1
|
Mendes GEM, Maio AR, Oliveira GDSRD, Rosa LC, Carvalho Costa LD, Oliveira LCVD, Freitas MSD, Cordeiro E Silva R, Santos Galvao RMD, Coutinho RC, Rezende Santos TC, Souza Carvalho TD, Souza Lima VHD, Bello ML. Biomolecular conformational changes and transient druggable binding sites through full-length AMPK molecular dynamics simulations. J Mol Graph Model 2025; 138:109039. [PMID: 40186940 DOI: 10.1016/j.jmgm.2025.109039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
AMPK (AMP-activated protein kinase) is a crucial signaling protein found in essentially all eukaryotic organisms and acts as an energy sensor. When activated by metabolic stress, AMPK phosphorylates a variety of molecular targets, altering enzyme activity and gene expression to regulate cellular responses. In general, in response to low intracellular ATP levels (high ADP:ATP ratio), AMPK triggers the activation of energy-producing pathways while simultaneously inhibiting energy-consuming processes. Recent studies have established a connection between molecular pathways involved in sensing energy and potential for extending longevity. AMPK indirect activator compounds have shown a potential strategy to obtain an anti-aging biological activity. This study explores the conformational changes and transient druggable binding pockets over the 1 μs trajectory of molecular dynamics simulations to comprehend the behavior of main domains and allosteric drug and metabolite (ADaM) site. The described conformations of the apo-ADaM site suggest an important influence of specific residues on the cavity volume variations. A clustering set of representative AMPK conformations allowed to identify the more favorable binding site volume and shape at the protein apo form, including the carbohydrate-binding module (CBM) region which exhibited a stable movement near the ADaM site of the alpha-subunit. The identification of gamma-subunit transient druggable binding pocket CBS3 during the microscale time trajectory simulations also offers valuable insights into structure-based AMP-mimetic drug design for AMPK activation.
Collapse
Affiliation(s)
- Guilherme Eduardo Martins Mendes
- Pharmaceutical Planning and Computer Simulation Laboratory, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Artur Rodrigues Maio
- Pharmaceutical Planning and Computer Simulation Laboratory, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Lidiane Conceição Rosa
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Lucas de Carvalho Costa
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Lucca Correa Viana de Oliveira
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Mariana Silva de Freitas
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Rafael Cordeiro E Silva
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Raíssa Maria Dos Santos Galvao
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Rebecca Cunha Coutinho
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Thadeu Cordeiro Rezende Santos
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Thais de Souza Carvalho
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Victor Hugo de Souza Lima
- Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Murilo Lamim Bello
- Pharmaceutical Planning and Computer Simulation Laboratory, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Derobertmasure A, Toh LS, Wotring VE, Williams PM, Morbidelli L, Stingl JC, Vinken M, Ramadan R, Chhun S, Boutouyrie P. Pharmacological countermeasures for long-duration space missions: addressing cardiovascular challenges and advancing space-adapted healthcare. Eur J Pharm Sci 2025; 209:107063. [PMID: 40064402 DOI: 10.1016/j.ejps.2025.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Future long-duration crewed space missions beyond Low Earth Orbit (LEO) will bring new healthcare challenges for astronauts for which pharmacological countermeasures (pharmacological countermeasures) are crucial. This paper highlights current pharmacological countermeasures challenges described in the ESA SciSpacE Roadmap, with a focus on the cardiovascular system as a model to demonstrate the potential implication of the challenges and recommendations. New pharmacological approaches and procedures need to be adapted to spaceflight (spaceflight) conditions, including ethical and reglementary considerations. Potential strategies include combining pharmacological biomarkers such as pharmacogenomics with therapeutic drug monitoring, advancing microsampling techniques, and implementing a pharmacovigilance system to gain deep insights into pharmacokinetics/pharmacodynamics (PK/PD) spaceflight alteration on drug exposure. Emerging therapeutic approaches (such as long-term regimens) or manufacturing drugs in the space environment, can address specific issues related to drug storage and stability. The integration of biobanks and innovative technologies like organoids and organ-on-a-chip, artificial intelligence (AI), including machine learning will further enhance PK modelling leading to personalized treatments. These innovative pharmaceutical tools will also enable reciprocal game-changing healthcare developments to be made on Earth as well as in space and are essential to ensure space explorers receive safe effective pharmaceutical care.
Collapse
Affiliation(s)
- Audrey Derobertmasure
- Faculty of Medicine, Paris Cité University, INSERM PARCC, Service de Pharmacologie Clinique, Hôpital Européen Georges Pompidou Hospital (AP-HP), Paris, France
| | - Li Shean Toh
- School of Pharmacy, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Virginia E Wotring
- International Space University, 1 rue Jean-Dominique Cassini, Parc d'Innovation, 6700 Illkirch-Graffenstaden, France
| | - Philip M Williams
- School of Pharmacy, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Wendlingweg 2, 52064, Aachen, Germany
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raghda Ramadan
- Interdisciplinary Biosciences Group, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Stephanie Chhun
- Faculty of Medicine, Paris Cité University, Paris, France; Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253; AP-HP, Laboratory of Immunology, Necker-Enfants Malades Hospital, Paris, France
| | - Pierre Boutouyrie
- Faculty of Medicine, Paris Cité University, INSERM PARCC, Service de Pharmacologie Clinique, Hôpital Européen Georges Pompidou Hospital (AP-HP), Paris, France.
| |
Collapse
|
3
|
Amitrano A, Choudhury D, Konstantopoulos K. Navigating confinement: Mechanotransduction and metabolic adaptation. Curr Opin Cell Biol 2025; 94:102487. [PMID: 39999674 DOI: 10.1016/j.ceb.2025.102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Cell migration through confined spaces is a critical process influenced by the complex three-dimensional (3D) architecture of the local microenvironment and the surrounding extracellular matrix (ECM). Cells in vivo experience diverse fluidic signals, such as extracellular fluid viscosity, hydraulic resistance, and shear forces, as well as solid cues, like ECM stiffness and viscoelasticity. These fluidic and solid stressors activate mechanotransduction processes and regulate cell migration. They also drive metabolic reprogramming, dynamically altering glycolysis and oxidative phosphorylation to meet the cell's energy demands in different microenvironments. This review discusses recent advances on the mechanisms of cell migration in confinement and how confinement-induced cellular behavior leads to metabolic reprogramming.
Collapse
Affiliation(s)
- Alice Amitrano
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Debanik Choudhury
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.
| |
Collapse
|
4
|
Strohm L, Mihalikova D, Czarnowski A, Schwaibold Z, Daiber A, Stamm P. Sex-Specific Antioxidant and Anti-Inflammatory Protective Effects of AMPK in Cardiovascular Diseases. Antioxidants (Basel) 2025; 14:615. [PMID: 40427496 PMCID: PMC12108612 DOI: 10.3390/antiox14050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/02/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiovascular diseases such as coronary heart disease, heart failure, or stroke are the most common cause of death worldwide and are regularly based on risk factors like diabetes mellitus, hypertension, or obesity. At the same time, both diseases and risk factors are significantly influenced by sex hormones. In order to better understand this influence and also specifically improve the therapy of female patients, medical research has recently focused increasingly on gender-specific differences. The goal is to develop personalized, gender-specific therapy concepts for these diseases to further enhance health outcomes. The enzyme adenosine monophosphate-activated protein kinase (AMPK) is a central regulator of energy metabolism, protecting the cardiovascular system from energy depletion, thereby promoting vascular health and preventing cellular damage. AMPK confers cardioprotective effects by preventing endothelial and vascular dysfunction, and by controlling or regulating oxidative stress and inflammatory processes. For AMPK, sex-specific effects were reported, influencing metabolic and cardiovascular responses. Exercise and metabolic stress generally cause higher AMPK activity in males. At the same time, females exhibit protective mechanisms against insulin resistance or oxidative stress, particularly in conditions like obesity. Additionally, males subject to AMPK deficiency seem to experience greater cardiac and mitochondrial dysfunction. In contrast, females show improvement in cardiovascular function after pharmacological AMPK activation. These differences, influenced by hormones, body composition, and gene expression, highlight the potential to develop personalized, sex-specific AMPK-targeted therapeutic strategies for cardiovascular diseases in the future. Here, we discuss the most actual scientific background, focusing on the protective, gender-specific effects of AMPK, and highlight potential clinical applications.
Collapse
Affiliation(s)
- Lea Strohm
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
| | - Dominika Mihalikova
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
| | - Alexander Czarnowski
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
| | - Zita Schwaibold
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, 55131 Mainz, Germany
| | - Paul Stamm
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
| |
Collapse
|
5
|
Azima F, Ishak WRW, Syukri D, Rahmayani, Iqbal M, Azzahra Y. Antidiabetic Potential of Combined Cassiavera and Morel Berry Ethanol Extracts in Diabetic Rats. ScientificWorldJournal 2025; 2025:1526410. [PMID: 40433165 PMCID: PMC12116143 DOI: 10.1155/tswj/1526410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 03/26/2025] [Indexed: 05/29/2025] Open
Abstract
This study investigated the effects of a combination of cassiavera and morel berry ethanol extracts (CMBEs) on diabetic rats, focusing on blood glucose levels, lipid profiles, immune and inflammatory markers, and pancreatic histopathology. Twenty male albino Wistar rats were divided into four groups: Group A (normal rats), Group B (diabetic rats), Group C (diabetic rats treated with metformin), and Group D (diabetic rats treated with CMBE). Parameters such as the IC50 of CMBE, body weight, blood glucose levels, lipid profile, immune markers (leukocyte percentage, total count, and macrophage activity), inflammatory markers (TNF-α and IL-6), and pancreatic histopathology of rats were assessed for 7 weeks. Statistical analysis was performed using one-way analysis of variance followed by Duncan's multiple range test, with a significance level of α = 5%. The results revealed an IC50 value of 18.5338 ppm for CMBE. Weight gain was observed in all groups except Group B, in which rats lost weight. CMBE was notably effective in lowering blood glucose levels in diabetic rats, with rats in Group D exhibiting higher HDL cholesterol levels and total leukocyte counts compared with those in Group C. Furthermore, CMBE significantly reduced TNF-α and IL-6 levels, exhibiting promising potential in promoting pancreatic repair. This study highlights the potential of a combination of Cassiavera and Morel Berry extract as an effective antidiabetic agent, suggesting it as a valuable addition to functional food formulations.
Collapse
Affiliation(s)
- Fauzan Azima
- Department of Food Technology and Agricultural Product, Universitas Andalas, Padang, Indonesia
| | - Wan Rosli Wan Ishak
- Nutrition and Dietetics Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Daimon Syukri
- Department of Food Technology and Agricultural Product, Universitas Andalas, Padang, Indonesia
| | - Rahmayani
- Department of Food Technology and Agricultural Product, Universitas Andalas, Padang, Indonesia
| | - Muhammad Iqbal
- Department of Food Technology and Agricultural Product, Universitas Andalas, Padang, Indonesia
| | - Yasmin Azzahra
- Department of Food Technology and Agricultural Product, Universitas Andalas, Padang, Indonesia
| |
Collapse
|
6
|
Kumar P, Choudhary A, Kinger S, Jagtap YA, Prajapati VK, Chitkara D, Chinnathambi S, Verma RK, Mishra A. Autophagy as a potential therapeutic target in regulating improper cellular proliferation. Front Pharmacol 2025; 16:1579183. [PMID: 40444035 PMCID: PMC12119615 DOI: 10.3389/fphar.2025.1579183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/24/2025] [Indexed: 06/02/2025] Open
Abstract
Autophagy is a degradative process that makes rapid turnover of old and impaired proteins and organelles possible. It is highly instigated by stress signals, like starvation, and contributes to the cell's homeostasis. Autophagy performs a crucial function in keeping cell genomic integrity stable. Impaired autophagic flux is implicated in neurodegenerative diseases, abnormal ageing, and cancerous diseases. In diseases like cancer, autophagy performs a dualistic function; it can have both a tumor-suppressive and supportive role. Autophagy in the initial phases of tumorigenesis maintains the integrity of the genome and, if it fails, leads to cell death, thus having a tumor-suppressive role. Meanwhile, autophagy also imparts the function of the pro-survival mechanism in the latter stages of tumorigenesis and supports the cancerous cells in surviving conditions like hypoxia and increased oxidative stress. Autophagy also helps cancerous cells develop drug resistance in some cases. Thus, modulation of the autophagic mechanism is a possible therapeutic strategy in cancer therapy as its inhibition can sensitise cancer cells to anti-cancerous drugs. The promotion of autophagy, in some cases, can also safeguard cells from toxic protein aggregation and enhanced oxidative stress. Excessive autophagy can result in autophagic cell death. Autophagy also regulates several cellular processes and cell death pathways, like apoptosis. Therefore, an in-depth knowledge of the autophagy process and its regulating molecules is critically important. Pharmaceutical small molecules or cellular target modulation can help modulate the cellular autophagy process in the context of specific disease conditions.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | | | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Institute of National Importance, Bangalore, Karnataka, India
| | | | - Amit Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
7
|
Mansouri M, Imenshahidi M, Rameshrad M, Hosseinzadeh H. Effects of Tinospora cordifolia (giloy) on metabolic syndrome components: a mechanistic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4979-5009. [PMID: 39731594 DOI: 10.1007/s00210-024-03642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 12/30/2024]
Abstract
Metabolic syndrome is a cluster of some conditions such as high blood sugar, high blood triglycerides, low HDL cholesterol, abdominal obesity, and high blood pressure. Introducing a drug or a food that manages the majority of these medical conditions is invaluable. Tinospora cordifolia, known as guduchi and giloy, is a medicinal herb in ayurvedic medicine that is used in the treatment of various diseased conditions and also as a food for the maintenance of health. Here, we reviewed the current evidence supporting the role of giloy in the development and treatment of metabolic syndrome components. Appropriate articles that have been published until May 2024 were carefully extracted from PubMed, Scopus, and WOS databases to write a narrative review systematically. Gathered data showed the beneficial effects of giloy on metabolic syndrome components: hyperlipidemia, obesity, atherosclerosis, hypertension, and especially diabetes mellitus. As diabetes and insulin resistance seem to be a central feature of metabolic syndrome and in turn, can cause dyslipidemia, obesity, and, atherosclerosis, these beneficial effects are predictable with the anti-diabetogenic property of giloy. In this review, the main mechanisms of action of giloy in metabolic syndrome components are discussed. Based on the results, although giloy has been less investigated, considerable studies provide evidence of its beneficial effects on different components of metabolic syndrome. Relevant clinical trials are necessary to validate the mentioned effects, safety, and optimum dose of this herbal medicine and its components in managing different components of metabolic syndrome and transition from bench to bedside.
Collapse
Affiliation(s)
- Mehran Mansouri
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Xiang X, Huang L, Luo W, Qin L, Bian M, Chen W, Han G, Wang N, Mo G, Zhang C, Zhang Y, Yang H, Lu S, Zhang J, Fu T. Neuromuscular electrical stimulation alleviates stroke-related sarcopenia by promoting satellite cells myogenic differentiation via AMPK-ULK1-Autophagy axis. J Orthop Translat 2025; 52:249-264. [PMID: 40342549 PMCID: PMC12059223 DOI: 10.1016/j.jot.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Background Stroke-related sarcopenia can result in muscle mass loss and muscle fibers abnormality, significantly affecting muscle function. The clinical management of stroke-related sarcopenia still requires further research and investigation. This study aims to explore a promising therapy to restore muscle function and promote muscle regeneration in stroke-related sarcopenia, providing a new theory for stroke-related sarcopenia treatment. Methods Stroke-related sarcopenia rat model was established by using permanent middle cerebral artery occlusion (pMCAO) rat and treated with neuromuscular electrical stimulation (NMES). Electrical stimulation (ES) treatment in vitro was mimicked to test the effect of NMES on muscle regeneration in rat skeletal muscle satellite cells (MuSCs). Catwalk, H&E and Masson's trichrome staining, immunofluorescence, transcriptomic analysis, transmission electron microscopy, MuSCs transfection, autophagy flux detection, quantitative real-time PCR analysis, Co-Immunoprecipitation and Western Blot were used to investigate the role of NMES and its mechanism in stroke-related sarcopenia in vivo. Results After NMES treatment, muscle mass and myogenic differentiation were significantly increased in stroke-related sarcopenia rats. The NMES group had more stable gait, neater footprints, higher muscle wet weight, more voluminous morphology and more regenerated muscle fibers. Additionally, ES treatment induced myogenic differentiation in rat MuSCs in vitro. Transcriptomic analysis also showed that "AMPK signaling pathway" was enriched and genes upregulated in ES-treated cells, revealing ES treatment could activate the autophagy in an AMPK-ULK1-dependent mechanism in MuSCs. Besides, it was also founded that infusion of AMPK or ULK1 inhibitor, knockdown of AMPK or ULK1 in MuSCs could block the effect of myotube formation of ES. Conclusion NMES not only restores muscle function but also enhances myogenic activity and muscle regeneration via AMPK-ULK1 autophagy in stroke-related sarcopenia rats. Our study provides a promising strategy for the treatment of stroke-related sarcopenia. The translational potential of this article This study first demonstrates that NMES alleviates stroke-related sarcopenia by promoting MuSCs differentiation through AMPK-ULK1-autophagy axis. The findings reveal a novel therapeutic mechanism, suggesting that NMES can restore muscle function and enhance regeneration in stroke patients. By combining NMES with MuSCs-based therapies, this approach offers a promising strategy for clinical rehabilitation, potentially improving muscle mass and function in stroke survivors. The translational potential lies in its applicability to non-invasive, cost-effective treatments for sarcopenia, enhancing patients' quality of life.
Collapse
Affiliation(s)
- Xingdong Xiang
- Department of Rehabilitation Medicine, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Lei Huang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wenchen Luo
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Lieyang Qin
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Weisin Chen
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Guanjie Han
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Ning Wang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Guokang Mo
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Cheng Zhang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yongxing Zhang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Jian Zhang
- Department of Rehabilitation Medicine, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Tengfei Fu
- Department of Rehabilitation Medicine, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| |
Collapse
|
9
|
Vandvali F, Kia HD, Ebrahimi M, Moghaddam G, Najafi A. Impact of losartan-supplemented extender on enhancing rooster sperm quality post-freezing and thawing. Poult Sci 2025; 104:105179. [PMID: 40398300 DOI: 10.1016/j.psj.2025.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 05/23/2025] Open
Abstract
The cryopreservation of rooster sperm plays a pivotal role in artificial insemination programs. However, the process of sperm freezing and thawing often leads to damage, affecting the functional and biological properties of sperm cells. Losartan, a potent antioxidant and an angiotensin II type 1 receptor blocker, has been shown to modulate mitochondrial activity and exhibit antioxidant properties. This study was conducted using semen collected from 10 Cobb 500 roosters, and the pooled samples were allocated into five treatment groups corresponding to 0 (control), 15, 30, 45, and 60 µM Losartan. The control group consisted of semen extenders devoid of Losartan. Sperm samples were collected and diluted with the extender containing Losartan, followed by cryopreservation in liquid nitrogen. After thawing, sperm motility, plasma membrane integrity, mitochondrial activity, lipid peroxidation (LPO), and levels of antioxidant markers such as GPx, SOD, TAC, along with apoptosis-related changes, were assessed. Statistical analysis was performed using SAS software, with Tukey's test employed for multiple comparisons (P < 0.05 was considered significant). The results indicated that supplementation with 30 and 45 µM Losartan significantly improved total and progressive motility, mitochondrial activity, membrane integrity, and antioxidant levels, compared to other groups (P < 0.001). Furthermore, these concentrations of Losartan reduced LPO and apoptosis compared to control (P < 0.001). However, no significant effect was observed on sperm morphology (P > 0.05). This study suggests that Losartan has potential as a mitochondrial-targeted antioxidant in cryopreservation media, enhancing sperm quality and mitigating oxidative damage during freezing and thawing processes.
Collapse
Affiliation(s)
- Fatemeh Vandvali
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hossein Daghigh Kia
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Marziyeh Ebrahimi
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Gholamali Moghaddam
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Abouzar Najafi
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| |
Collapse
|
10
|
Bishr A, Atwa AM, El-Mokadem BM, El-Din MN. Canagliflozin potentially promotes renal protection against glycerol-induced acute kidney injury by activating the AMPK/SIRT1/FOXO-3a/PGC-1α and Nrf2/HO-1 pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04017-x. [PMID: 40257493 DOI: 10.1007/s00210-025-04017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 03/04/2025] [Indexed: 04/22/2025]
Abstract
The reno-protective potential of canagliflozin (Cana), an inhibitor of the sodium glucose-linked co-transporter-2 (SGLT-2), has been demonstrated in different models of kidney injury. However, its potential role in preventing glycerol (Gly)-induced acute kidney injury (AKI) remains to be divulged. Therefore, the aim of this study is to investigate the potential reno-protective effect of Cana and its underlying mechanism in a rat model of Gly-induced AKI. Rats were randomly allocated into five groups: normal, Gly, Gly pretreated with 10 mg/kg Cana, Gly pretreated with Cana 25 mg/kg, and normal pretreated with Cana 25 mg/kg for 14 consecutive days. Pretreatment with Cana improved renal structure and enhanced kidney functions manifested by reducing serum creatinine and blood urea nitrogen, as well as renal contents of neutrophil gelatinase-associated lipocalin and kidney injury molecule. Moreover, Cana signified its anti-inflammatory effect by reducing the Gly-induced elevation in renal contents of nuclear factor-κB and interleuκin-6. Additionally, Cana augmented the defense enzymatic antioxidants superoxide dismutase (SOD), manganese-SOD, and heme oxygenase-1, besides increasing the protein expression of the antioxidant transcription factor nuclear factor erythroid 2-related factor 2 to point for its ability to correct redox balance. Cana also upregulated the protein expression of the 5' adenosine monophosphate-activated protein kinase (AMPK), Sirtuin1 (SIRT1), Forkhead box protein O3 (FOXO-3a), and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), as well as the transcriptional activity of growth arrest and DNA damage-inducible protein alpha (GAAD45a). In conclusion, Cana demonstrated potentially novel reno-protective mechanisms and mitigated the consequences of AKI through its antioxidant and anti-inflammatory properties, partially by activating the AMPK/SIRT1/FOXO-3a/PGC-1α pathway.
Collapse
Affiliation(s)
- Abeer Bishr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
- College of Pharmacy, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, Iraq
| | - Bassant M El-Mokadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt
| | - Mahmoud Nour El-Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| |
Collapse
|
11
|
Nath DK, Dhakal S, Lee Y. TRPγ regulates lipid metabolism through Dh44 neuroendocrine cells. eLife 2025; 13:RP99258. [PMID: 40243537 PMCID: PMC12005721 DOI: 10.7554/elife.99258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Understanding how the brain controls nutrient storage is pivotal. Transient receptor potential (TRP) channels are conserved from insects to humans. They serve in detecting environmental shifts and in acting as internal sensors. Previously, we demonstrated the role of TRPγ in nutrient-sensing behavior (Dhakal et al., 2022). Here, we found that a TRPγ mutant exhibited in Drosophila melanogaster is required for maintaining normal lipid and protein levels. In animals, lipogenesis and lipolysis control lipid levels in response to food availability. Lipids are mostly stored as triacylglycerol in the fat bodies (FBs) of D. melanogaster. Interestingly, trpγ deficient mutants exhibited elevated TAG levels and our genetic data indicated that Dh44 neurons are indispensable for normal lipid storage but not protein storage. The trpγ mutants also exhibited reduced starvation resistance, which was attributed to insufficient lipolysis in the FBs. This could be mitigated by administering lipase or metformin orally, indicating a potential treatment pathway. Gene expression analysis indicated that trpγ knockout downregulated brummer, a key lipolytic gene, resulting in chronic lipolytic deficits in the gut and other fat tissues. The study also highlighted the role of specific proteins, including neuropeptide DH44 and its receptor DH44R2 in lipid regulation. Our findings provide insight into the broader question of how the brain and gut regulate nutrient storage.
Collapse
Affiliation(s)
- Dharmendra Kumar Nath
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Subash Dhakal
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| |
Collapse
|
12
|
Michalak KP, Michalak AZ, Brenk-Krakowska A. Acute COVID-19 and LongCOVID syndrome - molecular implications for therapeutic strategies - review. Front Immunol 2025; 16:1582783. [PMID: 40313948 PMCID: PMC12043656 DOI: 10.3389/fimmu.2025.1582783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been recognized not only for its acute effects but also for its ability to cause LongCOVID Syndrome (LCS), a condition characterized by persistent symptoms affecting multiple organ systems. This review examines the molecular and immunological mechanisms underlying LCS, with a particular focus on autophagy inhibition, chronic inflammation, oxidative, nitrosative and calcium stress, viral persistence and autoimmunology. Potential pathophysiological mechanisms involved in LCS include (1) autoimmune activation, (2) latent viral persistence, where SARS-CoV-2 continues to influence host metabolism, (3) reactivation of latent pathogens such as Epstein-Barr virus (EBV) or cytomegalovirus (CMV), exacerbating immune and metabolic dysregulation, and (4) possible persistent metabolic and inflammatory dysregulation, where the body fails to restore post-infection homeostasis. The manipulation of cellular pathways by SARS-CoV-2 proteins is a critical aspect of the virus' ability to evade immune clearance and establish long-term dysfunction. Viral proteins such as NSP13, ORF3a and ORF8 have been shown to disrupt autophagy, thereby impairing viral clearance and promoting immune evasion. In addition, mitochondrial dysfunction, dysregulated calcium signaling, oxidative stress, chronic HIF-1α activation and Nrf2 inhibition create a self-sustaining inflammatory feedback loop that contributes to tissue damage and persistent symptoms. Therefore understanding the molecular basis of LCS is critical for the development of effective therapeutic strategies. Targeting autophagy and Nrf2 activation, glycolysis inhibition, and restoration calcium homeostasis may provide novel strategies to mitigate the long-term consequences of SARS-CoV-2 infection. Future research should focus on personalized therapeutic interventions based on the dominant molecular perturbations in individual patients.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Alicja Brenk-Krakowska
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
13
|
Zhu JX, Pan ZN, Li D. Intracellular calcium channels: Potential targets for type 2 diabetes mellitus? World J Diabetes 2025; 16:98995. [PMID: 40236861 PMCID: PMC11947915 DOI: 10.4239/wjd.v16.i4.98995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/09/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disorder. Despite the availability of numerous pharmacotherapies, a range of adverse reactions, including hypoglycemia, gastrointestinal discomfort, and lactic acidosis, limits their patient applicability and long-term application. Therefore, it is necessary to screen novel therapeutic drugs for T2DM treatment that have high efficacy but few adverse effects. AMP-activated protein kinase (AMPK) stands out as one of the most powerful targets for T2DM treatment. It can be activated through energy-sensing or calcium signaling. Medications that activate AMPK through the energy-sensing mechanism exhibit remarkable potency, but they are accompanied by lactic acidosis, carrying an alarmingly high mortality rate. Interestingly, medications that activate AMPK through calcium signaling, such as gliclazide, seldom induce lactic acidosis. However, the efficacy of gliclazide is much lower than metformin. Therefore, it is necessary to explore targets that activate AMPK via calcium signaling to avoid lactic acidosis while maintaining high potency. Ion channels are the main controller of intracellular calcium flow. Specific agonists and inhibitors targeting ion channels have been reported to activate AMPK. In this review, we will summarize the structure and function of calcium-permeable ion channels and discuss the potential of targeting these calcium channels for T2DM treatment.
Collapse
Affiliation(s)
- Jia-Xuan Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang Province, China
| | - Zhao-Nan Pan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang Province, China
| | - Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|
14
|
Wang XQ, Yin S, Wang QW, Bai WW, Tan RH, Chen L, Zhang ZS, Wang XR, Zhou SN, Wang SX, Yao JC, Guo T. Vitamin B6 allosterically activates AMPK to promote postischemic angiogenesis in mice. Eur J Pharmacol 2025; 993:177413. [PMID: 39986591 DOI: 10.1016/j.ejphar.2025.177413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Angiogenesis contributes to heart functional recovery after acute myocardial infraction (AMI). We have previously reported that sublimation of vitamin B6 (VB6) prevents multiple cardiovascular diseases. Whether VB6 promotes angiogenesis to prevent cardiac dysfunction following AMI remains unknown. Angiogenesis was evaluated by measuring the number of tube formation in vitro and neovascularization by staining CD31 in vivo. Cardiac function was measured using echocardiography. VB6 upregulates cell migration and tubule formation in cultured human umbilical vein endothelial cells, accompanied with increased AMP-activated protein kinase (AMPK) alpha T172 phosphorylation and vascular endothelial growth factor A production. While, these effects are abolished by AMPK inhibitor compound C and ADaM-site activator 991. Mechanistically, VB6 allosterically activated AMPK by interacting with AMPKβ subunit, resulting in a stable conformation of AMPKαβγ complex with AMPKα-T172 phosphorylation. In vivo, long-term supplementation of VB6 significantly improves heart functions, increases neovascularization, and decreases cytokines in mice following AMI. In conclusion, VB6 promotes heart functional recovery through AMPK-mediated angiogenesis following AMI. In perspective, ischemic heart injury is limited by VB6.
Collapse
Affiliation(s)
- Xue-Qing Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiovascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sen Yin
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Neurology, Qilu Hospital of Shandong University, Jinan, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, China
| | - Qian-Wen Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wen-Wu Bai
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Rui-Hang Tan
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Chen
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen-Shan Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Rui Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Sheng-Nan Zhou
- Department of Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Shuang-Xi Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Jing-Chun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi, China.
| | - Tao Guo
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
15
|
Son SM, Siddiqi FH, Lopez A, Ansari R, Tyrkalska SD, Park SJ, Kunath T, Metzakopian E, Fleming A, Rubinsztein DC. Alpha-synuclein mutations mislocalize cytoplasmic p300 compromising autophagy, which is rescued by ACLY inhibition. Neuron 2025:S0896-6273(25)00247-8. [PMID: 40262613 DOI: 10.1016/j.neuron.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Triplications and certain point mutations in the SNCA gene, encoding alpha-synuclein (α-Syn), cause Parkinson's disease (PD). Here, we demonstrate that the PD-causing A53T α-Syn mutation and elevated α-Syn expression perturb acetyl-coenzyme A (CoA) and p300 biology in human neurons and in the CNS of zebrafish and mice. This dysregulation is mediated by activation of ATP-citrate lyase (ACLY), a key enzyme that generates acetyl-CoA in the cytoplasm, via two mechanisms. First, ACLY activity increases acetyl-CoA levels, which activate p300. Second, ACLY activation increases LKB1 acetylation, which inhibits AMPK, leading to increased cytoplasmic and decreased nuclear p300. This lowers histone acetylation and increases acetylation of cytoplasmic p300 substrates, like raptor, which causes mechanistic target of rapamycin complex 1 (mTORC1) hyperactivation, thereby impairing autophagy. ACLY inhibitors rescue pathological phenotypes in PD neurons, organoids, zebrafish, and mouse models, suggesting that this pathway is a core feature of α-Syn toxicity and that ACLY may be a suitable therapeutic target.
Collapse
Affiliation(s)
- Sung Min Son
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Farah H Siddiqi
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Ana Lopez
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rizwan Ansari
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Sylwia D Tyrkalska
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - So Jung Park
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK; bit.bio, The Dorothy Hodgkin Building, Babraham Research Campus, Cambridge, UK
| | - Angeleen Fleming
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Ca i 2+, HIF-1α, Nrf2 and autophagy. Front Immunol 2025; 16:1558263. [PMID: 40264757 PMCID: PMC12012389 DOI: 10.3389/fimmu.2025.1558263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chronic inflammation is an important component of many diseases, including autoimmune diseases, intracellular infections, dysbiosis and degenerative diseases. An important element of this state is the mainly positive feedback between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide (NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1α) stabilisation and mitochondrial oxidative stress, which, under normal conditions, enhance the response against pathogens. Autophagy and the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly negatively coupled with the above-mentioned elements to maintain the defence response at a level appropriate to the severity of the infection. The current review is the first attempt to build a multidimensional model of cellular self-regulation of chronic inflammation. It describes the feedbacks involved in the inflammatory response and explains the possible pathways by which inflammation becomes chronic. The multiplicity of positive feedbacks suggests that symptomatic treatment of chronic inflammation should focus on inhibiting multiple positive feedbacks to effectively suppress all dysregulated elements including inflammation, oxidative stress, calcium stress, mito-stress and other metabolic disturbances.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
17
|
Kaushik AS, Agarwal V, Kumar N, Rehman M, Chaudhary R, Srivastava S, Srivastava S, Mishra V. Stimulation of auricular vagus nerve ameliorates chronic stress induced metabolic syndrome via activation of Sirtuin-6. Biochem Biophys Res Commun 2025; 756:151567. [PMID: 40056501 DOI: 10.1016/j.bbrc.2025.151567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Chronic stress is one of the potential causes of the progression of metabolic syndrome (MS). Chronic stress decreases the release of Sirtuin-6 (SIRT6), which regulates MS by controlling glucose, insulin, lipids, and hypertension. Vagus nerve stimulation (VNS) activates SIRT6 via the cholinergic anti-inflammatory pathway (CAP). However, the effectiveness of VNS therapy for treating MS induced by chronic stress has not yet been studied. In this study, we first validated a rat model of chronic unpredictable stress (CUS) and assessed the characteristic features of MS. The CUS rats were exposed to random stressors daily for 8 weeks. The stress response was then confirmed by behavioral alteration and elevated serum corticosterone levels in rats, as measured by various behavioral tests and an ELISA kit, respectively. The MS characteristics in CUS rats were assessed using measurements of fasting blood glucose (FBG), systolic blood pressure (SBP), lipid indices, insulin levels, and HOMA-IR. The stressed animals demonstrated a rise in FBG, SBP, and insulin along with altered lipid indices. After CUS, the rats were treated with VNS (6 Hz, 1.0 ms, 6 V, for 40 min × 14 days, alternatively), and their metabolic activity and vagal flow were assessed. Moreover, SIRT6 and AMP-activated protein kinase (AMPK) expression in rats was also assessed by immunohistochemistry and mRNA expression of liver and pancreatic tissue. SIRT6 and AMPK expression was decreased in CUS animals. Interestingly, VNS treatment attenuated CUS induced MS-associated parameters. These results indicate that VNS may be a beneficial complementary and non-pharmacological method for managing CUS-associated MS.
Collapse
Affiliation(s)
- Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, (U.P.), India
| | - Vipul Agarwal
- MIT College of Pharmacy, Ram Ganga Vihar Phase-II, Moradabad, 244001, (U.P.), India
| | - Neeraj Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, (U.P.), India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, (U.P.), India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, (U.P.), India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, (U.P.), India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, (U.P.), India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, (U.P.), India.
| |
Collapse
|
18
|
Jeon KH, Shin JH, Jo HJ, Kim H, Park S, Kim S, Lee J, Kim E, Na Y, Kwon Y. Computer-aided discovery of novel AMPK activators through virtual screening and SAR-driven synthesis. Eur J Med Chem 2025; 287:117318. [PMID: 39904145 DOI: 10.1016/j.ejmech.2025.117318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
AMPK is a promising target for various chronic illnesses such as diabetes and Alzheimer's disease (AD). We sought to develop a novel small molecule that directly activates AMPK, with the potential to fundamentally modulate the pathogenic mechanisms of the metabolic disorders. To identify a potent novel pharmacophore in an unbiased way, we performed structure-based virtual screening on a commercially available chemical library, and evaluated the actual AMPK activity of 118 compounds selected from 100,000 compounds based on docking scores. Additional iterative molecular docking studies and experimental evaluation of AMPK activity led us to select a hit compound, B1, with a chromone backbone. Using the hit compound and other compounds structurally similar to the hit compound, we identified the chalcone structure as a new scaffold with more efficient interactions with key residues required for AMPK activation. From the newly designed and synthesized chalcone derivatives, we discovered compound 6 as a candidate compound. Compound 6 showed the most efficient interactions with the key residues of AMPK at in silico study and demonstrated significant activation of AMPK in both in vitro and in cellular assays.
Collapse
Affiliation(s)
- Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea; Gradutate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Korea
| | - Jae-Ho Shin
- College of Pharmacy, CHA University, Pocheon, 11160, Republic of Korea
| | - Hyun-Ji Jo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyunjeong Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei Metabolism-Dementia Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seojeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Juhong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei Metabolism-Dementia Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon, 11160, Republic of Korea.
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea; Gradutate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
19
|
Rong D, Gao L, Chen Y, Gao XZ, Tang M, Tang H, Gao Y, Lu G, Ling ZQ, Shen HM. Suppression of the LKB1-AMPK-SLC7A11-GSH signaling pathway sensitizes NSCLC to albumin-bound paclitaxel via oxidative stress. Redox Biol 2025; 81:103567. [PMID: 40023979 PMCID: PMC11915006 DOI: 10.1016/j.redox.2025.103567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Albumin-bound paclitaxel (nab-PTX) is an important chemotherapeutic drug used for the treatment of advanced and metastatic non-small cell lung cancer (NSCLC). One critical issue in its clinical application is the development of resistance; thus, a deeper understanding of the mechanisms underlying the primary resistance to nab-PTX is expected to help to develop effective therapeutic strategies to overcome resistance. In this study, we made an unexpected discovery that NSCLC with wild-type (WT) Liver kinase B1 (LKB1), an important tumor suppressor and upstream kinase of AMP-activated protein kinase (AMPK), is more resistant to nab-PTX than NSCLC with mutant LKB1. Mechanistically, LKB1 status does not alter the intracellular concentration of nab-PTX or affect its canonical pharmacological action in promoting microtubule polymerization. Instead, we found that LKB1 mediates AMPK activation, leading to increased expression of SLC7A11, a key amino acid transporter and intracellular level of glutathione (GSH), which then attenuates the production of reactive oxygen species (ROS) and apoptotic cell death induced by nab-PTX. On the other hand, genetic or pharmacological inhibition of AMPK in LKB1-WT NSCLC reduces the expression of SLC7A11 and intracellular GSH, increases ROS level, and eventually promotes the apoptotic cell death induced by nab-PTX in vitro. Consistently, the combination of nab-PTX with an AMPK inhibitor exhibits a greater therapeutic efficacy in LKB1-WT NSCLC using xenograft models in vivo. Taken together, our data reveal a novel role of LKB1-AMPK-SLC7A11-GSH signaling pathway in the primary resistance to nab-PTX, and provide a therapeutic strategy for the treatment of LKB1-WT NSCLC by targeting the LKB1-AMPK-SLC7A11-GSH pathway.
Collapse
Affiliation(s)
- Dade Rong
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Liangliang Gao
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Yiguan Chen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Xiang-Zheng Gao
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Mingzhu Tang
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Haimei Tang
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China; Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuan Gao
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Qiang Ling
- Experimental Research Centre, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China.
| |
Collapse
|
20
|
Goyal A, Chopra V, Garg K, Sharma S. Mechanisms coupling the mTOR pathway to chronic obstructive pulmonary disease (COPD) pathogenesis. Cytokine Growth Factor Rev 2025; 82:55-69. [PMID: 39799015 DOI: 10.1016/j.cytogfr.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 01/15/2025]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a poorly reversible respiratory disorder distinguished by dyspnea, cough, expectoration and exacerbations due to abnormality of airways or emphysema. In this review, we consider the therapeutic potential of targeting Mammalian target of Rapamycin (mTOR) for treating COPD. The mTOR is a highly conserved serine-threonine protein kinase that integrates signals from growth factors and nutrients to control protein synthesis, lipid biogenesis and metabolism. Dysregulated mTOR pathway signaling due to genetic factors or cigarette smoking impairs autophagy, driving the buildup of abnormal cells and damaged proteins, resulting in inflammation and oxidative stress. Persistent mTOR activation also contributes to pulmonary vascular cell proliferation, facilitating the development of pulmonary resistance in COPD. Rapamycin, an inhibitor of mTOR, prevents the buildup of senescent cells in the lungs of COPD patients and inhibits the release of lung tissue-damaging proteases. mTOR also impacts the corticosteroid sensitivity in COPD patients by regulating the levels of histone deacetylases. The emerging role of gut-lung axis dysbiosis in the progression of COPD and its influence on mTOR further highlights the relevance of the mTOR pathway in COPD pathophysiology.
Collapse
Affiliation(s)
- Ankita Goyal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Vishal Chopra
- Department of Pulmonary Medicine, Government Medical College, Patiala, India
| | - Kranti Garg
- Department of Pulmonary Medicine, Government Medical College, Patiala, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India.
| |
Collapse
|
21
|
Zhang F, Yue K, Sun S, Lu S, Jia G, Zha Y, Zhang S, Chou CJ, Liao C, Li X, Duan Y. Targeting Histone Deacetylase 11 with a Highly Selective Inhibitor for the Treatment of MASLD. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412903. [PMID: 39976110 PMCID: PMC12005767 DOI: 10.1002/advs.202412903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/26/2025] [Indexed: 02/21/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents the most prevalent chronic liver disorder globally. Due to its intricate pathogenesis and the current lack of efficacious pharmacological interventions, there is a pressing need to discover novel therapeutic targets and agents for MASLD treatment. Herein, it is found that histone deacetylase 11 (HDAC11), a subtype of HDAC family, is markedly overexpressed in both in vitro and in vivo models of MASLD. Furthermore, the knockdown of HDAC11 is observed to mitigate lipid accumulation in hepatic cells. A highly selective HDAC11 inhibitor, B6, which exhibits favorable pharmacokinetic property and liver distribution, is further designed and synthesized. Integrating RNA-seq data with in vivo and in vitro experiments, B6 is found to inhibit de novo lipogenesis (DNL) and promote fatty acid oxidation, thus mitigating hepatic lipid accumulation and pathological symptoms in MASLD mice. Further omics analysis and experiments reveal that B6 enhances the phosphorylation of AMPKα1 at Thr172 through the inhibition of HDAC11, consequently modulating DNL and fatty acid oxidation in the liver. In summary, this study identifies HDAC11 as a potential therapeutic target in MASLD and reports the discovery of a highly selective HDAC11 inhibitor with favorable drug-like properties for the treatment of MASLD.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Cardiologythe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of TechnologyHefei230031China
| | - Kairui Yue
- Key Laboratory of Marine DrugsChinese Ministry of EducationSchool of Medicine and PharmacyOcean University of China5 Yushan RoadQingdao266003China
| | - Simin Sun
- Key Laboratory of Marine DrugsChinese Ministry of EducationSchool of Medicine and PharmacyOcean University of China5 Yushan RoadQingdao266003China
| | - Shengyuan Lu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of TechnologyHefei230031China
| | - Geng Jia
- Key Laboratory of Marine DrugsChinese Ministry of EducationSchool of Medicine and PharmacyOcean University of China5 Yushan RoadQingdao266003China
| | - Yang Zha
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of TechnologyHefei230031China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of TechnologyHefei230031China
| | - C. James Chou
- Department of Drug Discovery and Biomedical SciencesCollege of PharmacyMedical University of South CarolinaCharlestonSC29425USA
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of TechnologyHefei230031China
| | - Xiaoyang Li
- Key Laboratory of Marine DrugsChinese Ministry of EducationSchool of Medicine and PharmacyOcean University of China5 Yushan RoadQingdao266003China
- Marine Biomedical Research Institute of QingdaoQingdaoShandong266071China
| | - Yajun Duan
- Department of Cardiologythe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| |
Collapse
|
22
|
Ma P, Ou H, Cai J, Zhang Y, Ou Y. DRD2-Mediated AMPK Ubiquitination Regulates the Occurrence of Hepatic Steatosis. Liver Int 2025; 45:e70053. [PMID: 40052721 DOI: 10.1111/liv.70053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 05/13/2025]
Abstract
BACKGROUND & AIMS G protein-coupled receptors (GPCRs) are important potential drug targets for the treatment of metabolic disorders. The D2 dopamine receptor (DRD2), a GPCR receptor, is a member of the dopamine receptor family. However, the role of DRD2 in regulating lipid metabolism, especially in hepatic steatosis, is unclear. METHODS Eight-week male mice were fed HFHC/MCD to induce the MASH model. AAV2/8 containing the TBG promoter was used to knock down and overexpress DRD2 in mouse liver. Co-immunoprecipitation, Western lotting, immunofluorescence, and immunohistochemistry were used to investigate the mechanisms and screen DRD2 antagonists. RESULTS The study found that activation of PKC leads to the elevation and internalisation of DRD2 in a high-fat environment. Knockdown of DRD2 in mouse liver can effectively interfere with the progression of MASH, while overexpression of DRD2 significantly aggravates the process of MASH. The study on the mechanism of DRD2 regulating lipid metabolism found that the internalisation of DRD2 could lead to dephosphorylation of pAKT (T308) by binding to β-arrestin2 and pAKT, thereby inducing ubiquitin-dependent degradation of AMPK and exacerbating steatosis. L-741626, a DRD2 antagonist, was found to interfere with the internalisation of DRD2 in a high-fat environment. It has been shown that L-741626 can treat MASH by regulating the AKT-AMPK signalling axis in vitro and in vivo. CONCLUSIONS In conclusion, this study demonstrated that internalisation of DRD2 in a high-fat environment aggravated MASH progression through the AKT-AMPK signalling axis. Furthermore, L-741626, as a DRD2 antagonist, has the potential to treat MASH.
Collapse
Affiliation(s)
- Peng Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hao Ou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junze Cai
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanli Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Kruczkowska W, Gałęziewska J, Buczek P, Płuciennik E, Kciuk M, Śliwińska A. Overview of Metformin and Neurodegeneration: A Comprehensive Review. Pharmaceuticals (Basel) 2025; 18:486. [PMID: 40283923 PMCID: PMC12030719 DOI: 10.3390/ph18040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
This comprehensive review examines the therapeutic potential of metformin, a well-established diabetes medication, in treating neurodegenerative disorders. Originally used as a first-line treatment for type 2 diabetes, recent studies have begun investigating metformin's effects beyond metabolic disorders, particularly its neuroprotective capabilities against conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, and multiple sclerosis. Key findings demonstrate that metformin's neuroprotective effects operate through multiple pathways: AMPK activation enhancing cellular energy metabolism and autophagy; upregulation of antioxidant defenses; suppression of inflammation; inhibition of protein aggregation; and improvement of mitochondrial function. These mechanisms collectively address common pathological features in neurodegeneration and neuroinflammation, including oxidative stress, protein accumulation, and mitochondrial dysfunction. Clinical and preclinical evidence supporting metformin's association with improved cognitive performance, reduced risk of dementia, and modulation of pathological hallmarks of neurodegenerative diseases is critically evaluated. While metformin shows promise as a therapeutic agent, this review emphasizes the need for further investigation to fully understand its mechanisms and optimal therapeutic applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Julia Gałęziewska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Paulina Buczek
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
24
|
Phengpol N, Promsan S, Pengrattanachot N, Jaruan O, Sutthasupha P, Lungkaphin A. Maternal obesity promotes impaired renal autophagic process and kidney injury in male offspring. Int J Obes (Lond) 2025:10.1038/s41366-025-01751-3. [PMID: 40133698 DOI: 10.1038/s41366-025-01751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 02/12/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Obesity during pregnancy increases the risk of obesity, insulin resistance, diabetes, and the development and progression of chronic kidney disease (CKD) in later life in offspring. Impaired renal autophagic process is linked to kidney dysfunction in the setting of increased renal lipid accumulation. The aim of this study was to elucidate the effect of maternal obesity on kidney injury related to impaired renal autophagic process in the offspring. METHODS Maternal obesity model was conducted using female C57BL/6 mice fed with high-fat diet (HFD) for 8 weeks before mating. HFD was consecutively maintained throughout gestation and lactation. Male offspring were selected for investigation after weaning. Metabolic parameters and kidney morphology were performed. Renal insulin signaling, lipid metabolism, lipid accumulation, fibrosis and autophagy were determined. RESULTS Male offspring of HFD fed mothers developed obesity with insulin resistance, hyperglycemia, hyperlipidemia and consequently promoted kidney injury. Maternal obesity increased CD36, FAS, SREBP1c and Perilipin-2 while suppressed PPARα and CPT1A. The reduction of AMPK, SIRT1, Beclin-1, LC3B, and LAMP2 and the elevation of mTOR and SQSTM1/P62 were observed. These findings indicated the impairment of autophagy and renal lipid metabolism exaggerating renal lipid accumulation in the offspring of maternal obesity. CONCLUSIONS This study demonstrated that long-term HFD consumption in mothers promoted obesity with insulin resistance related kidney injury through the impairment of autophagic process and renal lipid metabolism in the offspring. These circumstances accelerated kidney injury and contributed to an increased susceptibility to CKD in male offspring of maternal obesity.
Collapse
Affiliation(s)
- Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Onanong Jaruan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Functional Foods for Health and Disease, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Functional Food Research Center for Well-being, Multidisciplinary Research Institute Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
25
|
Ran Q, Li A, Yao B, Xiang C, Qu C, Zhang Y, He X, Chen H. Action and therapeutic targets of folliculin interacting protein 1: a novel signaling mechanism in redox regulation. Front Cell Dev Biol 2025; 13:1523489. [PMID: 40143966 PMCID: PMC11936992 DOI: 10.3389/fcell.2025.1523489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Rapid activation of adenosine monophosphate-activated protein kinase (AMPK) induces phosphorylation of mitochondrial-associated proteins, a process by which phosphate groups are added to regulate mitochondrial function, thereby modulating mitochondrial energy metabolism, triggering an acute metabolic response, and sustaining metabolic adaptation through transcriptional regulation. AMPK directly phosphorylates folliculin interacting protein 1 (FNIP1), leading to the nuclear translocation of transcription factor EB (TFEB) in response to mitochondrial functions. While mitochondrial function is tightly linked to finely-tuned energy-sensing mobility, FNIP1 plays critical roles in glucose transport and sensing, mitochondrial autophagy, cellular stress response, and muscle fiber contraction. Consequently, FNIP1 emerges as a promising novel target for addressing aberrant mitochondrial energy metabolism. Recent evidence indicates that FNIP1 is implicated in mitochondrial biology through various pathways, including AMPK, mTOR, and ubiquitination, which regulate mitochondrial autophagy, oxidative stress responses, and skeletal muscle contraction. Nonetheless, there is a dearth of literature discussing the physiological mechanism of action of FNIP1 as a novel therapeutic target. This review outlines how FNIP1 regulates metabolic-related signaling pathways and enzyme activities, such as modulating mitochondrial energy metabolism, catalytic activity of metabolic enzymes, and the homeostasis of metabolic products, thereby controlling cellular function and fate in different contexts. Our focus will be on elucidating how these metabolite-mediated signaling pathways regulate physiological processes and inflammatory diseases.
Collapse
Affiliation(s)
- Qingzhi Ran
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Aoshuang Li
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Bo Yao
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Chunrong Xiang
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Chunyi Qu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yongkang Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuanhui He
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Hengwen Chen
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Saikia L, Talukdar NC, Dutta PP. Exploring the Therapeutic Role of Flavonoids Through AMPK Activation in Metabolic Syndrome: A Narrative Review. Phytother Res 2025; 39:1403-1421. [PMID: 39789806 DOI: 10.1002/ptr.8428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025]
Abstract
Metabolic syndrome (MetS) is a cluster of interrelated metabolic abnormalities that significantly elevate the risk of cardiovascular disease, obesity, and diabetes. Flavonoids, a diverse class of bioactive polyphenolic compounds found in plant-derived foods and beverages, have garnered increasing attention as potential therapeutic agents for improving metabolic health. This review provides a comprehensive analysis of the therapeutic effects of flavonoids in the context of the MetS, with a particular focus on their modulation of the AMP-activated protein kinase (AMPK) pathway. AMPK serves as a central regulator of cellular energy balance, glucose metabolism, and lipid homeostasis, making it a critical target for metabolic intervention. Through a systematic review of the literature up to April 2024, preclinical studies across various flavonoid subclasses, including flavonols, and flavan-3-ols, were analysed to elucidate their mechanistic roles in metabolic regulation. Many studies suggests that flavonoids enhance glycolipid metabolism by facilitating glucose transporter 4 (GLUT4) translocation and activating the AMPK pathway, thereby improving glycemic control in diabetes models. In obesity-related studies, flavonoids demonstrated significant inhibitory effects on lipid synthesis, reduced adipogenesis, and attenuated proinflammatory cytokine secretion via AMPK activation. These findings show the broad therapeutic potential of flavonoids in addressing the MetS and its associated disorders. While these preclinical insights highlight flavonoids as promising natural agents for metabolic health improvement, it is important to note that their excessive concentrations may disrupt these pathways, potentially leading to metabolic imbalance and cytotoxicity. Further studies and clinical trials are essential to determine optimal dosing regimens, formulations, and the long-term safety and efficacy of flavonoids. This review highlights the importance of flavonoids for natural interventions targeting MetS and its comorbidities, offering a foundation for future translational research.
Collapse
Affiliation(s)
- Lunasmrita Saikia
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | | | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| |
Collapse
|
27
|
Zheng C, Wan M, Guo Q, Duan Y, Yin Y. Glutamate increases the lean percentage and intramuscular fat content and alters gut microbiota in Shaziling pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:110-119. [PMID: 39967691 PMCID: PMC11833783 DOI: 10.1016/j.aninu.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 02/20/2025]
Abstract
This study aimed to explore the effects of glutamate (Glu) supplementation on the growth performance, carcass traits, meat quality, composition of amino acids and fatty acids in the longissimus dorsi muscle, and the colonic microbial community of Shaziling pigs. A total of 48 healthy male Shaziling pigs (150 d, 31.56 ± 0.95 kg) were randomly assigned to two groups, and fed a basal diet with no supplement (control group) or supplemented with 1% Glu (Glu group) for 51 d, and 6 pigs per group were finally slaughtered. Glu significantly increased the average daily gain (P = 0.039), lean percentage (P = 0.023), and intramuscular fat (IMF) content (P = 0.015), and decreased the fat percentage (P = 0.021) of Shaziling pigs. In the muscle, Glu increased the concentrations of inosine-5'-monophosphate (P = 0.094), Fe (P = 0.002), Cu (P = 0.052), and monounsaturated fatty acids (MUFAs) (P = 0.024), and decreased the content of C18:2n6 (P = 0.011), n-6 polyunsaturated fatty acids (n-6 PUFAs) (P = 0.014), and PUFAs (P = 0.014). Moreover, Glu significantly upregulated the mRNA expression of adipogenesis-related genes (FAS, SREBP-1C) (P = 0.032, P = 0.026) and muscle growth-related genes (MyHCⅡb, MyHCⅡx) (P = 0.038, P = 0.019) in the muscle, and increased the relative abundance of Spirochaetota (P < 0.001) and the acetic acid content in the colon (P = 0.039). Correlation analysis indicated that the acetic acid content was positively correlated with the relative Spirochaetota abundance and the IMF content, and a negative trend with the fat percentage of Shaziling pigs. In conclusion, these results indicated that Glu could simultaneously increase the lean percentage and IMF content and decrease the fat percentage of Shaziling pigs, and these beneficial effects may be related to increased colonic Spirochaetota abundance and acetic acid concentrations.
Collapse
Affiliation(s)
- Changbing Zheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengliao Wan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yulong Yin
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
28
|
Grewal T, Kempa S, Buechler C. Lipedema: A Disease Triggered by M2 Polarized Macrophages? Biomedicines 2025; 13:561. [PMID: 40149538 PMCID: PMC11940465 DOI: 10.3390/biomedicines13030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Lipedema is a progressive disease that results in the bilateral and symmetrical accumulation of subcutaneous fat in the legs and/or arms, affecting almost exclusively women. Methods: A comprehensive review of the peer-reviewed literature was conducted between November 2024 and February 2025. Results: The pathophysiology of lipedema is complex and, especially in the early stages, shows similarities to obesity, involving adipocytes, adipose tissue-resident macrophages, and endothelial cells. In lipedema, systemic levels and the adipocyte expression of the classical adipokines adiponectin and leptin appear normal, while it remains unclear if markers of inflammation and oxidative stress are increased. Macrophages in the adipose tissue of patients have an anti-inflammatory M2 phenotype and express high levels of the scavenger receptor CD163. These cells affect adipogenesis and seem to have a central role in adipose tissue accumulation. Increased lymphatic and blood vessel permeability are comorbidities of lipedema that occur in early disease states and may contribute to disease progression. Conclusions: This review summarizes our current understanding of the pathophysiology of lipedema with a focus on the role of stromal vascular localized M2 macrophages.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Sally Kempa
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Christa Buechler
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
29
|
Park JH, Jung KH, Jia D, Yang S, Attri KS, Ahn S, Murthy D, Samanta T, Dutta D, Ghidey M, Chatterjee S, Han SY, Pedroza DA, Tiwari A, Lee JV, Davis C, Li S, Putluri V, Creighton CJ, Putluri N, Dobrolecki LE, Lewis MT, Rosen JM, Onuchic JN, Goga A, Kaipparettu BA. Biguanides antithetically regulate tumor properties by the dose-dependent mitochondrial reprogramming-driven c-Src pathway. Cell Rep Med 2025; 6:101941. [PMID: 39933530 PMCID: PMC11866546 DOI: 10.1016/j.xcrm.2025.101941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/27/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
The biguanide metformin attenuates mitochondrial oxidation and is proposed as an anti-cancer therapy. However, recent clinical studies suggest increased proliferation and fatty acid β-oxidation (FAO) in a subgroup of patients with breast cancer (BC) after metformin therapy. Considering that FAO can activate Src kinase in aggressive triple-negative BC (TNBC), we postulate that low-dose biguanide-driven AMPK-ACC-FAO signaling may activate the Src pathway in TNBC. The low bioavailability of metformin in TNBC xenografts mimics metformin's in vitro low-dose effect. Pharmacological or genetic inhibition of FAO significantly enhances the anti-tumor properties of biguanides. Lower doses of biguanides induce and higher doses suppress Src signaling. Dasatinib and metformin synergistically inhibit TNBC patient-derived xenograft growth, but not in high-fat diet-fed mice. This combination also suppresses TNBC metastatic progression. A combination of biguanides with Src inhibitors provides synergy to target metastatic TNBC suffering with limited treatment options.
Collapse
Affiliation(s)
- Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kwang Hwa Jung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Sukjin Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kuldeep S Attri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Songyeon Ahn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Divya Murthy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tagari Samanta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debasmita Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meron Ghidey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Somik Chatterjee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seung Yeop Han
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diego A Pedroza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abha Tiwari
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joyce V Lee
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Caitlin Davis
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Shuting Li
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lacey E Dobrolecki
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Andrei Goga
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Matos ALSA, Ovens AJ, Jakobsen E, Iglesias-Gato D, Bech JM, Friis S, Bak LK, Madsen GI, Oakhill JS, Puustinen P, Moreira JMA. Salicylate-Elicited Activation of AMP-Activated Protein Kinase Directly Triggers Degradation of C-Myc in Colorectal Cancer Cells. Cells 2025; 14:294. [PMID: 39996767 PMCID: PMC11854256 DOI: 10.3390/cells14040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/03/2024] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Aspirin has consistently shown preventive effects in some solid cancers, notably colorectal cancer. However, the precise molecular mechanisms underlying this positive effect have remained elusive. In this study, we used an azoxymethane-induced mouse model of colon carcinogenesis to identify aspirin-associated molecular alterations that could account for its cancer-preventive effect. Transcriptomic analysis of aspirin-treated mice showed a strong reduction in c-Myc protein levels and effects on the Myc-dependent transcriptional program in colonic cells. Proto-oncogene c-Myc cooperates with AMP-activated protein kinase (AMPK) to control cellular energetics. Here, we show that salicylate, the active metabolite of aspirin, reduces c-Myc protein expression levels through multiple mechanisms that are both AMPK dependent and independent. This effect is cell-type dependent and occurs at both the transcriptional and post-translational levels. Salicylate-induced AMPK activation leads to the phosphorylation of c-Myc at Thr400, as well as its destabilization and degradation. Our results reveal a complex, multilayered, negative effect of salicylate on c-Myc protein abundance and suggest that chronic depletion of c-Myc can counteract the neoplastic transformation of colorectal epithelium, underpinning the preventive effect of aspirin on colorectal cancer.
Collapse
Affiliation(s)
- Ana Laura S. A. Matos
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- CAPES Foundation, Ministry of Education of Brazil, Brasília DF 70040-020, Brazil
| | - Ashley J. Ovens
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia (J.S.O.)
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Diego Iglesias-Gato
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jacob M. Bech
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Sino-Danish Center for Education and Research, Aarhus University, 8000 Aarhus, Denmark
| | - Stine Friis
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lasse Kristoffer Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, 2600 Glostrup, Denmark
- Translational Research Center (TRACE), Copenhagen University Hospital-Rigshospitalet, 2600 Glostrup, Denmark
| | - Gunvor I. Madsen
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark
| | - Jonathan S. Oakhill
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia (J.S.O.)
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pietri Puustinen
- Cell Death and Metabolism, Danish Cancer Society Research Center (DCRC), 2100 Copenhagen, Denmark
| | - José M. A. Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
31
|
Zhang L, Zheng Y, Shao M, Chen A, Liu M, Sun W, Li T, Fang Y, Dong Y, Zhao S, Luo H, Feng J, Wang Q, Li L, Zheng Y. AlphaFold-based AI docking reveals AMPK/SIRT1-TFEB pathway modulation by traditional Chinese medicine in metabolic-associated fatty liver disease. Pharmacol Res 2025; 212:107617. [PMID: 39832686 DOI: 10.1016/j.phrs.2025.107617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic, progressive disorder characterized by hepatic steatosis and excessive lipid accumulation. Its high global adult prevalence (approximately 50.7 %) is a significant concern worldwide. However, FDA-approved therapeutic drugs remains lacking. Qigui Jiangzhi Formula (QGJZF) shows promise in treating MAFLD by effectively decreasing lipid levels and improving hepatic steatosis, however its mechanisms remain unclear. This study investigated QGJZF's effects in high-fat diet-induced zebrafish and golden hamsters, and in palmitate (PA) and oleic acid (OA) - induced HepG2 cells, using the SymMap database to identify potential targets and pathways of QGJZF in MAFLD and AlphaFold algorithms to predict protein structures. In vivo, QGJZF significantly alleviated hepatic lipid deposition. Intriguingly, QGJZF decreased lipid droplets and its levels are negative correlated with the numbers of autolysosomes, indicating that QGJZF's mechanism of ameliorating liver lipid deposition may be related to the regulation of autophagy. QGJZF upregulated the expressions of phosphorylated -Adenosine 5'-monophosphate (AMP) - activated protein kinase (p-AMPK), Sirtuin deacetylase 1 (SIRT1) and Transcription factor EB (TFEB), accompanied by the changes in autophagy-related proteins. In vitro, QGJZF inhibited the lipid deposition in PA/OA-stimulated HepG2 cells, and its effect was blocked by an autophagy inhibitor Baf-A1, which was mediated through upregulation of TFEB and its mediated autophagy-lysosomal pathway. Moreover, cotreatment with AMPK inhibitor Compound C, the regulation of QGJZF on TFEB, SIRT1, autophagy-related protein levels, and lipid deposition were reversed. Network pharmacology identified the PRKAA2 (AMPK) and SIRT1 as key hub targets. Futher analysis of their structures using AlphaFold3 algorithms, yielded high-ranking scores of 0.97 and 0.93, respectively. Liquid chromatography-mass spectrometry combined with molecular docking expounded its five compounds in QGJZF binding to AMPK protein. These findings suggest that QGJZF as a therapeutic agent in augmenting autophagy-facilitated lipid clearance for the management of MAFLD via AMPK/SIRT1-TFEB axis.
Collapse
Affiliation(s)
- Lulu Zhang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, China
| | - Yi Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Aiping Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Meiyi Liu
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Dong
- Monitoning and Statistical Research Center, National Administration of Traditional Chinese Medicine, Beijing 100600, China
| | - Shipeng Zhao
- Graduate School of China Academy of Chinese Medical Sciences, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Luo
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China.
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
32
|
Liu G, Yang D, Meng J, He Q, Wu D. The combination of gemcitabine and albumin-bound paclitaxel effectively inhibits de novo lipogenesis in pancreatic cancer cells by targeting the AMPK/SREBP1 pathway. Biochem Pharmacol 2025; 232:116721. [PMID: 39694195 DOI: 10.1016/j.bcp.2024.116721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/24/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Abnormal de novo lipogenesis and reprogramming of lipid metabolism have been associated with the development and progression of various cancers, including pancreatic cancer. Gemcitabine (GEM) combined with albumin-bound paclitaxel (nab-PTX) is the first-line chemotherapeutic agent for pancreatic cancer. There have been many studies on the molecular mechanisms of gemcitabine and paclitaxel in cancer treatment. Still, the effects of the combination on lipid metabolism and the specific mechanisms have not been explored. This study found that GEM combined with nab-PTX inhibited pancreatic cancer cell proliferation and de novo lipogenesis. The exact mechanism is that GEM combined with nab-PTX induces adenosine triphosphate (ATP) depletion and activates AMP-activated protein kinase (AMPK) in pancreatic cancer cells, which in turn inhibits sterol regulatory element-binding protein 1 (SREBP1) expression and nuclear translocation, and ultimately inhibits de novo lipogenesis in pancreatic cancer cells. In addition, we found that the novel lipid-lowering drug bempedoic acid (ETC-1002) significantly enhanced the inhibitory effect of GEM combined with nab-PTX on de novo lipogenesis in pancreatic cancer cells. These findings establish a link between GEM combined with nab-PTX and lipid metabolism, and the discovery of the novel lipid-lowering drug ETC-1002 provides a potential therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Guiyan Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Department of Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Dongxue Yang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Department of Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Jiao Meng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Department of Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Qihui He
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Department of Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Dongyuan Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Department of Harbin Medical University Cancer Hospital, Harbin 150040, China.
| |
Collapse
|
33
|
Zhong ZT, Wang XY, Pan Y, Zhou K, Chen JH, Gao YQ, Dai B, Zhou ZL, Wang RQ. AMPK: An energy sensor for non-small cell lung cancer progression and treatment. Pharmacol Res 2025; 212:107592. [PMID: 39805353 DOI: 10.1016/j.phrs.2025.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Lung cancer (LC) is the leading cause of cancer-related morbidity and mortality in China, with non-small cell lung cancer (NSCLC) accounting for 85 % of the overall lung cancer cases. AMP-activated protein kinase (AMPK) is a key regulator of energy balance and homeostasis, and its dysregulation is a common feature in various malignancies, particularly in NSCLC with mutations in Liver kinase B1 (LKB1). Studies have shown that the AMPK signalling pathway has a dual role in NSCLC progression, both inhibiting and promoting the progression of malignant tumours. Therefore, drugs targeting the AMPK signalling pathway may hold significant promise for therapeutic application in NSCLC. This review aims to examine the manifestations and mechanisms by which AMPK and its associated signalling molecules influence NSCLC progression and treatment. Firstly, we discuss the critical importance of AMPK within the mutational context of NSCLC. Secondly, we summarise the drugs and related substances that modulate the AMPK signalling pathway in NSCLC and evaluate the evidence from preclinical studies on combination AMPK-targeted therapies to address the issue of drug resistance in NSCLC under current clinical treatments. In summary, this paper highlights the critical importance of developing AMPK-targeted drugs to enhance therapeutic efficacy in NSCLC, as well as the potential for applying these drugs in clinical therapy to overcome drug resistance.
Collapse
Affiliation(s)
- Zhi-Ting Zhong
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Xu-Yan Wang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Ying Pan
- Department of Oncology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Ke Zhou
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Jing-Hui Chen
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Yu-Qi Gao
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Bo Dai
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan City, Guangdong Province 528200, China.
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China.
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China.
| |
Collapse
|
34
|
Tian HY, Yu DJ, Xie T, Xu MX, Wang YH, Sun XL, Zhou XM, Han YX, Liao QQ, Zhao YJ, Liao J, El-Kassas M, Sun XD, Zhang YY. Cordycepin alleviates metabolic dysfunction-associated liver disease by restoring mitochondrial homeostasis and reducing oxidative stress via Parkin-mediated mitophagy. Biochem Pharmacol 2025; 232:116750. [PMID: 39793718 DOI: 10.1016/j.bcp.2025.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/01/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) keeps rising with only a few drugs available. The present study aims to investigate the effects and mechanisms of cordycepin on MASLD. Male C57BL/6 mice were induced with a 90-day high-fat diet (HFD) and intraperitoneal administration with streptozotocin to establish MASLD murine model. Then they were randomly divided into the HFD and cordycepin groups (15, 30, 45 mg/kg). Cordycepin was orally given for 30 days. Serum total cholesterol (TC), triacylglyceride (TG), and aspartate aminotransferase (AST) levels were measured. L02 cells were induced by oleate acid (OA) or lipopolysaccharides (LPS), and treated with cordycepin or combined with inhibitors including chloroquine, 3-Methyladenine, and compound C. Atg7 and Parkin were knocked down in L02 cells using siRNA. Oil Red O and Nile Red staining for measuring lipid deposition. Mitochondria were visualized by transfection with mCherry-TOMM20-N10. Quantitative real-time PCR, Western blotting, and immunofluorescence staining were used to determine expressions of key molecules in inflammation, lipid metabolism, mitochondria homeostasis, and oxidative stress. Cordycepin significantly mitigated lipid deposition and ballooning in the livers of MASLD mice. Serum TC, TG, and AST levels were decreased by cordycepin. Cordycepin alleviated OA-induced lipid deposition and LPS-induced inflammation in L02 cells, attenuated oxidative stress, promoted autophagy, and maintained the autophagic flux by activating AMP-activated protein kinase (AMPK). Cordycepin reduced the accumulation of impaired mitochondria by enhancing Parkin-dependent mitophagy and promoting mitochondrial biogenesis. Cordycepin alleviates MASLD by restoring mitochondrial homeostasis and reducing oxidative stress via activating the Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Hai-Ying Tian
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Dao-Jiang Yu
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Teng Xie
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Meng-Xia Xu
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yu-Hao Wang
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xi-Lu Sun
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xin-Meng Zhou
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ying-Xuan Han
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qing-Qing Liao
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yu-Jie Zhao
- Medical College, Tibet University, Lhasa 850000, China
| | - Juan Liao
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt; Liver Disease Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Steatotic Liver Disease Study Foundation in Middle East and North Africa (SLMENA), Cairo, Egypt
| | - Xiao-Dong Sun
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Medical College, Tibet University, Lhasa 850000, China.
| | - Yuan-Yuan Zhang
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China.
| |
Collapse
|
35
|
Jaiswal V, Lee HJ. A Comprehensive Review on Graptopetalum paraguayense's Phytochemical Profiles, Pharmacological Activities, and Development as a Functional Food. PLANTS (BASEL, SWITZERLAND) 2025; 14:349. [PMID: 39942910 PMCID: PMC11820263 DOI: 10.3390/plants14030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025]
Abstract
Graptopetalum paraguayense (G. paraguayense) is a succulent plant that has been used in traditional Chinese and Taiwanese medicine, mainly for antihypertensive and hepatoprotective activities. G. paraguayense is also used as an edible vegetable, which is considered a functional food. Different in vitro, in vivo, and clinical studies have highlighted the multiple pharmacological activities of G. paraguayense, which include anticancer, antibacterial, antiviral, antiasthma, antihypertensive, skin-whitening and anti-aging, anti-Alzheimer, neuroprotective, and hepatoprotective activities. Numerous studies revealed the antioxidant and anti-inflammatory potential of G. paraguayense, which may be the major contributing factor for multiple pharmacological activities and the protective effect of G. paraguayense on pancreatic, liver, lung, colon, and brain diseases. Initial safety studies on animal models also support the therapeutic candidature of G. paraguayense. The presence of numerous bioactive phytochemicals, especially polyphenols, and the identification of important disease targets of G. paraguayense emphasize its high therapeutic potential. The lack of a directional approach and limited in vivo studies limit the development of G. paraguayense against important diseases. Still, a compilation of pharmacological activities and target pathways of G. paraguayense is missing in the literature. The current review not only compiles pharmacological activities and phytochemicals but also highlights gaps and proposes future directions for developing G. paraguayense as a candidate against important diseases.
Collapse
Affiliation(s)
- Varun Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
36
|
Theodorakopoulou A, Pylarinou I, Anastasiou IA, Tentolouris N. The Putative Antidiabetic Effect of Hypericum perforatum on Diabetes Mellitus. Int J Mol Sci 2025; 26:354. [PMID: 39796209 PMCID: PMC11719930 DOI: 10.3390/ijms26010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Diabetes mellitus (DM), a global disease that significantly impacts public health, has become increasingly common over time. In this review, we aim to determine the potential benefits of St. John's Wort (SJW) as an adjunct therapy for DM. We gathered information from studies conducted in vitro, in vivo, and in humans. In vitro studies investigated the concentrations of SJW extracts capable of inhibiting certain enzymes or factors involved in the inflammatory pathway, such as the β-signal transducer and activator of transcription 1, nuclear factor κB, methylglyoxal, and oxidative stress (OS). The extract was found to have positive effects on OS and anti-inflammatory properties in DM, suggesting it could serve as a protective agent against diabetic vascular complications, cell damage, and apoptosis. According to in vivo research, the essential components of the extract can stimulate thermogenesis in adipose tissue, inhibit several key inflammatory signaling pathways, and delay the early death of pancreatic β cells, all of which contribute to combating obesity. The extract may also help treat prediabetes and significantly reduce neuropathic pain. Human studies have also confirmed some of these results. However, some of the plant's side effects need further investigation through clinical research before it can be used to treat DM.
Collapse
Affiliation(s)
- Aikaterini Theodorakopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, 11527 Athens, Greece (I.P.); (I.A.A.)
| | - Ioanna Pylarinou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, 11527 Athens, Greece (I.P.); (I.A.A.)
| | - Ioanna A. Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, 11527 Athens, Greece (I.P.); (I.A.A.)
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, 11527 Athens, Greece (I.P.); (I.A.A.)
| |
Collapse
|
37
|
Barik SK, Sengupta S, Arya R, Kumar S, Kim JJ, Chaurasia R. Dietary Polyphenols as Potential Therapeutic Agents in Type 2 Diabetes Management: Advances and Opportunities. Adv Nutr 2025; 16:100346. [PMID: 39566886 PMCID: PMC11697556 DOI: 10.1016/j.advnut.2024.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024] Open
Abstract
Poor dietary intake or unhealthy lifestyle contributes to various health disorders, including postprandial hyperglycemia, leading to type 2 diabetes mellitus (T2DM). Reduction of postprandial glucose concentrations through diet is a key strategy for preventing and managing T2DM. Thus, it is essential to understand how dietary components affect glycemic regulation. Dietary polyphenols (DPs), such as anthocyanins and other phenolics found in various fruits and vegetables, are often recommended for their potential health benefits, although their systemic effectiveness is subject to ongoing debate. Therefore, this review assesses the current and historical evidence of DPs bioactivities, which regulate crucial metabolic markers to lower postprandial hyperglycemia. Significant bioactivities such as modulation of glucose transporters, activation of AMP kinase, and regulation of incretins are discussed, along with prospects for diet-induced therapeutics to prevent the onset of T2DM.
Collapse
Affiliation(s)
- Sisir Kumar Barik
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom.
| | - Srabasti Sengupta
- Department of Neurosurgery, University of Florida, Gainesville, Florida, 32608, United States
| | - Rakesh Arya
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea
| | - Surendra Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Jong Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea.
| | - Reetika Chaurasia
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06510, United States.
| |
Collapse
|
38
|
Chen Y, Zhao Q, Wu T, Sun F, Fu W. Knockdown of KLF6 ameliorates myocardial infarction by regulating autophagy via transcriptional regulation of PTTG1. Am J Physiol Cell Physiol 2025; 328:C115-C127. [PMID: 39652418 DOI: 10.1152/ajpcell.00191.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
Krüppel-like factor 6 (KLF6) knockdown provides protection against kidney ischemia/reperfusion injury and ischemic stroke. However, it is unclear whether it plays a role in myocardial infarction (MI). Here, the expression of KLF6 was analyzed using the Gene Expression Omnibus (GEO) database and determined in patients with MI. The impact of KLF6 knockdown was further confirmed in in vivo and in vitro models of MI. The interaction between KLF6 and pituitary tumor-transforming gene 1 (PTTG1) was also evaluated. According to the GEO database, KLF6 expression was found to be upregulated in mouse hearts after MI compared to sham-operated mice. The upregulation of KLF6 in hearts from mice post-MI and in patients with MI was confirmed. KLF6 knockdown was found to alleviate myocardial injury, diminish infarct size, and suppress apoptosis and autophagy in mice with MI. In addition, inactivation of the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling was observed after KLF6 knockdown in mice with MI. In an in vitro model of MI, the knockdown of KLF6 increased cell survival and inhibited autophagy through the AMPK/mTOR pathway. In addition, KLF6 interacted with the promoter of PTTG1 and negatively regulated its expression. Knockdown of PTTG1 abolished the function of KLF6 knockdown in vitro. This study demonstrates the protective effect of KLF6 knockdown against MI, which is attributed to the elevation of PTTG1 expression and inhibition of the AMPK/mTOR pathway. These findings provide a novel insight into MI treatment.NEW & NOTEWORTHY Our study demonstrates for the first time the role of Krüppel-like factor 6 (KLF6)/PTTG1 axis in myocardial infarction (MI). This study demonstrates the protective effect of KLF6 knockdown against MI, which is attributed to the elevation of PTTG1 expression and inhibition of the AMPK/mTOR pathway. These findings provide a novel insight into MI treatment.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qian Zhao
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tengfei Wu
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China
| | - Feifei Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Weineng Fu
- Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
39
|
Marin TL, Wilson CG, Ramirez ML, Sun W, Malhotra A, Gongol B. AMPK Phosphorylates LMX1b to Regulate a Brainstem Neurogenic Network Important for Control of Breathing in Neonatal Mice. Int J Mol Sci 2024; 26:213. [PMID: 39796072 PMCID: PMC11720625 DOI: 10.3390/ijms26010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Ventilatory drive is modulated by a variety of neurochemical inputs that converge on spatially oriented clusters of cells within the brainstem. This regulation is required to maintain energy homeostasis and is essential to sustain life across all mammalian organisms. Therefore, the anatomical orientation of these cellular clusters during development must have a defined mechanistic basis with redundant genomic variants. Failure to completely develop these features causes several conditions including apnea of prematurity (AOP) and sudden infant death syndrome (SIDS). AOP is associated with many adverse outcomes including increased risk of interventricular hemorrhage. However, there are no pharmacological interventions that reduce SIDS and AOP prevalence by promoting brainstem development. AMP-activated protein kinase (AMPK) is a kinase that regulates ventilatory control to maintain homeostasis. This study identifies a signaling axis in which the pharmacological activation of AMPK in vivo via metformin in brainstem ventilatory control centers results in the phosphorylation of LIM homeobox transcription factor 1-beta (Lmx1b), a key player in dorsal-ventral patterning during fetal development. The phosphorylation of Lmx1b transactivates a neurogenic interactome important for the development and regulation of ventilatory control centers. These findings highlight the potential for metformin in the treatment and prevention of AOP.
Collapse
Affiliation(s)
- Traci L. Marin
- Department of Respiratory Therapy, Victor Valley College, Victorville, CA 92395, USA
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Christopher G. Wilson
- Department of Basic Sciences, Division of Physiology, Loma Linda University, Loma Linda, CA 92354, USA
| | - Miguel Lopez Ramirez
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Wei Sun
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
- VA San Deigo Medical Center, San Diego, CA 92161, USA
| | - Atul Malhotra
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Brendan Gongol
- Department of Respiratory Therapy, Victor Valley College, Victorville, CA 92395, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92697, USA
| |
Collapse
|
40
|
Ciupei D, Colişar A, Leopold L, Stănilă A, Diaconeasa ZM. Polyphenols: From Classification to Therapeutic Potential and Bioavailability. Foods 2024; 13:4131. [PMID: 39767073 PMCID: PMC11675957 DOI: 10.3390/foods13244131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Though ubiquitous in nature, polyphenols gained scientific prominence only after the pioneering work of researchers like E. Fischer and K. Freudenberg, who demonstrated their potential beyond traditional applications, such as in the leather industry. Today, these bioactive compounds are recognized for their diverse therapeutic roles, including their use as adjuvants in cancer treatment, cancer prevention, and their anti-inflammatory and antioxidant properties. Additionally, polyphenols have demonstrated benefits in managing obesity, cardiovascular diseases, and neuromodulation. Their synthesis is influenced by environmental and genetic factors, with their concentrations varying based on the intensity of these variables, as well as the stage of ripening. This review provides a comprehensive overview of polyphenols, covering their classification, chemical structures, and bioavailability. The mechanisms influencing bioavailability, bioaccessibility, and bioactivity are explored in detail, alongside an introduction to their bioactive effects and associated metabolic pathways. Specific examples, such as the bioavailability of polyphenols in coffee and various types of onions, are analyzed. Despite their promising biological activities, a significant limitation of polyphenols lies in their inherently low oral bioavailability. However, their systemic circulation and the bioactive by-products formed during digestion present exciting opportunities for further research and application.
Collapse
Affiliation(s)
- Daria Ciupei
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Alexandru Colişar
- Faculty of Forestry and Cadastre, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Loredana Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| | - Andreea Stănilă
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| | - Zorița M. Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| |
Collapse
|
41
|
Lee H, Youn I, Noh SG, Kim HW, Song E, Nam SJ, Chung HY, Seo EK. Identification of Bioactive Compounds from the Roots of Rehmannia glutinosa and Their In Silico and In Vitro AMPK Activation Potential. Molecules 2024; 29:6009. [PMID: 39770103 PMCID: PMC11679303 DOI: 10.3390/molecules29246009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Rehmannia glutinosa Libosch., which belongs to the Orobanchaceae family, is a perennial herb found in China, Japan, and Korea. In traditional medicine, it is used to cool the body, improve water metabolism in the kidney, and provide protection from metabolic diseases such as type 2 diabetes mellitus (T2DM) and obesity. In this study, three new compounds were isolated from the roots of R. glutinosa, along with eighteen known compounds. Structure elucidation was performed with spectroscopic analyses including nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. As the AMP-activated protein kinase (AMPK) signaling pathway is reportedly related to metabolic diseases, AMPK activation studies were conducted using in silico simulations and in vitro assays. Among the isolated compounds, 1 showed a potential as an AMPK activator in both in silico simulations and in vitro experiments. Our findings expand the chemical profiles of the plant R. glutinosa and suggest that one newly found compound (1) activates AMPK.
Collapse
Affiliation(s)
- Hwaryeong Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (H.L.); (I.Y.); (E.S.)
| | - Isoo Youn
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (H.L.); (I.Y.); (E.S.)
| | - Sang Gyun Noh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (S.G.N.); (H.W.K.); (H.Y.C.)
| | - Hyun Woo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (S.G.N.); (H.W.K.); (H.Y.C.)
| | - Eunhye Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (H.L.); (I.Y.); (E.S.)
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (S.G.N.); (H.W.K.); (H.Y.C.)
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (H.L.); (I.Y.); (E.S.)
| |
Collapse
|
42
|
Arenas GA, Lorca RA. Effects of hypoxia on uteroplacental and fetoplacental vascular function during pregnancy. Front Physiol 2024; 15:1490154. [PMID: 39744703 PMCID: PMC11688409 DOI: 10.3389/fphys.2024.1490154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/03/2024] [Indexed: 02/13/2025] Open
Abstract
During pregnancy, marked changes in vasculature occur. The placenta is developed, and uteroplacental and fetoplacental circulations are established. These processes may be negatively affected by genetic anomalies, maternal environment (i.e., obesity or diabetes), and environmental conditions such as pollutants and hypoxia. Chronic hypoxia has detrimental effects on the vascular adaptations to pregnancy and fetal growth. The typical pregnancy-dependent rise in uterine blood flow by vascular remodeling and vasodilation of maternal uterine arteries is reduced, leading to increases in vascular tone. These maladaptations may lead to complications such as fetal growth restriction (FGR) and preeclampsia. In this review, the effect of hypoxia on uteroplacental and fetoplacental circulation and its impact on pregnancy outcomes in humans and animal models are discussed. Evidence is provided for several mechanisms that affect pregnancy through hypoxia-induced alterations. Future directions to fill gaps in knowledge and develop therapeutic strategies to prevent or alleviate hypoxia-related pregnancy complications, such as FGR and preeclampsia, are suggested.
Collapse
Affiliation(s)
| | - Ramón A. Lorca
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
43
|
Ashraf MS, Tuli K, Moiz S, Sharma SK, Sharma D, Adnan M. AMP kinase: A promising therapeutic drug target for post-COVID-19 complications. Life Sci 2024; 359:123202. [PMID: 39489398 DOI: 10.1016/j.lfs.2024.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in severe respiratory issues and persistent complications, particularly affecting glucose metabolism. Patients with or without pre-existing diabetes often experience worsened symptoms, highlighting the need for innovative therapeutic approaches. AMPK, a crucial regulator of cellular energy balance, plays a pivotal role in glucose metabolism, insulin sensitivity, and inflammatory responses. AMPK activation, through allosteric or kinase-dependent mechanisms, impacts cellular processes like glucose uptake, fatty acid oxidation, and autophagy. The tissue-specific distribution of AMPK emphasizes its role in maintaining metabolic homeostasis throughout the body. Intriguingly, SARS-CoV-2 infection inhibits AMPK, contributing to metabolic dysregulation and post-COVID-19 complications. AMPK activators like capsaicinoids, curcumin, phytoestrogens, cilostazol, and momordicosides have demonstrated the potential to regulate AMPK activity. Compounds from various sources improve fatty acid oxidation and insulin sensitivity, with metformin showing opposing effects on AMPK activation compared to the virus, suggesting potential therapeutic options. The diverse effects of AMPK activation extend to its role in countering viral infections, further highlighting its significance in COVID-19. This review explores AMPK activation mechanisms, its role in metabolic disorders, and the potential use of natural compounds to target AMPK for post-COVID-19 complications. Also, it aims to review the possible methods of activating AMPK to prevent post-COVID-19 diabetes and cardiovascular complications. It also explores the use of natural compounds for their therapeutic effects in targeting the AMPK pathways. Targeting AMPK activation emerges as a promising avenue to mitigate the long-term effects of COVID-19, offering hope for improved patient outcomes and a better quality of life.
Collapse
Affiliation(s)
- Mohammad Saquib Ashraf
- Department of Medical Laboratory Science College of Pharmacy, Nursing and Medical Science Riyadh ELM University, Riyadh, P.O. Box 12734, Saudi Arabia.
| | - Kanika Tuli
- Guru Nanak Institute of Pharmacy, Dalewal, Hoshiarpur 144208, Punjab, India
| | - Shadman Moiz
- Department of Biotechnology, Lalit Narayan Mithila University, Darbhanga 846004, Bihar, India
| | - Satish Kumar Sharma
- Department of Pharmacology, Glocal School of Pharmacy, The Glocal University, Saharanpur, India
| | - Deepa Sharma
- UMM Matrix Innovations Private Limited, Delhi 110044, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia; Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| |
Collapse
|
44
|
Zhang Y, Zhou J, Yang L, Xiao H, Liu D, Kang X. Ganoderma lucidum Spore Powder Alleviates Metabolic-Associated Fatty Liver Disease by Improving Lipid Accumulation and Oxidative Stress via Autophagy. Antioxidants (Basel) 2024; 13:1501. [PMID: 39765829 PMCID: PMC11673792 DOI: 10.3390/antiox13121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Lipid accumulation and oxidative stress, which could be improved by autophagy, are the "hits" of metabolic-associated fatty liver disease (MAFLD). Ganoderma lucidum spore powder (GLSP) has the effect of improving liver function. However, there are few reports about its effects on and mechanisms impacting MAFLD alleviation. This study investigated the effect of GLSP on hepatic lipid accumulation and oxidative stress and explored the role that autophagy played in this effect. The results showed that GLSP effectively reduced lipid accumulation and activated autophagy in the livers of mice with high-fat-diet-induced disease and palmitic acid-induced hepatocytes. GLSP reduced the lipid accumulation by reducing lipogenesis and promoting lipid oxidation in HepG2 cells. It decreased the production of ROS, increased the activity of SOD and CAT, and improved the mitochondrial membrane potential via the Keap1/Nrf2 pathway. The alleviating effects of GLSP on the lipid accumulation and oxidative stress was reversed by 3-methyladenine (3-MA), an autophagy inhibitor. GLSP activated autophagy via the AMPK pathway in HepG2 cells. In conclusion, GLSP could attenuate MAFLD by the improvement of lipid accumulation and oxidative stress via autophagy. This paper is the first to report the improvement of MAFLD through autophagy promotion. It will shed novel light on the discovery of therapeutic strategies targeting autophagy for MAFLD.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Horticulture College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha 410128, China
| | - Jiali Zhou
- Horticulture College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha 410128, China
| | - Lan Yang
- Horticulture College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha 410128, China
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Dongbo Liu
- Horticulture College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Xincong Kang
- Horticulture College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
45
|
Yang X, Li J, Xu C, Zhang G, Che X, Yang J. Potential mechanisms of rheumatoid arthritis therapy: Focus on macrophage polarization. Int Immunopharmacol 2024; 142:113058. [PMID: 39236455 DOI: 10.1016/j.intimp.2024.113058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that affects multiple organs and systems in the human body, often leading to disability. Its pathogenesis is complex, and the long-term use of traditional anti-rheumatic drugs frequently results in severe toxic side effects. Therefore, the search for a safer and more effective antirheumatic drug is extremely important for the treatment of RA. As important immune cells in the body, macrophages are polarized. Under pathological conditions, macrophages undergo proliferation and are recruited to diseased tissues upon stimulation. In the local microenvironment, they polarize into different types of macrophages in response to specific factors and perform unique functions and roles. Previous studies have shown that there is a link between macrophage polarization and RA, indicating that certain active ingredients can ameliorate RA symptoms through macrophage polarization. Notably, Traditional Chinese medicine (TCM) monomer component and compounds demonstrate a particular advantage in this process. Building upon this insight, we reviewed and analyzed recent studies to offer valuable and meaningful insights and directions for the development and application of anti-rheumatic drugs.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinling Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengchao Xu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinzhen Che
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiguo Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
46
|
Lalani S, Knudsen J, Kenney J, Hober D, DiPersio CM, Gerber A. A novel microRNA promotes coxsackievirus B4 infection of pancreatic β cells. Front Immunol 2024; 15:1414894. [PMID: 39697323 PMCID: PMC11652211 DOI: 10.3389/fimmu.2024.1414894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 12/20/2024] Open
Abstract
The epidemiological association of coxsackievirus B infection with type 1 diabetes suggests that therapeutic strategies that reduce viral load could delay or prevent disease onset. Moreover, recent studies suggest that treatment with antiviral agents against coxsackievirus B may help preserve insulin levels in type 1 diabetic patients. In the current study, we performed small RNA-sequencing to show that infection of immortalized trophoblast cells with coxsackievirus caused differential regulation of several miRNAs. One of these, hsa-miR-AMC1, was similarly upregulated in human pancreatic β cells infected with coxsackievirus B4. Moreover, treatment of β cells with non-cytotoxic concentrations of an antagomir that targets hsa-miR-AMC1 led to decreased CVB4 infection, suggesting a positive feedback loop wherein this microRNA further promotes viral infection. Interestingly, some predicted target genes of hsa-miR-AMC1 are shared with hsa-miR-184, a microRNA that is known to suppress genes that regulate insulin production in pancreatic β cells. Consistently, treatment of coxsackievirus B4-infected β cells with the hsa-miR-AMC1 antagomir was associated with a trend toward increased insulin production. Taken together, our findings implicate novel hsa-miR-AMC1 as a potential early biomarker of coxsackievirus B4-induced type 1 diabetes and suggest that inhibiting hsa-miR-AMC1 may provide therapeutic benefit to type 1 diabetes patients. Our findings also support the use of trophoblast cells as a model for identifying microRNAs that might be useful diagnostic markers or therapeutic targets for coxsackievirus B-induced type 1 diabetes.
Collapse
Affiliation(s)
- Salima Lalani
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Joseph Knudsen
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - James Kenney
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Univ Lille, Centre Hospitalier Universitaire de Lille, Lille, France
| | - C. Michael DiPersio
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
- Department of Surgery, Albany Medical College, Albany, NY, United States
| | - Allen Gerber
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
- Department of Neurology, Castle Point Medical Center, Wappingers Falls, NY, United States
| |
Collapse
|
47
|
Ji Y, Jeon YG, Lee WT, Han JS, Shin KC, Huh JY, Kim JB. PKA regulates autophagy through lipolysis during fasting. Mol Cells 2024; 47:100149. [PMID: 39547583 PMCID: PMC11697058 DOI: 10.1016/j.mocell.2024.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Autophagy is a crucial intracellular degradation process that provides energy and supports nutrient deprivation adaptation. However, the mechanisms by which these cells detect lipid scarcity and regulate autophagy are poorly understood. In this study, we demonstrate that protein kinase A (PKA)-dependent lipolysis delays autophagy initiation during short-term nutrient deprivation by inhibiting AMP-activated protein kinase (AMPK). Using coherent anti-Stokes Raman spectroscopy, we visualized free fatty acids (FFAs) in vivo and observed that lipolysis-derived FFAs were used before the onset of autophagy. Our data suggest that autophagy is triggered when the supply of FFAs is insufficient to meet energy demands. Furthermore, PKA activation promotes lipolysis and suppresses AMPK-driven autophagy during early fasting. Disruption of this regulatory axis impairs motility and reduces the lifespan of Caenorhabditis elegans during fasting. These findings establish PKA as a critical regulator of catabolic pathways, prioritizing lipolysis over autophagy by modulating AMPK activity to prevent premature autophagic degradation during transient nutrient deprivation.
Collapse
Affiliation(s)
- Yul Ji
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Won Taek Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji Seul Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Cheul Shin
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
48
|
Currais A, Kepchia D, Liang Z, Maher P. The Role of AMP-activated Protein Kinase in Oxytosis/Ferroptosis: Protector or Potentiator? Antioxid Redox Signal 2024; 41:e1173-e1186. [PMID: 35243895 PMCID: PMC11693968 DOI: 10.1089/ars.2022.0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/20/2023]
Abstract
Significance: Evidence for a role for the oxytosis/ferroptosis regulated cell death pathway in aging and neurodegenerative diseases has been growing over the past few years. Because of this, there is an increasing necessity to identify endogenous signaling pathways that can be modulated to protect cells from this form of cell death. Recent Advances: Recently, several studies have identified a protective role for the AMP-activated protein kinase (AMPK)/acetyl CoA carboxylase 1 (ACC1) pathway in oxytosis/ferroptosis. However, there are also a number of studies suggesting that this pathway contributes to cell death initiated by various inducers of oxytosis/ferroptosis. Critical Issues: The goals of this review are to provide an overview and analysis of the published studies and highlight specific areas where more research is needed. Future Directions: Much remains to be learned about AMPK signaling in oxytosis/ferroptosis, especially the conditions where it is protective. Furthermore, the role of AMPK signaling in the brain and especially the aging brain needs further investigation.
Collapse
Affiliation(s)
- Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Devin Kepchia
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
49
|
Ahmad F, Qaisar R. Nicotinamide riboside kinase 2: A unique target for skeletal muscle and cardiometabolic diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167487. [PMID: 39216649 DOI: 10.1016/j.bbadis.2024.167487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Myopathy leads to skeletal and cardiac muscle degeneration which is a major cause of physical disability and heart failure. Despite the therapeutic advancement the prevalence of particularly cardiac diseases is rising at an alarming rate and novel therapeutic targets are required. Nicotinamide riboside kinase-2 (NRK-2 or NMRK2) is a muscle-specific β1-integrin binding protein abundantly expressed in the skeletal muscle while only a trace amount is detected in the healthy cardiac muscle. The level in cardiac tissue is profoundly upregulated under pathogenic conditions such as ischemia and hypertension. NRK-2 was initially identified to regulate myoblast differentiation and to enhance the levels of NAD+, an important coenzyme that potentiates cellular energy production and stress resilience. Recent advancement has shown that NRK-2 critically regulates numerous cellular and molecular processes under pathogenic conditions to modulate the disease severity. Therefore, given its restricted expression in the cardiac and skeletal muscle, NRK-2 may serve as a unique therapeutic target. In this review, we provided a comprehensive overview of the diverse roles of NRK-2 played in different cardiac and muscular diseases and discussed the underlying molecular mechanisms in detail. Moreover, this review precisely examined how NRK-2 regulates metabolism in cardiac muscle, and how dysfunctional NRK-2 is associated with energetic deficit and impaired muscle function, manifesting various cardiac and skeletal muscle disease conditions.
Collapse
Affiliation(s)
- Firdos Ahmad
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Space Medicine Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Rizwan Qaisar
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Space Medicine Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
50
|
Roy SC, Sapkota S, Pasula MB, Briski KP. In Vivo Glucose Transporter-2 Regulation of Dorsomedial Versus Ventrolateral VMN Astrocyte Metabolic Sensor and Glycogen Metabolic Enzyme Gene Expression in Female Rat. Neurochem Res 2024; 49:3367-3382. [PMID: 39306597 DOI: 10.1007/s11064-024-04246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024]
Abstract
Astrocyte glycogenolysis shapes ventromedial hypothalamic nucleus (VMN) regulation of glucostasis in vivo. Glucose transporter-2 (GLUT2), a plasma membrane glucose sensor, controls hypothalamic primary astrocyte culture glycogen metabolism in vitro. In vivo gene silencing tools and single-cell laser-catapult-microdissection/multiplex qPCR techniques were used here to examine whether GLUT2 governs dorsomedial (VMNdm) and/or ventrolateral (VMNvl) VMN astrocyte metabolic sensor and glycogen metabolic enzyme gene profiles. GLUT2 gene knockdown diminished astrocyte GLUT2 mRNA in both VMN divisions. Hypoglycemia caused GLUT2 siRNA-reversible up-regulation of this gene profile in the VMNdm, but down-regulated VMNvl astrocyte GLUT2 transcription. GLUT2 augmented baseline VMNdm and VMNvl astrocyte glucokinase (GCK) gene expression, but increased (VMNdm) or reduced (VMNvl) GCK transcription during hypoglycemia. GLUT2 imposed opposite control, namely stimulation versus inhibition of VMNdm or VMNvl astrocyte 5'-AMP-activated protein kinase-alpha 1 and -alpha 2 gene expression, respectively. GLUT2 stimulated astrocyte glycogen synthase (GS) gene expression in each VMN division. GLUT2 inhibited transcription of the AMP-sensitive glycogen phosphorylase (GP) isoform GP-brain type (GPbb) in each site, yet diminished (VMNdm) or augmented (VMNvl) astrocyte GP-muscle type (GPmm) mRNA. GLUT2 enhanced VMNdm and VMNvl glycogen accumulation during euglycemia, and curbed hypoglycemia-associated VMNdm glycogen depletion. Results show that VMN astrocytes exhibit opposite, division-specific GLUT2 transcriptional responsiveness to hypoglycemia. Data document divergent GLUT2 control of GCK, AMPK catalytic subunit, and GPmm gene profiles in VMNdm versus VMNvl astrocytes. Ongoing studies seek to determine how differential GLUT2 regulation of glucose and energy sensor function and glycogenolysis in each VMN location may affect local neuron responses to hypoglycemia.
Collapse
Affiliation(s)
- Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
- UL System Foundation and Willis-Knighton Health Systems Professorship in Toxicology, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|