1
|
Devisme C, Piquet‐Pellorce C, Chalin A, Lefevre B, Pronier C, Thibault V, Le Seyec J, Raguénès‐Nicol C, Benarafa C, Samson M. CXCL14 Chemokine Exacerbates Acute Viral Hepatitis in Coronavirus MHV-Infected Mice and Is Associated With Human Acute Viral Hepatitis. FASEB J 2025; 39:e70591. [PMID: 40392027 PMCID: PMC12090971 DOI: 10.1096/fj.202401706r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025]
Abstract
Deaths from viral hepatitis continue to rise around the world due to the lack of early biomarkers. We aimed here to evaluate the chemokine CXCL14, as a novel biomarker in acute viral hepatitis. We used a mouse model of acute hepatitis induced by murine hepatitis virus (MHV), a hepatotropic and lytic coronavirus, and showed that CXCL14 is overexpressed in the liver and sera of infected mice. Using primary cultures of murine and human hepatocytes, we showed that hepatocytes are the main source of CXCL14 after lytic hepatotropic virus infection and that CXCL14 expression is also induced by the pro-inflammatory cytokines IL-6 and TNFα. CXCL14 KO mice infected with MHV were partially protected and showed an attenuated antiviral immune response compared to wild-type mice. Finally, we show that CXCL14 is overexpressed in the sera of human patients infected with hepatitis viruses A, B, and E or herpes simplex virus. A positive correlation between CXCL14 and ALT levels in the sera of patients with acute herpetic hepatitis, as well as in mice models, suggests that hepatocyte lysis is necessary for the release of CXCL14. Overall, these data highlight that CXCL14 expression is associated with the occurrence of acute viral hepatitis and could be considered an alarmin and a new indicator of inflammation. CXCL14 serum levels are also associated with the severity of viral-induced liver injury.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Murine hepatitis virus
- Chemokines, CXC/metabolism
- Chemokines, CXC/genetics
- Chemokines, CXC/blood
- Mice, Knockout
- Hepatocytes/metabolism
- Hepatocytes/virology
- Mice, Inbred C57BL
- Hepatitis, Viral, Human/metabolism
- Hepatitis, Viral, Human/virology
- Hepatitis, Viral, Human/blood
- Coronavirus Infections/virology
- Coronavirus Infections/metabolism
- Male
- Female
- Hepatitis, Viral, Animal/virology
- Hepatitis, Viral, Animal/metabolism
- Liver/metabolism
- Liver/virology
- Disease Models, Animal
Collapse
Affiliation(s)
- Christelle Devisme
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085RennesFrance
- Institute of Virology and ImmunologyMittelhäusernSwitzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Claire Piquet‐Pellorce
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085RennesFrance
| | - Arnaud Chalin
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085RennesFrance
| | - Benjamin Lefevre
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085RennesFrance
| | - Charlotte Pronier
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085RennesFrance
| | - Vincent Thibault
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085RennesFrance
| | - Jacques Le Seyec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085RennesFrance
| | - Céline Raguénès‐Nicol
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085RennesFrance
| | - Charaf Benarafa
- Institute of Virology and ImmunologyMittelhäusernSwitzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse FacultyUniversity of BernBernSwitzerland
- Multidisciplinary Center for Infectious DiseasesUniversity of BernBernSwitzerland
| | - Michel Samson
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085RennesFrance
| |
Collapse
|
2
|
Joma N, Kagelmacher M, Zhang I, Herrmann A, Dernedde J, Haag R, Maysinger D. Charged dendrimers reduce glioblastoma viability by modulating lysosomal activity and HMGB1-RAGE interaction. Biochem Pharmacol 2025; 238:116969. [PMID: 40348093 DOI: 10.1016/j.bcp.2025.116969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/15/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
Dendrimers and dendrimer-based self-assembly systems have emerged as promising nanocarriers for a variety of applications, including anti-cancer therapies, modulation of the tumor microenvironment, and imaging. Here, we explored the therapeutic potential of two charged dendrimers, dendritic polyglycerol sulfate (dPGS) and dendritic polyglycerol amine (dPGA), in the context of glioblastoma multiforme (GBM). Docosahexaenoic acid (DHA) has shown potential in GBM. We therefore examined dPGS and dPGA effects alone and in combination with DHA. Using 2D cell models and 3D tumoroids, we showed that DHA with dPGA reduced tumor integrity and cell viability. dPGS reduced oxidative stress, whereas dPGA reduced lysosomal acidification, contributing to cellular dysfunction. Both dendrimers influence the interaction between high mobility group box 1 (HMGB1) and the receptor for advanced glycation end products (RAGE). The surfaces of the HMGB1-RAGE complex provide binding sites for interactions of charged molecules like dPGS and dPGA, suggesting the contribution of these interactions to cytotoxicity. In summary, our findings show that combining DHA with charged dendrimers (dPGS and dPGA) enhances GBM cytotoxicity through several mechanisms, involving lysosomal alkalinization, lipid peroxidation and modulation of the HMGB1-RAGE complex.
Collapse
Affiliation(s)
- Natali Joma
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Marten Kagelmacher
- Clinical Chemistry and Pathobiochemistry, Charité University Medicine Berlin, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Andreas Herrmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Jens Dernedde
- Clinical Chemistry and Pathobiochemistry, Charité University Medicine Berlin, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
3
|
Russo RC, Togbe D, Couillin I, Segueni N, Han L, Quesniaux VFJ, Stoeger T, Ryffel B. Ozone-induced lung injury and inflammation: Pathways and therapeutic targets for pulmonary diseases caused by air pollutants. ENVIRONMENT INTERNATIONAL 2025; 198:109391. [PMID: 40121788 DOI: 10.1016/j.envint.2025.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Exposure to ambient Ozone (O3) air pollution directly causes by its oxidative properties, respiratory epithelial cell injury, and cell death, which promote inflammation and hyperreactivity, posing a significant public health concern. Recent clinical and experimental studies have made strides in elucidating the mechanisms underlying O3-induced epithelial cell injury, inflammation, and airway hyperreactivity, which are discussed herein. The current data suggest that O3-induced oxidative stress is a central event-inducing oxeiptotic cell death pathway. O3-induced epithelial barrier damage and cell death, triggering the release of alarmins and damage-associated molecular patterns (DAMPs), with subsequent endogenous activation of Toll-like receptors (TLRs), DNA sensing pathways, and inflammasomes, activating interleukin-1-Myd88 inflammatory pathway with the production of a range of chemokines and cytokines. This cascade orchestrates lung tissue-resident cell activation in response to O3 in leukocyte and non-leukocyte populations, driving sterile innate immune response. Chronic inflammatory response to O3, by repeated exposures, supports a mixed phenotype combining asthma and emphysema, in which their exacerbation by other particulate pollutants potentially culminates in respiratory failure. We use data from lung single-cell transcriptomics to map genes of O3-damage sensing and signaling pathways to lung cells and thereby highlight potential hotspots of O3 responses. Deeper insights into these pathological pathways might be helpful for the identification of novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Dieudonnée Togbe
- Laboratory of Immuno-Neuro Modulation, INEM, UMR7355 CNRS and University of Orleans, Orleans, France
| | - Isabelle Couillin
- Laboratory of Immuno-Neuro Modulation, INEM, UMR7355 CNRS and University of Orleans, Orleans, France
| | | | - Lianyong Han
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, and Member of the German Center of Lung Research (DZL), Germany
| | - Valérie F J Quesniaux
- Laboratory of Immuno-Neuro Modulation, INEM, UMR7355 CNRS and University of Orleans, Orleans, France
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, and Member of the German Center of Lung Research (DZL), Germany
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation, INEM, UMR7355 CNRS and University of Orleans, Orleans, France; ArtImmune SAS, 13 Avenue Buffon, Orleans, France.
| |
Collapse
|
4
|
Hiti L, Markovič T, Lainscak M, Farkaš Lainščak J, Pal E, Mlinarič-Raščan I. The immunopathogenesis of a cytokine storm: The key mechanisms underlying severe COVID-19. Cytokine Growth Factor Rev 2025; 82:1-17. [PMID: 39884914 DOI: 10.1016/j.cytogfr.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025]
Abstract
A cytokine storm is marked by excessive pro-inflammatory cytokine release, and has emerged as a key factor in severe COVID-19 cases - making it a critical therapeutic target. However, its pathophysiology was poorly understood, which hindered effective treatment. SARS-CoV-2 initially disrupts angiotensin signalling, promoting inflammation through ACE-2 downregulation. Some patients' immune systems then fail to shift from innate to adaptive immunity, suppressing interferon responses and leading to excessive pyroptosis and neutrophil activation. This amplifies tissue damage and inflammation, creating a pro-inflammatory loop. The result is the disruption of Th1/Th2 and Th17/Treg balances, lymphocyte exhaustion, and extensive blood clotting. Cytokine storm treatments include glucocorticoids to suppress the immune system, monoclonal antibodies to neutralize specific cytokines, and JAK inhibitors to block cytokine receptor signalling. However, the most effective treatment options for mitigating SARS-CoV-2 infection remain vaccines as a preventive measure and antiviral drugs for the early stages of infection. This article synthesizes insights into immune dysregulation in COVID-19, offering a framework to better understand cytokine storms and to improve monitoring, biomarker discovery, and treatment strategies for COVID-19 and other conditions involving cytokine storms.
Collapse
Affiliation(s)
- Luka Hiti
- Faculty of Pharmacy, University of Ljubljana, Slovenia
| | | | - Mitja Lainscak
- General Hospital Murska Sobota, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | | | - Emil Pal
- General Hospital Murska Sobota, Slovenia
| | | |
Collapse
|
5
|
Al Amin M, Bouhenni H, Zehravi M, Sweilam SH, Durgawale TP, Qureshi MS, Durgapal S, Haque MA, Vodeti R, Urs D, Shatu MM, Rab SO, Doukani K, Emran TB. Natural compounds and programmed necrosis: pioneering a new frontier in cancer treatments. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04050-w. [PMID: 40137962 DOI: 10.1007/s00210-025-04050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
Programmed necrosis, a controlled cell death method that bypasses resistance mechanisms that render apoptosis ineffective, is a potential cancer treatment target. Due to their diverse biological activities and low side effects, natural products are being explored as modulators of programmed necrosis pathways. This review highlights the potential of natural compounds to target cancer cells while preserving healthy tissues and their interaction with essential programmed necrosis mechanisms like ferroptosis and necroptosis. Recent developments have identified various types of programmable necrosis, including necroptosis, ferroptosis, pyroptosis, proptosis, mitochondrial permeability transition-driven necrosis, and oncosis. Natural compounds are increasingly being utilized as a primary source of anti-cancer medications, providing new cancer treatments. This review demonstrates the molecular mechanisms behind lipid peroxidation, mixed lineage kinase domain-like protein, and receptor-interacting protein kinases (RIPK1 and RIPK3) inducing cell death. Recent research has identified natural compounds like polyphenols, alkaloids, and terpenoids that can modulate pathways and benefit preclinical cancer models. The review underscores the potential of natural compounds in developing innovative cancer treatments by integrating pharmacology and cellular signaling knowledge. Integrating natural compound studies and programmed necrosis research presents a promising avenue for oncologists to overcome treatment resistance. Natural compounds have shown potential in developing programmed necrosis as a novel cancer treatment approach, enhancing therapeutic effectiveness and minimizing side effects through preclinical research, pharmacology, and molecular biology.
Collapse
Affiliation(s)
- Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Hasna Bouhenni
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, Maharashtra, India
| | - Mohammad Shamim Qureshi
- Department of Pharmacognosy & Phytochemistry, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad, 500001, India
| | - Sumit Durgapal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, 248007, India
| | - M Akiful Haque
- School of Pharmacy, Anurag University, Venkatapur, Hyderabad, Telangana , 500088, India
| | - Rajeshwar Vodeti
- Deportment of Pharmaceutics, School of Pharmacy, Anurag University, Hyderabad, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies & Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate Centre, Kodagu, Karnataka, 571232, India
| | - Mst Maharunnasa Shatu
- Department of Botany, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Koula Doukani
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, Faculty of Nature and Life Sciences, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| |
Collapse
|
6
|
De Robertis M, Bozic T, Santek I, Marzano F, Markelc B, Silvestris DA, Tullo A, Pesole G, Cemazar M, Signori E. Transcriptomic analysis of the immune response to in vivo gene electrotransfer in colorectal cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102448. [PMID: 39967849 PMCID: PMC11834060 DOI: 10.1016/j.omtn.2025.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Gene electrotransfer (GET) has recently emerged as an effective nonviral approach for plasmid DNA (pDNA) delivery in gene therapy for several pathologies, including cancer. Multiple mechanisms have been identified that influence cell biology after GET, as electroporation significantly increases pDNA uptake and immunogenicity, which may directly influence target cell death. However, the molecular effects of in vivo electroporation-mediated DNA delivery have yet to be fully elucidated. In this study, we evaluated the transcriptomes of murine colorectal tumors treated with two protocols, short- and high-voltage (SHV) electric pulses or an adapted high-voltage-low-voltage (HV-LV) pulse protocol, both of which are used for reversible electroporation. Although no significant differences in clinical outcomes were observed, variations in intratumoral macrophage infiltration were reported between the two treatment methods. Transcriptomic analysis revealed that apoptosis is a predominant mode of cell death after GET by SHV pulses, whereas GET by HV-LV pulses is associated with immunogenic necrotic pathways as well as the activation of both the innate and adaptive immune response. We demonstrated that specific pulse parameters can induce distinct immunomodulatory profiles in the tumor microenvironment; therefore, these aspects should be considered carefully when selecting the most suitable GET-based approach for antitumor immunization.
Collapse
Affiliation(s)
- Mariangela De Robertis
- Department of Biosciences, Biotechnology, and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Tim Bozic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, 1000 Ljubljana, Slovenia
| | - Iva Santek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Flaviana Marzano
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, 1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | | | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology, and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Emanuela Signori
- Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, 0133 Rome, Italy
| |
Collapse
|
7
|
Roussot N, Kaderbhai C, Ghiringhelli F. Targeting Immune Checkpoint Inhibitors for Non-Small-Cell Lung Cancer: Beyond PD-1/PD-L1 Monoclonal Antibodies. Cancers (Basel) 2025; 17:906. [PMID: 40075753 PMCID: PMC11898530 DOI: 10.3390/cancers17050906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. Immunotherapy targeting the PD-1/PD-L1 axis has revolutionized treatment, providing durable responses in a subset of patients. However, with fewer than 50% of patients achieving significant benefits, there is a critical need to expand therapeutic strategies. This review explores emerging targets in immune checkpoint inhibition beyond PD-1/PD-L1, including CTLA-4, TIGIT, LAG-3, TIM-3, NKG2A, and CD39/CD73. We highlight the biological basis of CD8 T cell exhaustion in shaping the antitumor immune response. Novel therapeutic approaches targeting additional inhibitory receptors (IR) are discussed, with a focus on their distinct mechanisms of action and combinatory potential with existing therapies. Despite significant advancements, challenges remain in overcoming resistance mechanisms and optimizing patient selection. This review underscores the importance of dual checkpoint blockade and innovative bispecific antibody engineering to maximize therapeutic outcomes for NSCLC patients.
Collapse
Affiliation(s)
- Nicolas Roussot
- Department of Medical Oncology, Centre Georges-François Leclerc, 21000 Dijon, France; (C.K.); (F.G.)
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, 21000 Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Team TIRECs: Therapies and Immune REsponse in CancerS, 21000 Dijon, France
- UFR Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
| | - Courèche Kaderbhai
- Department of Medical Oncology, Centre Georges-François Leclerc, 21000 Dijon, France; (C.K.); (F.G.)
| | - François Ghiringhelli
- Department of Medical Oncology, Centre Georges-François Leclerc, 21000 Dijon, France; (C.K.); (F.G.)
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, 21000 Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Team TIRECs: Therapies and Immune REsponse in CancerS, 21000 Dijon, France
- UFR Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
| |
Collapse
|
8
|
Sun P, Chen Q, Chen X, Zhou J, Long T, Ma Y, Zhou M, Hu Z, Tian J, Zhu F, Yang Z, Xie L, Wu Q, Nie J. Renal tubular S100A7a impairs fatty acid oxidation and exacerbates renal fibrosis via both intracellular and extracellular pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167656. [PMID: 39778778 DOI: 10.1016/j.bbadis.2025.167656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/16/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
A couple of S100 family proteins (S100s) have been reported to exert pro-inflammatory functions in the progression of renal fibrosis. Unlike some S100s which are expressed by both epithelial and stromal inflammatory cells, S100A7 is restricted expressed in epithelium. Persistent S100A7 expression occurs in some invasive carcinomas and is associated with poor prognostic factors. Whereas, whether it is implicated in renal tubular epithelial cell injury and kidney disease remains unexplored. In this study, we demonstrate that S100A7 is highly upregulated in tubular cells of both mouse renal fibrotic lesions and kidney biopsies from patients with chronic kidney disease (CKD). The level of renal S100A7 was associated with both the decline of renal function and the progression of renal fibrosis in CKD patients. Overexpressing S100A7a impaired fatty acid oxidation (FAO) and promoted lipid peroxidation in proximal tubular cells (PTCs). Mechanistically, S100A7a interacts with β-catenin, thereby preventing its ubiquitination and degradation by the β-TrCP-SCF complex, and in turn activated β-catenin signaling, downregulated the expression of PGC-1α. Additionally, S100A7a exacerbated lipid peroxidation via RAGE-p-ERK-NOX2 pathway. Specific deletion of S100a7a in tubular cells enhanced FAO and reduced lipid peroxidation, resulting in improved renal function and alleviation of renal fibrosis induced by unilateral ureteral obstruction and unilateral ischemia-reperfusion injury. Collectively, we delineate a previously unrecognized function of S100A7a in the progression of renal fibrosis.
Collapse
Affiliation(s)
- Pengxiao Sun
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingzhou Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaomei Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tantan Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuanyuan Ma
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Miaomiao Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianwei Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fengxin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenhua Yang
- Department of Nephrology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Liling Xie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiaoyuan Wu
- Department of Nephrology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China.
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Biobank of Peking University First Hospital, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Peking University, Beijing 100034, China.
| |
Collapse
|
9
|
Wu Q, Zeng Y, Geng K, Guo M, Teng FY, Yan PJ, Lei Y, Long Y, Jiang ZZ, Law BYK, Xu Y. The role of IL-1 family cytokines in diabetic cardiomyopathy. Metabolism 2025; 163:156083. [PMID: 39603339 DOI: 10.1016/j.metabol.2024.156083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Diabetic cardiomyopathy (DCM) is the primary cause of heart failure in patients with diabetes and is characterised by contractile dysfunction and left ventricular hypertrophy. The complex pathological and physiological mechanisms underlying DCM have contributed to a limited number of available treatment options. A substantial body of evidence has established that DCM is a low-grade inflammatory cardiovascular disorder, with the interleukin-1 (IL-1) family of cytokines playing crucial roles in initiating inflammatory responses and shaping innate and adaptive immunity. In this review, we aim to provide an overview of the underlying mechanisms of the IL-1 family and their relevance in DCM of various aetiologies. Furthermore, we highlighted potential therapeutic targets within the IL-1 family for the management of DCM.
Collapse
Affiliation(s)
- Qi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China; Department of Pathology, and Luzhou Key Laboratory of Precision Pathology Diagnosis for Serious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China; Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kang Geng
- Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Plastic and burns surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Man Guo
- Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Fang-Yuan Teng
- Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pi-Jun Yan
- Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yi Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China; Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yang Long
- Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China.
| | - Yong Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China; Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
10
|
Li J, Cui S, Li Y, Zhang C, Chang C, Jian F. Sirtuin1 in Spinal Cord Injury: Regulatory Mechanisms, Microenvironment Remodeling and Therapeutic Potential. CNS Neurosci Ther 2025; 31:e70244. [PMID: 39915897 PMCID: PMC11802336 DOI: 10.1111/cns.70244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a complex central nervous system disorder characterized by multifaceted pathological processes, including inflammation, oxidative stress, programmed cell death, autophagy, and mitochondrial dysfunction. Sirtuin 1 (Sirt1), a critical NAD+-dependent deacetylase, has emerged as a promising therapeutic target for SCI repair due to its potential to protect neurons, regulate glial and vascular cells, and optimize the injury microenvironment. However, the regulatory roles of Sirt1 in SCI are complex and challenging, as its effects vary depending on activation timing, expression levels, and cell types. METHODS A systematic literature review was conducted using PubMed, Scopus, and Web of Science to identify studies investigating Sirt1 in SCI. Relevant publications were analyzed to synthesize current evidence on Sirt1's mechanisms, therapeutic effects, and challenges in SCI repair. RESULTS Sirt1 exerts broad regulatory effects across diverse pathological processes and cell types post-SCI. It promotes neuronal survival and axonal regeneration, modulates astrocytes and microglia to resolve inflammation, supports oligodendrocyte-mediated myelination, and enhances vascular endothelial function. Proper Sirt1 activation may mitigate secondary injury, whereas excessive or prolonged activation could impair inflammatory resolution or disrupt cellular homeostasis. This review highlights Sirt1 activation as potential therapies, but challenges include optimizing spatiotemporal activation and addressing dual roles in different cell types. CONCLUSION Targeting Sirt1 represents a viable strategy for SCI repair, given its multifaceted regulation of neuroprotection, immunomodulation, and tissue remodeling. However, translating these findings into therapies requires resolving critical issues such as cell type-specific delivery, precise activation timing, and dosage control. This review provides a theoretical foundation and practical insights for advancing Sirt1-based treatments for SCI.
Collapse
Affiliation(s)
- Jinze Li
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Shengyu Cui
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yanqiu Li
- Center for Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Can Zhang
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Department of NeurosurgeryThe First Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Chao Chang
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
| | - Fengzeng Jian
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Guo D, Liu C, Zhu H, Cheng Y, Huo X, Guo Y, Qian H. Food-Induced Adverse Reactions: A Review of Physiological Food Quality Control, Mucosal Defense Mechanisms, and Gastrointestinal Physiology. TOXICS 2025; 13:61. [PMID: 39853059 PMCID: PMC11769199 DOI: 10.3390/toxics13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Although food is essential for the survival of organisms, it can also trigger a variety of adverse reactions, ranging from nutrient intolerances to celiac disease and food allergies. Food not only contains essential nutrients but also includes numerous substances that may have positive or negative effects on the consuming organism. To protect against potentially harmful components, all animals have evolved defense mechanisms, which are similar to antimicrobial defenses but often come at the cost of the organism's health. When these defensive responses are exaggerated or misdirected, they can lead to adverse food reactions, where the costs outweigh the benefits. Furthermore, due to the persistent toxicity of harmful food components, the failure of defense mechanisms can also result in pathological effects triggered by food. This article review presents a food quality control framework that aims to clarify how these reactions relate to normal physiological processes. Organisms utilize several systems to coexist with symbiotic microbes, regulate them, and concurrently avoid, expel, or neutralize harmful pathogens. Similarly, food quality control systems allow organisms to absorb necessary nutrients while defending against low-quality or harmful components in food. Although many microbes are lethal in the absence of antimicrobial defenses, diseases related to microbiome dysregulation, such as inflammatory bowel disease, have significantly increased. Antitoxin defenses also come with costs and may fail due to insufficiencies, exaggerations, or misdirected actions, ultimately leading to adverse food reactions. With the changes in human diet and lifestyle, the failure of defense mechanisms has contributed to the rising incidence of food intolerances. This review explores the mechanisms of antitoxin defenses and analyzes how their failure can lead to adverse food reactions, emphasizing the importance of a comprehensive understanding of food quality control mechanisms for developing more effective treatments for food-triggered diseases.
Collapse
Affiliation(s)
- Dongdong Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongkang Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiang Huo
- Key Laboratory of Pathogenic Microorganisms for Emerging and Outbreaks of Major Infectious Diseases, Jiangsu Engineering Research Centre for Health Emergency Response, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Hitzler SUJ, Fernández-Fernández C, Montaño DE, Dietschmann A, Gresnigt MS. Microbial adaptive pathogenicity strategies to the host inflammatory environment. FEMS Microbiol Rev 2025; 49:fuae032. [PMID: 39732621 PMCID: PMC11737513 DOI: 10.1093/femsre/fuae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 12/30/2024] Open
Abstract
Pathogenic microorganisms can infect a variety of niches in the human body. During infection, these microbes can only persist if they adapt adequately to the dynamic host environment and the stresses imposed by the immune system. While viruses entirely rely on host cells to replicate, bacteria and fungi use their pathogenicity mechanisms for the acquisition of essential nutrients that lie under host restriction. An inappropriate deployment of pathogenicity mechanisms will alert host defence mechanisms that aim to eradicate the pathogen. Thus, these adaptations require tight regulation to guarantee nutritional access without eliciting strong immune activation. To work efficiently, the immune system relies on a complex signalling network, involving a myriad of immune mediators, some of which are quite directly associated with imminent danger for the pathogen. To manipulate the host immune system, viruses have evolved cytokine receptors and viral cytokines. However, among bacteria and fungi, selected pathogens have evolved the capacity to use these inflammatory response-specific signals to regulate their pathogenicity. In this review, we explore how bacterial and fungal pathogens can sense the immune system and use adaptive pathogenicity strategies to evade and escape host defence to ensure their persistence in the host.
Collapse
Affiliation(s)
- Sophia U J Hitzler
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Candela Fernández-Fernández
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Dolly E Montaño
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| |
Collapse
|
13
|
Liu S, Ji H, Zhang T, Huang J, Yin X, Zhang J, Wang P, Wang F, Tang X. Modified Zuojin pill alleviates gastric precancerous lesions by inhibiting glycolysis through the HIF-1α pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156255. [PMID: 39603037 DOI: 10.1016/j.phymed.2024.156255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Gastric precancerous lesions (GPL) typically originates from chronic gastritis (CG), and the changes in glycolysis mediated by the HIF-1α pathway during the progression from CG to GPL are unclear. Modified Zuojin pill (SQQT) is a traditional Chinese herbal formula used for treating GPL. However, the underlying mechanism has not been fully elucidated. PURPOSE To investigate the changes in glycolysis mediated by the HIF-1α pathway during the progression from CG to GPL and whether SQQT can alleviate GPL by attenuating glycolysis through the HIF-1α pathway. METHODS A rat model of GPL was established, and the changes of glycolysis mediated by the HIF-1α pathway during the progression from CG to GPL were detected in 12th, 18th, 24th, and 30th weeks. The therapeutic efficacy of SQQT was evaluated through pathological changes. In vitro, the GPL cell model (MC cell) originated from GES-1 cells intervened by MNNG. The effects of SQQT on glycolysis and the HIF-1α pathway were detected in vivo and in vitro. In vitro, HIF-1α overexpression was used to confirmed that SQQT attenuated glycolysis by targeting the HIF-1α pathway. RESULTS Our study revealed that glycolysis mediated by the HIF-1α pathway exhibited dynamic changes in the progression from CG to GPL, characterized by sequential activation, deactivation, and reactivation. SQQT ameliorated gastric mucosal pathology and inflammation in GPL rats. Mechanistic studies revealed that SQQT alleviated glycolysis by targeting the HIF-1α pathway, and improved abnormal cellular proliferation and apoptosis. Importantly, HIF-1α overexpression blocked the effect of SQQT on glycolysis. CONCLUSION In the progression from CG to GPL, the HIF-1α pathway-mediated glycolysis was characterized by sequential activation, deactivation, and reactivation. SQQT attenuated glycolysis by targeting the HIF-1α pathway and improved abnormal cellular proliferation and apoptosis in the gastric mucosa, thereby exerting therapeutic effects on GPL.
Collapse
Affiliation(s)
- Shan Liu
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Haijie Ji
- Shanxi Province Academy of Traditional Chinese Medicine, Taiyuan 030012, China
| | - Tai Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China; Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University Health Science Center, Beijing 100091, China
| | - Jinke Huang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiaolan Yin
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jiaqi Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ping Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
14
|
Dobrican-Băruța CT, Deleanu DM, Iancu M, Muntean IA, Nedelea I, Bălan RG, Procopciuc LM, Filip GA. Exploring the Impact of IL-33 Gene Polymorphism ( rs1929992) on Susceptibility to Chronic Spontaneous Urticaria and Its Association with Serum Interleukin-33 Levels. Int J Mol Sci 2024; 25:13709. [PMID: 39769469 PMCID: PMC11677185 DOI: 10.3390/ijms252413709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/05/2025] Open
Abstract
Urticaria is a debilitating skin condition affecting up to 20% of the global population, characterized by erythematous, maculopapular lesions and significant quality of life impairment. This study focused on the role of interleukin 33 (IL-33) and its polymorphisms, particularly SNP rs1929992, in chronic spontaneous urticaria (CSU). Using demographic, clinical, and laboratory data from CSU patients and controls, we estimated allele and genotype frequencies, Hardy-Weinberg equilibrium condition, and serum IL-33 levels, using unconditional binomial logistic regression for association analysis. Results revealed that CSU patients had significantly higher frequencies of the minor allele of IL-33 rs1929992 compared to controls (31.25% vs. 17.35%, p = 0.024), and carriers of the GA genotype exhibited increased odds of CSU (adjusted OR = 2.208, p ≤ 0.001). Additionally, serum IL-33 levels were markedly elevated in CSU patients, particularly those with the GA genotype. The findings suggest that the IL-33 SNP is associated with an increased susceptibility to CSU, emphasizing its potential as a diagnostic and therapeutic biomarker. This study underscores the genetic and immunological underpinnings of CSU, paving the way for personalized treatment approaches.
Collapse
Affiliation(s)
- Carmen-Teodora Dobrican-Băruța
- Department of Allergology and Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-T.D.-B.); (I.A.M.); (I.N.); (R.-G.B.)
- Allergology Department, “Octavian Fodor” Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Diana Mihaela Deleanu
- Department of Allergology and Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-T.D.-B.); (I.A.M.); (I.N.); (R.-G.B.)
- Allergology Department, “Octavian Fodor” Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Mihaela Iancu
- Medical Informatics and Biostatistics, Department of Medical Education, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Adriana Muntean
- Department of Allergology and Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-T.D.-B.); (I.A.M.); (I.N.); (R.-G.B.)
- Allergology Department, “Octavian Fodor” Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Irena Nedelea
- Department of Allergology and Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-T.D.-B.); (I.A.M.); (I.N.); (R.-G.B.)
- Allergology Department, “Octavian Fodor” Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Radu-Gheorghe Bălan
- Department of Allergology and Immunology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-T.D.-B.); (I.A.M.); (I.N.); (R.-G.B.)
- Allergology Department, “Octavian Fodor” Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Lucia Maria Procopciuc
- Department of Biochemistry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Gabriela Adriana Filip
- Department of Anatomy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| |
Collapse
|
15
|
Cross K, Vetter SW, Alam Y, Hasan MZ, Nath AD, Leclerc E. Role of the Receptor for Advanced Glycation End Products (RAGE) and Its Ligands in Inflammatory Responses. Biomolecules 2024; 14:1550. [PMID: 39766257 PMCID: PMC11673996 DOI: 10.3390/biom14121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Since its discovery in 1992, the receptor for advanced glycation end products (RAGE) has emerged as a key receptor in many pathological conditions, especially in inflammatory conditions. RAGE is expressed by most, if not all, immune cells and can be activated by many ligands. One characteristic of RAGE is that its ligands are structurally very diverse and belong to different classes of molecules, making RAGE a promiscuous receptor. Many of RAGE ligands are damaged associated molecular patterns (DAMPs) that are released by cells under inflammatory conditions. Although RAGE has been at the center of a lot of research in the past three decades, a clear understanding of the mechanisms of RAGE activation by its ligands is still missing. In this review, we summarize the current knowledge of the role of RAGE and its ligands in inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA; (K.C.); (S.W.V.); (Y.A.); (M.Z.H.); (A.D.N.)
| |
Collapse
|
16
|
Diaz-Barreiro A, Cereghetti G, Ortega Sánchez FG, Tonacini J, Talabot-Ayer D, Kieffer-Jaquinod S, Kissling VM, Huard A, Swale C, Knowles TPJ, Couté Y, Peter M, Francés-Monerris A, Palmer G. Oxidation-sensitive cysteines drive IL-38 amyloid formation. Cell Rep 2024; 43:114940. [PMID: 39488827 DOI: 10.1016/j.celrep.2024.114940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
Interleukin (IL)-1 family cytokines are essential for host defense at epithelial barriers. The IL-1 family member IL-33 was recently linked to stress granules (SGs). Formation of SGs and other biomolecular condensates is promoted by proteins containing low-complexity regions (LCRs). Computational analysis predicts LCRs in six of the 11 IL-1 family members. Among these, IL-38 contains a long LCR including two amyloid cores. IL-38 localizes to intracellular granules in keratinocytes under oxidative stress (OS) and forms OS-induced amyloid aggregates in cells and in vitro. Interestingly, soluble and aggregated IL-38 are released from keratinocytes in an exosome-enriched extracellular vesicle fraction. Disulfide-bond mapping, in silico modeling, and mutational analysis suggest that oxidation-sensitive cysteines act as redox switches to alter IL-38 conformation and promote its aggregation. Finally, the presence of IL-38 granules in human epidermis facing environmental OS suggests that oxidation-induced amyloidogenesis, as an intrinsic property of IL-38, supports barrier function.
Collapse
Affiliation(s)
- Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Geneva, Switzerland.
| | - Gea Cereghetti
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Francisco Gabriel Ortega Sánchez
- IBS Granada, Institute of Biomedical Research, Granada, Spain; Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Jenna Tonacini
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Dominique Talabot-Ayer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Geneva, Switzerland
| | | | - Vera Maria Kissling
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Empa (Swiss Federal Laboratories for Materials Science and Technology), St. Gallen, Switzerland
| | - Arnaud Huard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Christopher Swale
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Grenoble, France
| | | | - Yohann Couté
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FR2048 Grenoble, France
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Geneva, Switzerland
| |
Collapse
|
17
|
Köse AE, Turan T, Kilic E. May high mobility group box protein-1 be a biomarker for major depressive disorder? J Neuroimmunol 2024; 396:578466. [PMID: 39426194 DOI: 10.1016/j.jneuroim.2024.578466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
High Mobility Group Box Protein-1 (HMGB1), which has proinflammatory properties, is known to be involved in psychiatric disorders as far as we know, there are only one clinical studies investigating the role of HMGB1 in major depressive disorder (MDD). In this study, we aimed to investigate the role of HMGB1 in the etiopathogenesis of MDD and whether HMGB1 can be used as a biomarker in MDD by measuring the serum HMGB1 levels of depressed patients in the episode and remission periods. This study included 30 patients diagnosed with MDD in episode, 30 patients in remission and 30 healthy controls. Each group comprised 20 female and 10 male participants. In this study, serum HMGB1 levels were found to be lower in the patient group in the episode compared to the patient group in the remission period and the healthy control group. There was no significant difference between the patient group in remission and the healthy control group in terms of serum HMGB1 levels. The fact that serum HMGB1 levels were lower in the patient group in the episode compared to the patient group in the remission period and the control group may be related to the neuroprotective effects of HMGB1. HMGB1 may be used as a biomarker for MDD.
Collapse
Affiliation(s)
- Ali Emre Köse
- Department of Psychiatry, Faculty of Medicine, Erciyes University, 38039 Kayseri, Turkey.
| | - Tayfun Turan
- Department of Psychiatry, Faculty of Medicine, Erciyes University, 38039 Kayseri, Turkey.
| | - Eser Kilic
- Department of Biochemistry, Faculty of Medicine, Erciyes University, 38039 Kayseri, Turkey.
| |
Collapse
|
18
|
Cao S, Qin X, Li C, Zhang L, Ren S, Zhou W, Zhao M, Zhou G. The IL-33/ ST2 Axis Affects Adipogenesis Through Regulating the TRAF6/ RelA Pathway. Int J Mol Sci 2024; 25:12005. [PMID: 39596071 PMCID: PMC11593896 DOI: 10.3390/ijms252212005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Understanding the regulatory mechanisms of adipogenesis is essential for preventing obesity. Interleukin-33 (IL-33) has recently attracted increasing attention for its role in adipogenesis. The purpose of this study was to explore the function and regulatory mechanism of IL-33 and its receptor suppression of tumorigenicity 2 (ST2) on adipogenesis. Here, Oil Red O staining was used to detect the accumulation of intracellular lipid droplets. Molecular techniques such as qRT-PCR and Western blotting were used to detect the expression of pivotal genes and adipogenic marker genes. Gains and losses of function experiments were used to explore the potential regulatory mechanism of the IL-33/ST2 axis in adipogenesis. Functionally, IL-33 is negatively associated with adipogenesis in 3T3-L1 preadipocytes, while ST2 is positively associated with it, encompassing both the trans-membrane receptor ST2 (ST2L) and the soluble ST2 (sST2). Mechanistically, the IL-33/ST2 axis affects adipogenesis by regulating the expression of the TRAF6/RelA pathway in 3T3-L1 preadipocytes. Downregulating the expression of ST2 suppressed the activation of the IL-33/ST2 axis, which subsequently inhibits the expression of TRAF6. This further attenuates the expression of RelA, ultimately resulting in the suppression of adipogenesis in 3T3-L1 preadipocytes. This study reveals a new mechanism by which the IL-33/ST2 axis regulates the differentiation of preadipocytes and provides a new idea for improving obesity prevention.
Collapse
Affiliation(s)
- Shujun Cao
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Xuyong Qin
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Chengping Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China;
| | - Shizhong Ren
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Wenhao Zhou
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Meiman Zhao
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Guoli Zhou
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| |
Collapse
|
19
|
Zhang J, Wang L, Guo H, Kong S, Li W, He Q, Ding L, Yang B. The role of Tim-3 blockade in the tumor immune microenvironment beyond T cells. Pharmacol Res 2024; 209:107458. [PMID: 39396768 DOI: 10.1016/j.phrs.2024.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Numerous preclinical studies have demonstrated the inhibitory function of T cell immunoglobulin mucin domain-containing protein 3 (Tim-3) on T cells as an inhibitory receptor, leading to the clinical development of anti-Tim-3 blocking antibodies. However, recent studies have shown that Tim-3 is expressed not only on T cells but also on multiple cell types in the tumor microenvironment (TME), including dendritic cells (DCs), natural killer (NK) cells, macrophages, and tumor cells. Therefore, Tim-3 blockade in the immune microenvironment not only affect the function of T cells but also influence the functions of other cells. For example, Tim-3 blockade can enhance the ability of DCs to regulate innate and adaptive immunity. The role of Tim-3 blockade in NK cells function is controversial, as it can enhance the antitumor function of NK cells under certain conditions while having the opposite effect in other situations. Additionally, Tim-3 blockade can promote the reversal of macrophage polarization from the M2 phenotype to the M1 phenotype. Furthermore, Tim-3 blockade can inhibit tumor development by suppressing the proliferation and metastasis of tumor cells. In summary, increasing evidence has shown that Tim-3 in other cell types also plays a critical role in the efficacy of anti-Tim-3 therapy. Understanding the function of anti-Tim-3 therapy in non-T cells can help elucidate the diverse responses observed in clinical patients, leading to better development of relevant therapeutic strategies. This review aims to discuss the role of Tim-3 in the TME and emphasize the impact of Tim-3 blockade in the tumor immune microenvironment beyond T cells.
Collapse
Affiliation(s)
- Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijia Kong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
20
|
Malau IA, Chang JPC, Lin YW, Chang CC, Chiu WC, Su KP. Omega-3 Fatty Acids and Neuroinflammation in Depression: Targeting Damage-Associated Molecular Patterns and Neural Biomarkers. Cells 2024; 13:1791. [PMID: 39513898 PMCID: PMC11544853 DOI: 10.3390/cells13211791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex pathophysiology involving neuroinflammation, neurodegeneration, and disruptions in neuronal and glial cell function. Microglia, the innate immune cells of the central nervous system, release inflammatory cytokines in response to pathological changes associated with MDD. Damage-associated molecular patterns (DAMPs) act as alarms, triggering microglial activation and subsequent inflammatory cytokine release. This review examines the cellular mechanisms underlying MDD pathophysiology, focusing on the lipid-mediated modulation of neuroinflammation. We explore the intricate roles of microglia and astrocytes in propagating inflammatory cascades and discuss how these processes affect neuronal integrity at the cellular level. Central to our analysis are three key molecules: High Mobility Group Box 1 (HMGB1) and S100 Calcium Binding Protein β (S100β) as alarmins, and Neuron-Specific Enolase (NSE) as an indicator of neuronal stress. We present evidence from in vitro and ex vivo studies demonstrating how these molecules reflect and contribute to the neuroinflammatory milieu characteristic of MDD. The review then explores the potential of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) as neuroinflammation modulators, examining their effects on microglial activation, cytokine production, and neuronal resilience in cellular models of depression. We critically analyze experimental data on how ω-3 PUFA supplementation influences the expression and release of HMGB1, S100β, and NSE in neuronal and glial cultures. By integrating findings from lipidomic and cellular neurobiology, this review aims to elucidate the mechanisms by which ω-3 PUFAs may exert their antidepressant effects through modulation of neuroinflammatory markers. These insights contribute to our understanding of lipid-mediated neuroprotection in MDD and may inform the development of targeted, lipid-based therapies for both depression and neurodegenerative disorders.
Collapse
Grants
- NSTC 109-2320-B-038-057-MY3 the National Science and Technology Council (NSTC), Taiwan
- NSTC 110-2321-B-006-004 the National Science and Technology Council (NSTC), Taiwan
- NSTC 110-2811-B-039-507 the National Science and Technology Council (NSTC), Taiwan
- NSTC 110-2320-B-039-048-MY2 the National Science and Technology Council (NSTC), Taiwan
- 110-2320-B-039-047-MY3 the National Science and Technology Council (NSTC), Taiwan
- 110-2813-C-039-327-B the National Science and Technology Council (NSTC), Taiwan
- 110-2314-B-039-029-MY3 the National Science and Technology Council (NSTC), Taiwan
- 111-2321-B-006-008 the National Science and Technology Council (NSTC), Taiwan
- 111-2314-B-039-041-MY3 the National Science and Technology Council (NSTC), Taiwan
- 113-2314-B-039-046 the National Science and Technology Council (NSTC), Taiwan
- 113-2923-B-039-001-MY3 the National Science and Technology Council (NSTC), Taiwan
- ANHRF 111-52 An-Nan Hospital, China Medical University, Tainan, Taiwan
- ANHRF 110-13 An-Nan Hospital, China Medical University, Tainan, Taiwan
- ANHRF 112-24 An-Nan Hospital, China Medical University, Tainan, Taiwan
- ANHRF 112-47 An-Nan Hospital, China Medical University, Tainan, Taiwan
- ANHRF 113-24 An-Nan Hospital, China Medical University, Tainan, Taiwan
- ANHRF 113-38 An-Nan Hospital, China Medical University, Tainan, Taiwan
- ANHRF 113-40 An-Nan Hospital, China Medical University, Tainan, Taiwan
- CMRC-CMA-2 Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan
- CMU 110-AWARD-02 the China Medical University, Taichung, Taiwan
- CMU 110-N-17 the China Medical University, Taichung, Taiwan
- CMU 111-SR-73 the China Medical University, Taichung, Taiwan
- DMR-110-124 the China Medical University Hospital, Taichung, Taiwan
- 111-245 the China Medical University Hospital, Taichung, Taiwan
- 112-097 the China Medical University Hospital, Taichung, Taiwan
- 112-086 the China Medical University Hospital, Taichung, Taiwan
- 112-109 the China Medical University Hospital, Taichung, Taiwan
- 112-232 the China Medical University Hospital, Taichung, Taiwan
- DMR-HHC-109-11 the China Medical University Hospital, Taichung, Taiwan
- HHC-109-12 the China Medical University Hospital, Taichung, Taiwan
- HHC-110-10 the China Medical University Hospital, Taichung, Taiwan
- HHC-111-8 the China Medical University Hospital, Taichung, Taiwan
Collapse
Affiliation(s)
- Ikbal Andrian Malau
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (I.A.M.); (J.P.-C.C.)
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (I.A.M.); (J.P.-C.C.)
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404, Taiwan
- Child Psychiatry Division, Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
| | - Yi-Wen Lin
- Graduate Institute of Acupuncture Science and Chinese Medicine Research Center, College of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Cheng-Chen Chang
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Wei-Che Chiu
- Department of Psychiatry, Cathay General Hospital, Taipei 106, Taiwan;
- School of Medicine, Fu Jen Catholic University, Taipei 242, Taiwan
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (I.A.M.); (J.P.-C.C.)
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 709, Taiwan
| |
Collapse
|
21
|
Kaushal SK, Parul, Tripathi A, Singh DP, Paul A, Alka K, Shukla S, Singh D. IL-33 prevents age-related bone loss and memory impairment by suppression of Th17 response: evidence in a d-galactose-induced aging mouse model. JBMR Plus 2024; 8:ziae101. [PMID: 39224568 PMCID: PMC11365962 DOI: 10.1093/jbmrpl/ziae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Cytokines are the primary mediators of age-related disorders. The IL-17/IL-10 axis plays a crucial role in bone destruction and neuro-inflammation. Additionally, a new Th2 cytokine-IL-33-has gained attention for its potential implications in aging-associated conditions. However, the involvement of IL-33 in aging-mediated bone loss and memory impairment remains unclear and needs further investigation. This study reveals the impact of IL-33 on various aspects of the immune system, bone health, and neural functions. To induce senescence, we used d-galactose for its convenience and fewer side effects. The experimental design involved treating 20-week-old C57BL/6J mice with d-galactose subcutaneously for 10 weeks to induce aging-like effects. Thereafter, IL-33 recombinant protein was administered intraperitoneally for 15 days to evaluate its impact on various immune, skeletal, and neural parameters. The results demonstrated that d-galactose-induced aging led to bone loss and compromised osteogenic parameters, accompanied by increased oxidative stress and neurodegeneration in specific brain regions. Behavioral activities were also affected. However, supplementation with IL-33 mitigated these effects, elevating osteogenic parameters and reducing senescence markers in osteoblast cells in an aging mouse model and exerted neuroprotective potential. Notably d-galactose-induced aging was characterized by high bone turnover, reflected by altered serum levels of CTX, PTH, beta-galactosidase, and P1NP. IL-33 treatment attenuated these effects, suggesting its role in regulating bone metabolism. Furthermore, d-galactose-induced aging was associated with increased differentiation of Th17 cells and upregulation of associated markers, such as STAT-3 and ROR-γt, while downregulating Foxp3, which antagonizes Th17 cell differentiation. IL-33 treatment countered these effects by suppressing Th17 cell differentiation and promoting IL-10-producing T-regulatory cells. Overall, these findings provide insights into the potential therapeutic implications of IL-33 in addressing aging-induced bone loss and memory impairment.
Collapse
Affiliation(s)
- Saurabh Kumar Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Parul
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Alok Tripathi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Devendra Pratap Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Ankita Paul
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Kumari Alka
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Shubha Shukla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
22
|
Roosa CA, Lempke SL, Hannan RT, Nicklow E, Sturek JM, Ewald SE, Griffin D. Conjugation of IL-33 to Microporous Annealed Particle Scaffolds Enhances Type 2-Like Immune Responses In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2400249. [PMID: 38648258 PMCID: PMC11461124 DOI: 10.1002/adhm.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The inflammatory foreign body response (FBR) is the main driver of biomaterial implant failure. Current strategies to mitigate the onset of a FBR include modification of the implant surface, release of anti-inflammatory drugs, and cell-scale implant porosity. The microporous annealed particle (MAP) scaffold platform is an injectable, porous biomaterial composed of individual microgels, which are annealed in situ to provide a structurally stable scaffold with cell-scale microporosity. MAP scaffold does not induce a discernible foreign body response in vivo and, therefore, can be used a "blank canvas" for biomaterial-mediated immunomodulation. Damage associated molecular patterns (DAMPs), such as IL-33, are potent regulators of type 2 immunity that play an important role in tissue repair. In this manuscript, IL-33 is conjugated to the microgel building-blocks of MAP scaffold to generate a bioactive material (IL33-MAP) capable of stimulating macrophages in vitro via a ST-2 receptor dependent pathway and modulating immune cell recruitment to the implant site in vivo, which indicates an upregulation of a type 2-like immune response and downregulation of a type 1-like immune response.
Collapse
Affiliation(s)
- Colleen A. Roosa
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Samantha L. Lempke
- Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Immunology Center, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, Virginia 22903, USA
| | - Riley T. Hannan
- Department of Medicine, Pulmonary and Critical Care, University of Virginia, 1221 Lee St, Charlottesville, Virginia 22903, USA
| | - Ethan Nicklow
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Jeffrey M. Sturek
- Department of Medicine, Pulmonary and Critical Care, University of Virginia, 1221 Lee St, Charlottesville, Virginia 22903, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Immunology Center, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, Virginia 22903, USA
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| |
Collapse
|
23
|
Winter J, Jepsen S. Role of innate host defense proteins in oral cancerogenesis. Periodontol 2000 2024; 96:203-220. [PMID: 38265172 PMCID: PMC11579821 DOI: 10.1111/prd.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
It is nowadays well accepted that chronic inflammation plays a pivotal role in tumor initiation and progression. Under this aspect, the oral cavity is predestined to examine this connection because periodontitis is a highly prevalent chronic inflammatory disease and oral squamous cell carcinomas are the most common oral malignant lesions. In this review, we describe how particular molecules of the human innate host defense system may participate as molecular links between these two important chronic noncommunicable diseases (NCDs). Specific focus is directed toward antimicrobial polypeptides, such as the cathelicidin LL-37 and human defensins, as well as S100 proteins and alarmins. We report in which way these peptides and proteins are able to initiate and support oral tumorigenesis, showing direct mechanisms by binding to growth-stimulating cell surface receptors and/or indirect effects, for example, inducing tumor-promoting genes. Finally, bacterial challenges with impact on oral cancerogenesis are briefly addressed.
Collapse
Affiliation(s)
- Jochen Winter
- Faculty of Medicine, Department of Periodontology, Operative and Preventive Dentistry, University HospitalUniversity of BonnBonnGermany
| | - Søren Jepsen
- Faculty of Medicine, Department of Periodontology, Operative and Preventive Dentistry, University HospitalUniversity of BonnBonnGermany
| |
Collapse
|
24
|
Hutchins T, Sanyal A, Esencan D, Lafyatis R, Jacobe H, Torok KS. Characterization of Endothelial Cell Subclusters in Localized Scleroderma Skin with Single-Cell RNA Sequencing Identifies NOTCH Signaling Pathway. Int J Mol Sci 2024; 25:10473. [PMID: 39408800 PMCID: PMC11477421 DOI: 10.3390/ijms251910473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Localized scleroderma (LS) is an autoimmune disease characterized by inflammation and fibrosis, leading to severe cutaneous manifestations such as skin hardening, tightness, discoloration, and other textural changes that may result in disability. While LS shares similar histopathologic features and immune-fibroblast interactions with systemic sclerosis (SSc), its molecular mechanisms remain understudied. Endothelial cells (EC) are known to play a crucial role in SSc but have not been investigated in LS. Single-cell RNA sequencing (scRNA-seq) now allows for detailed examination of this cell type in the primary organ of interest for scleroderma, the skin. In this study, we analyzed skin-isolated cells from 27 LS patients (pediatric and adult) and 17 healthy controls using scRNA-seq. Given the known role of EC damage as an initial event in SSc and the histologic and clinical skin similarities to LS, we focused primarily on endothelial cells. Our analysis identified eight endothelial subclusters within the dataset, encompassing both disease and healthy samples. Interaction analysis revealed that signaling from diseased endothelial cells was predicted to promote fibrosis through SELE interaction with FGFBP1 and other target genes. We also observed high levels of JAG in arterial endothelial cells and NOTCH in capillary endothelial cells, indicating the activation of a signaling pathway potentially responsible for epidermal abnormalities and contributing to LS pathogenesis. In summary, our scRNA-seq analysis identified potential disease-propagating endothelial cell clusters with upregulated pathways in LS skin, highlighting their importance in disease progression.
Collapse
Affiliation(s)
- Theresa Hutchins
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| | - Anwesha Sanyal
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| | - Deren Esencan
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Heidi Jacobe
- Department of Dermatology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Kathryn S. Torok
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| |
Collapse
|
25
|
De Luca G, Goette NP, Lev PR, Baroni Pietto MC, Marin Oyarzún CP, Castro Ríos MA, Moiraghi B, Sackmann F, Kamiya LJ, Verri V, Caula V, Fernandez V, Vicente A, Pose Cabarcos J, Caruso V, Camacho MF, Larripa IB, Khoury M, Marta RF, Glembotsky AC, Heller PG. Elevated levels of damage-associated molecular patterns HMGB1 and S100A8/A9 coupled with toll-like receptor-triggered monocyte activation are associated with inflammation in patients with myelofibrosis. Front Immunol 2024; 15:1365015. [PMID: 39391311 PMCID: PMC11465240 DOI: 10.3389/fimmu.2024.1365015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
Inflammation plays a pivotal role in the pathogenesis of primary and post-essential thrombocythemia or post-polycythemia vera myelofibrosis (MF) in close cooperation with the underlying molecular drivers. This inflammatory state is induced by a dynamic spectrum of inflammatory cytokines, although recent evidence points to the participation of additional soluble inflammatory mediators. Damage-associated molecular patterns (DAMPs) represent endogenous signals released upon cell death or damage which trigger a potent innate immune response. We assessed the contribution of two prototypical DAMPs, HMGB1 and S100A8/A9, to MF inflammation. Circulating HMGB1 and S100A8/A9 were elevated in MF patients in parallel to the degree of systemic inflammation and levels increased progressively during advanced disease stages. Patients with elevated DAMPs had higher frequency of adverse clinical features, such as anemia, and inferior survival, suggesting their contribution to disease progression. Monocytes, which are key players in MF inflammation, were identified as a source of S100A8/A9 but not HMGB1 release, while both DAMPs correlated with cell death parameters, such as serum LDH and cell-free DNA, indicating that passive release is an additional mechanism leading to increased DAMPs. HMGB1 and S100A8/A9 promote inflammation through binding to Toll-like receptor (TLR) 4, whereas the former also binds TLR2. Monocytes from MF patients were shown to be hyperactivated at baseline, as reflected by higher CD11b and tissue factor exposure and increased expression levels of proinflammatory cytokines IL-1β and IL-6. Patient monocytes showed preserved TLR4 and TLR2 expression and were able to mount normal or even exacerbated functional responses and cytokine upregulation following stimulation of TLR4 and TLR2. Elevated levels of endogenous TLR ligands HMGB1 and S100A8/A9 coupled to the finding of preserved or hyperreactive TLR-triggered responses indicate that DAMPs may promote monocyte activation and cytokine production in MF, fueling inflammation. Plasma IL-1β and IL-6 were elevated in MF and correlated with DAMPs levels, raising the possibility that DAMPs could contribute to cytokine generation in vivo. In conclusion, this study highlights that, in cooperation with classic proinflammatory cytokines, DAMPs represent additional inflammatory mediators that may participate in the generation of MF inflammatory state, potentially providing novel biomarkers of disease progression and new therapeutic targets.
Collapse
Affiliation(s)
- Geraldine De Luca
- División Hematología Investigación, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nora P. Goette
- División Hematología Investigación, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Paola R. Lev
- División Hematología Investigación, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria C. Baroni Pietto
- División Hematología Investigación, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cecilia P. Marin Oyarzún
- División Hematología Investigación, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | | | | - Laureano J. Kamiya
- División Hematología Investigación, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Veronica Verri
- División Hematología Clínica, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Caula
- División Hematología Clínica, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vanina Fernandez
- Departamento de Hematología, Hospital Posadas, Buenos Aires, Argentina
| | - Angeles Vicente
- Departamento de Hematología, Hospital Alemán, Buenos Aires, Argentina
| | - Julio Pose Cabarcos
- Departamento de Hematología, Sanatorio Otamendi Miroli, Buenos Aires, Argentina
| | - Vanesa Caruso
- Departamento de Hematología, Hospital Piñero, Buenos Aires, Argentina
| | - Maria F. Camacho
- Laboratorio de Genética Hematológica, Instituto de Medicina Experimental, IMEX-CONICET/Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Irene B. Larripa
- Laboratorio de Genética Hematológica, Instituto de Medicina Experimental, IMEX-CONICET/Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina Khoury
- Departamento de Docencia e Investigación, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rosana F. Marta
- División Hematología Investigación, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana C. Glembotsky
- División Hematología Investigación, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula G. Heller
- División Hematología Investigación, Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Investigaciones Médicas (IDIM), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
26
|
Slick RA, Sutton J, Haberman M, O'Brien BS, Tinklenberg JA, Mardikar A, Prom MJ, Beatka M, Gartz M, Vanden Avond MA, Siebers E, Mack DL, Gonzalez JP, Ebert AD, Nagaraju K, Lawlor MW. High mobility group box 1 (HMGB1) is a potential disease biomarker in cell and mouse models of Duchenne muscular dystrophy. Biol Open 2024; 13:bio060542. [PMID: 39158383 PMCID: PMC11391821 DOI: 10.1242/bio.060542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder affecting 1:3500 male births and is associated with myofiber degeneration, regeneration, and inflammation. Glucocorticoid treatments have been the standard of care due to immunomodulatory/immunosuppressive properties but novel genetic approaches, including exon skipping and gene replacement therapy, are currently being developed. The identification of additional biomarkers to assess DMD-related inflammatory responses and the potential efficacy of these therapeutic approaches are thus of critical importance. The current study uses RNA sequencing of skeletal muscle from two mdx mouse models to identify high mobility group box 1 (HMGB1) as a candidate biomarker potentially contributing to DMD-related inflammation. HMGB1 protein content was increased in a human iPSC-derived skeletal myocyte model of DMD and microdystrophin treatment decreased HMGB1 back to control levels. In vivo, HMGB1 protein levels were increased in vehicle treated B10-mdx skeletal muscle compared to B10-WT and significantly decreased in B10-mdx animals treated with adeno-associated virus (AAV)-microdystrophin. However, HMGB1 protein levels were not increased in D2-mdx skeletal muscle compared to D2-WT, demonstrating a strain-specific difference in DMD-related immunopathology.
Collapse
Affiliation(s)
- Rebecca A. Slick
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jessica Sutton
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Margaret Haberman
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Benjamin S. O'Brien
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer A. Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Aashay Mardikar
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mariah J. Prom
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Margaret Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Melanie Gartz
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark A. Vanden Avond
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Emily Siebers
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David L. Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98104, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98104, USA
| | | | - Allison D. Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kanneboyina Nagaraju
- AGADA BioSciences Inc., Halifax, Nova Scotia, B3H0A8, Canada
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY. Binghamton, NY 13902, USA
| | - Michael W. Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| |
Collapse
|
27
|
Cheng KO, Montaño DE, Zelante T, Dietschmann A, Gresnigt MS. Inflammatory cytokine signalling in vulvovaginal candidiasis: a hot mess driving immunopathology. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae010. [PMID: 39234208 PMCID: PMC11374039 DOI: 10.1093/oxfimm/iqae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
Protective immunity to opportunistic fungal infections consists of tightly regulated innate and adaptive immune responses that clear the infection. Immune responses to infections of the vaginal mucosa by Candida species are, however, an exception. In the case of vulvovaginal candidiasis (VVC), the inflammatory response is associated with symptomatic disease, rather than that it results in pathogen clearance. As such VVC can be considered an inflammatory disease, which is a significant public health problem due to its predominance as a female-specific fungal infection. Particularly, women with recurrent VVC (RVVC) suffer from a significant negative impact on their quality of life and mental health. Knowledge of the inflammatory pathogenesis of (R)VVC may guide more effective diagnostic and therapeutic options to improve the quality of life of women with (R)VVC. Here, we review the immunopathogenesis of (R)VVC describing several elements that induce an inflammatory arson, starting with the activation threshold established by vaginal epithelial cells that prevent unnecessary ignition of inflammatory responses, epithelial and inflammasome-dependent immune responses. These inflammatory responses will drive neutrophil recruitment and dysfunctional neutrophil-mediated inflammation. We also review the, sometimes controversial, findings on the involvement of adaptive and systemic responses. Finally, we provide future perspectives on the potential of some unexplored cytokine axes and discuss whether VVC needs to be subdivided into subgroups to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Kar On Cheng
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Dolly E Montaño
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1, Perugia, 06132, Italy
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, Jena, 07749, Germany
| |
Collapse
|
28
|
Erickson HL, Taniguchi S, Raman A, Leitenberger JJ, Malhotra SV, Oshimori N. Cancer stem cells release interleukin-33 within large oncosomes to promote immunosuppressive differentiation of macrophage precursors. Immunity 2024; 57:1908-1922.e6. [PMID: 39079535 PMCID: PMC11324407 DOI: 10.1016/j.immuni.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
In squamous cell carcinoma (SCC), macrophages responding to interleukin (IL)-33 create a TGF-β-rich stromal niche that maintains cancer stem cells (CSCs), which evade chemotherapy-induced apoptosis in part via activation of the NRF2 antioxidant program. Here, we examined how IL-33 derived from CSCs facilitates the development of an immunosuppressive microenvironment. CSCs with high NRF2 activity redistributed nuclear IL-33 to the cytoplasm and released IL-33 as cargo of large oncosomes (LOs). Mechanistically, NRF2 increased the expression of the lipid scramblase ATG9B, which exposed an "eat me" signal on the LO surface, leading to annexin A1 (ANXA1) loading. These LOs promoted the differentiation of AXNA1 receptor+ myeloid precursors into immunosuppressive macrophages. Blocking ATG9B's scramblase activity or depleting ANXA1 decreased niche macrophages and hindered tumor progression. Thus, IL-33 is released from live CSCs via LOs to promote the differentiation of alternatively activated macrophage, with potential relevance to other settings of inflammation and tissue repair.
Collapse
Affiliation(s)
- Hannah L Erickson
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sachiko Taniguchi
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Anish Raman
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Justin J Leitenberger
- Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sanjay V Malhotra
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA; Center for Experimental Therapeutics, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Naoki Oshimori
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA; Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA; Department of Otolaryngology, Head & Neck Surgery, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
29
|
Wellens R, Tapia VS, Seoane PI, Bennett H, Adamson A, Coutts G, Rivers-Auty J, Lowe M, Green JP, Lopez-Castejon G, Brough D, Hoyle C. Proximity labelling of pro-interleukin-1α reveals evolutionary conserved nuclear interactions. Nat Commun 2024; 15:6750. [PMID: 39117622 PMCID: PMC11310415 DOI: 10.1038/s41467-024-50901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Interleukin-1α is a suggested dual-function cytokine that diverged from interleukin-1β in mammals potentially by acquiring additional biological roles that relate to highly conserved regions in the pro-domain of interleukin-1α, including a nuclear localisation sequence and histone acetyltransferase-binding domains. Why evolution modified pro-interleukin-1α's subcellular location and protein interactome, and how this shaped interleukin-1α's intracellular role, is unknown. Here we show that TurboID proximity labelling with pro-interleukin-1α suggests a nuclear role for pro-interleukin-1α that involves interaction with histone acetyltransferases, including EP300. We also identify and validate inactivating mutations in the pro-interleukin-1α nuclear localisation sequence of multiple mammalian species, including toothed whales, castorimorpha and marsupials. However, histone acetyltransferase-binding domains are conserved in those species that have lost pro-interleukin-1α nuclear localisation. Together, these data suggest that histone acetyltransferase binding and nuclear localisation occurred together, and that while some species lost the nuclear localisation sequence in their pro-interleukin-1α, histone acetyltransferase binding ability was maintained. The nuclear localisation sequence was lost from several distinct species at different evolutionary times, suggesting convergent evolution, and that the loss of the nuclear localisation sequence confers some important biological outcome.
Collapse
Affiliation(s)
- Rose Wellens
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Victor S Tapia
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Paula I Seoane
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Hayley Bennett
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Antony Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Graham Coutts
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Jack Rivers-Auty
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Jack P Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Gloria Lopez-Castejon
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK.
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK.
| | - Christopher Hoyle
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK.
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
30
|
Yadav JP, Verma A, Pathak P, Dwivedi AR, Singh AK, Kumar P, Khalilullah H, Jaremko M, Emwas AH, Patel DK. Phytoconstituents as modulators of NF-κB signalling: Investigating therapeutic potential for diabetic wound healing. Biomed Pharmacother 2024; 177:117058. [PMID: 38968797 DOI: 10.1016/j.biopha.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
The NF-κB pathway plays a pivotal role in impeding the diabetic wound healing process, contributing to prolonged inflammation, diminished angiogenesis, and reduced proliferation. In contrast to modern synthetic therapies, naturally occurring phytoconstituents are well-studied inhibitors of the NF-κB pathway that are now attracting increased attention in the context of diabetic wound healing because of lower toxicity, better safety and efficacy, and cost-effectiveness. This study explores recent research on phytoconstituent-based therapies and delve into their action mechanisms targeting the NF-κB pathway and potential for assisting effective healing of diabetic wounds. For this purpose, we have carried out surveys of recent literature and analyzed studies from prominent databases such as Science Direct, Scopus, PubMed, Google Scholar, EMBASE, and Web of Science. The classification of phytoconstituents into various categorie such as: alkaloids, triterpenoids, phenolics, polyphenols, flavonoids, monoterpene glycosides, naphthoquinones and tocopherols. Noteworthy phytoconstituents, including Neferine, Plumbagin, Boswellic acid, Genistein, Luteolin, Kirenol, Rutin, Vicenin-2, Gamma-tocopherol, Icariin, Resveratrol, Mangiferin, Betulinic acid, Berberine, Syringic acid, Gallocatechin, Curcumin, Loureirin-A, Loureirin-B, Lupeol, Paeoniflorin, and Puerarin emerge from these studies as promising agents for diabetic wound healing through the inhibition of the NF-κB pathway. Extensive research on various phytoconstituents has revealed how they modulate signalling pathways, including NF-κB, studies that demonstrate the potential for development of therapeutic phytoconstituents to assist healing of chronic diabetic wounds.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India; Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur 209217, India; Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Ashish R Dwivedi
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Ankit Kumar Singh
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| |
Collapse
|
31
|
Korn LL, Kutyavin VI, Bachtel ND, Medzhitov R. Adverse Food Reactions: Physiological and Ecological Perspectives. Annu Rev Nutr 2024; 44:155-178. [PMID: 38724028 DOI: 10.1146/annurev-nutr-061021-022909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
While food is essential for survival, it can also cause a variety of harmful effects, ranging from intolerance to specific nutrients to celiac disease and food allergies. In addition to nutrients, foods contain myriads of substances that can have either beneficial or detrimental effects on the animals consuming them. Consequently, all animals evolved defense mechanisms that protect them from harmful food components. These "antitoxin" defenses have some parallels with antimicrobial defenses and operate at a cost to the animal's fitness. These costs outweigh benefits when defense responses are exaggerated or mistargeted, resulting in adverse reactions to foods. Additionally, pathological effects of foods can stem from insufficient defenses, due to unabated toxicity of harmful food components. We discuss the structure of antitoxin defenses and how their failures can lead to a variety of adverse food reactions.
Collapse
Affiliation(s)
- Lisa L Korn
- Department of Medicine, Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Vassily I Kutyavin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Nathaniel D Bachtel
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
32
|
Dalkara T, Kaya Z, Erdener ŞE. Unraveling the interplay of neuroinflammatory signaling between parenchymal and meningeal cells in migraine headache. J Headache Pain 2024; 25:124. [PMID: 39080518 PMCID: PMC11290240 DOI: 10.1186/s10194-024-01827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The initiation of migraine headaches and the involvement of neuroinflammatory signaling between parenchymal and meningeal cells remain unclear. Experimental evidence suggests that a cascade of inflammatory signaling originating from neurons may extend to the meninges, thereby inducing neurogenic inflammation and headache. This review explores the role of parenchymal inflammatory signaling in migraine headaches, drawing upon recent advancements. BODY: Studies in rodents have demonstrated that sterile meningeal inflammation can stimulate and sensitize meningeal nociceptors, culminating in headaches. The efficacy of relatively blood-brain barrier-impermeable anti-calcitonin gene-related peptide antibodies and triptans in treating migraine attacks, both with and without aura, supports the concept of migraine pain originating in meninges. Additionally, PET studies utilizing inflammation markers have revealed meningeal inflammatory activity in patients experiencing migraine with aura, particularly over the occipital cortex generating visual auras. The parenchymal neuroinflammatory signaling involving neurons, astrocytes, and microglia, which eventually extends to the meninges, can link non-homeostatic perturbations in the insensate brain to pain-sensitive meninges. Recent experimental research has brought deeper insight into parenchymal signaling mechanisms: Neuronal pannexin-1 channels act as stress sensors, initiating the inflammatory signaling by inflammasome formation and high-mobility group box-1 release in response to transient perturbations such as cortical spreading depolarization (CSD) or synaptic metabolic insufficiency caused by transcriptional changes induced by migraine triggers like sleep deprivation and stress. After a single CSD, astrocytes respond by upregulating the transcription of proinflammatory enzymes and mediators, while microglia are involved in restoring neuronal structural integrity; however, repeated CSDs may prompt microglia to adopt a pro-inflammatory state. Transcriptional changes from pro- to anti-inflammatory within 24 h may serve to dampen the inflammatory signaling. The extensive coverage of brain surface and perivascular areas by astrocyte endfeet suggests their role as an interface for transporting inflammatory mediators to the cerebrospinal fluid to contribute to meningeal nociception. CONCLUSION We propose that neuronal stress induced by CSD or synaptic activity-energy mismatch may initiate a parenchymal inflammatory signaling cascade, transmitted to the meninges, thereby triggering lasting headaches characteristic of migraine, with or without aura. This neuroinflammatory interplay between parenchymal and meningeal cells points to the potential for novel targets for migraine treatment and prophylaxis.
Collapse
Affiliation(s)
- Turgay Dalkara
- Departments of Neuroscience and, Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey.
| | - Zeynep Kaya
- Department of Neurology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
33
|
Brahadeeswaran S, Tamizhselvi R. Consequence of alcohol intoxication-mediated efferocytosis impairment. Front Immunol 2024; 15:1386658. [PMID: 39104537 PMCID: PMC11298354 DOI: 10.3389/fimmu.2024.1386658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Alcohol ingestion is a widespread habituation that evolved along with a growing population, altering physiological conditions through immunomodulatory function. There is much research that has reported that consumption of alcohol at low and heavy levels causes different biological impacts, including cellular injury, leading to systemic dysfunction and increased inflammatory markers. In the fate of professional phagocytic cells, efferocytosis is an inevitable mechanism activated by the apoptotic cells, thus eliminating them and preventing the accumulation of cell corpses/debris in the microenvironment. Subsequently, it promotes the tissue repair mechanism and maintains cellular homeostasis. Unfortunately, defective efferocytosis is widely found in several inflammatory and age-related diseases such as atherosclerosis, autoimmune diseases, lung injury, fatty liver disease, and neurodegenerative diseases. Alcohol abuse is one of the factors that provoke an immune response that increases the rate of morbidity and mortality in parallel in systemic disease patients. Information regarding the emergence of immunomodulation during alcoholic pathogenesis and its association with efferocytosis impairment remain elusive. Hence, here in this review, we discussed the mechanism of efferocytosis, the role of defective efferocytosis in inflammatory diseases, and the role of alcohol on efferocytosis impairment.
Collapse
Affiliation(s)
| | - Ramasamy Tamizhselvi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
34
|
Kumar P, Tacke F. Oxidized HMGB1 Adducts Unleash Inflammation in Alcohol-Associated Liver Disease. Cell Mol Gastroenterol Hepatol 2024; 18:101375. [PMID: 39025126 PMCID: PMC11452325 DOI: 10.1016/j.jcmgh.2024.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Affiliation(s)
- Pavitra Kumar
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
35
|
Jiao M, Wang C, Tang X, Dai C, Zhang N, Fan A, Qian Z, Liu S, Zhang F, Li B, Xu Y, Tan Z, Gong F, Lu Y, Zheng F. Active secretion of IL-33 from astrocytes is dependent on TMED10 and promotes central nervous system homeostasis. Brain Behav Immun 2024; 119:539-553. [PMID: 38663774 DOI: 10.1016/j.bbi.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Interleukin-33 (IL-33), secreted by astrocytes, regulates the synapse development in the spinal cord and hippocampus and suppresses autoimmune disease in the central nervous system (CNS). However, the mechanism of unconventional protein secretion of this cytokine remains unclear. In this study, we found that IFN-γ promotes the active secretion of IL-33 from astrocytes, and the active secretion of IL-33 from cytoplasm to extracellular space was dependent on interaction with transmembrane emp24 domain 10 (TMED10) via the IL-1 like cytokine domain in astrocytes. Knockout of Il-33 or its receptor St2 induced hippocampal astrocyte activation and depressive-like disorder in naive mice, as well as increased spinal cord astrocyte activation and polarization to a neurotoxic reactive subtype and aggravated passive experimental autoimmune encephalomyelitis (EAE). Our results have identified that IL-33 is actively secreted by astrocytes through the unconventional protein secretion pathway facilitated by TMED10 channels. This process helps maintain CNS homeostasis by inhibiting astrocyte activation.
Collapse
Affiliation(s)
- Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenchen Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chan Dai
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Na Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anqi Fan
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Zhigang Qian
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiwang Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Xu
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Feili Gong
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| |
Collapse
|
36
|
Ippel H, Miller MC, Dings RPM, Ludwig AK, Gabius HJ, Mayo KH. Cysteine Oxidation in Human Galectin-1 Occurs Sequentially via a Folded Intermediate to a Fully Oxidized Unfolded Form. Int J Mol Sci 2024; 25:6956. [PMID: 39000066 PMCID: PMC11241627 DOI: 10.3390/ijms25136956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Galectins are multifunctional effectors in cellular homeostasis and dysregulation. Oxidation of human galectin-1 (Gal-1) with its six sulfhydryls produces a disulfide-bridged oxidized form that lacks normal lectin activity yet gains new glycan-independent functionality. Nevertheless, the mechanistic details as to how Gal-1 oxidation occurs remain unclear. Here, we used 15N and 13C HSQC NMR spectroscopy to gain structural insight into the CuSO4-mediated path of Gal-1 oxidation and identified a minimum two-stage conversion process. During the first phase, disulfide bridges form slowly between C16-C88 and/or C42-C66 to produce a partially oxidized, conformationally flexible intermediate that retains the ability to bind lactose. Site-directed mutagenesis of C16 to S16 impedes the onset of this overall slow process. During the second phase, increased motional dynamics of the intermediate enable the relatively distant C2 and C130 residues to form the third and final disulfide bond, leading to an unfolded state and consequent dimer dissociation. This fully oxidized end state loses the ability to bind lactose, as shown by the hemagglutination assay. Consistent with this model, we observed that the Gal-1 C2S mutant maintains intermediate-state structural features with a free sulfhydryl group at C130. Incubation with dithiothreitol reduces all disulfide bonds and allows the lectin to revert to its native state. Thus, the sequential, non-random formation of three disulfide bridges in Gal-1 in an oxidative environment acts as a molecular switch for fundamental changes to its functionality. These data inspire detailed bioactivity analysis of the structurally defined oxidized intermediate in, e.g., acute and chronic inflammation.
Collapse
Affiliation(s)
- Hans Ippel
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
- Department of Biochemistry, Cardiovascular Research Instutute Maastricht (CARIM), University of Maastricht, 6229 ER Maastricht, The Netherlands
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Ruud P M Dings
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Anna-Kristin Ludwig
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Hans-Joachim Gabius
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| |
Collapse
|
37
|
Guo XB, Deng X, Wang J, Qi Y, Zhao W, Guan S. HAX-1 interferes in assembly of NLRP3-ASC to block microglial pyroptosis in cerebral I/R injury. Cell Death Discov 2024; 10:264. [PMID: 38811533 PMCID: PMC11136987 DOI: 10.1038/s41420-024-02005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Acute cerebral ischemia has a high rate of disability and death. Although timely recanalization therapy may rescue the ischemic brain tissue, cerebral ischemia-reperfusion injury has been shown to limit the therapeutic effects of vascular recanalization. Protein HAX-1 has been reported as a pro-survival protein that plays an important role in various disorders, particularly in association with the nervous system. However, the effects and mechanisms of HAX-1 in cerebral IR injury have yet to be elucidated. So, we aimed to investigate the effect of HAX-1 on microglial pyroptosis and explore its potential neuroprotective effects in ischemia-reperfusion injury. Our results show that the expression of HAX-1 decreased after cerebral IR injury, accompanied by an increase in pyroptosis pathway activation. In addition, HAX-1 could inhibit microglial pyroptosis both in vivo and in vitro and reduce the release of inflammatory mediators. The above neuroprotective effects might be partially mediated by inhibiting of interaction of NLRP3 and ASC through competitive binding, followed by the attenuation of NLRP3 inflammasome formation. In conclusion, Our findings support that HAX-1 exhibits a protective role in cerebral I/R injury, and further study on HAX-1 expression regulation will contribute to cerebral infarction therapy.
Collapse
Affiliation(s)
- Xin-Bin Guo
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, 450052, Zhengzhou, China
| | - Xin Deng
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, 450052, Zhengzhou, China
| | - Jingjing Wang
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, 450052, Zhengzhou, China
| | - Yuruo Qi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, 450001, Zhengzhou, Henan, China
| | - Wen Zhao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, 450001, Zhengzhou, Henan, China.
| | - Sheng Guan
- Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, 450052, Zhengzhou, China.
| |
Collapse
|
38
|
Goto H, Arima T, Takahashi A, Tobita Y, Nakano Y, Toda E, Shimizu A, Okamoto F. Trimebutine prevents corneal inflammation in a rat alkali burn model. Sci Rep 2024; 14:12111. [PMID: 38802470 PMCID: PMC11130283 DOI: 10.1038/s41598-024-61112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Alkaline burns to the cornea lead to loss of corneal transparency, which is essential for normal vision. We used a rat corneal alkaline burn model to investigate the effect of ophthalmic trimebutine solution on healing wounds caused by alkaline burns. Trimebutine, an inhibitor of the high-mobility group box 1-receptor for advanced glycation end products, when topically applied to the burned cornea, suppressed macrophage infiltration in the early phase and neutrophil infiltration in the late phase at the wound site. It also inhibited neovascularization and myofibroblast development in the late phase. Furthermore, trimebutine effectively inhibited interleukin-1β expression in the injured cornea. It reduced scar formation by decreasing the expression of type III collagen. These findings suggest that trimebutine may represent a novel therapeutic strategy for corneal wounds, not only through its anti-inflammatory effects but also by preventing neovascularization.
Collapse
Affiliation(s)
- Hitoshi Goto
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Takeshi Arima
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Akira Takahashi
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Yutaro Tobita
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Yuji Nakano
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Etsuko Toda
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan.
| | - Fumiki Okamoto
- Department of Ophthalmology, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan.
| |
Collapse
|
39
|
Narros-Fernández P, Chomanahalli Basavarajappa S, Walsh PT. Interleukin-1 family cytokines at the crossroads of microbiome regulation in barrier health and disease. FEBS J 2024; 291:1849-1869. [PMID: 37300849 DOI: 10.1111/febs.16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
Recent advances in understanding how the microbiome can influence both the physiology and the pathogenesis of disease in humans have highlighted the importance of gaining a deeper insight into the complexities of the host-microbial dialogue. In tandem with this progress, has been a greater understanding of the biological pathways which regulate both homeostasis and inflammation at barrier tissue sites, such as the skin and the gut. In this regard, the Interleukin-1 family of cytokines, which can be segregated into IL-1, IL-18 and IL-36 subfamilies, have emerged as important custodians of barrier health and immunity. With established roles as orchestrators of various inflammatory diseases in both the skin and intestine, it is now becoming clear that IL-1 family cytokine activity is not only directly influenced by external microbes, but can also play important roles in shaping the composition of the microbiome at barrier sites. This review explores the current knowledge surrounding the evidence that places these cytokines as key mediators at the interface between the microbiome and human health and disease at the skin and intestinal barrier tissues.
Collapse
Affiliation(s)
- Paloma Narros-Fernández
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Shrikanth Chomanahalli Basavarajappa
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| |
Collapse
|
40
|
Liao M, Cao J, Chen W, Wang M, Jin Z, Ye J, Ren Y, Wei Y, Xue Y, Chen D, Zhang Y, Chen S. HMGB1 prefers to interact with structural RNAs and regulates rRNA methylation modification and translation in HeLa cells. BMC Genomics 2024; 25:345. [PMID: 38580917 PMCID: PMC10996203 DOI: 10.1186/s12864-024-10204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND High-mobility group B1 (HMGB1) is both a DNA binding nuclear factor modulating transcription and a crucial cytokine that mediates the response to both infectious and noninfectious inflammation such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. HMGB1 has been proposed to control ribosome biogenesis, similar as the other members of a class of HMGB proteins. RESULTS Here, we report that HMGB1 selectively promotes transcription of genes involved in the regulation of transcription, osteoclast differentiation and apoptotic process. Improved RNA immunoprecipitation by UV cross-linking and deep sequencing (iRIP-seq) experiment revealed that HMGB1 selectively bound to mRNAs functioning not only in signal transduction and gene expression, but also in axon guidance, focal adhesion, and extracellular matrix organization. Importantly, HMGB1-bound reads were strongly enriched in specific structured RNAs, including the domain II of 28S rRNA, H/ACA box snoRNAs including snoRNA63 and scaRNAs. RTL-P experiment showed that overexpression of HMGB1 led to a decreased methylation modification of 28S rRNA at position Am2388, Cm2409, and Gm2411. We further showed that HMGB1 overexpression increased ribosome RNA expression levels and enhanced protein synthesis. CONCLUSION Taken together, our results support a model in which HMGB1 binds to multiple RNA species in human cancer cells, which could at least partially contribute to HMGB1-modulated rRNA modification, protein synthesis function of ribosomes, and differential gene expression including rRNA genes. These findings provide additional mechanistic clues to HMGB1 functions in cancers and cell differentiation.
Collapse
Affiliation(s)
- Meimei Liao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Hubei, Wuhan, People's Republic of China
| | - Jiarui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Hubei, Wuhan, People's Republic of China
| | - Wen Chen
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
| | - Mengwei Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Hubei, Wuhan, People's Republic of China
| | - Zhihui Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Hubei, Wuhan, People's Republic of China
| | - Jia Ye
- Department of Orthopedics, Renmin Hospital of Wuhan University, Hubei, Wuhan, People's Republic of China
| | - Yijun Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Hubei, Wuhan, People's Republic of China
| | - Yaxun Wei
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
| | - Yaqiang Xue
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
| | - Dong Chen
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2Nd Road, Hubei, Wuhan, 430075, China
| | - Sen Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Hubei, Wuhan, People's Republic of China.
| |
Collapse
|
41
|
Krishnamohan M, Kaplanov I, Maudi-Boker S, Yousef M, Machluf-Katz N, Cohen I, Elkabets M, Titus J, Bersudsky M, Apte RN, Voronov E, Braiman A. Tumor Cell-Associated IL-1α Affects Breast Cancer Progression and Metastasis in Mice through Manipulation of the Tumor Immune Microenvironment. Int J Mol Sci 2024; 25:3950. [PMID: 38612760 PMCID: PMC11011794 DOI: 10.3390/ijms25073950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
IL-1α is a dual function cytokine that affects inflammatory and immune responses and plays a pivotal role in cancer. The effects of intracellular IL-1α on the development of triple negative breast cancer (TNBC) in mice were assessed using the CRISPR/Cas9 system to suppress IL-1α expression in 4T1 breast cancer cells. Knockout of IL-1α in 4T1 cells modified expression of multiple genes, including downregulation of cytokines and chemokines involved in the recruitment of tumor-associated pro-inflammatory cells. Orthotopical injection of IL-1α knockout (KO) 4T1 cells into BALB/c mice led to a significant decrease in local tumor growth and lung metastases, compared to injection of wild-type 4T1 (4T1/WT) cells. Neutrophils and myeloid-derived suppressor cells were abundant in tumors developing after injection of 4T1/WT cells, whereas more antigen-presenting cells were observed in the tumor microenvironment after injection of IL-1α KO 4T1 cells. This switch correlated with increased infiltration of CD3+CD8+ and NKp46+cells. Engraftment of IL-1α knockout 4T1 cells into immunodeficient NOD.SCID mice resulted in more rapid tumor growth, with increased lung metastasis in comparison to engraftment of 4T1/WT cells. Our results suggest that tumor-associated IL-1α is involved in TNBC progression in mice by modulating the interplay between immunosuppressive pro-inflammatory cells vs. antigen-presenting and cytotoxic cells.
Collapse
Affiliation(s)
- Mathumathi Krishnamohan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Irena Kaplanov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Sapir Maudi-Boker
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Muhammad Yousef
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Noy Machluf-Katz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Idan Cohen
- Cancer Center, Emek Medical Center, Afula 18101, Israel;
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Jaison Titus
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Marina Bersudsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| |
Collapse
|
42
|
Zhong H, Ji J, Zhuang J, Xiong Z, Xie P, Liu X, Zheng J, Tian W, Hong X, Tang J. Tissue-resident macrophages exacerbate lung injury after remote sterile damage. Cell Mol Immunol 2024; 21:332-348. [PMID: 38228746 PMCID: PMC10979030 DOI: 10.1038/s41423-024-01125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
Remote organ injury, which is a common secondary complication of sterile tissue damage, is a major cause of poor prognosis and is difficult to manage. Here, we report the critical role of tissue-resident macrophages in lung injury after trauma or stroke through the inflammatory response. We found that depleting tissue-resident macrophages rather than disrupting the recruitment of monocyte-derived macrophages attenuated lung injury after trauma or stroke. Our findings revealed that the release of circulating alarmins from sites of distant sterile tissue damage triggered an inflammatory response in lung-resident macrophages by binding to receptor for advanced glycation end products (RAGE) on the membrane, which activated epidermal growth factor receptor (EGFR). Mechanistically, ligand-activated RAGE triggered EGFR activation through an interaction, leading to Rab5-mediated RAGE internalization and EGFR phosphorylation, which subsequently recruited and activated P38; this, in turn, promoted RAGE translation and trafficking to the plasma membrane to increase the cellular response to RAGE ligands, consequently exacerbating inflammation. Our study also showed that the loss of RAGE or EGFR expression by adoptive transfer of macrophages, blocking the function of RAGE with a neutralizing antibody, or pharmacological inhibition of EGFR activation in macrophages could protect against trauma- or stroke-induced remote lung injury. Therefore, our study revealed that targeting the RAGE-EGFR signaling pathway in tissue-resident macrophages is a potential therapeutic approach for treating secondary complications of sterile damage.
Collapse
Affiliation(s)
- Hanhui Zhong
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jingjing Ji
- The Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Jinling Zhuang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ziying Xiong
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Pengyun Xie
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaolei Liu
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jundi Zheng
- The Department of Respiratory Medicine, Guangdong Provincial Hospital of Integrated Chinese and Western Medicine, Foshan, China
| | - Wangli Tian
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaoyang Hong
- Pediatric Intensive Care Unit, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China.
| | - Jing Tang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
43
|
Price DR, Garcia JGN. A Razor's Edge: Vascular Responses to Acute Inflammatory Lung Injury/Acute Respiratory Distress Syndrome. Annu Rev Physiol 2024; 86:505-529. [PMID: 38345908 PMCID: PMC11259086 DOI: 10.1146/annurev-physiol-042222-030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Historically considered a metabolically inert cellular layer separating the blood from the underlying tissue, the endothelium is now recognized as a highly dynamic, metabolically active tissue that is critical to organ homeostasis. Under homeostatic conditions, lung endothelial cells (ECs) in healthy subjects are quiescent, promoting vasodilation, platelet disaggregation, and anti-inflammatory mechanisms. In contrast, lung ECs are essential contributors to the pathobiology of acute respiratory distress syndrome (ARDS), as the quiescent endothelium is rapidly and radically altered upon exposure to environmental stressors, infectious pathogens, or endogenous danger signals into an effective and formidable regulator of innate and adaptive immunity. These dramatic perturbations, produced in a tsunami of inflammatory cascade activation, result in paracellular gap formation between lung ECs, sustained lung edema, and multi-organ dysfunction that drives ARDS mortality. The astonishing plasticity of the lung endothelium in negotiating this inflammatory environment and efforts to therapeutically target the aberrant ARDS endothelium are examined in further detail in this review.
Collapse
Affiliation(s)
- David R Price
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY, USA
| | - Joe G N Garcia
- Center for Inflammation Sciences and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA;
| |
Collapse
|
44
|
Gallo A, Massaro MG, Camilli S, Di Francesco S, Gerardino L, Verrecchia E, Sicignano LL, Landi F, Manna R, Montalto M. Interleukin-1 Blockers in Recurrent and Acute Pericarditis: State of the Art and Future Directions. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:241. [PMID: 38399529 PMCID: PMC10890577 DOI: 10.3390/medicina60020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Diseases of the pericardium encompass a spectrum of conditions, including acute and recurrent pericarditis, where inflammation plays a pivotal role in the pathogenesis and clinical manifestations. Anti-inflammatory therapy indeed forms the cornerstone of treating these conditions: NSAIDs, colchicine, and corticosteroids (as a second-line treatment) are recommended by current guidelines. However, these medications come with several contraindications and are not devoid of adverse effects. In recent years, there has been an increased focus on the role of the inflammasome and potential therapeutic targets. Recurrent pericarditis also shares numerous characteristics with other autoinflammatory diseases, in which interleukin-1 antagonists have already been employed with good efficacy and safety. The objective of this review is to summarize the available studies on the use of anti-IL-1 drugs both in acute and recurrent pericarditis.
Collapse
Affiliation(s)
- Antonella Gallo
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (L.G.); (E.V.); (L.L.S.); (F.L.); (R.M.); (M.M.)
| | - Maria Grazia Massaro
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sara Camilli
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Silvino Di Francesco
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Gerardino
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (L.G.); (E.V.); (L.L.S.); (F.L.); (R.M.); (M.M.)
| | - Elena Verrecchia
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (L.G.); (E.V.); (L.L.S.); (F.L.); (R.M.); (M.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ludovico Luca Sicignano
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (L.G.); (E.V.); (L.L.S.); (F.L.); (R.M.); (M.M.)
| | - Francesco Landi
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (L.G.); (E.V.); (L.L.S.); (F.L.); (R.M.); (M.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Raffaele Manna
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (L.G.); (E.V.); (L.L.S.); (F.L.); (R.M.); (M.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Massimo Montalto
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (L.G.); (E.V.); (L.L.S.); (F.L.); (R.M.); (M.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
45
|
Yıldız S, Kılıçaslan AK, Emir BS, Uğur K, Kılıç F. Serum HMGB1 and Beclin 1 Levels in Patients with a Diagnosis of Schizophrenia. TURK PSIKIYATRI DERGISI = TURKISH JOURNAL OF PSYCHIATRY 2024; 35:1-7. [PMID: 38556931 PMCID: PMC11003366 DOI: 10.5080/u27030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/06/2022] [Indexed: 04/02/2024]
Abstract
OBJECTIVE It is known that inflammation plays a role in the etiopathogenesis of schizophrenia. In this study, we examined high mobility group box 1 protein (HMGB1) and Beclin 1 levels and their relationship with clinical variables in patients with schizophrenia. METHOD Forty-three patients with schizophrenia and 43 healthy controls were included in this study. The patients were administered sociodemographic data form, the Positive Negative Symptoms Assessment Scale (PANSS) and the Clinical Global Impressions (CGI) scale. After the scales were filled, venous blood samples were taken from both the patient and control groups to measure serum HMGB1 and Beclin 1 levels. Serum samples obtained at the end of centrifugation were measured by Enzyme-Linked ImmunoSorbent Assay (ELISA) method. RESULTS The mean serum HMGB1 levels were significantly increased and the mean serum Beclin 1 levels were significantly decreased in the schizophrenia group compared to the control group. In addition, a negative correlation was found between HMGB1 and Beclin 1 levels. CONCLUSION In conclusion, current research shows that HMGB1 is increased and Beclin 1 is decreased in patients with schizophrenia, and these findings may contribute to the role of autophagy in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Sevler Yıldız
- Assoc. Prof., Binali Yıldırım University, Faculty of Medicine, Department of Psychiatry, Erzincan
| | | | - Burcu Sırlıer Emir
- Psychiatrist, Elazığ Fethi Sekin City Hospital, Department of Psychiatry, Elazığ
| | - Kerim Uğur
- Assoc. Prof., Turgut Özal University, Faculty of Medicine, Department of Psychiatry, Malatya
| | - Faruk Kılıç
- Assoc. Prof., Süleyman Demirel University, Faculty of Medicine, Department of Psychiatry, Isparta, Turkey
| |
Collapse
|
46
|
Terry AQ, Kojima H, Sosa RA, Kaldas FM, Chin JL, Zheng Y, Naini BV, Noguchi D, Nevarez-Mejia J, Jin YP, Busuttil RW, Meyer AS, Gjertson DW, Kupiec-Weglinski JW, Reed EF. Disulfide-HMGB1 signals through TLR4 and TLR9 to induce inflammatory macrophages capable of innate-adaptive crosstalk in human liver transplantation. Am J Transplant 2023; 23:1858-1871. [PMID: 37567451 PMCID: PMC11095628 DOI: 10.1016/j.ajt.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Ischemia-reperfusion injury (IRI) during orthotopic liver transplantation (OLT) contributes to graft rejection and poor clinical outcomes. The disulfide form of high mobility group box 1 (diS-HMGB1), an intracellular protein released during OLT-IRI, induces pro-inflammatory macrophages. How diS-HMGB1 differentiates human monocytes into macrophages capable of activating adaptive immunity remains unknown. We investigated if diS-HMGB1 binds toll-like receptor (TLR) 4 and TLR9 to differentiate monocytes into pro-inflammatory macrophages that activate adaptive immunity and promote graft injury and dysfunction. Assessment of 106 clinical liver tissue and longitudinal blood samples revealed that OLT recipients were more likely to experience IRI and graft dysfunction with increased diS-HMGB1 released during reperfusion. Increased diS-HMGB1 concentration also correlated with TLR4/TLR9 activation, polarization of monocytes into pro-inflammatory macrophages, and production of anti-donor antibodies. In vitro, healthy volunteer monocytes stimulated with purified diS-HMGB1 had increased inflammatory cytokine secretion, antigen presentation machinery, and reactive oxygen species production. TLR4 inhibition primarily impeded cytokine/chemokine and costimulatory molecule programs, whereas TLR9 inhibition decreased HLA-DR and reactive oxygen species production. diS-HMGB1-polarized macrophages also showed increased capacity to present antigens and activate T memory cells. In murine OLT, diS-HMGB1 treatment potentiated ischemia-reperfusion-mediated hepatocellular injury, accompanied by increased serum alanine transaminase levels. This translational study identifies the diS-HMGB1/TLR4/TLR9 axis as potential therapeutic targets in OLT-IRI recipients.
Collapse
Affiliation(s)
- Allyson Q Terry
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hidenobu Kojima
- Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rebecca A Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Fady M Kaldas
- Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jackson L Chin
- Department of Bioengineering, Samueli School of Engineering at UCLA, Los Angeles, California, USA
| | - Ying Zheng
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Bita V Naini
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Daisuke Noguchi
- Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ronald W Busuttil
- Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Aaron S Meyer
- Department of Bioengineering, Samueli School of Engineering at UCLA, Los Angeles, California, USA
| | - David W Gjertson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; Department of Biostatistics, Fielding School of Public Health at UCLA, Los Angeles, California, USA
| | - Jerzy W Kupiec-Weglinski
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
47
|
Liu M, Haque N, Huang J, Zhai G. Osteoarthritis year in review 2023: metabolite and protein biomarkers. Osteoarthritis Cartilage 2023; 31:1437-1453. [PMID: 37611797 DOI: 10.1016/j.joca.2023.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE To highlight the advances over the past year in metabolite/protein biomarkers for osteoarthritis (OA). METHOD A literature search of five databases including PubMed, Web of Science, Scopus, Ovid Medline, and Embase was performed for studies on metabolite/protein/peptide/biochemical markers for OA published between April 1st, 2022 and March 31st, 2023. Records were then screened to include only original research articles using directly collected human specimens, in English language, and with full text available. Data from eligible studies were systematically extracted and summarized. RESULTS A total of 1600 unique records were extracted, out of which 46 fulfilled the inclusion criteria and were used for data extraction. Forty-one of these 46 studies focused on biomarkers for OA/OA severity/progression, four on OA clustering, and one on OA treatment outcomes. Twenty-nine studied protein markers for OA, thirteen studied metabolite markers, and four studied both. While many studies were the validation of the previously reported biomarkers, a number of novel metabolite/protein biomarkers and biomarker panels were reported in the past year. Biomarker panels might be useful to subset OA patients. CONCLUSION The number of studies on OA clustering is rising. Although validation in larger cohorts is needed in order to utilize reported biomarkers in clinical practice, these discoveries help better understand the pathogenesis of OA, provide insights into possible mechanisms underlying poor treatment outcomes, and aid in developing personalized treatment based on OA subtypes.
Collapse
Affiliation(s)
- Ming Liu
- Division of Biomedical Sciences (Genetics), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Nafiza Haque
- Division of Biomedical Sciences (Genetics), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Jingyi Huang
- Division of Biomedical Sciences (Genetics), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Guangju Zhai
- Division of Biomedical Sciences (Genetics), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada.
| |
Collapse
|
48
|
Bilska K, Dmitrzak-Węglarz M, Osip P, Pawlak J, Paszyńska E, Permoda-Pachuta A. Metabolic Syndrome and Adipokines Profile in Bipolar Depression. Nutrients 2023; 15:4532. [PMID: 37960185 PMCID: PMC10648184 DOI: 10.3390/nu15214532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Metabolic syndrome (MS) is a growing social, economic, and health problem. MS coexists with nearly half of all patients with affective disorders. This study aimed to evaluate the neurobiological parameters (clinical, anthropometric, biochemical, adipokines levels, and ultrasound of carotid arteries) and their relationship with the development of MS in patients with bipolar disorder. The study group consisted of 70 patients (50 women and 20 men) hospitalized due to episodes of depression in the course of bipolar disorders. The Hamilton Depression Rating Scale was used to assess the severity of the depression symptoms in an acute state of illness and after six weeks of treatment. The serum concentration of adipokines was determined using an ELISA method. The main finding of this study is that the following adipokines correlated with MS in the bipolar depression women group: visfatin, S100B, and leptin had a positive correlation, whereas adiponectin, leptin-receptor, and adiponectin/leptin ratio showed a negative correlation. Moreover, the adiponectin/leptin ratio showed moderate to strong negative correlation with insulin level, BMI, waist circumference, triglyceride level, treatment with metformin, and a positive moderate correlation with HDL. The adiponectin/leptin ratio may be an effective tool to assess MS in depressed female bipolar patients.
Collapse
Affiliation(s)
- Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Monika Dmitrzak-Węglarz
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Elżbieta Paszyńska
- Department of Integrated Dentistry, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | |
Collapse
|
49
|
Jia Z, Guo M, Ge X, Chen F, Lei P. IL-33/ST2 Axis: A Potential Therapeutic Target in Neurodegenerative Diseases. Biomolecules 2023; 13:1494. [PMID: 37892176 PMCID: PMC10605306 DOI: 10.3390/biom13101494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Interleukin 33 (IL-33) belongs to the IL-1 family and is localized in the nucleus. IL-33 is primarily composed of three distinct domains, namely the N-terminal domain responsible for nuclear localization, the intermediate sense protease domain, and the C-terminal cytokine domain. Its specific receptor is the suppression of tumorigenicity 2 (ST2), which is detected in serum-stimulated fibroblasts and oncogenes. While most other cytokines are actively produced in cells, IL-33 is passively produced in response to tissue damage or cell necrosis, thereby suggesting its role as an alarm following cell infection, stress, or trauma. IL-33 plays a crucial role in congenital and acquired immunity, which assists in the response to environmental stress and maintains tissue homeostasis. IL-33/ST2 interaction further produces many pro-inflammatory cytokines. Moreover, IL-33 is crucial for central nervous system (CNS) homeostasis and the pathogenic mechanisms underlying CNS degenerative disorders. The present work summarizes the structure of IL-33, its fundamental activities, and its role in immunoregulation and neurodegenerative diseases. Therefore, this work proposes that IL-33 may play a role in the pathogenic mechanism of diseases and can be used in the development of treatment strategies.
Collapse
Affiliation(s)
- Zexi Jia
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengtian Guo
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100054, China;
| | - Xintong Ge
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin 300052, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
50
|
Tan L, Chan W, Zhang J, Wang J, Wang Z, Liu J, Li J, Liu X, Wang M, Hao L, Yue Y. Regulation of RIP1-Mediated necroptosis via necrostatin-1 in periodontitis. J Periodontal Res 2023; 58:919-931. [PMID: 37334934 DOI: 10.1111/jre.13150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE To explore the mechanism of receptor-interacting protein 1 (RIP1)-mediated necroptosis during periodontitis progression. BACKGROUND RIP3 and mixed lineage kinase domain-like protein (MLKL) have been detected to be upregulated in periodontitis models. Because RIP1 is involved in necroptosis, it might also play a role in the progression of periodontitis. METHODS An experimental periodontitis model in BALB/c mice was established by inducing oral bacterial infection. Western blotting and immunofluorescence analyses were used to detect RIP1 expression in the periodontal ligament. Porphyromonas gingivalis was used to stimulate L929 and MC3T3-E1. RIP1 was inhibited using small-interfering RNA. Western blotting, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) analyses were used to detect the effect of necroptosis inhibition on the expression of damage-associated molecular patterns and inflammatory cytokines. Necrostatin-1 (Nec-1) was intraperitoneally injected to inhibit RIP1 expression in mice. Necroptosis activation and inflammatory cytokine expression in periodontal tissue were verified. Tartrate-resistant acid phosphatase staining was applied to observe osteoclasts in the bone tissues of different groups. RESULTS RIP1-mediated necroptosis was activated in mice with periodontitis. P. gingivalis induced RIP1-mediated necroptosis in L929 and MC3T3-E1 cells. After RIP1 inhibition, the expression levels of high mobility group protein B1 (HMGB1) and inflammatory cytokines were downregulated. After inhibiting RIP1 with Nec-1 in vivo, necroptosis was also inhibited, the expression levels of HMGB1 and inflammatory cytokines were downregulated, and osteoclast counts in the periodontal tissue decreased. CONCLUSION RIP1-mediated necroptosis plays a role in the pathological process of periodontitis in mice. Nec-1 inhibited necroptosis, alleviated inflammation in periodontal tissue, and reduced bone resorption in periodontitis.
Collapse
Affiliation(s)
- Liangyu Tan
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Weicheng Chan
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhang
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zizheng Wang
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Liu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Clinical Research Center for Oral Diseases of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Zhejiang, Hangzhou, China
| | - Jiaxin Li
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinran Liu
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Wang
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Hao
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Yue
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|