1
|
Wei W, Zhang Y, Li Y, Huang J, Kang F, Tan S, Lin L, Lu X, Wei H, Wang N. Hypoxia-mediated high expression of TRIM15 promotes malignant progression of high-grade serous ovarian cancer through activation of AKT signaling pathway by K63 ubiquitination. Int J Cancer 2025; 156:2401-2415. [PMID: 40026037 DOI: 10.1002/ijc.35387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/24/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
The tripartite motif (TRIM) family member TRIM15 is an E3 ubiquitin ligase that is abnormally expressed in a variety of tumors, but its role and mechanism in high-grade serous ovarian cancer (HGSOC) are unclear. Here, we found for the first time that TRIM15 was upregulated in HGSOC and was associated with poor overall survival. Functional experiments showed that TRIM15 drove the proliferation of HGSOC cells and inhibited the apoptosis of tumor cells in vivo and in vitro. In terms of mechanism, we found that TRIM15 contributed to the malignant proliferation of HGSOC cells by promoting the activation of AKT and that there was a direct binding between them. TRIM15 induced lysine-63 (K63) ubiquitination of AKT through its Ring domain, which in turn activated the AKT signaling pathway. In addition, TRIM15-mediated K63 ubiquitination occurs mainly in the pleckstrin homology (PH) domain of AKT. We further identified other proteins and their functions regulated by TRIM15 in HGSOC cells by ubiquitin proteomic analysis. Furthermore, hypoxia-inducible factor-1α promoted TRIM15 transcriptional activation by binding to the hypoxia response elements of the TRIM15 promoter. Our study suggests that TRIM15 induces K63 ubiquitination of the AKT PH domain through its Ring domain and activates the AKT signaling pathway, thereby promoting HGSOC progression. In addition, the abnormally high expression of TRIM15 was associated with the hypoxic microenvironment of HGSOC tissues.
Collapse
Affiliation(s)
- Wei Wei
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yang Zhang
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yibing Li
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Jiazhen Huang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Fuli Kang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Shuang Tan
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Lin Lin
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Xiaohang Lu
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Heng Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ning Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
2
|
Yang H, Jung S, Choi EY. E3 ubiquitin ligase TRIM38 regulates macrophage polarization to reduce hepatic inflammation by interacting with HSPA5. Int Immunopharmacol 2025; 157:114662. [PMID: 40300357 DOI: 10.1016/j.intimp.2025.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses pathologies from simple steatosis and steatohepatitis (MASH) to cirrhosis. Hepatic inflammation is a common cause of liver pathogenesis, with macrophage activation as a key indicator of both acute and chronic liver dysfunction. While M1 macrophages promote inflammation and M2 macrophages suppress it, their roles in MASLD are dynamic and shift according to disease stage and liver microenvironment. Tripartite motif (TRIM) family proteins, which possess E3 ubiquitin ligase activity, are involved in various cellular processes, including intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis. TRIM38 negatively regulates innate immunity and inflammation triggered by viruses, Toll-like receptor 3 and 4, and tumor necrosis factor α/interleukin-1β signaling; however, its role in liver pathogenesis remains unclear. This study investigates the role of macrophage TRIM38 in metabolic liver disease to identify key targets for controlling inflammation. TRIM38 overexpression suppressed lipopolysaccharide-induced macrophage activation and metabolic stress-induced hepatic lipid accumulation. Mechanistically, TRIM38 interacted with heat shock protein family A member 5 (HSPA5) and stabilized it via K63-dependent ubiquitination. This TRIM38-HSPA5 axis promoted the expression of M2 macrophage markers (arginase 1 and retinoic acid-related orphan receptor α), thereby ameliorating liver steatosis. Single-cell RNA sequencing revealed significant downregulation of TRIM38 expression in the liver macrophages of patients with MASLD and negative regulation of liver inflammation via modulation of macrophage polarization. Hence, macrophage TRIM38 suppresses metabolic liver disease progression via HSPA5-mediated M2 macrophage polarization and provides insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Heeyoung Yang
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Soontag Jung
- Center for Regulatory Toxicology Research, Division of Next Generation Non-Clinical Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Eun-Yong Choi
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Li Y, Zhou F, Xu Z. TRIM25 facilitates ferroptosis in ovarian cancer through promoting PIEZO1 K63-linked ubiquitination and degradation. Transl Oncol 2025; 56:102386. [PMID: 40250035 PMCID: PMC12033990 DOI: 10.1016/j.tranon.2025.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/13/2025] [Accepted: 04/05/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Ovarian cancer represents a significant threat to women's health. and ferroptosis is recognized as a potential natural inhibitor in cancer therapy, the regulatory mechanism of TRIM25 in ovarian cancer and its potential for regulating ferroptosis as a treatment remain unclear. METHODS The role of TRIM25 in ovarian cancer was examined through functional gain- and loss-of-function assays both in vitro and in vivo, while its target genes were identified. The stability and ubiquitination sites of PIEZO1 were analyzed using protein docking and ubiquitination experiments. RESULTS TRIM25 is highly expressed in ovarian cancer and promotes the growth and metastasis of ovarian cancer cells both in vivo and in vitro. Mechanistically, it facilitates PIEZO1 degradation through ubiquitination-dependent proteasome activity, inhibits ferroptosis, and stimulates ovarian cancer cell growth. CONCLUSION Our study clearly shows that TRIM25 stimulates ovarian cancer by inducing K63-linked ubiquitination of PIEZO1, which suppresses ferroptosis and promotes excessive proliferation of ovarian cancer cells. Further research identified the ubiquitination modification site on PIEZO1, providing insights for ovarian cancer treatment.
Collapse
Affiliation(s)
- Ya Li
- Department of Gynecology, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, No.12 Yancheng Road, Hengyang city, Hunan province, 421000, PR China
| | - Fei Zhou
- Department of Gynecology, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, No.12 Yancheng Road, Hengyang city, Hunan province, 421000, PR China
| | - Zhengmei Xu
- Department of Gynecology, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, No.12 Yancheng Road, Hengyang city, Hunan province, 421000, PR China.
| |
Collapse
|
4
|
Wu W, Xie Y, Jiang C, Jiang X. Unveiling the multifaceted functions of TRIM proteins in glioma pathogenesis. Transl Oncol 2025; 58:102419. [PMID: 40424933 DOI: 10.1016/j.tranon.2025.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/30/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Gliomas, the most prevalent malignant primary brain tumors in adults, represent a heterogeneous group of neoplasms characterized by poor prognosis and limited therapeutic options, particularly in high-grade cases. Understanding the molecular mechanisms underlying glioma pathogenesis is crucial for developing novel and effective treatment strategies. In recent years, increasing attention has been directed toward the tripartite motif (TRIM) family of proteins, a class of E3 ubiquitin ligases, due to their significant roles in glioma development and progression. This review comprehensively explores the diverse functions of TRIM proteins in gliomas, including their expression patterns, prognostic significance, and mechanisms of action that are both ubiquitination-dependent and -independent. By synthesizing current knowledge, we aim to elucidate the role of TRIM proteins in glioma pathogenesis and identify potential therapeutic targets within this protein family.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Youxi Xie
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Cheng Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| |
Collapse
|
5
|
Leach DA, Chatterjee N, Spahr K, de Almeida GS, Varela-Carver A, Shah TT, Winkler M, Ahmed HU, Bevan CL. Simultaneous inhibition of TRIM24 and TRIM28 sensitises prostate cancer cells to antiandrogen therapy, decreasing VEGF signalling and angiogenesis. Mol Oncol 2025. [PMID: 40411304 DOI: 10.1002/1878-0261.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/20/2025] [Accepted: 05/13/2025] [Indexed: 05/26/2025] Open
Abstract
Castrate-resistant prostate cancer (CRPC) is a likely outcome of hormone treatment for advanced prostate cancer. Although no longer dependent on androgen levels, CRPC remains driven by the androgen receptor (AR). One proposed progression mechanism is altered repertoires of coregulator proteins possessing the ability to alter AR activity. Increased expression of tripartite motif-containing 24 (TRIM24) and TRIM28-two members of a distinct bromodomain-containing subfamily of Tripartite motif (TRIM) coregulators-occurs in CRPC. Endogenous TRIM24 and TRIM28 interact with each other and AR, bind to chromatin and regulate genes such as the angiogenic factor vascular endothelial growth factor A (VEGFA) and oncogene MYC. Silencing of TRIM24 and TRIM28 simultaneously, but not either alone, sensitised CRPC model cell lines to the antiandrogen enzalutamide and bicalutamide. This re-sensitisation to antiandrogen therapeutics could then be reversed by addition of VEGF. Furthermore, both TRIM24 and TRIM28 expression associated with angiogenesis signatures in tumour samples, and conditioned media from TRIM24 and TRIM28-silenced cancer cells inhibited endothelial cell proliferation and formation of vascular tube structures. Our data suggest that TRIM24 and TRIM28 proteins interact, in gene-specific manners, to regulate AR activity, increase VEGF signalling and angiogenesis, and that targeting these coregulators may increase the effectiveness of antiandrogen therapy.
Collapse
Affiliation(s)
- Damien A Leach
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, UK
| | - Nilesh Chatterjee
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, UK
- St George's University of London, UK
| | - Kellie Spahr
- University of Michigan, Ann Arbor, MI, USA
- University of Pittsburgh, PA, USA
| | | | - Anabel Varela-Carver
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, UK
| | - Taimur T Shah
- Imperial Urology, Division of Surgery, Imperial College Healthcare NHS Trust, London, UK
- Imperial Prostate, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, UK
| | - Mathias Winkler
- Imperial Urology, Division of Surgery, Imperial College Healthcare NHS Trust, London, UK
- Imperial Prostate, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, UK
| | - Hashim U Ahmed
- Imperial Urology, Division of Surgery, Imperial College Healthcare NHS Trust, London, UK
- Imperial Prostate, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, UK
| | - Charlotte L Bevan
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, UK
| |
Collapse
|
6
|
Park H, Heo H, Song Y, Lee MS, Cho Y, Lee JS, Chang J, Lee S. TRIM22 functions as a scaffold protein for autophagy initiation. Anim Cells Syst (Seoul) 2025; 29:296-311. [PMID: 40337095 PMCID: PMC12057787 DOI: 10.1080/19768354.2025.2498926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
Tripartite motif (TRIM) family proteins are increasingly recognized as important regulators of autophagy under various physiological and pathological conditions. TRIM22 has been previously shown to mediate autophagosome-lysosome fusion, but its potential role in earlier stages of autophagy remained unexplored. In this study, we investigated the function of TRIM22 in autophagy initiation. Overexpression of TRIM22 increased LC3-II levels and enhanced autophagic flux without affecting mTOR and AMPK activity. We found that TRIM22 interacts with components of both the ULK1 complex and the class III PI3K complex through distinct domains, recruiting them into punctate structures that represent autophagosome formation sites. Domain mapping revealed that the SPRY domain mediates interactions with ATG13 and FIP200, while the N-terminal region interacts with ULK1 and ATG101. The B-box domain of TRIM22 was identified as crucial for its interaction with Beclin-1, a key component of the class III PI3K complex. Deletion of this domain impaired the ability of TRIM22 to assemble the class III PI3K complex and induce autophagic flux. Interestingly, competitive binding assays revealed that Beclin-1 and PLEKHM1 bind to the same region of TRIM22, suggesting a mechanism for coordinating different stages of autophagy. The Alzheimer's disease-associated TRIM22 variant R321K maintained autophagy initiation function in both cell lines and primary neurons. These findings demonstrate that TRIM22 acts as a scaffold protein to promote autophagy initiation, in addition to its previously described role in autophagosome-lysosome fusion. Our study provides new insights into the molecular mechanisms by which TRIM proteins regulate multiple stages of the autophagy process.
Collapse
Affiliation(s)
- Hyungsun Park
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Hansol Heo
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yeongseo Song
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Myung Shin Lee
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yebin Cho
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae-Seon Lee
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Jaerak Chang
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seongju Lee
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Department of Anatomy, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
7
|
Zhang J, Chen B, Xu F, Wang R, Zhao X, Yao Z, Zhang J, Zhou S, Xu A, Wu L, Zhao G. Phospho-TRIM21 orchestrates RPA2 ubiquitination switch to promote homologous recombination and tumor radio/chemo-resistance. Oncogene 2025; 44:1106-1117. [PMID: 39900724 DOI: 10.1038/s41388-025-03288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/05/2025] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
RPA2, a key component of the RPA complex, is essential for single-stranded DNA (ssDNA) binding and DNA repair. However, the regulation of RPA2-ssDNA interaction and the recruitment of repair proteins following DNA damage remain incompletely understood. Our study uncovers a novel mechanism by which phosphorylated TRIM21 (Phospho-TRIM21) regulates RPA2 ubiquitination, thereby modulating homologous recombination and tumor radio/chemo-resistance. In the absence of DNA damage, TRIM21 mediates K63-linked ubiquitination of RPA2, countering K6-linked ubiquitination. Upon DNA damage, ubiquitination-modified RPA2 binds ssDNA, stabilizing the DNA structure and facilitating ATRIP/ATR recruitment. ATR subsequently phosphorylates TRIM21 at Ser41, leading to the dissociation of the TRIM21-RPA2 complex and a shift in RPA2 ubiquitination from K63 to K6 linkage. This shift maintains RPA2 ubiquitination homeostasis and stabilizes the RPA2-ATRIP complex, which is crucial for efficient homologous recombination (HR) repair and enhanced tumor radio/chemo-resistance. We also demonstrate that TRIM21 is frequently upregulated in cancers, and its depletion sensitizes cancer cells to radio/chemotherapy, suggesting its potential as a therapeutic target. This study provides novel insights into TRIM21's role in the DNA damage response and its implications for cancer treatment.
Collapse
Affiliation(s)
- Jie Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bin Chen
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Feng Xu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ruru Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Xipeng Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhicheng Yao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shenglan Zhou
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - An Xu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Lijun Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Guoping Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| |
Collapse
|
8
|
Li Q, Wu H, Huang Y, Yekefenhazi D, Zou W, Han F. Characterization and Functional Analysis of Trim38 in the Immune Response of the Large Yellow Croaker ( Larimichthys crocea) Against Pseudomonas plecoglossicida Infection. Int J Mol Sci 2025; 26:4150. [PMID: 40362389 PMCID: PMC12071835 DOI: 10.3390/ijms26094150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
The large yellow croaker (Larimichthys crocea) is a cornerstone species in Chinese marine aquaculture, yet bacterial infections-particularly visceral white nodules disease (VWND) caused by Pseudomonas plecoglossicida-severely compromise its production. This study aimed to elucidate the immunoregulatory mechanisms of tripartite motif-containing protein 38 in the large yellow croaker (Lctrim38) during bacterial infections, with an emphasis on host-pathogen interactions involving P. plecoglossicida, to evaluate its potential for disease-resistant breeding applications. The full-length cDNA of Lctrim38 was cloned and characterized, with structural analysis revealing a conserved domain architecture comprising RING, B-box, coiled-coil, and PRY-SPRY motifs. Functional characterization through Lctrim38 overexpression in large yellow croaker kidney cells (PCK cells) demonstrated significant modulation of key immune-related pathways, including TGF-β, PI3K-Akt, IL-17, and PPAR. Notably, Lctrim38-mediated inhibition of NF-κB signaling was shown to downregulate pro-inflammatory cytokines (TNF-α, IL-6, IFN-γ), establishing its role as a negative regulator of inflammatory responses. These findings provide insights into the immune mechanisms of Trim38 in large yellow croakers and highlight its potential as a molecular target for disease resistance breeding. Future research should explore its broader functions, including its antiviral potential.
Collapse
Affiliation(s)
| | | | | | | | - Wenzheng Zou
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361000, China; (Q.L.); (H.W.); (Y.H.); (D.Y.)
| | - Fang Han
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361000, China; (Q.L.); (H.W.); (Y.H.); (D.Y.)
| |
Collapse
|
9
|
Liu C, Wang X, Li Q, Gao X, Zeng K, Li B, Miao J, Zheng B, Liu J, Wang Z, Yuan X, Liu B. Apolipoprotein E promotes primary resistance to AR-targeted therapy via inducing TRIM25-mediated AR ubiquitination and sensitizes immunotherapy in prostate cancer. Theranostics 2025; 15:5572-5591. [PMID: 40365288 PMCID: PMC12068304 DOI: 10.7150/thno.109994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/01/2025] [Indexed: 05/15/2025] Open
Abstract
Rationale: Prostate cancer (PCa) growth is facilitated by the androgen receptor (AR) and its downstream signaling pathways, making AR-targeted therapy crucial for treating advanced stages. Despite this, the response to AR-targeted therapies is inconsistent, with a significant proportion of patients even exhibiting unresponsiveness to therapy from the outset, known as primary resistance. Therefore, a refined categorization framework is imperative for the timely detection of resistant phenotypes and the exploration of novel therapeutic avenues. Methods: Tissue microarrays and clinical cohorts were employed to delineate the impact of APOE on the prognostic outcomes and therapeutic resistance in PCa patients. Employing flow cytometry, immunoprecipitation, and mass spectrometry, we dissected the molecular underpinnings of APOE's role in conferring resistance to AR-targeted interventions. Single-cell RNA sequencing elucidated the intricate transcriptomic profiles of PCa with elevated APOE expression. Additionally, the therapeutic potential of anti-PD-L1 agents in treating PCa with APOE induction was rigorously assessed. Results: In this study, we elucidated the pivotal role of APOE in mediating primary resistance to AR-targeted therapy in PCa through the suppression of AR signaling pathways. Mechanistically, APOE was found to enhance the ubiquitination and subsequent degradation of AR by mediating the interaction between the E3-ligase TRIM25 and AR, concurrently dampening the transcriptional activity of AR. Additionally, elevated APOE expression was correlated with an augmented response to anti-PD-L1 treatment, hinting at the therapeutic advantage of immunotherapy in APOE-high PCa contexts. Conclusions: APOE expression could serve as a prognostic biomarker, pivotal for forecasting responses to both AR-targeted therapy and immunotherapy, thereby offering an innovative strategy for the personalized selection of treatment modalities in PCa.
Collapse
Affiliation(s)
- Chaofan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qinyu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xintao Gao
- Department of Urology, Sir RunRun Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Beining Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jianping Miao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bolong Zheng
- School of Computer Science and Technology, Huazhong University of Science and Technology, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
10
|
Fang T, Liu L, Sun H, Zhang X, Sun X, Yu Z, Gong L, Xie S, Zhao Y, Li Y, Qiu L, An G, He B, Hao M. A novel indirubin- 3-monoxime derivative I3MV- 8b exhibits remarkable cytotoxicity against multiple myeloma by targeting TRIM28. Biomark Res 2025; 13:57. [PMID: 40197552 PMCID: PMC11978164 DOI: 10.1186/s40364-025-00773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
INTRODUCTION Maintaining protein homeostasis is vital for multiple myeloma (MM) cell survival. Indirubin- 3-monoxime (I3MO), a potential MM therapeutic, inhibits proteasome activity, while histone deacetylase 6 (HDAC6) regulates autophagy. We developed I3MV- 8b, an I3MO derivative, integrating an HDAC6 inhibitor moiety to enhance dual inhibition of proteasome and autophagy pathways. METHODS The anti-MM effects of I3MV- 8b were tested in vitro and in vivo. To identify downstream targets, RNA-seq and dual-luciferase reporter assays were performed. Additionally, ChIP-seq and IP-MS techniques were employed to elucidate the underlying molecular mechanism. RESULTS I3MV- 8b significantly suppressed MM cell proliferation and induced apoptosis. Combined with proteasome inhibitors, I3MV- 8b enhanced cytotoxicity by concurrently inhibiting proteasome and autophagy pathways. It reduced TRIM28 transcription, correlating with lower expression of proteasome subunits and autophagy-related genes. ChIP-seq revealed that TRIM28 binds to proteasome gene promoters, and its knockdown decreased proteasome subunit expression and activity. TRIM28 knockdown also impaired autophagosome formation. IP-MS and Co-IP assays showed TRIM28 interacted with 14-3 - 3ζ, a negative regulator of autophagy, promoting its ubiquitination and degradation. This interaction reduced autophagy regulation, further sensitizing cells to treatment. CONCLUSIONS I3MV- 8b offers a novel dual inhibition strategy targeting proteasome and autophagy, presenting a promising therapeutic option for MM.
Collapse
Affiliation(s)
- Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoyu Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiyue Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shiyi Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Department of Hospital Management, Gobroad Healthcare Group, Beijing, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Department of Hospital Management, Gobroad Healthcare Group, Beijing, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Department of Hospital Management, Gobroad Healthcare Group, Beijing, China.
| |
Collapse
|
11
|
Zhang Y, Tan X, Wang L, Ji D, Zhang C, Peng W, Zhu R, Wang X, Zhou J, Feng Y, Sun Y. TRIM38 Suppresses the Progression of Colorectal Cancer via Enhancing CCT6A Ubiquitination to Inhibit the MYC Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411285. [PMID: 40047371 PMCID: PMC12021106 DOI: 10.1002/advs.202411285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/14/2025] [Indexed: 04/26/2025]
Abstract
Emerging evidence reveals the pivotal function of tripartite motif protein (TRIM) in colorectal cancer (CRC). However, the precise function of TRIM38 and its underlying mechanism in CRC remains to be elucidated, especially regarding its putative ubiquitination function. Here, it is identified that TRIM38 is downregulated in CRC tissues by DNA hypermethylation of its promoter. Further analysis demonstrates that decreased TRIM38 is correlated with unfavorable clinical features and poor prognosis. Moreover, TRIM38 functions as a tumor suppressor by inhibiting cell proliferation, metastasis, and AOM/DSS-induced tumorigenesis in CRC cells. Mechanistically, TRIM38 binds to the substrate protein CCT6A, leading to the degradation and K48-linked ubiquitination of CCT6A at the K127/K138 residues. The elevation of CCT6A protein level caused by TRIM38 downregulation diminishes the degradation of c-Myc protein, thereby activating the MYC pathway. The study elucidates a novel mechanism of TRIM38/CCT6A/c-Myc axis regulating CRC, potentially offering a new therapeutic target for its treatment.
Collapse
Affiliation(s)
- Yue Zhang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical Medicine Nanjing Medical UniversityNanjing210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Xinyu Tan
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical Medicine Nanjing Medical UniversityNanjing210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Lu Wang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Dongjian Ji
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical Medicine Nanjing Medical UniversityNanjing210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Chuan Zhang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical Medicine Nanjing Medical UniversityNanjing210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Wen Peng
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical Medicine Nanjing Medical UniversityNanjing210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Renzhong Zhu
- Institute of Translational MedicineMedical CollegeYangzhou UniversityYangzhouJiangsu225000P. R. China
| | - Xiaowei Wang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical Medicine Nanjing Medical UniversityNanjing210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Jiahui Zhou
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsu215000P. R. China
| | - Yifei Feng
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Yueming Sun
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| |
Collapse
|
12
|
Qin H, Zhong Y, Huang J, Miao Y, Du M, Huang K. TRIM56 Promotes White Adipose Tissue Browning to Attenuate Obesity by Degrading TLE3. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414073. [PMID: 39928840 PMCID: PMC11967773 DOI: 10.1002/advs.202414073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/28/2025] [Indexed: 02/12/2025]
Abstract
In mammals, the activation of thermogenic adipocytes, such as beige and brown adipocytes, can significantly increase overall energy expenditure, offering a promising strategy to combat metabolic diseases. Despite its considerable potential, the regulatory mechanisms governing this activation remain largely elusive. This study bridges this gap by elucidating that tripartite motif 56 (TRIM56), an E3 ubiquitin ligase, is upregulated in response to cold stimuli, thereby promoting the recruitment of beige adipocytes. Notably, the overexpression of TRIM56 in adipocytes is shown to help mice maintain a core temperature under cold conditions, as well as confer protection against diet-induced obesity. Mechanistically, TRIM56 facilitates the degradation of the transducin-like enhancer protein 3 (TLE3) protein by promoting its K48-linked ubiquitination, which subsequently triggers the activation of thermogenic genes in subcutaneousl white adipose tissue and improved the metabolic profiles. These findings unveil a novel function for TRIM56 in adipocyte browning, suggesting its potential as a therapeutic target for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Haojie Qin
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yi Zhong
- Department of Rheumatology and ImmunologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jinhui Huang
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yanli Miao
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Meng Du
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Kai Huang
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular AgingHuazhong University of Science and TechnologyWuhan430022China
- Hubei Clinical Research Center of Metabolic and Cardiovascular DiseaseHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
13
|
Liu Y, Qian M, Li Y, Dong X, Wu Y, Yuan T, Ma J, Yang B, Zhu H, He Q. The ubiquitin-proteasome system: A potential target for the MASLD. Acta Pharm Sin B 2025; 15:1268-1280. [PMID: 40370547 PMCID: PMC12069246 DOI: 10.1016/j.apsb.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/20/2024] [Accepted: 12/20/2024] [Indexed: 05/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), the most prevalent chronic liver condition globally, lacks adequate and effective therapeutic remedies in clinical practice. Recent studies have increasingly highlighted the close connection between the ubiquitin-proteasome system (UPS) and the progression of MASLD. This relationship is crucial for understanding the disease's underlying mechanism. As a sophisticated process, the UPS govern protein stability and function, maintaining protein homeostasis, thus influencing a multitude of elements and biological events of eukaryotic cells. It comprises four enzyme families, namely, ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), ubiquitin-protein ligases (E3), and deubiquitinating enzymes (DUBs). This review aims to delve into the array of pathways and therapeutic targets implicated in the ubiquitination within the pathogenesis of MASLD. Therefore, this review unveils the role of ubiquitination in MASLD while spotlighting potential therapeutic targets within the context of this disease.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Pharmacology & Toxicology, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meijia Qian
- Institute of Pharmacology & Toxicology, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Zhongmei Huadong Pharmaceut Co., Ltd., Hangzhou 310011, China
| | - Yonghao Li
- Institute of Pharmacology & Toxicology, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Dong
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yulian Wu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tao Yuan
- Institute of Pharmacology & Toxicology, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Ma
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
14
|
Shen S, Chen F, Zhang Y, Li F, Yao X, Liu D, Shi Y, Zhang L. TRIM66-HP1γ remodels the chromatin through phase separation. BIOPHYSICS REPORTS 2025; 11:18-33. [PMID: 40070663 PMCID: PMC11891075 DOI: 10.52601/bpr.2024.240038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/24/2024] [Indexed: 03/14/2025] Open
Abstract
Chromatin contains not only heterochromatin (HC) and euchromatins (EC) but also facultative heterochromatin (fHC), which experience the dynamic remodeling between HCs and ECs by different regulators. The regulation of fHCs involves lots of different cell functions, like genomic stability and gene transcription. Heterochromatin protein 1 (HP1) recognizes methylated H3K9 and reshapes the chromatin into the fHCs through liquid-liquid phase separation (LLPS). Among the three members of the HP1 family, HP1α can condensate by itself and HP1β forms granules with the help of TRIM28, while the HP1γ cannot phase separation alone either and the coordinator is still unclear. So, in this study, we investigated the molecular mechanism of how HP1γ interacts with TRIM66 through PxVxL motif. Based on that, we examined the key regions that controlled the TRIM66-HP1γ co-phase separation behaviors both in vitro and in vivo. Furthermore, we proved that the liquid granules of TRIM66-HP1γ and chromatin highly correlated with H3K9me3 sites, which indicated the relationship with DNA damage response. Finally, combined with our previous study, we proposed the system for how TRIM66 remodeled the chromatin into compressed fHC through the TRIM66-HP1γ-H3K9me3 axis with liquid-liquid phase separation.
Collapse
Affiliation(s)
- Siyuan Shen
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| | - Feng Chen
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| | - Yifan Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| | - Fudong Li
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| | - Xuebiao Yao
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| | - Dan Liu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| | - Yunyu Shi
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| | - Liang Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
15
|
Lv K, Li Q, Jiang N, Chen Q. Role of TRIM29 in disease: What is and is not known. Int Immunopharmacol 2025; 147:113983. [PMID: 39755113 DOI: 10.1016/j.intimp.2024.113983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Tripartite motif-containing proteins (TRIMs), comprising the greatest subfamily of E3 ubiquitin ligases with approximately 80 members of this family, are widely distributed in mammalian cells. TRIMs actively participate in ubiquitination of target proteins, a type of post-translational modification associated with protein degradation and other functions. Tripartite motif-containing protein 29 (TRIM29), a member of the TRIM family, differs from other members of this family in that it lacks the RING finger structural domain containing cysteine and histidine residues that mediates DNA binding, protein-protein interactions, and ubiquitin ligase, at its N-terminus. The expression of TRIM29 was initially found to be associated with cancer and diabetic nephropathy progression, and antiviral immunity which is triggered by virus-derived nucleic acids binding to pattern recognition receptors (PRRs) on immune cells. Recently, TRIM29 has also been explored as a diagnostic biomarker and therapeutic target for some immune-related diseases. Here, we review the functions of TRIM29 in the progression of diseases and the inherent mechanisms, as well as the remaining gaps in the literature. A thorough understanding of the detailed regulatory mechanisms of TRIM29 will ultimately facilitate the development of different therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Kunying Lv
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
16
|
Zhu W, Yi Q, Chen Z, Wang J, Zhong K, Ouyang X, Yang K, Jiang B, Zhong J, Zhong J. Exploring the role and mechanisms of MAGEA4 in tumorigenesis, regulation, and immunotherapy. Mol Med 2025; 31:43. [PMID: 39905312 PMCID: PMC11796067 DOI: 10.1186/s10020-025-01079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
MAGEA4 is a member of the Melanoma-Associated Antigen (MAGE) family, characterized by high expression in various tumor tissues but low expression in normal tissues, with the exception of testis and placenta. Its expression is associated with poor prognosis in cancer. This review summarizes the mechanisms of action, regulatory functions, and immunotherapeutic applications of MAGEA4 in cancer.MAGEA4 promotes tumor initiation and progression through multiple pathways, including ubiquitination and degradation of the tumor suppressor P53, regulation of cell cycle and apoptosis, modulation of DNA damage repair, and enhancement of cancer cell survival. By forming a complex with TRIM28, MAGEA4 accelerates tumor development via P53 degradation. Factors such as TWIST1 and BORIS can upregulate MAGEA4 expression. MAGEA4 interacts with proteins including Miz-1, p53, and RAD18, participating in gene transcription regulation and DNA damage repair. By stabilizing RAD18, MAGEA4 facilitates the recruitment of Y-family DNA polymerases, enabling cells to continue replication under DNA damage conditions and thus supporting cancer cell survival. MAGEA4-based TCR-T cell therapy and cancer vaccines show clinical potential. This article comprehensively reviews the structure and function of MAGEA4, as well as recent research progress in solid tumors, providing a theoretical foundation for the clinical translation of MAGEA4 and its application in immunotherapy.
Collapse
Affiliation(s)
- Weijian Zhu
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Yi
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zheng Chen
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiaqi Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kui Zhong
- Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Kuan Yang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bowei Jiang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Jinghua Zhong
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
17
|
He L, Zhou J, Ding D, Jiang Y, Yang R, Li Z. MiR-99a-3p downregulates TRIM21 to promote gastric cancer development. Mol Cell Biochem 2025; 480:1001-1012. [PMID: 38720056 PMCID: PMC11835897 DOI: 10.1007/s11010-024-05005-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2024] [Indexed: 02/19/2025]
Abstract
Gastric cancer (GC) stands as one of the most formidable malignancies worldwide. It is well-established that miRNAs play a crucial role in the initiation and progression of various human cancers. Among these, miR-99a-3p has been implicated in the pathogenesis of GC. In the context of our study, we embarked on the comprehensive examination of miR-99a-3p expression in GC cells. Additionally, we sought to establish a correlation between miR-99a-3p expression levels and the overall survival (OS) of GC patients, and our findings hinted at its potential role in predicting an unfavorable prognosis. To further investigate the functional implications of miR-99a-3p in GC, we conducted a series of cell-based experiments after successfully knocking down miR-99a-3p. These investigations uncovered a substantial inhibition of cellular events associated with tumor progression. Moreover, employing TargetScan, we identified Tripartite motif-containing protein 21 (TRIM21) as a putative target with a binding site for miR-99a-3p. Subsequent dual-luciferase reporter gene assay confirmed the direct interaction between miR-99a-3p and TRIM21. Western blot analysis validated the alteration in TRIM21 expression levels, revealing an upregulation upon miR-99a-3p knockdown. Building on these molecular findings, we extended our investigations to human GC tissues, where we observed a downregulation of TRIM21, which, notably, correlated with shorter overall survival. Lastly, to further solidify our conclusions, we conducted a series of in vitro and in vivo rescue experiments, collectively suggesting that miR-99a-3p promoted the progression of GC cells through the downregulation of TRIM21. In summary, our study comprehensively explored the role of miR-99a-3p in GC, revealing its association with unfavorable patient outcomes, functional implications in tumor progression, and a direct regulatory relationship with TRIM21. These findings collectively underscore the significance of miR-99a-3p in the pathogenesis of GC and present a potential therapeutic avenue for further investigation.
Collapse
Affiliation(s)
- Ling He
- Department of Gastroenterology, Affiliated Hospital of Jiangxi University of TCM, No.445, Bayi Road, Nanchang, 330006, Jiangxi, China
| | - Jiaoli Zhou
- Jiangxi University of TCM, No.56, Yangming Road, Nanchang, 330006, Jiangxi, China
| | - Doukun Ding
- Jiangxi University of TCM, No.56, Yangming Road, Nanchang, 330006, Jiangxi, China
| | - Yongjing Jiang
- Jiangxi University of TCM, No.56, Yangming Road, Nanchang, 330006, Jiangxi, China
| | - Rui Yang
- Jiangxi University of TCM, No.56, Yangming Road, Nanchang, 330006, Jiangxi, China
| | - Zhiming Li
- Department of Oncology, Affiliated Hospital of Jiangxi University of TCM, No.445, Bayi Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
18
|
Yu C, Zhang C, Zhang Q, Zhang C, Han J, Li J. TRIM47 promotes head and neck squamous cell carcinoma malignant progression by degrading XAF1 through ubiquitination. iScience 2025; 28:111590. [PMID: 39834862 PMCID: PMC11743097 DOI: 10.1016/j.isci.2024.111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/06/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Tripartite motif-containing 47 (TRIM47) is a member of the TRIM family, which has E3 ligase activity and has been demonstrated to be involved in tumor development. In this work, we found that TRIM47 is highly expressed in head and neck squamous cell carcinomas (HNSCC) tissues. TRIM47 overexpression promoted HNSCC cell proliferation. Downregulation of TRIM47 suppressed HNSCC cell proliferation and promoted apoptosis and autophagy. TRIM47 suppression caused cell proliferation inhibition and apoptosis promotion could be reversed by 3-MA, an autophagy inhibitor. In mechanism, TRIM47 interacted with XIAP-associated factor 1 (XAF1), promoting its ubiquitination and degradation. XAF1 promoted HNSCC cell apoptosis and autophagy. TRIM47 overexpression caused cell proliferation promotion and autophagy inhibition could be reversed by XAF1 overexpression. Animal experiments confirmed that the knockdown of TRIM47 inhibits tumor growth in vivo. Ultimately, TRIM47 promotes the ubiquitination and degradation of XAF1 and suppresses apoptosis and autophagy to promote the progression of HNSCC.
Collapse
Affiliation(s)
- Changyun Yu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chen Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qianqian Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Cai Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jingjie Han
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jinying Li
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| |
Collapse
|
19
|
Eberhardt W, Nasrullah U, Pfeilschifter J. TRIM25: A Global Player of Cell Death Pathways and Promising Target of Tumor-Sensitizing Therapies. Cells 2025; 14:65. [PMID: 39851496 PMCID: PMC11764315 DOI: 10.3390/cells14020065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
Therapy resistance still constitutes a common hurdle in the treatment of many human cancers and is a major reason for treatment failure and patient relapse, concomitantly with a dismal prognosis. In addition to "intrinsic resistance", e.g., acquired by random mutations, cancer cells typically escape from certain treatments ("acquired resistance") by a large variety of means, including suppression of apoptosis and other cell death pathways via upregulation of anti-apoptotic factors or through inhibition of tumor-suppressive proteins. Therefore, ideally, the tumor-cell-restricted induction of apoptosis is still considered a promising avenue for the development of novel, tumor (re)sensitizing therapies. A growing body of evidence has highlighted the multifaceted role of tripartite motif 25 (TRIM25) in controlling different aspects of tumorigenesis, including chemotherapeutic drug resistance. Accordingly, overexpression of TRIM25 is observed in many tumors and frequently correlates with a poor patient survival. In addition to its originally described function in antiviral innate immune response, TRIM25 can play critical yet context-dependent roles in apoptotic- and non-apoptotic-regulated cell death pathways, including pyroposis, necroptosis, ferroptosis, and autophagy. The review summarizes current knowledge of molecular mechanisms by which TRIM25 can interfere with different cell death modalities and thereby affect the success of currently used chemotherapeutics. A better understanding of the complex repertoire of cell death modulatory effects by TRIM25 is an essential prerequisite for validating TRIM25 as a potential target for future anticancer therapy to surmount the high failure rate of currently used chemotherapies.
Collapse
Affiliation(s)
- Wolfgang Eberhardt
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt, 60590 Frankfurt, Germany; (U.N.); (J.P.)
| | | | | |
Collapse
|
20
|
Sayed A, Eswara K, Teles K, Boudellioua A, Fischle W. Nuclear lipids in chromatin regulation: Biological roles, experimental approaches and existing challenges. Biol Cell 2025; 117:e2400103. [PMID: 39648467 PMCID: PMC11758486 DOI: 10.1111/boc.202400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Lipids are crucial for various cellular functions. Besides the storage of energy equivalents, these include forming membrane bilayers and serving as signaling molecules. While significant progress has been made in the comprehension of the molecular and cellular biology of lipids, their functions in the cell nucleus remain poorly understood. The main role of the eukaryotic cell nucleus is to provide an environment for the storage and regulation of chromatin which is a complex of DNA, histones, and associated proteins. Recent studies suggest that nuclear lipids play a role in chromatin regulation and epigenetics. Here, we discuss various experimental methods in lipid-chromatin research, including biophysical, structural, and cell biology approaches, pointing out their strengths and weaknesses. We take the view that nuclear lipids have a far more widespread impact on chromatin than is currently acknowledged. This gap in comprehension is mostly due to existing experimental challenges in the study of lipid-chromatin biology. Several new, interdisciplinary approaches are discussed that could aid in elucidating the roles of nuclear lipids in chromatin regulation and gene expression.
Collapse
Affiliation(s)
- Ahmed Sayed
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
- Chemistry DepartmentFaculty of ScienceAssiut UniversityAssiutEgypt
| | - Karthik Eswara
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Kaian Teles
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Ahlem Boudellioua
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Wolfgang Fischle
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| |
Collapse
|
21
|
Meng X, Yan X, Xue P, Xi Z. Xuebijing Exerts Protective Effects on Myocardial Cells by Upregulating TRIM16 and Inhibiting Oxidative Stress and Apoptosis. Curr Comput Aided Drug Des 2025; 21:503-516. [PMID: 39623713 DOI: 10.2174/0115734099318323241122184120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/09/2024] [Accepted: 10/19/2024] [Indexed: 05/28/2025]
Abstract
OBJECTIVE This study utilized transcriptomic sequencing combined with cellular and animal models to explore the potential mechanisms of Xuebijing in treating sepsis-induced myocardial dysfunction, also known as sepsis-induced myocardial injury. METHODS We investigated potential targets and regulatory mechanisms of XBJ injection using network pharmacology and RNA sequencing. The effects of XBJ on oxidative stress and apoptosis levels in human cardiac myocytes (AC16) and C57BL/6 mice exposed to lipopolysaccharide (LPS) were evaluated by Enzyme-Linked Immunosorbent Assay (ELISA), fluorescent probe, Fluorescent Quantitative Polymerase Chain Reaction (qPCR), Western Blot, Transmission Electron Microscopy, oxidative stress-related indicators detection kit, flow cytometry, and Immunohistochemistry (IHC). RESULTS First, it was verified that XBJ can reduce the deformation of AC16 cardiomyocytes induced by LPS and the production and secretion of ROS (P <0.01). The transcriptome sequencing results showed that the TRIM16 gene was significantly increased after XBJ treatment, and the data of KEGG and GO analyses demonstrated that XBJ could inhibit the pathway expression of oxidative stress damage in AC16 cells, and PCR verified that XBJ could indeed increase the expression level of TRIM16 gene in AC16 cells (P <0.01). Basic animal and cell experiments showed that LPS could inhibit the expression of TRIM16 and NRF2 in cardiomyocytes (P <0.05) and promote the expression of Keap1 (P <0.01), while XBJ could significantly upregulate the expression levels of TRIM16 and NRF2 (P <0.01) and inhibit the expression of Keap1 (P <0.01), thereby affecting the expression levels of downstream proinflammatory cytokines and alleviating LPS-induced oxidative stress damage. In addition, XBJ also inhibited the expression of the pro-apoptotic proteins Bax and c-caspase3 (P <0.01), promoted the expression of the anti-apoptotic protein Bcl2 (P <0.01), and reduced LPS-induced apoptosis by upregulating TRIM16. CONCLUSION Our comprehensive data demonstrated that TRIM16 is a key gene in the therapeutic action of Xuebijing in sepsis-induced myocardial dysfunction, protecting myocardial cells from injury through antioxidative stress and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Department of Emergency Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
- Department of Intensive Care Unit, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 210000, PR China
| | - Xinming Yan
- Department of Emergency Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
- Department of Emergency Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 210000, PR China
| | - Peng Xue
- Department of Emergency Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
- Department of Intensive Care Unit, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 210000, PR China
| | - Zhaoqing Xi
- Department of Emergency Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
| |
Collapse
|
22
|
Liao K, Liu K, Wang Z, Zhao K, Mei Y. TRIM2 promotes metabolic adaptation to glutamine deprivation via enhancement of CPT1A activity. FEBS J 2025; 292:275-293. [PMID: 38949993 DOI: 10.1111/febs.17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Cancer cells undergo metabolic adaptation to promote their survival and growth under energy stress conditions, yet the underlying mechanisms remain largely unclear. Here, we report that tripartite motif-containing protein 2 (TRIM2) is upregulated in response to glutamine deprivation by the transcription factor cyclic AMP-dependent transcription factor (ATF4). TRIM2 is shown to specifically interact with carnitine O-palmitoyltransferase 1 (CPT1A), a rate-limiting enzyme of fatty acid oxidation. Via this interaction, TRIM2 enhances the enzymatic activity of CPT1A, thereby regulating intracellular lipid levels and protecting cells from glutamine deprivation-induced apoptosis. Furthermore, TRIM2 is able to promote both in vitro cell proliferation and in vivo xenograft tumor growth via CPT1A. Together, these findings establish TRIM2 as an important regulator of the metabolic adaptation of cancer cells to glutamine deprivation and implicate TRIM2 as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Kaimin Liao
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaiyue Liu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhongyu Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kailiang Zhao
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yide Mei
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
23
|
Wu W, Yang J, Yu T, Zou Z, Huang X. The Role and Mechanism of TRIM Proteins in Gastric Cancer. Cells 2024; 13:2107. [PMID: 39768197 PMCID: PMC11674240 DOI: 10.3390/cells13242107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Tripartite motif (TRIM) family proteins, distinguished by their N-terminal region that includes a Really Interesting New Gene (RING) domain with E3 ligase activity, two B-box domains, and a coiled-coil region, have been recognized as significant contributors in carcinogenesis, primarily via the ubiquitin-proteasome system (UPS) for degrading proteins. Mechanistically, these proteins modulate a variety of signaling pathways, including Wnt/β-catenin, PI3K/AKT, and TGF-β/Smad, contributing to cellular regulation, and also impact cellular activities through non-signaling mechanisms, including modulation of gene transcription, protein degradation, and stability via protein-protein interactions. Currently, growing evidence indicates that TRIM proteins emerge as potential regulators in gastric cancer, exhibiting both tumor-suppressive and oncogenic roles. Given their critical involvement in cellular processes and the notable challenges of gastric cancer, exploring the specific contributions of TRIM proteins to this disease is necessary. Consequently, this review elucidates the roles and mechanisms of TRIM proteins in gastric cancer, emphasizing their potential as therapeutic targets and prognostic factors.
Collapse
Affiliation(s)
- Wangxi Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (W.W.); (T.Y.)
- The Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.Z.)
| | - Jinyu Yang
- The Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.Z.)
| | - Tian Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (W.W.); (T.Y.)
| | - Zhuoling Zou
- The Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.Z.)
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (W.W.); (T.Y.)
- Chongqing Research Institute, Nanchang University, Chongqing 400010, China
| |
Collapse
|
24
|
Wu Q, Nandi D, Sharma D. TRIM-endous functional network of tripartite motif 29 (TRIM29) in cancer progression and beyond. Cancer Metastasis Rev 2024; 44:16. [PMID: 39644332 PMCID: PMC11625080 DOI: 10.1007/s10555-024-10226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 12/09/2024]
Abstract
While most Tripartite motif (TRIM) family proteins are E3 ubiquitin ligases, some members have functions beyond the regulation of ubiquitination, impacting normal physiological processes and disease progression. TRIM29, an important member of the TRIM family, exerts a predominant influence on cancer growth, epithelial-to-mesenchymal transition, stemness and metastatic progression by directly potentiating multiple canonical oncogenic pathways. The cancer-promoting effect of TRIM29 is also evident in metabolic interventions and interference with the efficacy of cancer therapeutics. As expected for any key node in cancer, the expression of TRIM29 is tightly regulated by non-coding RNAs, epigenetic modulation, and post-translational regulation. A systematic discussion of how TRIM29 is regulated in cancer, its influences on cancer progression, and its impact on cancer therapeutics is presented in this review. We also explore the context-dependent alterations between TRIM29 function from oncogenic to tumor suppression. As TRIM29 is involved in multiple aspects of cancer progression, a better understanding of its biological impact in cancer may help improve prognosis and develop novel therapeutic combinations, leading to improved personalized cancer care.
Collapse
Affiliation(s)
- Qitong Wu
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Deeptashree Nandi
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA.
| |
Collapse
|
25
|
Weng C, Jin R, Jin X, Yang Z, He C, Zhang Q, Xu J, Lv B. Exploring the Mechanisms, Biomarkers, and Therapeutic Targets of TRIM Family in Gastrointestinal Cancer. Drug Des Devel Ther 2024; 18:5615-5639. [PMID: 39654601 PMCID: PMC11626976 DOI: 10.2147/dddt.s482340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
Gastrointestinal region (GI) cancers are closely linked to the ubiquitination system, with the E3 ubiquitin ligase playing a crucial role by targeting various substrates. As E3 ubiquitin ligases, proteins of tripartite motif (TRIM) family play a role in cancer signaling, development, apoptosis, and formation. These proteins regulate diverse biological activities and signaling pathways. This study comprehensively outlines the functions of TRIM proteins in gastrointestinal physiology, contributing to our knowledge of the molecular pathways involved in gastrointestinal tumors. Gastrointestinal region (GI) cancers are closely linked to the ubiquitination system, with the E3 ubiquitin ligase playing a crucial role by targeting various substrates.
Collapse
Affiliation(s)
- Chunyan Weng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Rijuan Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiaoliang Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zimei Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Chenghai He
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Qiuhua Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jingli Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
26
|
Cong Y, Cui X, Shi Y, Pan X, Huang K, Geng Z, Xu P, Ge L, Zhu J, Xu J, Jia X. Tripartite-motif 3 represses ovarian cancer progression by downregulating lactate dehydrogenase A and inhibiting AKT signaling. Mol Cell Biochem 2024; 479:3405-3424. [PMID: 38367118 DOI: 10.1007/s11010-023-04920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/19/2023] [Indexed: 02/19/2024]
Abstract
The E3 ubiquitin ligase Tripartite-motif 3 (TRIM3) is known to play a crucial role in tumor suppression in various tumors through different mechanisms. However, its function and mechanism in ovarian cancer have yet to be elucidated. Our study aims to investigate the expression of TRIM3 in ovarian cancer and evaluate its role in the development of the disease. Our findings revealed a significant decrease in TRIM3 mRNA and protein levels in ovarian cancer tissues and cells when compared to normal ovarian epithelial tissues and cells. Furthermore, we observed a negative correlation between the protein level of TRIM3 and the FIGO stage, as well as a positive correlation with the survival of ovarian cancer patients. Using gain and loss of function experiments, we demonstrated that TRIM3 can inhibit cell proliferation, migration and invasion of the ovarian cancer cells in vitro, as well as suppress tumor growth in vivo. Mechanistic studies showed that TRIM3 interacts with lactate dehydrogenase A, a key enzyme in the glycolytic pathway, through its B-box and coiled-coil domains and induces its ubiquitination and proteasomal degradation, leading to the inhibition of glycolytic ability in ovarian cancer cells. RNA-sequencing analysis revealed significant alterations in the phosphatidylinositol signaling pathways upon TRIM3 overexpression. Additionally, overexpression of TRIM3 inhibited the phosphorylation of AKT. In conclusion, our study demonstrated that TRIM3 exerts a tumor-suppressive effect in ovarian cancer, at least partially, by downregulating LDHA and inhibiting the AKT signaling pathway, and thus leading to the inhibition of glycolysis and limiting the growth of ovarian cancer cells.
Collapse
Affiliation(s)
- Yu Cong
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Xin Cui
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Yaqian Shi
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Xinxing Pan
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Ke Huang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Zhe Geng
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Pengfei Xu
- Nanjing Maternal and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, 210004, Jiangsu, China
| | - Lili Ge
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Jin Zhu
- Department of Epidemiology and Microbiology, Huadong Medical Institute of Biotechniques, Nanjing, 210002, Jiangsu, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China.
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China.
| |
Collapse
|
27
|
Liu Y, Wang Y, Wang J, Wang X, Chen L, Han T, Lian H, Gan M, Wang J. Fangchinoline suppresses hepatocellular carcinoma by regulating ROS accumulation via the TRIM7/Nrf2 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156143. [PMID: 39461200 DOI: 10.1016/j.phymed.2024.156143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/30/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Dysregulation of redox homeostasis is associated with developing hepatocellular carcinoma (HCC). Oxidative stress (OS) is distinguished by the accumulation of ROS, which plays a variety of roles in cancer pathology. Fangchinoline (FAN), a bis-benzylisoquinoline alkaloid, has anti-cancer pharmacological activity. However, the regulatory mechanism of FAN on OS and whether it can inhibit HCC by mediating OS are still unclear. HYPOTHESIS/PURPOSE This paper aims to explore the effectiveness of FAN in preventing HCC via regulating OS and identify the underlying molecular mechanisms. METHODS We used the primary HCC mouse model and hepatoma cell line to explore the suppressive effect of FAN on hepatocarcinogenesis. To study the role of ROS in the anti-hepatocarcinoma effect of FAN in cell model and mouse model. The mechanism of FAN-induced nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation was studied through various techniques, including generation of Nrf2 and tripartite motif containing 7 (TRIM7) gene overexpressing or knockdown cell model, co-immunoprecipitation, immunohistochemistry and subcutaneous tumor xenograft models constructed by the stable TRIM7-overexpression HLE cells, etc. RESULTS: We showed that FAN significantly inhibited cell proliferation and hepatocarcinogenesis in HCC cells and primary HCC mouse model. The FAN-induced mitochondrial dysfunction promoted ROS accumulation, and using N-Acetylcysteine to clear ROS reversed the anti-HCC effects of FAN. We observed that FAN is capable of activating the Nrf2 pathway. This effect was thought to be due to the fact that, in response to the FAN-induced OS, the cancer cells created a feedback loop to stable Nrf2 via depressing the K48-linkage ubiquitination of it, which was caused by reduced binding of kelch-like ECH-associated protein 1 (Keap1) and Nrf2 and elevated TRIM7 expression. Indeed, overexpression of TRIM7 suppressed the anti-hepatocarcinoma effect of FAN. CONCLUSION The study determines the anti-liver cancer effect of FAN and first describes the positive regulatory effect of TRIM7 on Nrf2 signaling. We reveal that TRIM7/Nrf2 signaling served as a target of FAN-induced ROS accumulation in HCC, which helps to clarify the mechanism of action of FAN against HCC and provides a theoretical basis for FAN as an anti-cancer drug.
Collapse
Affiliation(s)
- Yange Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, China.
| | - Yawen Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Juan Wang
- School of Life Sciences, Liaoning University, Shenyang, Liaoning, 110036, China
| | - Xingxing Wang
- School of Life Sciences, Liaoning University, Shenyang, Liaoning, 110036, China
| | - Luoting Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hang Lian
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Mingxi Gan
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jianbin Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
28
|
Tan Y, Li J, Zhang S, Zhang Y, Zhuo Z, Ma X, Yin Y, Jiang Y, Cong Y, Meng G. Cryo-EM structure of PML RBCC dimer reveals CC-mediated octopus-like nuclear body assembly mechanism. Cell Discov 2024; 10:118. [PMID: 39587079 PMCID: PMC11589706 DOI: 10.1038/s41421-024-00735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/12/2024] [Indexed: 11/27/2024] Open
Abstract
Promyelocytic leukemia protein (PML) nuclear bodies (NBs) are essential in regulating tumor suppression, antiviral response, inflammation, metabolism, aging, and other important life processes. The re-assembly of PML NBs might lead to an ~100% cure of acute promyelocytic leukemia. However, until now, the molecular mechanism underpinning PML NB biogenesis remains elusive due to the lack of structural information. In this study, we present the cryo-electron microscopy (cryo-EM) structure of the PML dimer at an overall resolution of 5.3 Å, encompassing the RING, B-box1/2 and part of the coiled-coil (RBCC) domains. The integrated approach, combining crosslinking and mass spectrometry (XL-MS) and functional analyses, enabled us to observe a unique folding event within the RBCC domains. The RING and B-box1/2 domains fold around the α3 helix, and the α6 helix serves as a pivotal interface for PML dimerization. More importantly, further characterizations of the cryo-EM structure in conjugation with AlphaFold2 prediction, XL-MS, and NB formation assays, help unveil an unprecedented octopus-like mechanism in NB assembly, wherein each CC helix of a PML dimer (PML dimer A) interacts with a CC helix from a neighboring PML dimer (PML dimer B) in an anti-parallel configuration, ultimately leading to the formation of a 2 µm membrane-less subcellular organelle.
Collapse
Affiliation(s)
- Yangxia Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Li
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiyan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yonglei Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhiyi Zhuo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaodan Ma
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yanling Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yao Cong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
29
|
Ibeh N, Kusuma P, Crenna Darusallam C, Malik SG, Sudoyo H, McCarthy DJ, Gallego Romero I. Profiling genetically driven alternative splicing across the Indonesian archipelago. Am J Hum Genet 2024; 111:2458-2477. [PMID: 39383868 PMCID: PMC11568790 DOI: 10.1016/j.ajhg.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024] Open
Abstract
One of the regulatory mechanisms influencing the functional capacity of genes is alternative splicing (AS). Previous studies exploring the splicing landscape of human tissues have shown that AS has contributed to human biology, especially in disease progression and the immune response. Nonetheless, this phenomenon remains poorly characterized across human populations, and it is unclear how genetic and environmental variation contribute to AS. Here, we examine a set of 115 Indonesian samples from three traditional island populations spanning the genetic ancestry cline that characterizes Island Southeast Asia. We conduct a global AS analysis between islands to ascertain the degree of functionally significant AS events and their consequences. Using an event-based statistical model, we detected over 1,500 significant differential AS events across all comparisons. Additionally, we identify over 6,000 genetic variants associated with changes in splicing (splicing quantitative trait loci [sQTLs]), some of which are driven by Papuan-like genetic ancestry, and only show partial overlap with other publicly available sQTL datasets derived from other populations. Computational predictions of RNA binding activity reveal that a fraction of these sQTLs directly modulate the binding propensity of proteins involved in the splicing regulation of immune genes. Overall, these results contribute toward elucidating the role of genetic variation in shaping gene regulation in one of the most diverse regions in the world.
Collapse
Affiliation(s)
- Neke Ibeh
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics and Cellular Genomics, St Vincents Institute of Medical Research, Fitzroy, VIC 3065, Australia; Human Genomics and Evolution, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Pradiptajati Kusuma
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Chelzie Crenna Darusallam
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Safarina G Malik
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Herawati Sudoyo
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Davis J McCarthy
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics and Cellular Genomics, St Vincents Institute of Medical Research, Fitzroy, VIC 3065, Australia; School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Irene Gallego Romero
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Human Genomics and Evolution, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia.
| |
Collapse
|
30
|
Buggiani J, Meinnel T, Giglione C, Frottin F. Advances in nuclear proteostasis of metazoans. Biochimie 2024; 226:148-164. [PMID: 38642824 DOI: 10.1016/j.biochi.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
The proteostasis network and associated protein quality control (PQC) mechanisms ensure proteome functionality and are essential for cell survival. A distinctive feature of eukaryotic cells is their high degree of compartmentalization, requiring specific and adapted proteostasis networks for each compartment. The nucleus, essential for maintaining the integrity of genetic information and gene transcription, is one such compartment. While PQC mechanisms have been investigated for decades in the cytoplasm and the endoplasmic reticulum, our knowledge of nuclear PQC pathways is only emerging. Recent developments in the field have underscored the importance of spatially managing aberrant proteins within the nucleus. Upon proteotoxic stress, misfolded proteins and PQC effectors accumulate in various nuclear membrane-less organelles. Beyond bringing together effectors and substrates, the biophysical properties of these organelles allow novel PQC functions. In this review, we explore the specificity of the nuclear compartment, the effectors of the nuclear proteostasis network, and the PQC roles of nuclear membrane-less organelles in metazoans.
Collapse
Affiliation(s)
- Julia Buggiani
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Frédéric Frottin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| |
Collapse
|
31
|
Bayat M, Golestani S, Motlaghzadeh S, Bannazadeh Baghi H, Lalehzadeh A, Sadri Nahand J. War or peace: Viruses and metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189179. [PMID: 39299491 DOI: 10.1016/j.bbcan.2024.189179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Metastasis, the dissemination of malignant cells from a primary tumor to secondary sites, poses a catastrophic burden to cancer treatment and is the predominant cause of mortality in cancer patients. Metastasis as one of the main aspects of cancer progression could be strongly under the influence of viral infections. In fact, viruses have been central to modern cancer research and are associated with a great number of cancer cases. Viral-encoded elements are involved in modulating essential pathways or specific targets that are implicated in different stages of metastasis. Considering the continuous emergence of new viruses and the establishment of their contribution to cancer progression, the warfare between viruses and cancer appears to be endless. Here we aimed to review the critical mechanism and pathways involved in cancer metastasis and the influence of viral machinery and various routes that viruses adopt to manipulate those pathways for their benefit.
Collapse
Affiliation(s)
- Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Golestani
- Department of ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Motlaghzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aidin Lalehzadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Yan M, Luo X, Han H, Qiu J, Ye Q, Zhang L, Wang Y. ROCK2 increases drug resistance in acute myeloid leukemia via metabolic reprogramming and MAPK/PI3K/AKT signaling. Int Immunopharmacol 2024; 140:112897. [PMID: 39126734 DOI: 10.1016/j.intimp.2024.112897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Rho-associated coiled-coil kinase 2 (ROCK2) is classified as a member of the serine/threonine protein kinase family and has been identified as a key driver of the development of various forms of cancer. The cause of ROCK2's impact on acute myeloid leukemia (AML) is still unknown. We found that ROCK2 expression was higher in AML patients, leading to lower complete response rates and worse overall survival. Additionally, ROCK2 expression was elevated in the doxorubicin-resistant leukemia cell line HL-60/ADM when compared to their individual parent cells. Moreover, the suppression or inhibition of ROCK2 leads to enhanced drug sensitivity in both AML cell lines and primary AML specimens, along with a notable decrease in downstream signaling pathways. Furthermore, the suppression of ROCK2 caused disruption of cellular energy production pathways by directly affecting the functionality of proteins within the mitochondrial electron transport chain. Finally, we discovered that TRIM26, a specific E3 ligase, is capable of ubiquitylating ROCK2, and the upregulation of TRIM26 within HL-60/ADM cells resulted in heightened sensitivity to the drug and reduced resistance. Thus, our study presents a new strategy for overcoming drug resistance in AML through targeting ROCK2/AKT/MAPK signaling pathway.
Collapse
Affiliation(s)
- Muxia Yan
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xin Luo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Hong Han
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Jiachun Qiu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Ye
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Yiqian Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
33
|
Xia T, Meng L, Xu G, Sun H, Chen H. TRIM33 promotes glycolysis through regulating P53 K48-linked ubiquitination to promote esophageal squamous cell carcinoma growth. Cell Death Dis 2024; 15:740. [PMID: 39389957 PMCID: PMC11467421 DOI: 10.1038/s41419-024-07137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common fatal malignant tumor of the digestive tract; however, its pathogenic mechanism is unknown and lacks specific molecular diagnosis and treatment. Therefore, it is particularly important to identify new tumor biomarkers to enhance the early diagnosis and molecular-targeted therapy of ESCC. Here, we found that the E3 ubiquitin ligase Tripartitemotif-containing33 (TRIM33) is highly expressed in ESCC tissues and cell lines, and is associated with adverse clinical outcomes. We determined that TRIM33 drives aerobic glycolysis to promote tumor growth in vivo and in vitro. In terms of mechanism, TRIM33 binds to p53 to inhibit its stability and promote the expression of downstream glycolysis target genes GLUT1, HK2, PKM2, and LDHA. In addition, TRIM33 promotes the polyubiquitination of P53 K48-linked and proteasome degradation. Further studies have shown that the K351 site of P53 is the key site mediating the ubiquitination of P53 K48-linked to promote aerobic glycolysis in ESCC and tumor cell growth. Our results reveal that the TRIM33-P53 signal axis regulates glycolysis during ESCC and may provide a new perspective for the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Tian Xia
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Lian Meng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Guixuan Xu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Hao Sun
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Hao Chen
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China.
- Department of Critical Care Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, 518052, China.
| |
Collapse
|
34
|
Xue C, Meng H, Niu W, Li M, Wei J, Chen S, Zheng L, Duan Y, Deng H, Tang F, Fan S, Tan M, Xiong W, Zhou M. TRIM28 promotes tumor growth and metastasis in breast cancer by targeting the BRD7 protein for ubiquitination and degradation. Cell Oncol (Dordr) 2024; 47:1973-1993. [PMID: 39222175 DOI: 10.1007/s13402-024-00981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE Bromodomain-containing protein 7 (BRD7) is downregulated and functions as a tumor suppressor in many types of cancers including breast cancer, and the dysregulation of BRD7 expression is closely related to the development and progression of breast cancer. Whereas little attention has been focused on the regulation of BRD7 protein levels in breast cancer, which needs to be further elucidated. METHODS The protein stability of BRD7 in breast cancer cells and BRD7 protein level in breast cancer tissues was examined by Western Blotting. The potential E3 ubiquitin ligase proteins that interact with the BRD7 was screened by coimmunoprecipitation combined with mass spectrometry analysis in MDA-MB-231 cells. We proved the interaction between BRD7 and tripartite motif containing 28 (TRIM28) through Co-Immunoprecipitation (Co-IP) and immunofluorescence assays. Co-IP and ubiquitination assay were used to explore the specific binding domain between BRD7 and TRIM28 and the ubiquitination site of BRD7. The effects of TRIM28 on the BRD7 protein stability and ubiquitination level was investigated by qPCR, Western Blot and Co-IP assay. CCK-8 and clone formation assays were carried out to assess the effect of TRIM28 on proliferation ability of breast cancer ells. Transwell assay and wound healing assay were used to investigate the effect of TRIM28 on breast cancer cell invasion and migration. Flow cytometry was used to detect the effect of TRIM28 on cell cycle and apoptosis of breast cancer cells. In addition, we confirmed effect of TRIM28 on tumor growth and metastasis by xenograft and metastatic mouse models. We designed some recovery assays to explore the role of recovery BRD7 in TRIM28-mediated promotion of malignant progression of breast cancer in vivo and in vitro. Finally, the clinical significance of TRIM28 and BRD7 was proved by immunohistochemistry. RESULTS In this study, we demonstrated that BRD7 was an unstable protein and might be regulated by ubiquitination in breast cancer; furthermore, we found that the Coiled-Coil region of TRIM28 could directly bind to N-terminal of BRD7, and TRIM28 mediates BRD7 ubiquitination and degradation dependent on K21 by acting as a potential E3 ubiquitin ligase. Moreover, TRIM28 promoted cell proliferation, migration, invasion, xenograft tumor growth and metastasis, thus playing an oncogenic role in breast cancer. Furthermore, the restoration of BRD7 expression in breast cancer significantly reversed the promotional effects of TRIM28 on malignant progression both in vitro and in vivo. In addition, TRIM28 was highly expressed in the biopsy tissues of breast cancer, and its expression was negatively correlated with BRD7 expression and positively correlated with TNM stage and poor prognosis of BC patients. CONCLUSIONS Our findings provide a novel mechanism by which TRIM28 significantly facilitates BRD7 ubiquitination and degradation, thus promoting breast cancer malignant progression. Targeting the TRIM28/BRD7 axis might be a novel potential strategy for the clinical diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Hanbing Meng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Weihong Niu
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
| | - Faqing Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ming Tan
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China.
| |
Collapse
|
35
|
Zhang M, Sun J, Zhang F, Zhang Y, Wu M, Kong W, Guan X, Liu M. Molecular mechanism of TRIM32 in antiviral immunity in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109765. [PMID: 39004296 DOI: 10.1016/j.fsi.2024.109765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
TRIM family proteins are widely found in multicellular organisms and are involved in a wide range of life activities, and also act as crucial regulators in the antiviral natural immune response. This study aimed to reveal the molecular mechanism of rainbow trout TRIM protein in the anti-IHNV process. The results demonstrated that 99.1 % homology between the rainbow trout and the chinook salmon (Oncorhynchus tshawytscha) TRIM32. When rainbow trout were infected with IHNV, the TRIM32 was highly expressed in the gill, spleen, kidney and blood. Meanwhile, rainbow trout TRIM32 has E3 ubiquitin ligase activity and undergoes K29-linked polyubiquitination modifications dependent on the RING structural domain was determined by immunoprecipitation. TRIM32 could interact with the NV protein of IHNV and degrade NV protein through the ubiquitin-proteasome pathway, and was also able to activate NF-κB transcription, thereby inhibiting the replication of IHNV. Moreover, the results of the animal studies showed that the survival rate of rainbow trout overexpressing TRIM32 was 70.2 % which was significantly higher than that of the control group, and stimulating the body to produce high levels of IgM when the host was infected with the virus. In addition, TRIM32 can activate the NF-κB signalling pathway and participate in the antiviral natural immune response. The results of this study will help us to understand the molecular mechanism of TRIM protein resistance in rainbow trout, and provide new ideas for disease resistance breeding, vaccine development and immune formulation development in rainbow trout.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China
| | - Jinhui Sun
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China
| | - Futing Zhang
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China
| | - Yingrui Zhang
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China
| | - Mian Wu
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China
| | - Weiliang Kong
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China
| | - Xueting Guan
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China.
| | - Min Liu
- College of Animal Science and Technology, Northeast Agicultural University, Harbin, 150030, China.
| |
Collapse
|
36
|
Luo Q, Dai T, Dong Y, Liang J, Xu Z, Sun Z. N6-methyladenosine-modified TRIM37 augments sunitinib resistance by promoting the ubiquitin-degradation of SmARCC2 and activating the Wnt signaling pathway in renal cell carcinoma. Cell Death Discov 2024; 10:418. [PMID: 39349442 PMCID: PMC11442835 DOI: 10.1038/s41420-024-02187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Tripartite motif-containing 37 (TRIM37) is reportedly a key member of the superfamily of TRIM proteins. Emerging evidence underscores the close association between dysregulated TRIM37 expression and the progression of various human malignancies. However, the precise biological functions and regulatory mechanisms of TRIM37 remain elusive. This study aimed to elucidate the impact of TRIM37 on the chemotherapy sensitivity of renal cell carcinoma (RCC) and uncover its specific molecular regulatory role. Using RT-qPCR and western blot assays, we assessed TRIM37 expression in both RCC patients and RCC cells. Through in vitro and in vivo experiments, we investigated the effects of TRIM37 silencing and overexpression on RCC cell proliferation, stemness capacity, and chemotherapy sensitivity using colony formation and sphere formation assays. Additionally, a co-immunoprecipitation (Co-IP) experiment was conducted to explore putative interacting proteins. Our results revealed elevated TRIM37 expression in both RCC patient tumor tissues and RCC cells. Functional experiments consistently demonstrated that TRIM37 silencing reduced proliferation and stemness capacity while enhancing chemotherapy sensitivity in RCC cells. Furthermore, we discovered that TRIM37 mediates the degradation of SMARCC2 via ubiquitin-proteasome pathways, thereby further activating the Wnt signaling pathway. In conclusion, this study not only sheds light on the biological role of TRIM37 in RCC progression but also identifies a potential molecular target for therapeutic intervention in RCC patients.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Ting Dai
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Yihong Dong
- Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Jianpeng Liang
- The First Peoples Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Zhipeng Xu
- Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Zhixia Sun
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China.
| |
Collapse
|
37
|
Hu K, Luo Y, Miao P, Zhao L, Zhao B, Shi XJ, Liu HM. Discovery of Novel [1,2,4]Triazolo[1,5- a]pyrimidine Derivatives as Novel Potent S-Phase Kinase-Associated Protein 2 (SKP2) Inhibitors for the Treatment of Cancer. J Med Chem 2024; 67:16435-16454. [PMID: 39285177 DOI: 10.1021/acs.jmedchem.4c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Skp1-CUL1-ROC1-F-box E3 ubiquitin ligases' main component S-phase kinase-associated protein 2 (Skp2) is responsible for specifically recognizing ubiquitination-modified substrates to be degraded such as p27 and p21 in the case of binding with adaptor protein Cks1. Pharmacological inhibition of Skp2 has exhibited promising antitumor activity. Herein, we present the design and optimization of a series of [1,2,4]triazolo[1,5-a]pyrimidine-based small molecules targeting Skp2. Among them, E35 demonstrated excellent inhibitory activities against the binding of Skp2-Cks1. In addition, compound E35 significantly inhibited colony formation and migration, as well as arrested the cell cycle at the S-phase. Mechanistically, compound E35 markedly decreased the expression of Skp2, as well as increased the expression of its substrates p21 and p27. Furthermore, compound E35 showed an obvious inhibitory effect on MGC-803 xenograft mice without obvious toxicity. All of these results suggest that compound E35 might be a valuable lead compound for antitumor agents targeting Skp2.
Collapse
Affiliation(s)
- Kaizhao Hu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongqiang Luo
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peipei Miao
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Lidan Zhao
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Bing Zhao
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Jing Shi
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Hong-Min Liu
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
38
|
Wu T, Zhou H, Wang L, Tan J, Gao W, Wu Y, Zhao D, Shen C, Zheng B, Huang X, Shao B. TRIM59 is required for mouse GC-1 cell maintenance through modulating the ubiquitination of AXIN1. Heliyon 2024; 10:e36744. [PMID: 39263074 PMCID: PMC11387378 DOI: 10.1016/j.heliyon.2024.e36744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Tripartite motif-containing protein 59 (TRIM59) is a biomarker for multiple tumors with crucial roles. However, the specific role of TRIM59 in germ cells remains largely unknown. Here, we investigated the effects and underlying regulatory mechanisms of TRIM59 on germ cells using the mouse spermatogonial cell line GC-1. Our results demonstrated that TRIM59 promoted proliferation and inhibited apoptosis of GC-1 cells. Mechanistically, TRIM59 maintained GC-1 cell behaviors through ubiquitination of AXIN1 to activate β-catenin signaling. Furthermore, activation of β-catenin signaling reversed the effects mediated by Trim59 knockdown in GC-1 cells. Collectively, our study revealed a major role and regulatory mechanism of TRIM59 in GC-1 cells, which sheds new light on the molecular pathogenesis of defects in spermatogenesis and may provide therapeutic targets for treatment of male infertility.
Collapse
Affiliation(s)
- Tiantian Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Lulu Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Jianxin Tan
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Wenxin Gao
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Dan Zhao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
| | - Xiaoyan Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Binbin Shao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| |
Collapse
|
39
|
Ji W, Zhang W, Zhang X, Ke Y. TRIM33 enhances the ubiquitination of TFRC to enhance the susceptibility of liver cancer cells to ferroptosis. Cell Signal 2024; 121:111268. [PMID: 38909931 DOI: 10.1016/j.cellsig.2024.111268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignancy, and ferroptosis is a novel form of cell death driven by excessive lipid peroxidation. In recent years, ferroptosis has been widely utilized in cancer treatment, and the ubiquitination modification system has been recognized to play a crucial role in tumorigenesis and metastasis. Increasing evidence suggests that ubiquitin regulates ferroptosis-related substrates involved in this process. However, the precise mechanism of utilizing ubiquitination modification to regulate ferroptosis for HCC treatment remains unclear. METHODS In this study, we detected the expression of TRIM33 in HCC using immunohistochemistry and western blotting techniques. The functional role of TRIM33 was verified through both in vitro and in vivo experiments. To evaluate the level of ferroptosis, mitochondrial superoxide levels, MDA levels, Fe2+ levels, and cell viability were assessed. Downstream substrates of TRIM33 were screened and confirmed via immunoprecipitation, immunofluorescence staining, and ubiquitination modification experiments. RESULTS Our findings demonstrate that TRIM33 inhibits the growth and metastasis of HCC cells both in vitro and in vivo while promoting their susceptibility to ferroptosis. Mechanistically speaking, TRIM33 induces cellular ferroptosis through E3 ligase-dependent degradation of TFRC-a known inhibitor of this process-thus elucidating the specific type and site at which TFRC undergoes modification by TRIM33. CONCLUSION In summary, our study reveals an important role for TRIM33 in HCC treatment while providing mechanistic support for its function. Additionally highlighted is the significance of ubiquitination modification leading to TFRC degradation-an insight that may prove valuable for future targeted therapies.
Collapse
Affiliation(s)
- Wenjing Ji
- Department of Gastroenterology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Weibin Zhang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xin Zhang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yue Ke
- Department of Gastroenterology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
40
|
Bian Z, Xu C, Wang X, Zhang B, Xiao Y, Liu L, Zhao S, Huang N, Yang F, Zhang Y, Xue S, Wang X, Pan Q, Sun F. TRIM65/NF2/YAP1 Signaling Coordinately Orchestrates Metabolic and Immune Advantages in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402578. [PMID: 39005234 PMCID: PMC11425264 DOI: 10.1002/advs.202402578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Indexed: 07/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide. Significantly activated uridine nucleotide and fatty acid metabolism in HCC cells promote malignant proliferation and immune evasion. Herein, it is demonstrated that the tripartite motif 65 (TRIM65) E3 ubiquitin-protein ligase, O-GlcNAcylated via O-GlcNAcylation transferase, is highly expressed in HCC and facilitated metabolic remodeling to promote the accumulation of products related to uracil metabolism and palmitic acid, driving the progression of HCC. Mechanistically, it is showed that TRIM65 mediates ubiquitylation at the K44 residue of neurofibromatosis type 2 (NF2), the key protein upstream of classical Hippo signaling. Accelerated NF2 degradation inhibits yes-associated protein 1 phosphorylation, inducing aberrant activation of related metabolic enzyme transcription, and orchestrating metabolic and immune advantages. In conclusion, these results reveal a critical role for the TRIM family molecule TRIM65 in supporting HCC cell survival and highlight the therapeutic potential of targeting its E3 ligase activity to alter the regulation of proteasomal degradation.
Collapse
Affiliation(s)
- Zhixuan Bian
- Department of Laboratory MedicineShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Faculty of Medical Laboratory ScienceCollege of Health Science and TechnologySchool of MedicineShanghai jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for PaediatricsShanghai200127China
| | - Chang Xu
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Xiaoying Wang
- Department of liver surgeryZhongshan hospitalFudan UniversityShanghai200030China
| | - Baohua Zhang
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Yixuan Xiao
- Department of Laboratory MedicineShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Li Liu
- Department of Laboratory MedicineShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Shasha Zhao
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Nan Huang
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Fengjiao Yang
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Yue Zhang
- Department of Central LaboratoryShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Shaobo Xue
- Department of Central LaboratoryShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Xiongjun Wang
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| | - Qiuhui Pan
- Department of Laboratory MedicineShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Faculty of Medical Laboratory ScienceCollege of Health Science and TechnologySchool of MedicineShanghai jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for PaediatricsShanghai200127China
| | - Fenyong Sun
- Department of Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072China
| |
Collapse
|
41
|
Xu C, Chen G, Yu B, Sun B, Zhang Y, Zhang M, Yang Y, Xiao Y, Cheng S, Li Y, Feng H. TRIM24 Cooperates with Ras Mutation to Drive Glioma Progression through snoRNA Recruitment of PHAX and DNA-PKcs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400023. [PMID: 38828688 PMCID: PMC11304257 DOI: 10.1002/advs.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/16/2024] [Indexed: 06/05/2024]
Abstract
The factors driving glioma progression remain poorly understood. Here, the epigenetic regulator TRIM24 is identified as a driver of glioma progression, where TRIM24 overexpression promotes HRasV12 anaplastic astrocytoma (AA) progression into epithelioid GBM (Ep-GBM)-like tumors. Co-transfection of TRIM24 with HRasV12 also induces Ep-GBM-like transformation of human neural stem cells (hNSCs) with tumor protein p53 gene (TP53) knockdown. Furthermore, TRIM24 is highly expressed in clinical Ep-GBM specimens. Using single-cell RNA-sequencing (scRNA-Seq), the authors show that TRIM24 overexpression impacts both intratumoral heterogeneity and the tumor microenvironment. Mechanically, HRasV12 activates phosphorylated adaptor for RNA export (PHAX) and upregulates U3 small nucleolar RNAs (U3 snoRNAs) to recruit Ku-dependent DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Overexpressed TRIM24 is also recruited by PHAX to U3 snoRNAs, thereby facilitating DNA-PKcs phosphorylation of TRIM24 at S767/768 residues. Phosphorylated TRIM24 induces epigenome and transcription factor network reprogramming and promotes Ep-GBM-like transformation. Targeting DNA-PKcs with the small molecule inhibitor NU7441 synergizes with temozolomide to reduce Ep-GBM tumorigenicity and prolong animal survival. These findings provide new insights into the epigenetic regulation of Ep-GBM-like transformation and suggest a potential therapeutic strategy for patients with Ep-GBM.
Collapse
Affiliation(s)
- Chenxin Xu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Guoyu Chen
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Bo Yu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Bowen Sun
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yingwen Zhang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Mingda Zhang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yi Yang
- Pediatric Translational Medicine InstituteDepartment of Hematology & OncologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNational Health Committee Key Laboratory of Pediatric Hematology & OncologyShanghai200127China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Shi‐Yuan Cheng
- Department of NeurologyLou and Jean Malnati Brain Tumor InstituteThe Robert H. Lurie Comprehensive Cancer CenterSimpson Querrey Institute for EpigeneticsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Yanxin Li
- Pediatric Translational Medicine InstituteDepartment of Hematology & OncologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNational Health Committee Key Laboratory of Pediatric Hematology & OncologyShanghai200127China
| | - Haizhong Feng
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
42
|
Sun C, Zhang W, Liu H, Ding Y, Guo J, Xiong S, Zhai Z, Hu W. Identification of a novel lactylation-related gene signature predicts the prognosis of multiple myeloma and experiment verification. Sci Rep 2024; 14:15142. [PMID: 38956267 PMCID: PMC11219856 DOI: 10.1038/s41598-024-65937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy with poor survival. Accumulating evidence reveals that lactylation modification plays a vital role in tumorigenesis. However, research on lactylation-related genes (LRGs) in predicting the prognosis of MM remains limited. Differentially expressed LRGs (DELRGs) between MM and normal samples were investigated from the Gene Expression Omnibus database. Univariate Cox regression and LASSO Cox regression analysis were applied to construct gene signature associated with overall survival. The signature was validated in two external datasets. A nomogram was further constructed and evaluated. Additionally, Enrichment analysis, immune analysis, and drug chemosensitivity analysis between the two groups were investigated. qPCR and immunofluorescence staining were performed to validate the expression and localization of PFN1. CCK-8 and flow cytometry were performed to validate biological function. A total of 9 LRGs (TRIM28, PPIA, SOD1, RRP1B, IARS2, RB1, PFN1, PRCC, and FABP5) were selected to establish the prognostic signature. Kaplan-Meier survival curves showed that high-risk group patients had a remarkably worse prognosis in the training and validation cohorts. A nomogram was constructed based on LRGs signature and clinical characteristics, and showed excellent predictive power by calibration curve and C-index. Moreover, biological pathways, immunologic status, as well as sensitivity to chemotherapy drugs were different between high- and low-risk groups. Additionally, the hub gene PFN1 is highly expressed in MM, knocking down PFN1 induces cell cycle arrest, suppresses cell proliferation and promotes cell apoptosis. In conclusion, our study revealed that LRGs signature is a promising biomarker for MM that can effectively early distinguish high-risk patients and predict prognosis.
Collapse
Affiliation(s)
- Cheng Sun
- College of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wanqiu Zhang
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hao Liu
- College of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yangyang Ding
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jingjing Guo
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Shudao Xiong
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zhimin Zhai
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Wei Hu
- College of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
43
|
Peng Y, Qian H, Xu WP, Xiao MC, Ding CH, Liu F, Hong HY, Liu SQ, Zhang X, Xie WF. Tripartite motif 8 promotes the progression of hepatocellular carcinoma via mediating ubiquitination of HNF1α. Cell Death Dis 2024; 15:416. [PMID: 38879600 PMCID: PMC11180176 DOI: 10.1038/s41419-024-06819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024]
Abstract
Tripartite motif 8 (TRIM8) is an E3 ligase that plays dual roles in various tumor types. The biological effects and underlying mechanism of TRIM8 in hepatocellular carcinoma (HCC) remain unknown. Hepatocyte nuclear factor 1α (HNF1α) is a key transcriptional factor that plays a significant role in regulating hepatocyte differentiation and liver function. The reduced expression of HNF1α is a critical event in the development of HCC, but the underlying mechanism for its degradation remains elusive. In this study, we discovered that the expression of TRIM8 was upregulated in HCC tissues, and was positively correlated with aggressive tumor behavior of HCC and shorter survival of HCC patients. Overexpression of TRIM8 promoted the proliferation, colony formation, invasion, and migration of HCC cells, while TRIM8 knockdown or knockout exerted the opposite effects. RNA sequencing revealed that TRIM8 knockout suppresses several cancer-related pathways, including Wnt/β-catenin and TGF-β signaling in HepG2 cells. TRIM8 directly interacts with HNF1α, promoting its degradation by catalyzing polyubiquitination on lysine 197 in HCC cells. Moreover, the cancer-promoting effects of TRIM8 in HCC were abolished by the HNF1α-K197R mutant in vitro and in vivo. These data demonstrated that TRIM8 plays an oncogenic role in HCC progression through mediating the ubiquitination of HNF1α and promoting its protein degradation, and suggests targeting TRIM8-HNF1α may provide a promising therapeutic strategy of HCC.
Collapse
Affiliation(s)
- Yu Peng
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hui Qian
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wen-Ping Xu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Meng-Chao Xiao
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen-Hong Ding
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fang Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huan-Yu Hong
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
44
|
Huang W, Hu X, He X, Pan D, Huang Z, Gu Z, Huang G, Wang P, Cui C, Fan Y. TRIM29 facilitates gemcitabine resistance via MEK/ERK pathway and is modulated by circRPS29/miR-770-5p axis in PDAC. Drug Resist Updat 2024; 74:101079. [PMID: 38518727 DOI: 10.1016/j.drup.2024.101079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
AIMS Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Chemotherapy based on gemcitabine (GEM) remains the first-line drug for patients with advanced PDAC. However, GEM resistance impairs its therapeutic effectiveness. Therefore, identifying effective therapeutic targets are urgently needed to overcome GEM resistance. METHODS The clinical significance of Tripartite Motif Containing 29 (TRIM29) was identified by exploring GEO datasets and TCGA database and its potential biological functions were predicted by GSEA analysis. The regulatory axis was established by bioinformatics analysis and validated by mechanical experiments. Then, in vitro and in vivo assays were performed to validate the roles of TRIM29 in PDAC GEM resistance. RESULTS High TRIM29 expression was associated with poor prognosis of PDAC and functional experiments demonstrated that TRIM29 promoted GEM resistance in PDAC GEM-resistant (GR) cells. Furthermore, we revealed that circRPS29 promoted TRIM29 expression via competitive interaction with miR-770-5p and then activated MEK/ERK signaling pathway. Additionally, both in vitro and in vivo functional experiments demonstrated that circRPS29/miR-770-5p/TRIM29 axis promoted PDAC GEM resistance via activating MEK/ERK signaling pathway. CONCLUSION Our results identify the significance of the signaling axis, circRPS29/miR-770-5p/TRIM29-MEK/ERK, in PDAC GEM resistance, which will provide novel therapeutic targets for PDAC treatment.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- Drug Resistance, Neoplasm/genetics
- Gemcitabine
- Gene Expression Regulation, Neoplastic/drug effects
- MAP Kinase Signaling System/drug effects
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Prognosis
- RNA, Circular/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Wenjie Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510280, China; Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China
| | - Xiaojun Hu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China
| | - Xiang He
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China
| | - Dongyue Pan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China
| | - Zhaorong Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China
| | - Zhanfeng Gu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China
| | - Guobing Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510120, China.
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510280, China.
| | - Yingfang Fan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
45
|
Teng W, Ling Y, Liu Z, Jiang L, Fu G, Zhou X, Long N, Liu J, Chu L. Advances in the antitumor mechanisms of tripartite motif-containing protein 3. J Cancer Res Clin Oncol 2024; 150:105. [PMID: 38411731 PMCID: PMC10899276 DOI: 10.1007/s00432-024-05632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
The tripartite motif-containing (TRIM) protein family has steadily become a hotspot in tumor-related research. As a member of the E3 ubiquitin ligase family, TRIM is working on many crucial biological processes, including the regulation of tumor cell proliferation, metastasis, apoptosis, and autophagy. Among the diverse TRIM superfamily members, TRIM3 operates via different mechanisms in various types of tumors. This review primarily focuses on the current state of research regarding the antitumor mechanisms of TRIM3 in different cancers. A more in-depth study of TRIM3 may provide new directions for future antitumor treatments. Our review focuses on TRIM3 proteins and cancer. We searched for relevant articles on the mechanisms by which TRIM3 affects tumorigenesis and development from 1997 to 2023 and summarized the latest progress and future directions. Triad-containing motif protein 3 (TRIM3) is an important protein, which plays a key role in the process of tumorigenesis and development. The comprehensive exploration of TRIM3 is anticipated to pave the way for future advancements in antitumor therapy, which is expected to be a new hallmark for cancer detection and a novel target for drug action. TRIM3 is poised to become a significant milestone in cancer detection and a promising focal point for drug intervention. Recent years have witnessed notable progress in research aimed at unraveling the antitumor mechanism of TRIM3, with far-reaching implications for practical tumor diagnosis, treatment protocols, efficacy evaluation, economics, and pharmaceutical utilization.
Collapse
Affiliation(s)
- Wei Teng
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Yuanguo Ling
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Zongwei Liu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Lishi Jiang
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Genyuan Fu
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Xingwang Zhou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Niya Long
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
| | - Jian Liu
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, People's Republic of China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China.
- Department of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Guiyang, Guizhou, China.
| |
Collapse
|
46
|
Jiang M, Wang D, Su N, Lou W, Chen Y, Yang H, Chen C, Xi F, Chen Y, Deng L, Tang X. TRIM65 knockout inhibits the development of HCC by polarization tumor-associated macrophages towards M1 phenotype via JAK1/STAT1 signaling pathway. Int Immunopharmacol 2024; 128:111494. [PMID: 38218012 DOI: 10.1016/j.intimp.2024.111494] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/04/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND & AIMS Tumor-associated macrophages (TAMs) are main components of immune cells in tumor microenvironment (TME), and play a crucial role in tumor progression. Tripartite motif-containing protein 65 (TRIM65) has been associated with tumor progression. However, whether TRIM65 regulate the interaction of tumor cell and TAMs in HCC and the underlying mechanisms remain unknown. In this study, we investigated the role of TRIM65 in TME of HCC and explored its underlying mechanisms. METHODS The relation of TRIM65 expression level with tumor grades, TNM stages, and worse prognosis of HCC patients was evaluated by bioinformatics analysis, as well as immune infiltration level of macrophages. TRIM65 shRNA was transfected into HepG2 cells, and TRIM65 overexpression plasmid was transfected into Huh7 cells, and the effect of TRIM65 on cell growth was examined by EdU assay. The mouse subcutaneous Hep1-6 tumor-bearing model with WT and TRIM65-/- mice was established to study the role of TRIM65 in HCC. Immunohistochemistry staining, Immunofluorescence staining, qRT-PCR and western blot were performed to evaluate the effect of TRIM65 on TAM infiltration, TAM polarization and JAK1/STAT1 signaling pathway. RESULTS Bioinformatics analysis revealed that TRIM65 was upregulated in 16 types of cancer especially in HCC, and high level of TRIM65 was strongly correlated with higher tumor grades, TNM stages, and worse prognosis of patients with HCC as well as immune infiltration level of macrophages (M0, M1, and M2). Moreover, we observed that TRIM65 shRNA-mediated TRIM65 knockdown significantly inhibited the HepG2 cells growth while TRIM65 overexpression highly increased the Huh7 cells growth in vitro. TRIM65 knockout significantly inhibited the tumor growth as well as macrophages polarization towards M2 but promoted macrophages polarization towards M1 in vivo. Mechanistically, the results demonstrate that TRIM65 knockout promoted macrophage M1 polarization in conditioned medium-stimulated peritoneal macrophages and in tumor tissues by activating JAK1/STAT1 signaling pathway. CONCLUSIONS Taken together, our study suggests that tumor cells utilize TRIM65-JAK1/STAT1 axis to inhibit macrophage M1 polarization and promote tumor growth, reveals the role of TRIM65 in TAM-targeting tumor immunotherapy.
Collapse
Affiliation(s)
- Meixiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Dan Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Ning Su
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Weiming Lou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Yinni Chen
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Haiyan Yang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Chen Chen
- School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Feiyang Xi
- The QUEEN MARY School, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Libin Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Xiaoli Tang
- School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
47
|
Park HR, Azzara D, Cohen ED, Boomhower SR, Diwadkar AR, Himes BE, O'Reilly MA, Lu Q. Identification of novel NRF2-dependent genes as regulators of lead and arsenic toxicity in neural progenitor cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132906. [PMID: 37939567 PMCID: PMC10842917 DOI: 10.1016/j.jhazmat.2023.132906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Lead (Pb) and arsenic (As) are prevalent metal contaminants in the environment. Exposures to these metals are associated with impaired neuronal functions and adverse effects on neurodevelopment in children. However, the molecular mechanisms by which Pb and As impair neuronal functions remain poorly understood. Here, we identified F2RL2, TRIM16L, and PANX2 as novel targets of Nuclear factor erythroid 2-related factor 2 (NRF2)-the master transcriptional factor for the oxidative stress response-that are commonly upregulated with both Pb and As in human neural progenitor cells (NPCs). Using a ChIP (Chromatin immunoprecipitation)-qPCR assay, we showed that NRF2 directly binds to the promoter region of F2RL2, TRIM16L, and PANX2 to regulate expression of these genes. We demonstrated that F2RL2, PANX2, and TRIM16L have differential effects on cell death, proliferation, and differentiation of NPCs in both the presence and absence of metal exposures, highlighting their roles in regulating NPC function. Furthermore, the analyses of the transcriptomic data on NPCs derived from autism spectrum disorder (ASD) patients revealed that dysregulation of F2RL2, TRIM16L, and PANX2 was associated with ASD genetic backgrounds and ASD risk genes. Our findings revealed that Pb and As induce a shared NRF2-dependent transcriptional response in NPCs and identified novel genes regulating NPC function. While further in vivo studies are warranted, this study provides a novel mechanism linking metal exposures to NPC function and identifies potential genes of interest in the context of neurodevelopment.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| | - David Azzara
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Ethan D Cohen
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Steven R Boomhower
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Avantika R Diwadkar
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
48
|
Zhang M, Sun J, Shi Y, Zhang F, Li S, Zhao D, Wu G, Li L, Miao Z, Liu M. The antiviral effects of TRIM23 and TRIM32 proteins in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105097. [PMID: 37967780 DOI: 10.1016/j.dci.2023.105097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
TRIM proteins play a crucial antiviral effector role in the innate immune system of vertebrates. In this study, we found that TRIM proteins exhibited the highest expression levels in immune organs such as spleen and kidney during IHNV infection in rainbow trout, meanwhile, we successfully amplified TRIM23 and TRIM32 from diseased rainbow trout and analyzed their gene sequences, revealing that rainbow trout TRIM23 and TRIM32 proteins are closely related to Atlantic salmon and Chinook salmon; In this experiment, the TRIM23 and TRIM32 protein genes were resoundingly constructed as a recombinant plasmids and expressed in CHSE-214 cells. Upon transfected with the recombinant plasmid, followed by viral infection, significant decreasion in the copy numbers of the virus was observed, indicating that the TRIM23 and TRIM32 proteins of rainbow trout play an important role in inhibiting virus replication, with the TRIM32 role being the most pronounced. These results provide a basis for subsequent in-depth study of the antiviral effects of TRIM proteins, and provide new ideas for immune enhancers.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jinhui Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yanxue Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Futing Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuaibo Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Dandan Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guangqing Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Linsong Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhiruo Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
49
|
Yun H, Jeong H, Kim DY, You J, Lee J, Kang D, Koh D, Ryu YS, Bae S, Jin D. Degradation of AZGP1 suppresses apoptosis and facilitates cholangiocarcinoma tumorigenesis via TRIM25. J Cell Mol Med 2024; 28:e18104. [PMID: 38183356 PMCID: PMC10844717 DOI: 10.1111/jcmm.18104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/08/2024] Open
Abstract
Alpha-2-Glycoprotein 1, Zinc-binding (AZGP1, ZAG) is a secreted protein that is synthesized by adipocytes and epithelial cells; it is downregulated in several malignancies such as breast, prostate, liver and lung cancers. However, its function remains unclear in cholangiocarcinoma (CCA). Here, we evaluated the impact AZGP1 in CCA using Gene Expression Omnibus (GEO) and GEPIA. In addition, we analysed AZGP1 expression using quantitative reverse transcription PCR and western blotting. Expression of AZGP1 was nearly deficient in CCA patients and cell lines and was associated with poor prognosis. AZGP1 overexpression upregulated apoptosis markers. Co-immunoprecipitation experiments showed that AZGP1 interacts with tripartite motif-containing protein 25 (TRIM25), and tissue microarray and bioinformatic analysis showed that AZGP1 is negatively correlated with TRIM25 expression in CCA. Thereafter, TRIM25 knockdown led to AZGP1 upregulation and induced cancer cell apoptosis. TRIM25 targets AZGP1 for degradation by catalysing its ubiquitination. AZGP1 overexpression significantly suppressed tumour growth in a xenograft mouse model. This study findings suggest that AZGP1 is a potential therapeutic target or a diagnostic biomarker for treating patients with CCA.
Collapse
Affiliation(s)
- Hyeseon Yun
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
- Department of Pharmacology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Hong‐Rae Jeong
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
| | - Do Yeon Kim
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
- Department of Pharmacology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Ji‐Eun You
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
- Department of Pharmacology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Ji‐U Lee
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
- Department of Pharmacology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Dong‐Hee Kang
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
- Department of Pharmacology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Dong‐In Koh
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
| | - Yea Seong Ryu
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
| | - SeungGeon Bae
- Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
| | - Dong‐Hoon Jin
- Department of Pharmacology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of Convergence Medicine, Asan Institute for Life ScienceAsan Medical CenterSeoulKorea
| |
Collapse
|
50
|
Jiang T, Xia Y, Li Y, Lu C, Lin J, Shen Y, Lv J, Xie L, Gu C, Xu Z, Wang L. TRIM29 promotes antitumor immunity through enhancing IGF2BP1 ubiquitination and subsequent PD-L1 downregulation in gastric cancer. Cancer Lett 2024; 581:216510. [PMID: 38029830 DOI: 10.1016/j.canlet.2023.216510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Tripartite motif-containing protein 29 (TRIM29) is a member of TRIM family protein which has been reported to play a role in the progress of inflammatory and cancer diseases. However, its specific role in gastric cancer (GC) has yet to be fully understood. Here, we investigated the expression of TRIM29 in gastric cancer and its functions in the antitumor immunity. TRIM29 expression was lower in tumor tissues than that in paired normal tissues. Lower expression of TRIM29 was related to aberrant hypermethylation of CpG islands in TRIM29 gene. Comprehensive proteomics and immunoprecipitation analyses identified IGF2BP1 as TRIM29 interactors. TRIM29 interacted with IGF2BP1 and induced its ubiquitination at Lys440 and Lys450 site by K48-mediated linkage for protein degradation. IGF2BP1 promoted PD-L1 mRNA stability and expression in a 3'UTR and m6A-dependent manner. Functionally, TRIM29 enhanced antitumor T-cell immunity in gastric cancer dependent on the IGF2BP1/PD-L1 axis in vivo and in vitro. Clinical correlation analysis revealed that TRIM29 expression in patient samples was associated with CD8+ immune cell infiltration in the GC microenvironment and the overall survival rates of GC patients. Our findings revealed a crucial role of TRIM29 in regulating the antitumor T-cell immunity in GC. We also suggested that the TRIM29/IGF2BP1/PD-L1 axis could be used as a diagnostic and prognostic marker of gastric cancer and a promising target for GC immunotherapy.
Collapse
Affiliation(s)
- Tianlu Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yikai Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chao Gu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|