1
|
Zhang D, Xie D, Qu Y, Mu D, Wang S. Digging deeper into necrotizing enterocolitis: bridging clinical, microbial, and molecular perspectives. Gut Microbes 2025; 17:2451071. [PMID: 39826099 DOI: 10.1080/19490976.2025.2451071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential. We further critically examine dysbiotic alterations within the gut microbiota, with a particular focus on imbalances in bacterial and viral communities, which may contribute to the onset of NEC. The intricate interactions among toll-like receptor 4 (TLR4), microvascular integrity, immune activation, and the inflammatory milieu are meticulously summarized, offering a sophisticated understanding of NEC pathophysiology. This academic review aims to enhance the etiological comprehension of NEC, promote the development of targeted therapeutic interventions, and impart the significant impact of perinatal factors on the formulation of preventive and curative strategies for the disease.
Collapse
Affiliation(s)
- Deshuang Zhang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- Division of Neonatology/Pediatric Surgery, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dongke Xie
- Division of Neonatology/Pediatric Surgery, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shaopu Wang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Liu Z, Zhang H, Wang J, Yao Y, Wang X, Liu Y, Fang W, Liu X, Zheng Y. Clca1 deficiency exacerbates colitis susceptibility via impairment of mucus barrier integrity and gut microbiota homeostasis. Microbiol Res 2025; 297:128191. [PMID: 40300372 DOI: 10.1016/j.micres.2025.128191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
The intestinal mucus barrier has emerged as a promising therapeutic target for inflammatory bowel disease. Understanding its regulatory mechanisms is critical for elucidating ulcerative colitis (UC) pathogenesis, improving diagnostics, guiding treatments, and preventing relapse. Chloride Channel Accessory 1 (Clca1), a constituent of the mucus layer, remains understudied in colitis. Here, we investigated Clca1's role in mucosal immunity and intestinal homeostasis using experimental colitis models. Clca1-deficient (Clca1-/-) mice displayed compromised mucus layer integrity, reduced neutrophil infiltration, and gut microbiota dysbiosis. Notably, Clca1-/- mice exhibited exacerbated colitis severity following dextran sulfate sodium (DSS) challenge, accompanied by a diminished goblet cell populations. Fecal microbiota transplantation (FMT) studies revealed that gut microbiota critically modulates divergent phenotypic outcomes between genotypes. Our findings establish Clca1 as a multifunctional regulator of mucus barrier integrity through mechanisms involving goblet cell maintenance, neutrophil-mediated immunity, and host-microbiota crosstalk. These results advance the understanding of UC pathogenesis and identify Clca1-associated pathways as potential targets for barrier restoration therapies.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hong Zhang
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jingjing Wang
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yutong Yao
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyi Wang
- Core Facility Center, The First Afliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Liu
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Xingyin Liu
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Biochemistry, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Yi Zheng
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
3
|
Lucarini E, Schettino A, Marigliano N, Ciampi C, Smimmo M, Romano F, Paolillo A, Izzo L, Begum J, Mansour AA, Iaccarino N, Randazzo A, Greco KV, Scarpa R, Caso F, Iqbal AJ, Bucci M, Ghelardini C, Mannelli LDC, Saviano A, Maione F. Exploring the dual role of Mangifera indica L. in regulating immune response and pain persistence in inflammatory bowel disease. Pharmacol Res 2025:107773. [PMID: 40389041 DOI: 10.1016/j.phrs.2025.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/21/2025]
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis and Crohn's disease, is characterized by chronic intestinal inflammation and immune dysregulation, driven mainly by Th1 and Th17 cells and sustained by pro-inflammatory cyto-chemokines. This inflammatory milieu is associated with visceral pain, a key symptom affecting patient quality of life. Addressing both gut inflammation/immunity and visceral pain is crucial for improving IBD therapy. This study assessed the therapeutic potential of Mangifera indica L. extract (MIE), a mangiferin-rich formulation, in a DNBS-induced colitis model in rats. MIE treatment administered either simultaneously or post-DNBS induction, significantly reduced pathogenic Th1 and Th17 cell infiltration, along with pro-inflammatory cytokines (IL-1β, TNF-α) and chemokines (CXCL1, CXCL2), though histopathology showed no significant improvements in tissue healing. Additionally, MIE restored microbiota-derived short-chain fatty acids (acetate and butyrate) in colon and faecal samples. Importantly, MIE alleviated post-inflammatory visceral hypersensitivity, reducing the abdominal withdrawal reflex (AWR) to colorectal distension (CRD), after either acute or repeated treatment. These findings suggest that MIE, in the context of nutraceuticals and functional foods, shows promise as a dual-action therapeutic strategy for complementary and/or adjuvant therapy in IBD.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Anna Schettino
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Noemi Marigliano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Martina Smimmo
- Department of Pharmacy, University of Naples Federico II, School of Medicine and Surgery, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Francesca Romano
- Department of Pharmacy, University of Naples Federico II, School of Medicine and Surgery, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Antonio Paolillo
- Department of Pharmacy, University of Naples Federico II, School of Medicine and Surgery, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, School of Medicine and Surgery, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Jenefa Begum
- Department of Cardiovascular Sciences, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
| | - Adel Abo Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, School of Medicine and Surgery, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, School of Medicine and Surgery, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Karin Vicente Greco
- University College London (UCL), Division of Surgery and Interventional Science, Royal Free Hospital Campus, UK; Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Av. Albert Einstein 500, CEP 13083-852 Campinas, SP, Brazil
| | - Raffaele Scarpa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Francesco Caso
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Asif Jilani Iqbal
- Department of Cardiovascular Sciences, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples Federico II, School of Medicine and Surgery, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy; Nutraceuticals and Functional Foods Task Force, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
4
|
Naidu K, Wong P, Chapuis PH, Rickard MJFX, Ng KS. The Place of Appendicectomy in Inflammatory Bowel Disease-A Review. ANZ J Surg 2025. [PMID: 40372363 DOI: 10.1111/ans.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025]
Abstract
The aetiology and pathophysiology of inflammatory bowel disease (IBD) are not completely understood; however, a dysregulated intestinal immune system appears key to its pathogenesis. It has been suggested that the appendix is central to nurturing the enteric mucosal system due to its production of lymphoid products and that an appendicectomy may have an immune modulating effect. The aim of this review is to explore the available evidence for the association between IBD and appendicectomy and attempt to define its impact on the incidence and risk of Crohn's disease (CD) and Ulcerative colitis (UC) onset and progression.
Collapse
Affiliation(s)
- Krishanth Naidu
- Colorectal Surgery Unit, Concord Hospital, Concord, Australia
- Concord Institute of Academic Surgery, Concord Hospital, Concord, Australia
- Concord Clinical School, Clinical Sciences Building, Concord Hospital, University of Sydney, Concord, Australia
| | - Pearl Wong
- Colorectal Surgery Unit, Concord Hospital, Concord, Australia
- Concord Clinical School, Clinical Sciences Building, Concord Hospital, University of Sydney, Concord, Australia
| | - Pierre H Chapuis
- Colorectal Surgery Unit, Concord Hospital, Concord, Australia
- Concord Institute of Academic Surgery, Concord Hospital, Concord, Australia
- Concord Clinical School, Clinical Sciences Building, Concord Hospital, University of Sydney, Concord, Australia
| | - Matthew J F X Rickard
- Colorectal Surgery Unit, Concord Hospital, Concord, Australia
- Concord Institute of Academic Surgery, Concord Hospital, Concord, Australia
- Concord Clinical School, Clinical Sciences Building, Concord Hospital, University of Sydney, Concord, Australia
| | - Kheng-Seong Ng
- Colorectal Surgery Unit, Concord Hospital, Concord, Australia
- Concord Institute of Academic Surgery, Concord Hospital, Concord, Australia
- Concord Clinical School, Clinical Sciences Building, Concord Hospital, University of Sydney, Concord, Australia
| |
Collapse
|
5
|
León-Vega II, Oregon R, Schnoor M, Vadillo E. From Ulcerative Colitis to Metastatic Colorectal Cancer: The Neutrophil Contribution. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:814-830. [PMID: 39889826 DOI: 10.1016/j.ajpath.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Ulcerative colitis (UC) is an inflammatory colon and rectum disease affecting approximately 5 million people worldwide. There is no cure for UC, and approximately 8% of patients with UC develop colorectal cancer (CRC) by gradual acquisition of mutations driving the formation of adenomas and their progression to adenocarcinomas and metastatic disease. CRC constitutes 10% of total cancer cases worldwide and 9% of cancer deaths. Both UC and CRC have an increasing incidence worldwide. Although the epithelium has been well studied in UC and CRC, the contribution of neutrophils is less clear. Neutrophils are rapidly recruited in excessive amounts from peripheral blood to the colon during UC, and their overactivation in the proinflammatory UC tissue environment contributes to tissue damage. In CRC, the role of neutrophils is controversial, but emerging evidence suggests that their role depends on the evolution and context of the disease. The role of neutrophils in the transition from UC to CRC is even less clear. However, recent studies propose neutrophils as therapeutic targets for better clinical management of both diseases. This review summarizes the current knowledge on the roles of neutrophils in UC and CRC.
Collapse
Affiliation(s)
- Iliana I León-Vega
- Department of Molecular Biomedicine, Cinvestav-National Polytechnic Institute, Mexico City, Mexico
| | - Reyna Oregon
- Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Cinvestav-National Polytechnic Institute, Mexico City, Mexico.
| | - Eduardo Vadillo
- Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico.
| |
Collapse
|
6
|
Chaves MM. Neutrophils and purinergic signaling: Partners in the crime against Leishmania parasites? Biochimie 2025; 232:43-53. [PMID: 39855456 DOI: 10.1016/j.biochi.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
The parasite of the genus Leishmania is the causative agent of diseases that affect humans called leishmaniasis. These diseases affect millions of people worldwide and the currently existing drugs are either very toxic or the parasites acquire resistance. Therefore, new elimination mechanisms need to be elucidated so that new therapeutic strategies can be developed. Much has already been discussed about the role of neutrophils in Leishmania infection, and their participation is still controversial. A recent study showed that receptors present in the neutrophil membrane, the purinergic receptors, can control the infection when activated, but the triggering mechanism has not been elucidated. In this review, we will address the possible participation of purinergic receptors expressed in the neutrophil extracellular membrane that may be participating in the detection of Leishmania infection and their possible effects during parasitism.
Collapse
Affiliation(s)
- Mariana M Chaves
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Bio-Manguinhos, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Liu H, Zhao W, Chen H, Wu H, Li X, Su A, Lu Y. Highland Barley Improves DSS-Induced Ulcerative Colitis in C57BL/6J Mice. Food Sci Nutr 2025; 13:e70132. [PMID: 40330205 PMCID: PMC12053120 DOI: 10.1002/fsn3.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/19/2025] [Accepted: 03/01/2025] [Indexed: 05/08/2025] Open
Abstract
The prevalence of ulcerative colitis (UC) increases with unhealthy eating habits. Both surgery and medication have the potential to treat the condition, but they may also have more negative effects. This study investigated the anti-inflammatory mechanism of 20% and 40% doses of different highland barley (HB) components (whole grain, peeled, and bran) in a 2% dextran sulfate sodium induced UC mouse model. The results showed that supplementation with a 20% dose of peeled HB restored body weight, disease activity index, colon length, serum interleukin-1β and interleukin-10 levels, liver glutathione peroxidase content, and superoxide dismutase activity to normal levels in mice compared to UC mice. Moreover, the damage caused by UC to the mice's colon was significantly reduced, and the relative expression levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α were all significantly downregulated. Additionally, it increased the abundance of Bacteroidota and Firmicutes, improving the balance of gut microbiota.
Collapse
Affiliation(s)
- Huawei Liu
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
| | - Wen Zhao
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Hongzhou Chen
- Anhui Guo Tai Zhong Xin Testing Technology Co., LtdHefeiChina
| | - Hongya Wu
- Lixiahe Institute of Agricultural SciencesYangzhouChina
| | - Xiangfei Li
- College of Food Science and EngineeringNanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and SafetyNanjingChina
| | - Anxiang Su
- College of Food Science and EngineeringNanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and SafetyNanjingChina
| | - Yingjian Lu
- College of Food Science and EngineeringNanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and SafetyNanjingChina
| |
Collapse
|
8
|
Feng R, Chen Z, Chen L, Wei W, Wen J, Zheng J. Abnormal lipid metabolism and inflammatory response induced by aluminum led to the cognitive decline in mice. Neurotoxicology 2025; 108:S0161-813X(25)00047-6. [PMID: 40311878 DOI: 10.1016/j.neuro.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/19/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
As a chronic, low-toxicity metal, the effect of aluminum on human body has been paid more and more attention; however, the exact mechanism of action remains unclear. In this study, we studied the effects of aluminum on oxidative stress, inflammation, and mild cognitive impairment in mice, and analyzed changes in fecal metabolites to elucidate the potential mechanisms underlying these interactions. After 120 days of aluminum feeding, behavioral tests revealed that mice in the high-dose aluminum group exhibited cognitive decline. Regarding oxidative stress indices, MDA level increased, while GSH-PX activity, GSH content and CAT activity decreased significantly in aluminum treatment group. MAO activity increased and TC content decreased significantly. Pathological analysis of tissue sections showed that there was inflammation in brain tissue of high dose group. Pro-inflammatory factors TNF-α and IL-1β in brain tissue were significantly increased. Four metabolites (arachidic acid, linoleic acid squalene and P-cymene) involved in lipid metabolic pathways and inflammation varied significantly in the feces of each group. Therefore, aluminum-induced abnormal lipid metabolism pathway and inflammatory response may be an important cause of the cognitive decline.
Collapse
Affiliation(s)
- Rong Feng
- Chongqing City Vocational College, Yongchuan, Chongqing Municipality, China.
| | - Zhongyao Chen
- Chongqing City Vocational College, Yongchuan, Chongqing Municipality, China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu province, China
| | - Wei Wei
- Chongqing City Vocational College, Yongchuan, Chongqing Municipality, China
| | - Jiafeng Wen
- Chongqing City Vocational College, Yongchuan, Chongqing Municipality, China
| | - Jingyu Zheng
- Chongqing City Vocational College, Yongchuan, Chongqing Municipality, China
| |
Collapse
|
9
|
Sokou R, Mantzios P, Palioura AE, Tsantes AG, Lianou A, Piovani D, Tsante KA, Lampropoulou K, Iacovidou N, Bonovas S. Diagnostic and Prognostic Value of Hematological Parameters in Necrotizing Enterocolitis: A Systematic Review. J Clin Med 2025; 14:2530. [PMID: 40217979 PMCID: PMC11989880 DOI: 10.3390/jcm14072530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Necrotizing enterocolitis (NEC) is a severe, potentially fatal gastrointestinal disease that primarily affects preterm neonates, especially those with very low birth weight (<1500 g). Despite extensive research, its pathophysiology remains unclear, with NEC considered a spectrum of disorders driven by systemic inflammation, microbiota dysregulation, and intestinal hypoxic injury. Diagnosis is challenging due to its subtle presentation and reliance on clinical and radiographic findings, underscoring the urgent need for reliable early biomarkers. Complete blood count (CBC) is one of the most frequently performed laboratory tests in neonatal care, providing valuable insights associated with hematologic alterations associated with NEC. Given its cost-effectiveness, accessibility, and rapid turnaround time, CBC parameters have been increasingly investigated for their diagnostic and prognostic potential in NEC. This systematic review consolidates existing evidence on the diagnostic and prognostic utility of CBC parameters in NEC, examining their association with disease onset, progression, and outcomes. Methods: A systematic review of the literature in PubMed and Scopus databases was conducted, between February 25 and December 2024. Results: Following a PRISMA-compliant search strategy, 77 eligible studies were included, analyzing data from 295,195 neonates, of whom 14,570 had NEC. Among the 77 studies, 17 examined NEC-associated mortality as a primary outcome, while 13 studies focused on the development of predictive models incorporating CBC parameters alongside other clinical and laboratory data to assess NEC severity and prognosis in neonates. The findings highlight the potential of CBC-derived markers to facilitate early NEC detection and risk stratification. However, variations in study design and diagnostic criteria highlight the need for prospective studies to validate their clinical use. Conclusions: Despite advancements in understanding NEC, its diagnosis remains challenging due to the absence of fully reliable biomarkers. CBC parameters show promise in offering early diagnostic and prognostic insights. However, further validation is needed for their routine integration into NICU practice. Given the persistent challenges in NEC diagnosis and management, our findings highlight the necessity for integrated scoring systems that combine hematologic, clinical, and radiologic data to enhance early detection and optimize neonatal care. Further research is essential to refine these predictive models, enabling timely interventions and improving survival rates in NEC-affected neonates.
Collapse
Affiliation(s)
- Rozeta Sokou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Petros Mantzios
- Immunology and Histocompatibility Department, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Alexia Eleftheria Palioura
- Neonatal Intensive Care Unit, “Agios Panteleimon” General Hospital of Nikea, 18454 Piraeus, Greece; (A.E.P.); (A.L.)
| | - Andreas G. Tsantes
- Microbiology Department, “Saint Savvas” Oncology Hospital, 11522 Athens, Greece;
| | - Alexandra Lianou
- Neonatal Intensive Care Unit, “Agios Panteleimon” General Hospital of Nikea, 18454 Piraeus, Greece; (A.E.P.); (A.L.)
| | - Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | | | - Katerina Lampropoulou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| |
Collapse
|
10
|
Fan Z, Xu Y, Lu Y, Li X, Xu M, Liu J, Cai Z, Liu J, Su J, Wang J, Luo Q, Zhang Z, Liu Z. The crosstalk of monocyte-neutrophil in hair follicles regulates neutrophil transepidermal migration in contact dermatitis. Commun Biol 2025; 8:564. [PMID: 40185981 PMCID: PMC11971313 DOI: 10.1038/s42003-025-07960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
The excessive accumulation of neutrophils within the epidermis is a significant hallmark of cutaneous diseases; however, the mechanisms governing neutrophil transepidermal migration (NTEM) remain inadequately understood. In this study, we develop trichromatic-fluorescence-labeled chimeric mice by utilizing Cx3cr1GFP/+Lyz2RFP/+ mice as bone marrow donors and Krt14YFP/+ mice as recipients. This approach enables us to visualize the process of NTEM and the crosstalk between neutrophils and monocytes in a murine model of irritant contact dermatitis (ICD). Intravital imaging reveals a preferential transmigration of neutrophils through hair follicle (HF), where dermal neutrophils exhibit limited mobility and interact with dermal monocytes. Notably, 18 h following hapten exposure, dermal neutrophils continuously migrate toward HF regions and form clusters within 3 h. Importantly, MMP-9 is identified as essential for the NTEM process; the depletion of dermal monocytes results in a significant reduction of MMP-9 expression in the skin and inhibits the NTEM process in ICD. Mechanistically, dermal monocytes are found to be a crucial source of the cytokines TNF-α and CXCL2, which promote the upregulation of MMP-9 in neutrophils. Therefore, our results highlight HF regions as crucial gateways for dermal monocyte-modulated NTEM and provide visual insights into the crosstalk between neutrophils and monocytes in inflammatory skin disorders.
Collapse
Affiliation(s)
- Zhan Fan
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, China
| | - Yilun Xu
- State key laboratory of digital medical engineering, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Yafang Lu
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinlin Li
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengli Xu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, China
| | - Jinxin Liu
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenzhen Cai
- State key laboratory of digital medical engineering, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Jiayang Liu
- State key laboratory of digital medical engineering, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Jingping Su
- State key laboratory of digital medical engineering, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Jialu Wang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingming Luo
- State key laboratory of digital medical engineering, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China.
| | - Zhihong Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, China.
| | - Zheng Liu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, China.
- State key laboratory of digital medical engineering, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China.
| |
Collapse
|
11
|
Altınok Ö, Baş M, Gelenli Dolanbay E, Kolgazi M, Mert T, Uslu Ü. Collagen Peptides and Saccharomyces boulardiiCNCM I-745 Attenuate Acetic Acid-Induced Colitis in Rats by Modulating Inflammation and Barrier Permeability. Food Sci Nutr 2025; 13:e70189. [PMID: 40255550 PMCID: PMC12008002 DOI: 10.1002/fsn3.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease characterized by recurrent episodes of inflammation and tissue damage, with limited treatment options. This study aimed to investigate the effects of collagen peptides and Saccharomyces boulardii on acetic acid (AA)-induced colitis. Thirty-six male Sprague-Dawley rats were randomly divided into the following four groups: normal control (NC), colitis control (CC), collagen peptide (CP; 0.6 g/kg/day), and S. boulardii (SB; 250 mg/day). Colitis was induced by an intrarectal administration of AA in all groups except NC, and treatments were administered daily for 7 days. The therapeutic effects were evaluated by assessing the disease activity index (DAI), colon mass index, macroscopic and microscopic tissue damage, histopathological changes, zonula occludens (ZO)-1 protein expression, and myeloperoxidase (MPO) activity. The results showed that CP and SB treatments substantially alleviated DAI scores (p < 0.05) and reduced the colon mass index. Colon macroscopic and microscopic damages improved compared to the CC group (p < 0.01). Histologically, both treatments reduced inflammatory cell infiltration, crypt damage, and ulceration, with CP showing a slightly more pronounced effect. Immunohistochemical analysis revealed significant restoration of ZO-1 protein expression in the treated groups, indicating improvement in intestinal barrier integrity (p < 0.01). Furthermore, MPO activity was reduced in both CP and SB groups, significantly in the SB group (p < 0.01). These findings are consistent with previous studies that highlight the anti-inflammatory and barrier-enhancing effects of collagen peptides and probiotics in UC models.
Collapse
Affiliation(s)
- Öykü Altınok
- Department of Nutrition and DieteticsInstitute of Health Sciences, Acibadem Mehmet Ali Aydinlar UniversityIstanbulTurkey
- Department of Nutrition and Dietetics, Faculty of Health SciencesFenerbahçe UniversityIstanbulTurkey
| | - Murat Baş
- Department of Nutrition and Dietetics, Faculty of Health SciencesAcibadem Mehmet Ali Aydinlar UniversityIstanbulTurkey
| | - Elif Gelenli Dolanbay
- Department of Histology & Embryology, School of MedicineIstanbul Medeniyet UniversityIstanbulTurkey
| | - Meltem Kolgazi
- Department of Physiology, School of MedicineAcibadem Mehmet Ali Aydinlar UniversityIstanbulTurkey
| | - Tugay Mert
- Department of Histology & Embryology, School of MedicineIstanbul Medeniyet UniversityIstanbulTurkey
| | - Ünal Uslu
- Department of Histology & Embryology, School of MedicineIstanbul Medeniyet UniversityIstanbulTurkey
| |
Collapse
|
12
|
Zhu W, Yang Z, Zhou S, Zhang J, Xu Z, Xiong W, Liu P. Modic changes: From potential molecular mechanisms to future research directions (Review). Mol Med Rep 2025; 31:90. [PMID: 39918002 PMCID: PMC11836598 DOI: 10.3892/mmr.2025.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Low back pain (LBP) is a leading cause of disability worldwide. Although not all patients with Modic changes (MCs) experience LBP, MC is often closely associated with LBP and disc degeneration. In clinical practice, the focus is usually on symptoms related to MC, which are hypothesized to be associated with LBP; however, the link between MC and nerve compression remains unclear. In cases of intervertebral disc herniation, nerve compression is often the definitive cause of symptoms. Recent advances have shed light on the pathophysiology of MC, partially elucidating its underlying mechanisms. The pathogenesis of MC involves complex bone marrow‑disc interactions, resulting in bone marrow inflammation and edema. Over time, hematopoietic cells are gradually replaced by adipocytes, ultimately resulting in localized bone marrow sclerosis. This process creates a barrier between the intervertebral disc and the bone marrow, thereby enhancing the stability of the vertebral body. The latest understanding of the pathophysiology of MC suggests that chronic inflammation plays a significant role in its development and hypothesizes that the complement system may contribute to its pathological progression. However, this hypothesis requires further research to be confirmed. The present review we proposed a pathological model based on current research, encompassing the transition from Modic type 1 changes (MC1) to Modic type 2 changes (MC2). It discussed key cellular functions and their alterations in the pathogenesis of MC and outlined potential future research directions to further elucidate its mechanisms. Additionally, it reviewed the current clinical staging and pathogenesis of MC, recommended the development of an updated staging system and explored the prospects of integrating emerging artificial intelligence technologies.
Collapse
Affiliation(s)
- Weijian Zhu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhou Yang
- Department of Orthopedics, Hongxin Harmony Hospital, Li Chuan, Hubei 445400 P.R. China
| | - Sirui Zhou
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Jinming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhihao Xu
- Department of Hepatobiliary Surgery, Huaqiao Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ping Liu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| |
Collapse
|
13
|
He G, Liu P, Xuan X, Zhang M, Zhang H, Yang K, Luan Y, Yang Q, Yang J, Li Q, Zheng H, Wang P. Transcription factor ELF-1 protects against colitis by maintaining intestinal epithelium homeostasis. Commun Biol 2025; 8:395. [PMID: 40057592 PMCID: PMC11890729 DOI: 10.1038/s42003-025-07742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/14/2025] [Indexed: 05/13/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing, and remitting disease characterized by chronic inflammation in the gastrointestinal tract. The exact etiology and pathogenesis of IBD remain elusive. Although ELF-1 has been known to be highly expressed in epithelial cells for past twenty years, little is known about its function in epithelial cells and epithelial-related IBD. Here, we demonstrated that ELF-1 deficiency in mouse lead to exacerbated DSS-induced colitis, marked by inflammation dominated by neutrophil infiltration and activation of IL-17 signaling pathways in various immune cells, including Th17, ILC3, γδT and NKT cells. Bone marrow transfer experiments confirmed ELF-1 deficiency in non-hematopoietic cells intrinsically worsened DSS-induced colitis. On one hand, ELF-1 deficiency enhanced the production of pro-inflammatory chemokines in colonic epithelial cells, leading to extensive infiltration of neutrophils and other immune cells into the colonic mucosal tissue. On the other hand, ELF-1 directly regulated the expression of the Rack1 gene in colonic epithelial tissue, which has been proved to play critical roles in maintaining intestinal homeostasis. Altogether, ELF-1 plays a protective role in colitis by maintaining intestinal epithelium homeostasis.
Collapse
Affiliation(s)
- Gege He
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Pingping Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoyan Xuan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Min Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongxia Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ka Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yusheng Luan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingyuan Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qianru Li
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huaixin Zheng
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Peng Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
14
|
Schanne G, Vincent A, Chain F, Ruffié P, Carbonne C, Quévrain E, Mathieu E, Balfourier A, Bermúdez-Humarán LG, Langella P, Thenet S, Carrière V, Hammoudi N, Svrcek M, Demignot S, Seksik P, Policar C, Delsuc N. SOD mimics delivered to the gut using lactic acid bacteria mitigate the colitis symptoms in a mouse model of inflammatory bowel diseases. Free Radic Res 2025; 59:262-273. [PMID: 40079422 DOI: 10.1080/10715762.2025.2478121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, represent a global health issue as a prevalence of 1% is expected in the western world by the end of this decade. These diseases are associated with a high oxidative stress that induces inflammatory pathways and severely damages gut tissues. IBD patients suffer from antioxidant defenses weakening, through, for instance, an impaired activity of superoxide dismutases (SOD)-that catalyze the dismutation of superoxide-or other endogenous antioxidant enzymes including catalase and glutathione peroxidase. Manganese complexes mimicking SOD activity have shown beneficial effects on cells and murine models of IBD. However, efficient SOD mimics are often manganese complexes that can suffer from decoordination and thus inactivation in acidic stomachal pH. To improve their delivery in the gut after oral administration, two SOD mimics Mn1 and Mn1C were loaded into lactic acid bacteria that serve as delivery vectors. When orally administrated to mice suffering from a colitis, these chemically modified bacteria (CMB) showed protective effects on the global health status of mice. In addition, they have shown beneficial effects on lipocalin-2 content and intestinal permeability. Interestingly, mRNA SOD2 content in colon homogenates was significantly decreased upon mice feeding with CMB loaded with Mn1C, suggesting that the beneficial effects observed may be due to the release of the SOD mimic in the gut that complement for this enzyme. These CMB represent new efficient chemically modified antioxidant probiotics for IBD treatment.
Collapse
Affiliation(s)
- Gabrielle Schanne
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
| | - Amandine Vincent
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Florian Chain
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Pauline Ruffié
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Célia Carbonne
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Elodie Quévrain
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
| | - Emilie Mathieu
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Alice Balfourier
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | | | - Philippe Langella
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Sophie Thenet
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- EPHE, PSL University, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, France
| | - Véronique Carrière
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, France
| | - Nassim Hammoudi
- Department of Gastroenterology, Hôpital Saint-Louis, AP-HP, INSERM U1160, Paris, France
| | - Magali Svrcek
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
| | - Sylvie Demignot
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- EPHE, PSL University, Paris, France
| | - Philippe Seksik
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, France
- Gastroenterology Department, Saint-Antoine Hospital, Sorbonne Université, APHP, Paris, France
| | - Clotilde Policar
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Nicolas Delsuc
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| |
Collapse
|
15
|
Soranno DE, Coopersmith CM, Brinkworth JF, Factora FNF, Muntean JH, Mythen MG, Raphael J, Shaw AD, Vachharajani V, Messer JS. A review of gut failure as a cause and consequence of critical illness. Crit Care 2025; 29:91. [PMID: 40011975 PMCID: PMC11866815 DOI: 10.1186/s13054-025-05309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
In critical illness, all elements of gut function are perturbed. Dysbiosis develops as the gut microbial community loses taxonomic diversity and new virulence factors appear. Intestinal permeability increases, allowing for translocation of bacteria and/or bacterial products. Epithelial function is altered at a cellular level and homeostasis of the epithelial monolayer is compromised by increased intestinal epithelial cell death and decreased proliferation. Gut immunity is impaired with simultaneous activation of maladaptive pro- and anti-inflammatory signals leading to both tissue damage and susceptibility to infections. Additionally, splanchnic vasoconstriction leads to decreased blood flow with local ischemic changes. Together, these interrelated elements of gastrointestinal dysfunction drive and then perpetuate multi-organ dysfunction syndrome. Despite the clear importance of maintaining gut homeostasis, there are very few reliable measures of gut function in critical illness. Further, while multiple therapeutic strategies have been proposed, most have not been shown to conclusively demonstrate benefit, and care is still largely supportive. The key role of the gut in critical illness was the subject of the tenth Perioperative Quality Initiative meeting, a conference to summarize the current state of the literature and identify key knowledge gaps for future study. This review is the product of that conference.
Collapse
Affiliation(s)
- Danielle E Soranno
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University, Atlanta, GA, USA
| | - Jessica F Brinkworth
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Faith N F Factora
- Intensive Care and Resuscitation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Julia H Muntean
- Intensive Care and Resuscitation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Monty G Mythen
- Perioperative Medicine, University College London, London, England
| | - Jacob Raphael
- Anesthesiology and Perioperative Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Andrew D Shaw
- Intensive Care and Resuscitation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Vidula Vachharajani
- Department of Pulmonary and Critical Care, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Jeannette S Messer
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
16
|
Galan C, Lu G, Gill R, Li D, Liu Y, Huh JR, Hang S. RTF1 mediates epigenetic control of Th17 cell differentiation via H2B monoubiquitination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae043. [PMID: 40073106 PMCID: PMC11952878 DOI: 10.1093/jimmun/vkae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/02/2024] [Indexed: 03/14/2025]
Abstract
A gene encoding the transcription factor RTF1 has been associated with an increased risk of ulcerative colitis (UC). In this study, we investigated its function in modulating T cells expressing interleukin-17A (Th17 cells), a cardinal cell type promoting intestinal inflammation. Our results indicate that Rtf1 deficiency disrupts the differentiation of Th17 cells, while leaving regulatory T cells (Treg) unaffected. Mechanistically, RTF1 facilitates histone H2B monoubiquitination (H2Bub1), which requires its histone modification domain (HMD), for supporting Th17 cell function. Impaired Th17 differentiation was also observed in cells lacking the H2Bub1 E3 ligase subunit RNF40, an enzyme known to physically interact with RTF1. Thus, our study underscores the essential role of RTF1 in H2Bub1-mediated epigenetic regulation of Th17 cell differentiation. Understanding this process will likely provide valuable insights into addressing Th17-associated inflammatory disorders. (Images were created with BioRender).
Collapse
Affiliation(s)
| | - Guangqing Lu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Richard Gill
- Genentech, Inc, South San Francisco, CA, United States
| | - Dun Li
- Genentech, Inc, South San Francisco, CA, United States
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Bio2Q, Keio University, Tokyo, Japan
| | - Saiyu Hang
- Genentech, Inc, South San Francisco, CA, United States
| |
Collapse
|
17
|
Rappold R, Kalogeropoulos K, La Regina G, auf dem Keller U, Slack E, Vogel V. Relaxation of mucosal fibronectin fibers in late gut inflammation following neutrophil infiltration in mice. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:4. [PMID: 39917413 PMCID: PMC11794144 DOI: 10.1038/s44341-024-00006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/13/2024] [Indexed: 02/09/2025]
Abstract
The continuously remodeled extracellular matrix (ECM) plays a pivotal role in gastrointestinal health and disease, yet its precise functions remain elusive. In this study, we employed laser capture microdissection combined with low-input proteomics to investigate ECM remodeling during Salmonella-driven inflammation. To complement this, we probed how fibronectin fiber tension is altered using a mechanosensitive peptide probe. While fibronectin fibers in healthy intestinal tissue are typically stretched, many lose their tension in intestinal smooth muscles only hours after infection, despite the absence of bacteria in that area. In contrast, within the mucosa, where Salmonella is present starting 12 h post infection, fibronectin fiber relaxation occurred exclusively during late-stage infection at 72 h and was localized to already existing clusters of infiltrated neutrophils. Using N-terminomics, we identified three new cleavage sites in fibronectin in the inflamed cecum. The unique, tissue layer-specific changes in the molecular compositions and ECM fiber tension revealed herein might trigger new therapeutic strategies to fight acute intestinal inflammation.
Collapse
Affiliation(s)
- Ronja Rappold
- Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Gianna La Regina
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Ulrich auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emma Slack
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| | - Viola Vogel
- Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| |
Collapse
|
18
|
Villablanca EJ. Organismal mucosal immunology: A perspective through the eyes of game theory. Mucosal Immunol 2025; 18:16-25. [PMID: 39672543 DOI: 10.1016/j.mucimm.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
In complex organisms, functional units must interact cohesively to maintain homeostasis, especially within mucosal barriers that house diverse, specialized cell exposed to constant environmental challenges. Understanding how homeostasis at mucosal barriers is maintained and how its disruption can lead to autoimmune diseases or cancer, requires a holistic view. Although omics approaches and systems immunology have become powerful tools, they are not without limitations; interpretations may reflect researchers' assumptions, even if other explanations exist. In this perspective, I propose that applying game theory concepts to mucosal immunology could help interpret complex data, offering fresh perspectives and supporting the exploration of alternative scenarios. By framing the mucosal immune system as a network of strategic interactions with multiple possible outcomes, game theory, which analyzes strategic interactions and decision-making processes, could illuminate novel cell types and functions, cell interactions, and responses to pathogens and commensals, leading to a more comprehensive understanding of immune homeostasis and diseases. In addition, game theory might encourage researchers to consider a broader range of possibilities, reduce the risk of myopic thinking, and ultimately enable a more refined and comprehensive understanding of the complexity of the immune system at mucosal barriers. This perspective aims to introduce game theory as a complementary framework for mucosal immunologists, encouraging them to incorporate these concepts into data interpretation and system modeling.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
19
|
Deng WQ, Ye ZH, Tang Z, Zhang XL, Lu JJ. Beyond cancer: The potential application of CD47-based therapy in non-cancer diseases. Acta Pharm Sin B 2025; 15:757-791. [PMID: 40177549 PMCID: PMC11959971 DOI: 10.1016/j.apsb.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 11/22/2024] [Indexed: 04/05/2025] Open
Abstract
CD47 is an immune checkpoint widely regarded as a 'don't eat me' signal. CD47-based anti-cancer therapy has received considerable attention, with a significant number of clinical trials conducted. While anti-cancer therapies based on CD47 remain a focal point of interest among researchers, it is noteworthy that an increasing number of studies have found that CD47-based therapy ameliorated the pathological status of non-cancer diseases. This review aims to provide an overview of the recent progress in comprehending the role of CD47-based therapy in non-cancer diseases, including diseases of the circulatory system, nervous system, digestive system, and so on. Furthermore, we sought to delineate the promising mechanisms of CD47-based therapy in treating non-cancer diseases. Our findings suggest that CD47-based agents may exert their effect by regulating phagocytosis, regulating T cells, dendritic cells, and neutrophils, and regulating the secretion of cytokines and chemokines. Additionally, we put forward the orientation of further research to bring to light the potential of CD47 and its binding partners as a target in non-cancer diseases.
Collapse
Affiliation(s)
- Wei-Qing Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Zi-Han Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Zhenghai Tang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao 999078, China
| | - Xiao-Lei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao 999078, China
| |
Collapse
|
20
|
He W, Yan L, Hu D, Hao J, Liou Y, Luo G. Neutrophil heterogeneity and plasticity: unveiling the multifaceted roles in health and disease. MedComm (Beijing) 2025; 6:e70063. [PMID: 39845896 PMCID: PMC11751288 DOI: 10.1002/mco2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues. This review provides a comprehensive overview of the multidimensional landscape of neutrophil heterogeneity, discussing the various axes along which diversity manifests, including maturation state, density, surface marker expression, and functional polarization. We highlight the molecular mechanisms underpinning neutrophil plasticity, focusing on the complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications that shape neutrophil responses. Furthermore, we explore the implications of neutrophil heterogeneity and plasticity in physiological processes and pathological conditions, including host defense, inflammation, tissue repair, and cancer. By integrating insights from cutting-edge research, this review aims to provide a framework for understanding the multifaceted roles of neutrophils and their potential as therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| |
Collapse
|
21
|
Ismail EN, Zakuan N, Othman Z, Vidyadaran S, Mohammad H, Ishak R. Polyphenols mitigating inflammatory mechanisms in inflammatory bowel disease (IBD): focus on the NF-ƙB and JAK/STAT pathways. Inflammopharmacology 2025; 33:759-765. [PMID: 39636381 PMCID: PMC11842400 DOI: 10.1007/s10787-024-01607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
The term "inflammatory bowel disease" (IBD) refers to a group of chronic inflammatory gastrointestinal disorders, which include ulcerative colitis and Crohn's disease. The necessity for alternative therapeutic approaches is underscored by the fact that although present medicines are successful, they frequently result in considerable adverse effects. Naturally occurring substances included in fruits and vegetables called polyphenols have been shown to have the capacity to control important inflammatory pathways including NF-κB and JAK/STAT, which are essential for the pathophysiology of IBD. The processes by which polyphenols, such as curcumin, EGCG, resveratrol, and quercetin, reduce inflammation are examined in this article. Polyphenols may have therapeutic advantages by blocking the synthesis of cytokines and the activation of immune cells by targeting these pathways. Preclinical study indicates a reduction in intestinal inflammation, which is encouraging. However, more clinical research is needed to determine the clinical relevance of polyphenols in the therapy of IBD, especially with regard to their long-term safety and bioavailability.
Collapse
Affiliation(s)
- Elysha Nur Ismail
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Noraina Zakuan
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zulkefley Othman
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sharmili Vidyadaran
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hussin Mohammad
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Setia Alam, Selangor, Malaysia
| | - Reezal Ishak
- Universiti Kuala Lumpur - Institute of Medical Science Technology (UniKL MESTECH), Kajang, Selangor, Malaysia.
| |
Collapse
|
22
|
Eislmayr KD, Langner C, Liu FL, Yuvaraj S, Babirye JP, Roncaioli JL, Vickery JM, Barton GM, Lesser CF, Vance RE. Macrophages orchestrate elimination of Shigella from the intestinal epithelial cell niche via TLR-induced IL-12 and IFN-γ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633976. [PMID: 39896533 PMCID: PMC11785076 DOI: 10.1101/2025.01.20.633976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Bacteria of the genus Shigella replicate in intestinal epithelial cells and cause shigellosis, a severe diarrheal disease that resolves spontaneously in most healthy individuals. During shigellosis, neutrophils are abundantly recruited to the gut, and have long been thought to be central to Shigella control and pathogenesis. However, how shigellosis resolves remains poorly understood due to the longstanding lack of a tractable and physiological animal model. Here, using our newly developed Nlrc4 -/- Casp11 -/- mouse model of shigellosis, we unexpectedly find no major role for neutrophils in limiting Shigella or in disease pathogenesis. Instead, we uncover an essential role for macrophages in the host control of Shigella . Macrophages respond to Shigella via TLRs to produce IL-12, which then induces IFN-γ, a cytokine that is essential to control Shigella replication in intestinal epithelial cells. Collectively, our findings reshape our understanding of the innate immune response to Shigella .
Collapse
|
23
|
Chen T, Liu J, Hang R, Chen Q, Wang D. Neutrophils: From Inflammatory Bowel Disease to Colitis-Associated Colorectal Cancer. J Inflamm Res 2025; 18:925-947. [PMID: 39871958 PMCID: PMC11770381 DOI: 10.2147/jir.s497701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a non-specific inflammatory disease of digestive tract, primarily manifesting as ulcerative colitis (UC) and Crohn's disease (CD). The precise etiology of IBD remains elusive. The interplay of genetic factors, environmental influences, and intestinal microbiota contributes to the establishment of an uncontrolled immune environment within the intestine, which can progressively lead to atypical hyperplasia and ultimately to malignancy over a long period. This colorectal malignant tumor that arises from chronic IBD is referred to as colitis-associated colorectal cancer (CAC). Dysregulation in the quantity and functionality of neutrophils plays a significant role in the onset, progression, and recurrence of IBD, as well as in the transition from IBD to CAC. Neutrophils affect the pathophysiology of IBD through various mechanisms, including the production of reactive oxygen species (ROS), degranulation, the release of inflammatory mediators and chemokines, and the formation of neutrophil extracellular traps (NETs). These processes can induce DNA mutations, thereby facilitating the development of colon cancer. Given the incomplete understanding of the disease mechanisms underlying IBD and CAC, effective treatment and prevention strategies remain challenging. Consequently, a comprehensive review of the functional roles of neutrophils in IBD and CAC is essential for advancing our understanding of IBD pathogenesis and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Tianyi Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jiachen Liu
- Radiology Department, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ruyi Hang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Qian Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
- Oncology Department of Qianjiang Center Hospital, Chongqing University, Chongqing, People’s Republic of China
| |
Collapse
|
24
|
Hopke A, Viens AL, Alexander NJ, Mun SJ, Mansour MK, Irimia D. Spleen tyrosine kinase inhibitors disrupt human neutrophil swarming and antifungal functions. Microbiol Spectr 2025; 13:e0254921. [PMID: 39601545 PMCID: PMC11705959 DOI: 10.1128/spectrum.02549-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Neutrophils communicate with one another and amplify their destructive power through swarming, a collective process that synchronizes the activities of multiple neutrophils against one target. The sequence of activities contributing to swarming against clusters of fungi has been recently uncovered. However, the molecular signals controlling the neutrophils' activities during the swarming process are just emerging. Here, we report that spleen tyrosine kinase (SYK) inhibitors severely impair neutrophil swarming responses, resulting in the complete loss of fungal restriction. These findings are enabled by a microscale platform to probe the biology of human neutrophils swarming against uniformly sized clusters of growing Candida albicans, a representative opportunistic fungal pathogen. We take advantage of the ability to monitor large arrays of swarms and quantify the effect of multiple chemical inhibitors on different phases of human neutrophil swarming. We show that inhibitors that interfere with PI3Ky signaling disrupt the regulation of the initiation of swarming, while the activation of JNK signaling is essential for the activation of biochemical antifungal functions. Furthermore, we reveal that granulocyte colony-stimulating factors (GCSF and GM-CSF) can partially rescue the antifungal functions of neutrophils exposed to SYK inhibitors. These findings advance our understanding of neutrophil swarming biology in humans and lay the foundation for novel therapeutics that may restore neutrophil function during immunosuppression. IMPORTANCE Neutrophils can amplify their destructive power through swarming, a crucial process against large targets that individual neutrophils cannot destroy. However, the molecular mechanisms controlling this process are just emerging. Here, we leveraged microscale tools to probe the biology of swarming against fungi. We used multiple chemical inhibitors and mapped SYK, PI3Ky, and JNK signaling roles during human neutrophil swarming against fungal clusters of Candida albicans. We also found that treating human neutrophils with GCSF and GM-CSF rescues some neutrophil antifungal function during SYK inhibition. These findings advance our understanding of swarming biology in humans while laying the foundation for developing therapeutics that enhance neutrophil function during immunosuppression.
Collapse
Affiliation(s)
- Alex Hopke
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Adam L. Viens
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Natalie J. Alexander
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Seok Joon Mun
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K. Mansour
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Swaminathan A, Borichevsky GM, Frampton CM, Day AS, Hampton MB, Kettle AJ, Gearry RB. Comparison of Fecal Calprotectin and Myeloperoxidase in Predicting Outcomes in Inflammatory Bowel Disease. Inflamm Bowel Dis 2025; 31:28-36. [PMID: 38417068 PMCID: PMC11700882 DOI: 10.1093/ibd/izae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND Biomarkers have been proposed as surrogate treatment targets for the management of inflammatory bowel disease (IBD); however, their relationship with IBD-related complications remains unclear. This study investigated the utility of neutrophil biomarkers fecal calprotectin (fCal) and fecal myeloperoxidase (fMPO) in predicting a complicated IBD course. METHODS Participants with IBD were followed for 24 months to assess for a complicated IBD course (incident corticosteroid use, medication escalation for clinical disease relapse, IBD-related hospitalizations/surgeries). Clinically active IBD was defined as Harvey-Bradshaw index >4 for Crohn's disease (CD) and simple clinical colitis activity index >5 for ulcerative colitis (UC). Area under the receiver-operating-characteristics curves (AUROC) and multivariable logistic regression assessed the performance of baseline symptom indices, fCal, and fMPO in predicting a complicated disease IBD course at 24 months. RESULTS One hundred and seventy-one participants were included (CD, n = 99; female, n = 90; median disease duration 13 years [interquartile range, 5-22]). Baseline fCal (250 μg/g; AUROC = 0.77; 95% confidence interval [CI], 0.69-0.84) and fMPO (12 μg/g; AUROC = 0.77; 95% CI, 0.70-0.84) predicted a complicated IBD course. Fecal calprotectin (adjusted OR = 7.85; 95% CI, 3.38-18.26) and fMPO (adjusted OR = 4.43; 95% CI, 2.03-9.64) were associated with this end point after adjustment for other baseline variables including clinical disease activity. C-reactive protein (CRP) was inferior to fecal biomarkers and clinical symptoms (pdifference < .05) at predicting a complicated IBD course. A combination of baseline CRP, fCal/fMPO, and clinical symptoms provided the greatest precision at identifying a complicated IBD course. CONCLUSIONS Fecal biomarkers are independent predictors of IBD-related outcomes and are useful adjuncts to routine clinical care.
Collapse
Affiliation(s)
- A Swaminathan
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Department of Gastroenterology, Christchurch Hospital, New Zealand
| | - G M Borichevsky
- Mātai Hāora, Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - C M Frampton
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - A S Day
- Department of Paediatrics, University of Otago Christchurch, Christchurch, New Zealand
| | - M B Hampton
- Mātai Hāora, Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - A J Kettle
- Mātai Hāora, Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - R B Gearry
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Department of Gastroenterology, Christchurch Hospital, New Zealand
| |
Collapse
|
26
|
de Souza KL, Dias CP, Callegari MA, Friderichs A, Paes AOS, de Carvalho RH, da Silva CA. Performance and intestinal health of piglets in the nursery phase subjected to diets with condensed black wattle (Acacia mearnsii) tannin. Anim Biosci 2025; 38:117-130. [PMID: 39210818 PMCID: PMC11725734 DOI: 10.5713/ab.24.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/12/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the use of condensed tannin from black acacia (Acacia mearnsii) as a substitute additive for zinc oxide and growth-promoting antibiotics on the performance, digestibility, and intestinal health of piglets in the nursery phase. METHODS A total of 200 PIC piglets that were 22 days old and weighed 6.0±0.9 kg were subjected to four treatments in the nursery phase (22 to 64 days of age): CONTR (control diet); ENR+ZnO (control diet + 10 mg/kg of enramycin + 2,500 mg/kg of zinc oxide during the first 21 days); BUT (control diet + 900 mg/kg of sodium butyrate) and TAN (control diet + 2,000 mg/kg of condensed tannin). The experimental design was a randomized block with 4 treatments and 10 replicates, with a pen of five animals each as the experimental unit. The zootechnical performance, diarrhea index score, dietary digestibility and metagenomics of the deep rectum microbiota were evaluated. RESULTS The TAN had greater weight gain in the nursery phase and final weight (p<0.05) than the CONTR (394 vs 360 g/d, and 22.6 vs 21.1 kg, respectively), with these values being intermediate for the ENR+ZnO and BUT (365 and 382 g/d, and 21.3 and 22.1 kg, respectively). There was no difference between treatments for semi-liquid diarrhea (score 2), but CONTR had more cases of severe diarrhea (score 3; p<0.05) than ENR+ZnO, BUT and TAN, with 42, 18, 29, and 21 cases, respectively. The treatments had no impact on rare taxa or the relative abundances of taxonomic groups (uniformity), but the use of TAN promoted an increase in the abundances of Brevibacillus spp. and Enterococcus spp. compared to the other treatments (p<0.05). CONCLUSION The use of condensed tannin from black wattle as a performance-enhancing additive was effective, with effects on performance and intestinal health, demonstrating its potential as a substitute for zinc oxide and enramycin in the diets of piglets in nursery phase.
Collapse
Affiliation(s)
- Kelly Lais de Souza
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina, PR 86057970,
Brazil
| | | | | | | | | | - Rafael Humberto de Carvalho
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina, PR 86057970,
Brazil
- Akei Animal Research, Fartura, SP 18870970,
Brazil
| | - Caio Abércio da Silva
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina, PR 86057970,
Brazil
| |
Collapse
|
27
|
Majster M, Almer S, Malmqvist S, Johannsen A, Lira‐Junior R, Boström EA. Salivary calprotectin and neutrophils in inflammatory bowel disease in relation to oral diseases. Oral Dis 2025; 31:286-297. [PMID: 38852161 PMCID: PMC11808171 DOI: 10.1111/odi.15036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/23/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE Calprotectin is elevated in saliva from inflammatory bowel disease (IBD) patients, but it is also affected by oral disease. We assessed the salivary concentration of calprotectin in IBD patients, in relation to intestinal and oral diseases. Furthermore, we investigated the phenotype of salivary neutrophils from IBD patients, and their ability to secrete calprotectin. MATERIALS AND METHODS Thirty IBD patients and 26 controls were orally examined and sampled for stimulated saliva. Twenty-five IBD patients provided fresh fecal samples. Calprotectin concentrations in saliva and feces were determined by an enzyme-linked immunosorbent assay. Expression of CD11b, CD15, and CD16 on oral neutrophils was assessed by flow cytometry. Secretion of calprotectin was evaluated in cultured oral neutrophils. RESULTS Calprotectin was significantly elevated in saliva of IBD patients compared to controls, particularly in Crohn's disease, irrespective of caries or periodontitis. Salivary calprotectin did not correlate to fecal calprotectin. CD11b expression was significantly reduced in salivary neutrophils from IBD patients. Salivary neutrophils from IBD patients tended to secrete more calprotectin than controls. CONCLUSIONS Salivary calprotectin is elevated in IBD regardless of oral diseases. Furthermore, salivary neutrophils secrete calprotectin, and display lower CD11b expression in IBD.
Collapse
Affiliation(s)
- Mirjam Majster
- Division of Oral Diagnostics and Rehabilitation, Department of Dental MedicineKarolinska InstitutetStockholmSweden
| | - Sven Almer
- Department of Medicine SolnaKarolinska InstitutetStockholmSweden
- Division of Gastroenterology, Department of Gastroenterology, Dermatology and RheumatologyKarolinska University HospitalStockholmSweden
| | - Sebastian Malmqvist
- Division of Oral Diseases, Department of Dental MedicineKarolinska InstitutetStockholmSweden
| | - Annsofi Johannsen
- Division of Oral Diseases, Department of Dental MedicineKarolinska InstitutetStockholmSweden
| | - Ronaldo Lira‐Junior
- Division of Oral Diagnostics and Rehabilitation, Department of Dental MedicineKarolinska InstitutetStockholmSweden
| | - Elisabeth Almer Boström
- Division of Oral Diagnostics and Rehabilitation, Department of Dental MedicineKarolinska InstitutetStockholmSweden
- Department of Orofacial MedicineFolktandvården Stockholms Län ABStockholmSweden
| |
Collapse
|
28
|
Van Doren VE, Ackerley CG, Arthur RA, Murray PM, Smith SA, Hu YJ, Kelley CF. Rectal mucosal inflammation, microbiome, and wound healing in men who have sex with men who engage in receptive anal intercourse. Sci Rep 2024; 14:31598. [PMID: 39738273 PMCID: PMC11685717 DOI: 10.1038/s41598-024-80074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/14/2024] [Indexed: 01/01/2025] Open
Abstract
Mucosal injury is common during consensual intercourse and induces an inflammatory response that could contribute to pathogen transmission including HIV. Here, we compared mucosal immune and microbiome responses to experimentally induced mucosal injury between men who have sex with men engaging in receptive anal intercourse (MSM-RAI) and men who do not engage in RAI (controls), all without HIV. Rectal mucosal secretions were collected from adult MSM-RAI (n = 19) and controls (n = 6) via anoscopy before and up to eight days after experimentally induced injury. Mucosal healing was evaluated by repeated injury surface area measurements with digital imaging. MSM-RAI demonstrated overall significantly higher concentrations of pro-inflammatory cytokines and a distinct rectal microbiome compared with controls. Wound healing was numerically faster in MSM-RAI but did not meet statistical significance (p = 0.09). Different cytokine injury response patterns were observed between MSM-RAI and controls; however, IL-6 and IP-10 were important mediators in both groups. Microbial guilds, particularly from the Lachnospiraceae and Prevotellaceae families, were associated with rectal mucosal inflammation. This work is the first experimental study of rectal mucosal injury and the immune environment in healthy humans and provides a more nuanced understanding of rectal mucosal inflammation after injury, which can inform our understanding of HIV transmission.
Collapse
Affiliation(s)
- Vanessa E Van Doren
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 500 Irvin Court #200, 30030, Decatur, Georgia, United States.
| | - Cassie G Ackerley
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 500 Irvin Court #200, 30030, Decatur, Georgia, United States
| | - Robert A Arthur
- Emory Integrated Computational Core, Emory University, Woodruff Memorial Research Building, Suite 7110, 101 Woodruff Circle, 30322, Atlanta, Georgia, United States
| | - Phillip M Murray
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 500 Irvin Court #200, 30030, Decatur, Georgia, United States
| | - S Abigail Smith
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 500 Irvin Court #200, 30030, Decatur, Georgia, United States
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road, 30322, Atlanta, Georgia, United States
| | - Colleen F Kelley
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 500 Irvin Court #200, 30030, Decatur, Georgia, United States
- Grady Health System, 80 Jesse Hill Jr Drive, 30303, Atlanta, Georgia, United States
| |
Collapse
|
29
|
Martin E, Sarkan K, Viall A, Hostetter S, Epstein K. Clinicopathologic Parameters of Peritoneal Fluid as Predictors of Gastrointestinal Lesions, Complications, and Outcomes in Equine Colic Patients: A Retrospective Study. Animals (Basel) 2024; 15:12. [PMID: 39794955 PMCID: PMC11718766 DOI: 10.3390/ani15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
Neutrophil characteristics in peritoneal fluid (PF) may aid in diagnosing and treating specific colic lesions and complications. The objective of this retrospective study was to evaluate quantitative PF leukocyte values, as well as PF total protein (TP) and lactate, for associations with diagnosis, morbidity, and mortality in horses with acute colic. Three hundred and forty-two horses that presented to one institution between January 2010-2020 for the evaluation of acute colic were included. The PF total nucleated cell count (TNCC), % and total neutrophil counts, total protein (TP), and lactate were analyzed for associations with lesion location and type, the development of postoperative reflux (POR) or systemic inflammatory response syndrome (SIRS), and survival to discharge via Kruskal-Wallis testing. Horses with strangulating lesions had higher PF % neutrophils, neutrophil count, and TNCC compared to non-strangulating lesions. The development of SIRS or POR was associated with higher PF TNCC, total neutrophil count, TP, and lactate. Horses that did not survive to discharge had increased PF % neutrophils, neutrophil count, TP, lactate, and ratio of PF-to-systemic TP than those that survived via univariable analysis. Identified associations between increased PF neutrophils and the development of POR and SIRS warrant further investigation to better understand their role in the pathogenesis of equine colic and potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Emily Martin
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27606, USA;
| | - Kate Sarkan
- Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA;
| | - Austin Viall
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA 95616, USA;
| | - Shannon Hostetter
- Department of Pathology, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA;
| | - Kira Epstein
- Department of Large Animal Medicine, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| |
Collapse
|
30
|
Lawrence ALE, Berger RP, Hill DR, Huang S, Yadagiri VK, Bons B, Fields C, Knight JS, Wobus CE, Spence JR, Young VB, Abuaita BH, O'Riordan MX. Neutrophil prime unique transcriptional responses in intestinal organoids during infection with nontyphoidal Salmonella enterica serovars. mSphere 2024; 9:e0069324. [PMID: 39565098 DOI: 10.1128/msphere.00693-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 11/21/2024] Open
Abstract
Nontyphoidal strains of Salmonella enterica are a major cause of foodborne illnesses, and infection with these bacteria results in inflammatory gastroenteritis. Polymorphonuclear leukocytes (PMNs), also known as neutrophils, are a dominant immune cell type found at the site of infection in Salmonella-infected individuals, but how they regulate infection outcome is not well understood. Here, we used a co-culture model of primary human PMNs and human intestinal organoids to probe the role of PMNs during infection with two of the most prevalent Salmonella serovars: Salmonella enterica serovar Enteritidis and Typhimurium. Using a transcriptomics approach, we identified a dominant role for PMNs in mounting differential immune responses including production of pro-inflammatory cytokines, chemokines, and antimicrobial peptides. We also identified specific gene sets that were induced by PMNs in response to Enteritidis or Typhimurium infection. By comparing host responses to these serovars, we uncovered differential regulation of host metabolic pathways particularly induction of cholesterol biosynthetic pathways during Typhimurium infection and suppression of RNA metabolism during Enteritidis infection. Together, these findings provide insight into the role of human PMNs in modulating different host responses to pathogens that cause similar disease in humans.IMPORTANCENontyphoidal serovars of Salmonella enterica are known to induce robust recruitment of polymorphonuclear leukocytes (PMNs) in the gut during early stages of infection, but the specific role of PMNs in regulating infection outcome of different serovars is poorly understood. Due to differences in human infection progression compared to small animal models, characterizing the role of PMNs during infection has been challenging. Here, we used a co-culture model of human intestinal organoids with human primary PMNs to study the role of PMNs during infection of human intestinal epithelium. Using a transcriptomics approach, we define PMN-dependent reprogramming of the host response to Salmonella, establishing a clear role in amplifying pro-inflammatory gene expression. Additionally, the host response driven by PMNs differed between two similar nontyphoidal Salmonella serovars. These findings highlight the importance of building more physiological infection models to replicate human infection conditions to study host responses specific to individual pathogens.
Collapse
Affiliation(s)
- Anna-Lisa E Lawrence
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ryan P Berger
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David R Hill
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sha Huang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Veda K Yadagiri
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brooke Bons
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Courtney Fields
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jason S Knight
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Internal Medicine/Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Basel H Abuaita
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
31
|
Zhang ZX, Peng J, Ding WW. Lipocalin-2 and intestinal diseases. World J Gastroenterol 2024; 30:4864-4879. [PMID: 39679305 PMCID: PMC11612708 DOI: 10.3748/wjg.v30.i46.4864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Dysfunction of the intestinal barrier is a prevalent phenomenon observed across a spectrum of diseases, encompassing conditions such as mesenteric artery dissection, inflammatory bowel disease, cirrhosis, and sepsis. In these pathological states, the integrity of the intestinal barrier, which normally serves to regulate the selective passage of substances between the gut lumen and the bloodstream, becomes compromised. This compromised barrier function can lead to a range of adverse consequences, including increased permeability to harmful substances, the translocation of bacteria and their products into systemic circulation, and heightened inflammatory responses within the gut and beyond. Understanding the mechanisms underlying intestinal barrier dysfunction in these diverse disease contexts is crucial for the development of targeted therapeutic interventions aimed at restoring barrier integrity and ameliorating disease progression. Lipocalin-2 (LCN2) expression is significantly upregulated during episodes of intestinal inflammation, making it a pivotal indicator for gauging the extent of such inflammatory processes. Notably, however, LCN2 derived from distinct cellular sources, whether intestinal epithelial cells or immune cells, exhibits notably divergent functional characteristics. Furthermore, the multifaceted nature of LCN2 is underscored by its varying roles across different diseases, sometimes even demonstrating contradictory effects.
Collapse
Affiliation(s)
- Zhong-Xu Zhang
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jian Peng
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wei-Wei Ding
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
32
|
Sands BE, D’Haens G, Clemow DB, Irving PM, Johns JT, Hunter Gibble T, Abreu MT, Lee S, Hisamatsu T, Kobayashi T, Dubinsky MC, Vermeire S, Siegel CA, Peyrin-Biroulet L, Moses RE, Milata J, Arora V, Panaccione R, Dignass A. Two-Year Efficacy and Safety of Mirikizumab Following 104 Weeks of Continuous Treatment for Ulcerative Colitis: Results From the LUCENT-3 Open-Label Extension Study. Inflamm Bowel Dis 2024; 30:2245-2258. [PMID: 38459910 PMCID: PMC11630283 DOI: 10.1093/ibd/izae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 03/11/2024]
Abstract
BACKGROUND Mirikizumab, a p19-directed interleukin-23 monoclonal antibody, is efficacious in inducing clinical remission at week 12 (W12) and maintaining clinical remission at W52 in patients with moderately to severely active ulcerative colitis. Results are presented from the open-label extension study through W104. METHODS Clinical, symptomatic, quality-of-life, and adverse event outcomes are reported for mirikizumab induction responders and extended induction responders, including biologic-failed patients, who entered LUCENT-3, with data shown for W52 maintenance responders or remitters. Discontinuations or missing data were handled by nonresponder imputation (NRI), modified NRI (mNRI), and observed case (OC). RESULTS Among W52 mirikizumab responders, clinical response at W104 was 74.5%, 87.2%, and 96.7% and clinical remission was 54.0%, 62.8%, and 70.1% for NRI, mNRI, and OC, respectively. Among W52 mirikizumab remitters, clinical response at W104 was 76.6%, 89.0%, and 98.3% and clinical remission was 65.6%, 76.1%, and 84.2%. Using mNRI, remission rates at W104 for W52 clinical remitters were 74.7% corticosteroid-free, 79.5% endoscopic, 63.9% histologic-endoscopic mucosal remission, 85.9% symptomatic, 59.8% bowel urgency, 80.5% Inflammatory Bowel Disease Questionnaire (using NRI), 71.2% histologic-endoscopic mucosal improvement, and 77.5% bowel urgency improvement. Previous biologic-failed vs not-biologic-failed patient data were generally similar. Extended induction mNRI clinical response was 81.9%. Serious adverse events were reported in 5.2% of patients; 2.8% discontinued treatment due to adverse events. CONCLUSIONS Endoscopic, histologic, symptomatic, and quality-of-life outcomes support the long-term benefit of mirikizumab treatment up to 104 weeks in patients with ulcerative colitis, including biologic-failed patients, with no new safety concerns.
Collapse
Affiliation(s)
- Bruce E Sands
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Geert D’Haens
- Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Peter M Irving
- Guy’s and St. Thomas’ NHS Foundation Trust, King’s CollegeLondon, London, United Kingdom
| | | | | | - Maria T Abreu
- UHealth Crohn’s and Colitis Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Scott Lee
- Digestive Health Center, University of Washington Medical Center, Seattle, WA, USA
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato Institute Hospital, Kitasato University, Tokyo, Japan
| | | | - Severine Vermeire
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | | | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, INFINY Institute, FHU-CURE, French Institute of Health and Medical Research Nutrition–Genetics and Exposure to Environmental Risks Research Unit, Nancy University Hospital, Nancy, France
- Paris IBD Center, Groupe Hospitalier Privé Ambroise Paré–Hartmann, Neuilly-sur-Seine, France
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC, Canada
| | | | - Joe Milata
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Vipin Arora
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Remo Panaccione
- Inflammatory Bowel Disease Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Axel Dignass
- Department of Medicine I, Agaplesion Markus Krankenhaus, Frankfurt, Germany
| |
Collapse
|
33
|
Zhao W, Li S, Li Q, Li Q, Zheng Y, Lu H. Mendelian randomization reveals predictive, preventive, and personalized insights into inflammatory bowel disease: the role of gut microbiome and circulating inflammatory proteins. EPMA J 2024; 15:693-709. [PMID: 39635016 PMCID: PMC11612091 DOI: 10.1007/s13167-024-00384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Background A chronic illness with increasing global frequency, inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), profoundly affects patients' quality of life and healthcare systems. IBD pathogenesis consists of changes in gut microbiota, immune system dysregulation, and genetic predisposition. Although emerging data suggests that gut microbiota and circulating inflammatory proteins play critical roles in IBD, their utility as biomarkers for predictive, preventive, and personalized medicine (PPPM) remains incompletely understood. Working hypothesis and methods We hypothesized that specific gut microbiota and inflammatory proteins causally influence IBD risk and mediate pathways between gut microbiota and IBD development. We employed Mendelian randomization (MR) using genome-wide association studies (GWAS) to explore these causal relationships, including further analyses on UC and CD subtypes. Results We identified eight gut microbiota species linked to IBD, with four protective and four increasing risk. Nine inflammatory proteins were also associated, six increasing risk and three protective. MMP-10 and IL-10Rα mediated the effects of Clostridiaceae1 on IBD risk. For UC, five microbiota species were protective, five were risk factors, and two proteins increased risk while three were protective. IL-10Rα mediated the effects of Clostridiaceae1 on UC risk. For CD, eight microbiota species were protective, four increased risk, and nine proteins were implicated. However, no mediation pathways were supported by multivariable MR. Conclusions This study highlights specific gut microbiota and inflammatory proteins that may serve as therapeutic targets for PPPM in IBD, UC, and CD. These findings offer new insights into IBD pathogenesis and suggest potential avenues for improved prevention, early detection, and personalized treatment strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00384-2.
Collapse
Affiliation(s)
- Wuqing Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Shixiao Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qianqian Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qiang Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hong Lu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
34
|
Wu Y, Shen J. Unraveling the intricacies of neutrophil extracellular traps in inflammatory bowel disease: Pathways, biomarkers, and promising therapies. Cytokine Growth Factor Rev 2024; 80:156-167. [PMID: 39438227 DOI: 10.1016/j.cytogfr.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
The development of inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, involves various factors and is characterized by persistent inflammation of the mucosal lining. However, the role of neutrophils in this process remains controversial. Neutrophil extracellular traps (NETs), which consist of chromatin, antimicrobial proteins, and oxidative enzymes, are released by neutrophils to trap pathogens. They are also involved in various immune-mediated and vascular diseases. NETs act as a vital defense mechanisms at the gut-mucosal interface and are frequently exposed to bacterial, viral, and fungal threats. However, they can also contribute to inflammation and worsen imbalances in the gut bacteria. Recent studies have suggested that NETs have a significant impact on IBD development. Previous studies have shown increased levels of NETs in tissue and blood samples from patients with IBD, as well as in experimental colitis mouse models. Therefore, this review discusses how NETs are formed and their role in the pathophysiology of IBD. It discusses how NETs may lead to tissue damage and contribute to IBD-associated complications. Moreover, non-invasive biomarkers are needed to replace invasive procedures such as endoscopy to better evaluate the disease status. Given the crucial role of NETs in IBD progression, this review focuses on potential NET biomarkers that can help predict the evolution of IBD. Furthermore, this review identifies potential therapeutic targets for regulating NET production, which could expand the range of available treatment options for IBD.
Collapse
Affiliation(s)
- Yilin Wu
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai 200127, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China; Shanghai Institute of Digestive Disease, No.160 PuJian Road, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai 200127, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China; Shanghai Institute of Digestive Disease, No.160 PuJian Road, China.
| |
Collapse
|
35
|
Holm M, Stepanauskaitė L, Bäckström A, Birgersson M, Socciarelli F, Archer A, Stadler C, Williams C. Spatial profiling of the mouse colonic immune landscape associated with colitis and sex. Commun Biol 2024; 7:1595. [PMID: 39613949 DOI: 10.1038/s42003-024-07276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
Inflammatory intestinal conditions are a major disease burden. Numerous factors shape the distribution of immune cells in the colon, but a spatial characterization of the homeostatic and inflamed colonic immune microenvironment is lacking. Here, we use the COMET platform for multiplex immunofluorescence to profile the infiltration of nine immune cell populations in mice of both sexes (N = 16) with full spatial context, including in regions of squamous metaplasia. Unsupervised clustering, neighborhood analysis, and manual quantification along the proximal-distal axis characterized the colonic immune landscape, quantified cell-cell interactions, and revealed sex differences. The distal colon was the most affected region during colitis, which was pronounced in males, who exhibited a sex-dependent increase of B cells and reduction of M2-like macrophages. Regions of squamous metaplasia exhibited strong infiltration of numerous immune cell populations, especially in males. Females exhibited more helper T cells and neutrophils at homeostasis and increased M2-like macrophage infiltration in the mid-colon upon colitis. Sex differences were corroborated by plasma cytokine profiles. Our results provide a foundation for future studies of inflammatory intestinal conditions.
Collapse
Affiliation(s)
- Matilda Holm
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Lina Stepanauskaitė
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Anna Bäckström
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Madeleine Birgersson
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Fabio Socciarelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Amena Archer
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Charlotte Stadler
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Cecilia Williams
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
36
|
Chen B, Wu Y, Wu H, Gao J, Meng X, Chen H. IBD functions as a double-edged sword for food allergy in BALB/c mice model. Immunology 2024; 173:394-407. [PMID: 39005140 DOI: 10.1111/imm.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Inflammatory bowel disease (IBD) and food allergy (FA) increase in tandem, but the potential impact of IBD on FA remains unclear. We sought to determine the role of IBD on FA. We first assessed the changes of FA-related risk factors in dextran sulphate sodium salt (DSS) induced colitis mice model. Then, we evaluated the role of IBD on FA in mice. FA responses were determined using a clinical allergy score, body temperature change, serum antibody levels, cytokines level and mouse mast cell protease 1 (MMCP-1) concentration. Accumulation of regulatory T cells was tested using flow cytometry. Intestinal changes were identified by histology, immunohistochemistry, gene expression and gut microbial community structure. In DSS-induced colitis mice model, we found the intestinal damage, colonic neutrophil infiltration, and downregulation of splenic Th2 cytokines and Tregs in mesenteric lymph nodes (MLN). Moreover, we also found that IBD can alleviate the FA symptoms and lead to the significant downregulation of Th2 cytokines, serum IgE and MMCP-1. However, IBD exacerbates intestinal injury and promotes the gene expression levels of IL-33 and IL-5 in the small intestine, damages the intestinal tissue structure and aggravates intestinal dysbiosis in FA. IBD functions as a double-edged sword in FA. From the perspective of clinical symptoms and humoral immune responses, IBD can reduce FA response by downregulating Th2 cytokines. But from the perspective of the intestinal immune system, IBD potentially disrupts intestinal tolerance to food antigens by damaging intestinal tissue structure and causing intestinal dysbiosis.
Collapse
Affiliation(s)
- Bihua Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Yuhong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Huan Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
37
|
Sanchez-Garrido J, Baghshomali YN, Kaushal P, Kozik Z, Perry RW, Williams HRT, Choudhary J, Frankel G. Impaired neutrophil migration underpins host susceptibility to infectious colitis. Mucosal Immunol 2024; 17:939-957. [PMID: 38936619 DOI: 10.1016/j.mucimm.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Citrobacter rodentium models infection with enteropathogenic Escherichia coli and ulcerative colitis (UC). While C57BL/6 (C57) mice recover, C3H/HeN (C3H) mice succumb to infection, partially due to increased colonic neutrophil elastase activity, also seen in UC patients; however, the underlying cause was unknown. Here, we found that bone marrow, blood, and colonic C57 neutrophils expressed (CD)11bHi and reached the infected colonic lumen, where they underwent productive NETosis. In contrast, while the number of C3H neutrophils increased in the bone marrow, blood, and colon, they remained CD11bLo and got trapped in the submucosa, away from C. rodentium, where they underwent harmful NETosis. CD11bLo neutrophils in C3H mice infected with CRi9, which triggers expression of neutrophil chemoattractants, reached the colonization site, resulting in host survival. UC patient neutrophils also displayed decreased levels of the activation/differentiation markers CD16/CXCR4. These results, suggesting that neutrophil malfunction contributes to exacerbated colitis, provide insight for future therapeutic prospects.
Collapse
Affiliation(s)
| | | | - Prashant Kaushal
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Zuza Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Robert W Perry
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom
| | - Horace R T Williams
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom
| | - Jyoti Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Gad Frankel
- Department of Life Sciences, Imperial College, London, United Kingdom
| |
Collapse
|
38
|
Harder BJ, Lekkerkerker AN, Casavant EP, Hackney JA, Nguyen A, McBride JM, Mathews WR, Anania VG. Comprehensive profiling of the human fecal proteome from IBD patients with DIA-MS enables evaluation of disease-relevant proteins. Proteomics Clin Appl 2024; 18:e2300075. [PMID: 38552248 DOI: 10.1002/prca.202300075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), is characterized by chronic gastrointestinal inflammation. A high unmet need exists for noninvasive biomarkers in IBD to monitor changes in disease activity and guide treatment decisions. Stool is an easily accessed, disease proximal matrix in IBD, however the composition of the IBD fecal proteome remains poorly characterized. EXPERIMENTAL DESIGN A data-independent acquisition LC-MS/MS approach was used to profile the human fecal proteome in two independent cohorts (Cohort 1: healthy n = 5, UC n = 5, CD n = 5, Cohort 2: healthy n = 20, UC n = 10, and CD n = 10) to identify noninvasive biomarkers reflective of disease activity. RESULTS 688 human proteins were quantified, with 523 measured in both cohorts. In UC stool 96 proteins were differentially abundant and in CD stool 126 proteins were differentially abundant compared to healthy stool (absolute log2 fold change > 1, p-value < 0.05). Many of these fecal proteins are associated with infiltrating immune cells and ulceration/rectal bleeding, which are hallmarks of IBD pathobiology. Mapping the identified fecal proteins to a whole blood single-cell RNA sequencing data set revealed the involvement of various immune cell subsets to the IBD fecal proteome. CONCLUSIONS AND CLINICAL RELEVANCE Findings from this study not only confirmed the presence of established fecal biomarkers for IBD, such as calprotectin and lactoferrin, but also revealed new fecal proteins from multiple pathways known to be dysregulated in IBD. These novel proteins could serve as potential noninvasive biomarkers to monitor specific aspects of IBD disease activity which could expedite clinical development of novel therapeutic targets.
Collapse
Affiliation(s)
- Brandon J Harder
- Department of Translational Medicine, South San Francisco, California, USA
| | | | - Ellen P Casavant
- Department of Translational Medicine, South San Francisco, California, USA
| | - Jason A Hackney
- Department of Translational Medicine, South San Francisco, California, USA
| | - Allen Nguyen
- Department of Translational Medicine, South San Francisco, California, USA
| | | | | | - Veronica G Anania
- Department of Translational Medicine, South San Francisco, California, USA
| |
Collapse
|
39
|
Van Remoortel S, Lambeets L, De Winter B, Dong X, Rodriguez Ruiz JP, Kumar-Singh S, Martinez SI, Timmermans JP. Mrgprb2-dependent Mast Cell Activation Plays a Crucial Role in Acute Colitis. Cell Mol Gastroenterol Hepatol 2024; 18:101391. [PMID: 39179175 PMCID: PMC11462171 DOI: 10.1016/j.jcmgh.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND & AIMS Mast cells (MCs) are typically found at mucosal surfaces, where their immunoglobulin E (IgE)-dependent activation plays a central role in allergic diseases. Over the past years, signaling through Mas-related G protein-coupled receptor b2 (Mrgprb2) in mice and MRGPRX2 in humans has gained a lot of interest as an alternative MC activation pathway with high therapeutic potential. The aim of this study was to explore the relevance of such IgE-independent, Mrgprb2-mediated signaling in colonic MCs in the healthy and acutely inflamed mouse colon. METHODS Mrgprb2 expression and functionality was studied using a genetic labeling strategy combined with advanced microscopic imaging. Furthermore, Mrgprb2 knockout (Mrgprb2-/-) mice were used to determine the role of this pathway in a preclinical dextran sodium sulphate (DSS) colitis model. RESULTS We found that Mrgprb2 acts as a novel MC degranulation pathway in a large subset of connective tissue MCs in the mouse distal colon. Acute DSS colitis induced a pronounced increase of Mrgprb2-expressing MCs, which were found in close association with Substance P-positive nerve fibers. Loss of Mrgprb2-mediated signaling impaired DSS-induced neutrophil influx and significantly impacted on acute colitis progression. CONCLUSIONS Our findings uncover a novel, IgE-independent MC degranulation pathway in the mouse colon that plays a central role in acute colitis pathophysiology, mainly by safeguarding acute colitis progression and severity in mice. This pseudo allergic, Mrgprb2-induced signaling is part of a hitherto unconsidered colonic neuro-immune pathway and might have significant potential for the further development of effective therapeutic treatment strategies for gastrointestinal disorders, such as ulcerative colitis.
Collapse
Affiliation(s)
- Samuel Van Remoortel
- Laboratory of Cell Biology and Histology and Member of the μNEURO Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| | - Lana Lambeets
- Laboratory of Cell Biology and Histology and Member of the μNEURO Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Benedicte De Winter
- Laboratory of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Juan Pablo Rodriguez Ruiz
- Laboratory of Medical Microbiology, University of Antwerp and Member of the VAXINFECTIO Centre of Excellence, Wilrijk, Belgium
| | - Samir Kumar-Singh
- Laboratory of Cell Biology and Histology and Member of the μNEURO Centre of Excellence, University of Antwerp, Wilrijk, Belgium; Laboratory of Medical Microbiology, University of Antwerp and Member of the VAXINFECTIO Centre of Excellence, Wilrijk, Belgium
| | - Sales Ibiza Martinez
- Laboratory of Cell Biology and Histology and Member of the μNEURO Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology and Member of the μNEURO Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
40
|
Mitchell C, Staley S, Williams MC, Saxena A, Bogdon R, Roark K, Hailey M, Miranda K, Becker W, Dopkins N, Pena MM, Hogan KM, Baird M, Wilson K, Nagarkatti P, Nagarkatti M, Busbee PB. Regulation of Bacteroides acidifaciens by the aryl hydrocarbon receptor in IL-22-producing immune cells has sex-dependent consequential impact on colitis. Front Immunol 2024; 15:1444045. [PMID: 39229279 PMCID: PMC11368719 DOI: 10.3389/fimmu.2024.1444045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Colitis is an inflammatory bowel disease (IBD) characterized by immune cell dysregulation and alterations in the gut microbiome. In our previous report, we showed a natural product in cruciferous vegetables and ligand of the aryl hydrocarbon receptor (AhR), indole-3-carbinol (I3C), was able to reduce colitis-induced disease severity and microbial dysbiosis in an interleukin-22 (IL-22) dependent manner. Methods In the current study, we performed single-cell RNA sequencing (scRNAseq) from colonocytes during colitis induction and supplementation with I3C and show how this treatment alters expression of genes involved in IL-22 signaling. To further define the role of IL-22 signaling in I3C-mediated protection during colitis and disease-associated microbial dysbiosis, we generated mice with AhR deficiency in RAR-related orphan receptor c (Rorc)-expressing cells (AhR ΔRorc ) which depletes this receptor in immune cells involved in production of IL-22. Colitis was induced in wildtype (WT), AhR ΔRorc , and littermate (LM) mice with or without I3C treatment. Results Results showed AhR ΔRorc mice lost the efficacy effects of I3C treatment which correlated with a loss of ability to increase IL-22 by innate lymphoid type 3 (ILC3s), not T helper 22 (Th22) cells. 16S rRNA microbiome profiling studies showed AhR ΔRorc mice were unable to regulate disease-associated increases in Bacteroides, which differed between males and females. Lastly, inoculation with a specific disease-associated Bacteroides species, Bacteroides acidifaciens (B. acidifaciens), was shown to exacerbate colitis in females, but not males. Discussion Collectively, this report highlights the cell and sex-specific role of AhR in regulating microbes that can impact colitis disease.
Collapse
Affiliation(s)
- Chandani Mitchell
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Shanieka Staley
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Michal Claire Williams
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Archana Saxena
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Raymond Bogdon
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Kasie Roark
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Michele Hailey
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Kathryn Miranda
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - William Becker
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Nicholas Dopkins
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Maria Marjorette Pena
- Department of Biological Sciences, College of Arts and Sciences, University of South Carolina, Columbia, SC, United States
| | - Kristen M. Hogan
- Department of Biological Sciences, College of Arts and Sciences, University of South Carolina, Columbia, SC, United States
| | - Maredith Baird
- Department of Biological Sciences, College of Arts and Sciences, University of South Carolina, Columbia, SC, United States
| | - Kiesha Wilson
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Philip Brandon Busbee
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
41
|
Tanwar H, Gnanasekaran JM, Allison D, Chuang LS, He X, Aimetti M, Baima G, Costalonga M, Cross RK, Sears C, Mehandru S, Cho J, Colombel JF, Raufman JP, Thumbigere-Math V. Unravelling the Oral-Gut Axis: Interconnection Between Periodontitis and Inflammatory Bowel Disease, Current Challenges, and Future Perspective. J Crohns Colitis 2024; 18:1319-1341. [PMID: 38417137 PMCID: PMC11324343 DOI: 10.1093/ecco-jcc/jjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 03/01/2024]
Abstract
As the opposite ends of the orodigestive tract, the oral cavity and the intestine share anatomical, microbial, and immunological ties that have bidirectional health implications. A growing body of evidence suggests an interconnection between oral pathologies and inflammatory bowel disease [IBD], implying a shift from the traditional concept of independent diseases to a complex, reciprocal cycle. This review outlines the evidence supporting an 'oral-gut' axis, marked by a higher prevalence of periodontitis and other oral conditions in IBD patients and vice versa. We present an in-depth examination of the interconnection between oral pathologies and IBD, highlighting the shared microbiological and immunological pathways, and proposing a 'multi-hit' hypothesis in the pathogenesis of periodontitis-mediated intestinal inflammation. Furthermore, the review underscores the critical need for a collaborative approach between dentists and gastroenterologists to provide holistic oral-systemic healthcare.
Collapse
Affiliation(s)
- Himanshi Tanwar
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | | - Devon Allison
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Ling-shiang Chuang
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Massimo Costalonga
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Raymond K Cross
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cynthia Sears
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
42
|
Ma M, Enomoto Y, Takahashi T, Uchida K, Chambers JK, Goda Y, Yamanaka D, Takahashi SI, Kuwahara M, Li J. Study of the Effects of Condensed Tannin Additives on the Health and Growth Performance of Early-Weaned Piglets. Animals (Basel) 2024; 14:2337. [PMID: 39199871 PMCID: PMC11350907 DOI: 10.3390/ani14162337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Using 0.5% and 1.0% MGM-P, the objective of the present study was to determine a more appropriate additive level for early-weaned piglets as an alternative to the use of antibiotics. Thirty-six weaned piglets were allotted to one of four groups and given a basal diet (NC), with the basal diet containing either 0.5% (LT) or 1.0% (HT) MGM-P or antibiotics (PC). Diarrhea incidence, growth performance, hematology, blood biochemistry, and blood amino acid concentrations were monitored during the experimental period. Three piglets per group with a body weight nearest to the average level were slaughtered after the experiment to assess their organ index. The results showed that no diarrhea was observed either in the treatment groups or in the control group. The 0.5% group showed an upward trend in body weight and average daily gain at all stages. The WBC counts at 21 days of age were higher (p > 0.05) both in the MGM-P addition groups and the LT and HT groups. For some of the plasma amino acids, such as arginine, phenylalanine concentrations were significantly lower (p < 0.05) in the HT group at the end of the trial. The pathological examination of all organs confirmed no differences. Consequently, the 0.5% MGM-P addition level may be suggested as a potential alternative to the use of antibiotic additives. Even with additives as high as 1%, there is no negative effect on ADG and FCR.
Collapse
Affiliation(s)
- Min Ma
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama 319-0206, Japan; (M.M.); (Y.E.); (T.T.)
- Veterinary Pathophysiology and Animal Health, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo 113-8654, Japan;
| | - Yuriko Enomoto
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama 319-0206, Japan; (M.M.); (Y.E.); (T.T.)
| | - Tomotsugu Takahashi
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama 319-0206, Japan; (M.M.); (Y.E.); (T.T.)
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo 113-8654, Japan; (K.U.); (J.K.C.)
| | - James K. Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo 113-8654, Japan; (K.U.); (J.K.C.)
| | - Yuki Goda
- Laboratory of Cell Regulation, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo 113-8654, Japan; (Y.G.); (S.-I.T.)
| | - Daisuke Yamanaka
- Laboratory of Food and Physiological Models, Graduate School of Agriculture and Life Science, The University of Tokyo, Kasama 113-8654, Japan;
| | - Shin-Ichiro Takahashi
- Laboratory of Cell Regulation, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo 113-8654, Japan; (Y.G.); (S.-I.T.)
| | - Masayoshi Kuwahara
- Veterinary Pathophysiology and Animal Health, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo 113-8654, Japan;
| | - Junyou Li
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama 319-0206, Japan; (M.M.); (Y.E.); (T.T.)
| |
Collapse
|
43
|
Chen L, Ai F, Wu X, Yu W, Jin X, Ma J, Xiang B, Shen S, Li X. Analysis of neutrophil extracellular trap-related genes in Crohn's disease based on bioinformatics. J Cell Mol Med 2024; 28:e70013. [PMID: 39199011 PMCID: PMC11358036 DOI: 10.1111/jcmm.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Crohn's disease (CD) presents with diverse clinical phenotypes due to persistent inflammation of the gastrointestinal tract. Its global incidence is on the rise. Neutrophil extracellular traps (NETs) are networks released by neutrophils that capture microbicidal proteins and oxidases targeting pathogens. Research has shown that NETs are implicated in the pathogenesis of several immune-mediated diseases such as rheumatoid arthritis, systemic lupus erythematosus and inflammatory bowel disease. The goal of this study was to identify a panel of NET-related genes to construct a diagnostic and therapeutic model for CD. Through analysis of the GEO database, we identified 1950 differentially expressed genes (DEGs) associated with CD. Gene enrichment and immune cell infiltration analyses indicate that neutrophil infiltrates and chemokine-related pathways are predominantly involved in CD, with other immune cells such as CD4 and M1 macrophages also playing a role in disease progression. Utilizing weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) networks, we identified six hub genes (SPP1, SOCS3, TIMP1, IRF1, CXCL2 and CD274). To validate the accuracy of our model, we performed external validation with statistical differences(p < 0.05). Additionally, immunohistochemical experiments demonstrated higher protein expression of the hub genes in colonic tissues from CD patients compared to healthy subjects (p < 0.05). In summary, we identified six effective hub genes associated with NETs as potential diagnostic markers for CD. These markers not only offer targets for future research but also hold promise for the development of novel therapeutic interventions for CD.
Collapse
Affiliation(s)
- Libin Chen
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Feiyan Ai
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Xing Wu
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Wentao Yu
- Department of Pathology, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xintong Jin
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Jian Ma
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Bo Xiang
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Shourong Shen
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Xiayu Li
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
44
|
Zhang Z, Leng Z, Kang L, Yan X, Shi J, Ji Y, Guo C, Fang K, Wang Z, Li Z, Sun M, Zhao Z, Feng A, Chen Z, Zhang S, Wan D, Chen T, Xu M. Alcohol inducing macrophage M2b polarization in colitis by modulating the TRPV1-MAPK/NF-κB pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155580. [PMID: 38810558 DOI: 10.1016/j.phymed.2024.155580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Macrophages exhibit different phenotypes in inflammatory bowel disease (IBD) and promote inflammation or tissue repair depending on their polarization state. Alcohol is a widely used solvent in pharmaceutical formulations, and its consumption is associated with an increased risk of colitis; however, its effects on macrophages in IBD remain poorly understood. PURPOSE This study aimed to investigate the effect of alcohol on macrophages in dextran sodium sulfate (DSS)-induced colitis and understand the underlying mechanisms. METHODS DSS-treated C57BL/6 mice were exposed to varying concentrations of alcohol, transient receptor potential vanilloid 1 (TRPV1) antagonist, and 5-aminosalicylic acid. The distal colon was resected, fixed, stained, and histologically analyzed, through hematoxylin and eosin (H&E) staining and immunofluorescence staining. Ratio [Ca2+]i measurements, western blotting, quantitative polymerase chain reaction, cytokine measurements, and RNA sequencing analyses were also performed. Peritoneal macrophages and RAW264.7 cells were used for in vitro experiments, and various assays were performed to evaluate cellular responses, gene expression, and signaling pathways. RESULTS Alcohol exacerbated DSS-treated mice colitis and promoted the secretion of various inflammatory cytokines from colonic macrophages. Alcohol enhances the calcium ion influx induced by lipopolysaccharide (LPS) in peritoneal macrophages, while the TRPV1 antagonist capsazepine (CPZ) inhibits LPS- and/or alcohol- induced calcium influx in macrophages. Alcohol and LPS activate the MAPK/P38, MAPK/ERK, and NF-κB signaling pathways and induce the macrophage M2b polarization, resulting in the increased expression level of inflammatory cytokines such as Tnf, Il1b, and Il10. Additionally, CPZ can inhibit the facilitatory effects of alcohol or LPS on the abovementioned pathways and inflammatory factors, reversing macrophage M2b polarization and promoting alcohol-induced colitis. The inhibition of nucleotide binding oligomerization domain containing 2 (NOD2) partially suppressed the alcohol and LPS effects on macrophages. CONCLUSION Alcohol exacerbates experimental colitis and induces M2b polarization of macrophage via TRPV1-MAPK/NF-κB. Our study provides new insights into the potential therapeutic targets for IBD treatment by elucidating the role of TRPV1 in alcohol-exacerbated colitis, using CPZ as a potential therapeutic option. The identification of transient receptor potential ankyrin subtype 1 (TRPA1) as a therapeutic target expands the scope of future research.
Collapse
Affiliation(s)
- Zehua Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuyun Leng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Le Kang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaohan Yan
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianing Shi
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingjie Ji
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Guo
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kang Fang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zeyu Wang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhaoxing Li
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mingchuang Sun
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ziying Zhao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Anqi Feng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhukai Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shihan Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong Wan
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Meidong Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
45
|
Tang W, Ma J, Chen K, Wang K, Chen Z, Chen C, Li X, Wang Y, Shu Y, Zhang W, Yuan X, Shi G, Chen T, Wang P, Chen Y. Berbamine ameliorates DSS-induced colitis by inhibiting peptidyl-arginine deiminase 4-dependent neutrophil extracellular traps formation. Eur J Pharmacol 2024; 975:176634. [PMID: 38710356 DOI: 10.1016/j.ejphar.2024.176634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with immune dysregulation affecting colon inflammatory response. Recent studies have highlighted that neutrophil extracellular traps (NETs) play an important role in the pathogenesis of UC. Berbamine (BBM), one of the bioactive ingredients extracted from Chinese herbal medicine Berberis vulgaris L, has attracted intensive attentions due to its significant anti-inflammatory activity and a marketing drug for treating leukemia in China. However, the exact role and potential molecular mechanism of BBM against UC remains elusive. In the present study, our results showed that BBM could markedly improve the pathological phenotype and the colon inflammation in mice with dextran sulfate sodium (DSS)-induced colitis. Then, comprehensive approaches combining network pharmacology and molecular docking analyses were employed to predict the therapeutic potential of BBM in treating UC by peptidyl-arginine deiminase 4 (PAD4), a crucial molecule involved in NETs formation. The molecular docking results showed BBM had a high affinity for PAD4 with a binding energy of -9.3 kcal/mol Moreover, PAD4 expression and NETs productions, including citrullination of histone H3 (Cit-H3), neutrophil elastase (NE), myeloperoxidase (MPO) in both neutrophils and colonic tissue were reduced after BBM administration. However, in the mice with DSS-induced colitis pretreated with GSK484, a PAD4-specific inhibitor, BBM could not further reduce disease related indexes, expression of PAD4 and NETs productions. Above all, the identification of PAD4 as a potential target for BBM to inhibit NETs formation in colitis provides novel insights into the development of BBM-derived drugs for the clinical management of UC.
Collapse
Affiliation(s)
- Wenwen Tang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Jiaze Ma
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Kaidi Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Kuiling Wang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Zepeng Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Chen Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Xun Li
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, 4702, Australia
| | - Yuji Wang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Yi Shu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Wei Zhang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Xiaomin Yuan
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Guoping Shi
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Tuo Chen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; Institute for Molecular Bioscience, the University of Queensland, Brisbane, 4702, Australia.
| | - Peimin Wang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China.
| | - Yugen Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicine in Prevention and Treatment of Tumor, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| |
Collapse
|
46
|
Swaminathan A, Borichevsky GM, Frampton C, Kettle AJ, Peyrin-Biroulet L, Siegel CA, Day AS, Gearry RB. Development and investigation of a non-invasive disease severity index for inflammatory bowel disease. J Crohns Colitis 2024; 18:jjae106. [PMID: 38953471 PMCID: PMC11637517 DOI: 10.1093/ecco-jcc/jjae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION The disease severity index (DSI) encapsulates the inflammatory bowel disease (IBD) burden but requires endoscopic investigations. This study developed a non-invasive DSI using faecal calprotectin (DSI-fCal) and faecal myeloperoxidase (DSI-fMPO) instead of colonoscopy. METHODS Adults with IBD were recruited prospectively. Baseline biomarker concentrations were used to develop DSI-fCal and DSI-fMPO, and these were correlated with the original DSI, IBD-symptoms, endoscopic activity, and quality-of-life (QoL). Area under the receiver-operating-characteristics curves (AUROC) assessed DSI-fCal/DSI-fMPO as predictors of clinical and biochemical remission at six months (symptom remission and fCal <150 μg/g, respectively), and a complicated IBD-course at 24 months (disease relapse needing escalation of biologicals/immunomodulators/recurrent corticosteroids, IBD-hospitalisations/surgeries). Multivariable logistic regression assessed the utility of DSI-fCal/DSI-fMPO in predicting a complicated IBD-course at 24 months. RESULTS In total, 171 patients were included (Crohn's disease=99, female=90, median age=46y (IQR 36-59)). DSI-fCal and DSI-fMPO correlated with the original DSI (r>0.9, p<0.001), endoscopic indices (r=0.45-0.49, p<0.001), IBD-symptoms (r=0.53-0.58, p<0.001) and QoL (r=-0.57-0.58, p<0.001). Baseline DSI-fCal (AUROC=0.79, 95% CI 0.65-0.92) and DSI-fMPO (AUROC=0.80, 95% CI 0.67-0.93) were associated with 6-month clinical and biochemical remission. DSI-fCal (AUROC=0.83, 95% CI 0.77-0.89) and DSI-fMPO (AUROC=0.80, 95% CI 0.73-0.87) performed similarly in predicting a complicated IBD-course to the original DSI (pdifference>0.05). The non-invasive DSI was independently associated with a complicated IBD-course on multivariable analyses (DSI-fCal28, aOR=6.04, 95% CI 2.42-15.08; DSI-fMPO25, aOR=7.84, 95% CI 2.96-20.73). CONCLUSIONS The DSI-fCal and DSI-fMPO perform similarly in prognosticating the longitudinal disease course as the original DSI, whilst avoiding a need for an endoscopic assessment.
Collapse
Affiliation(s)
- Akhilesh Swaminathan
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Department of Gastroenterology, Christchurch Hospital, Christchurch. New Zealand
| | - Grace Mary Borichevsky
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Chris Frampton
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Anthony James Kettle
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, Vandoevre-les-Nancy, France
- Department of Gastroenterology, INFINY Institute, FHU-CURE, INSERM NGERE, Nancy University Hospital, Vandoeuvre-les-Nancy, Francy
- Groupe Hospitalier Privé Ambroise Paré – Hartmann, Paris IBD Center, Neuilly sur Seine, France
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC, Canada
| | - Corey Allan Siegel
- Section of Gastroenterology and Hepatology, Dartmouth Hitchcock Medical Centre, Lebanon, NH, USA
| | - Andrew Stewart Day
- Department of Paediatrics, University of Otago Christchurch, Christchurch, New Zealand
| | - Richard Blair Gearry
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Department of Gastroenterology, Christchurch Hospital, Christchurch. New Zealand
| |
Collapse
|
47
|
Alicehajic A, Duivenvoorden AAM, Lenaerts K. Unveiling the molecular complexity of intestinal ischemia-reperfusion injury through omics technologies. Proteomics 2024; 24:e2300160. [PMID: 38477684 DOI: 10.1002/pmic.202300160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Intestinal ischemia-reperfusion injury (IR) is implicated in various clinical conditions and causes damage to the intestinal epithelium resulting in intestinal barrier loss. This presents a substantial clinical challenge, emphasizing the importance of gaining a comprehensive understanding of molecular events to aid in the identification of novel therapeutic targets. This review systematically explores the extent to which omics technologies-transcriptomics, proteomics, metabolomics, and metagenomics-have already contributed to deciphering the molecular mechanisms contributing to intestinal IR injury, in in vivo and in vitro animal and human models, and in clinical samples. Recent breakthroughs involve applying omics methodologies on exosomes, organoids, and single cells, shedding light on promising avenues and valuable targets to reduce intestinal IR injury. Future directions aimed at expediting clinical translation are discussed as well and include multi-omics data integration to facilitate the identification of key regulatory nodes driving intestinal IR injury and advancing human organoid models based on the novel insights by single-cell omics technologies, offering hope for clinical application of therapeutic strategies in the years to come.
Collapse
Affiliation(s)
- Anja Alicehajic
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Annet Adriana Maria Duivenvoorden
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Kaatje Lenaerts
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
48
|
Wang J, He M, Yang M, Ai X. Gut microbiota as a key regulator of intestinal mucosal immunity. Life Sci 2024; 345:122612. [PMID: 38588949 DOI: 10.1016/j.lfs.2024.122612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Gut microbiota is a complex microbial community with the ability of maintaining intestinal health. Intestinal homeostasis largely depends on the mucosal immune system to defense external pathogens and promote tissue repair. In recent years, growing evidence revealed the importance of gut microbiota in shaping intestinal mucosal immunity. Therefore, according to the existing findings, this review first provided an overview of intestinal mucosal immune system before summarizing the regulatory roles of gut microbiota in intestinal innate and adaptive immunity. Specifically, this review delved into the gut microbial interactions with the cells such as intestinal epithelial cells (IECs), macrophages, dendritic cells (DCs), neutrophils, and innate lymphoid cells (ILCs) in innate immunity, and T and B lymphocytes in adaptive immunity. Furthermore, this review discussed the main effects of gut microbiota dysbiosis in intestinal diseases and offered future research prospects. The review highlighted the key regulatory roles of gut microbiota in intestinal mucosal immunity via various host-microbe interactions, providing valuable references for the development of microbial therapy in intestinal diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| | - Xiaopeng Ai
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
49
|
Sim S, Park HJ, Kim YK, Choi Y, Park HS. Lactobacillus paracasei-derived extracellular vesicles alleviate neutrophilic asthma by inhibiting the JNK pathway in airway epithelium. Allergol Int 2024; 73:302-312. [PMID: 37953104 DOI: 10.1016/j.alit.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Lactobacillus paracasei has been known to reduce airway resistance and inflammation in asthma. However, the therapeutic effect of its extracellular vesicles (EVs) in patients with asthma remains unclear. METHODS To validate the clinical relevance of L. paracasei-derived EVs (LpEV) in asthma, the composition of gut microbial EVs was verified by metagenomics in LPS-induced C57BL/6 mice. The components of proteins and metabolites in LpEV were identified by peptide mass fingerprinting and metabolomic analysis. The serum levels of specific IgG1 or IgG4 antibodies to LpEV were compared by ELISA between patients with eosinophilic asthma (EA, n = 10) and those with neutrophilic asthma (NA, n = 10) as well as with healthy controls (HCs, n = 10). Finally, therapeutic effects of LpEV and their metabolites in asthma were validated in vivo/in vitro. RESULTS Significantly lower proportions of EVs derived from Lactobacillus at the genus level were noted in mice with NA than in control mice. Moreover, the serum levels of LpEV-specific IgG4, but not IgG1, were lower in patients with NA than in those with EA or in HCs and positively correlated with FEV1 (%) values. In addition, oral administration of LpEV reduced airway resistance and inflammation in mice with NA. Finally, LpEV and their 3 metabolites (dodecanoic acid, palmitoleic acid, and D-(-)-tagatose) significantly inhibited JNK phosphorylation/IL-8 production in airway epithelium in vitro. CONCLUSIONS These findings suggest that LpEV may have a therapeutic potential targeting NA by suppressing the JNK pathway and proinflammatory cytokine production in airway epithelium.
Collapse
Affiliation(s)
- Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | | | | | - Youngwoo Choi
- Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea.
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea.
| |
Collapse
|
50
|
Luan Y, Hu J, Wang Q, Wang X, Li W, Qu R, Yang C, Rajendran BK, Zhou H, Liu P, Zhang N, Shi Y, Liu Y, Tang W, Lu J, Wu D. Wnt5 controls splenic myelopoiesis and neutrophil functional ambivalency during DSS-induced colitis. Cell Rep 2024; 43:113934. [PMID: 38461416 PMCID: PMC11064424 DOI: 10.1016/j.celrep.2024.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Neutrophils are important innate immune cells with plasticity, heterogenicity, and functional ambivalency. While bone marrow is often regarded as the primary source of neutrophil production, the roles of extramedullary production in regulating neutrophil plasticity and heterogenicity in autoimmune diseases remain poorly understood. Here, we report that the lack of wingless-type MMTV integration site family member 5 (WNT5) unleashes anti-inflammatory protection against colitis in mice, accompanied by reduced colonic CD8+ T cell activation and enhanced splenic extramedullary myelopoiesis. In addition, colitis upregulates WNT5 expression in splenic stromal cells. The ablation of WNT5 leads to increased splenic production of hematopoietic niche factors, as well as elevated numbers of splenic neutrophils with heightened CD8+ T cell suppressive capability, in part due to elevated CD101 expression and attenuated pro-inflammatory activities. Thus, our study reveals a mechanism by which neutrophil plasticity and heterogenicity are regulated in colitis through WNT5 and highlights the role of splenic neutrophil production in shaping inflammatory outcomes.
Collapse
Affiliation(s)
- Yi Luan
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06519, USA
| | - Jiajia Hu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06519, USA
| | - Qijun Wang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06519, USA
| | - Xujun Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | - Rihao Qu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Chuan Yang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06519, USA
| | - Barani Kumar Rajendran
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06519, USA
| | - Hongyue Zhou
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06519, USA
| | - Peng Liu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06519, USA
| | - Ningning Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
| | - Yu Shi
- School of Management, Yale University, New Haven, CT 06511, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Wenwen Tang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06519, USA.
| | - Jun Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.
| | - Dianqing Wu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|