1
|
Fonseca AI, Sereno J, Almeida S, Ferreira H, Hrynchak I, Falcão A, Alves F, Gomes C, Abrunhosa AJ. Unveiling the potential of copper-61 vs. gallium-68 for SSTR PET imaging. Eur J Nucl Med Mol Imaging 2025; 52:2671-2684. [PMID: 39909885 PMCID: PMC12119765 DOI: 10.1007/s00259-025-07116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
PURPOSE In recent years, copper-61 has attracted considerable attention from both physicists and radiochemists due to its favorable physical decay properties for PET imaging and its ease of production at any cyclotron center producing [18F]FDG. The aim of this study was to evaluate the potential of 61Cu-based radiopharmaceuticals for PET imaging of NETs, as an alternative to the commonly used gallium-68. METHODS Copper-61 was produced by irradiation of natural zinc liquid targets, followed by post-processing. In vitro evaluation of 61Cu- and 68Ga-labeled SST analogues was performed in SSTR positive AR42J tumor cells. PET/MRI was carried out in mice bearing AR42J subcutaneous tumors. RESULTS High molar activity [61Cu]Cu-DOTA-TATE and [61Cu]Cu-NOTA-TATE were successfully prepared with a radiochemical purity of over 95% and were shown to be stable for at least 6 h after the EOS. Both 61Cu- and 68Ga-labeled SST analogues exhibited high cellular uptake, with residual uptake when blocked with an excessive amount of peptide precursor. [61Cu]Cu-NOTA-TATE showed the highest tumor uptake at 1 h p.i. (13.25 ± 1.86%ID/g) and the tumor-to-non-tumor ratio increased from 1 h to 4 h p.i. At the later time point, tumor visualization improved compared to 1 h p.i. Moreover, preclinical PET/MR images demonstrated that [61Cu]Cu-NOTA-TATE has a more favorable biodistribution and imaging properties than [61Cu]Cu-DOTA-TATE, with the extended PET imaging window providing a clear advantage of [61Cu]Cu-NOTA-TATE over its gallium-68 analogues. CONCLUSION [61Cu]Cu-NOTA-TATE showed similar biodistribution and pharmacokinetics to [68Ga]Ga-DOTA-TATE at 1 h p.i., while demonstrating superior imaging characteristics for late PET imaging. These findings demonstrate that [61Cu]Cu-NOTA-TATE holds promising characteristics for improving the detection of NETs with increased translational potential.
Collapse
Affiliation(s)
- A I Fonseca
- ICNAS Pharma, University of Coimbra, Coimbra, Portugal
| | - J Sereno
- CIBIT/ICNAS, Institute for Nuclear Science Applied to Health, University of Coimbra, Coimbra, Portugal
| | - S Almeida
- ICNAS Pharma, University of Coimbra, Coimbra, Portugal
| | - H Ferreira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, Portugal
| | - I Hrynchak
- ICNAS Pharma, University of Coimbra, Coimbra, Portugal
- CIBIT/ICNAS, Institute for Nuclear Science Applied to Health, University of Coimbra, Coimbra, Portugal
| | - A Falcão
- CIBIT/ICNAS, Institute for Nuclear Science Applied to Health, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - F Alves
- CIBIT/ICNAS, Institute for Nuclear Science Applied to Health, University of Coimbra, Coimbra, Portugal
- ESTeSC - Coimbra Health School, Instituto Politécnico Coimbra, Coimbra, Portugal
| | - C Gomes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, Portugal
| | - A J Abrunhosa
- CIBIT/ICNAS, Institute for Nuclear Science Applied to Health, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Hu M, Zhang C, Fan D, Yang R, Bai Y, Shi H. Advances in Preclinical Research of Theranostic Radiopharmaceuticals in Nuclear Medicine. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4337-4353. [PMID: 39800975 DOI: 10.1021/acsami.4c20602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Theranostics of nuclear medicine refers to the combination of radionuclide imaging and internal irradiation therapy, which is currently a research hotspot and an important direction for the future development of nuclear medicine. Radiopharmaceutical is a vital component of nuclear medicine and serves as one of the fundamental pillars of molecular imaging and precision medicine. At present, a variety of radiopharmaceuticals have been developed for various targets such as fibroblast activation protein (FAP), prostate-specific membrane antigen (PSMA), somatostatin receptor 2 (SSTR2), C-X-C motif chemokine receptor 4 (CXCR4), human epidermal growth factor-2 (HER2), and integrin αvβ3, and some of them have been successfully applied in clinical practice. The radiopharmaceutical with theranostic function plays an important role in the diagnosis, treatment, efficacy evaluation, and prognosis prediction of cancers and is the key to realize the personalized treatment of tumors. This Review summarizes the preclinical research progress of theranostic radiopharmaceuticals toward the above targets in the field of nuclear medicine and discusses the prospects and development directions of radiopharmaceuticals in the future.
Collapse
Affiliation(s)
- Mei Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Chenshuo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Dandan Fan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Ru Yang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Yongxiang Bai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
3
|
Zhang B, Xue L, Wu ZB. Structure and Function of Somatostatin and Its Receptors in Endocrinology. Endocr Rev 2025; 46:26-42. [PMID: 39116368 DOI: 10.1210/endrev/bnae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Somatostatin analogs, such as octreotide, lanreotide, and pasireotide, which function as somatostatin receptor ligands (SRLs), are the main drugs used for the treatment of acromegaly. These ligands are also used as important molecules for radiation therapy and imaging of neuroendocrine tumors. Somatostatin receptors (SSTRs) are canonical G protein-coupled proteins that play a role in metabolism, growth, and pathological conditions such as hormone disorders, neurological diseases, and cancers. Cryogenic electron microscopy combined with the protein structure prediction platform AlphaFold has been used to determine the 3-dimensional structures of many proteins. Recently, several groups published a series of papers illustrating the 3-dimensional structure of SSTR2, including that of the inactive/activated SSTR2-G protein complex bound to different ligands. The results revealed the residues that contribute to the ligand binding pocket and demonstrated that Trp8-Lys9 (the W-K motif) in somatostatin analogs is the key motif in stabilizing the bottom part of the binding pocket. In this review, we discuss the recent findings related to the structural analysis of SSTRs and SRLs, the relationships between the structural data and clinical findings, and the future development of novel structure-based therapies.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Xue
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325005, China
| |
Collapse
|
4
|
Li YG, Meng XY, Yang X, Ling SL, Shi P, Tian CL, Yang F. Structural insights into somatostatin receptor 5 bound with cyclic peptides. Acta Pharmacol Sin 2024; 45:2432-2440. [PMID: 38926478 PMCID: PMC11489758 DOI: 10.1038/s41401-024-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
Somatostatin receptor 5 (SSTR5) is highly expressed in ACTH-secreting pituitary adenomas and is an important drug target for the treatment of Cushing's disease. Two cyclic SST analog peptides (pasireotide and octreotide) both can activate SSTR5 and SSTR2. Pasireotide is preferential binding to SSTR5 than octreotide, while octreotide is biased to SSTR2 than SSTR5. The lack of selectivity of both pasireotide and octreotide causes side effects, such as hyperglycemia, gastrointestinal disturbance, and abnormal glucose homeostasis. However, little is known about the binding and selectivity mechanisms of pasireotide and octreotide with SSTR5, limiting the development of subtype-selective SST analog drugs specifically targeting SSTR5. Here, we report two cryo-electron microscopy (cryo-EM) structures of SSTR5-Gi complexes activated by pasireotide and octreoitde at resolutions of 3.09 Å and 3.24 Å, respectively. In combination with structural analysis and functional experiments, our results reveal the molecular mechanisms of ligand recognition and receptor activation. We also demonstrate that pasireotide preferentially binds to SSTR5 through the interactions between Tyr(Bzl)/DTrp of pasireotide and SSTR5. Moreover, we find that the Q2.63, N6.55, F7.35 and ECL2 of SSTR2 play a crucial role in octreotide biased binding of SSTR2. Our results will provide structural insights and offer new opportunities for the drug discovery of better selective pharmaceuticals targeting specific SSTR subtypes.
Collapse
Affiliation(s)
- Ying-Ge Li
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Xian-Yu Meng
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Xiru Yang
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Sheng-Long Ling
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Pan Shi
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Chang-Lin Tian
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
- The Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Fan Yang
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
5
|
Wang Y, Xu Y, Wang Y, Zhang J, Chen L, He X, Fan W, Wu K, Hu W, Cheng X, Yang G, Xu HE, Zhuang Y, Sun S. Selective ligand recognition and activation of somatostatin receptors SSTR1 and SSTR3. Proc Natl Acad Sci U S A 2024; 121:e2400298121. [PMID: 39361640 PMCID: PMC11474030 DOI: 10.1073/pnas.2400298121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/31/2024] [Indexed: 10/05/2024] Open
Abstract
Somatostatin receptors (SSTRs) exert critical biological functions such as negatively regulating hormone release and cell proliferation, making them popular targets for developing therapeutics to treat endocrine disorders, especially neuroendocrine tumors. Although several panagonists mimicking the endogenous ligand somatostatin are available, the development of more effective and safer somatostatinergic therapies is limited due to a lack of molecular understanding of the ligand recognition and regulation of divergent SSTR subtypes. Here, we report four cryoelectron microscopy structures of Gi-coupled SSTR1 and SSTR3 activated by distinct agonists, including the FDA-approved panagonist pasireotide as well as their selective small molecule agonists L-797591 and L-796778. Our structures reveal a conserved recognition pattern of pasireotide in SSTRs attributed to the binding with a conserved extended binding pocket, distinct from SST14, octreotide, and lanreotide. Together with mutagenesis analyses, our structures further reveal the dynamic feature of ligand binding pockets in SSTR1 and SSTR3 to accommodate divergent agonists, the key determinants of ligand selectivity lying across the orthosteric pocket of different SSTR subtypes, as well as the molecular mechanism underlying diversity and conservation of receptor activation. Our work provides a framework for rational design of subtype-selective SSTR ligands and may facilitate drug development efforts targeting SSTRs with improved therapeutic efficacy and reduced side effects.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai200011, China
| | - Youwei Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Yue Wang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Jie Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai200011, China
| | - Lan Chen
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai200011, China
| | - Xinheng He
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Wenjia Fan
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing210046, China
| | - Kai Wu
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Wen Hu
- The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Xi Cheng
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Guizhu Yang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai200011, China
| | - H. Eric Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Youwen Zhuang
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
- Medicinal Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai200025, China
| | - Shuyang Sun
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai200011, China
| |
Collapse
|
6
|
Pellegrino C, Favalli N, Volta L, Benz R, Puglioli S, Bassi G, Zitzmann K, Auernhammer CJ, Nölting S, Magnani CF, Neri D, Beuschlein F, Manz MG. Peptide-guided adaptor-CAR T-Cell therapy for the treatment of SSTR2-expressing neuroendocrine tumors. Oncoimmunology 2024; 13:2412371. [PMID: 39376579 PMCID: PMC11457607 DOI: 10.1080/2162402x.2024.2412371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Somatostatin receptor type 2 (SSTR2) is one of the five subtypes of somatostatin receptors and is overexpressed on the surface of most gastro-entero-pancreatic neuroendocrine tumors (GEP-NETs), pituitary tumors, paraganglioma, and meningioma, as well as hepatocellular carcinoma and breast cancer. Chimeric antigen receptor (CAR) T-cells are genetically engineered to express an artificial, T-cell activating binder, leading upon ligation to biocidal activity against target-antigen expressing cells. Adaptor-CAR T-cells recognize, via the CAR, a tag on an antigen-binding molecule, building an activating bridge between the CAR and the target cell. We hypothesized that a novel fluorescent-peptide antagonist of SSTR2, called Octo-Fluo, in combination with anti-FITC adaptor CAR (AdFITC(E2)-CAR) T-cells, may function as an on-off tunable activating bridge between the CAR and SSTR2 expressing target cells. In vitro studies confirmed the binding of Octo-Fluo to Bon1-SSTR2 mCherry-Luc cells without evidence of internalization. AdFITC(E2)-CAR T-cells were activated and efficiently induced Bon1-SSTR2 cell death in vitro, in an Octo-Fluo concentration-dependent manner. Similarly, AdFITC(E2)-CAR T-cells in combination with Octo-Fluo efficiently infiltrated the tumor and eliminated Bon1-SSTR2 tumors in immunodeficient mice in therapeutic settings. Both, AdFITC(E2)-CAR T-cell tumor infiltration and biocidal activity were Octo-Fluo concentration-dependent, with high doses of Octo-Fluo, saturating both the CAR and the SSTR2 antigen independently, leading to the loss of tumor infiltration and biocidal activity due to the loss of bridge formation. Our findings demonstrate the potential of using AdFITC(E2)-CAR T-cells with Octo-Fluo as a versatile, on-off tunable bispecific adaptor for targeted CAR T-cell immunotherapy against SSTR2-positive NETs.
Collapse
Affiliation(s)
- Christian Pellegrino
- Department of Medical Oncology and Hematology, University Hospital Zürich (USZ) and University of Zürich (UZH), Comprehensive Cancer Center, Zürich, Switzerland
| | | | - Laura Volta
- Department of Medical Oncology and Hematology, University Hospital Zürich (USZ) and University of Zürich (UZH), Comprehensive Cancer Center, Zürich, Switzerland
| | - Ramon Benz
- Department of Medical Oncology and Hematology, University Hospital Zürich (USZ) and University of Zürich (UZH), Comprehensive Cancer Center, Zürich, Switzerland
| | - Sara Puglioli
- Department of Chemistry, Philochem AG, Otelfingen, Switzerland
| | - Gabriele Bassi
- Department of Chemistry, Philochem AG, Otelfingen, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine II, University-Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | | | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich (USZ), University of Zürich (UZH), Zürich, Switzerland
| | - Chiara F. Magnani
- Department of Medical Oncology and Hematology, University Hospital Zürich (USZ) and University of Zürich (UZH), Comprehensive Cancer Center, Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry, Philochem AG, Otelfingen, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich (USZ), University of Zürich (UZH), Zürich, Switzerland
- Department of Internal Medicine IV and Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Ludwig Maximilian University, LMU Klinikum, Munich, Germany
- The LOOP Zurich - Medical Research Center, Zürich, Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital Zürich (USZ) and University of Zürich (UZH), Comprehensive Cancer Center, Zürich, Switzerland
| |
Collapse
|
7
|
Huang Q, Zhu L, Liu Y, Zhang Y. Thymic epithelial tumor medical treatment: A narrative review. Biochim Biophys Acta Rev Cancer 2024; 1879:189167. [PMID: 39117091 DOI: 10.1016/j.bbcan.2024.189167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Thymic epithelial tumors, a malignancy originating in the thymus, are the commonest primary neoplasm of the anterior mediastinum; however, among thoracic tumors, they have a relatively low incidence rare. Thymic epithelial tumors can be broadly classified into thymic carcinoma and thymoma. As the cornerstone of thymic tumor treatment, surgery is the preferred treatment for early-stage patients, whereas, for advanced unresectable thymic tumors, the treatment is chemoradiotherapy. Targeted therapy is less effective for thymic tumors. Moreover, the use of immune checkpoint inhibitors as another effective treatment option for advanced unresectable thymic tumors, particularly thymomas, is limited owing to immune-related adverse effects. Here, we have summarized all pertinent information regarding chemotherapy, especially preoperative neoadjuvant chemotherapy, and chemotherapy in combination with other treatments, and reviewed the effectiveness of these procedures and recent advances in targeted therapy. In addition, we analyzed the efficacy and safety of immune checkpoint inhibitors in thymic epithelial tumors, to provide a holistic treatment view.
Collapse
Affiliation(s)
- Qian Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyang Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Thakor P, Siddiqui MQ, Patel TR. Analysis of the interlink between glucose-6-phosphate dehydrogenase (G6PD) and lung cancer through multi-omics databases. Heliyon 2024; 10:e35158. [PMID: 39165939 PMCID: PMC11334843 DOI: 10.1016/j.heliyon.2024.e35158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Glucose-6-Phosphate Dehydrogenase (G6PD) is a crucial enzyme that executes the pentose phosphate pathway. Due to its critical nodal position in the metabolic network, it is associated with different forms of cancer tumorigeneses and progression. Nonetheless, its functional role and molecular mechanism in lung cancer remain unknown. The present study provides intricate information associated with G6PD and Lung Cancer. Varieties of public datasets were retrieved by us, including UALCAN, TCGA, cBioPortal, and the UCSC Xena browser. The data obtained were used to assess the expression of G6PD, its clinical features, epigenetic regulation, relationship with tumour infiltration, tumour mutation burden, microsatellite instability, tumour microenvironment, immune checkpoint genes, genomic alteration, and patient's overall survival rate. The present study revealed that the G6PD expression was correlated with the clinical features of lung cancer including disease stage, race, sex, age, smoking habits, and lymph node metastasis. Moreover, the expression profile of G6PD also imparts epigenetic changes by modulating the DNA promoter methylation activity. Methylation of promoters changes the expression of various transcription factors, genes leading to an influence on the immune system. These events linked with G6PD-related mutational gene alterations (FAM3A, LAG3, p53, KRAS). The entire circumstance influences the patient's overall survival rate and poor prognosis. Functional investigation using STRING, GO, and KEGG found that G6PD primarily engages in hallmark functions (metabolism, immunological responses, proliferation, apoptosis, p53, HIF-1, FOXO, PI3K-AKT signaling). This work provides a wide knowledge of G6PD's function in lung cancer, as well as a theoretical foundation for possible prognostic therapeutic markers.
Collapse
Affiliation(s)
- Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 2E1, Canada
| | - M. Quadir Siddiqui
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 2E1, Canada
| | - Trushar R. Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 2E1, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
9
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
10
|
Immler M, Wolfram M, Oevermann A, Walter I, Wolfesberger B, Tichy A, Gradner G. Expression of somatostatin receptors in canine and feline meningioma. Vet Med Sci 2024; 10:e1537. [PMID: 39011594 PMCID: PMC11250153 DOI: 10.1002/vms3.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES The standard treatment for canine and feline meningiomas includes radiotherapy, surgical excision or combined therapy. However, new therapeutic approaches are required due to the possible recurrence or progression of meningiomas despite initial therapy. Adjunctive therapy with synthetic long-acting somatostatin (SST) analogues has been described in humans with SST-expressing tumours. The expression of SST receptors (SSTRs) by feline meningiomas is currently unknown, and there are little data about canine meningiomas. We hypothesized that SSTR is expressed by canine and feline meningiomas (S1). METHODS Seven canines and 11 felines with histologically confirmed meningiomas underwent STTR screening. RNA expressions of SSTR1, SSTR2, SSTR3 and SSTR5 (canine) and SSTR1-SSTR 5 (feline) in fresh frozen and formalin-fixed and paraffin-embedded (FFPE) samples were investigated using real-time (RT)-qPCR. The expression of SSTR1 and SSTR2 in FFPE samples was evaluated using immunohistochemistry (IHC). The specificity of applied antibodies for canine and feline species was confirmed by western blotting. RESULTS In canine meningiomas (n = 7), RNA expression of SSTR1, SSTR2 and SSTR5 was detected in all samples; SSTR3 RNA expression was detected in only 33% of samples. In feline meningiomas (n = 12), RNA expression of SSTR1, SSTR4, SSTR5 and SSTR2 was detected in 91%, 46%, 46% and 36% of samples, respectively; SSTR3 was not expressed. Overall, the detection rate was lower in FFPE samples. IHC revealed the expression of SSTR1 and SSTR2 in all samples from both species. However, it is important to exercise caution when interpreting IHC results due to the presence of diffuse background staining. CONCLUSIONS SSTRs are widely expressed in canine and feline meningiomas, thereby encouraging further studies investigating SSTR expression to conduct trials about the effect of adjunctive therapy with long-acting SST-analogues.
Collapse
Affiliation(s)
- Martin Immler
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| | - Michael Wolfram
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| | - Anna Oevermann
- Division of Neurological SciencesVetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012BernSwitzerland
| | - Ingrid Walter
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| | - Birgitt Wolfesberger
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| | - Alexander Tichy
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| | - Gabriele Gradner
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| |
Collapse
|
11
|
Mizrahi N, Hollander-Cohen L, Atre I, Shulman M, Campo A, Levavi-Sivan B. Characterization of the somatostatin system in tilapia: implications for growth and reproduction. Front Endocrinol (Lausanne) 2024; 15:1302672. [PMID: 38974572 PMCID: PMC11224465 DOI: 10.3389/fendo.2024.1302672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Somatostatin (SST) plays diverse physiological roles in vertebrates, particularly in regulating growth hormone secretion from the pituitary. While the function of SST as a neuromodulator has been studied extensively, its role in fish and mammalian reproduction remains poorly understood. To address this gap, we investigated the involvement of the somatostatin system in the regulation of growth and reproductive hormones in tilapia. RNA sequencing of mature tilapia brain tissue revealed the presence of three SST peptides: SST6, SST3, and low levels of SST1. Four different isoforms of the somatostatin receptor (SSTR) subfamily were also identified in the tilapia genome. Phylogenetic and synteny analysis identified tiSSTR2-like as the root of the tree, forming two mega clades, with SSTR1 and SSTR4 in one and SSTR2a, SSTR3a, and SSTR5b in the other. Interestingly, the tiSSTR-5 isoforms 5x1, 5x2, and 5x3 were encoded in the sstr3b gene and were an artifact of misperception in the nomenclature in the database. RNA-seq of separated pituitary cell populations showed that SSTRs were expressed in gonadotrophs, with sstr3a enriched in luteinizing hormone (LH) cells and sstr3b significantly enriched in follicle-stimulating hormone (FSH) cells. Notably, cyclosomatostatin, an SSTR antagonist, induced cAMP activity in all SSTRs, with SSTR3a displaying the highest response, whereas octreotide, an SSTR agonist, showed a binding profile like that observed in human receptors. Binding site analysis of tiSSTRs from tilapia pituitary cells revealed the presence of canonical binding sites characteristic of peptide-binding class A G-protein-coupled receptors. Based on these findings, we explored the effect of somatostatin on gonadotropin release from the pituitary in vivo. Whereas cyclosomatostatin increased LH and FSH plasma levels at 2 h post-injection, octreotide decreased FSH levels after 2 h, but the LH levels remained unaffected. Overall, our findings provide important insights into the somatostatin system and its mechanisms of action, indicating a potential role in regulating growth and reproductive hormones. Further studies of the complex interplay between SST, its receptors, and reproductive hormones may advance reproductive control and management in cultured populations.
Collapse
Affiliation(s)
- Naama Mizrahi
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Lian Hollander-Cohen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Ishwar Atre
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Miriam Shulman
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Aurora Campo
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Rishon LeZion, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
12
|
Hampton JT, Liu WR. Diversification of Phage-Displayed Peptide Libraries with Noncanonical Amino Acid Mutagenesis and Chemical Modification. Chem Rev 2024; 124:6051-6077. [PMID: 38686960 PMCID: PMC11082904 DOI: 10.1021/acs.chemrev.4c00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Sitting on the interface between biologics and small molecules, peptides represent an emerging class of therapeutics. Numerous techniques have been developed in the past 30 years to take advantage of biological methods to generate and screen peptide libraries for the identification of therapeutic compounds, with phage display being one of the most accessible techniques. Although traditional phage display can generate billions of peptides simultaneously, it is limited to expression of canonical amino acids. Recently, several groups have successfully undergone efforts to apply genetic code expansion to introduce noncanonical amino acids (ncAAs) with novel reactivities and chemistries into phage-displayed peptide libraries. In addition to biological methods, several different chemical approaches have also been used to install noncanonical motifs into phage libraries. This review focuses on these recent advances that have taken advantage of both biological and chemical means for diversification of phage libraries with ncAAs.
Collapse
Affiliation(s)
- J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
13
|
Rudd SE, Noor A, Morgan KA, Donnelly PS. Diagnostic Positron Emission Tomography Imaging with Zirconium-89 Desferrioxamine B Squaramide: From Bench to Bedside. Acc Chem Res 2024; 57:1421-1433. [PMID: 38666539 DOI: 10.1021/acs.accounts.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Molecular imaging with antibodies radiolabeled with positron-emitting radionuclides combines the affinity and selectivity of antibodies with the sensitivity of Positron Emission Tomography (PET). PET imaging allows the visualization and quantification of the biodistribution of the injected radiolabeled antibody, which can be used to characterize specific biological interactions in individual patients. This characterization can provide information about the engagement of the antibody with a molecular target such as receptors present in elevated levels in tumors as well as providing insight into the distribution and clearance of the antibody. Potential applications of clinical PET with radiolabeled antibodies include identifying patients for targeted therapies, characterization of heterogeneous disease, and monitoring treatment response.Antibodies often take several days to clear from the blood pool and localize in tumors, so PET imaging with radiolabeled antibodies requires the use of a radionuclide with a similar radioactive half-life. Zirconium-89 is a positron-emitting radionuclide that has a radioactive half-life of 78 h and relatively low positron emission energy that is well suited to radiolabeling antibodies. It is essential that the zirconium-89 radionuclide be attached to the antibody through chemistry that provides an agent that is stable in vivo with respect to the dissociation of the radionuclide without compromising the biological activity of the antibody.This Account focuses on our research using a simple derivative of the bacterial siderophore desferrioxamine (DFO) with a squaramide ester functional group, DFO-squaramide (DFOSq), to link the chelator to antibodies. In our work, we produce conjugates with an average ∼4 chelators per antibody, and this does not compromise the binding of the antibody to the target. The resulting antibody conjugates of DFOSq are stable and can be easily radiolabeled with zirconium-89 in high radiochemical yields and purity. Automated methods for the radiolabeling of DFOSq-antibody conjugates have been developed to support multicenter clinical trials. Evaluation of several DFOSq conjugates with antibodies and low molecular weight targeting agents in tumor mouse models gave PET images with high tumor uptake and low background. The promising preclinical results supported the translation of this chemistry to human clinical trials using two different radiolabeled antibodies. The potential clinical impact of these ongoing clinical trials is discussed.The use of DFOSq to radiolabel relatively low molecular weight targeting molecules, peptides, and peptide mimetics is also presented. Low molecular weight molecules typically clear the blood pool and accumulate in target tissue more rapidly than antibodies, so they are usually radiolabeled with positron-emitting radionuclides with shorter radioactive half-lives such as fluorine-18 (t1/2 ∼ 110 min) or gallium-68 (t1/2 ∼ 68 min). Radiolabeling peptides and peptide mimetics with zirconium-89, with its longer radioactive half-life (t1/2 = 78 h), could facilitate the centralized manufacture and distribution of radiolabeled tracers. In addition, the ability to image patients at later time points with zirconium-89 based agents (e.g. 4-24 h after injection) may also allow the delineation of small or low-uptake disease sites as the delayed imaging results in increased clearance of the tracer from nontarget tissue and lower background signal.
Collapse
Affiliation(s)
- Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
14
|
Hill TG, Hill DJ. The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans during Health and Diabetes. Int J Mol Sci 2024; 25:4070. [PMID: 38612880 PMCID: PMC11012451 DOI: 10.3390/ijms25074070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Islets of Langerhans are anatomically dispersed within the pancreas and exhibit regulatory coordination between islets in response to nutritional and inflammatory stimuli. However, within individual islets, there is also multi-faceted coordination of function between individual beta-cells, and between beta-cells and other endocrine and vascular cell types. This is mediated partly through circulatory feedback of the major secreted hormones, insulin and glucagon, but also by autocrine and paracrine actions within the islet by a range of other secreted products, including somatostatin, urocortin 3, serotonin, glucagon-like peptide-1, acetylcholine, and ghrelin. Their availability can be modulated within the islet by pericyte-mediated regulation of microvascular blood flow. Within the islet, both endocrine progenitor cells and the ability of endocrine cells to trans-differentiate between phenotypes can alter endocrine cell mass to adapt to changed metabolic circumstances, regulated by the within-islet trophic environment. Optimal islet function is precariously balanced due to the high metabolic rate required by beta-cells to synthesize and secrete insulin, and they are susceptible to oxidative and endoplasmic reticular stress in the face of high metabolic demand. Resulting changes in paracrine dynamics within the islets can contribute to the emergence of Types 1, 2 and gestational diabetes.
Collapse
Affiliation(s)
- Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada;
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
15
|
Pham TL, Thomas F. Design of Functional Globular β-Sheet Miniproteins. Chembiochem 2024; 25:e202300745. [PMID: 38275210 DOI: 10.1002/cbic.202300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/27/2024]
Abstract
The design of discrete β-sheet peptides is far less advanced than e. g. the design of α-helical peptides. The reputation of β-sheet peptides as being poorly soluble and aggregation-prone often hinders active design efforts. Here, we show that this reputation is unfounded. We demonstrate this by looking at the β-hairpin and WW domain. Their structure and folding have been extensively studied and they have long served as model systems to investigate protein folding and folding kinetics. The resulting fundamental understanding has led to the development of hyperstable β-sheet scaffolds that fold at temperatures of 100 °C or high concentrations of denaturants. These have been used to design functional miniproteins with protein or nucleic acid binding properties, in some cases with such success that medical applications are conceivable. The β-sheet scaffolds are not always completely rigid, but can be specifically designed to respond to changes in pH, redox potential or presence of metal ions. Some engineered β-sheet peptides also exhibit catalytic properties, although not comparable to those of natural proteins. Previous reviews have focused on the design of stably folded and non-aggregating β-sheet sequences. In our review, we now also address design strategies to obtain functional miniproteins from β-sheet folding motifs.
Collapse
Affiliation(s)
- Truc Lam Pham
- Truc Lam Pham, Prof. Dr. Franziska Thomas, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Truc Lam Pham, Prof. Dr. Franziska Thomas, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
16
|
Zhang B, Feng H, Lin H, Li R. Somatostatin-SSTR3-GSK3 modulates human T-cell responses by inhibiting OXPHOS. Front Immunol 2024; 15:1322670. [PMID: 38426092 PMCID: PMC10902055 DOI: 10.3389/fimmu.2024.1322670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Somatostatin (SST) is a peptide hormone primarily synthesized in the digestive and nervous systems. While its impact on the endocrine system is well-established, accumulating evidence suggests a crucial role for SST and its analogues in modulating immune responses. Despite this, the precise mechanism through which SST regulates T cells has remained largely unknown. Methods To elucidate the impact of SST on human T cells, we conducted a series of experiments involving cell culture assays, molecular analyses, and metabolic profiling. Human T cells were treated with SST, and various parameters including proliferation, cytokine production, and metabolic activities were assessed. Additionally, we employed pharmacological inhibitors and genetic manipulations to dissect the signaling pathways mediating SST's effects on T cells. Results We showed that SST diminishes T-cell proliferation by influencing IL-2 production and T-cell mitochondrial respiration, while having no discernible impact on TCR-induced glycolysis. Our findings also identified that the regulatory influence of SST on T-cell responses and metabolism is contingent on its receptor, SSTR3. Moreover, we demonstrated that SST governs T-cell responses and metabolism by acting through the T-cell metabolic checkpoint GSK3. Discussion Our study provides novel insights into the immunoregulatory function of SST in human T cells, highlighting the complex interplay between hormonal signaling and immune regulation. Understanding the molecular mechanisms underlying SST's effects on T cells may offer therapeutic opportunities for manipulating immune responses in various pathological conditions.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Institute of Clinical Research, Fujian Medical University, Fuzhou, China
- Institute of Immunotherapy and Department of Neurology of First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huiru Feng
- Institute of Immunotherapy and Department of Neurology of First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hui Lin
- Institute of Immunotherapy and Department of Neurology of First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Rui Li
- Institute of Immunotherapy and Department of Neurology of First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Tatsi A, Maina T, Waser B, Krenning EP, de Jong M, Reubi JC, Cordopatis P, Nock BA. Bis(Disulfide)-Bridged Somatostatin-14 Analogs and Their [ 111In]In-Radioligands: Synthesis and Preclinical Profile. Int J Mol Sci 2024; 25:1921. [PMID: 38339198 PMCID: PMC10856354 DOI: 10.3390/ijms25031921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The overexpression of one or more somatostatin receptors (SST1-5R) in human tumors has provided an opportunity for diagnosis and therapy with somatostatin-like radionuclide carriers. The application of "pansomatostatin" analogs is expected to broaden the clinical indications and upgrade the diagnostic/therapeutic efficacy of currently applied SST2R-prefering radioligands. In pursuit of this goal, we now introduce two bicyclic somatostatin-14 (SS14) analogs, AT5S (DOTA-Ala1-Gly2-c[Cys3-Lys4-Asn5-c[Cys6-Phe7-DTrp8-Lys9-Thr10-Cys11]-Thr12-Ser13-Cys14]) and AT6S (DOTA-Ala1-Gly2-c[Cys3-Lys4-c[Cys5-Phe6-Phe7-DTrp8-Lys9-Thr10-Phe11-Cys12]-Ser13-Cys14]), suitable for labeling with trivalent radiometals and designed to sustain in vivo degradation. Both AT5S and AT6S and the respective [111In]In-AT5S and [111In]In-AT6S were evaluated in a series of in vitro assays, while radioligand stability and biodistribution were studied in mice. The 8/12-mer bicyclic AT6S showed expanded affinity for all SST1-5R and agonistic properties at the SST2R, whereas AT5S lost all affinity to SST1-5R. Both [111In]In-AT5S and [111In]In-AT6S remained stable in the peripheral blood of mice, while [111In]In-AT6S displayed low, but specific uptake in AR4-2J tumors and higher uptake in HEK293-SST3R tumors in mice. In summary, high radioligand stability was acquired by the two disulfide bridges introduced into the SS14 motif, but only the 8/12-mer ring AT6S retained a pansomatostatin profile. In consequence, [111In]In-AT6S targeted SST2R-/SST3R-positive xenografts in mice. These results call for further research on pansomatostatin-like radioligands for cancer theranostics.
Collapse
Affiliation(s)
- Aikaterini Tatsi
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, GR-15341 Athens, Greece or (A.T.); (B.A.N.)
- Department of Pharmacy, University of Patras, GR-26500 Patras, Greece
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, GR-15341 Athens, Greece or (A.T.); (B.A.N.)
| | - Beatrice Waser
- Institute of Pathology, University of Berne, CH-3010 Berne, Switzerland; (B.W.); (J.C.R.)
| | - Eric P. Krenning
- Cyclotron Rotterdam BV, Erasmus MC, 3015 Rotterdam, The Netherlands;
| | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 Rotterdam, The Netherlands
| | - Jean Claude Reubi
- Institute of Pathology, University of Berne, CH-3010 Berne, Switzerland; (B.W.); (J.C.R.)
| | - Paul Cordopatis
- Department of Pharmacy, University of Patras, GR-26500 Patras, Greece
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, GR-15341 Athens, Greece or (A.T.); (B.A.N.)
| |
Collapse
|
18
|
Rossini G, Risi R, Monte L, Sancetta B, Quadrini M, Ugoccioni M, Masi D, Rossetti R, D'Alessio R, Mazzilli R, Defeudis G, Lubrano C, Gnessi L, Watanabe M, Manfrini S, Tuccinardi D. Postbariatric surgery hypoglycemia: Nutritional, pharmacological and surgical perspectives. Diabetes Metab Res Rev 2024; 40:e3750. [PMID: 38018334 DOI: 10.1002/dmrr.3750] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
Post-bariatric hypoglycaemia (PBH) is a metabolic complication of bariatric surgery (BS), consisting of low post-prandial glucose levels in patients having undergone bariatric procedures. While BS is currently the most effective and relatively safe treatment for obesity and its complications, the development of PBH can significantly impact patients' quality of life and mental health. The diagnosis of PBH is still challenging, considering the lack of definitive and reliable diagnostic tools, and the fact that this condition is frequently asymptomatic. However, PBH's prevalence is alarming, involving up to 88% of the post-bariatric population, depending on the diagnostic tool, and this may be underestimated. Given the prevalence of obesity soaring, and an increasing number of bariatric procedures being performed, it is crucial that physicians are skilled to diagnose PBH and promptly treat patients suffering from it. While the milestone of managing this condition is nutritional therapy, growing evidence suggests that old and new pharmacological approaches may be adopted as adjunct therapies for managing this complex condition.
Collapse
Affiliation(s)
- Giovanni Rossini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Renata Risi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lavinia Monte
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Biagio Sancetta
- Department of Medicine, Unit of Neurology, Neurophysiology, Neurobiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Maria Quadrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Massimiliano Ugoccioni
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Davide Masi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rebecca Rossetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Rossella Mazzilli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Defeudis
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Carla Lubrano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mikiko Watanabe
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
19
|
Murakami S, Ohki-Hamazaki H, Uchiyama Y. Somatostatin affects GnRH neuronal development and migration and stimulates olfactory-related fiber fasciculation. Dev Neurobiol 2024; 84:3-17. [PMID: 38072668 DOI: 10.1002/dneu.22931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024]
Abstract
Transient expression of somatostatin (SST) has been observed in the olfactory epithelium (OE) and nerves of chick embryos. Intense expression of SST in these regions on embryonic days (E) 5-8 coincides with the migration of neurons producing gonadotropin-releasing hormone (GnRH) from the OE to the forebrain (FB), suggesting that SST plays a role in the development of GnRH neurons. Using in ovo electroporation of small interfering RNA, we found that the suppression of SST mRNA in the olfactory placode (OP) of E3.5 chick embryos significantly reduced the number of GnRH and Islet-1-immunoreactive neurons in the nasal region without affecting the entry of GnRH neurons into the FB at E5.5-6. SST knockdown did not lead to changes in the number of apoptotic, proliferating, or HuC/D-positive neuronal cells in the OE; therefore, it is possible that SST is involved in the neurogenesis/differentiation of GnRH neurons and OP-derived GnRH-negative migratory neurons. In whole OP explant cultures, we also found that SST or its analog octreotide treatment significantly increased the number of migratory GnRH neurons and the migratory distance from the explants. The co-application of an SST antagonist blocked the octreotide-induced increase in the number of GnRH neurons. Furthermore, the fasciculation of polysialylated neural cell adhesion molecule-immunoreactive fibers emerging from the explants was dependent on octreotide. Taken together, our results provide evidence that SST exerts facilitatory effects on the development of neurons expressing GnRH or Islet-1 and on GnRH neuronal migration, in addition to olfactory-related fiber fasciculation.
Collapse
Affiliation(s)
- Shizuko Murakami
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroko Ohki-Hamazaki
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Kumar U. Somatostatin and Somatostatin Receptors in Tumour Biology. Int J Mol Sci 2023; 25:436. [PMID: 38203605 PMCID: PMC10779198 DOI: 10.3390/ijms25010436] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Somatostatin (SST), a growth hormone inhibitory peptide, is expressed in endocrine and non-endocrine tissues, immune cells and the central nervous system (CNS). Post-release from secretory or immune cells, the first most appreciated role that SST exhibits is the antiproliferative effect in target tissue that served as a potential therapeutic intervention in various tumours of different origins. The SST-mediated in vivo and/or in vitro antiproliferative effect in the tumour is considered direct via activation of five different somatostatin receptor subtypes (SSTR1-5), which are well expressed in most tumours and often more than one receptor in a single cell. Second, the indirect effect is associated with the regulation of growth factors. SSTR subtypes are crucial in tumour diagnosis and prognosis. In this review, with the recent development of new SST analogues and receptor-specific agonists with emerging functional consequences of signaling pathways are promising therapeutic avenues in tumours of different origins that are discussed.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
21
|
Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev 2023; 123:12004-12035. [PMID: 37796539 DOI: 10.1021/acs.chemrev.3c00456] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Molecular changes in malignant tissue can lead to an increase in the expression levels of various proteins or receptors that can be used to target the disease. In oncology, diagnostic imaging and radiotherapy of tumors is possible by attaching an appropriate radionuclide to molecules that selectively bind to these target proteins. The term "theranostics" describes the use of a diagnostic tool to predict the efficacy of a therapeutic option. Molecules radiolabeled with γ-emitting or β+-emitting radionuclides can be used for diagnostic imaging using single photon emission computed tomography or positron emission tomography. Radionuclide therapy of disease sites is possible with either α-, β-, or Auger-emitting radionuclides that induce irreversible damage to DNA. This Focus Review centers on the chemistry of theranostic approaches using metal radionuclides for imaging and therapy. The use of tracers that contain β+-emitting gallium-68 and β-emitting lutetium-177 will be discussed in the context of agents in clinical use for the diagnostic imaging and therapy of neuroendocrine tumors and prostate cancer. A particular emphasis is then placed on the chemistry involved in the development of theranostic approaches that use copper-64 for imaging and copper-67 for therapy with functionalized sarcophagine cage amine ligands. Targeted therapy with radionuclides that emit α particles has potential to be of particular use in late-stage disease where there are limited options, and the role of actinium-225 and lead-212 in this area is also discussed. Finally, we highlight the challenges that impede further adoption of radiotheranostic concepts while highlighting exciting opportunities and prospects.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
22
|
Lens G, Ahmadi Bidakhvidi N, Vandecaveye V, Grauwels S, Laenen A, Deckers W, Peeters R, Dresen RC, Dekervel J, Verslype C, Nackaerts K, Clement PM, Van Cutsem E, Koole M, Goffin K, Van Laere K, Deroose CM. Intra-individual qualitative and quantitative comparison of [ 68Ga]Ga-DOTATATE PET/CT and PET/MRI. Ther Adv Med Oncol 2023; 15:17588359231189133. [PMID: 37885461 PMCID: PMC10599114 DOI: 10.1177/17588359231189133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/04/2023] [Indexed: 10/28/2023] Open
Abstract
Background Somatostatin receptor (SSTR) positron emission tomography (PET) is a cornerstone of neuroendocrine tumor (NET) management. Hybrid PET/magnetic resonance imaging (MRI) is now available for NET-imaging, next to PET/computed tomography (CT). Objectives To determine whether CT or MRI is the best hybrid partner for [68Ga]Ga-DOTATATE PET. Design Monocentric, prospective study. Methods Patients received a same-day [68Ga]Ga-DOTATATE PET/CT and subsequent PET/MRI, for suspicion of NET, (re)staging or peptide receptor radionuclide therapy-selection. The union (PETunion) of malignant lesions detected on PETCT and PETMRI was the reference standard. Concordance of detection of malignant lesions in an organ was measured between PETunion and CT and PETunion and MRI. Seven bins were used to categorize the number of malignant lesions, containing following ordinal variables: 0, 1, 2-5, 6-10, 11-20, >20 countable and diffuse/uncountable. The difference in number of malignant lesions was obtained as the difference in bin level ('Δbin') between PETunion and CT and PETunion and MRI with a Δbin closer to zero implying a higher concordance rate. Results Twenty-nine patients were included. Primary tumors included 17 gastroenteropancreatic-NETs, 1 colon neuroendocrine carcinoma, 7 lung-NETs and 2 meningiomas. Patient level concordance with PETunion was 96% for MRI and 67% for CT (p = 0.039). Organ level concordance with PETunion was 74% for MRI and 40% for CT (p < 0.0001). In bone, there was a higher concordance rate for MRI compared to CT, 92% and 33%, respectively (p = 0.016). Overall, a mean Δbin of 0.5 ± 1.1 for PETunion/MRI and 1.4 ± 1.2 for PETunion/CT (p < 0.0001) was noted. In liver, a mean Δbin of 0.0 ± 1.1 for PETunion/MRI and 1.7 ± 1.2 for PETunion/CT was observed (p = 0.0078). In bone, a mean Δbin closer to zero was observed for PETunion/MRI compared to PETunion/CT, 0.6 ± 1.4 and 2.0 ± 1.5, respectively (p = 0.0098). Conclusions Compared to SSTR PET/CT, SSTR PET/MRI had a higher patient and organ level concordance for malignant tumoral involvement and number of malignant lesions, with a clear added value in bone and liver specifically.
Collapse
Affiliation(s)
- Géraldine Lens
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Niloefar Ahmadi Bidakhvidi
- Nuclear Medicine, University Hospitals Leuven, Leuven, BelgiumNuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | | | - Annouschka Laenen
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Leuven, Belgium
| | - Wies Deckers
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Jeroen Dekervel
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Chris Verslype
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | | | - Paul M. Clement
- General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Eric Van Cutsem
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Karolien Goffin
- Nuclear Medicine, University Hospitals Leuven, Leuven, BelgiumNuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine, University Hospitals Leuven, Leuven, BelgiumNuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christophe M. Deroose
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Herestraat 49, 3000 Leuven, Flanders, Belgium
| |
Collapse
|
23
|
Liu B, Zhang Z, Liu X, Hu W, Wu W. Gastrointestinal Fermentable Polysaccharide Is Beneficial in Alleviating Loperamide-Induced Constipation in Mice. Nutrients 2023; 15:4364. [PMID: 37892439 PMCID: PMC10610129 DOI: 10.3390/nu15204364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
To investigate the role of gastrointestinal (GI) polysaccharide fermentation in alleviating constipation, two polysaccharide fractions were isolated from a soluble fiber extract with determined anti-constipation activity: a 2.04 kDa neutral fraction (SSP-1) contained 99.29% glucose, and a 41.66 kDa acidic fraction (SSP-2) contained 63.85% uronic acid. After mice were given loperamide for 14 d to induce constipation, the GI transit rate increased significantly in the SSP-1 group (p < 0.05) but not in the SSP-2 group. The stool weight in the SSP-2 group was significantly higher than that in SSP-1 (383.60 mg vs. 226.23 mg) (p < 0.05). Both SSP-1 and SSP-2 groups had significantly increased serum gastrin and motilin levels (p < 0.05) and changes in their fecal short-chain fatty acid (SCFA) profiles, while SSP-1 showed better fermentation properties than SSP-2 in terms of statistically higher fecal contents of acetic acid and total SCFAs (p < 0.05). Bioinformatic analysis indicated that SSP-1 upregulated bacteria such as Oscillibacter to improve SCFA metabolism and stimulate GI hormone secretion, while SSP-2 had less influence on the gut microbiota. These results suggest that the neutral polysaccharide with superior GI fermentation properties exerted beneficial effects on constipation, while the less fermentable pectic fraction might act as a stool-bulking agent.
Collapse
Affiliation(s)
- Buyu Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (B.L.); (W.H.)
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Zhiguo Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (B.L.); (W.H.)
| | - Xingquan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Weiwei Hu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (B.L.); (W.H.)
| | - Weicheng Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (B.L.); (W.H.)
| |
Collapse
|
24
|
Ghosh P, Raj N, Verma H, Patel M, Chakraborti S, Khatri B, Doreswamy CM, Anandakumar SR, Seekallu S, Dinesh MB, Jadhav G, Yadav PN, Chatterjee J. An amide to thioamide substitution improves the permeability and bioavailability of macrocyclic peptides. Nat Commun 2023; 14:6050. [PMID: 37770425 PMCID: PMC10539501 DOI: 10.1038/s41467-023-41748-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Solvent shielding of the amide hydrogen bond donor (NH groups) through chemical modification or conformational control has been successfully utilized to impart membrane permeability to macrocyclic peptides. We demonstrate that passive membrane permeability can also be conferred by masking the amide hydrogen bond acceptor (>C = O) through a thioamide substitution (>C = S). The membrane permeability is a consequence of the lower desolvation penalty of the macrocycle resulting from a concerted effect of conformational restriction, local desolvation of the thioamide bond, and solvent shielding of the amide NH groups. The enhanced permeability and metabolic stability on thioamidation improve the bioavailability of a macrocyclic peptide composed of hydrophobic amino acids when administered through the oral route in rats. Thioamidation of a bioactive macrocyclic peptide composed of polar amino acids results in analogs with longer duration of action in rats when delivered subcutaneously. These results highlight the potential of O to S substitution as a stable backbone modification in improving the pharmacological properties of peptide macrocycles.
Collapse
Affiliation(s)
- Pritha Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nishant Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Hitesh Verma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Monika Patel
- Neuroscience & Ageing Biology, CSIR-CDRI, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sohini Chakraborti
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Bhavesh Khatri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Chandrashekar M Doreswamy
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - S R Anandakumar
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - Srinivas Seekallu
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - M B Dinesh
- Central Animal Facility, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Gajanan Jadhav
- Eurofins Advinus Biopharma Services India Pvt. Ltd., Bangalore, 560058, Karnataka, India
| | - Prem Narayan Yadav
- Neuroscience & Ageing Biology, CSIR-CDRI, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayanta Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
25
|
Sosa LDV, Picech F, Perez P, Gutierrez S, Leal RB, De Paul A, Torres A, Petiti JP. Regulation of FGF2-induced proliferation by inhibitory GPCR in normal pituitary cells. Front Endocrinol (Lausanne) 2023; 14:1183151. [PMID: 37576961 PMCID: PMC10414184 DOI: 10.3389/fendo.2023.1183151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Intracellular communication is essential for the maintenance of the anterior pituitary gland plasticity. The aim of this study was to evaluate whether GPCR-Gαi modulates basic fibroblast growth factor (FGF2)-induced proliferative activity in normal pituitary cell populations. Methods Anterior pituitary primary cell cultures from Wistar female rats were treated with FGF2 (10ng/mL) or somatostatin analog (SSTa, 100nM) alone or co-incubated with or without the inhibitors of GPCR-Gαi, pertussis toxin (PTX, 500nM), MEK inhibitor (U0126, 100µM) or PI3K inhibitor (LY 294002, 10 μM). Results FGF2 increased and SSTa decreased the lactotroph and somatotroph BrdU uptak2e (p<0.05) whereas the FGF2-induced S-phase entry was prevented by SSTa co-incubation in both cell types, with these effects being reverted by PTX, U0126 or LY294002 pre-incubation. The inhibition of lactotroph and somatotroph mitosis was associated with a downregulation of c-Jun expression, a decrease of phosphorylated (p) ERK and pAKT. Furthermore, SSTa was observed to inhibit the S-phase entry induced by FGF2, resulting in a further increase in the number of cells in the G1 phase and a concomitant reduction in the number of cells in the S phases (p< 0.05), effects related to a decrease of cyclin D1 expression and an increase in the expression of the cell cycle inhibitors p27 and p21. Discussion In summary, the GPCR-Gαi activated by SSTa blocked the pro-proliferative effect of FGF2 in normal pituitary cells via a MEK-dependent mechanism, which acts as a mediator of both anti and pro-mitogenic signals, that may regulate the principal effectors of the G1 to S-phase transition.
Collapse
Affiliation(s)
- Liliana del V. Sosa
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Florencia Picech
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Pablo Perez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Silvina Gutierrez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Rodrigo Bainy Leal
- Universidade Federal de Santa Catarina, Florianópolis, Departamento de Bioquímica e Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Santa Catarina, Brazil
| | - Ana De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Alicia Torres
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Juan Pablo Petiti
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| |
Collapse
|
26
|
Ensign SF, Agarwal M, Klanderman M, Badawy M, Halfdanarson TR, Johnson DR, Sonbol MB, Kendi AT. Clinical utility of somatostatin receptor positron emission tomography imaging biomarkers for characterization of meningioma among incidental central nervous system lesions. Nucl Med Commun 2023; 44:663-670. [PMID: 37158225 DOI: 10.1097/mnm.0000000000001706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
OBJECTIVES Somatostatin receptor (SSTR) PET imaging is utilized with increasing frequency in the clinical management of neuroendocrine tumors. Incidental PET-avid CNS lesions are commonly noted and presumed to be meningiomas. However, SSTR PET lacks specificity for meningioma identification. This study aimed to clarify the role of SSTR-based imaging in the classification of incidental CNS lesions based on current clinical practice. METHODS Patients who underwent both Ga-68-DOTATATE PET and brain MRI and had an incidental CNS lesion identified with a radiographic prediction of meningioma via one (discordant prediction) or both (concordant prediction) imaging modalities were retrospectively analyzed. Imaging indication, semiquantitative measures, and clinical history were recorded. RESULTS Among 48 patients with a CNS lesion identified on both imaging modalities, most scans were performed for a history of neuroendocrine tumor (64.6%). Cases with concordant lesion-type prediction of meningioma between imaging modalities ( N = 24) displayed a significantly higher SUV max (median 7.9 vs. 4.0; P = 0.008) and Krenning score (median 3.0 vs. 2.0; P = 0.005) on Ga-68-DOTATATE PET compared with cases with a discordant prediction of meningioma ( N = 24). In cases with lower SUV max values, Ga-68-DOTATATE was more likely to discordantly predict meningioma without agreement by the corresponding MRI. Prior cranial radiation or use of somatostatin mimetics did not affect quantitative radiographic measures, and MRI-based tumor size was similar across groups. CONCLUSION Lesions with increased avidity may be more confidently predicted as meningioma in Ga-68-DOTATATE PET scans, whereas there is more discrepancy in prediction among low SUV cases.
Collapse
Affiliation(s)
| | | | - Molly Klanderman
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona
| | - Mohamed Badawy
- Department of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center
| | | | - Derek R Johnson
- Department of Radiology
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
27
|
Adnan A, Basu S. Somatostatin Receptor Targeted PET-CT and Its Role in the Management and Theranostics of Gastroenteropancreatic Neuroendocrine Neoplasms. Diagnostics (Basel) 2023; 13:2154. [PMID: 37443548 DOI: 10.3390/diagnostics13132154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Somatostatin receptor (SSTR) agonist-based Positron Emission Tomography-Computed Tomography (PET-CT) imaging is nowadays the mainstay for the assessment and diagnostic imaging of neuroendocrine neoplasms (NEN), especially in well-differentiated neuroendocrine tumors (NET) (World Health Organization (WHO) grade I and II). Major clinical indications for SSTR imaging are primary staging and metastatic workup, especially (a) before surgery, (b) detection of unknown primary in metastatic NET, (c) patient selection for theranostics and appropriate therapy, especially peptide receptor radionuclide therapy (PRRT), while less major indications include treatment response evaluation on and disease prognostication. Dual tracer PET-CT imaging using SSTR targeted PET tracers, viz. [68Ga]Ga-DOTA-Tyr3-Octreotate (DOTA-TATE) and [68Ga]Ga-DOTA-NaI3-Octreotide (DOTA-NOC), and fluorodeoxyglucose (FDG), have recently gained widespread acceptance for better assessment of whole-body tumor biology compared to single-site histopathology, in terms of being non-invasive and the ability to assess inter- and intra-tumoral heterogeneity on a global scale. FDG uptake has been identified as independent adverse risk factor in various studies. Recently, somatostatin receptor antagonists have been shown to be more sensitive and specific in detecting the disease. The aim of this review article is to summarize the clinical importance of SSTR-based imaging in the clinical management of neuroendocrine and related tumors.
Collapse
Affiliation(s)
- Aadil Adnan
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, JerbaiWadia Road, Parel, Mumbai 400012, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, JerbaiWadia Road, Parel, Mumbai 400012, India
| |
Collapse
|
28
|
Wu R, Benzenberg LR, Svingou D, Zenobi R. The Structure of Cyclic Neuropeptide Somatostatin and Octapeptide Octreotide in the Presence of Copper Ions: Insights from Transition Metal Ion FRET and Native Ion Mobility-Mass Spectrometry. J Am Chem Soc 2023; 145:10542-10547. [PMID: 37146120 DOI: 10.1021/jacs.2c13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The conformation and function of somatostatin (SST), a cyclic neuropeptide, was recently found to be altered in the presence of Cu(II) ions, which leads to self-aggregation and loss of biological function as a neurotransmitter. However, the impact of Cu(II) ions on the structure and function of SST is not fully understood. In this work, transition metal ion Förster resonance energy transfer (tmFRET) and native ion mobility-mass spectrometry (IM-MS) were utilized to study the structures of well-defined gas-phase ions of SST and of a smaller analogue, octreotide (OCT). The tmFRET results suggest two binding sites of Cu(II) ions in both native-like SST and OCT ions, either in close proximity to the disulfide bond or complexed by two aromatic residues, consistent with results obtained from collision-induced dissociation (CID). The former binding site was reported to initiate aggregation of SST, while the latter binding site could directly affect the essential motif for receptor binding and therefore impair the biological function of SST and OCT when bound to SST receptors. Our results demonstrate that tmFRET is capable of locating transition metal ion binding sites in neuropeptides. Furthermore, multiple distance constraints (tmFRET) and global shape (IM-MS) provide additional structural insights of SST and OCT ions upon metal binding, which is related to the self-aggregation mechanisms and overall biological functions.
Collapse
Affiliation(s)
- Ri Wu
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Lukas R Benzenberg
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Despoina Svingou
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Renato Zenobi
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
29
|
Lins J, Miloslavina YA, Carrara SC, Rösler L, Hofmann S, Herr K, Theiß F, Wienands L, Avrutina O, Kolmar H, Buntkowsky G. Parahydrogen-induced polarization allows 2000-fold signal enhancement in biologically active derivatives of the peptide-based drug octreotide. Sci Rep 2023; 13:6388. [PMID: 37076553 PMCID: PMC10115808 DOI: 10.1038/s41598-023-33577-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
Octreotide, a somatostatin analogue, has shown its efficacy for the diagnostics and treatment of various types of cancer, i.e., in octreotide scan, as radio-marker after labelling with a radiopharmaceutical. To avoid toxicity of radio-labeling, octreotide-based assays can be implemented into magnetic resonance techniques, such as MRI and NMR. Here we used a Parahydrogen-Induced Polarization (PHIP) approach as a cheap, fast and straightforward method. Introduction of L-propargyl tyrosine as a PHIP marker at different positions of octreotide by manual Solid-Phase Peptide Synthesis (SPPS) led to up to 2000-fold proton signal enhancement (SE). Cell binding studies confirmed that all octreotide variants retained strong binding affinity to the surface of human-derived cancer cells expressing somatostatin receptor 2. The hydrogenation reactions were successfully performed in methanol and under physiologically compatible mixtures of water with methanol or ethanol. The presented results open up new application areas of biochemical and pharmacological studies with octreotide.
Collapse
Affiliation(s)
- Jonas Lins
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Yuliya A Miloslavina
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Stefania C Carrara
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Lorenz Rösler
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Sarah Hofmann
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Kevin Herr
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Franziska Theiß
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Laura Wienands
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Olga Avrutina
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany.
| | - Gerd Buntkowsky
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany.
| |
Collapse
|
30
|
Du Y, Yan B. Ocular immune privilege and retinal pigment epithelial cells. J Leukoc Biol 2023; 113:288-304. [PMID: 36805720 DOI: 10.1093/jleuko/qiac016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 02/04/2023] Open
Abstract
The ocular tissue microenvironment is immune-privileged and uses multiple immunosuppressive mechanisms to prevent the induction of inflammation. The retinal pigment epithelium plays an essential role in ocular immune privilege. In addition to serving as a blood barrier separating the fenestrated choriocapillaris from the retina, the retinal pigment epithelium is a source of immunosuppressive cytokines and membrane-bound negative regulators that modulate the activity of immune cells within the retina. This article reviews the current understanding of how retinal pigment epithelium cells mediate immune regulation, focusing on the changes under pathologic conditions.
Collapse
Affiliation(s)
- Yuxiang Du
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| | - Bo Yan
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| |
Collapse
|
31
|
Mahapatra M, Mohapatra P, Sahoo SK, Bishoyi AK, Padhy RN, Paidesetty SK. Design, synthesis, and in-silico study of chromen-sulfonamide congeners as potent anticancer and antimicrobial agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
32
|
Zhao J, Wang S, Markison S, Kim SH, Han S, Chen M, Kusnetzow AK, Rico-Bautista E, Johns M, Luo R, Struthers RS, Madan A, Zhu Y, Betz SF. Discovery of Paltusotine (CRN00808), a Potent, Selective, and Orally Bioavailable Non-peptide SST2 Agonist. ACS Med Chem Lett 2022; 14:66-74. [PMID: 36655128 PMCID: PMC9841592 DOI: 10.1021/acsmedchemlett.2c00431] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
The discovery of a novel 4-(4-aminopiperidinyl)-3,6-diarylquinoline series of potent SST2 agonists is described. This class of molecules exhibit excellent selectivity over SST1, SST3, SST4, and SST5 receptors. The compound 3-[4-(4-aminopiperidin-1-yl)-3-(3,5-difluorophenyl)quinolin-6-yl]-2-hydroxybenzonitrile (22, paltusotine, formerly known as CRN00808) showed no direct inhibition of major cytochrome P450 enzymes or the hERG ion channel and had sufficient exposure in rats and excellent exposure in dogs upon oral dosing. In pharmacodynamic studies, compound 22 dose-dependently suppressed growth hormone (GH) secretion induced by an exogenous growth-hormone-releasing hormone (GHRH) challenge in both male and female rats following a single oral dose and suppressed IGF-1 levels with repeated oral administration in both rats and dogs. To the best of our knowledge, compound 22 is the first non-peptide SST2 agonist to advance to human clinical trials and is currently in Phase 3 trials in acromegaly patients and a Phase 2 trial in neuroendocrine tumor patients suffering from carcinoid syndrome.
Collapse
|
33
|
Pintér E, Helyes Z, Szőke É, Bölcskei K, Kecskés A, Pethő G. The triple function of the capsaicin-sensitive sensory neurons: In memoriam János Szolcsányi. Temperature (Austin) 2022; 10:13-34. [PMID: 38059854 PMCID: PMC10177685 DOI: 10.1080/23328940.2022.2147388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
This paper is dedicated to the memory of János Szolcsányi (1938-2018), an outstanding Hungarian scientist. Among analgesics that act on pain receptors, he identified capsaicin as a selective lead molecule. He studied the application of capsaicin and revealed several physiological (pain, thermoregulation) and pathophysiological (inflammation, gastric ulcer) mechanisms. He discovered a new neuroregulatory system without sensory efferent reflex and investigated its pharmacology. The authors of this review are his former Ph.D. students who carried out their doctoral work in Szolcsányi's laboratory between 1985 and 2010 and report on the scientific results obtained under his guidance. His research group provided evidence for the triple function of the peptidergic capsaicin-sensitive sensory neurons including classical afferent function, local efferent responses, and remote, hormone-like anti-inflammatory, and antinociceptive actions. They also proposed somatostatin receptor type 4 as a promising drug target for the treatment of pain and inflammation. They revealed that neonatal capsaicin treatment caused no acute neuronal death but instead long-lasting selective ultrastructural and functional changes in B-type sensory neurons, similar to adult treatment. They described that lipid raft disruption diminished the agonist-induced channel opening of the TRPV1, TRPA1, and TRPM8 receptors in native sensory neurons. Szolcsányi's group has developed new devices for noxious heat threshold measurement: an increasing temperature hot plate and water bath. This novel approach proved suitable for assessing the thermal antinociceptive effects of analgesics as well as for analyzing peripheral mechanisms of thermonociception.
Collapse
Affiliation(s)
- Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary
- National Laboratory for Drug Research and Development, Magyar tudósok krt. 2. H-1117Budapest, Hungary
- Eötvös Lorand Research Network, Chronic Pain Research Group, University of Pécs, H7624, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary
- National Laboratory for Drug Research and Development, Magyar tudósok krt. 2. H-1117Budapest, Hungary
- Eötvös Lorand Research Network, Chronic Pain Research Group, University of Pécs, H7624, Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary
- National Laboratory for Drug Research and Development, Magyar tudósok krt. 2. H-1117Budapest, Hungary
- Eötvös Lorand Research Network, Chronic Pain Research Group, University of Pécs, H7624, Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary
| | - Angéla Kecskés
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary
| | - Gábor Pethő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624, Pécs, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, H-7624 , Pécs, Hungary
| |
Collapse
|
34
|
Prosperi D, Gentiloni Silveri G, Panzuto F, Faggiano A, Russo VM, Caruso D, Polici M, Lauri C, Filice A, Laghi A, Signore A. Nuclear Medicine and Radiological Imaging of Pancreatic Neuroendocrine Neoplasms: A Multidisciplinary Update. J Clin Med 2022; 11:jcm11226836. [PMID: 36431313 PMCID: PMC9694730 DOI: 10.3390/jcm11226836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms (panNENs) are part of a large family of tumors arising from the neuroendocrine system. PanNENs show low-intermediate tumor grade and generally high somatostatin receptor (SSTR) expression. Therefore, panNENs benefit from functional imaging with 68Ga-somatostatin analogues (SSA) for diagnosis, staging, and treatment choice in parallel with morphological imaging. This narrative review aims to present conventional imaging techniques and new perspectives in the management of panNENs, providing the clinicians with useful insight for clinical practice. The 68Ga-SSA PET/CT is the most widely used in panNENs, not only fr diagnosis and staging purpose but also to characterize the biology of the tumor and its responsiveness to SSAs. On the contrary, the 18F-Fluordeoxiglucose (FDG) PET/CT is not employed systematically in all panNEN patients, being generally preferred in G2-G3, to predict aggressiveness and progression rate. The combination of 68Ga-SSA PET/CT and 18F-FDG PET/CT can finally suggest the best therapeutic strategy. Other radiopharmaceuticals are 68Ga-exendin-4 in case of insulinomas and 18F-dopamine (DOPA), which can be helpful in SSTR-negative tumors. New promising but still-under-investigation radiopharmaceuticals include radiolabeled SSTR antagonists and 18F-SSAs. Conventional imaging includes contrast enhanced CT and multiparametric MRI. There are now enriched by radiomics, a new non-invasive imaging approach, very promising to early predict tumor response or progression.
Collapse
Affiliation(s)
- Daniela Prosperi
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
| | - Guido Gentiloni Silveri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
| | - Francesco Panzuto
- Digestive Disease Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189 Roma, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189 Roma, Italy
| | - Vincenzo Marcello Russo
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
| | - Damiano Caruso
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
| | - Michela Polici
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
- Correspondence:
| | - Angelina Filice
- Nucler Medicine Unit, AUSL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Andrea Laghi
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Roma, Italy
| |
Collapse
|
35
|
Yang J, Zhu Q, Wu Y, Qu X, Liu H, Jiang B, Ge D, Song X. Utilization of macrocyclic peptides to target protein-protein interactions in cancer. Front Oncol 2022; 12:992171. [PMID: 36465350 PMCID: PMC9714258 DOI: 10.3389/fonc.2022.992171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Protein-protein interactions (PPIs) play vital roles in normal cellular processes. Dysregulated PPIs are involved in the process of various diseases, including cancer. Thus, these PPIs may serve as potential therapeutic targets in cancer treatment. However, despite rapid advances in small-molecule drugs and biologics, it is still hard to target PPIs, especially for those intracellular PPIs. Macrocyclic peptides have gained growing attention for their therapeutic properties in targeting dysregulated PPIs. Macrocyclic peptides have some unique features, such as moderate sizes, high selectivity, and high binding affinities, which make them good drug candidates. In addition, some oncology macrocyclic peptide drugs have been approved by the US Food and Drug Administration (FDA) for clinical use. Here, we reviewed the recent development of macrocyclic peptides in cancer treatment. The opportunities and challenges were also discussed to inspire new perspectives.
Collapse
Affiliation(s)
- Jiawen Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Qu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoling Song
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
36
|
Cieslik P, Kubeil M, Zarschler K, Ullrich M, Brandt F, Anger K, Wadepohl H, Kopka K, Bachmann M, Pietzsch J, Stephan H, Comba P. Toward Personalized Medicine: One Chelator for Imaging and Therapy with Lutetium-177 and Actinium-225. J Am Chem Soc 2022; 144:21555-21567. [DOI: 10.1021/jacs.2c08438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Patrick Cieslik
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Florian Brandt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Karl Anger
- Hochschule für Technik und Wirtschaft Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany
| | - Hubert Wadepohl
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
- Universität Heidelberg, Interdisciplinary Center for Scientific Computing, INF 205, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Norcia LF, Watanabe EM, Hamamoto Filho PT, Hasimoto CN, Pelafsky L, de Oliveira WK, Sassaki LY. Polycystic Liver Disease: Pathophysiology, Diagnosis and Treatment. Hepat Med 2022; 14:135-161. [PMID: 36200122 PMCID: PMC9528914 DOI: 10.2147/hmer.s377530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Polycystic liver disease (PLD) is a clinical condition characterized by the presence of more than 10 cysts in the liver. It is a rare disease Of genetic etiology that presents as an isolated disease or assoc\iated with polycystic kidney disease. Ductal plate malformation, ciliary dysfunction, and changes in cell signaling are the main factors involved in its pathogenesis. Most patients with PLD are asymptomatic, but in 2-5% of cases the disease has disabling symptoms and a significant reduction in quality of life. The diagnosis is based on family history of hepatic and/or renal polycystic disease, clinical manifestations, patient age, and polycystic liver phenotype shown on imaging examinations. PLD treatment has evolved considerably in the last decades. Somatostatin analogues hold promise in controlling disease progression, but liver transplantation remains a unique curative treatment modality.
Collapse
Affiliation(s)
- Luiz Fernando Norcia
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Erika Mayumi Watanabe
- Department of Radiology, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Pedro Tadao Hamamoto Filho
- Department of Neurology, Psychology and Psychiatry, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Claudia Nishida Hasimoto
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Leonardo Pelafsky
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Walmar Kerche de Oliveira
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| |
Collapse
|
38
|
Wu Y, Berisha A, Borniger JC. Neuropeptides in Cancer: Friend and Foe? Adv Biol (Weinh) 2022; 6:e2200111. [PMID: 35775608 DOI: 10.1002/adbi.202200111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Indexed: 01/28/2023]
Abstract
Neuropeptides are small regulatory molecules found throughout the body, most notably in the nervous, cardiovascular, and gastrointestinal systems. They serve as neurotransmitters or hormones in the regulation of diverse physiological processes. Cancer cells escape normal growth control mechanisms by altering their expression of growth factors, receptors, or intracellular signals, and neuropeptides have recently been recognized as mitogens in cancer growth and development. Many neuropeptides and their receptors exist in multiple subtypes, coupling with different downstream signaling pathways and playing distinct roles in cancer progression. The consideration of neuropeptide/receptor systems as anticancer targets is already leading to new biological and diagnostic knowledge that has the potential to enhance the understanding and treatment of cancer. In this review, recent discoveries regarding neuropeptides in a wide range of cancers, emphasizing their mechanisms of action, signaling cascades, regulation, and therapeutic potential, are discussed. Current technologies used to manipulate and analyze neuropeptides/receptors are described. Applications of neuropeptide analogs and their receptor inhibitors in translational studies and radio-oncology are rapidly increasing, and the possibility for their integration into therapeutic trials and clinical treatment appears promising.
Collapse
Affiliation(s)
- Yue Wu
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Adrian Berisha
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Jeremy C Borniger
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
39
|
Xiong H, Lacin E, Ouyang H, Naik A, Xu X, Xie C, Youn J, Wilson BA, Kumar K, Kern T, Aisenberg E, Kircher D, Li X, Zasadzinski JA, Mateo C, Kleinfeld D, Hrabetova S, Slesinger PA, Qin Z. Probing Neuropeptide Volume Transmission In Vivo by Simultaneous Near-Infrared Light-Triggered Release and Optical Sensing. Angew Chem Int Ed Engl 2022; 61:e202206122. [PMID: 35723610 PMCID: PMC9388559 DOI: 10.1002/anie.202206122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/11/2022]
Abstract
Neuropeptides are abundant signaling molecules in the central nervous system. Yet remarkably little is known about their spatiotemporal spread and biological activity. Here, we developed an integrated optical approach using Plasmonic nAnovesicles and cell-based neurotransmitter fluorescent engineered reporter (CNiFER), or PACE, to probe neuropeptide signaling in the mouse neocortex. Small volumes (fL to pL) of exogenously supplied somatostatin-14 (SST) can be rapidly released under near-infrared light stimulation from nanovesicles implanted in the brain and detected by SST2 CNiFERs with nM sensitivity. Our measurements reveal reduced but synchronized SST transmission within 130 μm, and markedly smaller and delayed transmission at longer distances. These measurements enabled a quantitative estimation of the SST loss rate due to peptide degradation and binding. PACE offers a new tool for determining the spatiotemporal scales of neuropeptide volume transmission and signaling in the brain.
Collapse
Affiliation(s)
- Hejian Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Emre Lacin
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674, USA
| | - Hui Ouyang
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Aditi Naik
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Xueqi Xu
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Chen Xie
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jonghae Youn
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Blake A Wilson
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Krutin Kumar
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Tyler Kern
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674, USA
| | - Erin Aisenberg
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674, USA
| | - Daniel Kircher
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674, USA
| | - Xiuying Li
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Joseph A Zasadzinski
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Celine Mateo
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Sabina Hrabetova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674, USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
40
|
Liu SQ, Li B, Li JJ, Sun S, Sun SR, Wu Q. Neuroendocrine regulations in tissue-specific immunity: From mechanism to applications in tumor. Front Cell Dev Biol 2022; 10:896147. [PMID: 36072337 PMCID: PMC9442449 DOI: 10.3389/fcell.2022.896147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Immune responses in nonlymphoid tissues play a vital role in the maintenance of homeostasis. Lots of evidence supports that tissue-specific immune cells provide defense against tumor through the localization in different tissue throughout the body, and can be regulated by diverse factors. Accordingly, the distribution of nervous tissue is also tissue-specific which is essential in the growth of corresponding organs, and the occurrence and development of tumor. Although there have been many mature perspectives on the neuroendocrine regulation in tumor microenvironment, the neuroendocrine regulation of tissue-specific immune cells has not yet been summarized. In this review, we focus on how tissue immune responses are influenced by autonomic nervous system, sensory nerves, and various neuroendocrine factors and reversely how tissue-specific immune cells communicate with neuroendocrine system through releasing different factors. Furthermore, we pay attention to the potential mechanisms of neuroendocrine-tissue specific immunity axis involved in tumors. This may provide new insights for the immunotherapy of tumors in the future.
Collapse
Affiliation(s)
- Si-Qing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| |
Collapse
|
41
|
Jensen LR, Maier AD, Lomstein A, Graillon T, Hrachova M, Bota D, Ruiz-Patiño A, Arrieta O, Cardona AF, Rudà R, Furtner J, Roeckle U, Clement P, Preusser M, Scheie D, Broholm H, Kristensen BW, Skjøth-Rasmussen J, Ziebell M, Munch TN, Fugleholm K, Walter MA, Mathiesen T, Mirian C. Somatostatin analogues in treatment-refractory meningioma: a systematic review with meta-analysis of individual patient data. Neurosurg Rev 2022; 45:3067-3081. [PMID: 35984552 DOI: 10.1007/s10143-022-01849-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Treatment-refractory meningiomas have a dismal prognosis and limited treatment options. Meningiomas express high-densities of somatostatin receptors (SSTR), thus potentially susceptible to antitumorigenic effects of somatostatin analogues (SSA). Evidence for SSA in meningiomas is scarce, and it is unclear if published literature would either (1) support wider use of SSA, if (2) more evidence is desirable, or if (3) available evidence is sufficient to discard SSA. We addressed the need for more evidence with a systematic review and meta-analysis. We performed an individual patient data (IPD) meta-analysis. Main outcomes were toxicity, best radiological response, progression-free survival, and overall survival. We applied multivariable logistic regression models to estimate the effect of SSA on the probability of obtaining radiological disease control. The predictive performance was evaluated using area under the curve and Brier scores. We included 16 studies and compiled IPD from 8/9 of all previous cohorts. Quality of evidence was overall ranked "very low." Stable disease was reported in 58% of patients as best radiological response. Per 100 mg increase in total SSA dosage, the odds ratios for obtaining radiological disease control was 1.42 (1.11 to 1.81, P = 0.005) and 1.44 (1.00 to 2.08, P = 0.05) for patients treated with SSA as monodrug therapy vs SSA in combination with everolimus, respectively. Low quality of evidence impeded exact quantification of treatment efficacy, and the association between response and treatment may represent reverse causality. Yet, the SSA treatment was well tolerated, and beneficial effect cannot be disqualified. A prospective trial without bias from inconsistent study designs is warranted to assess SSA therapy for well-defined meningioma subgroups.
Collapse
Affiliation(s)
- Lasse Rehné Jensen
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Atle Lomstein
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Graillon
- Department of Neurosurgery, Hospital La Timone, Aix Marseille University, APHM, INSERM, MMG, Marseille, France
| | - Maya Hrachova
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma, OK, USA
| | - Daniela Bota
- Department of Neurology, UC Irvine Medical Center, Orange, CA, USA
- Department of Neurological Surgery, UC Irvine Medical Center, Orange, CA, USA
| | | | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCaN), Mexico City, México
| | | | - Roberta Rudà
- Department of Neurology, Castelfranco Veneto/Treviso, Treviso, Italy
- Department of Neuro-Oncology, City of Health and Science Hospital and University of Turin, Turin, Italy
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ulrich Roeckle
- Department of Neurology and Brain Tumor Center, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Paul Clement
- Department of Oncology, Leuven Cancer Institute, KU Leuven, Louvain, Belgium
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - David Scheie
- Department of Pathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Helle Broholm
- Department of Pathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bjarne Winther Kristensen
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Ziebell
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tina Nørgaard Munch
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Kåre Fugleholm
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Martin A Walter
- Department of Nuclear Medicine, University Hospital of Geneva, Geneva, Switzerland
- Gesundheitswissenschaften Und Medizin EN, University of Lucerne, Lucerne, Switzerland
| | - Tiit Mathiesen
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Mirian
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
42
|
Chen LN, Wang WW, Dong YJ, Shen DD, Guo J, Yu X, Qin J, Ji SY, Zhang H, Shen Q, He Q, Yang B, Zhang Y, Li Q, Mao C. Structures of the endogenous peptide- and selective non-peptide agonist-bound SSTR2 signaling complexes. Cell Res 2022; 32:785-788. [PMID: 35578016 PMCID: PMC9343650 DOI: 10.1038/s41422-022-00669-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/12/2022] [Indexed: 12/21/2022] Open
Affiliation(s)
- Li-Nan Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei-Wei Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Ying-Jun Dong
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Jia Guo
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Xuefei Yu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Jiao Qin
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Su-Yu Ji
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Qingya Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Immunity and Inflammatory diseases, Hangzhou, Zhejiang, China
| | - Qinglin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.
| | - Chunyou Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
43
|
Han J, Yoon J, Shin J, Nam E, Qian T, Li Y, Park K, Lee SH, Lim MH. Conformational and functional changes of the native neuropeptide somatostatin occur in the presence of copper and amyloid-β. Nat Chem 2022; 14:1021-1030. [PMID: 35817963 DOI: 10.1038/s41557-022-00984-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
The progression of neurodegenerative disorders can lead to impaired neurotransmission; however, the role of pathogenic factors associated with these diseases and their impact on the structures and functions of neurotransmitters have not been clearly established. Here we report the discovery that conformational and functional changes of a native neuropeptide, somatostatin (SST), occur in the presence of copper ions, metal-free amyloid-β (Aβ) and metal-bound Aβ (metal-Aβ) found as pathological factors in the brains of patients with Alzheimer's disease. These pathological elements induce the self-assembly of SST and, consequently, prevent it from binding to the receptor. In the reverse direction, SST notably modifies the aggregation profiles of Aβ species in the presence of metal ions, attenuating their cytotoxicity and interactions with cell membranes. Our work demonstrates a loss of normal function of SST as a neurotransmitter and a gain of its modulative function against metal-Aβ under pathological conditions.
Collapse
Affiliation(s)
- Jiyeon Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiwon Yoon
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Jeongcheol Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Eunju Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tongrui Qian
- State Key Laboratory Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory Membrane Biology, Peking University School of Life Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Seung-Hee Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
44
|
Affiliation(s)
- Assunta D'Amato
- University of Salerno: Universita degli Studi di Salerno Chemistry and Biology "A. Zambelli" Via Giovanni Paolo II, 132 84084 Fisciano ITALY
| |
Collapse
|
45
|
Zhao W, Han S, Qiu N, Feng W, Lu M, Zhang W, Wang M, Zhou Q, Chen S, Xu W, Du J, Chu X, Yi C, Dai A, Hu L, Shen MY, Sun Y, Zhang Q, Ma Y, Zhong W, Yang D, Wang MW, Wu B, Zhao Q. Structural insights into ligand recognition and selectivity of somatostatin receptors. Cell Res 2022; 32:761-772. [PMID: 35739238 PMCID: PMC9343605 DOI: 10.1038/s41422-022-00679-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Somatostatin receptors (SSTRs) play versatile roles in inhibiting the secretion of multiple hormones such as growth hormone and thyroid-stimulating hormone, and thus are considered as targets for treating multiple tumors. Despite great progress made in therapeutic development against this diverse receptor family, drugs that target SSTRs still show limited efficacy with preferential binding affinity and conspicuous side-effects. Here, we report five structures of SSTR2 and SSTR4 in different states, including two crystal structures of SSTR2 in complex with a selective peptide antagonist and a non-peptide agonist, respectively, a cryo-electron microscopy (cryo-EM) structure of Gi1-bound SSTR2 in the presence of the endogenous ligand SST-14, as well as two cryo-EM structures of Gi1-bound SSTR4 in complex with SST-14 and a small-molecule agonist J-2156, respectively. By comparison of the SSTR structures in different states, molecular mechanisms of agonism and antagonism were illustrated. Together with computational and functional analyses, the key determinants responsible for ligand recognition and selectivity of different SSTR subtypes and multiform binding modes of peptide and non-peptide ligands were identified. Insights gained in this study will help uncover ligand selectivity of various SSTRs and accelerate the development of new molecules with better efficacy by targeting SSTRs.
Collapse
Affiliation(s)
- Wenli Zhao
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Han
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang, China
| | - Na Qiu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenbo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengjie Lu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenru Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mu Wang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shutian Chen
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Xu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan Du
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang, China
| | - Xiaojing Chu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Cuiying Yi
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Antao Dai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | - Yingli Ma
- Amgen Asia R&D Center, Shanghai, China
| | - Wenge Zhong
- Amgen Asia R&D Center, Shanghai, China.,Regor Therapeutics, Shanghai, China
| | - Dehua Yang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Ming-Wei Wang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Beili Wu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Qiang Zhao
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China. .,Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| |
Collapse
|
46
|
Xiong H, Lacin E, Ouyang H, Naik A, Xu X, Xie C, Youn J, Wilson BA, Kumar K, Kern T, Aisenberg E, Kircher D, Li X, Zasadzinski JA, Mateo C, Kleinfeld D, Hrabetova S, Slesinger PA, Qin Z. Probing Neuropeptide Volume Transmission In Vivo by Simultaneous Near‐Infrared Light Triggered Release and Optical Sensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hejian Xiong
- University of Texas at Dallas Mechanical Engineering 800 West Campbell Rd 75080 RICHARDSON UNITED STATES
| | - Emre Lacin
- Icahn School of Medicine at Mount Sinai Nash Family Department of Neuroscience 10029 New York UNITED STATES
| | - Hui Ouyang
- University of Texas at Dallas Mechanical Engineering 800 West Campbell Rd 75080 RICHARDSON UNITED STATES
| | - Aditi Naik
- SUNY Downstate: SUNY Downstate Health Sciences University Department of Cell Biology 11203 Brooklyn UNITED STATES
| | - Xueqi Xu
- University of Texas at Dallas Mechanical Engineering 800 West Campbell Rd 75080 RICHARDSON UNITED STATES
| | - Chen Xie
- University of Texas at Dallas Mechanical Engineering 800 West Campbell Rd 75080 RICHARDSON UNITED STATES
| | - Jonghae Youn
- University of Texas at Dallas Mechanical Engineering 800 West Campbell Rd 75080 RICHARDSON UNITED STATES
| | - Blake A. Wilson
- University of Texas at Dallas Mechanical Engineering 800 West Campbell Rd 75080 RICHARDSON UNITED STATES
| | - Krutin Kumar
- University of Texas at Dallas School of Behavioral and Brain Sciences 800 West Campbell Rd 75080 RICHARDSON UNITED STATES
| | - Tyler Kern
- Icahn School of Medicine at Mount Sinai Nash Family Department of Neuroscience 10029 New York UNITED STATES
| | - Erin Aisenberg
- Icahn School of Medicine at Mount Sinai Nash Family Department of Neuroscience 10029 New York UNITED STATES
| | - Daniel Kircher
- Icahn School of Medicine at Mount Sinai Nash Family Department of Neuroscience 10029 New York UNITED STATES
| | - Xiuying Li
- University of Texas at Dallas Mechanical Engineering 800 West Campbell Rd 75080 Richardson UNITED STATES
| | - Joseph A. Zasadzinski
- University of Minnesota College of Science and Engineering Chemical Engineering and Materials Science 55455 Minneapolis UNITED STATES
| | - Celine Mateo
- University of California San Diego Department of Physics 92093 La Jolla UNITED STATES
| | - David Kleinfeld
- University of California San Diego Department of Physics 92093 La Jolla UNITED STATES
| | - Sabina Hrabetova
- SUNY Downstate Health Sciences University Department of Cell Biology 11203 Brooklyn UNITED STATES
| | - Paul A. Slesinger
- Icahn School of Medicine at Mount Sinai Nash Family Department of Neuroscience 10029 New York UNITED STATES
| | - Zhenpeng Qin
- University of Texas at Dallas Mechanical Engineering and Bioengineering 800 West Campbell RdMail Stop EC3875080United States 75080 Richardson UNITED STATES
| |
Collapse
|
47
|
Vitali E, Palagano E, Schiavone ML, Mantovani G, Sobacchi C, Mazziotti G, Lania A. Direct effects of octreotide on osteoblast cell proliferation and function. J Endocrinol Invest 2022; 45:1045-1057. [PMID: 35020172 DOI: 10.1007/s40618-022-01740-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE Octreotide (OCT) is a first-generation somatostatin analog (SSA) used in the treatment of acromegaly and neuroendocrine tumors (NETs). In both diseases, OCT interacts with somatostatin receptors 2 and 5 (SSTR2 and SSTR5), inhibiting hormone hypersecretion and cell proliferation. Skeletal health is an important clinical concern in acromegaly and NETs, since acromegalic osteopathy and NET bone metastasis occur in a remarkable number of patients. While OCT's effect on NET and pituitary cells has been extensively investigated, its direct action on bone cells remains unknown. METHODS Here, we investigated OCT direct effects on cell proliferation, differentiation, mineralization, and chemoattractant capacity of murine primary osteoblasts and osteoblast cell line MC3T3-E1. RESULTS OCT inhibited osteoblasts and MC3T3-E1 cell proliferation (- 30 ± 16%, and - 22 ± 4%, both p < 0.05 vs control) and increased MC3T3-E1 cell apoptosis (+ 76 ± 32%, p < 0.05 vs control). The anti-proliferative action of OCT was mediated by SSTR2 and SSTR5 in MC3T3-E1, while its pro-apoptotic effect was abrogated in SSTR2-silenced cells. The analysis of genes related to the early and late phases of osteoblast differentiation showed that OCT did not affect Alp, Runx2, Bglap, Spp1, and Sost levels in MC3T3-E1 cells. Similarly, OCT did not affect ALP activity, mineralization, and osteoclastogenic induction. Finally, Vegfa expression decreased in OCT-treated MC3T3-E1 cells and OCT inhibited pancreatic NET cell migration toward the osteoblast-conditioned medium. CONCLUSION This study provides the first evidence of the direct action of OCT on osteoblasts which may have clinically relevant implications for the management of skeletal health in subjects with acromegaly and metastatic NETs.
Collapse
Affiliation(s)
- E Vitali
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - E Palagano
- National Research Council, Institute of Biosciences and BioResources (CNR-IBBR), Via Madonna del Piano-Polo Scientifico CNR 10, 50019, Sesto Fiorentino, FI, Italy
| | - M L Schiavone
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
| | - G Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - C Sobacchi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
- National Research Council, Institute of Genetic and Biomedical Research (CNR-IRGB), Via Fantoli 16/15, 20138, Milan, Italy
| | - G Mazziotti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy.
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy.
| | - A Lania
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| |
Collapse
|
48
|
High-Dose Somatostatin Analogs for the Treatment of Neuroendocrine Neoplasms: where are we Now? Curr Treat Options Oncol 2022; 23:1001-1013. [PMID: 35501552 DOI: 10.1007/s11864-022-00983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 11/03/2022]
Abstract
OPINION STATEMENT Neuroendocrine tumors (NET) represent a complex and heterogeneous group of malignancies arising from the diffuse endocrine cells and other cells derived from the neural crest. Advanced disease is observed at diagnosis in more than one-third of patients. Somatostatin analogs (SSA) are the cornerstone in advanced well-differentiated NET treatment. Unfortunately, most patients will eventually develop resistance to SSA treatment by different mechanisms that are not fully understood. In some cases of refractory carcinoid syndrome or progressive disease, the increase of SSA dose may help to reach out a symptomatic and/or tumor growth control. The clinical evidence behind above-label SSA administration is limited and should be individualized and discussed patient by patient. Some questions regarding high-dose SSA use are unsolved, such as the optimal dose to use, the frequency of administration, or the need of deepen molecular understanding that could help to adequately select patients for this approach.
Collapse
|
49
|
Heo Y, Yoon E, Jeon YE, Yun JH, Ishimoto N, Woo H, Park SY, Song JJ, Lee W. Cryo-EM structure of the human somatostatin receptor 2 complex with its agonist somatostatin delineates the ligand binding specificity. eLife 2022; 11:76823. [PMID: 35446253 PMCID: PMC9054131 DOI: 10.7554/elife.76823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Somatostatin is a peptide hormone that regulates endocrine systems by binding to G-protein-coupled somatostatin receptors. Somatostatin receptor 2 (SSTR2) is a human somatostatin receptor and is highly implicated in hormone disorders, cancers, and neurological diseases. Here, we report the high-resolution cryo-EM structure of full-length human SSTR2 bound to the agonist somatostatin (SST-14) in complex with inhibitory G (Gi) proteins. Our structural and mutagenesis analyses show that seven transmembrane helices form a deep pocket for ligand binding and that SSTR2 recognizes the highly conserved Trp-Lys motif of SST-14 at the bottom of the pocket. Furthermore, our sequence analysis combined with AlphaFold modeled structures of other SSTR isoforms provide a structural basis for the mechanism by which SSTR family proteins specifically interact with their cognate ligands. This work provides the first glimpse into the molecular recognition mechanism of somatostatin receptors and a crucial resource to develop therapeutics targeting somatostatin receptors.
Collapse
Affiliation(s)
- Yunseok Heo
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Eojin Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ye-Eun Jeon
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Ji-Hye Yun
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Naito Ishimoto
- Drug Design Laboratory, Yokohama City University, Yokohama, Japan
| | - Hyeonuk Woo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Sam-Yong Park
- Drug Design Laboratory, Yokohama City University, Yokohama, Japan
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Behl T, Madaan P, Sehgal A, Singh S, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Demystifying the Neuroprotective Role of Neuropeptides in Parkinson's Disease: A Newfangled and Eloquent Therapeutic Perspective. Int J Mol Sci 2022; 23:4565. [PMID: 35562956 PMCID: PMC9099669 DOI: 10.3390/ijms23094565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) refers to one of the eminently grievous, preponderant, tortuous nerve-cell-devastating ailments that markedly impacts the dopaminergic (DArgic) nerve cells of the midbrain region, namely the substantia nigra pars compacta (SN-PC). Even though the exact etiopathology of the ailment is yet indefinite, the existing corroborations have suggested that aging, genetic predisposition, and environmental toxins tremendously influence the PD advancement. Additionally, pathophysiological mechanisms entailed in PD advancement encompass the clumping of α-synuclein inside the lewy bodies (LBs) and lewy neurites, oxidative stress, apoptosis, neuronal-inflammation, and abnormalities in the operation of mitochondria, autophagy lysosomal pathway (ALP), and ubiquitin-proteasome system (UPS). The ongoing therapeutic approaches can merely mitigate the PD-associated manifestations, but until now, no therapeutic candidate has been depicted to fully arrest the disease advancement. Neuropeptides (NPs) are little, protein-comprehending additional messenger substances that are typically produced and liberated by nerve cells within the entire nervous system. Numerous NPs, for instance, substance P (SP), ghrelin, neuropeptide Y (NPY), neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), nesfatin-1, and somatostatin, have been displayed to exhibit consequential neuroprotection in both in vivo and in vitro PD models via suppressing apoptosis, cytotoxicity, oxidative stress, inflammation, autophagy, neuronal toxicity, microglia stimulation, attenuating disease-associated manifestations, and stimulating chondriosomal bioenergetics. The current scrutiny is an effort to illuminate the neuroprotective action of NPs in various PD-experiencing models. The authors carried out a methodical inspection of the published work procured through reputable online portals like PubMed, MEDLINE, EMBASE, and Frontier, by employing specific keywords in the subject of our article. Additionally, the manuscript concentrates on representing the pathways concerned in bringing neuroprotective action of NPs in PD. In sum, NPs exert substantial neuroprotection through regulating paramount pathways indulged in PD advancement, and consequently, might be a newfangled and eloquent perspective in PD therapy.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Piyush Madaan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|