1
|
Bal Altuntaş D, Sanko V, Kuralay F. MoS 2-WS 2 decorated carbon nanotubes amplified electro-nanosensor for label-free voltammetric detection of DNA. J Pharm Biomed Anal 2025; 260:116780. [PMID: 40056489 DOI: 10.1016/j.jpba.2025.116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
The development of functional interfaces for healthcare applications is in great demand to perform sensitive and reliable testing. For this purpose, in the present study, the use of transition metal dichalcogenides (TMDCs) combined with carbon nanotubes modified pencil graphite electrode (PGE) was demonstrated for fish sperm double-stranded deoxyribonucleic acid (fsDNA) detection. The advanced system consisted of molybdenum disulfide (MoS2), tungsten disulfide (WS2), and multi-walled carbon nanotubes (MWCNTs), which exhibited superior and fascinating electrochemical properties on PGE as a result of synergetic effect occurred between the materials. The MoS2-WS2-MWCNTs incorporated PGE (MoS2-WS2-MWCNTs/E) was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) analysis, and electrochemical techniques. The elemental composition of the sensing platform was monitored with energy-dispersive X-ray spectroscopy (EDS). Specific parameters, including the amount of components in the hybrid material were optimized. MoS2-WS2-MWCNTs/E presented a good linear range for fsDNA between 0.1 and 50mgL-1 with a low detection limit of 0.05 mg L-1 by using the differential pulse voltammetry (DPV) technique. The detection performance of the resulting electrode was compared with the responses of MoS2-MWCNTs/E and WS2-MWCNTs/E as well. This sensing platform establishes the use of dichalcogenides-carbon nanotubes-based material for facile, sensitive, and reproducible sensing applications.
Collapse
Affiliation(s)
- Derya Bal Altuntaş
- Department of Bioengineering, Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, Rize 53100, Turkey.
| | - Vildan Sanko
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; Middle East Technical University, Micro-Electro-Mechanical Systems (MEMS) Center, Ankara 06530, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
2
|
Cao L, Wang T, Xie J, Wang Y, Huang Y, Luo S, Zhan X, Jiang H, Ran L, Jin X, Liu J, Li B. Aptamer-based DNAzyme walker electrochemical biosensing strategy for Acinetobacter baumannii detection. Bioelectrochemistry 2025; 163:108895. [PMID: 39742713 DOI: 10.1016/j.bioelechem.2024.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
In this study, an innovative electrochemical biosensor was developed for the rapid, specific, and sensitive detection of Acinetobacter baumannii without the need for sample pretreatment. The biosensor utilized an aptamer as a specific capture probe for A. baumannii and employed a self-powered DNAzyme walker cleavage cycle reaction to achieve signal amplification. Upon introduction of the target bacteria, the aptamer captured the bacteria and released the Trigger, activating the DNAzyme to cleave the substrate chain containing methylene blue (MB). This led to the release of MB-labeled DNA fragments from the electrode surface, resulting in a significant decrease in the square wave voltammetry (SWV) signal of MB on the sensing platform. The limit of detection (LOD) for A. baumannii was determined to be 30 CFU/mL, enabling discrimination of the target bacteria from other common clinical isolates. Furthermore, the biosensor's potential for real sample analysis was demonstrated in cerebrospinal fluid (CSF), showcasing its efficacy and versatility as a biosensing tool with wide-ranging applications in disease diagnosis and bioanalysis.
Collapse
Affiliation(s)
- Linhong Cao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, Sichuan, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Tianyu Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, Sichuan, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Jingling Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, Sichuan, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Yihua Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, Sichuan, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Yaxin Huang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, Sichuan, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Sijian Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, Sichuan, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Xiaoting Zhan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, Sichuan, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Hui Jiang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, Sichuan, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Liuxin Ran
- Department of Medical Laboratory Medicine, Southwest Medical University, Sichuan, China
| | - Xing Jin
- Department of Medical Laboratory Medicine, Southwest Medical University, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, Sichuan, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China.
| | - Baolin Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, Sichuan, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China.
| |
Collapse
|
3
|
Xie Y, Xie X, Lv H, Dai Z, Chen X, Gao Z, Xu L, Li J, Wang F, Fan C, Li Q. Single-Molecule DNA Hybridization on Tetrahedral DNA Framework-Modified Surfaces. NANO LETTERS 2025. [PMID: 40448647 DOI: 10.1021/acs.nanolett.5c01507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Tetrahedral DNA frameworks (TDFs) have been extensively utilized in biosensing systems. At the macroscopic level, it has been well established that TDFs, when employed as probe scaffolds, significantly enhance the interfacial DNA hybridization efficiency between target single-stranded DNA (ssDNA) and probe ssDNA at the solid-liquid interface. However, a molecular-level understanding of how TDF scaffolds facilitate this interfacial hybridization remains elusive. In this study, we employed single-molecule total internal reflection fluorescence microscopy (SM-TIRFM) to monitor the hybridization processes between freely diffusing target ssDNA and probe ssDNA with or without TDF scaffolds. Statistical analysis of interfacial hybridization kinetics at single probe sites revealed that TDF scaffolds significantly accelerate the interfacial hybridization kinetics, reducing the target dissociation time by 0.5-fold and increasing the association constant (Ka) by nearly 4-fold. This study offers new insights for the development of DNA nanostructure-based biosensors.
Collapse
Affiliation(s)
- Yao Xie
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodong Xie
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Lv
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zheze Dai
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoliang Chen
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaoshuai Gao
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lifeng Xu
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Fei Wang
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Li
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Chen Y, Fu KX, Cotton R, Ou Z, Kwak JW, Chien JC, Kesler V, Nyein HYY, Eisenstein M, Tom Soh H. A biochemical sensor with continuous extended stability in vivo. Nat Biomed Eng 2025:10.1038/s41551-025-01389-6. [PMID: 40410556 DOI: 10.1038/s41551-025-01389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/03/2025] [Indexed: 05/25/2025]
Abstract
The development of biosensors that can detect specific analytes continuously, in vivo, in real time has proven difficult due to biofouling, probe degradation and signal drift that often occur in vivo. By drawing inspiration from intestinal mucosa that can protect host cell receptors in the presence of the gut microbiome, we develop a synthetic biosensor that can continuously detect specific target molecules in vivo. The biomimetic multicomponent sensor features the hierarchical nano-bio interface design with three-dimensional bicontinuous nanoporous structure, polymer coating and aptamer switches, balancing small-molecule sensing and surface protection in complex biological environments. Our system is stable for at least 1 month in undiluted serum in vitro or 1 week implanted within the blood vessels of free-moving rats, retaining over 50% baseline signal and reproducible calibration curves. We demonstrate that the implanted system can intravenously track pharmacokinetics in real time even after 4 days of continuous exposure to flowing blood within rat femoral vein. In this way, our work provides a generalizable design foundation for biosensors that can continuously operate in vivo for extended durations.
Collapse
Affiliation(s)
- Yihang Chen
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Kaiyu X Fu
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Renee Cotton
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Jean Won Kwak
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Jun-Chau Chien
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Vladimir Kesler
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Hnin Yin Yin Nyein
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Michael Eisenstein
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
5
|
Nortz SP, Gupta V, Dick JE. The impact of common redox mediators on cellular health: a comprehensive study. Analyst 2025; 150:1795-1806. [PMID: 40176531 PMCID: PMC11966090 DOI: 10.1039/d5an00017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/12/2025] [Indexed: 04/04/2025]
Abstract
Electrochemistry has become a key technique for studying biomolecular reactions and dynamics of living systems by using electron-transfer reactions to probe the complex interactions between biological redox molecules and their surrounding environments. To enable such measurements, redox mediators such as ferro/ferricyanide, ferrocene methanol, and tris(bipyridine) ruthenium(II) chloride are used. However, the impact of these exogeneous redox mediators on the health of cell cultures remains underexplored. Herein, we present the effects of three common redox mediators on the health of four of the most commonly used cell lines (Panc1, HeLa, U2OS, and MDA-MB-231) in biological studies. Cell health was assessed using three independent parameters: reactive oxygen species quantification by fluorescence flow cytometry, cell migration through scratch assays, and cell growth via luminescence assays. We show that as the concentration of mediator exceeds 1 mM, ROS increases in all cell types while cell viability plumets. In contrast, cell migration was only hindered at the highest concentration of each mediator. Our observations highlight the crucial role that optimized mediator concentrations play in ensuring accuracy when studying biological systems by electrochemical methods. As such, these findings provide a critical reference for selecting redox mediator concentrations for bioanalytical studies on live cells.
Collapse
Affiliation(s)
- Samuel P Nortz
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Vanshika Gupta
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
6
|
Niu X, Guo Y, Li N, Li S, Yu Y, Jiao J, Guo Y. Intelligent molecular cleavage and dual-signal relay amplification ratiometric strategy for high-sensitivity analysis and dynamic monitoring of exosomal RNA in glioma. Biosens Bioelectron 2025; 274:117205. [PMID: 39908850 DOI: 10.1016/j.bios.2025.117205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/07/2025]
Abstract
Exosomal RNA has emerged as a promising biomarker for glioblastoma (GBM) due to its exceptional stability in biofluids and strong correlation with tumor progression. In this study, we present an innovative intelligent molecular cleavage and dual-signal relay amplification-based ratiometric (ISR) strategy for high-sensitivity monitoring and dynamic analysis of exosomal RNA in glioma. The core mechanism is based on a hollow duplex structure that effectively prevents premature cleavage by duplex-specific nuclease (DSN), ensuring both the accuracy and stability of the detection system. Upon the introduction of the target microRNA (miRNA), one strand of the hollow duplex is displaced, forming a miRNA-DNA duplex that serves as a substrate for DSN, initiating target recycling and signal amplification. This dynamic process, coupled with dual-signal relay amplification, significantly enhances both sensitivity and stability, even at low miRNA concentrations. Our ratiometric approach substantially improves detection accuracy by comparing dual signal outputs. We further demonstrate the capability of real-time tracking of exosomal RNA dynamics, enabling precise monitoring of miRNA fluctuations over time. The practical applicability of our ISR strategy was validated by accurately detecting exosomal miRNA levels in clinical serum samples from glioblastoma patients, distinguishing them from healthy controls with high precision. Our method represents a significant advancement in early cancer detection and disease monitoring, with broad implications for precision medicine and the development of point-of-care diagnostic tools. Looking ahead, the ISR strategy holds great potential for monitoring a wide range of diseases, offering new opportunities for personalized diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Xiankai Niu
- School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yiqun Guo
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Na Li
- Shandong Freshwater Fisheries Research Institute, Jinan, 250117, Shandong, China
| | - Siyu Li
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yilei Yu
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuna Guo
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
7
|
Joshi KM, Salve S, Dhanwade D, Chavhan M, Jagtap S, Shinde M, Holkar R, Patil R, Chabukswar V. Advancing protein biosensors: redefining detection through innovations in materials, mechanisms, and applications for precision medicine and global diagnostics. RSC Adv 2025; 15:11523-11536. [PMID: 40225770 PMCID: PMC11987851 DOI: 10.1039/d4ra06791f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/08/2025] [Indexed: 04/15/2025] Open
Abstract
Protein biosensors are significant tools in modern diagnostics due to their exceptional sensitivity and specificity in detecting protein biomarkers critical for disease diagnosis, therapeutic monitoring, and biomedical research. Innovations in transduction methods, nanomaterials, and point-of-care system integration have spurred recent advancements in biosensor technology. This summary examines key developments in protein biosensors, focusing on their structure, applications, and future potential. Nanomaterial-enhanced electrochemical biosensors, such as graphene, polyaniline, and carbon nanotubes, offer improved signal transmission due to their large surface area and faster electron transfer rates. Label-free immunosensors activated with gold nanoparticles and MXene-based sensors capable of combined biomarker analysis for detecting ovarian cancer are notable examples. During the COVID-19 pandemic, colorimetric and fluorescence optical biosensors facilitated easier diagnostics. An example of this is the incorporation of SARS-CoV-2 detection technologies into mobile phones. Real-time, label-free tracking with molecular precision is now possible due to the development of new methods, such as CRISPR-based platforms and quartz crystal microbalance (QCM)-based biosensors. This advancement is crucial for effectively managing infectious diseases and cancer. Synthetic fluorescence biosensors increase diagnostics by improving the visualization of protein interactions and cellular communication. Despite these achievements, challenges related to scalability, sustainability, and regulatory compliance remain. Proposed solutions include sustainable biosensor manufacturing, artificial intelligence-enhanced analytics for efficacy evaluation, and multidisciplinary approaches to optimize interaction with decentralised diagnostic systems. This work demonstrates how protein biosensors can advance precision medicine and global health.
Collapse
Affiliation(s)
| | - Sanyukta Salve
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University Pune 411007 MH India
| | | | | | | | - Manish Shinde
- Additive Manufacturing & Advanced Materials - Electronics & Energy (AM2-E2), Centre for Material for Electronic Technology (C-MET) Panchawati, Off Pashan, Road Pune 411008 MH India
| | - Ravina Holkar
- Additive Manufacturing & Advanced Materials - Electronics & Energy (AM2-E2), Centre for Material for Electronic Technology (C-MET) Panchawati, Off Pashan, Road Pune 411008 MH India
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University Pune 411007 MH India
| | | |
Collapse
|
8
|
Yuk J, Kim J, Jung S, Um SH. Engineering Gizmos for Short Cancer Genetic Fragments Discrimination. Chembiochem 2025; 26:e202400867. [PMID: 39910951 DOI: 10.1002/cbic.202400867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/07/2025]
Abstract
Currently, mankind is fiercely struggling with cancer. Recently, we have been winning the battle against cancer through precision medicine and accompanying diagnostic methods, and we are raising many hopes with blockbuster drugs. It would be even better if we could read the cancer nucleotide sequence, identify them in advance, and suggest treatments simultaneously. However, this may be an impossible dream because it takes a lot of time and effort to diagnose and ensure all the long gene sequences of cancer at once. Thus, victory will be even closer if a rapid and accurate diagnosis of the cancer-specific gene biomarkers that will soon be imprinted can be made. With the advent of nanotechnology, a new short cancer diagnostic toolkit has been proposed to achieve the goal. This review presents a small diagnostic device that detects certain cancers' genetic fragments (simply 'Gizmo'). The development of numerous diagnostic methods has focused on (1) directly detecting pre-selectively targeted genes using novel diagnostic systems, and (2) indirectly detecting substantial improvements in diagnostic sensitivity only through detection signal amplification without existing gene amplification steps. Our fight against cancer is not a dream, but the result of success, and it is assumed that victory will accelerate as soon as possible.
Collapse
Affiliation(s)
- Jisoo Yuk
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jeonghun Kim
- Progeneer Incorporation, #1002, 12, Digital-ro 31-gil, Guro-gu, Seoul, 08380, Korea
| | - Sunghwan Jung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Korea
- Progeneer Incorporation, #1002, 12, Digital-ro 31-gil, Guro-gu, Seoul, 08380, Korea
| |
Collapse
|
9
|
Liao R, Luo D, Yang D, Liu J. Opportunities and Challenges of DNA Materials toward Sustainable Development Goals. ACS NANO 2025; 19:11465-11476. [PMID: 40099911 DOI: 10.1021/acsnano.4c17718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Sustainable development represents a significant and pressing challenge confronting the global community at present. A wide variety of macroscopic engineering systems has been developed to promote sustainable development. Recent advancements in DNA materials have showcased their substantial contributions toward achieving sustainable development goals (SDGs). Compared to nonbiological materials, DNA materials possess exceptional properties such as genetic functionality, molecular programmability, recognition capabilities, and biocompatibility. These unique characteristics enable DNA materials to serve as general and versatile substrates beyond their genetic role. Consequently, they can be used to develop DNA-based engineering systems that offer versatile solutions to support sustainable development. In this Perspective, we critically examine the opportunities that DNA-based engineering systems present in contributing to the achievement of the SDGs within various real-world scenarios. We establish direct relationships between DNA-based engineering systems and the SDGs, highlighting their inherent merits in accelerating sustainable development. Furthermore, in order to successfully achieve SDGs, we address the challenges associated with these systems and emphasize the urgent need for developing multifunctional, reliable, biosafe, and intelligent DNA-based engineering systems to overcome these challenges.
Collapse
Affiliation(s)
- Renkuan Liao
- College of Land Science and Technology, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, People's Republic of China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dayong Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, People's Republic of China
| | - Jianguo Liu
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48823, United States
| |
Collapse
|
10
|
Panahi A, Abbasian F, Ayala-Charca G, Tabrizi HO, Roshanfar A, Ghafar-Zadeh M, Movahed M, Tahernezhad Y, Magierowski S, Ghafar-Zadeh E. A portable and cost-effective system for electronic nucleic acid mass measurement. Sci Rep 2025; 15:5387. [PMID: 39948372 PMCID: PMC11825914 DOI: 10.1038/s41598-025-89082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
This paper presents a low-cost, portable sensing platform for rapid DNA mass measurement, addressing a critical need in life science research. The platform features a novel interdigital open-gate junction field-effect transistor (ID-OGJFET) with a large sensing area that converts negatively charged DNA mass into an electrical current. The system enables DNA mass detection in under ten seconds with a resolution of less than 1 µA, demonstrating sensitivity across a range from 0.48 ng to 29.5 ng, achieving a Limit of Detection as low as 1.18-1.25 ng/µL. A custom-designed electronic reader and fluidic sample holder facilitate efficient operation. Simulation studies using molecular dynamics and finite element methods provide further insights into the sensor's DNA detection mechanism. This highly sensitive system is significantly more cost-effective than commercially available semiconductor characterization alternatives. The device's high performance and affordability make it a valuable tool for molecular biology applications, and it holds potential for advancing FET-based sensing instrumentation and measurement research.
Collapse
Affiliation(s)
- Abbas Panahi
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, M3J1P3, Canada
| | - Firouz Abbasian
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, M3J1P3, Canada
| | - Giancarlo Ayala-Charca
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, M3J1P3, Canada
| | - Hamed Osouli Tabrizi
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, M3J1P3, Canada
| | - Ahmad Roshanfar
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, M3J1P3, Canada
| | - Morteza Ghafar-Zadeh
- Electronic Machine Intelligence Laboratory, Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
| | - Mehdi Movahed
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, M3J1P3, Canada
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Yasaman Tahernezhad
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, M3J1P3, Canada
| | - Sebastian Magierowski
- Electronic Machine Intelligence Laboratory, Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, M3J1P3, Canada.
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
| |
Collapse
|
11
|
Zhao CL, Gao R, Niu Y, Cai B, Zhu Y. Exploring the diffusion of DNA strands into nanoporous structures for establishing a universal electrochemical biosensor. Chem Sci 2025; 16:2420-2428. [PMID: 39790983 PMCID: PMC11707798 DOI: 10.1039/d4sc05833j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
The development of universal electrochemical sensing platforms with high sensitivity and specificity is of great significance for advancing practical disease diagnostic methods and devices. Exploring the structural properties of electrode materials and their interaction with biomolecules is essential to developing novel and distinctive analytical approaches. Here, we innovatively investigated the effect of DNA length and configuration on DNA molecule transfer into the nanostructure of a nanoporous gold (NPG) electrode. The NPG electrode can not only distinguish and quantify short DNA strands but can also prevent the diffusion of long DNA, thereby minimizing or eliminating background interference. Leveraging these findings, we developed a universal DNA-based NPG electrochemical biosensing platform for the detection of different types of biomolecules. As a proof-of-concept, this sensing platform was integrated with nuclease-assisted target-recycling recognition and amplification reactions to achieve sensitive and specific detection of single-stranded DNA, microRNA-21, and carcino-embryonic antigen, with detection limits of 4.09, 27.4, and 0.28 fM, respectively. The demonstrated universality, sensitivity, specificity, and capability for analyzing complex samples ensure a comprehensive and robust detection approach for nucleic acid-based molecular diagnosis.
Collapse
Affiliation(s)
- Cong-Lin Zhao
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Runlei Gao
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Yinzheng Niu
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
- Shenzhen Research Institute of Shandong University Shenzhen 518000 China
| | - Ye Zhu
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
- Shenzhen Research Institute of Shandong University Shenzhen 518000 China
| |
Collapse
|
12
|
Liu S, Rahman MR, Wu H, Qin W, Wang Y, Su G. Development and application of hydrogels in pathogenic bacteria detection in foods. J Mater Chem B 2025; 13:1229-1251. [PMID: 39690945 DOI: 10.1039/d4tb01341g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Hydrogels are 3D networks of water-swollen hydrophilic polymers. It possesses unique properties (e.g., carrying biorecognition elements and creating a micro-environment) that make it highly suitable for bacteria detection (e.g., expedited and effective bacteria detection) and mitigation of bacterial contamination in specific environments (e.g., food systems). This study first introduces the materials used to create hydrogels for bacteria detection and the mechanisms for detection. We also summarize different hydrogel-based detection methods that rely on external stimuli and biorecognition elements, such as enzymes, temperature, pH, antibodies, and oligonucleotides. Subsequently, a range of widely utilized bacterial detection technologies were discussed where recently hydrogels are being used. These modifications allow for precise, real-time diagnostics across varied food matrices, responding effectively to industry needs for sensitivity, scalability, and portability. After highlighting the utilization of hydrogels and their role in these detection techniques, we outline limitations and advancements in the methods for the detection of foodborne pathogenic bacteria, especially the potential application of hydrogels in the food industry.
Collapse
Affiliation(s)
- Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Md Rashidur Rahman
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hejun Wu
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| |
Collapse
|
13
|
Meng Z, Raji H, Kokabi M, Zou D, Chan J, Liu Q, Zhang R, Javanmard M. Microfluidic Assays for CD4 T Lymphocyte Counting: A Review. BIOSENSORS 2025; 15:33. [PMID: 39852084 PMCID: PMC11763704 DOI: 10.3390/bios15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
CD4 T lymphocytes play a key role in initiating the adaptive immune response, releasing cytokines that mediate numerous signal transduction pathways across the immune system. Therefore, CD4 T cell counts are widely used as an indicator of overall immunological health. HIV, one of the leading causes of death in the developing world, specifically targets and gradually depletes CD4 cells, making CD4 counts a critical metric for monitoring disease progression. As a result, accurately counting CD4 cells represents a pressing challenge in global healthcare. Flow cytometry remains the gold standard for enumerating CD4 T cells; however, flow cytometers are expensive, difficult to transport, and require skilled medical staff to prepare samples, operate the equipment, and interpret results. This highlights the critical need for novel, rapid, cost-effective, and portable methods of CD4 enumeration that are suitable for deployment in resource-limited countries. This review will survey and analyze emerging research in CD4 counting, with a focus on microfluidic systems, which represent a promising area of investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mehdi Javanmard
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, NJ 08854, USA; (Z.M.); (H.R.); (M.K.)
| |
Collapse
|
14
|
Cadoni E, Moerman H, Madder A. Development of a His-Tag-mediated pull-down and quantification assay for G-quadruplex containing DNA sequences. RSC Chem Biol 2025; 6:56-64. [PMID: 39634055 PMCID: PMC11613956 DOI: 10.1039/d4cb00185k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
In this study, we developed a simple pull-down assay using peptide nucleic acids (PNAs) equipped with a His-Tag and a G-quadruplex (G4) ligand for the selective recognition and quantification of G4-forming DNA sequences. Efficient and specific target recovery was achieved using optimized buffer conditions and magnetic Ni-NTA beads, while quantification was realized by employing the enzyme-like properties of the G4/hemin complex. The assay was validated through HPLC analysis and adapted for a 96-well plate format. The results show that higher recovery can be achieved using His-Tag with Ni-NTA magnetic beads as compared to the more common biotin-streptavidin purification. The inclusion of the G4-ligand as an additional selectivity handle was shown to be beneficial for both recovery and selectivity.
Collapse
Affiliation(s)
- Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
| | - Hanne Moerman
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
| |
Collapse
|
15
|
Sharma PK, Kim NY, Ganbold E, Seong RS, Kim YM, Park JS, Shin YK, Han HS, Kim ES, Kim ST. SARS-CoV-2 detection in COVID-19 patients' sample using Wooden quoit conformation structural aptamer (WQCSA)-Based electronic bio-sensing system. Biosens Bioelectron 2025; 267:116506. [PMID: 39277919 DOI: 10.1016/j.bios.2024.116506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 09/17/2024]
Abstract
The COVID-19 epidemic and its continuous spread pose a serious threat to public health. Coronavirus strains known as SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) variants have undergone genomic changes. The severity of the symptoms, the efficiency of vaccinations, and the transmission capacity of the virus can be impacted by these alterations. Point-of-care diagnostic assays can identify particular genetic or protein sequences that are exclusive to each variety. Currently, ultrafast, responsive, and accurate antibody detection faces several challenges. Here, we outline the fabrication, implementation, and sensing performance benchmarking of an ultrafast (5 s) and inexpensive (0.15 USD) assay with label-free sensing of SARS-CoV-2 S (Spike)/N (Nucleocapsid) protein and other variants in real patient samples. A label-free DNA aptameric capacitive bio-sensing device was used to detect SARS-CoV-2 variants. Our novel, cutting-edge bio-sensing device contains a Wooden quoits conformation structural aptamer (WQCSA)-based inter-digitated capacitor electronic (WQCSA-IDCE) system. WQCSA-aptamer was used as a switch-turn on response to achieve ultrasensitivity in the variable area of the SARS-CoV-2. The molecular beacon (MB) method was also used to measure the fluorescently colored SARS-CoV-2 S/N protein. These sensors can be used with several types of label-free DNA aptamers to act as rapid, affordable, and label-free biosensors for a variety of critical acute respiratory virus syndrome disorders.
Collapse
Affiliation(s)
- Parshant Kumar Sharma
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea.
| | - Nam-Young Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea.
| | - Enkhzaya Ganbold
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea
| | - Ryun-Sang Seong
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea
| | - Yu Mi Kim
- Bioscience & Biotechnology Research Institute, Healthcare Innovation Park, Seoul National University College of Medicine, Goomi-ro, Bundanggu Seongnam City, Geonggeedo, 13605, South Korea
| | - Jeong Su Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital 82, Goomi-ro, Bundanggu Seongnam City, Geonggeedo, 13620, South Korea
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea; Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Ho Seong Han
- Bioscience & Biotechnology Research Institute, Healthcare Innovation Park, Seoul National University College of Medicine, Goomi-ro, Bundanggu Seongnam City, Geonggeedo, 13605, South Korea
| | - Eun-Seong Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea.
| | - Sang Tae Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Bioscience & Biotechnology Research Institute, Healthcare Innovation Park, Seoul National University College of Medicine, Goomi-ro, Bundanggu Seongnam City, Geonggeedo, 13605, South Korea; Department of Surgery, Seoul National University Bundang Hospital 82, Goomi-ro, Bundanggu Seongnam City, Geonggeedo, 13620, South Korea
| |
Collapse
|
16
|
Omar C, Freisa M, Man HM, Kechkeche D, Dinh THN, Haghiri-Gosnet AM, Le Potier I, Gamby J. Optimizing Tris(2-Carboxyethyl)phosphine and Mercaptohexanol Concentrations for Thiolated Oligonucleotide Immobilization on Platinum Electrodes in Microfluidic Platforms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26616-26625. [PMID: 39628051 DOI: 10.1021/acs.langmuir.4c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In this study, we propose a strategy to explore the impact of the proportion of tris(2-carboxyethyl)phosphine (TCEP) and 6-mercaptohexanol (MCH) on the efficiency of oligonucleotide functionalization on PDMS microfluidic channels equipped with pairs of homemade microfabricated platinum microelectrodes. We identified an optimal concentration of these compounds that enables the effective orientation and distribution of probes, thereby facilitating subsequent target hybridization. The experiment included optimizing sample injection into microfluidic channels. We used TCEP as a reducing agent to help the DNA probes adhere to the channel electrode better. This stopped the formation of disulfide bonds during the probe immobilization step. We found the optimal TCEP/MCH mixture ratio (5 mM TCEP and 50 mM MCH), which led to a more uniform distribution and orientation of the DNA probes on the platinum electrode. These optimized conditions resulted in a more compact DNA monolayer and enhanced detection capabilities. The biosensor's performance was evaluated by the detection of the hybridization of complementary DNA sequences in the presence of equimolar Fe(CN)63-/Fe(CN)64-. The detection of the synthetic GP8 resistance gene is facilitated by a measurable decrease in the electron transfer rate, which is directly proportional to its concentration. Under the optimized conditions, the DNA biosensor showed excellent sensitivity (with a detection limit of 10-17 M) and high specificity when tested against noncomplementary DNA strands.
Collapse
Affiliation(s)
- Choayb Omar
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Martina Freisa
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Hiu Mun Man
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Djamila Kechkeche
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Thi Hong Nhung Dinh
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Anne-Marie Haghiri-Gosnet
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Isabelle Le Potier
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - Jean Gamby
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| |
Collapse
|
17
|
Lee H, Reginald SS, Sravan JS, Lee M, Chang IS. Advanced strategies for enzyme-electrode interfacing in bioelectrocatalytic systems. Trends Biotechnol 2024:S0167-7799(24)00344-5. [PMID: 39674782 DOI: 10.1016/j.tibtech.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/13/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Advances in protein engineering-enabled enzyme immobilization technologies have significantly improved enzyme-electrode wiring in enzymatic electrochemical systems, which harness natural biological machinery to either generate electricity or synthesize biochemicals. In this review, we provide guidelines for designing enzyme-electrodes, focusing on how performance variables change depending on electron transfer (ET) mechanisms. Recent advancements in enzyme immobilization technologies are summarized, highlighting their contributions to extending enzyme-electrode sustainability (up to months), enhancing biosensor sensitivity, improving biofuel cell performance, and setting a new benchmark for turnover frequency in bioelectrocatalysis. We also highlight state-of-the-art protein-engineering approaches that enhance enzyme-electrode interfacing through three key principles: protein-protein, protein-ligand, and protein-inorganic interactions. Finally, we discuss prospective avenues in strategic protein design for real-world applications.
Collapse
Affiliation(s)
- Hyeryeong Lee
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Stacy Simai Reginald
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Professorship for Electrobiotechnology, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing 94315, Germany
| | - J Shanthi Sravan
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Mungyu Lee
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - In Seop Chang
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
18
|
Chu M, Zhang Y, Ji C, Zhang Y, Yuan Q, Tan J. DNA Nanomaterial-Based Electrochemical Biosensors for Clinical Diagnosis. ACS NANO 2024; 18:31713-31736. [PMID: 39509537 DOI: 10.1021/acsnano.4c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Sensitive and quantitative detection of chemical and biological molecules for screening, diagnosis and monitoring diseases is essential to treatment planning and response monitoring. Electrochemical biosensors are fast, sensitive, and easy to miniaturize, which has led to rapid development in clinical diagnosis. Benefiting from their excellent molecular recognition ability and high programmability, DNA nanomaterials could overcome the Debye length of electrochemical biosensors by simple molecular design and are well suited as recognition elements for electrochemical biosensors. Therefore, to enhance the sensitivity and specificity of electrochemical biosensors, significant progress has been made in recent years by optimizing the DNA nanomaterials design. Here, the establishment of electrochemical sensing strategies based on DNA nanomaterials is reviewed in detail. First, the structural design of DNA nanomaterial is examined to enhance the sensitivity of electrochemical biosensors by improving recognition and overcoming Debye length. In addition, the strategies of electrical signal transduction and signal amplification based on DNA nanomaterials are reviewed, and the applications of DNA nanomaterial-based electrochemical biosensors and integrated devices in clinical diagnosis are further summarized. Finally, the main opportunities and challenges of DNA nanomaterial-based electrochemical biosensors in detecting disease biomarkers are presented in an aim to guide the design of DNA nanomaterial-based electrochemical devices with high sensitivity and specificity.
Collapse
Affiliation(s)
- Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yawen Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
19
|
Duan M, Chang Y, Chen X, Wang Z, Wu S, Duan N. Recent advances in the construction strategy, functional properties, and biosensing application of self-assembled triangular unit-based DNA nanostructures. Biotechnol Adv 2024; 76:108436. [PMID: 39209178 DOI: 10.1016/j.biotechadv.2024.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/13/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Research on self-assembled deoxyribonucleic acid (DNA) nanostructures with different shapes, sizes, and functions has recently made rapid progress owing to its biocompatibility, programmability, and stability. Among these, triangular unit-based DNA nanostructures, which are typically multi-arm DNA tiles, have been widely applied because of their unique structural rigidity, spatial flexibility, and cell permeability. Triangular unit-based DNA nanostructures are folded from multiple single-stranded DNA using the principle of complementary base pairing. Its shape and size can be determined using pre-set scaffold strands, segmented base complementary regions, and sequence lengths. The resulting DNA nanostructures retain the desired sequence length to serve as binding sites for other molecules and obtain satisfactory results in molecular recognition, spatial orientation, and target acquisition. Therefore, extensive research on triangular unit-based DNA nanostructures has shown that they can be used as powerful tools in the biosensing field to improve specificity, sensitivity, and accuracy. Over the past few decades, various design strategies and assembly techniques have been established to improve the stability, complexity, functionality, and practical applications of triangular unit-based DNA nanostructures in biosensing. In this review, we introduce the structural design strategies and principles of typical triangular unit-based DNA nanostructures, including triangular, tetrahedral, star, and net-shaped DNA. We then summarize the functional properties of triangular unit-based DNA nanostructures and their applications in biosensing. Finally, we critically discuss the existing challenges and future trends.
Collapse
Affiliation(s)
- Mengxia Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuting Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaowan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
20
|
Ouyang Y, Zhang P, Willner I. DNA Tetrahedra as Functional Nanostructures: From Basic Principles to Applications. Angew Chem Int Ed Engl 2024; 63:e202411118. [PMID: 39037936 DOI: 10.1002/anie.202411118] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Self-assembled supramolecular DNA tetrahedra composed of programmed sequence-engineered complementary base-paired strands represent elusive nanostructures having key contributions to the development and diverse applications of DNA nanotechnology. By appropriate engineering of the strands, DNA tetrahedra of tuneable sizes and chemical functionalities were designed. Programmed functionalities for diverse applications were integrated into tetrahedra structures including sequence-specific recognition strands (aptamers), catalytic DNAzymes, nanoparticles, proteins, or fluorophore. The article presents a comprehensive review addressing methods to assemble and characterize the DNA tetrahedra nanostructures, and diverse applications of DNA tetrahedra framework are discussed. Topics being addressed include the application of structurally functionalized DNA tetrahedra nanostructure for the assembly of diverse optical or electrochemical sensing platforms and functionalized intracellular sensing and imaging modules. In addition, the triggered reconfiguration of DNA tetrahedra nanostructures and dynamic networks and circuits emulating biological transformations are introduced. Moreover, the functionalization of DNA tetrahedra frameworks with nanoparticles provides building units for the assembly of optical devices and for the programmed crystallization of nanoparticle superlattices. Finally, diverse applications of DNA tetrahedra in the field of nanomedicine are addressed. These include the DNA tetrahedra-assisted permeation of nanocarriers into cells for imaging, controlled drug release, active chemodynamic/photodynamic treatment of target tissues, and regenerative medicine.
Collapse
Affiliation(s)
- Yu Ouyang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Pu Zhang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Current address: Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
21
|
Zhu J, Lu Y, He Q. From detection methods to risk prevention: Control of N-nitrosamines in foods and the role of natural bioactive compounds. Compr Rev Food Sci Food Saf 2024; 23:e70000. [PMID: 39217507 DOI: 10.1111/1541-4337.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Food processing unavoidably introduces various risky ingredients that threaten food safety. N-Nitrosamines (NAs) constitute a class of food contaminants, which are considered carcinogenic to humans. According to the compiled information, pretreatment methods based on solid-phase extraction (SPE) were widely used before the determination of volatile NAs in foods. The innovation of adsorbents and hybridization of other methods have been confirmed as the future trends of SPE-based pretreatment methods. Moreover, technologies based on liquid chromatography and gas chromatography were popularly applied for the detection of NAs. Recently, sensor-based methods have garnered increasing attention due to their efficiency and flexibility. More portable sensor-based technologies are recommended for on-site monitoring of NAs in the future. The application of artificial intelligence can facilitate data processing during high-throughput detection of NAs. Natural bioactive compounds have been confirmed to be effective in mitigating NAs in foods through antioxidation, scavenging precursors, and regulating microbial activities. Meanwhile, they exhibit strong protective activities against hepatic damage, pancreatic cancer, and other NA injuries. Further supplementation of data on the bioavailability of bioactives can be achieved through encapsulation and clinical trials. The utilization of bioinformatics tools rooted in various omics technologies is suggested for investigating novel mechanisms and finally broadening their applications in targeted therapies.
Collapse
Affiliation(s)
- Jinpeng Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yunhao Lu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Park H, Masud MK, Ashok A, Kim M, Wahab MA, Zhou J, Terasawa Y, Gallo CS, Nguyen NT, Hossain MSA, Yamauchi Y, Kaneti YV. Mesoporous Gold: Substrate-Dependent Growth Dynamics, Strain Accumulation, and Electrocatalytic Activity for Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311645. [PMID: 38659182 DOI: 10.1002/smll.202311645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Understanding the growth of mesoporous crystalline materials, such as mesoporous metals, on different substrates can provide valuable insights into the crystal growth dynamics and the redox reactions that influence their electrochemical sensing performance. Herein, it is demonstrated how the amorphous nature of the glass substrate can suppress the typical <111> oriented growth in mesoporous Au (mAu) films. The suppressed <111> growth is manifested as an accumulation of strain, leading to the generation of abundant surface defects, which are beneficial for enhancing the electrochemical activity. The fine structuring attained enables dramatically accelerated diffusion and enhances the electrochemical sensing performance for disease-specific biomolecules. As a proof-of-concept, the as-fabricated glass-grown mAu film demonstrates high sensitivity in electrochemical detection of SARS-CoV-2-specific RNA with a limit of detection (LoD) as low as 1 attomolar (aM).
Collapse
Affiliation(s)
- Hyeongyu Park
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture, and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Aditya Ashok
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Minjun Kim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Md Abdul Wahab
- Energy and Process Engineering Laboratory, School of Mechanical, Medical and Process Engineering, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Jun Zhou
- School of Information and Communication Technology, Griffith University, Brisbane, QLD, 4072, Australia
| | - Yukana Terasawa
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Chuo-ku, Kurokami, Kumamoto-shi, Kumamoto, 860-8555, Japan
| | - Carlos Salomon Gallo
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group and UQ Centre for Extracellular Vesicle Nanomedicine, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD, 4111, Australia
| | - Md Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture, and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Materials Process Engineering Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Yusuf Valentino Kaneti
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
23
|
Dinçer E, Küçükoğlu N, Kıvanç M, Şahin Y. Electrochemical DNA Sensor Designed Using the Pencil Graphite Electrode to Detect Listeria monocytogenes. Appl Biochem Biotechnol 2024; 196:4679-4698. [PMID: 37773581 DOI: 10.1007/s12010-023-04732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
In the present work, a novel electrochemical DNA sensor was designed to detect L. monocytogenes. Two different gene fragments were selected for the sensor design. One is a 702 bp long fragment of the hlyA gene, encoding the synthesis of listeriolysin O toxin, which is unique only to pathogenic strains of L. monocytogenes and is essential for pathogenicity. The other is a 209 bp long fragment of the 16 S RNA gene found in all species of the Listeria genus. As the working electrode, the pencil graphite electrode was modified in various ways (activated or covered with polypyrrole), and six different combinations were constituted using three types of the modified working electrode and two different gene fragments. The developed system is based on differential pulse voltammetric transduction of guanine oxidation after hybridization between the selected gene fragment (38 µg/mL) and the selected fragment-specific inosine-modified probe (1.8 µmol/L) immobilized on a pencil graphite electrode surface. The comparison of all combinations demonstrates that the best results are obtained with the combination formed from a polypyrrole-coated pencil graphite electrode (prepared at 2 scans) and 702 bp fragment of the hlyA gene. The analysis time is less than 1 hour, and the necessary DNA concentrations for the analysis have been determined as 8.2 × 10-11 M DNA and 2.7 × 10-10 M DNA respectively, for the hlyA gene and 16 S RNA gene.
Collapse
Affiliation(s)
- Emine Dinçer
- Department of Nutrition and Dietetics, Faculty of Health Science, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Nurçin Küçükoğlu
- Department of Biology, Faculty of Sciences, Eskisehir Teknik University, Eskisehir, Turkey
| | - Merih Kıvanç
- Department of Biology, Faculty of Sciences, Eskisehir Teknik University, Eskisehir, Turkey
| | - Yücel Şahin
- Department of Chemistry, Faculty of Art and Sciences, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
24
|
Boukherroub R, Szunerits S. The Future of Nanotechnology-Driven Electrochemical and Electrical Point-of-Care Devices and Diagnostic Tests. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:173-195. [PMID: 39018353 DOI: 10.1146/annurev-anchem-061622-012029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Point-of-care (POC) devices have become rising stars in the biosensing field, aiming at prognosis and diagnosis of diseases with a positive impact on the patient but also on healthcare and social care systems. Putting the patient at the center of interest requires the implementation of noninvasive technologies for collecting biofluids and the development of wearable platforms with integrated artificial intelligence-based tools for improved analytical accuracy and wireless readout technologies. Many electrical and electrochemical transducer technologies have been proposed for POC-based sensing, but several necessitate further development before being widely deployable. This review focuses on recent innovations in electrochemical and electrical biosensors and their growth opportunities for nanotechnology-driven multidisciplinary approaches. With a focus on analytical aspects to pave the way for future electrical/electrochemical diagnostics tests, current limitations and drawbacks as well as directions for future developments are highlighted.
Collapse
Affiliation(s)
- Rabah Boukherroub
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille, France;
| | - Sabine Szunerits
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille, France;
| |
Collapse
|
25
|
Lucia-Tamudo J, Díaz-Tendero S, Nogueira JJ. Modeling One-Electron Oxidation Potentials and Hole Delocalization in Double-Stranded DNA by Multilayer and Dynamic Approaches. J Chem Inf Model 2024; 64:4802-4810. [PMID: 38856665 PMCID: PMC11200263 DOI: 10.1021/acs.jcim.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The number of innovative applications for DNA nowadays is growing quickly. Its use as a nanowire or electrochemical biosensor leads to the need for a deep understanding of the charge-transfer process along the strand, as well as its redox properties. These features are computationally simulated and analyzed in detail throughout this work by combining molecular dynamics, multilayer schemes, and the Marcus theory. One-electron oxidation potential and hole delocalization have been analyzed for six DNA double strands that cover all possible binary combinations of nucleotides. The results have revealed that the one-electron oxidation potential decreases with respect to the single-stranded DNA, giving evidence that the greater rigidity of a double helix induces an increase in the capacity of storing the positive charge generated upon oxidation. In addition, the hole is mainly stored in nucleobases with large reducer character, i.e., purines, especially when those are arranged in a stacked configuration in the same strand. From the computational point of view, the sampling needed to describe biological systems implies a significant computational cost. Here, we show that a small number of representative conformations generated by clustering analysis provides accurate results when compared with those obtained from sampling, reducing considerably the computational cost.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan J. Nogueira
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
26
|
Fan J, Gong H, Wang F, Wang L, Yu Y, Liu D, Yang W. Multiplexed electrochemical nucleic acid sensor based on visible light-mediated metal-free thiol-yne click reaction for simultaneous detection of different nucleic acid targets. Talanta 2024; 273:125856. [PMID: 38442565 DOI: 10.1016/j.talanta.2024.125856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/26/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Simultaneous detection of multiple tumor biomarkers with a simple and low-cost assay is crucial for early cancer detection and diagnosis. Herein, we presented a low-cost and simple assay for multiplexed detection of tumor biomarkers using a spatially separated electrodes strategy. The sensor is fabricated based on a metal-free thiol-yne click reaction, which is mediated by visible light, on commercially available indium tin oxide (ITO) electrodes. Four biomarkers, including p53 DNA, Brca2 DNA, K-ras DNA, and MicroRNA-204 RNA, were used as model analytes, and the corresponding oligonucleotide probes were modified on the desired electrode units sequentially with 530 nm irradiation light in the presence of photosensitizer Eosin Y. By this visible light-mediated coupling reaction, oligonucleotide probe densities of up to 9.2 ± 0.7 × 1010 molecules/cm2 were readily obtained on the ITO electrode surface. The proposed multiplexed E-NA sensor could detect four different nucleic acid targets concurrently without crosstalk among adjacent electrodes and was also successfully applied for detecting targets in a 20% fetal calf serum sample. The detection limits for p53 DNA, Brca2 DNA, K-ras DNA, and MicroRNA-204 RNA were 0.72 nM, 0.97 nM, 2.15 nM, and 1.73 nM, respectively. The developed approach not only has a great potential for developing cost-effective biosensors on affordable substrates for nucleic acid target detection, but also be easily extended to detect other targets by modifying the specific oligonucleotide probes anchored on the electrode.
Collapse
Affiliation(s)
- Jinlong Fan
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Hanlin Gong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Fan Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150001, China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
27
|
Hosnedlova B, Werle J, Cepova J, Narayanan VHB, Vyslouzilova L, Fernandez C, Parikesit AA, Kepinska M, Klapkova E, Kotaska K, Stepankova O, Bjorklund G, Prusa R, Kizek R. Electrochemical Sensors and Biosensors for Identification of Viruses: A Critical Review. Crit Rev Anal Chem 2024:1-30. [PMID: 38753964 DOI: 10.1080/10408347.2024.2343853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Due to their life cycle, viruses can disrupt the metabolism of their hosts, causing diseases. If we want to disrupt their life cycle, it is necessary to identify their presence. For this purpose, it is possible to use several molecular-biological and bioanalytical methods. The reference selection was performed based on electronic databases (2020-2023). This review focused on electrochemical methods with high sensitivity and selectivity (53% voltammetry/amperometry, 33% impedance, and 12% other methods) which showed their great potential for detecting various viruses. Moreover, the aforementioned electrochemical methods have considerable potential to be applicable for care-point use as they are portable due to their miniaturizability and fast speed analysis (minutes to hours), and are relatively easy to interpret. A total of 2011 articles were found, of which 86 original papers were subsequently evaluated (the majority of which are focused on human pathogens, whereas articles dealing with plant pathogens are in the minority). Thirty-two species of viruses were included in the evaluation. It was found that most of the examined research studies (77%) used nanotechnological modifications. Other ones performed immunological (52%) or genetic analyses (43%) for virus detection. 5% of the reports used peptides to increase the method's sensitivity. When evaluable, 65% of the research studies had LOD values in the order of ng or nM. The vast majority (79%) of the studies represent proof of concept and possibilities with low application potential and a high need of further research experimental work.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Julia Werle
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Jana Cepova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Lab, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Lenka Vyslouzilova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Timur, Indonesia
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Eva Klapkova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Karel Kotaska
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Olga Stepankova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Geir Bjorklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Rene Kizek
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
28
|
Meng Z, Tayyab M, Lin Z, Raji H, Javanmard M. A computer vision enhanced smart phone platform for microfluidic urine glucometry. Analyst 2024; 149:1719-1726. [PMID: 38334484 DOI: 10.1039/d3an01356a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Glucose is an important biomarker for diagnosing and prognosing various diseases, including diabetes and hypoglycemia, which can have severe side effects, symptoms, and even lead to death in patients. As a result, there is a need for quick and economical glucose level measurements to help identify those at potential risk. With the increase in smartphone users, portable smartphone glucose sensors are becoming popular. In this paper, we present a disposable microfluidic glucose sensor that accurately and rapidly quantifies glucose levels in human urine using a combination of colorimetric analysis and computer vision. This glucose sensor implements a disposable microfluidic device based on medical-grade tapes and glucose analysis strips on a glass slide integrated with a custom-made polydimethylsiloxane (PDMS) micropump that accelerates capillary flow, making it economical, convenient, rapid, and equipment-free. After absorbing the target solution, the disposable device is slid into the 3D-printed main chassis and illuminated exclusively with Light Emitting Diode (LED) illumination, which is pivotal to color-sensitive experiments. After collecting images, the images are imported into the algorithm to measure the glucose levels using computer vision and average RGB values measurements. This article illustrates the impressive accuracy and consistency of the glucose sensor in quantifying glucose in sucrose water. This is evidenced by the close agreement between the computer vision method used by the sensor and the traditional method of measuring in the biology field, as well as the small variation observed between different sensor performances. The exponential regression curve used in the study further confirms the strong relationship between glucose concentrations and average RGB values, with an R-square value of 0.997 indicating a high degree of correlation between these variables. The article also emphasizes the potential transferability of the solution described to other types of assays and smartphone-based sensors.
Collapse
Affiliation(s)
- Zhuolun Meng
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, NJ, USA.
| | - Muhammad Tayyab
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, NJ, USA.
| | - Zhongtian Lin
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, NJ, USA.
| | - Hassan Raji
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, NJ, USA.
| | - Mehdi Javanmard
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, NJ, USA.
| |
Collapse
|
29
|
Itagaki S, Nakao A, Nakamura S, Fujita M, Nishii S, Yamamoto Y, Sadanaga Y, Shiigi H. Simultaneous Electrochemical Detection of Multiple Bacterial Species Using Metal-Organic Nanohybrids. Anal Chem 2024; 96:3787-3793. [PMID: 38308565 DOI: 10.1021/acs.analchem.3c04587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Organic metallic nanohybrids (NHs), in which many small metal nanoparticles are encapsulated within a conductive polymer matrix, are useful as sensitive electrochemical labels because the constituents produce characteristic oxidation current responses. Gold NHs, consisting of gold nanoparticles and poly(m-toluidine), and copper NHs, consisting of copper nanoparticles and polyaniline, did not interfere with each other in terms of the electrochemical signals obtained on the same electrode. Antibodies were introduced into these NHs to function as electrochemical labels for targeting specific bacteria. Electrochemical measurements using screen-printed electrodes dry-fixed with NH-labeled bacterial cells enabled the estimation of bacterial species and number within minutes, based on the distinct current response of the labels. Our proposed method achieved simultaneous detection of enterohemorrhagic Escherichia coli and Staphylococcus aureus in a real sample. These NHs will be powerful tools as electrochemical labels and are expected to be useful for rapid testing in food and drug-related manufacturing sites.
Collapse
Affiliation(s)
- Satohiro Itagaki
- Department of Applied Chemistry, Osaka Metropolitan University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Akihiro Nakao
- Department of Applied Chemistry, Osaka Metropolitan University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Shogo Nakamura
- Department of Applied Chemistry, Osaka Metropolitan University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Masashi Fujita
- Department of Applied Chemistry, Osaka Metropolitan University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
- EC Frontier Co. Ltd., 3-2-30 Hikaridai, Seika, Soraku, Kyoto 619-0237, Japan
| | - Shigeki Nishii
- Department of Applied Chemistry, Osaka Metropolitan University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Yojiro Yamamoto
- Department of Applied Chemistry, Osaka Metropolitan University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
- Green Chem. Inc., 19-19 Tsuruta, Nishi, Sakai, Osaka 593-8323, Japan
| | - Yasuhiro Sadanaga
- Department of Applied Chemistry, Osaka Metropolitan University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Metropolitan University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, 1-2 Gakuen, Naka, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
30
|
Quazi MZ, Choi JH, Kim M, Park N. DNA and Nanomaterials: A Functional Combination for DNA Sensing. ACS APPLIED BIO MATERIALS 2024; 7:778-786. [PMID: 38270150 DOI: 10.1021/acsabm.3c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Recent decades have experienced tough situations due to the lack of reliable diagnostic facilities. The most recent cases occurred during the pandemic, where researchers observed the lack of diagnostic facilities with precision. Microorganisms and viral disease's ability to escape diagnosis has been a global challenge. DNA always has been a unique moiety with a strong and precise base-paired structure. DNA in human and foreign particles makes identification possible through base pairing. Since then, researchers have focused heavily on designing diagnostic assays targeting DNA in particular. Moreover, DNA nanotechnology has contributed vastly to designing composite nanomaterials by combining DNA/nucleic acids with functional nanomaterials and inorganic nanoparticles exploiting their physicochemical properties. These nanomaterials often exhibit unique or enhanced properties due to the synergistic activity of the many components. The capabilities of DNA and additional nanomaterials have shown the combination of robust and advanced tailoring of biosensors. Preceding findings state that the conventional strategies have exhibited certain limitations such as a low range of target detection, less biodegradability, subordinate half-life, and high susceptibility to microenvironments; however, a DNA-nanomaterial-based biosensor has overcome these limitations meaningfully. Additionally, the unique properties of nucleic acids have been studied extensively due to their high signal conduction abilities. Here, we review recent studies on DNA-nanomaterial-based biosensors, their mechanism of action, and improved/updated strategies in vivo and in situ. Furthermore, this review highlights the recent methodologies on DNA utilization to exploit the interfacial properties of nanomaterials in DNA sensing. Lastly, the review concludes with the limitations/challenges and future directions.
Collapse
Affiliation(s)
- Mohzibudin Z Quazi
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Jang Hyeon Choi
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Minchul Kim
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| |
Collapse
|
31
|
Yu Y, Fu W, Xie Y, Jiang X, Wang H, Yang X. A review on recent advances in assays for DNMT1: a promising diagnostic biomarker for multiple human cancers. Analyst 2024; 149:1002-1021. [PMID: 38204433 DOI: 10.1039/d3an01915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The abnormal expression of human DNA methyltransferases (DNMTs) is closely related with the occurrence and development of a wide range of human cancers. DNA (cytosine-5)-methyltransferase-1 (DNMT1) is the most abundant human DNA methyltransferase and is mainly responsible for genomic DNA methylation patterns. Abnormal expression of DNMT1 has been found in many kinds of tumors, and DNMT1 has become a valuable target for the diagnosis and drug therapy of diseases. Nowadays, DNMT1 has been found to be involved in multiple cancers such as pancreatic cancer, breast cancer, bladder cancer, lung cancer, gastric cancer and other cancers. In order to achieve early diagnosis and for scientific research, various analytical methods have been developed for qualitative or quantitative detection of low-abundance DNMT1 in biological samples and human tumor cells. Herein, we provide a brief explication of the research progress of DNMT1 involved in various cancer types. In addition, this review focuses on the types, principles, and applications of DNMT1 detection methods, and discusses the challenges and potential future directions of DNMT1 detection.
Collapse
Affiliation(s)
- Yang Yu
- Department of Laboratory Medicine, QianWei People's Hospital, Leshan 614400, China
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Wen Fu
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yaxing Xie
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xue Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Wang
- Department of Laboratory Medicine, QianWei People's Hospital, Leshan 614400, China
| | - Xiaolan Yang
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
32
|
Foguel MV, Zamora V, Ojeda J, Reed M, Bennett A, Calvo-Marzal P, Gerasimova YV, Kolpashchikov D, Chumbimuni-Torres KY. DNA nanotechnology for nucleic acid analysis: sensing of nucleic acids with DNA junction-probes. Analyst 2024; 149:968-974. [PMID: 38197474 PMCID: PMC11439508 DOI: 10.1039/d3an01707a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
DNA nanotechnology deals with the design of non-naturally occurring DNA nanostructures that can be used in biotechnology, medicine, and diagnostics. In this study, we introduced a nucleic acid five-way junction (5WJ) structure for direct electrochemical analysis of full-length biological RNAs. To the best of our knowledge, this is the first report on the interrogation of such long nucleic acid sequences by hybridization probes attached to a solid support. A hairpin-shaped electrode-bound oligonucleotide hybridizes with three adaptor strands, one of which is labeled with methylene blue (MB). The four strands are combined into a 5WJ structure only in the presence of specific DNA or RNA analytes. Upon interrogation of a full-size 16S rRNA in the total RNA sample, the electrode-bound MB-labeled 5WJ association produces a higher signal-to-noise ratio than electrochemical nucleic acid biosensors of alternative design. This advantage was attributed to the favorable geometry on the 5WJ nanostructure formed on the electrode's surface. The 5WJ biosensor is a cost-efficient alternative to the traditional electrochemical biosensors for the analysis of nucleic acids due to the universal nature of both the electrode-bound and MB-labeled DNA components.
Collapse
Affiliation(s)
- Marcos V Foguel
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Victor Zamora
- Escuela Professional de Quimica, Facultad de Ciencias, Universidad Nacional Ingenieria, Av. Tupac 210, Lima, Peru
| | - Julio Ojeda
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Mark Reed
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Alexander Bennett
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Percy Calvo-Marzal
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Yulia V Gerasimova
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Dmitry Kolpashchikov
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
- Burnett School of Biomedical Science, university of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA
| | - Karin Y Chumbimuni-Torres
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| |
Collapse
|
33
|
Algharagholy L, García-Suárez VM, Abaas SS. Selective Sensing of DNA Nucleobases with Angular Discrimination. ACS OMEGA 2024; 9:3240-3249. [PMID: 38284083 PMCID: PMC10809688 DOI: 10.1021/acsomega.3c04945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 01/30/2024]
Abstract
The fast and precise selective sensing of DNA nucleobases is a long-pursued method that can lead to huge advances in the field of genomics and have an impact on aspects such as the prevention of diseases, health enhancement, and, in general, all types of medical treatments. We present here a new type of nanoscale sensor based on carbon nanotubes with a specific geometry that can discriminate the type of nucleobase and also its angle of orientation. The proper differentiation of nucleobases is essential to clearly sequence DNA chains, while angular discrimination is key to improving the sensing selectivity. We perform first-principle and quantum transport simulations to calculate the transmission, conductance, and current of the nanotube-based nanoscale sensor in the presence of the four nucleotides (A, C, G, and T), each of them rotated 0, 90, 180, or 270°. Our results show that this system is able to effectively discriminate between the four nucleotides and their angle of orientation. We explain these findings in terms of the interaction between the phosphate group of the nucleotide and the nanotube wall. The phosphate specifically distorts the electronic structure of the nanotube depending on the distance and the orientation and leads to nontrivial changes in the transmission. This work provides a method for finer and more precise sequential DNA chains.
Collapse
Affiliation(s)
- Laith
A. Algharagholy
- Department
of Physics, College of Science, University
of Sumer, Al-Rifai, 64005 Thi-Qar, Iraq
| | | | - Sawsan S. Abaas
- Nasiriyah
Directorate of Education, Ministry of Education, Nasiriyah, 64001 Thi-Qar, Iraq
| |
Collapse
|
34
|
Mohammadinejad A, Aleyaghoob G, Nooranian S, Dima L, Moga MA, Badea M. Development of biosensors for detection of fibrinogen: a review. Anal Bioanal Chem 2024; 416:21-36. [PMID: 37837539 DOI: 10.1007/s00216-023-04976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023]
Abstract
Fibrinogen as a major inflammation marker and blood coagulation factor has a direct impact on the health of humanity. The variations in fibrinogen content lead to risky conditions such as bleeding and cardiovascular diseases. So, accurate methods for monitoring of this glycoprotein are of high importance. The conventional methods, such as the Clauss method, are time consuming and require highly specialized expert analysts. The development of fast, simple, easy to use, and inexpensive methods is highly desired. In this way, biosensors have gained outstanding attention since they offer means for performing analyses at the points-of-care using self-testing devices, which can be applied outside of clinical laboratories or hospital. This review indicates that different electrochemical and optical sensors have been successfully implemented for the detection of fibrinogen under normal levels of fibrinogen in plasma. The biosensors for the detection of fibrinogen have been designed based on the quartz crystal microbalance, field-effect transistor, electrochemical impedance spectroscopy, amperometry, surface plasmon resonance, localized surface plasmon resonance, and colorimetric techniques. Also, this review demonstrates the utility of the application of nanoparticles in different detection techniques.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Brașov, Romania
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, Brașov, Romania
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry, Payame Noor University, Tehran, 19395-4697, Iran
| | - Samin Nooranian
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Brașov, Romania
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, Brașov, Romania
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brașov, Romania
- Centre for Applied Medicine and Intervention Strategies in Medical Practice, Research and Development Institute of Transilvania University of Brasov, Brașov, Romania
| | - Mihaela Badea
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Brașov, Romania.
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, Brașov, Romania.
| |
Collapse
|
35
|
Tabrizi MA, Bhattacharyya P, Zheng R, You M. Electrochemical DNA-based sensors for measuring cell-generated forces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569814. [PMID: 38106148 PMCID: PMC10723317 DOI: 10.1101/2023.12.03.569814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mechanical forces play an important role in cellular communication and signaling. We developed in this study novel electrochemical DNA-based force sensors for measuring cell-generated adhesion forces. Two types of DNA probes, i.e., tension gauge tether and DNA hairpin, were constructed on the surface of a smartphone-based electrochemical device to detect piconewton-scale cellular forces at tunable levels. Upon experiencing cellular tension, the unfolding of DNA probes induces the separation of redox reporters from the surface of the electrode, which results in detectable electrochemical signals. Using integrin-mediated cell adhesion as an example, our results indicated that these electrochemical sensors can be used for highly sensitive, robust, simple, and portable measurement of cell-generated forces.
Collapse
Affiliation(s)
| | | | - Ru Zheng
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
36
|
Wettasinghe AP, Seifi MO, Bravo M, Adams AC, Patel A, Lou M, Kahanda D, Peng H, Stelling AL, Fan L, Slinker JD. Molecular wrench activity of DNA helicases: Keys to modulation of rapid kinetics in DNA repair. Protein Sci 2023; 32:e4815. [PMID: 37874269 PMCID: PMC10659936 DOI: 10.1002/pro.4815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
DNA helicase activity is essential for the vital DNA metabolic processes of recombination, replication, transcription, translation, and repair. Recently, an unexpected, rapid exponential ATP-stimulated DNA unwinding rate was observed from an Archaeoglobus fulgidus helicase (AfXPB) as compared to the slower conventional helicases from Sulfolobus tokodaii, StXPB1 and StXPB2. This unusual rapid activity suggests a "molecular wrench" mechanism arising from the torque applied by AfXPB on the duplex structure in transitioning from open to closed conformations. However, much remains to be understood. Here, we investigate the concentration dependence of DNA helicase binding and ATP-stimulated kinetics of StXPB2 and AfXPB, as well as their binding and activity in Bax1 complexes, via an electrochemical assay with redox-active DNA monolayers. StXPB2 ATP-stimulated activity is concentration-independent from 8 to 200 nM. Unexpectedly, AfXPB activity is concentration-dependent in this range, with exponential rate constants varying from seconds at concentrations greater than 20 nM to thousands of seconds at lower concentrations. At 20 nM, rapid exponential signal decay ensues, linearly reverses, and resumes with a slower exponential decay. This change in AfXPB activity as a function of its concentration is rationalized as the crossover between the fast molecular wrench and slower conventional helicase modes. AfXPB-Bax1 inhibits rapid activity, whereas the StXPB2-Bax1 complex induces rapid kinetics at higher concentrations. This activity is rationalized with the crystal structures of these complexes. These findings illuminate the different physical models governing molecular wrench activity for improved biological insight into a key factor in DNA repair.
Collapse
Affiliation(s)
| | - Melodee O. Seifi
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| | - Marco Bravo
- Department of BiochemistryUniversity of CaliforniaRiversideCaliforniaUSA
| | - Austen C. Adams
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| | - Aman Patel
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| | - Monica Lou
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| | - Dimithree Kahanda
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| | - Hao‐Che Peng
- Department of ChemistryThe University of Texas at DallasRichardsonTexasUSA
| | | | - Li Fan
- Department of ChemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Jason D. Slinker
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
- Department of ChemistryThe University of Texas at DallasRichardsonTexasUSA
- Department of Materials Science and EngineeringThe University of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
37
|
Lucia-Tamudo J, Alcamí M, Díaz-Tendero S, Nogueira JJ. One-Electron Oxidation Potentials and Hole Delocalization in Heterogeneous Single-Stranded DNA. Biochemistry 2023; 62:3312-3322. [PMID: 37923303 PMCID: PMC10666269 DOI: 10.1021/acs.biochem.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
The study of DNA processes is essential to understand not only its intrinsic biological functions but also its role in many innovative applications. The use of DNA as a nanowire or electrochemical biosensor leads to the need for a deep investigation of the charge transfer process along the strand as well as of the redox properties. In this contribution, the one-electron oxidation potential and the charge delocalization of the hole formed after oxidation are computationally investigated for different heterogeneous single-stranded DNA strands. We have established a two-step protocol: (i) molecular dynamics simulations in the frame of quantum mechanics/molecular mechanics (QM/MM) were performed to sample the conformational space; (ii) energetic properties were then obtained within a QM1/QM2/continuum approach in combination with the Marcus theory over an ensemble of selected geometries. The results reveal that the one-electron oxidation potential in the heterogeneous strands can be seen as a linear combination of that property within the homogeneous strands. In addition, the hole delocalization between different nucleobases is, in general, small, supporting the conclusion of a hopping mechanism for charge transport along the strands. However, charge delocalization becomes more important, and so does the tunneling mechanism contribution, when the reducing power of the nucleobases forming the strand is similar. Moreover, charge delocalization is slightly enhanced when there is a correlation between pairs of some of the interbase coordinates of the strand: twist/shift, twist/slide, shift/slide, and rise/tilt. However, the internal structure of the strand is not the predominant factor for hole delocalization but the specific sequence of nucleotides that compose the strand.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department
of Chemistry, Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - Manuel Alcamí
- Department
of Chemistry, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Sergio Díaz-Tendero
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Juan J. Nogueira
- Department
of Chemistry, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
38
|
Meng Z, Raji H, Tayyab M, Javanmard M. Cell phone microscopy enabled low-cost manufacturable colorimetric urine glucose test. Biomed Microdevices 2023; 25:43. [PMID: 37930426 DOI: 10.1007/s10544-023-00682-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Glucose serves as a pivotal biomarker crucial for the monitoring and diagnosis of a spectrum of medical conditions, encompassing hypoglycemia, hyperglycemia, and diabetes, all of which may precipitate severe clinical manifestations in individuals. As a result, there is a growing demand within the medical domain for the development of rapid, cost-effective, and user-friendly diagnostic tools. In this research article, we introduce an innovative glucose sensor that relies on microfluidic devices meticulously crafted from disposable, medical-grade tapes. These devices incorporate glucose urine analysis strips securely affixed to microscope glass slides. The microfluidic channels are intricately created through laser cutting, representing a departure from traditional cleanroom techniques. This approach streamlines production processes, enhances cost-efficiency, and obviates the need for specialized equipment. Subsequent to the absorption of the target solution, the disposable device is enclosed within a 3D-printed housing. Image capture is seamlessly facilitated through the use of a smartphone camera for subsequent colorimetric analysis. Our study adeptly demonstrates the glucose sensor's capability to accurately quantify glucose concentrations within sucrose solutions. This is achieved by employing an exponential regression model, elucidating the intricate relationship between glucose concentrations and average RGB (Red-Green-Blue) values. Furthermore, our comprehensive analysis reveals minimal variation in sensor performance across different instances. Significantly, this study underscores the potential adaptability and versatility of our solution for a wide array of assay types and smartphone-based sensor systems, making it particularly promising for deployment in resource-constrained settings and undeveloped countries. The robust correlation established between glucose concentrations and average RGB values, substantiated by an impressive R-square value of 0.98709, underscores the effectiveness and reliability of our pioneering approach within the medical field.
Collapse
Affiliation(s)
- Zhuolun Meng
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, 08854, New Jersey, USA
| | - Hassan Raji
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, 08854, New Jersey, USA
| | - Muhammad Tayyab
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, 08854, New Jersey, USA
| | - Mehdi Javanmard
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, 08854, New Jersey, USA.
| |
Collapse
|
39
|
Fischer A, Ehrlich A, Plotkin Y, Ouyang Y, Asulin K, Konstantinos I, Fan C, Nahmias Y, Willner I. Stimuli-Responsive Hydrogel Microcapsules Harnessing the COVID-19 Immune Response for Cancer Therapeutics. Angew Chem Int Ed Engl 2023; 62:e202311590. [PMID: 37675854 DOI: 10.1002/anie.202311590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
The combination of gene therapy and immunotherapy concepts, along recent advances in DNA nanotechnology, have the potential to provide important tools for cancer therapies. We present the development of stimuli-responsive microcapsules, loaded with a viral immunogenetic agent, harnessing the immune response against the Coronavirus Disease 2019, COVID-19, to selectively attack liver cancer cells (hepatoma) or recognize breast cancer or hepatoma, by expression of green fluorescence protein, GFP. The pH-responsive microcapsules, modified with DNA-tetrahedra nanostructures, increased hepatoma permeation by 50 %. Incorporation of a GFP-encoding lentivirus vector inside the tumor-targeting pH-stimulated miRNA-triggered and Alpha-fetoprotein-dictated microcapsules enables the demonstration of neoplasm selectivity, with approximately 5,000-, 8,000- and 50,000-fold more expression in the cancerous cells, respectively. The incorporation of the SARS-CoV-2 spike protein in the gene vector promotes specific recognition of the immune-evading hepatoma by the COVID-19-analogous immune response, which leads to cytotoxic and inflammatory activity, mediated by serum components taken from vaccinated or recovered COVID-19 patients, resulting in effective elimination of the hepatoma (>85 % yield).
Collapse
Affiliation(s)
- Amit Fischer
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yevgeni Plotkin
- The Department of Anesthesiology, Critical Care and Pain Medicine, Hadassah University Hospital, Jerusalem, 9112001, Israel
- Faculty of Medicine, Hebrew University of Jerusalem Jerusalem, 9112001, (Israel)
| | - Yu Ouyang
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Klil Asulin
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ioannidis Konstantinos
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
40
|
De Paepe L, Cadoni E, Manicardi A, Madder A. Furan-modified PNA probes for covalent targeting and ligation of nucleic acids. Methods 2023; 218:210-223. [PMID: 37604247 DOI: 10.1016/j.ymeth.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
While natural oligonucleotides (ONs) are increasingly used as therapeutic and diagnostic tools, they still face certain challenges such as low resistance to enzymatic degradation, potential immunogenicity, and delivery issues, which can limit their applications. Peptide Nucleic Acids (PNAs) are promising alternatives due to their high affinity for DNA and RNA, the high resistance to enzymatic degradation, and the easy introduction of a wide range of potential modifications. Chemical modifications that enable the covalent targeting of specific DNA and RNA strands offer additional advantages, including enhanced potency. The current study focuses on the utilization of furan-PNAs as pro-reactive probe systems and their applications to DNA and RNA targeting. Specifically, in this methodological paper, we provide practical insights into the design, synthesis, and application of furan-containing PNA probes for achieving efficient PNA-DNA and PNA-RNA interstrand crosslinking (ICL), as well as ON-templated PNA-PNA ligation systems. Furthermore, we discuss the applications of these probes in targeting DNA secondary structures, such as G-quadruplexes and i-motifs, target pull-down assays, and on-surface detection.
Collapse
Affiliation(s)
- Lessandro De Paepe
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 17/A, I-43124 Parma, Italy.
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium.
| |
Collapse
|
41
|
Murray A, Ojeda J, El Merhebi O, Calvo-Marzal P, Gerasimova Y, Chumbimuni-Torres K. Cost-Effective Modular Biosensor for SARS-CoV-2 and Influenza A Detection. BIOSENSORS 2023; 13:874. [PMID: 37754108 PMCID: PMC10526333 DOI: 10.3390/bios13090874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
A modular, multi-purpose, and cost-effective electrochemical biosensor based on a five-stranded four-way junction (5S-4WJ) system was developed for SARS-CoV-2 (genes S and N) and Influenza A virus (gene M) detection. The 5S-4WJ structure consists of an electrode-immobilized universal stem-loop (USL) strand, two auxiliary DNA strands, and a universal methylene blue redox strand (UMeB). This design allows for the detection of specific nucleic acid sequences using square wave voltammetry (SWV). The sequence-specific auxiliary DNA strands (m and f) ensure selectivity of the biosensor for target recognition utilizing the same USL and UMeB components. An important feature of this biosensor is the ability to reuse the USL-modified electrodes to detect the same or alternative targets in new samples. This is accomplished by a simple procedure involving rinsing the electrodes with water to disrupt the 5S-4WJ structure and subsequent re-hybridization of the USL strand with the appropriate set of strands for a new analysis. The biosensor exhibited minimal loss in signal after rehybridization, demonstrating its potential as a viable multiplex assay for both current and future pathogens, with a low limit of quantification (LOQ) of as low as 17 pM.
Collapse
Affiliation(s)
| | | | | | | | | | - Karin Chumbimuni-Torres
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA; (A.M.); (J.O.); (O.E.M.); (P.C.-M.); (Y.G.)
| |
Collapse
|
42
|
Dickens OO, Bajwa I, Garcia-Ramos K, Suh Y, Wen C, Cheng A, Fethke V, Yi Y, Collman RG, Johnson AC. Label-free detection of synthetic, full genomic length HIV-1 RNA at the few-copy level. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 390:134001. [PMID: 37384350 PMCID: PMC10299804 DOI: 10.1016/j.snb.2023.134001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Oligonucleotide-functionalized graphene biosensors show immense promise for use as label-free point of care devices for detection of nucleic acid biomarkers at clinically relevant levels. Graphene-based nucleic acid sensors can be fabricated at low cost and have been shown to reach limits of detection in the attomolar range. Here we demonstrate devices functionalized with 22mer or 8omer DNA probes are capable of detecting full length genomic HIV-1 subtype B RNA, with a limit of detection below 1 aM in nuclease free water. We also show that these sensors are suitable for detection directly in Qiazol lysis reagent, again with a limit of detection below 1 aM for both 22mer and 8omer probes.
Collapse
Affiliation(s)
- Olivia O. Dickens
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia PA 19104
| | - Inayat Bajwa
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104
| | - Kelly Garcia-Ramos
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia PA 19104
| | - Yeonjoon Suh
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia PA 19104
| | - Chengyu Wen
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia PA 19104
| | - Annie Cheng
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia PA 19104
| | - Victoria Fethke
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia PA 19104
| | - Yanji Yi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | - Ronald G. Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | - A.T. Charlie Johnson
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia PA 19104
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia PA 19104
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia PA 19104
| |
Collapse
|
43
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
44
|
Chittuam K, Jampasa S, Vilaivan T, Tangkijvanich P, Chuaypen N, Avihingsanon A, Sain M, Panraksa Y, Chailapakul O. Electrochemical capillary-driven microfluidic DNA sensor for HIV-1 and HCV coinfection analysis. Anal Chim Acta 2023; 1265:341257. [PMID: 37230584 DOI: 10.1016/j.aca.2023.341257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Electrochemical DNA sensors can be operated in either static or flow-based detection schemes. In static schemes, manual washing steps are still necessary, resulting in a tedious and time-consuming process. In contrast, in flow-based electrochemical sensors, the current response is collected when the solution flows through the electrode continuously. However, the drawback of such a flow system is the low sensitivity due to the limited time for the interaction between the capturing element and the target. Herein, we propose a novel electrochemical capillary-driven microfluidic DNA sensor to combine the advantages of static and flow-based electrochemical detection systems into a single device by incorporating burst valve technology. The microfluidic device with a two-electrode configuration was applied for the simultaneous detection of two different DNA markers, human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV) cDNA, via the specific interaction between pyrrolidinyl peptide nucleic acids (PNA) probes and the DNA target. The integrated system, while requiring a small sample volume (7 μL for each sample loading port) and less analysis time, achieved good performance in terms of the limits of detection (LOD) (3SDblank/slope) and quantification (LOQ) (10SDblank/slope) at 1.45 nM and 4.79 nM for HIV and 1.20 nM and 3.96 nM for HCV, respectively. The simultaneous detection of HIV-1 and HCV cDNA prepared from human blood samples showed results that are in complete agreement with the RT‒PCR assay. The results qualify this platform as a promising alternative for the analysis of either HIV-1/HCV or coinfection that can be easily adapted for other clinically important nucleic acid-based markers.
Collapse
Affiliation(s)
- Khanut Chittuam
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Sakda Jampasa
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Anchalee Avihingsanon
- The HIV Netherlands Austria Thailand Research Collaboration (HIV-NAT), Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Mohini Sain
- Centre for Biocomposite and Biomaterials Processing, Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Yosita Panraksa
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
45
|
Umapathy VR, Natarajan PM, Swamikannu B. Review of the Role of Nanotechnology in Overcoming the Challenges Faced in Oral Cancer Diagnosis and Treatment. Molecules 2023; 28:5395. [PMID: 37513267 PMCID: PMC10385509 DOI: 10.3390/molecules28145395] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Throughout the world, oral cancer is a common and aggressive malignancy with a high risk of morbidity, mortality, and recurrence. The importance of early detection in cancer prevention and disease treatment cannot be overstated. Conventional therapeutic strategies have minor difficulties but considerable side effects and unfavourable consequences in clinical applications. Hence, there is a requirement for effective ways for early detection and treatment of oral cancer. At present, numerous forms of nanoparticles have piqued researchers' interest as a potentially useful tool for diagnostic probes and medicinal devices. Because of their inherent physicochemical properties and customizable surface modification, they are able to circumvent some of restrictions and accomplish the intended diagnostic and therapeutic impact. Nanotechnology is a unique field that has revolutionised the industry and is paving the way for new treatments for oral cancer. It can help with a better diagnosis with less harmful substances and is setting current guidelines for treatment. The use of nanotechnology in cancer diagnosis, therapy, and care improves clinical practise dramatically. The different types of nanoparticles that have been developed for the diagnosis and therapy of oral cancers will be covered in this study. The difficulties and potential uses of nanoparticles in the treatment and diagnosis of oral cancer are then highlighted. In order to emphasise existing difficulties and potential remedies for oral cancer, a prospective view of the future is also provided.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. M.G.R. Educational and Research Institute, Chennai 600107, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, BIHER University, Pallikaranai, Chennai 600100, Tamil Nadu, India
| |
Collapse
|
46
|
Chen C, Zeng Y, Gao G, Sun T, Shen L. Flexibility Analysis of DNA Nanotubes with Prescribed Circumferences and Their Pearl-Necklace Assemblies with Gold Nanoclusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37413975 DOI: 10.1021/acs.langmuir.3c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
DNA has been demonstrated as a powerful platform for the construction of inorganic nanoparticles (NPs) into complex three-dimensional assemblies. Despite extensive research, the physical fundamental details of DNA nanostructures and their assemblies with NPs remain obscure. Here, we report the identification and quantification of the assembly details of programmable DNA nanotubes with monodisperse circumferences of a 4, 5, 6, 7, 8, or 10 DNA helix and their pearl-necklace-like assemblies with ultrasmall gold nanoparticles, Au25 nanoclusters (AuNCs), liganded by -S(CH2)nNH3+ (n = 3, 6, 11). The flexibilities of DNA nanotubes, analyzed via statistical polymer physics analysis through atomic force microscopy (AFM), demonstrate that ∼2.8 power exponentially increased with the DNA helix number. Moreover, the short-length liganded AuS(CH2)3NH3+ NCs were observed to be able to form pearl-necklace-like DNA-AuNC assemblies stiffened than neat DNA nanotubes, while long-length liganded AuS(CH2)6NH3+ and AuS(CH2)11NH3+ NCs could fragment DNA nanotubular structures, indicating that DNA-AuNC assembling can be precisely manipulated by customizing the hydrophobic domains of the AuNC nanointerfaces. We prove the advantages of polymer science concepts in unraveling useful intrinsic information on physical fundamental details of DNA-AuNC assembling, which facilitates DNA-metal nanocomposite construction.
Collapse
|
47
|
Walkowiak JJ, Nikam R, Ballauff M. Adsorption of Mono- and Divalent Ions onto Dendritic Polyglycerol Sulfate (dPGS) as Studied Using Isothermal Titration Calorimetry. Polymers (Basel) 2023; 15:2792. [PMID: 37447437 DOI: 10.3390/polym15132792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The effective charge of highly charged polyelectrolytes is significantly lowered by a condensation of counterions. This effect is more pronounced for divalent ions. Here we present a study of the counterion condensation to dendritic polyglycerol sulfate (dPGS) that consists of a hydrophilic dendritic scaffold onto which sulfate groups are appended. The interactions between the dPGS and divalent ions (Mg2+ and Ca2+) were analyzed using isothermal titration calorimetry (ITC) and showed no ion specificity upon binding, but clear competition between the monovalent and divalent ions. Our findings, in line with the latest theoretical studies, demonstrate that a large fraction of the monovalent ions is sequentially replaced with the divalent ions.
Collapse
Affiliation(s)
- Jacek J Walkowiak
- DWI-Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Rohit Nikam
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Taktstraße 3, 14195 Berlin, Germany
| |
Collapse
|
48
|
Niu B, Wang Z, Wu J, Cai J, An Z, Sun J, Li Y, Huang S, Lu N, Xie Q, Zhao G. Photoelectrocatalytic selective removal of group-targeting thiol-containing heterocyclic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131307. [PMID: 37023579 DOI: 10.1016/j.jhazmat.2023.131307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/03/2023]
Abstract
The removal of a class of toxic thiol-containing heterocyclic pollutants from complex water matrices has great environmental significance. In this study, a novel photoanode (Au/MIL100(Fe)/TiO2) with dual recognition functions was designed for selective group-targeting photoelectrocatalytic removal of thiol-containing heterocyclic pollutants from various aquatic systems. The average degradation and adsorption removal efficiency of 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, and 2-mercaptobenzoxazole were still above 96.7% and 13.5% after selective treatment with Au/MIL100(Fe)/TiO2 even coexisting with 10-fold concentration of macromolecular interferents (sulfide lignin and natural organic matters) and the same concentration of micromolecular structural analogues. While they were below 71.6% and 3.9% after non-selective treatment with TiO2. Targets in the actual system were selectively removed to 0.9 µg L-1, which is 1/10 of that after non-selective treatment. FTIR, XPS and operando electrochemical infrared results proved that the highly specific recognition mechanism was mainly attributable to both the size screening of MIL100(Fe) toward targets and Au-S bond formed between -SH group of targets and Au of Au/MIL100(Fe)/TiO2. •OH are the reactive oxygen species. The degradation mechanism was further investigated via excitation-emission matrix fluorescence spectroscopy and LC-MS. This study provides new guidelines for the selective group-targeting removal of toxic pollutants with characteristic functional groups from complex water matrices.
Collapse
Affiliation(s)
- Baoling Niu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiming Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianwei Wu
- Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Junzhuo Cai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ziwen An
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jie Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanbo Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuyu Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ning Lu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qihao Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Guohua Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
49
|
Arguello Cruz E, Ducos P, Gao Z, Johnson ATC, Niebieskikwiat D. Exchange Coupling Effects on the Magnetotransport Properties of Ni-Nanoparticle-Decorated Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1861. [PMID: 37368291 DOI: 10.3390/nano13121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
We characterize the effect of ferromagnetic nickel nanoparticles (size ∼6 nm) on the magnetotransport properties of chemical-vapor-deposited (CVD) graphene. The nanoparticles were formed by thermal annealing of a thin Ni film evaporated on top of a graphene ribbon. The magnetoresistance was measured while sweeping the magnetic field at different temperatures, and compared against measurements performed on pristine graphene. Our results show that, in the presence of Ni nanoparticles, the usually observed zero-field peak of resistivity produced by weak localization is widely suppressed (by a factor of ∼3), most likely due to the reduction of the dephasing time as a consequence of the increase in magnetic scattering. On the other hand, the high-field magnetoresistance is amplified by the contribution of a large effective interaction field. The results are discussed in terms of a local exchange coupling, J∼6 meV, between the graphene π electrons and the 3d magnetic moment of nickel. Interestingly, this magnetic coupling does not affect the intrinsic transport parameters of graphene, such as the mobility and transport scattering rate, which remain the same with and without Ni nanoparticles, indicating that the changes in the magnetotransport properties have a purely magnetic origin.
Collapse
Affiliation(s)
- Erick Arguello Cruz
- Departamento de Fisica, Colegio de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Pedro Ducos
- Departamento de Fisica, Colegio de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Zhaoli Gao
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alan T Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dario Niebieskikwiat
- Departamento de Fisica, Colegio de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| |
Collapse
|
50
|
Mulyani DE, Maksum IP. Detection of Biomarker Using Aptasensors to Determine the Type of Diabetes. Diagnostics (Basel) 2023; 13:2035. [PMID: 37370930 DOI: 10.3390/diagnostics13122035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by elevated blood glucose levels. This disease is so serious that many experts refer to it as the "silent killer". The early detection of diabetes mellitus, whether type 1, type 2 or mitochondrial, is crucial because it can improve the success of treatment and the quality of life for patients. Aptamer-based biosensor diagnosis methods have been widely developed because they have high sensitivity and selectivity in detecting biomarkers of various diseases. Aptamers are short sequences of oligonucleotides or proteins that recognize specific ligands and bind to various target molecules, ranging from small ions to large proteins. They are promising diagnostic molecules due to their high sensitivity and selectivity, ease of modification, low toxicity, and high stability. This article aims to summarize the progress of detection methods, including detection principles, sensitivity, selectivity, and the performance of detection devices, to distinguish between types of diabetes mellitus using electrochemical aptasensors with biomarkers such as glucose, insulin, HbA1c, GHSA, and ATP.
Collapse
Affiliation(s)
- Dinda Exelsa Mulyani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|