1
|
Su F, Su M, Wei W, Wu J, Chen L, Sun X, Liu M, Sun S, Mao R, Bourgonje AR, Hu S. Integrating multi-omics data to reveal the host-microbiota interactome in inflammatory bowel disease. Gut Microbes 2025; 17:2476570. [PMID: 40063366 PMCID: PMC11901428 DOI: 10.1080/19490976.2025.2476570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Numerous studies have accelerated the knowledge expansion on the role of gut microbiota in inflammatory bowel disease (IBD). However, the precise mechanisms behind host-microbe cross-talk remain largely undefined, due to the complexity of the human intestinal ecosystem and multiple external factors. In this review, we introduce the interactome concept to systematically summarize how intestinal dysbiosis is involved in IBD pathogenesis in terms of microbial composition, functionality, genomic structure, transcriptional activity, and downstream proteins and metabolites. Meanwhile, this review also aims to present an updated overview of the relevant mechanisms, high-throughput multi-omics methodologies, different types of multi-omics cohort resources, and computational methods used to understand host-microbiota interactions in the context of IBD. Finally, we discuss the challenges pertaining to the integration of multi-omics data in order to reveal host-microbiota cross-talk and offer insights into relevant future research directions.
Collapse
Affiliation(s)
- Fengyuan Su
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng Su
- The First Clinical Medical School, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenting Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiayun Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Leyan Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiqiao Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Moyan Liu
- Amsterdam UMC location Academic Medical Center, Department of Experimental Vascular Medicine, Amsterdam, The Netherlands
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Wang H, Han J, Zhang XA. Interplay of m6A RNA methylation and gut microbiota in modulating gut injury. Gut Microbes 2025; 17:2467213. [PMID: 39960310 PMCID: PMC11834532 DOI: 10.1080/19490976.2025.2467213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
The gut microbiota undergoes continuous variations among individuals and across their lifespan, shaped by diverse factors encompassing diet, age, lifestyle choices, medication intake, and disease states. These microbial inhabitants play a pivotal role in orchestrating physiological metabolic pathways through the production of metabolites like bile acids, choline, short-chain fatty acids, and neurotransmitters, thereby establishing a dynamic "gut-organ axis" with the host. The intricate interplay between the gut microbiota and the host is indispensable for gut health, and RNA N6-methyladenosine modification, a pivotal epigenetic mark on RNA, emerges as a key player in this process. M6A modification, the most prevalent internal modification of eukaryotic RNA, has garnered significant attention in the realm of RNA epigenetics. Recent findings underscore its potential to influence gut microbiota diversity and intestinal barrier function by modulating host gene expression patterns. Conversely, the gut microbiota, through its impact on the epigenetic landscape of host cells, may indirectly regulate the recruitment and activity of RNA m6A-modifying enzymes. This review endeavors to delve into the biological functions of m6A modification and its consequences on intestinal injury and disease pathogenesis, elucidating the partial possible mechanisms by which the gut microbiota and its metabolites maintain host intestinal health and homeostasis. Furthermore, it also explores the intricate crosstalk between them in intestinal injury, offering a novel perspective that deepens our understanding of the mechanisms underlying intestinal diseases.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
3
|
Li J, Ma Y, Cao Y, Zheng G, Ren Q, Chen C, Zhu Q, Zhou Y, Lu Y, Zhang Y, Deng C, Chen WH, Su J. Integrating microbial GWAS and single-cell transcriptomics reveals associations between host cell populations and the gut microbiome. Nat Microbiol 2025; 10:1210-1226. [PMID: 40195537 DOI: 10.1038/s41564-025-01978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025]
Abstract
Microbial genome-wide association studies (GWAS) have uncovered numerous host genetic variants associated with gut microbiota. However, links between host genetics, the gut microbiome and specific cellular contexts remain unclear. Here we use a computational framework, scBPS (single-cell Bacteria Polygenic Score), to integrate existing microbial GWAS and single-cell RNA-sequencing profiles of 24 human organs, including the liver, pancreas, lung and intestine, to identify host tissues and cell types relevant to gut microbes. Analysing 207 microbial taxa and 254 host cell types, scBPS-inferred cellular enrichments confirmed known biology such as dominant communications between gut microbes and the digestive tissue module and liver epithelial cell compartment. scBPS also identified a robust association between Collinsella and the central-veinal hepatocyte subpopulation. We experimentally validated the causal effects of Collinsella on cholesterol metabolism in mice through single-nuclei RNA sequencing on liver tissue to identify relevant cell subpopulations. Mechanistically, oral gavage of Collinsella modulated cholesterol pathway gene expression in central-veinal hepatocytes. We further validated our approach using independent microbial GWAS data, alongside single-cell and bulk transcriptomic analyses, demonstrating its robustness and reproducibility. Together, scBPS enables a systematic mapping of the host-microbe crosstalk by linking cell populations to their interacting gut microbes.
Collapse
Affiliation(s)
- Jingjing Li
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yunlong Ma
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yue Cao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Gongwei Zheng
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qing Ren
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Cheng Chen
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qunyan Zhu
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yijun Zhou
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yu Lu
- The Second School of Clinical Medicine, Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
| | - Yaru Zhang
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chunyu Deng
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- The Second School of Clinical Medicine, Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China.
- School of Biological Science, Jining Medical University, Rizhao, China.
| | - Jianzhong Su
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Hou S, Yu J, Li Y, Zhao D, Zhang Z. Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413197. [PMID: 40013938 PMCID: PMC11967859 DOI: 10.1002/advs.202413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
This article provides an overview of the advancements in the application of fecal microbiota transplantation (FMT) in treating diseases related to intestinal dysbiosis. FMT involves the transfer of healthy donor fecal microbiota into the patient's body, aiming to restore the balance of intestinal microbiota and thereby treat a variety of intestinal diseases such as recurrent Clostridioides difficile infection (rCDI), inflammatory bowel disease (IBD), constipation, short bowel syndrome (SBS), and irritable bowel syndrome (IBS). While FMT has shown high efficacy in the treatment of rCDI, further research is needed for its application in other chronic conditions. This article elaborates on the application of FMT in intestinal diseases and the mechanisms of intestinal dysbiosis, as well as discusses key factors influencing the effectiveness of FMT, including donor selection, recipient characteristics, treatment protocols, and methods for assessing microbiota. Additionally, it emphasizes the key to successful FMT. Future research should focus on optimizing the FMT process to ensure long-term safety and explore the potential application of FMT in a broader range of medical conditions.
Collapse
Affiliation(s)
- Shuna Hou
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Jiachen Yu
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Yongshuang Li
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Duoyi Zhao
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Zhiyu Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| |
Collapse
|
5
|
Liao W, Cao L, Jiang X, Che L, Fang Z, Xu S, Lin Y, Zhuo Y, Hua L, Li J, Liu G, Sun M, Wu D, Wang H, Feng B. Intestinal overexpression of Pla2g10 alters the composition, diversity and function of gut microbiota in mice. Front Cell Infect Microbiol 2025; 15:1535204. [PMID: 40160470 PMCID: PMC11949945 DOI: 10.3389/fcimb.2025.1535204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
The intestinal microbiota is important for the health of the host and recent studies have shown that some genes of the host regulated the composition of the intestinal microbiota. Group 10 phospholipase A2 (PLA2G10) is a member of the lipolytic enzyme family PLA2, which hydrolyze the ester bond at the sn-2 position of phospholipids to produce free fatty acids and lysophospholipids. PLA2G10 is secreted into the intestinal lumen, but its impact on the gut microbiota remains unclear. In this study, we generated intestine-specific Pla2g10 knock-in mice, and used 16S RNA sequencing to compare their gut microbiota with that of their wild-type (WT) littermates. Results showed that gut-specific Pla2g10 knock-in induced both PLA2G10 mRNA and protein levels in the colon. Moreover, intestinal Pla2g10 overexpression reduced the α-diversity of the gut microbiota relative to that of WT mice. The abundance of Bacteroidetes was lower in the Pla2g10 knock-in mice than that in the control mice, while the ratio of Firmicutes/Bacteroidetes was higher. Furthermore, the abundance of the genus Allobaculum was reduced, whereas the abundance of beneficial bacteria genera, including Enterorhabdus, Dubosiella, and Lactobacillus, was increased by host intestinal Pla2g10 overexpression. In summary, intestinal Pla2g10 overexpression increased the proportions of beneficial bacterial in the colonic chyme of mice, providing a potential therapeutic target for future improvement of the gut microbiota.
Collapse
Affiliation(s)
- Wenhao Liao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lei Cao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hairui Wang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Zhou X, Chen X, Davis MM, Snyder MP. Embracing Interpersonal Variability of Microbiome in Precision Medicine. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:8-13. [PMID: 40313605 PMCID: PMC12040794 DOI: 10.1007/s43657-024-00201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 05/03/2025]
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Xin Chen
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Mark M. Davis
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
7
|
Duan D, Wang M, Han J, Li M, Wang Z, Zhou S, Xin W, Li X. Advances in multi-omics integrated analysis methods based on the gut microbiome and their applications. Front Microbiol 2025; 15:1509117. [PMID: 39831120 PMCID: PMC11739165 DOI: 10.3389/fmicb.2024.1509117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
The gut microbiota actually shares the host's physical space and affects the host's physiological functions and health indicators through a complex network of interactions with the host. However, its role as a determinant of host health and disease is often underestimated. With the emergence of new technologies including next-generation sequencing (NGS) and advanced techniques such as microbial community sequencing, people have begun to explore the interaction mechanisms between microorganisms and hosts at various omics levels such as genomics, transcriptomics, metabolomics, and proteomics. With the enrichment of multi-omics integrated analysis methods based on the microbiome, an increasing number of complex statistical analysis methods have also been proposed. In this review, we summarized the multi-omics research analysis methods currently used to study the interaction between the microbiome and the host. We analyzed the advantages and limitations of various methods and briefly introduced their application progress.
Collapse
Affiliation(s)
- Dongdong Duan
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mingyu Wang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jinyi Han
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mengyu Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Zhenyu Wang
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Shenping Zhou
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Wenshui Xin
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Xinjian Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
Guo D, Ning X, Bai T, Tan L, Zhou Y, Guo Z, Li X. Interaction between Vitamin D homeostasis, gut microbiota, and central precocious puberty. Front Endocrinol (Lausanne) 2024; 15:1449033. [PMID: 39717097 PMCID: PMC11663660 DOI: 10.3389/fendo.2024.1449033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Central precocious puberty (CPP) is an endocrine disease in children, characterized by rapid genital development and secondary sexual characteristics before the age of eight in girls and nine in boys. The premature activation of the hypothalamic-pituitary-gonadal axis (HPGA) limits the height of patients in adulthood and is associated with a higher risk of breast cancer. How to prevent and improve the prognosis of CPP is an important problem. Vitamin D receptor (VDR) is widely expressed in the reproductive system, participates in the synthesis and function of regulatory sex hormones, and affects the development and function of gonads. In addition, gut microbiota plays an important role in human health by mainly regulating metabolites, energy homeostasis, and hormone regulation. This review aims to clarify the effect of vitamin D deficiency on the occurrence and development of CPP and explore the role of gut microbiota in it. Although evidence on the interaction between vitamin D deficiency, gut microbiota, and sexual development remains limited, vitamin D supplementation and gut microbiota interventions offer a promising, non-invasive strategy for managing CPP.
Collapse
Affiliation(s)
- Doudou Guo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ning
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingfang Tan
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichen Guo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Petre-Mandache B, Burada E, Cucu MG, Atasie D, Riza AL, Streață I, Mitruț R, Pleșea R, Dobrescu A, Pîrvu A, Popescu-Hobeanu G, Mitruț P, Burada F. Lack of Association Between BsmI and FokI Polymorphisms of the VDR Gene and Sporadic Colorectal Cancer in a Romanian Cohort-A Preliminary Study. Curr Oncol 2024; 31:6406-6418. [PMID: 39451780 PMCID: PMC11505952 DOI: 10.3390/curroncol31100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Colorectal cancer (CRC) is a major public health problem worldwide, currently ranking third in cancer incidence and second in mortality. Multiple genes and environmental factors have been involved in the complex and multifactorial process of CRC carcinogenesis. VDR is an intracellular hormone receptor expressed in both normal epithelial and cancer colon cells at various levels. Several VDR gene polymorphisms, including FokI and BsmI, have been evaluated for their possible association with CRC susceptibility. The aim of our study was to investigate these two SNPs for the first time in Romanian CRC patients. FokI (rs228570 C>T) and BsmI (rs1544410 A>G) were genotyped by real-time polymerase chain reaction (RT-PCR) in 384-well plates using specific TaqMan predesigned probes on a ViiA™ 7 RT-PCR System. A total of 441 subjects (166 CRC patients and 275 healthy controls) were included. No statistically significant difference was observed between CRC patients and controls when we compared the wild-type genotype with heterozygous and mutant genotypes for both FokI (OR 0.85, 95% CI: 0.56-1.28; OR 0.95, 95% CI: 0.51-1.79, respectively) and BsmI (OR 0.97, 95% CI: 0.63-1.49; OR 1.10, 95% CI: 0.65-1.87, respectively) or in the dominant and recessive models. Also, we compared allele frequencies, and no correlation was found. Moreover, the association between these SNPs and the tumor site, TNM stage, and histological type was examined separately, and there was no statistically significant difference. In conclusion, our study did not show any association between FokI and BsmI SNPs and CRC susceptibility in a Romanian population. Further studies including a larger number of samples are needed to improve our knowledge regarding the influence of VDR polymorphism on CRC susceptibility.
Collapse
Affiliation(s)
- Bianca Petre-Mandache
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.P.-M.); (R.M.); (G.P.-H.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
| | - Emilia Burada
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mihai Gabriel Cucu
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Diter Atasie
- Department of Clinical Medicine, Faculty of Medicine, “Lucian Blaga” University, 550024 Sibiu, Romania
| | - Anca-Lelia Riza
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Ioana Streață
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Radu Mitruț
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.P.-M.); (R.M.); (G.P.-H.)
| | - Răzvan Pleșea
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Amelia Dobrescu
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Andrei Pîrvu
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Gabriela Popescu-Hobeanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.P.-M.); (R.M.); (G.P.-H.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
| | - Paul Mitruț
- Department of Medical Semiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Florin Burada
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (A.-L.R.); (I.S.); (R.P.); (A.D.); (A.P.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| |
Collapse
|
10
|
Wyatt M, Choudhury A, Von Dohlen G, Heileson JL, Forsse JS, Rajakaruna S, Zec M, Tfaily MM, Greathouse L. Randomized control trial of moderate dose vitamin D alters microbiota stability and metabolite networks in healthy adults. Microbiol Spectr 2024; 12:e0008324. [PMID: 39189761 PMCID: PMC11448053 DOI: 10.1128/spectrum.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/10/2024] [Indexed: 08/28/2024] Open
Abstract
Evidence indicates that both vitamin D and the gut microbiome are involved in the process of colon carcinogenesis. However, it is unclear what effects supplemental vitamin D3 has on the gut microbiome and its metabolites in healthy adults. We conducted a double-blind, randomized, placebo-controlled trial to identify the acute and long-term microbiota structural and metabolite changes that occur in response to a moderate dose (4,000 IU) of vitamin D3 for 12 weeks in healthy adults. Our results demonstrated a significant increase in serum 25-hydroxy-vitamin D (25(OH)D) in the treatment group compared to placebo (P < 0.0001). Vitamin D3 significantly increased compositional similarity (P < 0.0001) in the treatment group, and enriched members of the Bifidobacteriaceae family. We also identified a significant inverse relationship between the percent change in serum 25(OH)D and microbial stability in the treatment group (R = -0.52, P < 0.019). Furthermore, vitamin D3 supplementation resulted in notable metabolic shifts, in addition to resulting in a drastic rewiring of key gut microbial-metabolic associations. In conclusion, we show that a moderate dose of vitamin D3 among healthy adults has unique acute and persistent effects on the fecal microbiota, and suggest novel mechanisms by which vitamin D may affect the host-microbiota relationship. IMPORTANCE Preventative measures to reduce the rise in early-onset colorectal cancer are of critical need. Both vitamin D, dietary and serum levels, and the gut microbiome are implicated in the etiology of colorectal cancer. By understanding the intimate relationship between vitamin D, the gut microbiome, and its metabolites, we may be able to identify key mechanisms that can be targeted for intervention, including inflammation and metabolic dysfunction. Furthermore, the similarity of vitamin D to cholesterol, which is metabolized by the gut microbiome, gives precedence to its ability to produce metabolites that can be further studied and leveraged for controlling colorectal cancer incidence and mortality.
Collapse
Affiliation(s)
- Madhur Wyatt
- Human Health Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, USA
| | - Ankan Choudhury
- Human Science and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, USA
| | - Gabriella Von Dohlen
- Human Science and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, USA
| | - Jeffery L. Heileson
- Human Health Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, USA
- Nutrition Services Division, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Jeffrey S. Forsse
- Human Health Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Sumudu Rajakaruna
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, The University of Arizona, Tucson, Arizona, USA
| | - Manja Zec
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Malak M. Tfaily
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, The University of Arizona, Tucson, Arizona, USA
| | - Leigh Greathouse
- Human Science and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| |
Collapse
|
11
|
Sun J, Zhang Y. Microbiome and micronutrient in ALS: From novel mechanisms to new treatments. Neurotherapeutics 2024; 21:e00441. [PMID: 39218769 PMCID: PMC11585885 DOI: 10.1016/j.neurot.2024.e00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disorder. Despite extensive studies, it remains challenging to treat ALS. Recent ALS studies have shown dysbiosis (e.g., loss of microbial diversity and beneficial function in the gut microbiota) is correlated with intestinal inflammation and change of intestinal integrity in ALS. The novel concepts and the roles of microbiome and microbial metabolites through the gut-microbiome-neuron axis in ALS pathogenesis have been slowly recognized by the neurology research field. Here, we will discuss the recent progress of microbiome, including bacteria, fungi, and viruses, in the ALS research. We will discuss our understanding of microbial metabolites in ALS. Micronutrition refers to the intake of essential vitamins, minerals, and other micronutrients. We will summarize the literation related to micronutrition and ALS. Furthermore, we will consider the mutual interactions of microbiome and micronutrition in the ALS progression and treatment. We further propose that the mechanistic and translational studies that shift from suspension of disbelief to cogent ingenuity, and from bench study to bed-side application, should allow new strategies of diagnosis and treatment for ALS.
Collapse
Affiliation(s)
- Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Ailbayeva N, Alimbayeva A, Yurkovskaya O, Faizova R, Tanatarov S, Taiorazova G, Abylgazinova A, Orekhov A, Jamedinova U, Pivina L. Vitamin D Deficiency and Maternal Diseases as Risk Factors for the Development of Macrosomia in Newborns. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1160. [PMID: 39457125 PMCID: PMC11506329 DOI: 10.3390/children11101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024]
Abstract
Background: The aim is to assess the association between the level of vitamin D, maternal diseases, and macrosomia in newborns. Methods: This study included 258 full-term newborns (86 newborns with macrosomia; and 172 newborns with normal weight). Enzyme immunoassays for the determination of vitamin D were performed. Results: Newborns with macrosomia were statistically significantly more likely to have severe vitamin D deficiency compared with control (13.5 ± 6.7 ng/mL vs. 21.3 ± 12.1 ng/mL; p < 0.05). In the main group, severe deficiency was found in 40.7% of newborns, in the control group this rate was 5.8% (χ2 = 71,788, df = 3, p < 0.001). Multiple regression analysis shows that statistically significant risk factors for the development of macrosomia were vitamin D deficiency in the cord blood (OR = 2.29), maternal age over 36 years old (OR = 19.54), and hypothyroidism (OR = 9.35). Conclusion: the results of our study demonstrate relationship between macrosomia in newborns and vitamin D deficiency in the cord blood, maternal overweight and obesity, maternal age and thyroid disease.
Collapse
Affiliation(s)
- Nazym Ailbayeva
- Department of Pediatrics and Medical Rehabilitation Named after Tusupova D.M., Semey Medical University, Semey 071400, Kazakhstan; (N.A.); (A.A.); (G.T.); (A.A.)
| | - Aliya Alimbayeva
- Department of Pediatrics and Medical Rehabilitation Named after Tusupova D.M., Semey Medical University, Semey 071400, Kazakhstan; (N.A.); (A.A.); (G.T.); (A.A.)
| | - Oxana Yurkovskaya
- Department of General Medical Practice, Semey Medical University, Semey 071400, Kazakhstan; (O.Y.); (R.F.)
| | - Raida Faizova
- Department of General Medical Practice, Semey Medical University, Semey 071400, Kazakhstan; (O.Y.); (R.F.)
| | - Sayat Tanatarov
- Center for Nuclear Medicine and Oncology, Semey 071400, Kazakhstan;
| | - Gulnara Taiorazova
- Department of Pediatrics and Medical Rehabilitation Named after Tusupova D.M., Semey Medical University, Semey 071400, Kazakhstan; (N.A.); (A.A.); (G.T.); (A.A.)
| | - Aizhan Abylgazinova
- Department of Pediatrics and Medical Rehabilitation Named after Tusupova D.M., Semey Medical University, Semey 071400, Kazakhstan; (N.A.); (A.A.); (G.T.); (A.A.)
| | - Andrey Orekhov
- Department of Internal Medicine, Semey Medical University, Semey 071400, Kazakhstan;
| | - Ulzhan Jamedinova
- Epidemiology and Biostatistics Department, Semey Medical University, Semey 071400, Kazakhstan;
| | - Lyudmila Pivina
- Department of Emergency Medicine, Semey Medical University, Semey 071400, Kazakhstan
| |
Collapse
|
13
|
Gonzalez-Soltero R, Tabone M, Larrosa M, Bailen M, Bressa C. VDR gene TaqI (rs731236) polymorphism affects gut microbiota diversity and composition in a Caucasian population. Front Nutr 2024; 11:1423472. [PMID: 39328465 PMCID: PMC11425793 DOI: 10.3389/fnut.2024.1423472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Background The VDR gene is identified as a crucial host factor, influencing the gut microbiota. The current research focuses on an observational study that compares gut microbiota composition among individuals with different VDR gene TaqI polymorphisms in a Caucasian Spanish population. This study aims to elucidate the interplay between genetic variations in the VDR gene and the gut microbial composition. Methods 87 healthy participants (57 men, 30 women), aged 18 to 48 years, were examined. Anthropometric measures, body composition, and dietary habits were assessed. VDR gene polymorphism TaqI rs731236 was determined using TaqMan assays. The V3 and V4 regions of the 16S rRNA gene were sequenced to study bacterial composition, which was analyzed using QIIME2, DADA2 plugin, and PICRUSt2. Statistical analyses included tests for normal distribution, alpha/beta diversity, ADONIS, LEfSe, and DESeq2, with established significance thresholds. Results No significant differences in body composition or dietary habits were observed based on VDR genotypes. Dietary intake analysis revealed no variations in energy, macronutrients, or fiber among the different VDR genotypes. Fecal microbiota analysis indicated significant differences in alpha diversity as measured by Faith's Phylogenetic Diversity index. Differential abundance analysis identified taxonomic disparities, notably in the genera Parabacteroides and Butyricimonas. Conclusion Overall, this study suggests potential associations between genetic variations in the VDR gene and the composition and function of gut microbiota.
Collapse
Affiliation(s)
- Rocío Gonzalez-Soltero
- Masmicrobiota Group, Madrid, Spain
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Mariangela Tabone
- Masmicrobiota Group, Madrid, Spain
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Mar Larrosa
- Masmicrobiota Group, Madrid, Spain
- Department of Nutrition and Food Science, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Bailen
- Masmicrobiota Group, Madrid, Spain
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlo Bressa
- Masmicrobiota Group, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
14
|
Helal P, Xia W, Sardar P, Conway‐Morris A, Conway‐Morris A, Pedicord VA, Serfontein J. Changes in the Firmicutes to Bacteriodetes ratio in the gut microbiome in individuals with anorexia nervosa following inpatient treatment: A systematic review and a case series. Brain Behav 2024; 14:e70014. [PMID: 39295072 PMCID: PMC11410858 DOI: 10.1002/brb3.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/21/2024] Open
Abstract
OBJECTIVE Anorexia nervosa has the highest mortality rate among psychiatric illnesses. Current treatments remain ineffective for a large fraction of patients. This may be due to unclear mechanisms behind its development and maintenance. Studies exploring the role of the gut microbiome have revealed inconsistent evidence of dysbiosis. This article aims to investigate changes in the gut microbiome, particularly, mean differences in the Firmicutes to Bacteroidetes ratio, in adolescent and adult individuals with anorexia nervosa following inpatient treatment. METHODS Longitudinal studies investigating gut microbiome composition in inpatient populations of anorexia nervosa before and after treatment were systematically reviewed. Additionally, gut microbiome compositions were characterized in three acute anorexia nervosa inpatients early after admission and after 4-12 weeks of treatment. RESULTS Review results indicated an increase in the Firmicutes to Bacteroidetes ratio in individuals with anorexia nervosa after treatment. These however did not match values of their healthy counterparts. In the case-series samples, the reverse occurred with samples taken 4 weeks after treatment. In the patient who provided an extra sample 12 weeks after treatment, similar results to the studies included in the review were observed. Furthermore, Firmicutes to Bacteroidetes ratio values in the case-series samples were notably higher in the two patients who had chronic anorexia nervosa. DISCUSSION Differences in methodologies, small sample sizes, and insufficient data limited the generalizability of the outcomes of the reviewed studies. Results suggest a potentially unique microbiome signature in individuals with chronic anorexia nervosa, which may explain different outcomes in this group of patients.
Collapse
Affiliation(s)
- Passent Helal
- Adult Eating Disorders Service, Ward S3 InpatientsAddenbrooke's HospitalCambridgeUK
| | - Wangmingyu Xia
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
| | - Puspendu Sardar
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
| | - Anna Conway‐Morris
- Adult Eating Disorder Service, Ward S3 OutpatientsAddenbrooke's HospitalCambridgeUK
- School of PsychiatryNHS EnglandFulbournCambridgeUK
| | - Andrew Conway‐Morris
- Division of Anaesthesia, Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
- John V Farman Intensive Care UnitAddenbrooke's HospitalCambridgeUK
| | - Virginia A. Pedicord
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
| | - Jaco Serfontein
- Adult Eating Disorders Service, Ward S3 InpatientsAddenbrooke's HospitalCambridgeUK
| |
Collapse
|
15
|
Sun J. Bringing Vitamin D and the Vitamin D Receptor into the Limelight. Biomolecules 2024; 14:1094. [PMID: 39334859 PMCID: PMC11430401 DOI: 10.3390/biom14091094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Classically, vitamin D is known to regulate skeletal and mineral ion homeostasis [...].
Collapse
Affiliation(s)
- Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- UIC Cancer Center, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
16
|
Ritz NL, Bastiaanssen TFS, Cowan CSM, Smith L, Theune N, Brocka M, Myers EM, Moloney RD, Moloney GM, Shkoporov AN, Draper LA, Hill C, Dinan TG, Slattery DA, Cryan JF. Social fear extinction susceptibility is associated with Microbiota-Gut-Brain axis alterations. Brain Behav Immun 2024; 120:315-326. [PMID: 38852762 DOI: 10.1016/j.bbi.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Social anxiety disorder is a common psychiatric condition that severely affects quality of life of individuals and is a significant societal burden. Although many risk factors for social anxiety exist, it is currently unknown how social fear sensitivity manifests biologically. Furthermore, since some individuals are resilient and others are susceptible to social fear, it is important to interrogate the mechanisms underpinning individual response to social fear situations. The microbiota-gut-brain axis has been associated with social behaviour, has recently been linked with social anxiety disorder, and may serve as a therapeutic target for modulation. Here, we assess the potential of this axis to be linked with social fear extinction processes in a murine model of social anxiety disorder. To this end, we correlated differential social fear responses with microbiota composition, central gene expression, and immune responses. Our data provide evidence that microbiota variability is strongly correlated with alterations in social fear behaviour. Moreover, we identified altered gene candidates by amygdalar transcriptomics that are linked with social fear sensitivity. These include genes associated with social behaviour (Armcx1, Fam69b, Kcnj9, Maoa, Serinc5, Slc6a17, Spata2, and Syngr1), inflammation and immunity (Cars, Ckmt1, Klf5, Maoa, Map3k12, Pex5, Serinc5, Sidt1, Spata2), and microbe-host interaction (Klf5, Map3k12, Serinc5, Sidt1). Together, these data provide further evidence for a role of the microbiota-gut-brain axis in social fear responses.
Collapse
Affiliation(s)
- Nathaniel L Ritz
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Caitlin S M Cowan
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Linda Smith
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Nigel Theune
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Marta Brocka
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Eibhlís M Myers
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Rachel D Moloney
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Andrey N Shkoporov
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Psychiatry and Neurobehavioural Science, University College Cork, Cork T12YT20, Ireland
| | - David A Slattery
- Dept. of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Frankfurt 60528, Germany
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland.
| |
Collapse
|
17
|
Bakrim S, El Hachlafi N, Khalid A, Abdalla AN, El Omari N, Aboulaghras S, Sakran AM, Goh KW, Ming LC, Razi P, Bouyahya A. Recent advances and molecular mechanisms of TGF-β signaling in colorectal cancer, with focus on bioactive compounds targeting. Biomed Pharmacother 2024; 177:116886. [PMID: 38945700 DOI: 10.1016/j.biopha.2024.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most significant forms of human cancer. It is characterized by its heterogeneity because several molecular factors are involved in contiguity and can link it to others without having a linear correlation. Among the factors influencing tumor transformation in CRC, transforming growth factor-beta (TGF-β) plays a key promoter role. This factor is associated with human colorectal tumors with a very high prognosis: it increases the survival, invasion, and metastasis of CRC cells, thus functioning as an oncogene. The inhibition of this factor can constitute a major therapeutic route for CRC treatment. Various chemical drugs including synthetic molecules and biotherapies have been developed as TGF-β inhibitors. Moreover, the scientific community has recently shown a major interest in screening natural drugs inhibiting TGF-β in CRC. In this context, we carried out this review article using computerized databases, such as PubMed, Google Scholar, Springer Link, Science Direct, Cochrane Library, Embase, Web of Science, and Scopus, to highlight the molecular mechanism of TGF-β in CRC induction and progression and current advances in the pharmacodynamic effects of natural bioactive substances targeting TGF-β in CRC.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, P.O.Box-2002, Imouzzer Road, Fez, Morocco
| | - Asaad Khalid
- Health Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Ashraf M Sakran
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah 21955, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Pakhrur Razi
- Center of Disaster Monitoring and Earth Observation, Universitas Negeri Padang, Padang, Indonesia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| |
Collapse
|
18
|
Montgomery TL, Peipert D, Krementsov DN. Modulation of multiple sclerosis risk and pathogenesis by the gut microbiota: Complex interactions between host genetics, bacterial metabolism, and diet. Immunol Rev 2024; 325:131-151. [PMID: 38717158 PMCID: PMC11338732 DOI: 10.1111/imr.13343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, affecting nearly 2 million people worldwide. The etiology of MS is multifactorial: Approximately 30% of the MS risk is genetic, which implies that the remaining ~70% is environmental, with a number of factors proposed. One recently implicated risk factor for MS is the composition of the gut microbiome. Numerous case-control studies have identified changes in gut microbiota composition of people with MS (pwMS) compared with healthy control individuals, and more recent studies in animal models have begun to identify the causative microbes and underlying mechanisms. Here, we review some of these mechanisms, with a specific focus on the role of host genetic variation, dietary inputs, and gut microbial metabolism, with a particular emphasis on short-chain fatty acid and tryptophan metabolism. We put forward a model where, in an individual genetically susceptible to MS, the gut microbiota and diet can synergize as potent environmental modifiers of disease risk and possibly progression, with diet-dependent gut microbial metabolites serving as a key mechanism. We also propose that specific microbial taxa may have divergent effects in individuals carrying distinct variants of MS risk alleles or other polymorphisms, as a consequence of host gene-by-gut microbiota interactions. Finally, we also propose that the effects of specific microbial taxa, especially those that exert their effects through metabolites, are highly dependent on the host dietary intake. What emerges is a complex multifaceted interaction that has been challenging to disentangle in human studies, contributing to the divergence of findings across heterogeneous cohorts with differing geography, dietary preferences, and genetics. Nonetheless, this provides a complex and individualized, yet tractable, model of how the gut microbiota regulate susceptibility to MS, and potentially progression of this disease. Thus, we conclude that prophylactic or therapeutic modulation of the gut microbiome to prevent or treat MS will require a careful and personalized consideration of host genetics, baseline gut microbiota composition, and dietary inputs.
Collapse
Affiliation(s)
- Theresa L. Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Dan Peipert
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
19
|
Hong JB, Chen YX, Su ZY, Chen XY, Lai YN, Yang JH. Causal association of juvenile idiopathic arthritis or JIA-associated uveitis and gut microbiota: a bidirectional two-sample Mendelian randomisation study. Front Immunol 2024; 15:1356414. [PMID: 39114654 PMCID: PMC11303189 DOI: 10.3389/fimmu.2024.1356414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Background The gut microbiota significantly influences the onset and progression of juvenile idiopathic arthritis (JIA) and associated uveitis (JIAU); however, the causality remains unclear. This study aims to establish a causal link between gut microbiota and JIA or JIAU. Methods Using publicly available genome-wide association studies (GAWS) summary data, we conducted a two-sample Mendelian randomisation (MR) analysis employing various methods, namely inverse variance weighted (IVW), simple mode, weighted mode, weighted median and MR-Egger regression methods, to assess the causal association between JIA or JIAU and gut microbiota. Sensitivity analyses, including Cochrane's Q test, MR-Egger intercept test, leave-one-out analysis and MR-PRESSO, were performed to evaluate the robustness of the MR results. Subsequently, reverse MR analysis was conducted to determine causality between gene-predicted gut microbiota abundance and JIA or JIAU. Results The MR analysis revealed a causal association between gut microbiota abundance variations and JIA or JIAU risk. Specifically, the increased abundance of genus Ruminococcaceae UCG013 (OR: 0.055, 95%CI: 0.006-0.103, p = 0.026) and genus Ruminococcaceae UCG003 (β: 0.06, 95%CI: 0.003-0.117, p = 0.041) correlated with an increased risk of JIA, while genus Lachnospiraceae UCG001 (OR: 0.833, 95%CI: 0.699~0.993, p = 0.042) was associated with a reduced risk of JIA, among others. Sensitivity analysis confirmed MR analysis robustness. Conclusions This study provides substantial evidence supporting a causal association between genetically predicted gut microbiota and JIA or JIAU. It highlights the significant role of intestinal flora in JIA or JIAU development, suggesting their potential as novel biomarkers for diagnosis and prevention. These findings offer valuable insights to mitigate the impact of JIA or JIAU.
Collapse
Affiliation(s)
- Jun-bin Hong
- Department of Pediatrics, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue-xuan Chen
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Zhi-ying Su
- Department of Pediatrics, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin-ying Chen
- Department of Pediatrics, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-ni Lai
- School of Medicine and Health, Shunde Polytechnic, Foshan, China
| | - Jing-hua Yang
- Department of Pediatrics, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Xiaorong Luo’s National Renowned Expert Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
He MM, Wang K, Lo CH, Zhang Y, Polychronidis G, Knudsen MD, Zhong R, Ma Y, Wu K, Chan AT, Giovannucci EL, Ogino S, Ng K, Meyerhardt JA, Song M. Post-diagnostic multivitamin supplement use and colorectal cancer survival: A prospective cohort study. Cancer 2024; 130:2169-2179. [PMID: 38319287 PMCID: PMC11141725 DOI: 10.1002/cncr.35234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Use of multivitamin supplements has been associated with lower incidence of colorectal cancer (CRC). However, its influence on CRC survival remains unknown. METHODS Among 2424 patients with stage I-III CRC who provided detailed information about multivitamin supplements in the Nurses' Health Study and Health Professionals Follow-up Study, the authors calculated multivariable hazard ratios (HRs) of multivitamin supplements for all-cause and CRC-specific mortality according to post-diagnostic use and dose of multivitamin supplements. RESULTS During a median follow-up of 11 years, the authors documented 1512 deaths, among which 343 were of CRC. Compared to non-users, post-diagnostic users of multivitamin supplements at a dose of 3-5 tablets/week had lower CRC-specific mortality (HR, 0.55; 95% confidence interval [CI], 0.36-0.83, p = .005), and post-diagnostic users at doses of 3-5 and 6-9 tablets/week had lower all-cause mortality (HR, 0.81; 95% CI, 0.67-0.99, p = .04; HR, 0.79; 95% CI, 0.70-0.88), p < .001). The dose-response analysis showed a curvilinear relationship for both CRC-specific (pnonlinearity < .001) and all-cause mortality (pnonlinearity = .004), with the maximum risk reduction observed at 3-5 tablets/week and no further reduction at higher doses. Compared to non-users in both pre- and post-diagnosis periods, new post-diagnostic users at dose of <10 tablets/week had a lower all-cause mortality (HR, 0.81; 95% CI, 0.71-0.94, p = .005), whereas new users at a dose of ≥10 tablets/week (HR, 1.58; 95% CI, 1.07-2.33) and discontinued users (HR, 1.35; 95% CI, 1.14-1.59) had a higher risk of mortality. CONCLUSIONS Use of multivitamin supplements at a moderate dose after a diagnosis of nonmetastatic CRC is associated with lower CRC-specific and overall mortality, whereas a high dose (≥10 tablets/week) use is associated with higher CRC-specific mortality.
Collapse
Affiliation(s)
- Ming-ming He
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chun-Han Lo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Yiwen Zhang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Georgios Polychronidis
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
- Study Centre of the German Surgical Society, University of Heidelberg, Heidelberg, Germany
| | - Markus D Knudsen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Oslo, Norway
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Norwegian PSC Research Center, Oslo University Hospital, Oslo, Norway
| | - Rong Zhong
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yuan Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward L. Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A. Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
21
|
Seitz J, Lahaye E, Andreani NA, Thomas B, Takhlidjt S, Chartrel N, Herpertz-Dahlmann B, Baines JF, Fetissov SO. Long-Term Dynamics of Serum α-MSH and α-MSH-Binding Immunoglobulins with a Link to Gut Microbiota Composition in Patients with Anorexia Nervosa. Neuroendocrinology 2024; 114:907-920. [PMID: 38852579 PMCID: PMC11460951 DOI: 10.1159/000539316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Immunoglobulins (Ig) reactive with α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide, are present in humans and were previously associated with eating disorders. In this longitudinal study involving patients with anorexia nervosa (AN), we determined whether α-MSH in serum is bound to IgG and analyzed long-term dynamics of both α-MSH peptide and α-MSH-reactive Ig in relation to changes in BMI and gut microbiota composition. METHODS The study included 64 adolescents with a restrictive form of AN, whose serum samples were collected at hospital admission, discharge, and during a 1-year follow-up visit and 41 healthy controls, all females. RESULTS We found that in both study groups, approximately 40% of serum α-MSH was reversibly bound to IgG and that levels of α-MSH-reactive IgG but not of α-MSH peptide in patients with AN were low at hospital admission but recovered 1 year later. Total IgG levels were also low at admission. Moreover, BMI-standard deviation score correlated positively with α-MSH IgG in both groups studied but negatively with α-MSH peptide only in controls. Significant correlations between the abundance of specific bacterial taxa in the gut microbiota and α-MSH peptide and IgG levels were found in both study groups, but they were more frequent in controls. CONCLUSION We conclude that IgG in the blood plays a role as an α-MSH-binding protein, whose characteristics are associated with BMI in both patients with AN and controls. Furthermore, the study suggests that low production of α-MSH-reactive IgG during the starvation phase in patients with AN may be related to altered gut microbiota composition.
Collapse
Affiliation(s)
- Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH University Aachen, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, LVR-University Hospital, Essen, Germany
| | - Emilie Lahaye
- Regulatory Peptides – Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, Rouen, France
| | - Nadia Andrea Andreani
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Benjamin Thomas
- Regulatory Peptides – Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, Rouen, France
| | - Saloua Takhlidjt
- Regulatory Peptides – Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, Rouen, France
| | - Nicolas Chartrel
- Regulatory Peptides – Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, Rouen, France
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH University Aachen, Aachen, Germany
| | - John F. Baines
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Sergueï O. Fetissov
- Regulatory Peptides – Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, Rouen, France
| |
Collapse
|
22
|
Li J, Yang Z, Yuan W, Bao Z, Li MD. Heme Metabolism Mediates the Effects of Smoking on Gut Microbiome. Nicotine Tob Res 2024; 26:742-751. [PMID: 37875417 DOI: 10.1093/ntr/ntad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023]
Abstract
INTRODUCTION The number of smokers worldwide increased greatly during the past decades and reached 1.14 billion in 2019, becoming a leading risk factor for human health. Tobacco smoking has wide effects on human genetics, epigenetics, transcriptome, and gut microbiome. Although many studies have revealed effects of smoking on host transcriptome, research on the relationship between smoking, host gene expression, and the gut microbiome is limited. AIMS AND METHODS We first explored transcriptome and metagenome profile differences between smokers and nonsmokers. To evaluate the relationship between host gene expression and gut microbiome, we then applied bidirectional mediation analysis to infer causal relationships between smoking, gene expression, and gut microbes. RESULTS Metagenome and transcriptome analyses revealed 71 differential species and 324 differential expressed genes between smokers and nonsmokers. With smoking as an exposure variable, we identified 272 significant causal relationships between gene expression and gut microbes, among which there were 247 genes that mediate the effect of smoking on gut microbes. Pathway-based enrichment analysis showed that these genes were significantly enriched in heme metabolic pathway, which mainly mediated the changes of Bacteroides finegoldii and Lachnospiraceae bacterium 9_1_43BFAA. Additionally, by performing metabolome data analysis in the Integrated Human Microbiome Project (iHMP) database, we verified the correlation between the intermediate products of the heme metabolism pathway (porphobilinogen, bilirubin, and biliverdin) and gut microbiome. CONCLUSIONS By investigating the bidirectional interaction between smoking-related host gene expression and gut microbes, this study provided evidence for the mediation of smoking on gut microbes through co-involvement or interaction of heme metabolism. IMPLICATIONS By comparing the metagenome and transcriptome sequencing profiles between 34 smokers and 33 age- and gender-matched nonsmokers, we are the first to reveal causal relationships among tobacco smoking, host gene expression, and gut microbes. These findings offer insight into how smoking affects gut microbes through host gene expression and metabolism, which highlights the importance of heme metabolism in modulating the effects of smoking on gut microbiome.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Biomedical Big Data, School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiwei Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Uehara M, Inoue T, Hase S, Sasaki E, Toyoda A, Sakakibara Y. Decoding host-microbiome interactions through co-expression network analysis within the non-human primate intestine. mSystems 2024; 9:e0140523. [PMID: 38557130 PMCID: PMC11097647 DOI: 10.1128/msystems.01405-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
The gut microbiome affects the health status of the host through complex interactions with the host's intestinal wall. These host-microbiome interactions may spatially vary along the physical and chemical environment of the intestine, but these changes remain unknown. This study investigated these intricate relationships through a gene co-expression network analysis based on dual transcriptome profiling of different intestinal sites-cecum, transverse colon, and rectum-of the primate common marmoset. We proposed a gene module extraction algorithm based on the graph theory to find tightly interacting gene modules of the host and the microbiome from a vast co-expression network. The 27 gene modules identified by this method, which include both host and microbiome genes, not only produced results consistent with previous studies regarding the host-microbiome relationships, but also provided new insights into microbiome genes acting as potential mediators in host-microbiome interplays. Specifically, we discovered associations between the host gene FBP1, a cancer marker, and polysaccharide degradation-related genes (pfkA and fucI) coded by Bacteroides vulgatus, as well as relationships between host B cell-specific genes (CD19, CD22, CD79B, and PTPN6) and a tryptophan synthesis gene (trpB) coded by Parabacteroides distasonis. Furthermore, our proposed module extraction algorithm surpassed existing approaches by successfully defining more functionally related gene modules, providing insights for understanding the complex relationship between the host and the microbiome.IMPORTANCEWe unveiled the intricate dynamics of the host-microbiome interactions along the colon by identifying closely interacting gene modules from a vast gene co-expression network, constructed based on simultaneous profiling of both host and microbiome transcriptomes. Our proposed gene module extraction algorithm, designed to interpret inter-species interactions, enabled the identification of functionally related gene modules encompassing both host and microbiome genes, which was challenging with conventional modularity maximization algorithms. Through these identified gene modules, we discerned previously unrecognized bacterial genes that potentially mediate in known relationships between host genes and specific bacterial species. Our findings underscore the spatial variations in host-microbiome interactions along the colon, rather than displaying a uniform pattern throughout the colon.
Collapse
Affiliation(s)
- Mika Uehara
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Sumitaka Hase
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| |
Collapse
|
24
|
Maritan E, Quagliariello A, Frago E, Patarnello T, Martino ME. The role of animal hosts in shaping gut microbiome variation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230071. [PMID: 38497257 PMCID: PMC10945410 DOI: 10.1098/rstb.2023.0071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 03/19/2024] Open
Abstract
Millions of years of co-evolution between animals and their associated microbial communities have shaped and diversified the nature of their relationship. Studies continue to reveal new layers of complexity in host-microbe interactions, the fate of which depends on a variety of different factors, ranging from neutral processes and environmental factors to local dynamics. Research is increasingly integrating ecosystem-based approaches, metagenomics and mathematical modelling to disentangle the individual contribution of ecological factors to microbiome evolution. Within this framework, host factors are known to be among the dominant drivers of microbiome composition in different animal species. However, the extent to which they shape microbiome assembly and evolution remains unclear. In this review, we summarize our understanding of how host factors drive microbial communities and how these dynamics are conserved and vary across taxa. We conclude by outlining key avenues for research and highlight the need for implementation of and key modifications to existing theory to fully capture the dynamics of host-associated microbiomes. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Enric Frago
- CIRAD, UMR CBGP, INRAE, Institut Agro, IRD, Université Montpellier, 34398 Montpellier, France
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| |
Collapse
|
25
|
Bijla M, Saini SK, Pathak AK, Bharadwaj KP, Sukhavasi K, Patil A, Saini D, Yadav R, Singh S, Leeuwenburgh C, Kumar P. Microbiome interactions with different risk factors in development of myocardial infarction. Exp Gerontol 2024; 189:112409. [PMID: 38522483 DOI: 10.1016/j.exger.2024.112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Among all non-communicable diseases, Cardiovascular Diseases (CVDs) stand as the leading global cause of mortality. Within this spectrum, Myocardial Infarction (MI) strikingly accounts for over 15 % of all deaths. The intricate web of risk factors for MI, comprising family history, tobacco use, oral health, hypertension, nutritional pattern, and microbial infections, is firmly influenced by the human gut and oral microbiota, their diversity, richness, and dysbiosis, along with their respective metabolites. Host genetic factors, especially allelic variations in signaling and inflammatory markers, greatly affect the progression or severity of the disease. Despite the established significance of the human microbiome-nutrient-metabolite interplay in associations with CVDs, the unexplored terrain of the gut-heart-oral axis has risen as a critical knowledge gap. Moreover, the pivotal role of the microbiome and the complex interplay with host genetics, compounded by age-related changes, emerges as an area of vital importance in the development of MI. In addition, a distinctive disease susceptibility and severity influenced by gender-based or ancestral differences, adds a crucial insights to the association with increased mortality. Here, we aimed to provide an overview on interactions of microbiome (oral and gut) with major risk factors (tobacco use, alcohol consumption, diet, hypertension host genetics, gender, and aging) in the development of MI and therapeutic regulation.
Collapse
Affiliation(s)
- Manisha Bijla
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Sunil Kumar Saini
- Department of Zoology, Swami Shraddhanand College, Delhi University, India
| | - Ajai Kumar Pathak
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | | | - Katyayani Sukhavasi
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital & Department of Cardiology, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Ayurshi Patil
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Diksha Saini
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Rakesh Yadav
- Department of Cardiology, AIIMS, New Delhi, India
| | - Shalini Singh
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | | | - Pramod Kumar
- ICMR-National Institute of Cancer Prevention and Research, Noida, India.
| |
Collapse
|
26
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
27
|
Giampazolias E, da Costa MP, Lam KC, Lim KHJ, Cardoso A, Piot C, Chakravarty P, Blasche S, Patel S, Biram A, Castro-Dopico T, Buck MD, Rodrigues RR, Poulsen GJ, Palma-Duran SA, Rogers NC, Koufaki MA, Minutti CM, Wang P, Vdovin A, Frederico B, Childs E, Lee S, Simpson B, Iseppon A, Omenetti S, Kelly G, Goldstone R, Nye E, Suárez-Bonnet A, Priestnall SL, MacRae JI, Zelenay S, Patil KR, Litchfield K, Lee JC, Jess T, Goldszmid RS, Sousa CRE. Vitamin D regulates microbiome-dependent cancer immunity. Science 2024; 384:428-437. [PMID: 38662827 PMCID: PMC7615937 DOI: 10.1126/science.adh7954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/04/2024] [Indexed: 05/03/2024]
Abstract
A role for vitamin D in immune modulation and in cancer has been suggested. In this work, we report that mice with increased availability of vitamin D display greater immune-dependent resistance to transplantable cancers and augmented responses to checkpoint blockade immunotherapies. Similarly, in humans, vitamin D-induced genes correlate with improved responses to immune checkpoint inhibitor treatment as well as with immunity to cancer and increased overall survival. In mice, resistance is attributable to the activity of vitamin D on intestinal epithelial cells, which alters microbiome composition in favor of Bacteroides fragilis, which positively regulates cancer immunity. Our findings indicate a previously unappreciated connection between vitamin D, microbial commensal communities, and immune responses to cancer. Collectively, they highlight vitamin D levels as a potential determinant of cancer immunity and immunotherapy success.
Collapse
Affiliation(s)
- Evangelos Giampazolias
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Cancer Immunosurveillance Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | | - Khiem C. Lam
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, Bethesda, MD 20892-0001, USA
| | - Kok Haw Jonathan Lim
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College, London, UK
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Cécile Piot
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sonja Blasche
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Swara Patel
- Cancer Immunosurveillance Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Adi Biram
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tomas Castro-Dopico
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael D. Buck
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard R. Rodrigues
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Microbiome and Genetics Core, LICI, CCR, NCI, 37 Convent Drive, Bethesda, MD 20892-0001, USA
| | - Gry Juul Poulsen
- National Center of Excellence for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Faculty of Medicine, Aalborg University, Department of Gastroenterology and Hepatology, Aalborg University Hospital, A.C. Meyers Vænge 15, A DK-2450 Copenhagen, Denmark
| | | | - Neil C. Rogers
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maria A. Koufaki
- Cancer Inflammation and Immunity Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Carlos M. Minutti
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Pengbo Wang
- Cancer Immunosurveillance Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Alexander Vdovin
- Cancer Immunosurveillance Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Bruno Frederico
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eleanor Childs
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sonia Lee
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ben Simpson
- Tumor ImmunoGenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, 72 Huntley St, London WC1E 6DD, UK
| | - Andrea Iseppon
- AhRimmunity Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sara Omenetti
- AhRimmunity Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gavin Kelly
- Bioinformatics and Biostatistics STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robert Goldstone
- Bioinformatics and Biostatistics STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emma Nye
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alejandro Suárez-Bonnet
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Simon L. Priestnall
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - James I. MacRae
- Metabolomics STP, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Santiago Zelenay
- Cancer Inflammation and Immunity Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Kiran Raosaheb Patil
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Kevin Litchfield
- Tumor ImmunoGenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, 72 Huntley St, London WC1E 6DD, UK
| | - James C. Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Institute of Liver and Digestive Health, Division of Medicine, Royal Free Hospital, University College London, London, NW3 2QG, UK
| | - Tine Jess
- National Center of Excellence for Molecular Prediction of Inflammatory Bowel Disease, PREDICT, Faculty of Medicine, Aalborg University, Department of Gastroenterology and Hepatology, Aalborg University Hospital, A.C. Meyers Vænge 15, A DK-2450 Copenhagen, Denmark
| | - Romina S. Goldszmid
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, Bethesda, MD 20892-0001, USA
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
28
|
Gao J, Yang Y, Xiang X, Zheng H, Yi X, Wang F, Liang Z, Chen D, Shi W, Wang L, Wu D, Feng S, Huang Q, Li X, Shu W, Chen R, Zhong N, Wang Z. Human genetic associations of the airway microbiome in chronic obstructive pulmonary disease. Respir Res 2024; 25:165. [PMID: 38622589 PMCID: PMC11367891 DOI: 10.1186/s12931-024-02805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Little is known about the relationships between human genetics and the airway microbiome. Deeply sequenced airway metagenomics, by simultaneously characterizing the microbiome and host genetics, provide a unique opportunity to assess the microbiome-host genetic associations. Here we performed a co-profiling of microbiome and host genetics with the identification of over 5 million single nucleotide polymorphisms (SNPs) through deep metagenomic sequencing in sputum of 99 chronic obstructive pulmonary disease (COPD) and 36 healthy individuals. Host genetic variation was the most significant factor associated with the microbiome except for geography and disease status, with its top 5 principal components accounting for 12.11% of the microbiome variability. Within COPD individuals, 113 SNPs mapped to candidate genes reported as genetically associated with COPD exhibited associations with 29 microbial species and 48 functional modules (P < 1 × 10-5), where Streptococcus salivarius exhibits the strongest association to SNP rs6917641 in TBC1D32 (P = 9.54 × 10-8). Integration of concurrent host transcriptomic data identified correlations between the expression of host genes and their genetically-linked microbiome features, including NUDT1, MAD1L1 and Veillonella parvula, TTLL9 and Stenotrophomonas maltophilia, and LTA4H and Haemophilus influenzae. Mendelian randomization analyses revealed a potential causal link between PARK7 expression and microbial type III secretion system, and a genetically-mediated association between COPD and increased relative abundance of airway Streptococcus intermedius. These results suggest a previously underappreciated role of host genetics in shaping the airway microbiome and provide fresh hypotheses for genetic-based host-microbiome interactions in COPD.
Collapse
Affiliation(s)
- Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Yuqiong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaopeng Xiang
- The Hong Kong Polytechnic University, Hong Kong, Hung Hom Kowloon, China
| | - Huimin Zheng
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Fengyan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Dandan Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Weijuan Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Di Wu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shengchuan Feng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qiaoyun Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xueping Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wensheng Shu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China.
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Zhang Wang
- Institute of Ecological Sciences, Biomedical Research Center, School of Life Sciences, State Key Laboratory of Respiratory Disease, South China Normal University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
29
|
Panarese A. Bowel function and inflammation: Is motility the other side of the coin? World J Gastroenterol 2024; 30:1963-1967. [PMID: 38681124 PMCID: PMC11045487 DOI: 10.3748/wjg.v30.i14.1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/23/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
Digestion and intestinal absorption allow the body to sustain itself and are the emblematic functions of the bowel. On the flip side, functions also arise from its role as an interface with the environment. Indeed, the gut houses microorganisms, collectively known as the gut microbiota, which interact with the host, and is the site of complex immune activities. Its role in human pathology is complex and scientific evidence is progressively elucidating the functions of the gut, especially regarding the pathogenesis of chronic intestinal diseases and inflammatory conditions affecting various organs and systems. This editorial aims to highlight and relate the factors involved in the pathogenesis of intestinal and systemic inflammation.
Collapse
Affiliation(s)
- Alba Panarese
- Division of Gastroenterology and Digestive Endoscopy, Department of Medical Sciences, Central Hospital - Azienda Ospedaliera, Taranto 74123, Italy
| |
Collapse
|
30
|
Zhao C, Onyino J, Gao X. Current Advances in the Functional Diversity and Mechanisms Underlying Endophyte-Plant Interactions. Microorganisms 2024; 12:779. [PMID: 38674723 PMCID: PMC11052469 DOI: 10.3390/microorganisms12040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Plant phenotype is a complex entity largely controlled by the genotype and various environmental factors. Importantly, co-evolution has allowed plants to coexist with the biotic factors in their surroundings. Recently, plant endophytes as an external plant phenotype, forming part of the complex plethora of the plant microbial assemblage, have gained immense attention from plant scientists. Functionally, endophytes impact the plant in many ways, including increasing nutrient availability, enhancing the ability of plants to cope with both abiotic and biotic stress, and enhancing the accumulation of important plant secondary metabolites. The current state of research has been devoted to evaluating the phenotypic impacts of endophytes on host plants, including their direct influence on plant metabolite accumulation and stress response. However, there is a knowledge gap in how genetic factors influence the interaction of endophytes with host plants, pathogens, and other plant microbial communities, eventually controlling the extended microbial plant phenotype. This review will summarize how host genetic factors can impact the abundance and functional diversity of the endophytic microbial community, how endophytes influence host gene expression, and the host-endophyte-pathogen disease triangle. This information will provide novel insights into how breeders could specifically target the plant-endophyte extended phenotype for crop improvement.
Collapse
Affiliation(s)
- Caihong Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Johnmark Onyino
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiquan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
31
|
Zeng Q, Zhang M, Wang R. Causal link between gut microbiome and schizophrenia: a Mendelian randomization study. Psychiatr Genet 2024; 34:43-53. [PMID: 38441075 DOI: 10.1097/ypg.0000000000000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
OBJECTIVE Some observational studies have shown that gut microbiome is significantly changed in patients with schizophrenia. We aim to identify the genetic causal link between gut microbiome and schizophrenia. METHODS A two-sample Mendelian randomization (MR) study was used to evaluate the causal link between gut microbiome and schizophrenia with 28 gut microbiome-associated genetic instrumental variants chosen from recent MR reports and the largest schizophrenia genome-wide association studies (8-Apr-22 release). RESULTS Inverse variance weighted method showed that genetically increased Bacteroidales_S24-7 (per SD) resulted in increased risk of schizophrenia (OR = 1.110, 95% CI: [1.012-1.217], P = 0.027). Similarly, genetically increased Prevotellaceae promoted schizophrenia risk (OR = 1.124, 95% CI: [1.030-1.228], P = 0.009). However, genetically increased Lachnospiraceae reduced schizophrenia risk (OR = 0.878, 95% CI: [0.785-0.983], P = 0.023). In addition, schizophrenia risk was also suppressed by genetically increased Lactobacillaceae (OR = 0.878, 95% CI: [0.776-0.994], P = 0.040) and Verrucomicrobiaceae (OR = 0.860, 95% CI: [0.749-0.987], P = 0.032). Finally, we did not find any significant results in the causal association of other 23 gut microbiome with schizophrenia. CONCLUSION Our analysis suggests that genetically increased Bacteroidales_S24-7 and Prevotellaceae promotes schizophrenia risk, whereas genetically increased Lachnospiraceae, Lactobacillaceae, and Verrucomicrobiaceae reduces schizophrenia risk. Thus, regulation of the disturbed intestinal microbiota may represent a new therapeutic strategy for patients with schizophrenia.
Collapse
Affiliation(s)
- Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
32
|
Schreiber L, Ghimire S, Hiergeist A, Renner K, Althammer M, Babl N, Peuker A, Schoenhammer G, Hippe K, Gessner A, Albrecht C, Pielmeier F, Büttner-Herold M, Bruns H, Hoffmann P, Herr W, Holler E, Peter K, Kreutz M, Matos C. Strain specific differences in vitamin D3 response: impact on gut homeostasis. Front Immunol 2024; 15:1347835. [PMID: 38495883 PMCID: PMC10943696 DOI: 10.3389/fimmu.2024.1347835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
Vitamin D3 regulates a variety of biological processes irrespective of its well-known importance for calcium metabolism. Epidemiological and animal studies indicate a role in immune regulation, intestinal barrier function and microbiome diversity. Here, we analyzed the impact of different vitamin D3- containing diets on C57BL/6 and BALB/c mice, with a particular focus on gut homeostasis and also investigated effects on immune cells in vitro. Weak regulatory effects were detected on murine T cells. By trend, the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 suppressed IFN, GM-CSF and IL-10 cytokine secretion in T cells of C57BL/6 but not BALB/c mice, respectively. Using different vitamin D3-fortified diets, we found a tissue-specific enrichment of mainly CD11b+ myeloid cells but not T cells in both mouse strains e.g. in spleen and Peyer's Patches. Mucin Reg3γ and Batf expression, as well as important proteins for gut homeostasis, were significantly suppressed in the small intestine of C57BL76 but not BALB/c mice fed with a high-vitamin D3 containing diet. Differences between both mouse stains were not completely explained by differences in vitamin D3 receptor expression which was strongly expressed in epithelial cells of both strains. Finally, we analyzed gut microbiome and again an impact of vitamin D3 was detected in C57BL76 but not BALB/c. Our data suggest strain-specific differences in vitamin D3 responsiveness under steady state conditions which may have important implications when choosing a murine disease model to study vitamin D3 effects.
Collapse
Affiliation(s)
- Laura Schreiber
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sakhila Ghimire
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Michael Althammer
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Nathalie Babl
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Alice Peuker
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Gabriele Schoenhammer
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Hippe
- Department of Pathology, University of Regensburg, Regensburg, Germany
| | - Andre Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | | | | | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Petra Hoffmann
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Peter
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Carina Matos
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
Danne C, Skerniskyte J, Marteyn B, Sokol H. Neutrophils: from IBD to the gut microbiota. Nat Rev Gastroenterol Hepatol 2024; 21:184-197. [PMID: 38110547 DOI: 10.1038/s41575-023-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract that results from dysfunction in innate and/or adaptive immune responses. Impaired innate immunity, which leads to lack of control of an altered intestinal microbiota and to activation of the adaptive immune system, promotes a secondary inflammatory response that is responsible for tissue damage. Neutrophils are key players in innate immunity in IBD, but their roles have been neglected compared with those of other immune cells. The latest studies on neutrophils in IBD have revealed unexpected complexities, with heterogeneous populations and dual functions, both deleterious and protective, for the host. In parallel, interconnections between disease development, intestinal microbiota and neutrophils have been highlighted. Numerous IBD susceptibility genes (such as NOD2, NCF4, LRRK2, CARD9) are involved in neutrophil functions related to defence against microorganisms. Moreover, severe monogenic diseases involving dysfunctional neutrophils, including chronic granulomatous disease, are characterized by intestinal inflammation that mimics IBD and by alterations in the intestinal microbiota. This observation demonstrates the dialogue between neutrophils, gut inflammation and the microbiota. Neutrophils affect microbiota composition and function in several ways. In return, microbial factors, including metabolites, regulate neutrophil production and function directly and indirectly. It is crucial to further investigate the diverse roles played by neutrophils in host-microbiota interactions, both at steady state and in inflammatory conditions, to develop new IBD therapies. In this Review, we discuss the roles of neutrophils in IBD, in light of emerging evidence proving strong interconnections between neutrophils and the gut microbiota, especially in an inflammatory context.
Collapse
Affiliation(s)
- Camille Danne
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, Paris, France.
- Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France.
| | - Jurate Skerniskyte
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Benoit Marteyn
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
- Institut Pasteur, Université de Paris, Inserm 1225 Unité de Pathogenèse des Infections Vasculaires, Paris, France
| | - Harry Sokol
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, Paris, France
- Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
34
|
Suárez J. Scrutinizing microbiome determinism: why deterministic hypotheses about the microbiome are conceptually ungrounded. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2024; 46:12. [PMID: 38347271 PMCID: PMC10861753 DOI: 10.1007/s40656-024-00610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024]
Abstract
This paper addresses the topic of determinism in contemporary microbiome research. I distinguish two types of deterministic claims about the microbiome, and I show evidence that both types of claims are present in the contemporary literature. First, the idea that the host genetics determines the composition of the microbiome which I call "host-microbiome determinism". Second, the idea that the genetics of the holobiont (the individual unit composed by a host plus its microbiome) determines the expression of certain phenotypic traits, which I call "microbiome-phenotype determinism". Drawing on the stability of traits conception of individuality (Suárez in Hist Philos Life Sci 42:11, 2020) I argue that none of these deterministic hypotheses is grounded on our current knowledge of how the holobiont is transgenerationally assembled, nor how it expresses its phenotypic traits.
Collapse
Affiliation(s)
- Javier Suárez
- BIOETHICS Research Group - Department of Philosophy, University of Oviedo, Oviedo, Spain.
- Institute of Philosophy, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
35
|
Liu X, Tong X, Zou L, Ju Y, Liu M, Han M, Lu H, Yang H, Wang J, Zong Y, Liu W, Xu X, Jin X, Xiao L, Jia H, Guo R, Zhang T. A genome-wide association study reveals the relationship between human genetic variation and the nasal microbiome. Commun Biol 2024; 7:139. [PMID: 38291185 PMCID: PMC10828421 DOI: 10.1038/s42003-024-05822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
The nasal cavity harbors diverse microbiota that contributes to human health and respiratory diseases. However, whether and to what extent the host genome shapes the nasal microbiome remains largely unknown. Here, by dissecting the human genome and nasal metagenome data from 1401 healthy individuals, we demonstrated that the top three host genetic principal components strongly correlated with the nasal microbiota diversity and composition. The genetic association analyses identified 63 genome-wide significant loci affecting the nasal microbial taxa and functions, of which 2 loci reached study-wide significance (p < 1.7 × 10-10): rs73268759 within CAMK2A associated with genus Actinomyces and family Actinomycetaceae; and rs35211877 near POM121L12 with Gemella asaccharolytica. In addition to respiratory-related diseases, the associated loci are mainly implicated in cardiometabolic or neuropsychiatric diseases. Functional analysis showed the associated genes were most significantly expressed in the nasal airway epithelium tissue and enriched in the calcium signaling and hippo signaling pathway. Further observational correlation and Mendelian randomization analyses consistently suggested the causal effects of Serratia grimesii and Yokenella regensburgei on cardiometabolic biomarkers (cystine, glutamic acid, and creatine). This study suggested that the host genome plays an important role in shaping the nasal microbiome.
Collapse
Affiliation(s)
- Xiaomin Liu
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Tong
- BGI Research, Shenzhen, 518083, China
| | | | - Yanmei Ju
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Mo Han
- BGI Research, Shenzhen, 518083, China
| | - Haorong Lu
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Huanming Yang
- BGI Research, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Jian Wang
- BGI Research, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Yang Zong
- BGI Research, Shenzhen, 518083, China
| | | | - Xun Xu
- BGI Research, Shenzhen, 518083, China
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huijue Jia
- Greater Bay Area Institute of Precision Medicine, Guangzhou, Guangdong, China.
- School of Life Sciences, Fudan University, Shanghai, China.
| | | | | |
Collapse
|
36
|
Yao M, Oduro PK, Akintibu AM, Yan H. Modulation of the vitamin D receptor by traditional Chinese medicines and bioactive compounds: potential therapeutic applications in VDR-dependent diseases. Front Pharmacol 2024; 15:1298181. [PMID: 38318147 PMCID: PMC10839104 DOI: 10.3389/fphar.2024.1298181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The Vitamin D receptor (VDR) is a crucial nuclear receptor that plays a vital role in various physiological functions. To a larger extent, the genomic effects of VDR maintain general wellbeing, and its modulation holds implications for multiple diseases. Current evidence regarding using vitamin D or its synthetic analogs to treat non-communicable diseases is insufficient, though observational studies suggest potential benefits. Traditional Chinese medicines (TCMs) and bioactive compounds derived from natural sources have garnered increasing attention. Interestingly, TCM formulae and TCM-derived bioactive compounds have shown promise in modulating VDR activities. This review explores the intriguing potential of TCM and bioactive compounds in modulating VDR activity. We first emphasize the latest information on the genetic expression, function, and structure of VDR, providing a comprehensive understanding of this crucial receptor. Following this, we review several TCM formulae and herbs known to influence VDR alongside the mechanisms underpinning their action. Similarly, we also discuss TCM-based bioactive compounds that target VDR, offering insights into their roles and modes of action.
Collapse
Affiliation(s)
- Minghe Yao
- Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Patrick Kwabena Oduro
- Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Ayomide M. Akintibu
- School of Community Health and Policy, Morgan State University, Baltimore, MD, United States
| | - Haifeng Yan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
37
|
Pan T, Su L, Zhang Y, Yi F, Chen Y. Impact of gut microbiota on nonalcoholic fatty liver disease: insights from a leave-one-out cross-validation study. Front Microbiol 2024; 14:1320279. [PMID: 38260910 PMCID: PMC10801729 DOI: 10.3389/fmicb.2023.1320279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Enteric dysbacteriosis is strongly associated with nonalcoholic fatty liver disease (NAFLD). However, the underlying causal relationship remains unknown. Thus, the present study aimed to investigate the relationship between gut microbiota and NAFLD using Mendelian randomization (MR) and analyze the target genes potentially regulated by specific microbiota. Methods Bidirectional two-sample MR analysis was performed using inverse variance weighted (IVW) supplemented by MR-Egger, weighted median, simple mode, and weighted mode methods. Data were pooled from gut microbiota and NAFLD association studies. The least absolute shrinkage, selection operator regression, and the Support Vector Machine algorithm were used to identify genes regulated by these intestinal flora in NAFLD. The liver expression of these genes was verified in methionine choline-deficient (MCD) diet-fed mice. Results IVW results confirmed a causal relationship between eight specific gut microbes and NAFLD. Notably, the order Actinomycetales, NB1n, the family Actinomycetaceae, Oxalobacteraceae and the genus Ruminococcaceae UCG005 were positively correlated, whereas Lactobacillaceae, the Christensenellaceae R7 group, and Intestinibacter were negatively correlated with NAFLD onset. In NAFLD, these eight bacteria regulated four genes: colony-stimulating factor 2 receptor β, fucosyltransferase 2, 17-beta-hydroxysteroid dehydrogenase 14, and microtubule affinity regulatory kinase 3 (MAPK3). All genes, except MARK3, were differentially expressed in the liver tissues of MCD diet-fed mice. Discussion The abundance of eight gut microbiota species and NAFLD progression displayed a causal relationship based on the expression of the four target genes. Our findings contributed to the advancement of intestinal microecology-based diagnostic technologies and targeted therapies for NAFLD.
Collapse
Affiliation(s)
- Tongtong Pan
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Lihuang Su
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiying Zhang
- Alberta Institute, Wenzhou Medical University, Wenzhou, China
| | - Fangfang Yi
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| |
Collapse
|
38
|
Ferrer-Mayorga G, Muñoz A, González-Sancho JM. Vitamin D and colorectal cancer. FELDMAN AND PIKE'S VITAMIN D 2024:859-899. [DOI: 10.1016/b978-0-323-91338-6.00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
39
|
Zhernakova DV, Wang D, Liu L, Andreu-Sánchez S, Zhang Y, Ruiz-Moreno AJ, Peng H, Plomp N, Del Castillo-Izquierdo Á, Gacesa R, Lopera-Maya EA, Temba GS, Kullaya VI, van Leeuwen SS, Xavier RJ, de Mast Q, Joosten LAB, Riksen NP, Rutten JHW, Netea MG, Sanna S, Wijmenga C, Weersma RK, Zhernakova A, Harmsen HJM, Fu J. Host genetic regulation of human gut microbial structural variation. Nature 2024; 625:813-821. [PMID: 38172637 PMCID: PMC10808065 DOI: 10.1038/s41586-023-06893-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Although the impact of host genetics on gut microbial diversity and the abundance of specific taxa is well established1-6, little is known about how host genetics regulates the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of associations between human genetic variation and gut microbial structural variation in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a structural variation segment in Faecalibacterium prausnitzii that harbours an N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is jointly determined by human ABO and FUT2 genotypes, and we could replicate this association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc can be used as the sole carbohydrate source for F. prausnitzii strains that carry the GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated that other ABO-associated species can also utilize GalNAc, particularly Collinsella aerofaciens. The GalNAc utilization genes are also associated with the host's cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, the findings of our study demonstrate that genetic associations across the human genome and bacterial metagenome can provide functional insights into the reciprocal host-microbiome relationship.
Collapse
Affiliation(s)
- Daria V Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Daoming Wang
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Lei Liu
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Sergio Andreu-Sánchez
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Yue Zhang
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Angel J Ruiz-Moreno
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Haoran Peng
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Niels Plomp
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Ángela Del Castillo-Izquierdo
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Ranko Gacesa
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Esteban A Lopera-Maya
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Godfrey S Temba
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vesla I Kullaya
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Sander S van Leeuwen
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen, The Netherlands
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost H W Rutten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
- Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Serena Sanna
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Cisca Wijmenga
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Rinse K Weersma
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Alexandra Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Hermie J M Harmsen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands.
| | - Jingyuan Fu
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands.
| |
Collapse
|
40
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
41
|
Dong C, Guan Q, Xu W, Zhang X, Jin B, Yu S, Xu X, Xia Y. Disentangling the age-related manner in the associations between gut microbiome and women's health: a multi-cohort microbiome study. Gut Microbes 2023; 15:2290320. [PMID: 38059752 PMCID: PMC10730178 DOI: 10.1080/19490976.2023.2290320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Women's health encompasses life-course healthcare, and mounting evidence emphasizes the pivotal contribution of gut microbiota. Therefore, understanding the temporal dynamics of gut microbiota and how age influences disease-gut microbiota associations is essential for improving women's health. By analyzing metagenomic data from 3625 healthy women, we revealed significant effects of age on gut microbiota and age-dependent patterns in microbial features, such as relative abundance, Shannon index, and microbial network properties. Additionally, declining trends in the predictive accuracy of gut microbiota for age groups were shown using iterative sub-sampling based random forest (ISSRF) model. Age-specific species markers were also identified, many of which were shared across age groups. To investigate the influence of age on disease-gut microbiota associations, metagenomic data from 681 women with various disease conditions and 491 matched healthy controls were collected. A substantial proportion of species markers for inflammatory bowel disease (IBD), type 2 diabetes (T2D), atherosclerotic cardiovascular disease (ACVD), and impaired glucose tolerance (IGT) differed in relative abundance across age groups, and were also age-specific species markers. Besides, the microbiota-based probabilities of IBD and ACVD were positively correlated with age. Furthermore, the age specificity of disease-gut microbiota associations was explored using the ISSRF model. Associations between IBD and gut microbiota were age-specific, with reduced stability of disease species markers in childhood and adolescence, possibly due to decrease in the effect size between patients and controls. Our findings provided valuable insights into promoting healthy aging and developing personalized healthcare strategies for women.
Collapse
Affiliation(s)
- Chao Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Xu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaochen Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Bowen Jin
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shumin Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Kujawa D, Laczmanski L, Budrewicz S, Pokryszko-Dragan A, Podbielska M. Targeting gut microbiota: new therapeutic opportunities in multiple sclerosis. Gut Microbes 2023; 15:2274126. [PMID: 37979154 PMCID: PMC10730225 DOI: 10.1080/19490976.2023.2274126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023] Open
Abstract
Multiple sclerosis (MS) causes long-lasting, multifocal damage to the central nervous system. The complex background of MS is associated with autoimmune inflammation and neurodegeneration processes, and is potentially affected by many contributing factors, including altered composition and function of the gut microbiota. In this review, current experimental and clinical evidence is presented for the characteristics of gut dysbiosis found in MS, as well as for its relevant links with the course of the disease and the dysregulated immune response and metabolic pathways involved in MS pathology. Furthermore, therapeutic implications of these investigations are discussed, with a range of pharmacological, dietary and other interventions targeted at the gut microbiome and thus intended to have beneficial effects on the course of MS.
Collapse
Affiliation(s)
- Dorota Kujawa
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lukasz Laczmanski
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | | - Maria Podbielska
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
43
|
Sun J, Ince MN, Abraham C, Barrett T, Brenner LA, Cong Y, Dashti R, Dudeja PK, Elliott D, Griffith TS, Heeger PS, Hoisington A, Irani K, Kim TK, Kapur N, Leventhal J, Mohamadzadeh M, Mutlu E, Newberry R, Peled JU, Rubinstein I, Sengsayadeth S, Tan CS, Tan XD, Tkaczyk E, Wertheim J, Zhang ZJ. Modulating microbiome-immune axis in the deployment-related chronic diseases of Veterans: report of an expert meeting. Gut Microbes 2023; 15:2267180. [PMID: 37842912 PMCID: PMC10580853 DOI: 10.1080/19490976.2023.2267180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
The present report summarizes the United States Department of Veterans Affairs (VA) field-based meeting titled "Modulating microbiome-immune axis in the deployment-related chronic diseases of Veterans." Our Veteran patient population experiences a high incidence of service-related chronic physical and mental health problems, such as infection, irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), various forms of hematological and non-hematological malignancies, neurologic conditions, end-stage organ failure, requiring transplantation, and posttraumatic stress disorder (PTSD). We report the views of a group of scientists who focus on the current state of scientific knowledge elucidating the mechanisms underlying the aforementioned disorders, novel therapeutic targets, and development of new approaches for clinical intervention. In conclusion, we dovetailed on four research areas of interest: 1) microbiome interaction with immune cells after hematopoietic cell and/or solid organ transplantation, graft-versus-host disease (GVHD) and graft rejection, 2) intestinal inflammation and its modification in IBD and cancer, 3) microbiome-neuron-immunity interplay in mental and physical health, and 4) microbiome-micronutrient-immune interactions during homeostasis and infectious diseases. At this VA field-based meeting, we proposed to explore a multi-disciplinary, multi-institutional, collaborative strategy to initiate a roadmap, specifically focusing on host microbiome-immune interactions among those with service-related chronic diseases to potentially identify novel and translatable therapeutic targets.
Collapse
Affiliation(s)
- Jun Sun
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology/Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - M. Nedim Ince
- Iowa City Veterans Affairs Medical Center, Lowa city, IA, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Terrence Barrett
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
- Medicine, University of Kentucky, Lexington, KY, USA
| | - Lisa A. Brenner
- Veterans Affairs Rocky Mountain Mental Illness Research, Education, and Clinical Center, Aurora, CO, USA
- Physical Medicine and Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Yingzi Cong
- Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Reza Dashti
- Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Pradeep K. Dudeja
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology/Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - David Elliott
- Iowa City Veterans Affairs Medical Center, Lowa city, IA, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Thomas S. Griffith
- Minneapolis VA Medical Center, Minneapolis, MN, USA
- Urology, University of Minnesota, Minneapolis, MN, USA
| | - Peter S. Heeger
- Medicine/Nephrology, Cedars-Sinai Medical Center in Los Angeles, Los Angeles, CA, USA
| | - Andrew Hoisington
- Veterans Affairs Rocky Mountain Mental Illness Research, Education, and Clinical Center, Aurora, CO, USA
- Physical Medicine and Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Kaikobad Irani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Tae Kon Kim
- Tennessee Valley Healthcare System-Nashville VA, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, USA
| | - Neeraj Kapur
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
- Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Mansour Mohamadzadeh
- Microbiology, University of Texas Health Science Center at San Antonio, USA, TX, San Antonio
| | - Ece Mutlu
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Rodney Newberry
- Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Jonathan U. Peled
- Adult Bone Marrow Transplantation Service Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Israel Rubinstein
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology/Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Salyka Sengsayadeth
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology/Immunology, University of Illinois Chicago, Chicago, IL, USA
- Iowa City Veterans Affairs Medical Center, Lowa city, IA, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
- Medicine, Yale University, New Haven, CT, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
- Medicine, University of Kentucky, Lexington, KY, USA
- Veterans Affairs Rocky Mountain Mental Illness Research, Education, and Clinical Center, Aurora, CO, USA
- Physical Medicine and Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Medicine, Stony Brook University, Stony Brook, NY, USA
- Minneapolis VA Medical Center, Minneapolis, MN, USA
- Urology, University of Minnesota, Minneapolis, MN, USA
- Medicine/Nephrology, Cedars-Sinai Medical Center in Los Angeles, Los Angeles, CA, USA
- Tennessee Valley Healthcare System-Nashville VA, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, USA
- Surgery, Northwestern University, Evanston, IL, USA
- Microbiology, University of Texas Health Science Center at San Antonio, USA, TX, San Antonio
- Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- Adult Bone Marrow Transplantation Service Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Surgery, University of Arizona, Tucson, AZ, USA
- Tucson VA Medical Center, Tucson, AZ, USA
| | - Chen Sabrina Tan
- Iowa City Veterans Affairs Medical Center, Lowa city, IA, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiao-Di Tan
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology/Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Eric Tkaczyk
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Jason Wertheim
- Surgery, University of Arizona, Tucson, AZ, USA
- Tucson VA Medical Center, Tucson, AZ, USA
| | | |
Collapse
|
44
|
Hou T, Wang Q, Dai H, Hou Y, Zheng J, Wang T, Lin H, Wang S, Li M, Zhao Z, Chen Y, Xu Y, Lu J, Liu R, Ning G, Wang W, Xu M, Bi Y. Interactive Association Between Gut Microbiota and Thyroid Cancer. Endocrinology 2023; 165:bqad184. [PMID: 38051644 DOI: 10.1210/endocr/bqad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
CONTEXT The association between the gut microbiota and thyroid cancer remains controversial. OBJECTIVE We aimed to systematically investigate the interactive causal relationships between the abundance and metabolism pathways of gut microbiota and thyroid cancer. METHODS We leveraged genome-wide association studies for the abundance of 211 microbiota taxa from the MiBioGen study (N = 18 340), 205 microbiota metabolism pathways from the Dutch Microbiome Project (N = 7738), and thyroid cancer from the Global Biobank Meta-analysis Initiative (N cases = 6699 and N participants = 1 620 354). We performed a bidirectional Mendelian randomization (MR) to investigate the causality from microbiota taxa and metabolism pathways to thyroid cancer and vice versa. We performed a systematic review of previous observational studies and compared MR results with observational findings. RESULTS Eight taxa and 12 metabolism pathways had causal effects on thyroid cancer, where RuminococcaceaeUCG004 genus (P = .001), Streptococcaceae family (P = .016), Olsenella genus (P = .029), ketogluconate metabolism pathway (P = .003), pentose phosphate pathway (P = .016), and L-arginine degradation II in the AST pathway (P = .0007) were supported by sensitivity analyses. Conversely, thyroid cancer had causal effects on 3 taxa and 2 metabolism pathways, where the Holdemanella genus (P = .015) was supported by sensitivity analyses. The Proteobacteria phylum, Streptococcaceae family, Ruminococcus2 genus, and Holdemanella genus were significantly associated with thyroid cancer in both the systematic review and MR, whereas the other 121 significant taxa in observational results were not supported by MR. DISCUSSIONS These findings implicated the potential role of host-microbiota crosstalk in thyroid cancer, while the discrepancy among observational studies calls for further investigations.
Collapse
Affiliation(s)
- Tianzhichao Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huajie Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanan Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
45
|
Chen Y, Zhao M, Ji K, Li J, Wang S, Lu L, Chen Z, Zeng J. Association of nicotine dependence and gut microbiota: a bidirectional two-sample Mendelian randomization study. Front Immunol 2023; 14:1244272. [PMID: 38022531 PMCID: PMC10664251 DOI: 10.3389/fimmu.2023.1244272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background Nicotine dependence is a key factor influencing the diversity of gut microbiota, and targeting gut microbiota may become a new approach for the prevention and treatment of nicotine dependence. However, the causal relationship between the two is still unclear. This study aims to investigate the causal relationship between nicotine dependence and gut microbiota. Methods A two-sample bidirectional Mendelian randomization (MR) study was conducted using the largest existing gut microbiota and nicotine dependence genome-wide association studies (GWAS). Causal relationships between genetically predicted nicotine dependence and gut microbiota abundance were examined using inverse variance weighted, MR-Egger, weighted median, simple mode, weighted mode, and MR-PRESSO approaches. Cochrane's Q test, MR-Egger intercept test, and leave-one-out analysis were performed as sensitivity analyses to assess the robustness of the results. Multivariable Mendelian randomization analysis was also conducted to eliminate the interference of smoking-related phenotypes. Reverse Mendelian randomization analysis was then performed to determine the causal relationship between genetically predicted gut microbiota abundance and nicotine dependence. Results Genetically predicted nicotine dependence had a causal effect on Christensenellaceae (β: -0.52, 95% CI: -0.934-0.106, P = 0.014). The Eubacterium xylanophilum group (OR: 1.106, 95% CI: 1.004-1.218), Lachnoclostridium (OR: 1.118, 95% CI: 1.001-1.249) and Holdemania (OR: 1.08, 95% CI: 1.001-1.167) were risk factors for nicotine dependence. Peptostreptococcaceae (OR: 0.905, 95% CI: 0.837-0.977), Desulfovibrio (OR: 0.014, 95% CI: 0.819-0.977), Dorea (OR: 0.841, 95% CI. 0.731-0.968), Faecalibacterium (OR: 0.831, 95% CI: 0.735-0.939) and Sutterella (OR: 0.838, 95% CI: 0.739-0.951) were protective factor for nicotine dependence. The sensitivity analysis showed consistent results. Conclusion The Mendelian randomization study confirmed the causal link between genetically predicted risk of nicotine dependence and genetically predicted abundance of gut microbiota. Gut microbiota may serve as a biomarker and offer insights for addressing nicotine dependence.
Collapse
Affiliation(s)
- Yuexuan Chen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengjiao Zhao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaisong Ji
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Li
- Department of Acupuncture, Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Shuxin Wang
- Department of Acupuncture, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenhu Chen
- Department of Acupuncture, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingchun Zeng
- Department of Acupuncture, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
46
|
Yu C, Zhang P, Liu S, Niu Y, Fu L. SESN2 ablation weakens exercise benefits on resilience of gut microbiota following high-fat diet consumption in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
47
|
Song M, Zhang Z, Li Y, Xiang Y, Li C. Midgut microbiota affects the intestinal barrier by producing short-chain fatty acids in Apostichopus japonicus. Front Microbiol 2023; 14:1263731. [PMID: 37915855 PMCID: PMC10616862 DOI: 10.3389/fmicb.2023.1263731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction The intestinal microbiota participates in host physiology and pathology through metabolites, in which short-chain fatty acids (SCFAs) are considered principal products and have extensive influence on intestine homeostasis. It has been reported that skin ulceration syndrome (SUS), the disease of Apostichopus japonicus caused by Vibrio splendidus, is associated with the alteration of the intestinal microbiota composition. Method To investigate whether the intestinal microbiota affects A. japonicus health via SCFAs, in this study, we focus on the SCFA profiling and intestinal barrier function in A. japonicus treated with V. splendidus. Results and discussion We found that V. splendidus could destroy the mid-intestine integrity and downregulate the expression of tight junction proteins ZO-1 and occludin in A. japonicus, which further dramatically decreased microorganism abundance and altered SCFAs contents. Specifically, acetic acid is associated with the largest number of microorganisms and has a significant correlation with occludin and ZO-1 among the seven SCFAs. Furthermore, our findings showed that acetic acid could maintain the intestinal barrier function by increasing the expression of tight junction proteins and rearranging the tight junction structure by regulating F-actin in mid-intestine epithelial cells. Thus, our results provide insights into the effects of the gut microbiome and SCFAs on intestine barrier homeostasis and provide essential knowledge for intervening in SUS by targeting metabolites or the gut microbiota.
Collapse
Affiliation(s)
- Mingshan Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Yanan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Yangxi Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
48
|
Chmiel JA, Stuivenberg GA, Al KF, Akouris PP, Razvi H, Burton JP, Bjazevic J. Vitamins as regulators of calcium-containing kidney stones - new perspectives on the role of the gut microbiome. Nat Rev Urol 2023; 20:615-637. [PMID: 37161031 PMCID: PMC10169205 DOI: 10.1038/s41585-023-00768-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 05/11/2023]
Abstract
Calcium-based kidney stone disease is a highly prevalent and morbid condition, with an often complicated and multifactorial aetiology. An abundance of research on the role of specific vitamins (B6, C and D) in stone formation exists, but no consensus has been reached on how these vitamins influence stone disease. As a consequence of emerging research on the role of the gut microbiota in urolithiasis, previous notions on the contribution of these vitamins to urolithiasis are being reconsidered in the field, and investigation into previously overlooked vitamins (A, E and K) was expanded. Understanding how the microbiota influences host vitamin regulation could help to determine the role of vitamins in stone disease.
Collapse
Affiliation(s)
- John A Chmiel
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Gerrit A Stuivenberg
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Kait F Al
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Polycronis P Akouris
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Hassan Razvi
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada
| | - Jennifer Bjazevic
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada.
| |
Collapse
|
49
|
Haldar S, Jadhav SR, Gulati V, Beale DJ, Balkrishna A, Varshney A, Palombo EA, Karpe AV, Shah RM. Unravelling the gut-lung axis: insights into microbiome interactions and Traditional Indian Medicine's perspective on optimal health. FEMS Microbiol Ecol 2023; 99:fiad103. [PMID: 37656879 PMCID: PMC10508358 DOI: 10.1093/femsec/fiad103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023] Open
Abstract
The microbiome of the human gut is a complex assemblage of microorganisms that are in a symbiotic relationship with one another and profoundly influence every aspect of human health. According to converging evidence, the human gut is a nodal point for the physiological performance matrixes of the vital organs on several axes (i.e. gut-brain, gut-lung, etc). As a result of COVID-19, the importance of gut-lung dysbiosis (balance or imbalance) has been realised. In view of this, it is of utmost importance to develop a comprehensive understanding of the microbiome, as well as its dysbiosis. In this review, we provide an overview of the gut-lung axial microbiome and its importance in maintaining optimal health. Human populations have successfully adapted to geophysical conditions through traditional dietary practices from around the world. In this context, a section has been devoted to the traditional Indian system of medicine and its theories and practices regarding the maintenance of optimally customized gut health.
Collapse
Affiliation(s)
- Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
| | - Snehal R Jadhav
- Consumer-Analytical-Safety-Sensory (CASS) Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Vandana Gulati
- Biomedical Science, School of Science and Technology Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Avinash V Karpe
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Socio-Eternal Thinking for Unity (SETU), Melbourne, VIC 3805, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Acton, ACT 2601, Australia
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| |
Collapse
|
50
|
Burgermeister E. Mitogen-Activated Protein Kinase and Nuclear Hormone Receptor Crosstalk in Cancer Immunotherapy. Int J Mol Sci 2023; 24:13661. [PMID: 37686465 PMCID: PMC10488039 DOI: 10.3390/ijms241713661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The three major MAP-kinase (MAPK) pathways, ERK1/2, p38 and JNK/SAPK, are upstream regulators of the nuclear "hormone" receptor superfamily (NHRSF), with a prime example given by the estrogen receptor in breast cancer. These ligand-activated transcription factors exert non-genomic and genomic functions, where they are either post-translationally modified by phosphorylation or directly interact with components of the MAPK pathways, events that govern their transcriptional activity towards target genes involved in cell differentiation, proliferation, metabolism and host immunity. This molecular crosstalk takes place not only in normal epithelial or tumor cells, but also in a plethora of immune cells from the adaptive and innate immune system in the tumor-stroma tissue microenvironment. Thus, the drugability of both the MAPK and the NHRSF pathways suggests potential for intervention therapies, especially for cancer immunotherapy. This review summarizes the existing literature covering the expression and function of NHRSF subclasses in human tumors, both solid and leukemias, and their effects in combination with current clinically approved therapeutics against immune checkpoint molecules (e.g., PD1).
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|