1
|
Ahmadizad Firouzjaei A, Aghaee-Bakhtiari SH. Integrating cuproptosis and immunosenescence: A novel therapeutic strategy in cancer treatment. Biochem Biophys Rep 2025; 42:101983. [PMID: 40224540 PMCID: PMC11986980 DOI: 10.1016/j.bbrep.2025.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Recent advancements in our understanding of cell death mechanisms have progressed beyond traditional apoptosis to encompass various forms of regulated cell death, notably cuproptosis. This copper-dependent cell death occurs when copper interacts with lipoylated enzymes in the tricarboxylic acid cycle, leading to protein aggregation and subsequent cell death. Alongside this, immunosenescence the gradual decline in immune function due to aging has emerged as a significant factor in cancer progression and response to treatment. Innovative strategies that integrate cuproptosis and immunosenescence are showing considerable promise in cancer therapy. By leveraging the altered copper metabolism in cancer cells, cuproptosis can selectively induce cell death, effectively targeting and eliminating tumors. Simultaneously, addressing immunosenescence can rejuvenate the aging immune system, enhancing its capacity to identify and destroy cancer cells. This dual approach creates a synergistic effect, optimizing therapeutic efficacy by directly attacking tumor cells while revitalizing the immune response. Such integration bolsters the defense against cancer progression and recurrence and holds great potential for advancing cancer treatment modalities and improving patient outcomes. This paper delves into the interactions between cuproptosis and immunosenescence, emphasizing their implications for developing innovative cancer therapies.
Collapse
Affiliation(s)
- Ali Ahmadizad Firouzjaei
- Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Fahmy LM, Adeuyan OO, de Jong A. CD1a and Lipids as Mediators of T Cell Activation in the Skin. J Invest Dermatol 2025:S0022-202X(25)00383-5. [PMID: 40317277 DOI: 10.1016/j.jid.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 05/07/2025]
Abstract
Despite increasing insights in cytokine pathways involved in T cell-mediated inflammatory skin diseases, the upstream T cell triggering events through antigen-presenting molecules and antigens often remain incompletely understood. Recent studies have proposed an immunopathogenic role for T cells that are activated through CD1a, a lipid antigen-presenting molecule abundantly expressed on antigen-presenting cells in human skin. These CD1a-restricted T cells are thought to play a role in psoriasis, atopic dermatitis, and allergic contact dermatitis. In this review, we discuss modes of T cell activation by CD1a proteins and lipid antigens and bacteria as well as recent insights in local and systemic functions of CD1a-restricted T cells in inflammatory skin disease.
Collapse
Affiliation(s)
- Lauren M Fahmy
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Oluwaseyi O Adeuyan
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Annemieke de Jong
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
3
|
Beaufrère M, Jacoutot M, Nahal RS, Cosentino G, Hutteau-Hamel T, Clavel G, Malfait AJ, Araujo LM, Breban M, Glatigny S. Interleukin 17-producing C-C motif chemokine receptor 6 + conventional CD4 + T cells are arthritogenic in an animal model of spondyloarthritis. J Autoimmun 2025; 153:103413. [PMID: 40163937 DOI: 10.1016/j.jaut.2025.103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE Spondyloarthritis (SpA) is a group of chronic inflammatory disorders associated with the human leukocyte antigen (HLA) class I allele HLA-B27. Transgenic rats expressing HLA-B27 and human β2-microglobulin (B27 rats) develop clinical manifestations resembling SpA called rat SpA. IL-17 and TNF are key proinflammatory cytokines implicated in both human and rat SpA. We aimed to determine which T cell subset(s) produce IL-17 and TNF during rat SpA, characterize their tissue distribution and tested their pathogenicity in vivo. METHODS Cytokine production by T cell subsets was evaluated in target tissues and lymphoid organs during rat SpA. Pathogenicity of purified IL-17+ cells was assessed in vivo by cell transfer. Blood samples were used to translate B27 rats findings to SpA patients. RESULTS Conventional CD4+ T cells (Foxp3-; Tconv) and γδ T cells were the main producers of both IL-17 and TNF in B27 rats. IL-17-producing Tconv and γδ T cells were expanded in the colon of premorbid 3-weeks-old B27 rats. C-C motif chemokine receptor 6 (CCR6) allowed the isolation of IL-17+ Tconv (Th17) in rat. Transfer of B27 rat IL-17-producing CCR6+ Tconv but not of γδ T cells into disease-free nude B27 rats induced arthritis, directly demonstrating for the first time the arthritogenic potential of Th17 cells in SpA. Finally, a CCR6+ IL-17+ Tconv expansion enriched for IL-17F production was evidenced in SpA patients. CONCLUSION Our study demonstrates that IL-17+TNF+CCR6+ Th17 cells and IL-17+ γδ T cells are expanded preceding SpA onset in B27 rats and that only IL-17+TNF+CCR6+ Th17 cells can trigger arthritis.
Collapse
Affiliation(s)
- Marie Beaufrère
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France; INFLAMEX, Laboratoire d'Excellence, Université Paris Cité, France; Rheumatology Division, Ambroise Paré Hospital (AP-HP), Boulogne-Billancourt, France
| | - Manon Jacoutot
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France; INFLAMEX, Laboratoire d'Excellence, Université Paris Cité, France
| | - Roula Said Nahal
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France; Rheumatology Division, Ambroise Paré Hospital (AP-HP), Boulogne-Billancourt, France
| | - Gina Cosentino
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France
| | - Tom Hutteau-Hamel
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France
| | - Gaelle Clavel
- Institut National de la Santé et de la Recherche Médicale, UMR 1125, Université Sorbonne Paris Cité, Paris, France
| | - Aude Jobart Malfait
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France; INFLAMEX, Laboratoire d'Excellence, Université Paris Cité, France
| | - Luiza M Araujo
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France; INFLAMEX, Laboratoire d'Excellence, Université Paris Cité, France
| | - Maxime Breban
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France; INFLAMEX, Laboratoire d'Excellence, Université Paris Cité, France; Rheumatology Division, Ambroise Paré Hospital (AP-HP), Boulogne-Billancourt, France.
| | - Simon Glatigny
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France; INFLAMEX, Laboratoire d'Excellence, Université Paris Cité, France.
| |
Collapse
|
4
|
Polonio CM, McHale KA, Sherr DH, Rubenstein D, Quintana FJ. The aryl hydrocarbon receptor: a rehabilitated target for therapeutic immune modulation. Nat Rev Drug Discov 2025:10.1038/s41573-025-01172-x. [PMID: 40247142 DOI: 10.1038/s41573-025-01172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2025] [Indexed: 04/19/2025]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor originally identified as the target mediating the toxic effects of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and dioxins. For years, AHR activation was actively avoided during drug development. However, the AHR was later identified as an important physiological regulator of the immune response. These findings triggered a paradigm shift that resulted in identification of the AHR as a regulator of both innate and adaptive immunity and outlined a pathway for its modulation by the diet, commensal flora and metabolism in the context of autoimmunity, cancer and infection. Moreover, the AHR was revealed as a candidate target for the therapeutic modulation of the immune response. Indeed, the first AHR-activating drug (tapinarof) was recently approved for the treatment of psoriasis. Clinical trials are underway to evaluate the effects of tapinarof and other AHR-targeting therapeutics in inflammatory diseases, cancer and infections. This Review outlines the molecular mechanism of AHR action, and describes how it regulates the immune response. We also discuss links to disease and AHR-targeting therapeutics that have been tested in past and ongoing clinical trials.
Collapse
Affiliation(s)
- Carolina M Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Lukyanov DK, Kriukova VV, Ladell K, Shagina IA, Staroverov DB, Minasian BE, Fedosova AS, Shelyakin P, Suchalko ON, Komkov AY, Blagodatskikh KA, Miners KL, Britanova OV, Franke A, Price DA, Chudakov DM. Repertoire-based mapping and time-tracking of T helper cell subsets in scRNA-Seq. Front Immunol 2025; 16:1536302. [PMID: 40255395 PMCID: PMC12006041 DOI: 10.3389/fimmu.2025.1536302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/21/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction The functional programs of CD4+ T helper (Th) cell clones play a central role in shaping immune responses to different challenges. While advances in single-cell RNA sequencing (scRNA-Seq) have significantly improved our understanding of the diversity of Th cells, the relationship between scRNA-Seq clusters and the traditionally characterized Th subsets remains ambiguous. Methods In this study, we introduce TCR-Track, a method leveraging immune repertoire data to map phenotypically sorted Th subsets onto scRNA-Seq profiles. Results and discussion This approach accurately positions the Th1, Th1-17, Th17, Th22, Th2a, Th2, T follicular helper (Tfh), and regulatory T-cell (Treg) subsets, outperforming mapping based on CITE-Seq. Remarkably, the mapping is tightly focused on specific scRNA-Seq clusters, despite 4-year interval between subset sorting and the effector CD4+ scRNA-Seq experiment. These findings highlight the intrinsic program stability of Th clones circulating in peripheral blood. Repertoire overlap analysis at the scRNA-Seq level confirms that the circulating Th1, Th2, Th2a, Th17, Th22, and Treg subsets are clonally independent. However, a significant clonal overlap between the Th1 and cytotoxic CD4+ T-cell clusters suggests that cytotoxic CD4+ T cells differentiate from Th1 clones. In addition, this study resolves a longstanding ambiguity: we demonstrate that, while CCR10+ Th cells align with a specific Th22 scRNA-Seq cluster, CCR10-CCR6+CXCR3-CCR4+ cells, typically classified as Th17, represent a mixture of bona fide Th17 cells and clonally unrelated CCR10low Th22 cells. The clear distinction between the Th17 and Th22 subsets should influence the development of vaccine- and T-cell-based therapies. Furthermore, we show that severe acute SARS-CoV-2 infection induces systemic type 1 interferon (IFN) activation of naive Th cells. An increased proportion of effector IFN-induced Th cells is associated with a moderate course of the disease but remains low in critical COVID-19 cases. Using integrated scRNA-Seq, TCR-Track, and CITE-Seq data from 122 donors, we provide a comprehensive Th scRNA-Seq reference that should facilitate further investigation of Th subsets in fundamental and clinical studies.
Collapse
Affiliation(s)
- Daniil K. Lukyanov
- Center for Molecular and Cellular Biology, Moscow, Russia
- Genomics of Adaptive Immunity Department, Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Irina A. Shagina
- Genomics of Adaptive Immunity Department, Institute of Bioorganic Chemistry, Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry B. Staroverov
- Genomics of Adaptive Immunity Department, Institute of Bioorganic Chemistry, Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | | | - Pavel Shelyakin
- Abu Dhabi Stem Cell Center, Al Muntazah, United Arab Emirates
| | | | | | | | - Kelly L. Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Olga V. Britanova
- Genomics of Adaptive Immunity Department, Institute of Bioorganic Chemistry, Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Abu Dhabi Stem Cell Center, Al Muntazah, United Arab Emirates
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Dmitry M. Chudakov
- Center for Molecular and Cellular Biology, Moscow, Russia
- Genomics of Adaptive Immunity Department, Institute of Bioorganic Chemistry, Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Abu Dhabi Stem Cell Center, Al Muntazah, United Arab Emirates
- Department of Molecular Medicine, Central European Institute of Technology, Brno, Czechia
| |
Collapse
|
6
|
Ahmad AAM, Hussien EAM, Elian AAAM, Abdelmoneim M, Ali A, Abdelhamid AE, Elmowalid GA. Nigella sativa monophosphoryl lipid A nanoliposome: a promising antibiotic alternative and immunomodulator to control virulent pandemic drug-resistant Salmonella pullorum infection in broiler chicks. BMC Vet Res 2025; 21:132. [PMID: 40025471 PMCID: PMC11874670 DOI: 10.1186/s12917-025-04473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/03/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Salmonella enterica serovar Pullorum, the causative agent of pullorum disease, is one cause of the economic losses in the global poultry industry. Vaccination and antibiotics are still the most effective methods of controlling Salmonella, even though the vaccine contains the causative agent, and the antibiotic therapy has limited efficacy. We provide a novel immunostimulator and antibiotic substitute to protect against and avoid Salmonella pullorum (SP) infection. METHODS Nigella sativa-purified oil (NS) and monophosphoryl lipid A (MPLA) were formulated as nanoliposomal compounds (NS-MPLA). Their protective and immunomodulatory efficacies were experimentally tested orally in broiler chicks against challenge with virulent pandemic drug-resistant SP. Four chick groups were utilized: control; NS-MPLA-supplemented; SP-challenged; and SP-challenged, then NS-MPLA-treated. Clinical signs, organ gross pathology, colony-forming counts, and tissue histopathological alterations were investigated. The relative fold-changes in the expression of IL-1β, IL-4, IL-17, IL-22, TLR-4, INF-γ, IgA, and MUC2 genes were evaluated. RESULTS The SP-challenged chicks showed notable symptoms and extensive pathological lesions in their internal organs. The bacteria colonized the challenged chicks' livers and continued to shed in their feces for 5-6 days. A minor amount of immune cell tissue trafficking was noted. The NS-MPLA-treated chicks displayed opposing patterns after being challenged with SP. They exhibited mild clinical signs with modest gross pathology in the internal organs. After 3-4 days, the liver and the fecal droppings were cleared of SP. Significant heterophilic aggregation, lymphocytic infiltration, and lymphoid follicle enlargement were observed. Additionally, chicks challenged with SP and then NS-MPLA-treated showed a 5- to tenfold increase in immune-related cytokines, immunoglobulin A, and mucosal relative gene expression folds compared to the SP-challenged non-NS-MPLA-treated, which showed a sharp decline in IL-4 and IL-22 and a minor rise in the rest of the tested gene relative expressions. Chicks given NS-MPLA supplementation showed a significant upregulation of these genes compared to the control group. CONCLUSION In this first report on poultry, it is possible to draw the conclusion that NS-MPLA supplementation in SP-infected chicks boosts immunity and provides protection. It promoted bacterial clearance and tissue repair and stimulated the expression of genes linked to immunity and the mucosal surface. These findings suggest the potential application of NS-MPLA in salmonella control programs as an antibiotic substitute or in immunization strategies.
Collapse
Affiliation(s)
- Adel Attia M Ahmad
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Sharqiah, Egypt.
| | | | - Alaa A A M Elian
- Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Mohamed Abdelmoneim
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Sharqiah, Egypt
| | - A Ali
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Sharqiah, Egypt
| | - Ahmed E Abdelhamid
- Polymers and Pigments Department, National Research Center, Giza, Dokki, Egypt
| | - Gamal A Elmowalid
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Sharqiah, Egypt
| |
Collapse
|
7
|
Cao JF, Yang GJ, Zhang YA, Chen J. Contribution of interleukins in the regulation of teleost fish immunity: A review from the perspective of regulating macrophages. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110173. [PMID: 39909123 DOI: 10.1016/j.fsi.2025.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Interleukins (ILs) are potent secreted regulators of a wide range of cell types and cellular activities, particularly in the immune system. They are able to participate in intercellular communication in homeostasis and disease, thereby exerting immune functions. Macrophages serve as the innate immune cells of vertebrates and play a pivotal role in defending against and eliminating external pathogens. In mammals, the immune response mounted by macrophages is intricately linked to ILs. Given the fact that teleost fish have evolved an innate immune system that closely resembles those of mammals, particularly in terms of the functionality of macrophages, raises the intriguing possibility that the regulatory function of ILs in macrophage-mediated immunity might be evolutionarily conserved across both mammal and teleost fish lineages. Consequently, from the perspective of interleukin regulation of macrophages, this review outlines the relationship between ILs and macrophages in teleost fish, and elucidates the regulatory role of ILs of immune cell function in teleost fish, thereby contributing to our understanding of the key role of these cytokines in the prevention and control of aquaculture diseases.
Collapse
Affiliation(s)
- Jia-Feng Cao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China.
| |
Collapse
|
8
|
Dasinger JH, Abais-Battad JM, McCrorey MK, Van Beusecum JP. Recent advances on immunity and hypertension: the new cells on the kidney block. Am J Physiol Renal Physiol 2025; 328:F301-F315. [PMID: 39853324 DOI: 10.1152/ajprenal.00309.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 01/20/2025] [Indexed: 01/26/2025] Open
Abstract
Over the past 50 years, the contribution of the immune system has been identified in the development of hypertension and renal injury. Both human and experimental animal models of hypertension have demonstrated that innate and adaptive immune cells, along with their cytokines and chemokines, modulate blood pressure fluctuations and end organ renal damage. Numerous cell types of the innate immune system, specifically monocytes, macrophages, and dendritic cells, present antigenic peptides to T cells, promoting inflammation and the elevation of blood pressure. These T cells and other adaptive immune cells migrate to vascular and tubular cells of the kidney and promote end-organ fibrosis, damage, and ultimately hypertensive injury. Through the development of high-throughput screening, novel renal and immune cell subsets have been identified as possible contributors and regulators of renal injury and hypertension. In this review, we will consider classical immunological cells and their contribution to renal inflammation, and novel cell subsets, including renal stromal cells, that could potentially shed new light on renal injury and hypertension. Finally, we will discuss how interorgan inflammation contributes to the development of hypertension and hypertension-related multiorgan damage, and explore the clinical implications of the immunological components of renal injury and hypertension.
Collapse
Affiliation(s)
- John Henry Dasinger
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Justine M Abais-Battad
- Department of Physiology, Medical College of Georgia, August University, Augusta, Georgia, United States
| | - Marice K McCrorey
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Justin P Van Beusecum
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Research and Development, Ralph H. Johnson VA Healthcare System, Charleston, South Carolina, United States
| |
Collapse
|
9
|
Wang X, He S, Gong X, Lei S, Zhang Q, Xiong J, Liu Y. Neutrophils in colorectal cancer: mechanisms, prognostic value, and therapeutic implications. Front Immunol 2025; 16:1538635. [PMID: 40092983 PMCID: PMC11906667 DOI: 10.3389/fimmu.2025.1538635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Neutrophils, the most abundant myeloid cells in human peripheral blood, serve as the first defense line against infection and are also significantly involved in the initiation and progression of cancer. In colorectal cancer (CRC), neutrophils exhibit a dual function by promoting tumor events and exerting antitumor activity, which is related to the heterogeneity of neutrophils. The neutrophil extracellular traps (NETs), gut microbiota, and various cells within the tumor microenvironment (TME) are involved in shaping the heterogeneous function of neutrophils. This article provides an updated overview of the complex functions and underlying mechanisms of neutrophils in CRC and their pivotal role in guiding prognosis assessment and therapeutic strategies, aiming to offer novel insights into neutrophil-associated treatment approaches for CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yang Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Klepp LI, Bigi MM, Villafañe L, Blanco FC, Malinge L P, Bigi F. Production of functional bovine IL-22 in a mammalian episomal expression system. Vet Immunol Immunopathol 2025; 279:110863. [PMID: 39615285 DOI: 10.1016/j.vetimm.2024.110863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025]
Abstract
Interleukin 22 is a member of the interleukin-10 superfamily of cytokines. This protein has a dual role as an inflammatory and anti-inflammatory molecule dependent on the context. IL-22 is produced mainly by immune cells and seems to have non-hematopoietic cells as its target. In this work, we report the production of bovine IL-22 for the first time in a semi-stable expression system in mammalian cells. We showed that this recombinant IL-22 possesses biological activity in bovine macrophages infected with Mycobacterium bovis and is easy to produce in large quantities. Given its role in the defence against infections, the IL-22 produced in this work has potential applications in scientific research as well as in immunotherapy to treat diseases in cattle.
Collapse
Affiliation(s)
- Laura I Klepp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| | | | - Luciana Villafañe
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| | - Federico C Blanco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| | | | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| |
Collapse
|
11
|
Liu Y, Lui KS, Ye Z, Chen L, Cheung AKL. Epstein-Barr Virus BRRF1 Induces Butyrophilin 2A1 in Nasopharyngeal Carcinoma NPC43 Cells via the IL-22/JAK3-STAT3 Pathway. Int J Mol Sci 2024; 25:13452. [PMID: 39769218 PMCID: PMC11677325 DOI: 10.3390/ijms252413452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Epstein-Barr virus is highly associated with nasopharyngeal carcinoma (NPC) with genes expressed for tumor transformation or maintenance of viral latency, but there are certain genes that can modulate immune molecules. Butyrophilin 2A1 (BTN2A1) is an important activating protein for presenting phosphoantigens for recognition by Vγ9Vδ2 T cells to achieve antitumor activities. We have previously shown that Vγ9Vδ2 T cells achieve efficacy against NPC when BTN2A1 and BTN3A1 are upregulated by stimulating EBV gene expression, particularly LMP1. While BTN3A1 can be induced by the LMP1-mediated IFN-γ/JNK/NLRC5 pathway, the viral gene that can regulate BTN2A1 remains elusive. We showed that BTN2A1 expression is directly mediated by EBV BRRF1, which can trigger the BTN2A1 promoter and downstream JAK3-STAT3 pathway in NPC43 cells, as shown by RNA-seq data and verified via inhibitor experiments. Furthermore, BRRF1 downregulated IL-22 binding protein (IL-22RA2) to complement the EBNA1-targeting probe (P4)-induced IL-22 expression. Therefore, this study elucidated a new mechanism of stimulating BTN2A1 expression in NPC cells via the EBV gene BRRF1. The JAK3-STAT3 pathway could act in concordance with IL-22 to enhance the expression of BTN2A1, which likely leads to increased tumor cell killing by Vγ9Vδ2 T cells for enhanced potential as immunotherapy against the cancer.
Collapse
Affiliation(s)
- Yue Liu
- Medical School, Fuyang Normal University, Fuyang 236000, China;
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| | - Ka Sin Lui
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| | - Zuodong Ye
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| | - Luo Chen
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China;
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| |
Collapse
|
12
|
Upadhyay S, Kumar S, Singh VK, Tiwari R, Kumar A, Sundar S, Kumar R. Chemokines Signature and T Cell Dynamics in Leishmaniasis: Molecular insight and therapeutic application. Expert Rev Mol Med 2024; 27:1-55. [PMID: 39587036 PMCID: PMC11707835 DOI: 10.1017/erm.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/04/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
Leishmaniasis, caused by obligate intracellular Leishmania parasites, poses a significant global health burden. The control of Leishmania infection relies on an effective T cell-dependent immune response; however, various factors impede the host’s ability to mount a successful defence. Alterations in the chemokine profile, responsible for cell trafficking to the infection site, can disrupt optimal immune responses and influence the outcome of pathogenesis by facilitating parasite persistence. This review aims to emphasize the significance of the chemokine system in T cell responses and to summarize the current knowledge on the dysregulation of chemokines and their receptors associated with different subsets of T lymphocytes during Leishmaniasis. A comprehensive understanding of the dynamic nature of the chemokine system during Leishmaniasis is crucial for the development of successful immunotherapeutic approaches.
Collapse
Affiliation(s)
- Shreya Upadhyay
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rahul Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
13
|
Li J, Wu Z, Wu Y, Hu X, Yang J, Zhu D, Wu M, Li X, Bentum-Ennin L, Wanglai H. IL-22, a vital cytokine in autoimmune diseases. Clin Exp Immunol 2024; 218:242-263. [PMID: 38651179 PMCID: PMC11557150 DOI: 10.1093/cei/uxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Interleukin-22 (IL-22) is a vital cytokine that is dysregulated in various autoimmune conditions including rheumatoid arthritis (RA), multiple sclerosis (MS), and Alzheimer's disease (AD). As the starting point for the activation of numerous signaling pathways, IL-22 plays an important role in the initiation and development of autoimmune diseases. Specifically, imbalances in IL-22 signaling can interfere with other signaling pathways, causing cross-regulation of target genes which ultimately leads to the development of immune disorders. This review delineates the various connections between the IL-22 signaling pathway and autoimmune disease, focusing on the latest understanding of the cellular sources of IL-22 and its effects on various cell types. We further explore progress with pharmacological interventions related to targeting IL-22, describing how such therapeutic strategies promise to usher in a new era in the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jiajin Li
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - XinYu Hu
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Jun Yang
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Mingyue Wu
- The School of pharmacy, Anhui Medical University, Hefei, China
| | - Xin Li
- The School of pharmacy, Anhui Medical University, Hefei, China
| | | | - Hu Wanglai
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Hu R, Qian H, Wang X, Peng B, Huang D. Nicotine promotes pathogenic bacterial growth and biofilm formation in peri-implant. J Med Microbiol 2024; 73. [PMID: 39360709 DOI: 10.1099/jmm.0.001897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Introduction. Peri-implantitis is a plaque-associated disease that leads to implant loss and arises from bacterial biofilms on the surface of the implant. Smoking is a risk factor for peri-implantitis and impedes treatment effectiveness. Additionally, aryl hydrocarbon receptor (AHR), IL-6, and IL-22 levels are related to peri-implantitis.Aim. We aimed to investigate the effects of nicotine on inflammatory response, bacterial growth and biofilm formation.Hypothesis/Gap Statement. We hypothesized that nicotine promoted pathogenic bacterial growth and biofilm formation, thereby aggravating inflammation.Methodology. The expression of AHR, IL-6 and IL-22 was measured in peri-implant sulci fluid using quantitative PCR and Western blot analyses. The cementum was incubated with bacterial suspension including Porphyromonas gingivalis, Streptococcus sanguinis and Fusobacterium nucleatum and treated with 100, 200, 250 and 300 µg ml-1 nicotine, and then, the absorbance and number of colony-forming units were detected. Biofilm formation was evaluated using the tissue culture plate method and safranin O staining. Carbohydrates and proteins were measured by the phenol-sulfuric acid method and the bicinchoninic acid method, respectively.Results. The results indicated that smoking increased the levels of AHR, IL-6 and IL-22. Functionally, nicotine promoted the growth of P. gingivalis, S. sanguinis and F. nucleatum. Additionally, it promoted the biofilm formation of these bacteria and increased the contents of carbohydrates and proteins.Conclusion. Nicotine promoted bacterial growth and biofilm build-up, suggesting that smoking may aggravate the progression of peri-implantitis.
Collapse
Affiliation(s)
- Rong Hu
- Department of Stomatology, Affiliated Hospital of Yunnan University, Kunming, Yunnan 650000, PR China
| | - Huifen Qian
- Department of Stomatology, Affiliated Hospital of Yunnan University, Kunming, Yunnan 650000, PR China
| | - Xiangyun Wang
- Department of Stomatology, Affiliated Hospital of Yunnan University, Kunming, Yunnan 650000, PR China
| | - Bei Peng
- Department of Stomatology, Affiliated Hospital of Yunnan University, Kunming, Yunnan 650000, PR China
| | - Dahai Huang
- Department of Stomatology, Affiliated Hospital of Yunnan University, Kunming, Yunnan 650000, PR China
| |
Collapse
|
15
|
Chen J, Qin M, Xiang X, Guo X, Nie L, Mao L. Lymphocytes in autoimmune encephalitis: Pathogenesis and therapeutic target. Neurobiol Dis 2024; 200:106632. [PMID: 39117118 DOI: 10.1016/j.nbd.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
Autoimmune encephalitis (AE) is an inflammatory disease of the central nervous system characterized by the production of various autoimmune antibodies targeting neuronal proteins. The pathogenesis of AE remains elusive. Accumulating evidence suggests that lymphocytes, particularly B and T lymphocytes, play an integral role in the development of AE. In the last two decades, autoimmune neural antibodies have taken center stage in diagnosing AE. Recently, increasing evidence has highlighted the importance of T lymphocytes in the onset of AE. CD4+ T cells are thought to influence disease progression by secreting associated cytokines, whereas CD8+ T cells exert a cytotoxic role, causing irreversible damage to neurons mainly in patients with paraneoplastic AE. Conventionally, the first-line treatments for AE include intravenous steroids, intravenous immunoglobulin, and plasma exchange to remove pathogenic autoantibodies. However, a minority of patients are insensitive to conventional first-line treatment protocols and suffer from disease relapse, a condition referred to as refractory AE. In recent years, new treatments, such as rituximab or CAAR-T, which target pathogenic lymphocytes in patients with AE, have offered new therapeutic options for refractory AE. This review aims to describe the current knowledge about the function of B and T lymphocytes in the pathophysiology of AE and to summarize and update the immunotherapy options for treating this disease.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengting Qin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuying Xiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
16
|
Lv J, Ibrahim YS, Yumashev A, Hjazi A, Faraz A, Alnajar MJ, Qasim MT, Ghildiyal P, Hussein Zwamel A, Fakri Mustafa Y. A comprehensive immunobiology review of IBD: With a specific glance to Th22 lymphocytes development, biology, function, and role in IBD. Int Immunopharmacol 2024; 137:112486. [PMID: 38901239 DOI: 10.1016/j.intimp.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The two primary forms of inflammatory disorders of the small intestine andcolon that make up inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's disease (CD). While ulcerative colitis primarily affects the colon and the rectum, CD affects the small and large intestines, as well as the esophagus,mouth, anus, andstomach. Although the etiology of IBD is not completely clear, and there are many unknowns about it, the development, progression, and recurrence of IBD are significantly influenced by the activity of immune system cells, particularly lymphocytes, given that the disease is primarily caused by the immune system stimulation and activation against gastrointestinal (GI) tract components due to the inflammation caused by environmental factors such as viral or bacterial infections, etc. in genetically predisposed individuals. Maintaining homeostasis and the integrity of the mucosal barrier are critical in stopping the development of IBD. Specific immune system cells and the quantity of secretory mucus and microbiome are vital in maintaining this stability. Th22 cells are helper T lymphocyte subtypes that are particularly important for maintaining the integrity and equilibrium of the mucosal barrier. This review discusses the most recent research on these cells' biology, function, and evolution and their involvement in IBD.
Collapse
Affiliation(s)
- Jing Lv
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Yousif Saleh Ibrahim
- Department of Chemistry and Biochemistry, College of Medicine, University of Fallujah, Fallujah, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Aldiwaniyah, Aldiwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
17
|
Tolomeo M, Cascio A. The Complex Dysregulations of CD4 T Cell Subtypes in HIV Infection. Int J Mol Sci 2024; 25:7512. [PMID: 39062756 PMCID: PMC11276885 DOI: 10.3390/ijms25147512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection remains an important global public health problem. About 40 million people are infected with HIV, and this infection caused about 630,000 deaths in 2022. The hallmark of HIV infection is the depletion of CD4+ T helper lymphocytes (Th cells). There are at least seven different Th subtypes, and not all are the main targets of HIV. Moreover, the effect of the virus in a specific subtype can be completely different from that of the others. Although the most compromised Th subtype in HIV infection is Th17, HIV can induce important dysregulations in other subtypes, such as follicular Th (Tfh) cells and regulatory Th cells (Treg cells or Tregs). Several studies have shown that HIV can induce an increase in the immunosuppressive activity of Tregs without causing a significant reduction in their numbers, at least in the early phase of infection. The increased activity of this Th subtype seems to play an important role in determining the immunodeficiency status of HIV-infected patients, and Tregs may represent a new target for innovative anti-HIV therapies, including the so-called "Kick and Kill" therapeutic method whose goal is the complete elimination of the virus and the healing of HIV infection. In this review, we report the most important findings on the effects of HIV on different CD4+ T cell subtypes, the molecular mechanisms by which the virus impairs the functions of these cells, and the implications for new anti-HIV therapeutic strategies.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| |
Collapse
|
18
|
Belghith M, Maghrebi O, Ben Laamari R, Hanachi M, Hrir S, Saied Z, Belal S, Driss A, Ben Sassi S, Boussoffara T, Barbouche MR. Increased IL-22 in cerebrospinal fluid of neuro-behçet's disease patients. Cytokine 2024; 179:156617. [PMID: 38631183 DOI: 10.1016/j.cyto.2024.156617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Remitting-Relapsing Multiple Sclerosis (RRMS) and Neuro-Behçet Disease (NBD) are two chronic neuro-inflammatory disorders leading to brain damage and disability in young adults. Herein, we investigated in these patients the cytokine response by beads-based multiplex assays during the early stages of these disorders. Cytokine investigations were carried out on treatment-naive patients suffering from RRMS and NBD recruited at the first episode of clinical relapse. Our findings demonstrate that Cerebrospinal Fluid (CSF) cells from NBD patients, but not RRMS, secrete significant high levels of IL-22 which is associated with elevated IL-22 mRNA expression. We also observed an increase in IL-22 levels in the definite NBD subgroup as compared to the probable NBD one, indicating a clear relationship between elevated IL-22 levels and diagnostic certainty. Interestingly, we found no correlation of IL-22 secretion between CSF and serum arguing about intrathecal release of IL-22 in the CNS of NBD patients. Moreover, we showed by correlogram analysis that this cytokine doesn't correlate with IL-17A, IL-17F and IL-21 suggesting that this cytokine is secreted by Th22 cells and not by Th17 cells in the CSF of NBD patients. Finally, we found elevated levels of IL-6 and a positive correlation between IL and 6 and IL-22 in the CSF of NBD. In conclusion, these results suggest that IL-6 contributes to the production of IL-22 by T cells leading to the exacerbation of inflammation and damage within the CNS of NBD patients.
Collapse
Affiliation(s)
- Meriam Belghith
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, Tunis, Tunisia; Tunis El Manar University, Tunis 1068, Tunisia.
| | - Olfa Maghrebi
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, Tunis, Tunisia; Faculty of Medicine of Tunis, 1006, Tunisia; Tunis El Manar University, Tunis 1068, Tunisia
| | - Rafika Ben Laamari
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, Tunis, Tunisia; Tunis El Manar University, Tunis 1068, Tunisia
| | - Mariem Hanachi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, Tunis, Tunisia; Tunis El Manar University, Tunis 1068, Tunisia
| | - Sana Hrir
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, Tunis, Tunisia; Tunis El Manar University, Tunis 1068, Tunisia
| | - Zakaria Saied
- Faculty of Medicine of Tunis, 1006, Tunisia; Neurology's Department, Mongi Ben Hmida National Institute of Neurology, Tunis, Tunisia
| | - Samir Belal
- Faculty of Medicine of Tunis, 1006, Tunisia; Neurology's Department, Mongi Ben Hmida National Institute of Neurology, Tunis, Tunisia
| | - Adel Driss
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | - Samia Ben Sassi
- Faculty of Medicine of Tunis, 1006, Tunisia; Neurology's Department, Mongi Ben Hmida National Institute of Neurology, Tunis, Tunisia
| | - Thouraya Boussoffara
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, Tunis, Tunisia; Tunis El Manar University, Tunis 1068, Tunisia.
| | - Mohamed-Ridha Barbouche
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Science, Arabian Gulf University 26671, Manama, Bahrain.
| |
Collapse
|
19
|
Fang Q, Xie J, Zong J, Zhou Y, Zhou Q, Yin S, Cao L, Yin H, Zhou D. Expression and diagnostic value of interleukin-22 in rheumatoid arthritis-associated interstitial lung disease. Int Immunopharmacol 2024; 134:112173. [PMID: 38728884 DOI: 10.1016/j.intimp.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is characterized by a high incidence and mortality rate, highlighting the need for biomarkers to detect ILD early in RA patients. Previous studies have shown the protective effects of Interleukin-22 (IL-22) in pulmonary fibrosis using mouse models. This study aims to assess IL-22 expression in RA-ILD to validate foundational experiments and explore its diagnostic value. The study included 66 newly diagnosed RA patients (33 with ILD, 33 without ILD) and 14 healthy controls (HC). ELISA was utilized to measure IL-22 levels and perform intergroup comparisons. The correlation between IL-22 levels and the severity of RA-ILD was examined. Logistic regression analysis was employed to screen potential predictive factors for RA-ILD risk and establish a predictive nomogram. The diagnostic value of IL-22 in RA-ILD was assessed using ROC. Subsequently, the data were subjected to 30-fold cross-validation. IL-22 levels in the RA-ILD group were lower than in the RA-No-ILD group and were inversely correlated with the severity of RA-ILD. Logistic regression analysis identified IL-22, age, smoking history, anti-mutated citrullinated vimentin antibody (MCV-Ab), and mean corpuscular hemoglobin concentration (MCHC) as independent factors for distinguishing between the groups. The diagnostic value of IL-22 in RA-ILD was moderate (AUC = 0.75) and improved when combined with age, smoking history, MCV-Ab and MCHC (AUC = 0.97). After 30-fold cross-validation, the average AUC was 0.886. IL-22 expression is dysregulated in the pathogenesis of RA-ILD. This study highlights the potential of IL-22, along with other factors, as a valuable biomarker for assessing RA-ILD occurrence and progression.
Collapse
Affiliation(s)
- Quanquan Fang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Jingzhi Xie
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Juan Zong
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Yu Zhou
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Qin Zhou
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Songlou Yin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Lina Cao
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Hanqiu Yin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China.
| | - Dongmei Zhou
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China.
| |
Collapse
|
20
|
Yang H, Cao R, Zhou F, Wang B, Xu Q, Li R, Zhang C, Xu H. The role of Interleukin-22 in severe acute pancreatitis. Mol Med 2024; 30:60. [PMID: 38750415 PMCID: PMC11097471 DOI: 10.1186/s10020-024-00826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Severe acute pancreatitis (SAP) begins with premature activation of enzymes, promoted by the immune system, triggering a potential systemic inflammatory response that leads to organ failure with increased mortality and a bleak prognosis. Interleukin-22 (IL-22) is a cytokine that may have a significant role in SAP. IL-22, a member of the IL-10 cytokine family, has garnered growing interest owing to its potential tissue-protective properties. Recently, emerging research has revealed its specific effects on pancreatic diseases, particularly SAP. This paper provides a review of the latest knowledge on the role of IL-22 and its viability as a therapeutic target in SAP.
Collapse
Affiliation(s)
- Hongli Yang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China
| | - Ruofan Cao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China
| | - Feifei Zhou
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
| | - Ben Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
| | - Qianqian Xu
- Department of Gastroenterology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Ji'nan, Shandong, 250021, P.R. China
| | - Rui Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China
| | - ChunHua Zhang
- Shandong First Medical University, Ji'nan, Shandong, 250117, P.R. China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China.
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China.
| |
Collapse
|
21
|
Liu G, Wang Z, Li S. Heterogeneity and plasticity of tissue-resident memory T cells in skin diseases and homeostasis: a review. Front Immunol 2024; 15:1378359. [PMID: 38779662 PMCID: PMC11109409 DOI: 10.3389/fimmu.2024.1378359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Skin tissue-resident memory T (Trm) cells are produced by antigenic stimulation and remain in the skin for a long time without entering the peripheral circulation. In the healthy state Trm cells can play a patrolling and surveillance role, but in the disease state Trm cells differentiate into various phenotypes associated with different diseases, exhibit different localizations, and consequently have local protective or pathogenic roles, such as disease recurrence in vitiligo and maintenance of immune homeostasis in melanoma. The most common surface marker of Trm cells is CD69/CD103. However, the plasticity of tissue-resident memory T cells after colonization remains somewhat uncertain. This ambiguity is largely due to the variation in the functionality and ultimate destination of Trm cells produced from memory cells differentiated from diverse precursors. Notably, the presence of Trm cells is not stationary across numerous non-lymphoid tissues, most notably in the skin. These cells may reenter the blood and distant tissue sites during the recall response, revealing the recycling and migration potential of the Trm cell progeny. This review focuses on the origin and function of skin Trm cells, and provides new insights into the role of skin Trm cells in the treatment of autoimmune skin diseases, infectious skin diseases, and tumors.
Collapse
Affiliation(s)
- Guomu Liu
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| | - Ziyue Wang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Shanshan Li
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Shellard EM, Rane SS, Eyre S, Warren RB. Functional Genomics and Insights into the Pathogenesis and Treatment of Psoriasis. Biomolecules 2024; 14:548. [PMID: 38785955 PMCID: PMC11117854 DOI: 10.3390/biom14050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Psoriasis is a lifelong, systemic, immune mediated inflammatory skin condition, affecting 1-3% of the world's population, with an impact on quality of life similar to diseases like cancer or diabetes. Genetics are the single largest risk factor in psoriasis, with Genome-Wide Association (GWAS) studies showing that many psoriasis risk genes lie along the IL-23/Th17 axis. Potential psoriasis risk genes determined through GWAS can be annotated and characterised using functional genomics, allowing the identification of novel drug targets and the repurposing of existing drugs. This review is focused on the IL-23/Th17 axis, providing an insight into key cell types, cytokines, and intracellular signaling pathways involved. This includes examination of currently available biological treatments, time to relapse post drug withdrawal, and rates of primary/secondary drug failure, showing the need for greater understanding of the underlying genetic mechanisms of psoriasis and how they can impact treatment. This could allow for patient stratification towards the treatment most likely to reduce the burden of disease for the longest period possible.
Collapse
Affiliation(s)
- Elan May Shellard
- Faculty of Biology, Medicine and Health, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, UK
| | - Shraddha S. Rane
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, The University of Manchester, Manchester M13 9PT, UK; (S.S.R.); (S.E.)
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, The University of Manchester, Manchester M13 9PT, UK; (S.S.R.); (S.E.)
| | - Richard B. Warren
- Dermatology Centre, Northern Care Alliance NHS Foundation Trust, Manchester M6 8HD, UK;
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
| |
Collapse
|
23
|
Gao Y, Lu Y, Liang X, Zhao M, Yu X, Fu H, Yang W. CD4 + T-Cell Senescence in Neurodegenerative Disease: Pathogenesis and Potential Therapeutic Targets. Cells 2024; 13:749. [PMID: 38727285 PMCID: PMC11083511 DOI: 10.3390/cells13090749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the increasing proportion of the aging population, neurodegenerative diseases have become one of the major health issues in society. Neurodegenerative diseases (NDs), including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by progressive neurodegeneration associated with aging, leading to a gradual decline in cognitive, emotional, and motor functions in patients. The process of aging is a normal physiological process in human life and is accompanied by the aging of the immune system, which is known as immunosenescence. T-cells are an important part of the immune system, and their senescence is the main feature of immunosenescence. The appearance of senescent T-cells has been shown to potentially lead to chronic inflammation and tissue damage, with some studies indicating a direct link between T-cell senescence, inflammation, and neuronal damage. The role of these subsets with different functions in NDs is still under debate. A growing body of evidence suggests that in people with a ND, there is a prevalence of CD4+ T-cell subsets exhibiting characteristics that are linked to senescence. This underscores the significance of CD4+ T-cells in NDs. In this review, we summarize the classification and function of CD4+ T-cell subpopulations, the characteristics of CD4+ T-cell senescence, the potential roles of these cells in animal models and human studies of NDs, and therapeutic strategies targeting CD4+ T-cell senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.G.); (Y.L.); (X.L.); (M.Z.); (X.Y.); (H.F.)
| |
Collapse
|
24
|
Xia J, Tang J, Fu Q, Lin J. Editorial: Pathogenic roles of T cells in autoimmunity. Front Immunol 2024; 15:1401459. [PMID: 38633248 PMCID: PMC11021762 DOI: 10.3389/fimmu.2024.1401459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Affiliation(s)
- Jinfang Xia
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jifeng Tang
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Fu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinpiao Lin
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Sieminska I, Pieniawska M, Grzywa TM. The Immunology of Psoriasis-Current Concepts in Pathogenesis. Clin Rev Allergy Immunol 2024; 66:164-191. [PMID: 38642273 PMCID: PMC11193704 DOI: 10.1007/s12016-024-08991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Psoriasis is one of the most common inflammatory skin diseases with a chronic, relapsing-remitting course. The last decades of intense research uncovered a pathological network of interactions between immune cells and other types of cells in the pathogenesis of psoriasis. Emerging evidence indicates that dendritic cells, TH17 cells, and keratinocytes constitute a pathogenic triad in psoriasis. Dendritic cells produce TNF-α and IL-23 to promote T cell differentiation toward TH17 cells that produce key psoriatic cytokines IL-17, IFN-γ, and IL-22. Their activity results in skin inflammation and activation and hyperproliferation of keratinocytes. In addition, other cells and signaling pathways are implicated in the pathogenesis of psoriasis, including TH9 cells, TH22 cells, CD8+ cytotoxic cells, neutrophils, γδ T cells, and cytokines and chemokines secreted by them. New insights from high-throughput analysis of lesional skin identified novel signaling pathways and cell populations involved in the pathogenesis. These studies not only expanded our knowledge about the mechanisms of immune response and the pathogenesis of psoriasis but also resulted in a revolution in the clinical management of patients with psoriasis. Thus, understanding the mechanisms of immune response in psoriatic inflammation is crucial for further studies, the development of novel therapeutic strategies, and the clinical management of psoriasis patients. The aim of the review was to comprehensively present the dysregulation of immune response in psoriasis with an emphasis on recent findings. Here, we described the role of immune cells, including T cells, B cells, dendritic cells, neutrophils, monocytes, mast cells, and innate lymphoid cells (ILCs), as well as non-immune cells, including keratinocytes, fibroblasts, endothelial cells, and platelets in the initiation, development, and progression of psoriasis.
Collapse
Affiliation(s)
- Izabela Sieminska
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Pieniawska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz M Grzywa
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland.
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
26
|
Bülow S, Ederer KU, Holzinger JM, Zeller L, Werner M, Toelge M, Pfab C, Hirsch S, Göpferich F, Hiergeist A, Berberich-Siebelt F, Gessner A. Bactericidal/permeability-increasing protein instructs dendritic cells to elicit Th22 cell response. Cell Rep 2024; 43:113929. [PMID: 38457343 DOI: 10.1016/j.celrep.2024.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/01/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
Neutrophil-derived bactericidal/permeability-increasing protein (BPI) is known for its bactericidal activity against gram-negative bacteria and neutralization of lipopolysaccharide. Here, we define BPI as a potent activator of murine dendritic cells (DCs). As shown in GM-CSF-cultured, bone-marrow-derived cells (BMDCs), BPI induces a distinct stimulation profile including IL-2, IL-6, and tumor necrosis factor expression. Conventional DCs also respond to BPI, while M-CSF-cultivated or peritoneal lavage macrophages do not. Subsequent to BPI stimulation of BMDCs, CD4+ T cells predominantly secrete IL-22 and, when naive, preferentially differentiate into T helper 22 (Th22) cells. Congruent with the tissue-protective properties of IL-22 and along with impaired IL-22 induction, disease severity is significantly increased during dextran sodium sulfate-induced colitis in BPI-deficient mice. Importantly, physiological diversification of intestinal microbiota fosters BPI-dependent IL-22 induction in CD4+ T cells derived from mesenteric lymph nodes. In conclusion, BPI is a potent activator of DCs and consecutive Th22 cell differentiation with substantial relevance in intestinal homeostasis.
Collapse
Affiliation(s)
- Sigrid Bülow
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Katharina U Ederer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Jonas M Holzinger
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lisa Zeller
- Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Maren Werner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Martina Toelge
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christina Pfab
- Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Sarah Hirsch
- Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Franziska Göpferich
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany; Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | | | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany; Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
27
|
Tao N, Ying Y, Xu X, Sun Q, Shu Y, Hu S, Lou Z, Gao J. Th22 is the effector cell of thymosin β15-induced hair regeneration in mice. Inflamm Regen 2024; 44:3. [PMID: 38191481 PMCID: PMC10773137 DOI: 10.1186/s41232-023-00316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/25/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Thymosin beta family has a significant role in promoting hair regeneration, but which type of T cells play a key role in this process has not been deeply studied. This research aimed to find out the subtypes of T cell that play key role in hair regeneration mediated by thymosin beta 15 (Tβ15). METHODS Ready-to-use adenovirus expressing mouse Tmsb15b (thymosin beta 15 overexpression, Tβ15 OX) and lentivirus-Tβ15 short hairpin RNA (Tβ15 sh) were used to evaluate the role of Tβ15 in hair regeneration and development. The effect of Th22 cells on hair regeneration was further studied by optimized Th22-skewing condition medium and IL-22 binding protein (IL-22BP, an endogenous antagonist of IL-22, also known as IL-22RA2) in both ex vivo culture C57BL/6J mouse skin and BALB/c nude mice transplanted with thymus organoid model. RESULTS The results show that Tβ15, the homologous of Tβ4, can promote hair regeneration by increasing the proliferation activity of hair follicle cells. In addition, high-level expression of Tβ15 can not only increase the number of Th22 cells around hair follicles but also accelerate the transformation of hair follicles to maturity. Consistent with the expected results, when the IL-22BP inhibitor was used to interfere with Th22, the process of hair regeneration was blocked. CONCLUSIONS In conclusion, Th22 is the key effector cell of Tβ15 inducing hair regeneration. Both Tβ15 and Th22 may be the potential drug targets for hair regeneration.
Collapse
Affiliation(s)
- Nana Tao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yuyuan Ying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xie Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Qingru Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yaoying Shu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Shiyu Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| |
Collapse
|
28
|
Imperiale BR, Gamberale A, Yokobori N, García A, Bartoletti B, Aidar O, López B, Cruz V, González Montaner P, Palmero DJ, de la Barrera S. Transforming growth factor-β, Interleukin-23 and interleukin-1β modulate TH22 response during active multidrug-resistant tuberculosis. Immunology 2024; 171:45-59. [PMID: 37715690 DOI: 10.1111/imm.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023] Open
Abstract
We previously reported that patients with multidrug-resistant tuberculosis (MDR-TB) showed low systemic and Mtb-induced Th22 responses associated to high sputum bacillary load and severe lung lesions suggesting that Th22 response could influence the ability of these patients to control bacillary growth and tissue damage. In MDR-TB patients, the percentage of IL-22+ cells inversely correlates with the proportion of senescent PD-1+ T cells. Herein, we aimed to evaluate the pathways involved on the regulation of systemic and Mtb-induced Th22 response in MDR-TB and fully drug-susceptible TB patients (S-TB) and healthy donors. Our results show that while IL-1β and IL-23 promote Mtb-induced IL-22 secretion and expansion of IL-22+ cells, TGF-β inhibits this response. Systemic and in vitro Mtb-induced Th22 response inversely correlates with TGF-β amounts in plasma and in PBMC cultures respectively. The number of circulating PD-1+ T cells directly correlates with plasmatic TGF-β levels and blockade of PD-1/PD-L1 signalling enhances in vitro Mtb-induced expansion of IL-22+ cells. Thus, TGF-β could also inhibit Th22 response through upregulation of PD-1 expression in T cells. Higher percentage of IL-23+ monocytes was observed in TB patients. In contrast, the proportion of IL-1β+ monocytes was lower in TB patients with bilateral lung cavities (BCC) compared to those patients with unilateral cavities (UCC). Interestingly, TB patients with BCC showed higher plasmatic and Mtb-induced TGF-β secretion than patients with UCC. Thus, high TGF-β secretion and subtle differences in IL-23 and IL-1β expression could diminish systemic and in vitro Mtb-induced Th22 response along disease progression in TB patients.
Collapse
Affiliation(s)
- Belén R Imperiale
- Institute of Experimental Medicine (IMEX)-CONICET, National Academy of Medicine, Buenos Aires City, Argentina
| | - Ana Gamberale
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
| | - Noemí Yokobori
- National Institute of Infectious Diseases, ANLIS Carlos G. Malbrán, Buenos Aires City, Argentina
| | - Ana García
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
| | - Bruno Bartoletti
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
| | - Omar Aidar
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
| | - Beatriz López
- National Institute of Infectious Diseases, ANLIS Carlos G. Malbrán, Buenos Aires City, Argentina
| | - Victor Cruz
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
| | - Pablo González Montaner
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
- Vaccareza Institute, Buenos Aires City, Argentina
| | - Domingo J Palmero
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
- Vaccareza Institute, Buenos Aires City, Argentina
| | - Silvia de la Barrera
- Institute of Experimental Medicine (IMEX)-CONICET, National Academy of Medicine, Buenos Aires City, Argentina
| |
Collapse
|
29
|
Costa SO, Chaves WF, Lopes PKF, Silva IM, Burguer B, Ignácio-Souza LM, Torsoni AS, Milanski M, Rodrigues HG, Desai M, Ross MG, Torsoni MA. Maternal consumption of a high-fat diet modulates the inflammatory response in their offspring, mediated by the M1 muscarinic receptor. Front Immunol 2023; 14:1273556. [PMID: 38193079 PMCID: PMC10773672 DOI: 10.3389/fimmu.2023.1273556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction High-fat diet (HFD) consumption is associated with various metabolic disorders and diseases. Both pre-pregnancy and maternal obesity can have long-term consequences on offspring health. Furthermore, consuming an HFD in adulthood significantly increases the risk of obesity and metabolic disorders. However, an intriguing phenomenon known as the obesity paradox suggests that obesity may confer a protective effect on mortality outcomes in sepsis. In sepsis, activation of the cholinergic anti-inflammatory pathway (CAP) can help mitigate systemic inflammation. We employed a metabolic programming model to explore the relationship between maternal HFD consumption and offspring response to sepsis. Methods We fed female mice either a standard diet (SC) or an HFD during the pre-pregnancy, pregnancy, and lactation periods. Subsequently, we evaluated 28-day-old male offspring. Results Notably, we discovered that offspring from HFD-fed dams (HFD-O) exhibited a higher survival rate compared with offspring from SC-fed dams (SC-O). Importantly, inhibition of the m1 muscarinic acetylcholine receptor (m1mAChR), involved in the CAP, in the hypothalamus abolished this protection. The expression of m1mAChR in the hypothalamus was higher in HFD-O at different ages, peaking on day 28. Treatment with an m1mAChR agonist could modulate the inflammatory response in peripheral tissues. Specifically, CAP activation was greater in the liver of HFD-O following agonist treatment. Interestingly, lipopolysaccharide (LPS) challenge failed to induce a more inflammatory state in HFD-O, in contrast to SC-O, and agonist treatment had no additional effect. Analysis of spleen immune cells revealed a distinct phenotype in HFD-O, characterized by elevated levels of CD4+ lymphocytes rather than CD8+ lymphocytes. Moreover, basal Il17 messenger RNA (mRNA) levels were lower while Il22 mRNA levels were higher in HFD-O, and we observed the same pattern after LPS challenge. Discussion Further examination of myeloid cells isolated from bone marrow and allowed to differentiate showed that HFD-O macrophages displayed an anti-inflammatory phenotype. Additionally, treatment with the m1mAChR agonist contributed to reducing inflammatory marker levels in both groups. In summary, our findings demonstrate that HFD-O are protected against LPS-induced sepsis, and this protection is mediated by the central m1mAChR. Moreover, the inflammatory response in the liver, spleen, and bone marrow-differentiated macrophages is diminished. However, more extensive analysis is necessary to elucidate the specific mechanisms by which m1mAChR modulates the immune response during sepsis.
Collapse
Affiliation(s)
- Suleyma Oliveira Costa
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Wenicios Ferreira Chaves
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Iracema M. Silva
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Beatriz Burguer
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Leticia M. Ignácio-Souza
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Hosana Gomes Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Mina Desai
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA, United States
| | - Michael Glenn Ross
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA, United States
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
30
|
Wang X, Wei Y, He Z, Wang D, Zhang L, Du J, Zhang M, Jiang M, Chen N, Deng M, Li B, Song C, Chen D, Liu H, Xiao J, Liang H, Zhao H, Kong Y. CD70-induced differentiation of proinflammatory Th1/17/22/GM lymphocytes associated with disease progression and immune reconstitution during HIV infection. Emerg Microbes Infect 2023; 12:2271068. [PMID: 37824079 PMCID: PMC10606822 DOI: 10.1080/22221751.2023.2271068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Immune overactivation is a hallmark of chronic HIV infection, which is critical to HIV pathogenesis and disease progression. The imbalance of helper T cell (Th) differentiation and subsequent cytokine dysregulation are generally considered to be the major drivers of excessive activation and inflammatory disorders in HIV infection. However, the accurate factors driving HIV-associated Th changes remained to be established. CD70, which was a costimulatory molecule, was found to increase on CD4+ T cells during HIV infection. Overexpression of CD70 on CD4+ T cells was recently reported to associate with highly pathogenic proinflammatory Th1/Th17 polarization in multiple sclerosis. Thus, the role of CD70 in the imbalance of Th polarization and immune overactivation during HIV infection needs to be investigated. Here, we found that the elevated frequency of CD70 + CD4+ T cells was negatively correlated with CD4 count and positively associated with immune activation in treatment-naïve people living with HIV (PLWH). More importantly, CD70 expression defined a population of proinflammatory Th1/17/22/GM subsets in PLWH. Blocking CD70 decreased the mRNA expression of subset-specific markers during Th1/17/22/GM polarization. Furthermore, we demonstrated that CD70 influenced the differentiation of these Th cells through STAT pathway. Finally, it was revealed that patients with a high baseline level of CD70 on CD4+ T cells exhibited a greater risk of poor immune reconstitution after antiretroviral therapy (ART) than those with low CD70. In general, our data highlighted the role of CD70 in Th1/17/22/GM differentiation during HIV infection and provided evidence for CD70 as a potential biomarker for predicting immune recovery.
Collapse
Affiliation(s)
- Xinyue Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Yuqing Wei
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Zhijiao He
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Di Wang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Leidan Zhang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Mengyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Meiqing Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Na Chen
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Meiju Deng
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Bei Li
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Huan Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| | - Jiang Xiao
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hongyuan Liang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hongxin Zhao
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yaxian Kong
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, People’s Republic of China
| |
Collapse
|
31
|
Zielinski CE. T helper cell subsets: diversification of the field. Eur J Immunol 2023; 53:e2250218. [PMID: 36792132 DOI: 10.1002/eji.202250218] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Polarized T helper cell (Th cell) responses are important determinants of host protection. Th cell subsets tailor their functional repertoire of cytokines to their cognate antigens to efficiently contribute to their clearance. In contrast, in settings of immune abrogation, these polarized cytokine patterns of Th cells can mediate tissue damage and pathology resulting in allergy or autoimmunity. Recent technological developments in single-cell genomics and proteomics as well as advances in the high-dimensional bioinformatic analysis of complex datasets have challenged the prevailing Th cell subset classification into Th1, Th2, Th17, and other subsets. Additionally, systems immunology approaches have revealed that instructive input from the peripheral tissue microenvironment can have differential effects on the overall phenotype and molecular wiring of Th cells depending on their spatial distribution. Th cells from the blood or secondary lymphoid organs are therefore expected to follow distinct rules of regulation. In this review, the functional heterogeneity of Th cell subsets will be reviewed in the context of new technological developments and T-cell compartmentalization in tissue niches. This work will especially focus on challenges to the traditional boundaries of Th cell subsets and will discuss the underlying regulatory checkpoints, which could reveal new therapeutic strategies for various immune-mediated diseases.
Collapse
Affiliation(s)
- Christina E Zielinski
- Department of Infection Immunology, Leibniz Institute for Natural Products Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Faculty of Biosciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
32
|
Ayass MA, Tripathi T, Zhu K, Nair RR, Melendez K, Zhang J, Fatemi S, Okyay T, Griko N, Balcha Ghelan M, Pashkov V, Abi-Mosleh L. T helper (Th) cell profiles and cytokines/chemokines in characterization, treatment, and monitoring of autoimmune diseases. Methods 2023; 220:115-125. [PMID: 37967756 DOI: 10.1016/j.ymeth.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Autoimmune diseases (AD) consist of a spectrum of disease entities whose etiologies are very complex and still not well understood. Every individual has the potential for developing AD under appropriate conditions because the body contains lymphocytes that are potentially reactive with self-antigens. The aims of this study are to (1) explore the flow cytometry method to identify the frequency of various circulating CD4+ T helper (Th) cell-subsets, including Th1, Th2, Th9, Th17, Th17.1, and Th22; (2) In parallel, to examine multiplex ELISA method for pathogenic inflammatory cytokines/chemokines, and (3) To assess the correlation of expression of T cell-subsets with serum cytokines/chemokines and understand its clinical importance with available AD treatments. We analyzed Th17, Th17.1, Th22, Th2, Th1, and Th9 Th cell populations and compared the concentrations of 67 cytokines/chemokines in healthy as well as AD-diagnosed patients. We observed that patients with autoimmune markers had significantly elevated percentages of naïve (Th17, Th22, and Th9) as well as memory (Th17 and Th22) Th cell-subsets, along with increased concentrations of cytokines/chemokines (Eotaxin, TNFβ, and FABP4). The percentage of Th cell-subsets correlated positively or negatively with the production of cytokines/chemokines of patients diagnosed with AD. Our study demonstrates that the naïve and memory Th cell-subsets with positive correlations to cytokines/chemokines show new diagnostic markers to predict the patients' outcome, while the negative correlation of cytokines/chemokines shows the response to autoimmune therapies. Our findings of Th cell-subsets by flow cytometry and cytokines/chemokines by multiplex ELISA suggest that CCR6+ Th cell-subsets (Th17, Th17.1, Th22, and Th9) contribute to our understanding of the pathogenesis of AD and identify the new onset of AD from the autoimmune spectrum. Our findings highlight the importance of CCR6+ as a possible marker in the characterization, treatment, and monitoring of AD.
Collapse
Affiliation(s)
| | | | - Kevin Zhu
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | | | - Kristen Melendez
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | - Jin Zhang
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | | | - Tutku Okyay
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | - Natalya Griko
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | | | - Victor Pashkov
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | - Lina Abi-Mosleh
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA.
| |
Collapse
|
33
|
Afsar A, Chen M, Xuan Z, Zhang L. A glance through the effects of CD4 + T cells, CD8 + T cells, and cytokines on Alzheimer's disease. Comput Struct Biotechnol J 2023; 21:5662-5675. [PMID: 38053545 PMCID: PMC10694609 DOI: 10.1016/j.csbj.2023.10.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Unfortunately, despite numerous studies, an effective treatment for AD has not yet been established. There is remarkable evidence indicating that the innate immune mechanism and adaptive immune response play significant roles in the pathogenesis of AD. Several studies have reported changes in CD8+ and CD4+ T cells in AD patients. This mini-review article discusses the potential contribution of CD4+ and CD8+ T cells reactivity to amyloid β (Aβ) protein in individuals with AD. Moreover, this mini-review examines the potential associations between T cells, heme oxygenase (HO), and impaired mitochondria in the context of AD. While current mathematical models of AD have not extensively addressed the inclusion of CD4+ and CD8+ T cells, there exist models that can be extended to consider AD as an autoimmune disease involving these T cell types. Additionally, the mini-review covers recent research that has investigated the utilization of machine learning models, considering the impact of CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Min Chen
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
34
|
Xie L, Fang J, Yu J, Zhang W, He Z, Ye L, Wang H. The role of CD4 + T cells in tumor and chronic viral immune responses. MedComm (Beijing) 2023; 4:e390. [PMID: 37829505 PMCID: PMC10565399 DOI: 10.1002/mco2.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapies are mainly aimed to promote a CD8+ T cell response rather than a CD4+ T cell response as cytotoxic T lymphocytes (CTLs) can directly kill target cells. Recently, CD4+ T cells have received more attention due to their diverse roles in tumors and chronic viral infections. In antitumor and antichronic viral responses, CD4+ T cells relay help signals through dendritic cells to indirectly regulate CD8+ T cell response, interact with B cells or macrophages to indirectly modulate humoral immunity or macrophage polarization, and inhibit tumor blood vessel formation. Additionally, CD4+ T cells can also exhibit direct cytotoxicity toward target cells. However, regulatory T cells exhibit immunosuppression and CD4+ T cells become exhausted, which promote tumor progression and chronic viral persistence. Finally, we also outline immunotherapies based on CD4+ T cells, including adoptive cell transfer, vaccines, and immune checkpoint blockade. Overall, this review summarizes diverse roles of CD4+ T cells in the antitumor or protumor and chronic viral responses, and also highlights the immunotherapies based on CD4+ T cells, giving a better understanding of their roles in tumors and chronic viral infections.
Collapse
Affiliation(s)
- Luoyingzi Xie
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingyi Fang
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Juncheng Yu
- Department of Thoracic SurgeryXinqiao Hospital Third Military Medical University (Army Medical University)ChongqingChina
| | - Weinan Zhang
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Zhiqiang He
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Lilin Ye
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
| |
Collapse
|
35
|
Ogg GS, Rossjohn J, Clark RA, Moody DB. CD1a and bound lipids drive T-cell responses in human skin disease. Eur J Immunol 2023; 53:e2250333. [PMID: 37539748 PMCID: PMC10592190 DOI: 10.1002/eji.202250333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
In addition to serving as the main physical barrier with the outside world, human skin is abundantly infiltrated with resident αβ T cells that respond differently to self, infectious, microbiome, and noxious stimuli. To study skin T cells during infection and inflammation, experimental biologists track T-cell surface phenotypes and effector functions, which are often interpreted with the untested assumption that MHC proteins and peptide antigens drive measured responses. However, a broader perspective is that CD1 proteins also activate human T cells, and in skin, Langerhans cells (LCs) are abundant antigen presenting cells that express extremely high levels of CD1a. The emergence of new experimental tools, including CD1a tetramers carrying endogenous lipids, now show that CD1a-reactive T cells comprise a large population of resident T cells in human skin. Here, we review studies showing that skin-derived αβ T cells directly recognize CD1a proteins, and certain bound lipids, such as contact dermatitis allergens, trigger T-cell responses. Other natural skin lipids inhibit CD1a-mediated T-cell responses, providing an entry point for the development of therapeutic lipids that block T-cell responses. Increasing evidence points to a distinct role of CD1a in type 2 and 22 T-cell responses, providing new insights into psoriasis, contact dermatitis, and other T-cell-mediated skin diseases.
Collapse
Affiliation(s)
- Graham S. Ogg
- Medical Research Council Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Rachael A. Clark
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School
| |
Collapse
|
36
|
Lin S, Xu Z, Lin Z, Xie B, Feng J. Advances in pathogenesis and treatment of ocular involvement in Behcet's disease. Front Immunol 2023; 14:1206959. [PMID: 37841268 PMCID: PMC10570607 DOI: 10.3389/fimmu.2023.1206959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Behcet's disease (BD) is a chronic multi-systemic disease characterized by relapsing-remitting oral ulcers, genital ulcers, ocular inflammatory involvements, and numerous other systemic features. Ocular involvements are quite common in BD and may cause severe tissue damage and potentially blindness. Even though the pathogenesis of BD remains ambiguous, growing evidences have shown that genetic factors, environmental triggers and immunological abnormalities play significant roles in its development and progression. Novel biotherapies targeting IFN-γ, TNF-α and interleukins have been used in recent years. In this review, we mainly pay attention to the ocular involvement of BD, and discuss the current understanding of mechanisms and advances in therapeutic approaches, especially novel biologics. Finally, we discuss the management in patients with pregnancy.
Collapse
Affiliation(s)
- Suibin Lin
- Department of Gynaecology and Obstetrics, Zhangpu Hospital, Zhangzhou, China
| | - Zhirong Xu
- Department of Internal Medicine, Zhangpu Hospital, Zhangzhou, China
| | - Zhiming Lin
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Baozhao Xie
- Department of Rheumatology and Immunology, the Seventh Affiliated Hospital of Guangxi Medical University (Wuzhou Gongren Hospital), Wuzhou, China
| | - Junmei Feng
- Department of Rheumatology and Immunology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Rheumatology and Immunology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Seth P, Dubey S. IL-22 as a target for therapeutic intervention: Current knowledge on its role in various diseases. Cytokine 2023; 169:156293. [PMID: 37441942 DOI: 10.1016/j.cyto.2023.156293] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
IL-22 has emerged as a crucial cytokine mediating protective response against pathogens and tissue regeneration. Dysregulated production of IL-22 has been shown to play a pivotal role in the pathogenesis of various diseases like malignant tumours, viral, cardiovascular, allergic and autoimmune disorders. Interleukin 22 belongs to IFN-IL-10 cytokine family. It is a major proinflammatory cytokine secreted by activated Th1 cells (Th22), though can also be secreted by many other immune cells like group 3 innate lymphocytes, γδ T cells, NK cells, NK T cells, and mucosal associated invariant T cells. Th22 cells exclusively release IL-22 but not IL-17 or IFN-γ (as Th1 cells releases IFN-γ along with IL-22 and Th17 cells releases IL-17 along with IL-22) and also express aryl hydrocarbon receptor as the key transcription factor. Th22 cells also exhibit expression of chemokine receptor CCR6 and skin-homing receptors CCR4 and CCR10 indicating the involvement of this subset in bolstering epithelial barrier immunity and promoting secretion of antimicrobial peptides (AMPs) from intestinal epithelial cells. The function of IL-22 is modulated by IL-22 binding protein (binds to IL-22 and inhibits it binding to its cell surface receptor); which serves as a competitor for IL-22R1 chain of IL-22 receptor. The pathogenic and protective nature of the Th22 cells is modulated both by the site of infected tissue and the type of disease pathology. This review aims to discuss key features of IL-22 biology, comparisons between IL and 22 and IFN-γ and its role as a potential immune therapy target in different maladies.
Collapse
Affiliation(s)
- Pranav Seth
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Shweta Dubey
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India.
| |
Collapse
|
38
|
Erdő-Bonyár S, Simon D, Bajnok A, Nörenberg J, Serény-Litvai T, Várnagy Á, Kovács K, Hantosi E, Mezősi E, Berki T. Physiological Changes in the Levels of Anti-Cytokine Autoantibodies in Early Pregnancy Are Missing in Pregnant Women with Hashimoto's Thyroiditis. J Immunol Res 2023; 2023:5221658. [PMID: 37663050 PMCID: PMC10473897 DOI: 10.1155/2023/5221658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
T helper type 1 (Th1) and inflammatory cytokines play essential roles in early pregnancy and also in the pathogenesis of Hashimoto's thyroiditis (HT). Changes in the serum level of autoantibodies to cytokines, which may be able to modulate their availability and actions have been described in several autoimmune disorders. Yet, no data are available on anti-cytokine autoantibodies either during early pregnancy or in patients with HT. The aim of the study was to measure autoantibodies to inflammatory-, Th1- and Th22-cytokines in serum samples in healthy pregnancy (HP) and in pregnant women with HT (HTP). As pathological autoantibodies are hallmarks of HT, in addition we also measured anti-B-cell activator factor (BAFF) autoantibodies. The measurement was carried out with a Luminex multiplex assay and the Luminex MAGPIX Instrument, age-matched healthy women (HC) and women with HT (HT) were used as controls. In the first trimester of HP, anti-TNFα, anti-IL-8, and anti-IFNγ autoantibodies were significantly decreased, while autoantibodies to BAFF were significantly elevated compared to the HC. However, these alterations were not present in the HTP. Moreover, the levels of autoantibodies to IL-22 and TNFα were significantly increased in HTP compared to the HP. All differences in the levels of the investigated autoantibodies could be detected in the first trimester of pregnancies except for anti-IL-22 autoantibodies. According to our results we can conclude that alterations in the levels of autoantibodies to inflammatory and Th1 cytokines are physiological in the first trimester of pregnancy and their disturbance can be associated with autoimmune conditions such as HT.
Collapse
Affiliation(s)
- Szabina Erdő-Bonyár
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
| | - Diána Simon
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
| | - Anna Bajnok
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Obstetrics and Gynecology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Jasper Nörenberg
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Obstetrics and Gynecology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Tímea Serény-Litvai
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ákos Várnagy
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Obstetrics and Gynecology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Kálmán Kovács
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- Department of Obstetrics and Gynecology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Eszter Hantosi
- Department of Obstetrics and Gynecology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Emese Mezősi
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
- First Department of Internal Medicine, Clinical Center, University of Pécs Medical School, Pécs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
| |
Collapse
|
39
|
Chu YT, Liao MT, Tsai KW, Lu KC, Hu WC. Interplay of Chemokines Receptors, Toll-like Receptors, and Host Immunological Pathways. Biomedicines 2023; 11:2384. [PMID: 37760825 PMCID: PMC10525553 DOI: 10.3390/biomedicines11092384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
A comprehensive framework has been established for understanding immunological pathways, which can be categorized into eradicated and tolerable immune responses. Toll-like receptors (TLRs) are associated with specific immune responses. TH1 immunity is related to TLR7, TLR8, and TLR9, while TH2 immunity is associated with TLR1, TLR2, and TLR6. TH22 immunity is linked to TLR2, TLR4, and TLR5, and THαβ (Tr1) immunity is related to TLR3, TLR7, and TLR9. The chemokine receptor CXCR5 is a marker of follicular helper T cells, and other chemokine receptors can also be classified within a framework based on host immunological pathways. On the basis of a literature review on chemokines and immunological pathways, the following associations were identified: CCR5 with TH1 responses, CCR1 with TH1-like responses, CCR4 (basophils) and CCR3 (eosinophils) with TH2 and TH9 responses, CCR10 with TH22 responses, CCR6 with TH17 responses, CXCR3 with THαβ responses, CCR8 with regulatory T cells (Treg), and CCR2 with TH3 responses. These findings contribute to the identification of biomarkers for immune cells and provide insights into host immunological pathways. Understanding the chemokine and Toll-like receptor system is crucial for comprehending the function of the innate immune system, as well as adaptive immune responses.
Collapse
Affiliation(s)
- Yuan-Tung Chu
- Department of Anatomic Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu 300, Taiwan;
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (K.-W.T.); (K.-C.L.)
| | - Kuo-Cheng Lu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (K.-W.T.); (K.-C.L.)
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Wan-Chung Hu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (K.-W.T.); (K.-C.L.)
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Department of Biotechnology, Ming Chuan University, Taoyuan 333, Taiwan
| |
Collapse
|
40
|
Chen J, Yao J. Th22 cells and the intestinal mucosal barrier. Front Immunol 2023; 14:1221068. [PMID: 37646028 PMCID: PMC10461049 DOI: 10.3389/fimmu.2023.1221068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023] Open
Abstract
T-helper 22 (Th22) cells represent a novel subset of CD4+ T cells that exhibit distinctive characteristics, namely the secretion of IL-22 while abstaining from secreting IL-17 and interferon-γ (IFN-γ). These cells serve as the primary source of IL-22, and both Th22 cells and IL-22 are believed to play a role in maintaining intestinal mucosal homeostasis in inflammatory bowel disease (IBD). However, the precise functions of Th22 cells and IL-22 in this context remain a subject of debate. In this work, we aimed to elucidate their impact on the integrity of the intestinal mucosal barrier by presenting an overview of the molecular structure characteristics and functional effects of Th22 cells and IL-22. Furthermore, we would explore targeted treatment approaches and potential therapeutic strategies focusing on the Th22 and IL-22 pathways.
Collapse
Affiliation(s)
- Jieli Chen
- Department of Gastroenterology, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
41
|
Sun L, Wang L, Moore BB, Zhang S, Xiao P, Decker AM, Wang HL. IL-17: Balancing Protective Immunity and Pathogenesis. J Immunol Res 2023; 2023:3360310. [PMID: 37600066 PMCID: PMC10439834 DOI: 10.1155/2023/3360310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The biological role of interleukin 17 (IL-17) has been explored during recent decades and identified as a pivotal player in coordinating innate and adaptive immune responses. Notably, IL-17 functions as a double-edged sword with both destructive and protective immunological roles. While substantial progress has implicated unrestrained IL-17 in a variety of infectious diseases or autoimmune conditions, IL-17 plays an important role in protecting the host against pathogens and maintaining physiological homeostasis. In this review, we describe canonical IL-17 signaling mechanisms promoting neutrophils recruitment, antimicrobial peptide production, and maintaining the epithelium barrier integrity, as well as some noncanonical mechanisms involving IL-17 that elicit protective immunity.
Collapse
Affiliation(s)
- Lu Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Lufei Wang
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill School of Dentistry, Chapel Hill, NC, USA
| | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Shaoping Zhang
- Department of Periodontics, University of Iowa College of Dentistry, Iowa, IA, USA
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Immunological Disease Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ann M. Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
42
|
Geng Y, Liu Z, Hu R, Ma W, Wu X, Dong H, Song K, Xu X, Huang Y, Li F, Song Y, Zhang M. Opportunities and challenges: interleukin-22 comprehensively regulates polycystic ovary syndrome from metabolic and immune aspects. J Ovarian Res 2023; 16:149. [PMID: 37525285 PMCID: PMC10388558 DOI: 10.1186/s13048-023-01236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is known as a prevalent but complicated gynecologic disease throughout the reproductive period. Typically, it is characterized by phenotypic manifestations of hyperandrogenism, polycystic ovary morphology, and persistent anovulation. For now, the therapeutic modality of PCOS is still a formidable challenge. Metabolic aberrations and immune challenge of chronic low-grade inflammatory state are significant in PCOS individuals. Recently, interleukin-22 (IL-22) has been shown to be therapeutically effective in immunological dysfunction and metabolic diseases, which suggests a role in the treatment of PCOS. In this review, we outline the potential mechanisms and limitations of IL-22 therapy in PCOS-related metabolic disorders including its regulation of insulin resistance, gut barrier, systemic inflammation, and hepatic steatosis to generate insights into developing novel strategies in clinical practice.
Collapse
Affiliation(s)
- Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Wenwen Ma
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xiao Wu
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Haoxu Dong
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Kunkun Song
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xiaohu Xu
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Mingmin Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| |
Collapse
|
43
|
Zheng Z, Wieder T, Mauerer B, Schäfer L, Kesselring R, Braumüller H. T Cells in Colorectal Cancer: Unravelling the Function of Different T Cell Subsets in the Tumor Microenvironment. Int J Mol Sci 2023; 24:11673. [PMID: 37511431 PMCID: PMC10380781 DOI: 10.3390/ijms241411673] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Therapeutic options for metastatic colorectal cancer (mCRC) are very limited, and the prognosis using combination therapy with a chemotherapeutic drug and a targeted agent, e.g., epidermal growth factor receptor or tyrosine kinase, remains poor. Therefore, mCRC is associated with a poor median overall survival (mOS) of only 25-30 months. Current immunotherapies with checkpoint inhibitor blockade (ICB) have led to a substantial change in the treatment of several cancers, such as melanoma and non-small cell lung cancer. In CRC, ICB has only limited effects, except in patients with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) tumors, which comprise about 15% of sporadic CRC patients and about 4% of patients with metastatic CRC. The vast majority of sporadic CRCs are microsatellite-stable (MSS) tumors with low levels of infiltrating immune cells, in which immunotherapy has no clinical benefit so far. Immunotherapy with checkpoint inhibitors requires the presence of infiltrating T cells into the tumor microenvironment (TME). This makes T cells the most important effector cells in the TME, as evidenced by the establishment of the immunoscore-a method to estimate the prognosis of CRC patients. The microenvironment of a tumor contains several types of T cells that are anti-tumorigenic, such as CD8+ T cells or pro-tumorigenic, such as regulatory T cells (Tregs) or T helper 17 (Th17) cells. However, even CD8+ T cells show marked heterogeneity, e.g., they can become exhausted, enter a state of hyporesponsiveness or become dysfunctional and express high levels of checkpoint molecules, the targets for ICB. To kill cancer cells, CD8+ T cells need the recognition of the MHC class I, which is often downregulated on colorectal cancer cells. In this case, a population of unconventional T cells with a γδ T cell receptor can overcome the limitations of the conventional CD8+ T cells with an αβT cell receptor. γδ T cells recognize antigens in an MHC-independent manner, thus acting as a bridge between innate and adaptive immunity. Here, we discuss the effects of different T cell subsets in colorectal cancer with a special emphasis on γδ T cells and the possibility of using them in CAR-T cell therapy. We explain T cell exclusion in microsatellite-stable colorectal cancer and the possibilities to overcome this exclusion to enable immunotherapy even in these "cold" tumors.
Collapse
Affiliation(s)
- Ziwen Zheng
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Wieder
- Department of Vegetative and Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Bernhard Mauerer
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Luisa Schäfer
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Rebecca Kesselring
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Heidi Braumüller
- Department of General and Visceral Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
44
|
Corripio-Miyar Y, MacLeod CL, Mair I, Mellanby RJ, Moore BD, McNeilly TN. Self-Adjuvanting Calcium-Phosphate-Coated Microcrystal-Based Vaccines Induce Pyroptosis in Human and Livestock Immune Cells. Vaccines (Basel) 2023; 11:1229. [PMID: 37515044 PMCID: PMC10385459 DOI: 10.3390/vaccines11071229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Successful vaccines require adjuvants able to activate the innate immune system, eliciting antigen-specific immune responses and B-cell-mediated antibody production. However, unwanted secondary effects and the lack of effectiveness of traditional adjuvants has prompted investigation into novel adjuvants in recent years. Protein-coated microcrystals modified with calcium phosphate (CaP-PCMCs) in which vaccine antigens are co-immobilised within amino acid crystals represent one of these promising self-adjuvanting vaccine delivery systems. CaP-PCMCs has been shown to enhance antigen-specific IgG responses in mouse models; however, the exact mechanism of action of these microcrystals is currently unclear. Here, we set out to investigate this mechanism by studying the interaction between CaP-PCMCs and mammalian immune cells in an in vitro system. Incubation of cells with CaP-PCMCs induced rapid pyroptosis of peripheral blood mononuclear cells and monocyte-derived dendritic cells from cattle, sheep and humans, which was accompanied by the release of interleukin-1β and the activation of Caspase-1. We show that this pyroptotic event was cell-CaP-PCMCs contact dependent, and neither soluble calcium nor microcrystals without CaP (soluble PCMCs) induced pyroptosis. Our results corroborate CaP-PCMCs as a promising delivery system for vaccine antigens, showing great potential for subunit vaccines where the enhancement or find tuning of adaptive immunity is required.
Collapse
Affiliation(s)
| | - Clair Lyle MacLeod
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Iris Mair
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Richard J Mellanby
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, UK
| | - Barry D Moore
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| |
Collapse
|
45
|
Hassanzadeh Y, Yaghobi R, Pakzad P, Geramizadeh B. Decreased frequency of Th22 cells and IL-22 cytokine in kidney transplant patients with active cytomegalovirus infection. BMC Immunol 2023; 24:18. [PMID: 37403036 PMCID: PMC10318775 DOI: 10.1186/s12865-023-00555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/29/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The immunity of CD4+ T cell subsets against human cytomegalovirus (HCMV) is considerable due to their essential role in controlling the infection in transplant individuals. Previously explained CD4+ subsets such as T helper (Th) 1 have been proven to have a protective role against HCMV infection, while the role of the recently identified Th22 subset has not been described yet. Here, the frequency changes of Th22 cells and the IL-22 cytokine production were investigated in kidney transplant recipients with and without HCMV infection. METHODS Twenty kidney transplant patients and ten healthy controls were enrolled in this study. Patients were categorized into HCMV + and HCMV- groups based on the HCMV DNA real-time PCR results. After isolating CD4+ T cells from PBMCs, the phenotype (CCR6+CCR4+CCR10+) and cytokine profile (IFN-γ-IL-17-IL-22+) of Th22 cells were analyzed by flow cytometry. The gene expression of Aryl Hydrocarbon Receptor (AHR) transcription factor was analyzed by real-time PCR. RESULTS The phenotype frequency of these cells was lower in recipients with infection than in those without infection and healthy controls (1.88 ± 0.51 vs. 4.31 ± 1.05; P = 0.03 and 4.22 ± 0.72; P = 0.01, respectively). A lower Th22 cytokine profile was observed in patients with infection than in the two other groups (0.18 ± 0.03 vs. 0.20 ± 0.03; P = 0.96 and 0.33 ± 0.05; P = 0.04, respectively). AHR expression was also lower in patients with active infection. CONCLUSIONS Overall, this study for the first time suggests that the reduced levels of Th22 subset and IL-22 cytokine in patients with active HCMV infection might indicate the protective role of these cells against HCMV.
Collapse
Affiliation(s)
- Yashgin Hassanzadeh
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parviz Pakzad
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Bita Geramizadeh
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
46
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 311] [Impact Index Per Article: 155.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
47
|
Yang Z, Zhang J, Zhu Y, Zhang C, Li G, Liu S, Du J, Han Y, You B. IL-17A induces valvular endothelial inflammation and aggravates calcific aortic valve disease. Biochem Biophys Res Commun 2023; 672:145-153. [PMID: 37354607 DOI: 10.1016/j.bbrc.2023.04.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 06/26/2023]
Abstract
Calcific aortic valve disease (CAVD) is an aging related disease characterized by inflammation and fibrocalcific remodeling. IL-17A is a key cytokine associated with pathophysiology of inflammatory and fibrotic disease. Previous studies showed accumulation of IL-17A-producing T helper lymphocytes in human calcified aortic valves and significantly elevated IL-17RA expression in calcified valves. However, the role of IL-17A signaling in the initiation and development of CAVD is still unclear. In this study, by analyzing public transcriptome databases, we found that IL-17A-IL-17RA signaling is activated in calcified valves. Gene expression analysis revealed significantly increased IL-17A, IL-17RA, and RUNX2 expression in calcified human aortic valves compared to in non-calcified valves, and the expression of IL-17A and IL-17RA were positively correlated with RUNX2 expression. A 5/6 nephrectomy was performed in Apoe-/- (Apoe knockout) mice to establish a CAVD mouse model. IL-17A-neutralizing antibodies significantly reduced valve calcium deposition and decreased expression of RUNX2 in aortic valves. Immunofluorescence staining of human aortic valves and qRT-PCR analysis of primary aortic valve cells revealed abundant expression of IL-17RA in valvular endothelial cells (VECs). RNA sequencing indicated that IL-17A promoted the activation of inflammatory signaling pathways in VECs. Furthermore, qRT-PCR and cytometric bead array analysis confirmed that IL-17A promoted the expression or secretion of inflammatory cytokines IL-6 and IL-1β, chemokines CXCL2 and CXCL8, and fibrosis-related gene COL16A1. Our findings indicate that elevated IL-17A in CAVD may promote valve inflammation, fibrosis, and calcification by inducing endothelial activation and inflammation. Targeting IL-17A-IL-17RA signaling may be a potential therapeutic strategy for CAVD.
Collapse
Affiliation(s)
- Zhao Yang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Jichao Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yuexin Zhu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Guang Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Shuo Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yingchun Han
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China.
| | - Bin You
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China.
| |
Collapse
|
48
|
He K, Yan X, Wu D. Intestinal Behcet's Disease: A Review of the Immune Mechanism and Present and Potential Biological Agents. Int J Mol Sci 2023; 24:8176. [PMID: 37175882 PMCID: PMC10179024 DOI: 10.3390/ijms24098176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Behcet's disease (BD) is a chronic and recurrent systemic vasculitis involving almost all organs and tissues. Intestinal BD is defined as BD with predominant gastrointestinal involvement, presenting severe complications such as massive gastrointestinal hemorrhage, perforation, and obstruction in some cases. To some extent, intestinal BD is classified as a member of inflammatory bowel disease (IBD), as it has a lot in common with classical IBD including Crohn's disease (CD) and ulcerative colitis (UC). Certainly, the underlying pathogenesis is not the same and dysregulation of immune function is believed to be one of the main pathogeneses in intestinal BD, although the etiology has not been clear up to now. Biological agents are an emerging category of pharmaceuticals for various diseases, including inflammatory diseases and cancers, in recent decades. Based on the deep understanding of the immune mechanism of intestinal BD, biological agents targeting potential pathogenic cells, cytokines and pathways are optimized options. Recently, the adoption of biological agents such as anti-tumor necrosis factor agents has allowed for the effective treatment of patients with refractory intestinal BD who show poor response to conventional medications and are faced with the risk of surgical treatment. In this review, we have tried to summarize the immune mechanism and present potential biological agents of intestinal BD.
Collapse
Affiliation(s)
- Kun He
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaxiao Yan
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
49
|
Wang LY, Yang XY, Wu YP, Fan YC. IL-22-producing CD3 + CD8- T cells increase in immune clearance stage of chronic HBV infection and correlate with the response of Peg-interferon treatment. Clin Immunol 2023; 250:109320. [PMID: 37019423 DOI: 10.1016/j.clim.2023.109320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Interleukin (IL)-22 regulates host defense. This study investigated the predominant IL-22-producing cell subsets under HBV associated immune stages. We found circulating IL-22-producing CD3 + CD8- T cells were significantly increased in immune active (IA) stage than those in immunotolerant stage, inactive carrier and healthy controls (HCs). The plasma IL-22 level was higher in IA and HBeAg-negative CHB compared to HCs. Importantly, CD3 + CD8- T cells were identified as the predominant source of plasma IL-22 production. Up-regulated IL-22-producing CD3 + CD8- T cells obviously correlated with the grade of intrahepatic inflammation. The proportions of IL-22-producing CD3 + CD8- T cells were significantly down-regulated after 48 weeks of Peg-interferon treatment, and the differences were of great significance in patients with normalize ALT levels at 48 weeks, rather than those with elevated ALT levels. In conclusion, IL-22 might play a proinflammatory function in. chronic HBV infected patients with active inflammation and Peg-interferon treatment could attenuate the degree of liver inflammation through down-regulating IL-22-producing CD3 + CD8- T cells.
Collapse
Affiliation(s)
- Li-Yuan Wang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xue-Yan Yang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yin-Ping Wu
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
50
|
Kudryavtsev I, Zinchenko Y, Starshinova A, Serebriakova M, Malkova A, Akisheva T, Kudlay D, Glushkova A, Yablonskiy P, Shoenfeld Y. Circulating Regulatory T Cell Subsets in Patients with Sarcoidosis. Diagnostics (Basel) 2023; 13:1378. [PMID: 37189479 PMCID: PMC10137313 DOI: 10.3390/diagnostics13081378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Over recent years, many researchers have supported the autoimmune theory of sarcoidosis. The presence of uncontrolled inflammatory response on local and system levels in patients with sarcoidosis did not define that the immunoregulatory mechanisms could be affected. The aim of this study was to evaluate the distribution and the disturbance circulating Treg cell subsets in the peripheral blood in patients with sarcoidosis. MATERIALS AND METHODS A prospective comparative study was performed in 2016-2018 (34 patients with sarcoidosis (men (67.6%), women (32.3%)) were examined). Healthy subjects-the control group (n = 40). The diagnosis of pulmonary sarcoidosis was performed according to the standard criteria. We used two ten-color combinations of antibodies for Treg immunophenotyping. The first one contained CD39-FITC, CD127-PE, CCR4-PE/Dazzle™ 594, CD25-PC5.5, CD161-PC7, CD4-APC, CD8-APC-AF700, CD3-APC/Cy7, HLA-DR-PacBlue, and CD45 RA-BV 510™, while the second consisted of CXCR3-Alexa Fluor 488, CD25-РЕ, CXCR5-РЕ/Dazzle™ 594, CCR4-PerСP/Сy5.5, CCR6-РЕ/Cy7, CD4-АPC, CD8 АPC-AF700, CD3-АPC/Cy7, CCR7-BV 421, and CD45 RA-BV 510. The flow cytometry data were analyzed by using Kaluza software v2.3. A statistical analysis was performed with Statistica 7.0 and GraphPad Prism 8 software packages. RESULTS OF THE STUDY Primarily, we found that patients with sarcoidosis had decreased absolute numbers of Treg cells in circulation. We noted that the level of CCR7-expressing Tregs decreased in patients with sarcoidosis vs. the control group (65.55% (60.08; 70.60) vs. 76.93% (69.59; 79.86) with p < 0.001). We noticed that the relative numbers of CD45RA-CCR7+ Tregs decreased in patients with sarcoidosis (27.11% vs. 35.43%, p < 0.001), while the frequency of CD45 RA-CCR7- and CD45RA+ CCR7- Tregs increased compared to the control group (33.3% vs. 22.73% and 0.76% vs. 0.51% with p < 0.001 and p = 0.028, respectively). CXCR3-expressing Treg cell subsets-Th1-like CCR60078CXCR3+ Tregs and Th17.1-like CCR6+ CXCR3+ Tregs-significantly increased in patients with sarcoidosis vs. the control group (14.4% vs. 10.5% with p < 0.01 and 27.9% vs. 22.8% with p < 0.01, respectively). Furthermore, the levels of peripheral blood EM Th17-like Tregs significantly decreased in the sarcoidosis group vs. the control group (36.38% vs. 46.70% with p < 0.001). Finally, we found that CXCR5 expression was increased in CM Tregs cell subsets in patients with sarcoidosis. CONCLUSIONS Our data indicated a decrease in circulating Tregs absolute numbers and several alterations in Treg cell subsets. Moreover, our results highlight the presence of increased levels of CM CXCR5+ follicular Tregs in the periphery that could be linked with the imbalance of follicular Th cell subsets and alterations in B cell, based on the immune response. The balance between the two functionally distinct Treg cell populations-Th1-like and Th17-like Tregs-could be used in sarcoidosis diagnosis and the determination of prognosis and disease outcomes. Furthermore, we want to declare that analysis of Treg numbers of phenotypes could fully characterize their functional activity in peripherally inflamed tissues.
Collapse
Affiliation(s)
- Igor Kudryavtsev
- Department of Immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Yulia Zinchenko
- Phthisiopulmonology Department, St. Petersburg Research Institute of Phthisiopulmonology, 194064 St. Petersburg, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Maria Serebriakova
- Department of Immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Anna Malkova
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Tatiana Akisheva
- Department of Immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Dmitriy Kudlay
- Department of Pharmacology, Sechenov First Moscow State Medical University, 119992 Moscow, Russia
- Institute of Immunology, 115552 Moscow, Russia
| | - Anzhela Glushkova
- Bekhterev National Research Medical Center for Psychiatry and Neurology, 19201 St. Petersburg, Russia
| | - Piotr Yablonskiy
- Phthisiopulmonology Department, St. Petersburg Research Institute of Phthisiopulmonology, 194064 St. Petersburg, Russia
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Yehuda Shoenfeld
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, 199034 St. Petersburg, Russia
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer 5265601, Israel
| |
Collapse
|