UKB) for nine overall and tissue-specific fat distribution traits, we identified 19 genes where putatively damaging rare variation associated with at least one trait (Bonferroni-adjusted P <1.58×10 -7 ) and 50 additional genes at FDR≤1% ( P ≤4.37×10 -5 ). These 69 genes exhibited significantly higher (one-sided t -test P =3.58×10 -18 ) common variant prioritisation scores than genes not significantly enriched for rare putatively damaging variation, with evidence of monotonic allelic series (dose-response relationships) among ultra-rare variants (minor allele count≤10) in 22 genes. Combining rare and common variation evidence, allelic series and longitudinal analysis, we selected 14 genes for CRISPR knockdown in human white adipose tissue cell lines. In three previously uncharacterised target genes, knockdown increased (two-sided t -test P <0.05) lipid accumulation, a cellular phenotype relevant for fat mass traits, compared to Cas9-empty negative controls: COL5A3 (fold change [FC]=1.72, P =0.0028), EXOC7 (FC=1.35, P =0.0096), and TRIP10 (FC=1.39, P =0.0157); furthermore, knockdown of PPARG (FC=0.25, P =5.52×10 -7 ) and SLTM (FC=0.51, P =1.91×10 -4 ) resulted in reduced lipid accumulation. Integrating across population-based genetic and in vitro functional evidence, we highlight therapeutic avenues for altering obesity and body fat distribution by modulating lipid accumulation.
Collapse
|
35
|
Kou F, Li XY, Feng Z, Hua J, Wu X, Gao H, Lin J, Kang D, Li A, Li J, Ding Y, Ban T, Zhang Q, Liu Z. GPR171 restrains intestinal inflammation by suppressing FABP5-mediated Th17 cell differentiation and lipid metabolism. Gut 2025:gutjnl-2024-334010. [PMID: 40074327 DOI: 10.1136/gutjnl-2024-334010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND GPR171 suppresses T cell immune responses involved in antitumour immunity, while its role in inflammatory bowel disease (IBD) pathogenesis remains unclear. OBJECTIVE We aimed to investigate the role of GPR171 in modulating CD4+ T cell effector functions in IBD and evaluate its therapeutic potential. DESIGN We analysed GPR171 expression in colon biopsies and peripheral blood samples from patients with IBD and assessed the impact of GPR171 on CD4+ T cell differentiation through administration of its endogenous ligand (BigLEN). We further determined the role of GPR171 in dextran sulfate sodium (DSS)-induced colitis and CD45RBhighCD4+ T-cell transfer colitis model and deciphered the underlying mechanisms using RNA sequencing (RNA-seq) and lipidomics. We developed a novel BigLEN-based Fc fusion protein (BigLEN-Fc) and evaluated its potential in preventing and treating colitis. RESULTS GPR171 was markedly increased in inflamed mucosa and CD4+ T cells of patients with IBD compared with controls. BigLEN-triggered GPR171 activation inhibited Th17 cell differentiation in vitro. GPR171 deficiency exacerbated DSS- and CD45RBhighCD4+ T cell-induced colitis in mice, characterised by increased Th17 cell responses in intestinal mucosa. Mechanistically, GPR171 deficiency promoted Th17 cell differentiation and altered lipidome profile in Th17 cells via the cAMP-pCREB-FABP5 axis. Blockage of FABP5 reduced Th17 cell differentiation in vitro and ameliorated DSS-induced colitis in Gpr171 -/- mice. Furthermore, BigLEN-mutFc administration potently mitigated colitis in mice. CONCLUSIONS GPR171 deficiency promotes Th17 cell differentiation and causes lipid metabolism perturbation, contributing to intestinal inflammation in a FABP5-dependent manner. Target therapy (eg, BigLEN-Fc) represents a novel therapeutic approach for IBD treatment.
Collapse
Affiliation(s)
- Fushun Kou
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xiao-Yu Li
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Zhongsheng Feng
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Jinghan Hua
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xiaohan Wu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Han Gao
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Jian Lin
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Dengfeng Kang
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Ai Li
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Junxiang Li
- Department of Gastroenterology, Beijing University of Chinese Medicine, Dongfang Hospital, Beijing, China
| | - Yao Ding
- Ailomics Therapeutics Co Ltd, Shanghai, China
| | - Ting Ban
- Ailomics Therapeutics Co Ltd, Shanghai, China
| | - Qing Zhang
- Ailomics Therapeutics Co Ltd, Shanghai, China
| | - Zhanju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Shanghai, China
| |
Collapse
|
36
|
Zhang Z, Liu Y, Yu T, Liu Z. Unraveling the Complex Nexus of Macrophage Metabolism, Periodontitis, and Associated Comorbidities. J Innate Immun 2025; 17:211-225. [PMID: 40058341 PMCID: PMC11968099 DOI: 10.1159/000542531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/07/2024] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Periodontitis is recognized as one of the most prevalent oral dysbiotic inflammatory diseases, ultimately leading to the irreversible destruction of periodontal tissues. Macrophages play a pivotal role in the development and progression of periodontitis, and the feasibility of targeting them therapeutically has been established. Since metabolic switching significantly contributes to macrophage regulation, conducting an in-depth review of macrophage metabolism in periodontitis may serve as the foundation for developing innovative treatments. SUMMARY This paper has been carefully reviewed to provide a comprehensive overview of the roles played by macrophages in periodontitis and associated comorbidities. Initially, detailed presentations on the metabolic reprogramming of macrophages, including glucose, lipid, and amino acid metabolism, were provided. Subsequently, dominating macrophage phenotype and metabolism under lipopolysaccharide (LPS) stimulation or during periodontitis were presented with emphasize on critical molecules involved. Furthermore, in recognition of the close association between periodontitis and several comorbidities, the interaction among macrophage metabolism, periodontitis, and related metabolic diseases, was thoroughly discussed. KEY MESSAGES Through the examination of current research on macrophage metabolic reprogramming induced by periodontitis, this review provides potential immunometabolic therapeutic targets for the future and raises many important, yet unstudied, subjects for follow-up. BACKGROUND Periodontitis is recognized as one of the most prevalent oral dysbiotic inflammatory diseases, ultimately leading to the irreversible destruction of periodontal tissues. Macrophages play a pivotal role in the development and progression of periodontitis, and the feasibility of targeting them therapeutically has been established. Since metabolic switching significantly contributes to macrophage regulation, conducting an in-depth review of macrophage metabolism in periodontitis may serve as the foundation for developing innovative treatments. SUMMARY This paper has been carefully reviewed to provide a comprehensive overview of the roles played by macrophages in periodontitis and associated comorbidities. Initially, detailed presentations on the metabolic reprogramming of macrophages, including glucose, lipid, and amino acid metabolism, were provided. Subsequently, dominating macrophage phenotype and metabolism under lipopolysaccharide (LPS) stimulation or during periodontitis were presented with emphasize on critical molecules involved. Furthermore, in recognition of the close association between periodontitis and several comorbidities, the interaction among macrophage metabolism, periodontitis, and related metabolic diseases, was thoroughly discussed. KEY MESSAGES Through the examination of current research on macrophage metabolic reprogramming induced by periodontitis, this review provides potential immunometabolic therapeutic targets for the future and raises many important, yet unstudied, subjects for follow-up.
Collapse
Affiliation(s)
- Zihan Zhang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China,
| | - Tian Yu
- Department of Stomatology, Nanbu Country People's Hospital, Nanchong, China
| | - Zhen Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
37
|
Weng X, Gonzalez M, Angelia J, Piroozmand S, Jamehdor S, Behrooz AB, Latifi-Navid H, Ahmadi M, Pecic S. Lipidomics-driven drug discovery and delivery strategies in glioblastoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167637. [PMID: 39722408 DOI: 10.1016/j.bbadis.2024.167637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
With few viable treatment options, glioblastoma (GBM) is still one of the most aggressive and deadly types of brain cancer. Recent developments in lipidomics have demonstrated the potential of lipid metabolism as a therapeutic target in GBM. The thorough examination of lipids in biological systems, or lipidomics, is essential to comprehending the changed lipid profiles found in GBM, which are linked to the tumor's ability to grow, survive, and resist treatment. The use of lipidomics in drug delivery and discovery is examined in this study, focusing on how it may be used to find new biomarkers, create multi-target directed ligands, and improve drug delivery systems. We also cover the use of FDA-approved medications, clinical trials that use lipid-targeted medicines, and the integration of lipidomics with other omics technologies. This study emphasizes lipidomics as a possible tool in developing more effective treatment methods for GBM by exploring various lipid-centric techniques.
Collapse
Affiliation(s)
- Xiaohui Weng
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Michael Gonzalez
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Jeannes Angelia
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States.
| |
Collapse
|
38
|
Cheng YC, Chen MY, Yadav VK, Pikatan NW, Fong IH, Kuo KT, Yeh CT, Tsai JT. Targeting FABP4/UCP2 axis to overcome cetuximab resistance in obesity-driven CRC with drug-tolerant persister cells. Transl Oncol 2025; 53:102274. [PMID: 39823981 PMCID: PMC11787020 DOI: 10.1016/j.tranon.2025.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/24/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025] Open
Abstract
Colorectal cancer (CRC) is closely linked to obesity, a condition that significantly impacts tumor progression and therapeutic resistance. Although cetuximab, an EGFR-targeting monoclonal antibody, is a cornerstone in metastatic CRC treatment, resistance often emerges, leading to poor outcomes. This study investigated the role of drug-tolerant persister (DTP) cells and their metabolic interactions within the tumor microenvironment (TME) in cetuximab resistance. Using patient-derived organoids and in vivo models, we identified the FABP4/UCP2 axis as a critical mediator of resistance. Organoids derived from cetuximab non-responders revealed upregulated FABP4 and UCP2 expression post-treatment. Coculture experiments with adipocytes showed that FABP4 and UCP2 promote lipid metabolic reprogramming, facilitating cancer cell survival in a dormant state. CRISPR/Cas9 mediated inhibition of FABP4 disrupted this metabolic interaction, sensitising resistant cells to cetuximab. In vivo, the FABP4 inhibitor BMS309403, either alone or in combination with cetuximab, significantly reduced tumor growth in resistant CRC models, highlighting its therapeutic potential. These findings establish the FABP4/UCP2 axis as a pivotal driver of cetuximab resistance in obesity-associated CRC and suggest that targeting this metabolic pathway could improve outcomes in DTP-resistant CRC patients.
Collapse
Affiliation(s)
- Yi-Chiao Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Ming-Yao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Vijesh Kumar Yadav
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Narpati Wesa Pikatan
- Division of Urology, Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Iat-Hang Fong
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan
| | - Kuang-Tai Kuo
- Department of Surgery, Division of Thoracic Surgery, Taipei Medical University Shuang-Ho Hospital, New Taipei City 23561, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan.
| | - Jo-Ting Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| |
Collapse
|
39
|
Qian Q, Wu J, Wang C, Yang Z, Cheng Y, Zheng Y, Wang X, Wang H. 6-PPD triggered lipid metabolism disorder and inflammatory response in larval zebrafish (Danio rerio) by regulating PPARγ/NF-κB pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125785. [PMID: 39900129 DOI: 10.1016/j.envpol.2025.125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/05/2025]
Abstract
As a synthetic rubber antioxidant, the environmental monitoring concentrations of N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) have exceeded the risk threshold, attracting widespread attention. Although investigations into the harmful effects on zebrafish have commenced, a comprehensive exploration of its toxicological impacts and underlying molecular mechanisms remains to be conducted. By using zebrafish as a model, this study systematically evaluated 6-PPD-induced lipid metabolism disorders and inflammation response following environmental exposure. Bioinformatics analysis revealed that 6-PPD target genes enriched in the hepatitis B pathway, indicating potential hepatic toxicity via inflammatory pathways. Therefore, we hypothesize that 6-PPD could trigger hepatotoxicity through the crosstalk between lipid metabolism and inflammation. Further experiments substantiated this hypothesis by showing lipid accumulation in the liver following 6-PPD exposure, along with elevated triglyceride (TG) and total cholesterol (TC) levels, and imbalanced expression of lipid metabolism-related marker genes. Additionally, 6-PPD exposure induced the accumulation of reactive oxygen species (ROS) and inhibited the differentiation and maturation of immune cells, resulting in immune evasion. Most of these abnormalities were exacerbated in a dose-dependent manner with increasing concentrations of 6-PPD. The addition of the PPARγ pathway agonist puerarin (PUE) or NF-κB pathway inhibitor quinazoline (QNZ) to 6-PPD exposure group mitigated these toxic effects, validating our conjecture that lipid metabolism disorder and inflammatory responses may result from the regulation of the PPARγ/NF-κB pathway.
Collapse
Affiliation(s)
- Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ji Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Cuizhen Wang
- Sanquan College of Xinxiang Medical University, Xinxiang, 453513, China
| | - Zheng Yang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ying Cheng
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yuansi Zheng
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
40
|
Kirikae H, He X, Ohnishi T, Miyazaki H, Yoshikawa T, Owada Y, Maekawa M. Gene Expression Profiling in the Cortex of Fabp4 Knockout Mice. Neuropsychopharmacol Rep 2025; 45:e70006. [PMID: 39921359 PMCID: PMC11806211 DOI: 10.1002/npr2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/10/2025] Open
Abstract
AIMS Fatty acid binding protein 4, adipocyte (Fabp4), is well known for its role in peripheral lipid metabolism, but its potential role in brain function remains largely unexplored. This study aimed to investigate Fabp4 expression in the adult mouse brain and explore gene expression changes in Fabp4 knockout (KO) mice to assess its potential impact on brain function. METHODS We conducted in situ hybridization to assess Fabp4 expression in key brain regions of adult mice. In parallel, differential gene expression analysis using RNA-seq was conducted in the prefrontal cortex of Fabp4 KO mice to identify genes affected by Fabp4 deficiency. RESULTS No Fabp4 expression was detected in the brains of mice, suggesting a lack of direct involvement in the central nervous system. However, Fabp4 KO mice exhibited significant changes in gene expression in the brain, with 31 genes upregulated and 30 downregulated. Downregulated genes were linked to histone methylation and metabolic processes, while upregulated ones were associated with synaptic organization. CONCLUSION Although Fabp4 is not expressed in the brain, its deficiency leads to substantial changes in gene expression, likely mediated by peripheral metabolic pathways and epigenetic regulation. These changes may explain the previously observed autism-like behaviors and increased dendritic spine density in Fabp4 KO mice. This study sheds light on the role of systemic lipid metabolism in neurodevelopmental disorders such as autism spectrum disorder (ASD) and highlights epigenetic mechanisms as potential mediators of these effects.
Collapse
Affiliation(s)
- Hinako Kirikae
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Xiaofeng He
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Tetsuo Ohnishi
- Department of NutritionAkita Nutrition Junior CollegeAkitaJapan
| | - Hirofumi Miyazaki
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Takeo Yoshikawa
- Laboratory for Molecular PsychiatryRIKEN Center for Brain Science WakoSaitamaJapan
| | - Yuji Owada
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Motoko Maekawa
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
41
|
Albrecht FB, Schick A, Klatt A, Schmidt FF, Nellinger S, Kluger PJ. Exploring Morphological and Molecular Properties of Different Adipose Cell Models: Monolayer, Spheroids, Gellan Gum-Based Hydrogels, and Explants. Macromol Biosci 2025; 25:e2400320. [PMID: 39450850 PMCID: PMC11904394 DOI: 10.1002/mabi.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Indexed: 10/26/2024]
Abstract
White adipose tissue (WAT) plays a crucial role in energy homeostasis and secretes numerous adipokines with far-reaching effects. WAT is linked to diseases such as diabetes, cardiovascular disease, and cancer. There is a high demand for suitable in vitro models to study diseases and tissue metabolism. Most of these models are covered by 2D-monolayer cultures. This study aims to evaluate the performance of different WAT models to better derive potential applications. The stability of adipocyte characteristics in spheroids and two 3D gellan gum hydrogels with ex situ lobules and 2D-monolayer culture is analyzed. First, the differentiation to achieve adipocyte-like characteristics is determined. Second, to evaluate the maintenance of differentiated ASC-based models, an adipocyte-based model, and explants over 3 weeks, viability, intracellular lipid content, perilipin A expression, adipokine, and gene expression are analyzed. Several advantages are supported using each of the models. Including, but not limited to, the strong differentiation in 2D-monolayers, the self-assembling within spheroids, the long-term stability of the stem cell-containing hydrogels, and the mature phenotype within adipocyte-containing hydrogels and the lobules. This study highlights the advantages of 3D models due to their more in vivo-like behavior and provides an overview of the different adipose cell models.
Collapse
Affiliation(s)
- Franziska B. Albrecht
- Reutlingen Research InstituteReutlingen UniversityAlteburgstraße 15072762ReutlingenGermany
- Faculty of Natural ScienceUniversity of HohenheimSchloss Hohenheim 170599StuttgartGermany
| | - Ann‐Kathrin Schick
- Faculty of ScienceEnergy and Building ServicesEsslingen UniversityKanalstraße 3373728EsslingenGermany
| | - Annemarie Klatt
- Reutlingen Research InstituteReutlingen UniversityAlteburgstraße 15072762ReutlingenGermany
| | - Freia F. Schmidt
- Reutlingen Research InstituteReutlingen UniversityAlteburgstraße 15072762ReutlingenGermany
| | - Svenja Nellinger
- Reutlingen Research InstituteReutlingen UniversityAlteburgstraße 15072762ReutlingenGermany
| | - Petra J. Kluger
- School of Life SciencesReutlingen UniversityAlteburgstraße 15072762ReutlingenGermany
| |
Collapse
|
42
|
Sato T, Umetsu A, Tanaka M, Ohguro H, Furuhashi M. A silent interplay between elevated intraocular pressure, glaucoma, and hypertension. Hypertens Res 2025; 48:1208-1210. [PMID: 39639126 DOI: 10.1038/s41440-024-02038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Araya Umetsu
- Department of Ophthalmology, Medical University School of Medicine, Sapporo, Japan
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Ohguro
- Department of Ophthalmology, Medical University School of Medicine, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
43
|
Zhang B, Han Y, Wang S, Cheng M, Yan L, Zhou D, Wang A, Lin P, Jin Y. The Impact of Uterus-Derived Prostaglandins on the Composition of Uterine Fluid During the Period of Conceptus Elongation in Dairy Heifers. Int J Mol Sci 2025; 26:1792. [PMID: 40076420 PMCID: PMC11899274 DOI: 10.3390/ijms26051792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
In ruminants, the survival and development of the conceptus are heavily dependent on the composition of the uterine lumen fluid (ULF), which is influenced by prostaglandins (PGs). However, the variations in underlying PG-mediated ULF remain unclear. Herein, cycling heifers received an intrauterine infusion of vehicle as a control (CON) or meloxicam (MEL) on days 12-14 of the estrous cycle. Then, the ULF was collected on day 15 and alternations in its protein and lipid levels were analyzed. The suppression of prostaglandins induced by meloxicam resulted in 1343 differentially abundant proteins (DAPs) and 59 differentially altered lipids. These DAPs were primarily associated with vesicle-mediated transport, immune response, and actin filament organization, and were mainly concentrated on the ribosome, complement and coagulation cascades, cholesterol metabolism, chemokine signal pathway, regulation of actin cytoskeleton and starch and sucrose metabolism. These differential lipids reflected a physiological metabolic shift as the abundance of cell membrane-related lipids was modulated, including an accumulation of triacylglycerols and reductions in lysophosphatidylcholines, hexosyl ceramides, ceramides, and sphingomyelins species. Integration analysis of the DAPs and differentially altered lipid metabolites revealed that glycerophospholipid metabolism and choline metabolism were the core pathways. These findings highlight the potential roles of prostaglandins in ULF, providing new insights into the contributions of prostaglandins in the development of the conceptus.
Collapse
Affiliation(s)
- Beibei Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yuan Han
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shengxiang Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ming Cheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Longgang Yan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (B.Z.); (Y.H.); (S.W.); (M.C.); (L.Y.); (D.Z.); (A.W.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
44
|
Ohguro H, Higashide M, Ishiwata E, Hikage F, Watanabe M, Nishikiori N, Sato T, Furuhashi M. Expression and Secretion of Intraocular Fatty Acid-Binding Protein 4 (ioFABP4) and 5 (ioFABP5) Are Regulated by Glucose Levels and Fatty Acids. Int J Mol Sci 2025; 26:1791. [PMID: 40076418 PMCID: PMC11898455 DOI: 10.3390/ijms26051791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Intraocularly, fatty acid-binding protein 4 (FABP4) and 5 (FABP5) mainly originate from human ocular choroidal fibroblasts (HOCF), and human nonpigmented ciliary epithelium (HNPCE) cells have been suggested to be pivotally involved in intraocular pathophysiology. To elucidate the unidentified regulatory mechanisms of the gene expression and protein secretion of FABPs, the effects of glucose levels, fatty acids (FAs), and peroxisome proliferator-activated receptor (PPAR) modulators were studied. To elucidate the additional biological role of FABPs, laser choroidal neovascularization (CNV) in Fabp4-/- and Fabp4/5-/- mice was analyzed by fluorescein angiography. By changing glucose levels, the secretion and expression of FABP4 in HOCF were significantly upregulated, whereas the secretion and expression of FABP5 in HNPCE decreased. The administration of various FAs, particularly docosahexaenoic acid (DHA), markedly increased the expression and secretion of both FABPs. PPAR modulators also influenced the secretion and expression of FABPs. In vivo, wild-type retina exhibited evident CNV with high fluorescein intensity, while Fabp4-/- retina showed reduced CNV formation and Fabp4/5-/- retina displayed evident CNV along with vitreous leakage. These findings suggest that (1) the production and secretion of intraocular FABP4 and FABP5 are distinctly regulated by glucose levels, FAs, and PPARs; and (2) intraocular FABP4 and FABP5 are critical for inducing retinal neovascularization and maintaining the blood-aqueous barrier.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (F.H.); (M.W.); (N.N.)
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (F.H.); (M.W.); (N.N.)
| | - Erika Ishiwata
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (E.I.); (T.S.)
| | - Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (F.H.); (M.W.); (N.N.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (F.H.); (M.W.); (N.N.)
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (F.H.); (M.W.); (N.N.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (E.I.); (T.S.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (E.I.); (T.S.)
| |
Collapse
|
45
|
Fish SR, Halley CL, Dileepan M, Hertzel AV, Dickey DM, Bernlohr DA. Expression of fatty acid binding proteins in mesenteric adipose tissue. Biochem Biophys Res Commun 2025; 749:151346. [PMID: 39855040 DOI: 10.1016/j.bbrc.2025.151346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Adipose is a complex tissue comprised of adipocytes, immune cells, endothelial and progenitor stem cells. In humans, there are at least nine defined adipose depots, each containing variable numbers of genetically identified adipocyte clusters suggesting remarkable heterogeneity and potential functionality in each depot with respect to lipid metabolism. Although subcutaneous and visceral depots are commonly analyzed for biochemical and molecular functions, the mesenteric depot has been overlooked yet strongly implicated in lipid mediated immune surveillance. Since fatty acid binding proteins (FABPs) are primary cellular conduits to lipid trafficking, we evaluated the expression patterns for four major fatty acid binding proteins (FABP1, FABP3, FABP4 and FABP5) using a combination of gene expression, immunoblotting, and immunofluorescence in mesenteric fat from both young and old, male and female C57Bl/6J mice. All four FABPs were expressed at the mRNA and protein level in murine mesenteric adipose tissue. While there was no statistical change in expression of mesenteric FABP isoforms with sex or age, the expression of mesenteric FABP1 was increased, and FABP4 decreased, in both males and females as compared to perigonadal and inguinal depots. Surprisingly, immunofluorescence staining revealed that compared to subcutaneous or perigonadal depots, mesenteric fat expresses FABP3, but little FABP5, in adipocytes. These results highlight the diversity in adipose tissue and the importance of evaluating the mesenteric depot in the context of lipid transport and metabolism.
Collapse
Affiliation(s)
- Shayla R Fish
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Catherine L Halley
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Mythili Dileepan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA; Institute on the Biology of Aging and Metabolism, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Ann V Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA; Institute on the Biology of Aging and Metabolism, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Deborah M Dickey
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA; Institute on the Biology of Aging and Metabolism, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
46
|
Huang X, Liu B, Shen S. Lipid Metabolism in Breast Cancer: From Basic Research to Clinical Application. Cancers (Basel) 2025; 17:650. [PMID: 40002245 PMCID: PMC11852908 DOI: 10.3390/cancers17040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Breast cancer remains the most prevalent cancer among women globally, with significant links to obesity and lipid metabolism abnormalities. This review examines the role of lipid metabolism in breast cancer progression, highlighting its multifaceted contributions to tumor biology. We discuss key metabolic processes, including fatty acid metabolism, triglyceride metabolism, phospholipid metabolism, and cholesterol metabolism, detailing the reprogramming that occurs in these pathways within breast cancer cells. Alterations in lipid metabolism are emphasized for their roles in supporting energy production, membrane biogenesis, and tumor aggressiveness. Furthermore, we examine how lipid metabolism influences immune responses in the tumor microenvironment, affecting immune cell function and therapeutic efficacy. The potential of lipid metabolism as a target for novel therapeutic strategies is also addressed, with a focus on inhibitors of key metabolic enzymes. By integrating lipid metabolism with breast cancer research, this review underscores the importance of lipid metabolism in understanding breast cancer biology and developing treatment approaches aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bowen Liu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
| | - Songjie Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
- Ambulatory Medical Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China
| |
Collapse
|
47
|
Song J, Ok SM, Kwon EY, Kim HJ, Lee JY, Joo JY. Fatty Acid Binding Protein 4 Could Be a Linking Biomarker Between Periodontitis and Systemic Diseases. Biomedicines 2025; 13:402. [PMID: 40002815 PMCID: PMC11853709 DOI: 10.3390/biomedicines13020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: This study aims to investigate the relationship between serum fatty acid-binding protein 4 (FABP4) levels and the severity of periodontitis in systemically healthy individuals. Additionally, the study examines whether non-surgical periodontal treatment can reduce FABP4 levels, establishing its potential as a biomarker linking periodontitis to systemic diseases. Methods: A total of 89 participants with stage I, II, or III periodontitis were recruited, excluding individuals with systemic diseases. Clinical parameters such as clinical attachment level (CAL), probing depth (PD), and gingival index (GI) were recorded. Serum FABP4 levels and Porphyromonas gingivalis (P. gingivalis) antibody titers were measured before and after periodontal treatment using ELISA kits. Statistical analysis included t-tests, correlation analysis, and multiple linear regression to assess changes in FABP4 levels and their association with clinical parameters. Results: FABP4 and P. gingivalis antibody titers significantly increased with the severity of periodontitis (p < 0.001). After non-surgical periodontal treatment, FABP4 levels significantly decreased across all stages of periodontitis. Moderate positive correlations were observed between FABP4 and CAL, PD, GI, and P. gingivalis antibody titers (p < 0.05). Multiple linear regression showed that FABP4 levels increased significantly with the progression of periodontitis, independent of age and sex. Conclusions: The study indicates that FABP4 is a potential biomarker for linking periodontitis to systemic conditions such as cardiovascular diseases and diabetes. Non-surgical periodontal treatment reduced FABP4 levels, potentially contributing to the improvement of systemic conditions associated with elevated FABP4. Further research should explore the role of FABP4 in patients with periodontitis and systemic diseases to strengthen its clinical relevance.
Collapse
Affiliation(s)
- Jiwon Song
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (J.S.); (H.-J.K.); (J.-Y.L.)
| | - Soo-Min Ok
- Department of Oral Medicine, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea;
| | - Eun-Young Kwon
- Department of Periodontology, Dental Clinic Center, Pusan National University Hospital, Busan 49241, Republic of Korea;
| | - Hyun-Joo Kim
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (J.S.); (H.-J.K.); (J.-Y.L.)
- Department of Periodontology, Periodontal Disease Signaling Network Center, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ju-Youn Lee
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (J.S.); (H.-J.K.); (J.-Y.L.)
| | - Ji-Young Joo
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (J.S.); (H.-J.K.); (J.-Y.L.)
- Department of Periodontology, Periodontal Disease Signaling Network Center, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
48
|
Wu H, Xing C, Yu B, Guo L, Dou X, Gao L, Yang S, Zhang Y, Gao X, Li S, Xia B, Ma T, Hao Y, Yang Y, Gao X, Wei Y, Xue B, Zhang Q, Feng CL, Huang J. Metabolic Reprogramming of Neural Stem Cells by Chiral Nanofiber for Spinal Cord Injury. ACS NANO 2025; 19:4785-4801. [PMID: 39841801 PMCID: PMC11803919 DOI: 10.1021/acsnano.4c15770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons. The underlying mechanism is the intrinsic stereoselectivity between DH and fatty acid-binding protein 5 (FABP5), which facilitates the transportation of fatty acids bound to FABP5 into the mitochondria and endoplasmic reticulum, subsequently augmenting fatty acid oxidation (FAO) levels and enriching sphingosine biosynthesis. In the rat SCI model, DH significantly improved the Basso-Beattie-Bresnahan (BBB) locomotor scores (over 3-fold) and the hindlimbs' compound muscle action potential (over 4-fold) compared with the untreated group, conveying a significant return of functional recovery. This finding of nanoscale chirality-dependent NSCs metabolic reprogramming provides insights into understanding stem cell physiology and presents opportunities for regenerative medicine.
Collapse
Affiliation(s)
- Haining Wu
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
- Department
of Biochemistry and Molecular Biology, Fourth
Military Medical University, Xi’an 710032, China
| | - Chao Xing
- State
Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular
Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beibei Yu
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
- Department
of Neurosurgery, The Second Affiliated Hospital
of Xi’an Jiao Tong University, Xi’an 710032, China
| | - Lingli Guo
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Xiaoqiu Dou
- State
Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular
Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Laiben Gao
- State
Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular
Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shijie Yang
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
- Department
of Neurosurgery, The Second Affiliated Hospital
of Xi’an Jiao Tong University, Xi’an 710032, China
| | - Yongfeng Zhang
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
- Department
of Neurosurgery, The Second Affiliated Hospital
of Xi’an Jiao Tong University, Xi’an 710032, China
| | - Xue Gao
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Shengyou Li
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Bing Xia
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Teng Ma
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Yiming Hao
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Yujie Yang
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Xueli Gao
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Yitao Wei
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Borui Xue
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Qing Zhang
- Key
Laboratory of Shaanxi Province for Craniofacial Precision Medicine
Research, College of Stomatology, Xi’an
Jiaotong University, Xi’an 710032, China
| | - Chuan-liang Feng
- State
Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular
Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinghui Huang
- Department
of Orthopaedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| |
Collapse
|
49
|
Freitas-Cortez MA, Masrorpour F, Jiang H, Mahmud I, Lu Y, Huang A, Duong LK, Wang Q, Voss TA, Kettlun Leyton CS, Wei B, Chan WK, Lin K, Zhang J, Tsouko E, Ganjoo S, Barsoumian HB, Riad TS, Hu Y, Leuschner C, Puebla-Osorio N, Wang J, Hu J, Davies MA, Puduvalli VK, Billon C, Burris TP, Lorenzi PL, Gan B, Welsh JW. Cancer cells avoid ferroptosis induced by immune cells via fatty acid binding proteins. Mol Cancer 2025; 24:40. [PMID: 39901247 PMCID: PMC11789333 DOI: 10.1186/s12943-024-02198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/11/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Cancer creates an immunosuppressive environment that hampers immune responses, allowing tumors to grow and resist therapy. One way the immune system fights back is by inducing ferroptosis, a type of cell death, in tumor cells through CD8 + T cells. This involves lipid peroxidation and enzymes like lysophosphatidylcholine acyltransferase 3 (Lpcat3), which makes cells more prone to ferroptosis. However, the mechanisms by which cancer cells avoid immunotherapy-mediated ferroptosis are unclear. Our study reveals how cancer cells evade ferroptosis and anti-tumor immunity through the upregulation of fatty acid-binding protein 7 (Fabp7). METHODS To explore how cancer cells resist immune cell-mediated ferroptosis, we used a comprehensive range of techniques. We worked with cell lines including PD1-sensitive, PD1-resistant, B16F10, and QPP7 glioblastoma cells, and conducted in vivo studies in syngeneic 129 Sv/Ev, C57BL/6, and conditional knockout mice with Rora deletion specifically in CD8+ T cells, Cd8 cre;Rorafl mice. Methods included mass spectrometry-based lipidomics, targeted lipidomics, Oil Red O staining, Seahorse analysis, quantitative PCR, immunohistochemistry, PPARγ transcription factor assays, ChIP-seq, untargeted lipidomic analysis, ROS assay, ex vivo co-culture of CD8+ T cells with cancer cells, ATAC-seq, RNA-seq, Western blotting, co-immunoprecipitation assay, flow cytometry and Imaging Mass Cytometry. RESULTS PD1-resistant tumors upregulate Fabp7, driving protective metabolic changes that shield cells from ferroptosis and evade anti-tumor immunity. Fabp7 decreases the transcription of ferroptosis-inducing genes like Lpcat3 and increases the transcription of ferroptosis-protective genes such as Bmal1 through epigenetic reprogramming. Lipidomic profiling revealed that Fabp7 increases triglycerides and monounsaturated fatty acids (MUFAs), which impede lipid peroxidation and ROS generation. Fabp7 also improves mitochondrial function and fatty acid oxidation (FAO), enhancing cancer cell survival. Furthermore, cancer cells increase Fabp7 expression in CD8+ T cells, disrupting circadian clock gene expression and triggering apoptosis through p53 stabilization. Clinical trial data revealed that higher FABP7 expression correlates with poorer overall survival and progression-free survival in patients undergoing immunotherapy. CONCLUSIONS Our study uncovers a novel mechanism by which cancer cells evade immune-mediated ferroptosis through Fabp7 upregulation. This protein reprograms lipid metabolism and disrupts circadian regulation in immune cells, promoting tumor survival and resistance to immunotherapy. Targeting Fabp7 could enhance immunotherapy effectiveness by re-sensitizing resistant tumors to ferroptosis.
Collapse
Affiliation(s)
- Maria Angelica Freitas-Cortez
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Children's Research Institute at UT Southwestern, Pediatrics 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Hong Jiang
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ailing Huang
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Lisa K Duong
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tiffany A Voss
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Claudia S Kettlun Leyton
- Department of Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bo Wei
- Department of Bioinformatics and Computational Biology, Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wai-Kin Chan
- Department of Bioinformatics and Computational Biology, Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Efrosini Tsouko
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shonik Ganjoo
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Thomas S Riad
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Yun Hu
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Carola Leuschner
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cyrielle Billon
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy at University of Health and Sciences, St. Louis, MO, 63110, USA
| | - Thomas P Burris
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - James W Welsh
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
50
|
Valdés-Hernández J, Ramayo-Caldas Y, Passols M, Criado-Mesas L, Castelló A, Sánchez A, Folch JM. Identification of differentially expressed genes and polymorphisms related to intramuscular oleic-to-stearic fatty acid ratio in pigs. Anim Genet 2025; 56:e13491. [PMID: 39593270 DOI: 10.1111/age.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/11/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
The intramuscular oleic-to-stearic fatty acid ratio (C18:1n-9/C18:0) is an important indicator of the biosynthesis and desaturation of fatty acids in muscle. By using an RNA-Seq approach in muscle samples from 32 BC1_DU (25% Iberian and 75% Duroc) pigs with divergent values (high: H and low: L) of C18:1n-9/C18:0 fatty acids ratio, a total of 81 differentially expressed genes (DEGs) were identified. Functional analyses of DEGs indicate that mainly peroxisome proliferator-activated receptor signaling pathway (associated genes: PPARG, SCD, PLIN1, and FABP3) was overrepresented. Notably, SCD is directly involved in the conversion of C18:0 to C18:1n-9, and PPARG is a transcription factor regulating lipid metabolism genes, including SCD. However, other DEGs (e.g., ACADVL, FADS3, EPHB2, HGFAC, NGFR, NR0B2, MDH1, MMAA, PPP1R1B, SFRP5, RAB30, and TRARG1) are plausible candidate genes to explain the phenotypic differences of the C18:1n-9/C18:0 ratio. Interestingly, seven genetic variants within the SCD (including the well-known AY487830:g.2228T>C SNP and other novel genotyped polymorphisms) are associated with two haplotypes. Although the haplotypes are segregating at different frequencies in the H and L groups, they do not fully explain the desaturation ratios or the SCD expression levels. A more complex model, including polyunsaturated fatty acids such as C18:2n-6, C20:4n-6, and C18:3n-3, is suggested to explain the regulation of the C18:1n-9/C18:0 desaturation ratio in porcine muscle.
Collapse
Affiliation(s)
- Jesús Valdés-Hernández
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Departament de Ciència Animal i Dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Yuliaxis Ramayo-Caldas
- Departament de Genètica i Millora Animal, Institut de Recerca y Tecnologia Agraroalimentàries (IRTA), Caldes de Montbui, Spain
| | - Magí Passols
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Departament de Ciència Animal i Dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Lourdes Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Departament de Ciència Animal i Dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Anna Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Departament de Ciència Animal i Dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Armand Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Departament de Ciència Animal i Dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Josep M Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- Departament de Ciència Animal i Dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|