1
|
Pettas T, Lachanoudi S, Karageorgos FF, Ziogas IA, Fylaktou A, Papalois V, Katsanos G, Antoniadis N, Tsoulfas G. Immunotherapy and liver transplantation for hepatocellular carcinoma: Current and future challenges. World J Transplant 2025; 15:98509. [DOI: 10.5500/wjt.v15.i2.98509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 11/07/2024] [Indexed: 02/21/2025] Open
Abstract
Despite existing curative options like surgical removal, tissue destruction techniques, and liver transplantation for early-stage hepatocellular carcinoma (HCC), the rising incidence and mortality rates of this global health burden necessitate continuous exploration of novel therapeutic strategies. This review critically assesses the dynamic treatment panorama for HCC, focusing specifically on the burgeoning role of immunotherapy in two key contexts: early-stage HCC and downstaging advanced HCC to facilitate liver transplant candidacy. It delves into the unique immunobiology of the liver and HCC, highlighting tumor-mediated immune evasion mechanisms. Analyzing the diverse immunotherapeutic approaches including checkpoint inhibitors, cytokine modulators, vaccines, oncolytic viruses, antigen-targeting antibodies, and adoptive cell therapy, this review acknowledges the limitations of current diagnostic markers alpha-fetoprotein and glypican-3 and emphasizes the need for novel biomarkers for patient selection and treatment monitoring. Exploring the rationale for neoadjuvant and adjuvant immunotherapy in early-stage HCC, current research is actively exploring the safety and effectiveness of diverse immunotherapeutic approaches through ongoing clinical trials. The review further explores the potential benefits and challenges of combining immunotherapy and liver transplant, highlighting the need for careful patient selection, meticulous monitoring, and novel strategies to mitigate post-transplant complications. Finally, this review delves into the latest findings from the clinical research landscape and future directions in HCC management, paving the way for optimizing treatment strategies and improving long-term survival rates for patients with this challenging malignancy.
Collapse
Affiliation(s)
- Theodoros Pettas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Sofia Lachanoudi
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Filippos F Karageorgos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Ioannis A Ziogas
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Vassilios Papalois
- Department of Transplant Surgery, Imperial College Renal and Transplant Centre, London W12 0HS, United Kingdom
| | - Georgios Katsanos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki 54642, Greece
| | - Nikolaos Antoniadis
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki 54642, Greece
| |
Collapse
|
2
|
Jin Y, Li N, Chen SN, Lu YS, Gan Z, Nie P. Transcriptome analysis of head kidney and liver in grass carp (Ctenopharyngodon idella) symptomatically or asymptomatically infected with Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110293. [PMID: 40122189 DOI: 10.1016/j.fsi.2025.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
Flavobacterium columnare is an important pathogen causing columnaris disease, which can result in high mortality in freshwater fish worldwide. Understanding the immune response in infection status of fish may be essential for developing effective prevention and treatment strategies. In this study, transcriptomes of liver and head kidney tissues in grass carp (Ctenopharyngodon idella) were compared under symptomatic and asymptomatic statuses following the immersion infection of F. columnare. Significant differences in expression of genes were observed between fish showing disease symptoms and those without symptoms. The number of differentially expressed genes (DEGs) between infected and control groups ranged from 4752 to 8,277, while the DEGs between exposed and control groups ranged from 272 to 1,751, suggesting a strong acute inflammatory response in infected groups. KEGG pathway enrichment analysis of infected groups revealed that among the top 30 enriched pathways, liver and head kidney shared 22 and 16 common pathways, respectively. These common enriched pathways are involved in various functions such as metabolism, diseases, cellular processes, biological systems, and information processing, indicating their roles in the immune response to F. columnare. Notably, we investigated in detail the gene expression profiles associated with complement molecules and three classes of cytokines (interleukin, tumor necrosis factor, and interferon) in different organs/tissues and disease states during the pathogenesis of columnaris disease. The findings highlight the importance of inflammatory responses and complement pathways in the pathogenesis of columnaris disease and suggest potential targets for future research and disease management strategies. The present study thus provides valuable insights into the transcriptomic changes and immune responses in grass carp infected with F. columnare, and sheds light on how highly virulent strains of F. columnare cause morbidity and mortality in the host.
Collapse
Affiliation(s)
- Yong Jin
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong Province, 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Yi Shan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong Province, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, Guangdong Province, 524088, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong Province, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, Guangdong Province, 524088, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
3
|
Wood EK, Huang E, Sano ER, Loftis JM. Greater fatigue, disturbed sleep, persistent memory problems, and reduced CD4 + T cell and B cell percentages in adults with a history of methamphetamine dependence. J Neuroimmunol 2025; 402:578567. [PMID: 40088605 PMCID: PMC11974374 DOI: 10.1016/j.jneuroim.2025.578567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/31/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
Methamphetamine (MA) dependence is associated with immunotoxicity and high rates of neuropsychiatric impairments that persist into remission. Although there are currently no FDA-approved pharmacotherapies for MA use disorders, preclinical and clinical studies are beginning to test interventions that directly impact immune signaling. This study was conducted to investigate the relative contribution of immune cell function to the neuropsychiatric sequelae associated with MA dependence and remission. Participants were enrolled into the following study groups: i) control (CTL) group (n = 62): adults with no lifetime history of dependence on any substance other than nicotine or caffeine; and ii) MA group (n = 98) [MA-remission group (n = 55): adults in remission ≥1 month and ≤ 6 months and MA-active group (n = 43): adults actively using MA and meeting criteria for MA dependence]. Participants completed a clinical interview, urine drug analysis, blood sample collection, and questionnaires. Peripheral blood mononuclear cells were analyzed by flow cytometry. Results suggest that early remission from MA dependence is associated with increased fatigue and persistent sleep and prospective and retrospective memory problems, along with reduced B and CD4+ T cell percentages, compared to the CTL group. Preliminary findings support the hypothesis that the immune system modulates the sleep impairments associated with drug actions and provide implications for future research studies and treatment approaches.
Collapse
Affiliation(s)
- Elizabeth K Wood
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; Center for Mental Health Innovation, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Elaine Huang
- Cell, Developmental and Cancer Biology Department, Oregon Health & Science University, 3181 Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Emily R Sano
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA.
| | - Jennifer M Loftis
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| |
Collapse
|
4
|
Abbas Z, Ahmad B, Tong Y, Zhang J, Wu S, Wang J, Li Z, Liu T, Liu Y, Wei X, Si D, Zhang R. Mulberry-derived postbiotics alleviate LPS-induced intestinal inflammation and modulate gut microbiota dysbiosis. Food Funct 2025. [PMID: 40354131 DOI: 10.1039/d4fo05503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Mulberry-derived postbiotics (MDP) have demonstrated promising bioactive properties, including antioxidant and anti-inflammatory effects; however, their specific role in modulating gut inflammation and microbiota composition remains underexplored. Given the growing interest in functional food ingredients for gut health and managing inflammatory disorders, this study aims to evaluate the effects of MDP in alleviating intestinal inflammation and altering the gut microbiota in an LPS-induced mouse model of systemic inflammation. MDP administration significantly mitigated LPS-induced pathological changes in the intestine, liver, spleen, and kidneys, thereby improving systemic health and immune function. Histological analysis revealed reduced inflammation and tissue damage in the intestinal epithelium, supporting the potential of MDP to improve gut barrier integrity. An antioxidant assay revealed that MDP decreased the malonaldehyde (MDA) levels and increased the enzymatic activities of CAT, SOD, and GSH in response to LPS administration, indicating enhanced cellular antioxidant defenses. Inflammatory cytokine analysis showed that MDP downregulated proinflammatory markers such as TNF-α, IL-1β, IL-6, MYD88, Nrf2 COX-2, and HO1, while upregulating TLR4, resulting in potential anti-inflammatory effects by modulating the TLR4-NF-κb pathway. Moreover, MDP promoted beneficial alterations in gut microbiota composition by increasing the abundance of Firmicutes and Bacteroidetes, which are linked to gut health and inflammation regulation. The changes in gut microbiota composition suggest a potential mechanism by which MDP may help restore gut homeostasis and reduce systemic inflammation. These findings suggest that MDP may serve as promising functional food ingredients that support immune health, reduce inflammation, and promote gut microbiota balance, offering potential applications in fortified foods and nutraceuticals aimed at mitigating inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Zaheer Abbas
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| | - Baseer Ahmad
- Faculty of Veterinary and Animal Science, Muhammad Nawaz Sharif University of Agriculture, Multan, 25000, Pakistan
| | - Yucui Tong
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| | - Jing Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| | - Shuang Wu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| | - Junyong Wang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| | - Zhenzhen Li
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| | - Tianqi Liu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| | - Yicong Liu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| | - Xubiao Wei
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| | - Dayong Si
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
5
|
Zhang X, Xiong W, Gao F, Yu Z, Ren F, Lei XG. Impacts and mechanism of liver-specific knockout of selenoprotein I on hepatic phospholipid metabolism, selenogenome expression, redox status, and resistance to CCl 4 toxicity. Free Radic Biol Med 2025:S0891-5849(25)00662-8. [PMID: 40345504 DOI: 10.1016/j.freeradbiomed.2025.05.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/27/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
Selenoprotein I (SELENOI) was known initially as ethanolamine phosphotransferase 1 (EPT1) and later as a selenoprotein. Because global knockout of Selenoi in mice is embryonically lethal, we generated liver-specific Selenoi knockout (cKO) mice to reveal functions and mechanism of SELENOI in the liver. Compared with control mice, cKO mice (8 weeks old) had no differences in body weight, glucose metabolism, energy expenditure, overall health status, or liver histology. However, these mice had lower (P < 0.05) mRNA levels of 13 selenoprotein genes, contents of Se, GSH, and T-AOC (12-40%), and activities of antioxidant enzymes (17-51%), but higher (P < 0.05) mRNA levels of oxidative stress-related genes (34%-46%) in the liver than the control mice. They had a higher (P < 0.05) ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE) due to increases of the former and decreases of the latter, altered PE and PC constituents such as n-6/n-3 PUFA ratios, and elevated mRNA levels (95%-2-fold, P < 0.05) of lipolysis genes, compared with the control mice. The knockout attenuated hepatic injury and fibrosis induced by 14 intraperitoneal injections of CCl4 (0.5 mL/kg). The protection was associated with adaptive cytoprotective mechanisms induced by the overall decline of redox status mediated by SELENOI as a selenoprotein and activations of PPAR signaling, fatty acid desaturase 2 (FADS2), glutathione S-transferase, and lipid peroxide hydrolysis through modulating biosynthesis and(or) constituents of PC, PE, and n-6/n-3 PUFAs mediated by SELENOI as EPT1. Inhibition of FADS2 in CCl4-treated cKO hepatocytes partially removed the protection by the knockout. In conclusion, hepatic SELENOI expression was not essential for survival, but served as a multifunctional regulator of hepatic selenogenome expression, Se metabolism, redox status, biosyntheses and profiles of PC and PE, and resistance to CCI4.
Collapse
Affiliation(s)
- Xu Zhang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wei Xiong
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| | - Fei Gao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhengquan Yu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
6
|
Koelsch N, Mirshahi F, Aqbi HF, Seneshaw M, Idowu MO, Olex AL, Sanyal AJ, Manjili MH. Anti-Tumour Immunity Relies on Targeting Tissue Homeostasis Through Monocyte-Driven Responses Rather Than Direct Tumour Cytotoxicity. Liver Int 2025; 45:e70110. [PMID: 40272245 PMCID: PMC12020664 DOI: 10.1111/liv.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/16/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) can progress to hepatocellular carcinoma (HCC), yet the immune mechanisms driving this transition remain unclear. METHODS In a chronic Western diet (WD) mouse model, we performed single-nuclei RNA sequencing to track MAFLD progression into HCC and subsequent tumour inhibition upon dietary correction. RESULTS Carcinogenesis begins during MAFLD, with tumour cells entering dormancy when HCC is mitigated. Rather than purely tolerogenic, the liver actively engages immune responses targeting myofibroblasts, fibroblasts and hepatocytes to maintain tissue homeostasis. Cytotoxic cells contribute to the turnover of liver cells but do not primarily target the tumour. NKT cells predominate under chronic WD, while monocytes join them in HCC progression on a WD. Upon dietary correction, monocyte-driven immunity confers protection against HCC through targeting tissue homeostatic pathways and antioxidant mechanisms. Crucially, liver tissue response-not merely immune activation-dictates whether tumours grow or regress, emphasising the importance of restoring liver tissue integrity. Also, protection against HCC is linked to a distinct immunological pattern, differing from healthy controls, underscoring the need for immune reprogramming. CONCLUSION These findings reveal the dual roles of similar pathways, where immune patterns targeting different cells shape distinct outcomes. Restoring tissue homeostasis and regeneration creates a tumour-hostile microenvironment, whereas tumour-directed approaches fail to remodel the TME. This underscores the need for tissue remodelling strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Nicholas Koelsch
- Department of Microbiology & ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Faridoddin Mirshahi
- Department of Internal MedicineVCU School of MedicineRichmondVirginiaUSA
- Stravitz‐Sanyal Institute for Liver Disease and Metabolic HealthRichmondVirginiaUSA
| | | | - Mulugeta Seneshaw
- Department of Internal MedicineVCU School of MedicineRichmondVirginiaUSA
- Stravitz‐Sanyal Institute for Liver Disease and Metabolic HealthRichmondVirginiaUSA
| | - Michael O. Idowu
- Department of PathologyVCU School of MedicineRichmondVirginiaUSA
- VCU Massey Comprehensive Cancer CenterRichmondVirginiaUSA
| | - Amy L. Olex
- VCU Massey Comprehensive Cancer CenterRichmondVirginiaUSA
- C. Kenneth and Dianne Wright Center for Clinical and Translational ResearchVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Arun J. Sanyal
- Department of Internal MedicineVCU School of MedicineRichmondVirginiaUSA
- Stravitz‐Sanyal Institute for Liver Disease and Metabolic HealthRichmondVirginiaUSA
- VCU Massey Comprehensive Cancer CenterRichmondVirginiaUSA
| | - Masoud H. Manjili
- Department of Microbiology & ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
- VCU Massey Comprehensive Cancer CenterRichmondVirginiaUSA
- VCU Institute of Molecular MedicineRichmondVirginiaUSA
| |
Collapse
|
7
|
Park J, Lee Y, Lee JY, Kang HY, Kim S, Kim S, Kim BS, Kim DH. Overfeeding in rainbow trout (Oncorhynchus mykiss): Metabolic disruptions, impaired immunity, and increased infection risk. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110224. [PMID: 39988219 DOI: 10.1016/j.fsi.2025.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Excess adiposity impairs immune function and host defense in obese individuals, but studies on this concept in fish remain limited. In aquaculture, rapid growth is often encouraged through intensive farming practices, leading to overfeeding and negatively impacting production. This study aimed to induce obesity in rainbow trout through overfeeding, exploring metabolic abnormalities, immune response alterations, and infection susceptibility via transcriptomic and metabolomic analyses. In the overfed group, fish were fed until they refused to eat, while the control group was fed according to recommended feeding rates for four weeks. Sampling was conducted at weeks 1, 2, and 4 for serological, histopathological, metabolomic, and transcriptomic analyses. After four weeks, mortality rates were compared following Aeromonas salmonicida challenge, and immunological changes assessed one day post-infection. Overfed fish exhibited significant increases in weight gain (WG), body mass index (BMI), elevated AST/ALT levels, hepatocyte hypertrophy, lipid droplet formation, and triglyceride accumulation. At 1, 2, and 4 wpf, the overfed group exhibited distinct metabolic changes, with key alterations in glycolysis/gluconeogenesis, lipid metabolism and amino acid metabolism. KEGG analysis of transcriptomic data revealed a significant decrease in complement and coagulation cascades, including C3, FB, FH, an FI, accompanied by heightened TNF and IL-17 signaling pathways, involving the upregulation of genes such as TNF-α, IL-1β, and IL-6, indicating an enhanced inflammatory response. The overfed group experienced higher mortality post-infection. Excess energy from overfeeding led to hepatic fat accumulation, liver damage, and reduced innate immune responses, particularly in complement activation. These physiological disruptions compromised immune function, highlighting the detrimental effects of overfeeding-induced obesity on fish health. This study offers critical insights into the immunological mechanisms linking obesity to increased disease susceptibility.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Yoonhang Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Ju-Yeop Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Hyo-Young Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Seonghye Kim
- Department of Chemistry, Center for Proteome Biophysics, Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics, Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Bo Seong Kim
- Department of Aquatic Life Medicine, College of Ocean & Bioscience, Kunsan National University, Gunsan, 54150, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
8
|
Guo S, Zhao Y, Wang Y, Lin M, Luan Q, Hu Z, Zhao X, Tian X, Wang Z, Yao J. OTUB1 enhances fatty acid oxidation in APAP-induced liver injury by mediating ACSL5 deubiquitination. Biochem Pharmacol 2025; 237:116957. [PMID: 40280245 DOI: 10.1016/j.bcp.2025.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/22/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Overdosing on acetaminophen (APAP) is the primary cause of drug-induced liver injury. Recent studies have demonstrated that dysregulated lipid metabolism, particularly decreased fatty acid oxidation (FAO), is a key contributor to APAP-induced acute liver injury (AILI). OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1), a crucial member of the OTU deubiquitinase family, has been involved in the metabolic progression of multiple diseases. Nevertheless, its involvement in AILI as well as FAO remains unclear. Here, we aimed to elucidate the effects of OTUB1 on the regulation of FAO in AILI. Our investigation revealed decreased OTUB1 expression in AILI. OTUB1 overexpression not only alleviated liver injury but also improved FAO in vivo and in vitro. Conversely, opposite biochemical changes were observed in hepatocytes with OTUB1 knockdown. Mechanistically, long-chain acyl-CoA synthase 5 (ACSL5), which plays a crucial role in regulating FAO, was identified as a novel substrate of OTUB1 in AILI via mass spectrometry analysis. OTUB1 interacts with ACSL5 and promotes its deubiquitination and stability. Moreover, the protective effect of OTUB1 on FAO in AILI occurred via the deubiquitination of ACSL5. Overall, the present study revealed that the OTUB1-ACSL5 axis plays an essential role in regulating FAO during AILI progression and might be a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Shuyu Guo
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Yue Wang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Musen Lin
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qinrong Luan
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhehao Hu
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xuzi Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaofeng Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian, China.
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, China.
| |
Collapse
|
9
|
Cui L, Zhang Y, Zhang Y, Chu J, Kong Q, Zhou Y, Zhang H. Effect of 4-n-nonylphenol and cadmium co-exposure on liver apoptosis and lipid metabolism in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118165. [PMID: 40209349 DOI: 10.1016/j.ecoenv.2025.118165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Nonylphenol (NP), a typical nonionic surfactant intermediate, is widely found in aquatic environments and exhibits biological toxicity. In aquatic environments, organisms face risks from co-exposure to NPs and the heavy metal cadmium (Cd); however, the combined toxicity of both has not been well studied. Therefore, this study aimed to evaluate the histological changes, antioxidant capacity, inflammation, and transcriptional responses in the zebrafish liver following exposure to environmental concentrations of 4-n-NP (45.38 and 453.8 nM) and Cd (54.55 nM), both individually and in combination experiments, over 28 days. Our results indicated that the 453.8 nM 4-n-NP-treated group generated significant oxidative stress during the initial 12 days, while on day 28, the combination of high concentrations of 4-n-NP and Cd also produced significant oxidative stress. Additionally, we observed mitochondrial swelling and endoplasmic reticulum expansion in liver cells across the various treatment groups. Significant dehydration of hepatocyte nuclei was observed in the combined exposure group, along with the deformation of nucleoli and solidification of margins. Combined exposure had a synergistic effect and triggered liver injury in zebrafish. The LPS concentration significantly increased in the NlCl group but decreased in the NhCl group, while the total bile acids exhibited 2.14-fold and 1.24-fold increases, respectively. Combined exposure disrupted liver lipopolysaccharide and bile acids in zebrafish. Meanwhile, combined exposure to 453.8 nM 4-n-NP and Cd caused apoptosis and induced DNA damage repair mechanisms, amplifying the toxic effects of each pollutant. Thus, this study contributes to our understanding of the health risks to aquatic organisms from the co-existence of nonionic surfactants and heavy metals. CAPSULE ABSTRACT: We revealed the effects of single and combined exposure to nonylphenols and heavy metals on the zebrafish liver in terms of enzyme activity, inflammation, degree of cellular damage, and gene expression. The accumulation of cellular reactive oxygen species and the occurrence of lipid peroxidation induced more severe cellular structural and functional damage, amplifying the singular toxic effect of the pollutants. Combined exposure showed synergistic effects, inhibiting cell growth and inducing DNA damage repair.
Collapse
Affiliation(s)
- Lihua Cui
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong 250014, PR China
| | - Yu Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong 250014, PR China
| | - Youru Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong 250014, PR China
| | - Jizhuang Chu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong 250014, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong 250014, PR China; Dongying Institute, Shandong Normal University, Dongying, Shandong 257092, PR China
| | - Yumiao Zhou
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong 250014, PR China.
| |
Collapse
|
10
|
Li T, Adams J, Zhu P, Zhang T, Tu F, Gravitte A, Zhang X, Liu L, Casteel J, Yakubenko V, Williams DL, Li C, Wang X. The role of heme in sepsis induced Kupffer cell PANoptosis and senescence. Cell Death Dis 2025; 16:284. [PMID: 40221420 PMCID: PMC11993645 DOI: 10.1038/s41419-025-07637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Elevated heme levels, a consequence of hemolysis, are strongly associated with increased susceptibility to bacterial infections and adverse sepsis outcomes, particularly in older populations. However, the underlying mechanisms remain poorly understood. Using a cecal ligation and puncture (CLP) model of sepsis, we demonstrate that elevated heme levels correlate with Kupffer cell loss, increased bacterial burden, and heightened mortality. Mechanistically, we identify mitochondrial damage as a key driver of heme- and bacterial-induced Kupffer cell PANoptosis, a form of cell death integrating pyroptosis, apoptosis, and necroptosis, as well as cellular senescence. Specifically, heme activates phospholipase C gamma (PLC-γ), facilitating the translocation of cleaved gasdermin D (c-GSDMD) to mitochondria, resulting in GSDMD pore formation, mitochondrial dysfunction, and the release of mitochondrial DNA (mtDNA) during bacterial infection. This mitochondrial damage amplifies PANoptosis and triggers the cGAS-STING signaling pathway, further driving immune senescence. Notably, PLC-γ inhibition significantly reduces mitochondrial damage, cell death, and senescence caused by heme and bacterial infection. Furthermore, we show that hemopexin, a heme scavenger, effectively mitigates sepsis-induced Kupffer cell death and senescence, enhances bacterial clearance, and improves survival outcomes in both young and aged mice. These findings establish mitochondrial damage as a central mediator of heme induced Kupffer cell loss and highlight PLC-γ inhibition and hemopexin administration as promising therapeutic strategies for combating sepsis associated immune dysfunction.
Collapse
Affiliation(s)
- Tingting Li
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Joseph Adams
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Peilin Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Tao Zhang
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Fei Tu
- UMPC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Amy Gravitte
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jared Casteel
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Valentin Yakubenko
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - David L Williams
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Chuanfu Li
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Xiaohui Wang
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
11
|
Notaro M, Borghetti M, Bresesti C, Giacca G, Kerzel T, Mercado CM, Beretta S, Monti M, Merelli I, Iaia S, Genua M, Annoni A, Canu T, Cristofori P, Degl'Innocenti S, Sanvito F, Rancoita PMV, Ostuni R, Gregori S, Naldini L, Squadrito ML. In vivo armed macrophages curb liver metastasis through tumor-reactive T-cell rejuvenation. Nat Commun 2025; 16:3471. [PMID: 40216735 PMCID: PMC11992024 DOI: 10.1038/s41467-025-58369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Despite recent progress in cancer treatment, liver metastases persist as an unmet clinical need. Here, we show that arming liver and tumor-associated macrophages in vivo to co-express tumor antigens (TAs), IFNα, and IL-12 unleashes robust anti-tumor immune responses, leading to the regression of liver metastases. Mechanistically, in vivo armed macrophages expand tumor reactive CD8+ T cells, which acquire features of progenitor exhausted T cells and kill cancer cells independently of CD4+ T cell help. IFNα and IL-12 produced by armed macrophages reprogram antigen presenting cells and rewire cellular interactions, rescuing tumor reactive T cell functions. In vivo armed macrophages trigger anti-tumor immunity in distinct liver metastasis mouse models of colorectal cancer and melanoma, expressing either surrogate tumor antigens, naturally occurring neoantigens or tumor-associated antigens. Altogether, our findings support the translational potential of in vivo armed liver macrophages to expand and rejuvenate tumor reactive T cells for the treatment of liver metastases.
Collapse
Affiliation(s)
- Marco Notaro
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maristella Borghetti
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Chiara Bresesti
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanna Giacca
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Thomas Kerzel
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carl Mirko Mercado
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Beretta
- BioInformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Monti
- BioInformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- BioInformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Iaia
- Mechanisms of Peripheral Tolerance Unit and Immune Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Genua
- Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Annoni
- Mechanisms of Peripheral Tolerance Unit and Immune Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tamara Canu
- Preclinical Imaging Facility, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Cristofori
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Degl'Innocenti
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sanvito
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Renato Ostuni
- Vita-Salute San Raffaele University, Milan, Italy
- Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit and Immune Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- Vita-Salute San Raffaele University, Milan, Italy
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Leonardo Squadrito
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
12
|
Abas AM, Keshta AT, Mohammed SA, Watad SH. Biochemical Studies on the Therapeutic Effect of Naja nubiae Venom Against Melamine Induced Hepatotoxicity in Albino Rats. Food Sci Nutr 2025; 13:e70081. [PMID: 40196227 PMCID: PMC11973453 DOI: 10.1002/fsn3.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 04/09/2025] Open
Abstract
Illegal melamine analogs are added to food to make it appear as though it contains more protein. These substances have negative impacts on both humans and animals in high quantities. The present paper examines how cobra venom shields rats from melamine-induced hepatotoxicity. The current study was conducted on six groups of adult male rats, as follows: group I (negative control): I.P. injected with distilled water, group II (SV10 μg/kg):I.P injected with 10 μg/kg cobra venom, group III (SV20 μg/kg): I.P. injected with 20 μg/kg cobra venom, group IV (melamine): orally 700 mg/kg melamine, group V (melamine + SV10 μg/kg): treated with 10 μg/kg cobra venom, group VI (melamine + SV20 μg/kg): treated with 20 μg/kg cobra venom. Treatment with snake venom ameliorated liver functions and increased apoptotic level marker Caspase-3, decreased anti-apoptotic level marker BAX. Also, decreased inflammatory level marker IL-2 and expression level of IL-10, INF-γ. treatment with snake venom ameliorated hepatotoxicity induced by melamine in albino rats.
Collapse
Affiliation(s)
- Al‐Shimaa M. Abas
- Biochemistry Department, Faculty of ScienceZagazig UniversityZagazigEgypt
| | - Akaber T. Keshta
- Biochemistry Department, Faculty of ScienceZagazig UniversityZagazigEgypt
| | - Samah A. Mohammed
- Biochemistry Department, Faculty of ScienceZagazig UniversityZagazigEgypt
| | - Shimaa H. Watad
- Biochemistry Department, Faculty of ScienceZagazig UniversityZagazigEgypt
| |
Collapse
|
13
|
Blok NB, Myronovych A, McMahon G, Bozadjieva-Kramer N, Seeley RJ. The evolution of steatosis and fibrosis in mice on a MASH-inducing diet and the effects of housing temperature. Am J Physiol Endocrinol Metab 2025; 328:E513-E523. [PMID: 39998384 DOI: 10.1152/ajpendo.00401.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Obesity induction in mice requires high-fat diet exposure. Although hepatic steatosis develops, progression to inflammation and fibrosis, as in humans, requires prolonged exposure and additional dietary factors. Immunosuppression at room temperature may slow this progression. We evaluated thermoneutrality's effect on metabolic dysfunction-associated steatohepatitis (MASH) development using a fibrosis-inducing MASH [Gubra-Amylin NASH (GAN)] diet. Mice were fed either a MASH or chow diet and housed at room temperature or thermoneutrality. MASH diet groups were euthanized monthly from 4 to 7 mo. Serum markers of hepatic function were analyzed, and liver histology assessed steatosis, inflammation, ballooning [nonalcoholic fatty liver disease activity score (NAS) score], and fibrosis via Picrosirius Red staining. MASH diet increased body weight, liver-to-body mass ratio, and hepatic fat, with no difference between housing conditions. Housing temperature had minimal effects on MASH. Serum markers and hepatic fibrosis were similar across groups. NAS score was lower at 4 mo in thermoneutral MASH mice but not by 7 mo. Thermoneutrality did not significantly impact MASH development. These findings, alongside existing literature, suggest thermoneutral housing does not consistently enhance MASH progression in GAN MASH-fed mice.NEW & NOTEWORTHY The development of MASH in mice-does housing temperature make a real difference?
Collapse
Affiliation(s)
- Neil B Blok
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Andriy Myronovych
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Garrett McMahon
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, United States
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
14
|
Girisa S, Aswani BS, Manickasamy MK, Hegde M, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Restoring FXR expression as a novel treatment strategy in liver cancer and other liver disorders. Expert Opin Ther Targets 2025; 29:193-221. [PMID: 40169227 DOI: 10.1080/14728222.2025.2487465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
INTRODUCTION Liver cancer is a leading cause of cancer-associated mortality and is often linked to preexisting liver conditions. Emerging research demonstrates FXR dysregulation, particularly its reduced expression, in the pathogenesis of liver diseases, including inflammation, fibrosis, cholestatic disorders, metabolic dysregulation, and liver cancer. Therefore, this review explores the role of FXR and its agonists in mitigating these conditions. AREAS COVERED This article summarizes FXR's involvement in liver disorders, primarily emphasizing on hepatic neoplasms, and examines the potential of FXR agonists in restoring FXR activity in liver diseases, thereby preventing their progression to liver cancer. The information presented is drawn from existing preclinical and clinical studies specific to each liver disorder, sourced from PubMed. EXPERT OPINION It is well established that FXR expression is downregulated in liver disorders, contributing to disease progression. Notably, FXR agonists have demonstrated therapeutic potential in ameliorating liver diseases, including hepatocellular carcinoma. We believe that activating or restoring FXR expression with agonists offers significant promise for the treatment of liver cancer and other liver conditions. Therefore, FXR modulation by agonists, particularly in combination with other therapeutic agents, could lead to more targeted treatments, improving efficacy while reducing side effects.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, India
| |
Collapse
|
15
|
Pan Z, Ye YS, Liu C, Li W. Role of liver-resident NK cells in liver immunity. Hepatol Int 2025; 19:315-324. [PMID: 39893278 PMCID: PMC12003521 DOI: 10.1007/s12072-025-10778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
The tolerogenic immune microenvironment of the liver (the immune system avoids attacking harmless antigens, such as antigens derived from food and gut microbiota) has garnered significant attention in recent years. Inherent immune cells in the liver play a unique role in regulating this microenvironment. Liver-resident natural killer (LrNK) cells, also known as liver type 1 innate lymphoid cells (ILC1s), are a recently discovered subset of immune cells that possess properties distinct from those of conventional NK (cNK) cells. Accumulating evidence suggests that there are significant differences between LrNK and cNK cells, with LrNK cells potentially exhibiting immunosuppressive functions in the liver. This review summarizes the latest findings on LrNK cells, focusing on their phenotype, heterogeneity, plasticity, origin, development, and the required transcription factors. In addition, immune functions of LrNK cells in various liver diseases, including liver cancer, viral infections, liver injury, and cirrhosis, were analyzed. By elucidating the role of LrNK cells in liver immunity, this review aims to enhance our understanding of the mechanisms underlying liver immunity and contribute to the improvement of liver disease treatment.
Collapse
Affiliation(s)
- Zheng Pan
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yan-Shuo Ye
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Chang Liu
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
16
|
Bonitz K, Colucci S, Qiu R, Altamura S, Sparla R, Mudder K, Zimmermann S, Hentze MW, Muckenthaler MU, Marques O. Hepatocyte Toll-like receptors contribute to the hepcidin inflammatory response to pathogens and pathogen-derived ligands. Hemasphere 2025; 9:e70096. [PMID: 40182015 PMCID: PMC11966559 DOI: 10.1002/hem3.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 04/05/2025] Open
Abstract
Iron restriction is a critical pathomechanism underlying the Anemia of Inflammation and an innate immune response limiting the replication of extracellular pathogens. During infections, innate immune cells detect pathogen-associated molecular patterns (PAMPs) and produce proinflammatory cytokines. Among these, interleukin (IL)-6 is detected by hepatocytes, where it activates the production of the iron-regulated hormone hepcidin that inhibits iron export from macrophages. Consequently, macrophages accumulate iron and hypoferremia (low plasma iron) develops. Whether Toll-like receptors (TLRs) expressed on hepatocytes directly recognize PAMPs and contribute to hepcidin upregulation is still an open question. Stimulation of primary murine hepatocytes with a panel of PAMPs targeting TLRs 1-9 revealed that the TLR5 ligand flagellin and the TLR2:TLR6 ligand FSL1 upregulated hepcidin. Hepcidin was also induced upon treatment with heat-killed Staphylococcus aureus (HKSA) and Brucella abortus (HKBA). The hepcidin response to flagellin, FSL1, HKSA, and HKBA started at an early time point, was independent of autocrine regulation by IL-6, and occurred through the TLR-mitogen-activated protein kinase (MAPK) axis. By analyzing a macrophage:hepatocyte co-culture, we additionally show that the hepcidin response was dependent on TLR2:TLR6 expression in hepatocytes and independent of macrophage cytokine secretion. Ex vivo liver perfusion of mice with FSL1 and HKSA further revealed that PAMPs and pathogens can pass the sinusoidal barrier and reach hepatocytes to cause hepcidin upregulation in a TLR2:TLR6-dependent manner. We conclude that hepatocytes can directly recognize PAMPs and pathogens and promote hepcidin upregulation in a macrophage and cytokine-independent manner. This positions hepatocytes in the spotlight as potential direct drivers of iron restriction.
Collapse
Affiliation(s)
- Katharina Bonitz
- Department of Pediatric Oncology, Hematology and ImmunologyHopp Children's Cancer Center (KiTZ), University Hospital HeidelbergHeidelbergGermany
| | - Silvia Colucci
- Department of Pediatric Oncology, Hematology and ImmunologyHopp Children's Cancer Center (KiTZ), University Hospital HeidelbergHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)EMBLUniversity of HeidelbergHeidelbergGermany
| | - Ruiyue Qiu
- Department of Pediatric Oncology, Hematology and ImmunologyHopp Children's Cancer Center (KiTZ), University Hospital HeidelbergHeidelbergGermany
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and ImmunologyHopp Children's Cancer Center (KiTZ), University Hospital HeidelbergHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)EMBLUniversity of HeidelbergHeidelbergGermany
| | - Richard Sparla
- Department of Pediatric Oncology, Hematology and ImmunologyHopp Children's Cancer Center (KiTZ), University Hospital HeidelbergHeidelbergGermany
| | - Katja Mudder
- Department of Pediatric Oncology, Hematology and ImmunologyHopp Children's Cancer Center (KiTZ), University Hospital HeidelbergHeidelbergGermany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Microbiology and HygieneUniversity Hospital HeidelbergHeidelbergGermany
| | - Matthias W. Hentze
- Molecular Medicine Partnership Unit (MMPU)EMBLUniversity of HeidelbergHeidelbergGermany
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Martina U. Muckenthaler
- Department of Pediatric Oncology, Hematology and ImmunologyHopp Children's Cancer Center (KiTZ), University Hospital HeidelbergHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)EMBLUniversity of HeidelbergHeidelbergGermany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL)University of HeidelbergHeidelbergGermany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/MannheimHeidelbergGermany
| | - Oriana Marques
- Department of Pediatric Oncology, Hematology and ImmunologyHopp Children's Cancer Center (KiTZ), University Hospital HeidelbergHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)EMBLUniversity of HeidelbergHeidelbergGermany
| |
Collapse
|
17
|
Alzahrani KJ, El Safadi M, Alzahrani FM, Akbar A, Alsiwiehri NO. Bromoxynil induced hepatic toxicity via dysregulating TLR4/MyD88, JAK1/STAT3 and NF-κB signaling pathways: A dose-dependent investigation. Tissue Cell 2025; 93:102735. [PMID: 39827709 DOI: 10.1016/j.tice.2025.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Bromoxynil (BML) is a toxic herbicide that is reported to cause various organ toxicities. However, there is not a single investigation conducted to elucidate the adverse impacts of BML on hepatic tissues at different dose concentrations. Therefore, the current investigation was planned to assess the deleterious effects of BML on liver against different dose concentrations. Thirty-six albino rats (Sprague Dawley) were divided into four groups including the control, BML (10 mg/kg), BML (20 mg/kg) and BML (40 mg/kg). Gene expressions were assessed by qRT-PCR while other biochemical parameters were evaluated through ELISA as well as standard assays. The histological procedure was conducted as per the standard protocols of histomorphology. It is revealed that BML intoxication at all tested doses showed notable elevation in the gene expression of tumor necrosis factor-alpha (TNF-α), toll-like receptors-4 (TLR-4), interleukin-1beta (IL-1β), myeloid differentiation primary response protein-88 (MyD88), interleukin-6 (IL-6), tumor necrosis factor receptor-associated factor-6 (TRAF-6), cyclooxygenase-2 (COX-2), nuclear factor kappa-B (NF-κB), Janus kinase 1 (JAK1) and signal transducer and activator of transcription 3 (STAT3) while reducing the gene expression of inhibitor of kappa-B (I-κB). Moreover, BML exposure (10 mg/kg, 20 mg/kg, 40 mg/kg) reduced the activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione (GSH), glutathione S- transferase (GST), heme-oxygenase-1 (HO-1) and glutathione reductase (GSR) while upregulating the levels of reactive oxygen species (ROS) and malondialdehyde (MDA). However, an elevation was observed in the levels of alanine transaminase (ALT), gamma-glutamyl transpeptidase (GGT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) while a reduction in the levels of total proteins and albumin was observed after high dose (20 mg/kg, 40 mg/kg) of BML. There was insignificant elevation among the values of these biomarkers at 10 mg/kg administration of BML. Besides, BML exposure at 10 mg/kg, 20 mg/kg and 40 mg/kg escalated the levels of Bcl-2-associated X protein (Bax), cysteine-aspartic acid protease-9 (Caspase-9) and cysteine-aspartic acid protease-3 (Caspase-3) while reducing the levels of B-cell lymphoma 2 (Bcl-2) in hepatic tissues. Similarly, BML at all tested concentrations showed adverse impacts on hepatic histology. These findings validated the deleterious impacts of BML on hepatic tissues owing to its pro-oxidative, pro-inflammatory and pro-apoptotic potential.
Collapse
Affiliation(s)
- Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud El Safadi
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ali Akbar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Naif O Alsiwiehri
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
18
|
Castanho Martins M, Dixon ED, Lupo G, Claudel T, Trauner M, Rombouts K. Role of PNPLA3 in Hepatic Stellate Cells and Hepatic Cellular Crosstalk. Liver Int 2025; 45:e16117. [PMID: 39394864 PMCID: PMC11891384 DOI: 10.1111/liv.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
AIMS Since its discovery, the patatin-like phospholipase domain containing 3 (PNPLA3) (rs738409 C>G p.I148M) variant has been studied extensively to unravel its molecular function. Although several studies proved a causal relationship between the PNPLA3 I148M variant and MASLD development and particularly fibrosis, the pathological mechanisms promoting this phenotype have not yet been fully clarified. METHODS We summarise the latest data regarding the PNPLA3 I148M variant in hepatic stellate cells (HSCs) activation and macrophage biology or the path to inflammation-induced fibrosis. RESULTS Elegant but contradictory studies have ascribed PNPLA3 a hydrolase or an acyltransferase function. The PNPLA3 I148M results in hepatic lipid accumulation, which predisposes the hepatocyte to lipotoxicity and lipo-apoptosis, producing DAMPs, cytokines and chemokines leading to recruitment and activation of macrophages and HSCs, propagating fibrosis. Recent studies showed that the PNPLA3 I148M variant alters HSCs biology via attenuation of PPARγ, AP-1, LXRα and TGFβ activity and signalling. CONCLUSIONS The advent of refined techniques in isolating HSCs has made PNPLA3's direct role in HSCs for liver fibrosis development more apparent. However, many other mechanisms still need detailed investigations.
Collapse
Affiliation(s)
- Maria Castanho Martins
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive HealthUniversity College London, Royal Free CampusLondonUK
| | - Emmanuel Dauda Dixon
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Giulia Lupo
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive HealthUniversity College London, Royal Free CampusLondonUK
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive HealthUniversity College London, Royal Free CampusLondonUK
| |
Collapse
|
19
|
Wang C, Zai W, Zhao K, Li Y, Shi B, Wu M, Zhou X, Kozlowski M, Zhang X, Fang Z, Yuan Z. Potential role of liver-resident CD3 + macrophages in HBV clearance in a mouse hepatitis B model. JHEP Rep 2025; 7:101323. [PMID: 40143948 PMCID: PMC11937660 DOI: 10.1016/j.jhepr.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 03/28/2025] Open
Abstract
Background & Aims Chronic HBV infection usually causes cirrhosis and hepatocellular carcinoma. Comparative investigations of acute and chronic HBV cases would help determine the immune responses crucial for viral clearance. Methods A fast-cleared HBV mouse model was established in Alb-Cre mice via hydrodynamic injection of HBV plasmid, while persistent HBV model mice were generated via recombinant covalently closed circular DNA-adeno-associated virus 8 infection. The single-cell transcriptomes of CD45+ intrahepatic non-parenchymal cells from these mice were conducted. Multiplexed immunohistochemistry and flow cytometry were used to confirm the findings from single-cell transcriptomes. Transwell, coculture, and adoptive transfer experiments were performed to study the generation and functions of macrophages. Results Twenty-four clusters of immune cells were identified. Myeloid cells, including granulocytes, monocytes, and dendritic cells, are activated early in HBV fast-cleared mice. Significantly, a cluster of CD3+ macrophages was found in the viral clearance phase, which was confirmed in liver tissue from five acute patients with HBV. These cells highly expressed CXCL1, tumor necrosis factor alpha, and HBsAg-specific T cell receptors. The transwell assay revealed that CD3+ macrophages originate from macrophages (n = 6). T cells and anti-HBsAg antibodies are indispensable for their differentiation, which was further confirmed in T- and/or B-cell-deficient mice. Interestingly, these CD3+ macrophages capable of killing peptide-loaded hepatocytes and engulfing IgG-coated beads were persistently detectable in the mouse liver for 10 weeks after HBV clearance. The expression levels of CD5L and Bcl2, two classical antiapoptotic proteins, increased (p <0.001), suggesting that the CD3+ macrophages are long-term resident populations. Finally, adoptive transfer of CD3+ macrophages accelerated HBV clearance in mice (n = 5, p <0.01). Conclusions We identified long-term polyfunctional CD3+ macrophages residing in HBV fast-cleared livers that could help elucidate the immune responses involved in eliminating HBV. Impact and implications The liver is a special organ with unique immune characteristics and tolerance to foodborne antigens. Chronic infections can develop in newborns after exposure to HBV; however, acute infections usually occur in adults, indicating that immune cells in the liver tissue microenvironment can also effectively fight against the virus. Nevertheless, the mechanisms involved in acute HBV infection have rarely been studied. In this study, we identified a macrophage population with both T cell and macrophage characteristics in the livers of acute HBV model mice and revealed that these macrophages play important roles in HBV clearance. Moreover, we confirmed that this population is derived from macrophages in the presence of virus-specific T cells and antibodies. This finding highlights the complexity of antiviral immune responses in liver microenvironments.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kuangjie Zhao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bisheng Shi
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Min Wu
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaohui Zhou
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Maya Kozlowski
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaonan Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhong Fang
- Liver Cancer Institute of Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Aspord C, Macek Jílková Z, Bonadona A, Gerster T, Lesurtel M, Girard E, Saas P, Decaens T. Hypothermic Oxygenated Machine Perfusion and Static Cold Storage Drive Distinct Immunomodulation During Liver Transplantation: A Pilot Study. Transplantation 2025; 109:658-670. [PMID: 40131763 DOI: 10.1097/tp.0000000000005274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
BACKGROUND Organ injury is a major problem in liver transplant. Prolonged liver ischemia may result in ischemia/reperfusion injury (IRI), leading to inadequate activation of innate immunity. Hypothermic oxygenated machine perfusion (HOPE) of the graft emerges as a more physiologic method for liver preservation compared with static cold storage (SCS) by reducing IRI, which improves the quality of the graft. Despite being crucial, the immunological aspects of IRI in liver transplantation remained poorly explored. METHODS We designed a pilot study to assess intrahepatic immune responses to HOPE compared with SCS (6 patients in each group). We explored immunologic and inflammatory pathways using both bulk RNA-sequencing and single-cell multiparametric flow cytometry analyses from liver biopsies performed on the graft before and after transplantation. RESULTS Despite a limited number of patients and heterogeneous effects on IRI, we observed immune changes in liver biopsies before and after organ storage and distinct functional modulations of intrahepatic immune cells from the transplanted liver that underwent SCS versus HOPE. A significant increase of infiltrated monocytes, conventional type 2 dendritic cells (cDC2s), and neutrophils ( P < 0.05) and a trend toward reduced immune cell viability were observed after SCS but not after HOPE. CONCLUSIONS This pilot study did not allow us to conclude on IRI but showed that HOPE perfusion dampens liver infiltration of some innate immune cells. It reveals that the inclusion of additional transplanted patients and analysis of later time points after transplantation are needed to draw a definitive conclusion. However, it can guide future studies evaluating the development of new strategies to prevent IRI.
Collapse
Affiliation(s)
- Caroline Aspord
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhone-Alpes, R&D Laboratory, Grenoble, France
| | - Zuzana Macek Jílková
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
| | - Agnes Bonadona
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
| | - Theophile Gerster
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhone-Alpes, R&D Laboratory, Grenoble, France
| | - Mickael Lesurtel
- Department of HPB Surgery and Liver Transplantation, Beaujon Hospital, APHP, University of Paris Cité, Paris, France
| | - Edouard Girard
- Service de Chirurgie Digestive et Générale, Hôpital Michallon, Centre Hospitalier Universitaire Grenoble-Alpes, Boulevard de la Chantourne, La Tronche, France
| | - Philippe Saas
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhone-Alpes, R&D Laboratory, Grenoble, France
| | - Thomas Decaens
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
21
|
Yang C, Du J, Qiu X, Jia C, Ding C, Wu Y, Gao C, Wang W, Wang X, Liu SB. ERCC3 serves as a prognostic biomarker for hepatocellular carcinoma and positively regulates cell proliferation and migration. Discov Oncol 2025; 16:419. [PMID: 40155569 PMCID: PMC11953519 DOI: 10.1007/s12672-025-02194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND ERCC3, a crucial component of the nucleotide excision repair pathway, is implicated in the development and progression of various cancers and is a potential indicator of poor prognosis. However, the expression and function of ERCC3 in hepatocellular carcinoma (HCC) remain unclear. This study aimed to investigate the expression of ERCC3 in HCC tissues and its clinical significance, focusing on elucidating its potential mechanisms and therapeutic value in immunotherapy. METHODS The differential expression and genetic variation characteristics of ERCC3 across various cancers were evaluated using the TCGA database. The expression and prognostic value of ERCC3 in HCC were analyzed by integrating TCGA, GEO, and ICGC datasets. Independent prognostic value of ERCC3 expression levels in HCC was assessed using Cox regression analysis, Kaplan-Meier survival analysis, receiver operating characteristic curves, and nomograms. Pathway association scores were determined using ssGSEA to reveal the biological functions of ERCC3 in HCC and its potential clinical efficacy in immunotherapy. Stable transient cell lines were established by infecting HepG2 cells with lentivirus overexpressing ERCC3. The effects of ERCC3 on HCC cell biological phenotypes were evaluated using RTCA, wound healing, and Transwell assays. Cell cycle distribution and apoptosis were detected by flow cytometry. Transcriptome sequencing was performed to explore the impact of ERCC3 overexpression on the expression of signaling pathway-related genes in HCC. RESULTS The study revealed that ERCC3 is aberrantly expressed in various tumors, with significantly higher mRNA and protein levels in HCC tissues compared to normal tissues. High ERCC3 expression was significantly correlated with poor survival outcomes in HCC patients. Multivariate Cox regression analysis revealed that ERCC3 expression level is an independent prognostic factor for overall survival (P = 0.014). Gene sets associated with the high ERCC3 group were significantly involved in multiple immune pathways and tumor progression-related pathways, and ERCC3 expression was significantly correlated with immune checkpoints in HCC. Overexpression of ERCC3 promoted the proliferation and migration of HCC cells and influenced cell cycle progression. Transcriptome sequencing analysis indicated that ERCC3 overexpression regulated the proliferation of HCC cells, participated in multiple pro-inflammatory pathways, induced the formation of an inflammatory tumor microenvironment, and promoted HCC progression. CONCLUSION This study is the first to reveal the association between high ERCC3 expression and poor prognosis in HCC and to elucidate its immunomodulatory role in HCC. Unlike previous studies, we found that ERCC3 promotes HCC progression by regulating the inflammatory microenvironment and immune checkpoints. These findings establish a novel theoretical foundation for the development of targeted immunotherapies for HCC and provide new insights into the molecular mechanisms underlying ERCC3's role in HCC.
Collapse
Affiliation(s)
- Chen Yang
- College of Life Science, North China University of Science and Technology, Bohai Avenue 21, Tangshan, 063210, China
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Kehua Road 28, Suzhou, 215009, China
| | - Jiahui Du
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Kehua Road 28, Suzhou, 215009, China
| | - Xiuqin Qiu
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Kehua Road 28, Suzhou, 215009, China
| | - Changhong Jia
- College of Life Science, North China University of Science and Technology, Bohai Avenue 21, Tangshan, 063210, China
| | - Cunbao Ding
- College of Life Science, North China University of Science and Technology, Bohai Avenue 21, Tangshan, 063210, China
| | - Yijie Wu
- College of Life Science, North China University of Science and Technology, Bohai Avenue 21, Tangshan, 063210, China
| | - Chaoxu Gao
- College of Life Science, North China University of Science and Technology, Bohai Avenue 21, Tangshan, 063210, China
| | - Weijie Wang
- College of Life Science, North China University of Science and Technology, Bohai Avenue 21, Tangshan, 063210, China.
| | - Xiaojun Wang
- Department of Laboratory Medicine, Suzhou Wuzhong People's Hospital, Suzhou, 215128, Jiangsu, China.
| | - Song-Bai Liu
- College of Life Science, North China University of Science and Technology, Bohai Avenue 21, Tangshan, 063210, China.
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Kehua Road 28, Suzhou, 215009, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
22
|
Chan LL, Chan SL. Future perspectives on immunotherapy for hepatocellular carcinoma. Ther Adv Med Oncol 2025; 17:17588359251323199. [PMID: 40144682 PMCID: PMC11938898 DOI: 10.1177/17588359251323199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/05/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, several global phase III trials have shown that combinations of immune checkpoint inhibitors (ICIs) offer superior efficacy and survival compared to multi-kinase inhibitors, establishing them as the gold standard for treating patients with advanced hepatocellular carcinoma (HCC). This success has led to investigations into expanding the use of immunotherapy into various other settings and populations, including neoadjuvant and adjuvant therapies, patients with decompensated liver function and those awaiting liver transplantation. Despite its proven efficacy, a significant number of patients still develop resistance to immunotherapy, highlighting the need for innovative strategies to address this challenge. Approaches aimed at enhancing tumour immunogenicity, such as combining immunotherapy with transarterial chemoembolization or radiation therapies, show significant promise. Additionally, novel immunotherapeutics - such as triplet therapy, bispecific antibodies, adoptive T-cell therapy and cancer vaccines - are in early development for HCC. These agents have demonstrated potential for synergistic effects with existing ICIs, with initial studies yielding positive outcomes. In this review, we offer our future perspective on immunotherapy, emphasizing emerging indications, novel combination strategies and the development of new immunotherapeutic agents. Overall, the future of immunotherapy in HCC is brimming with extraordinary potential, set to transform the treatment landscape and redefine the possibilities for managing this challenging disease.
Collapse
Affiliation(s)
- Landon L. Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, SIRT, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Stephen L. Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, SIRT, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, Hong Kong, China
| |
Collapse
|
23
|
Choe U. Nutritional Management for Pediatric Biliary Atresia Patients Preparing for Liver Transplantation. CHILDREN (BASEL, SWITZERLAND) 2025; 12:391. [PMID: 40150672 PMCID: PMC11941163 DOI: 10.3390/children12030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Biliary atresia, a rare pediatric liver condition, results in blocked bile ducts, impeding bile secretion and causing significant nutritional challenges. This perspective emphasizes the critical role of nutrition in supporting children with biliary atresia awaiting liver transplantation. The liver's multifaceted functions in energy metabolism, vitamin storage, and waste excretion emphasize the importance of tailored dietary interventions. Medium-chain triglyceride (MCT) oil serves as a crucial energy source, addressing fat malabsorption, while specialized water-soluble formulations deliver essential fat-soluble vitamins. Additionally, weaning strategies and developmental food practices are discussed to ensure optimal growth and development despite dietary restrictions. Feeding assistance through nasogastric or gastrostomy tubes is explored as a means to combat malnutrition and support liver function. The collective efforts of caregivers and healthcare providers are pivotal in preparing these children for successful liver transplantation, aiming to secure their future health and quality of life.
Collapse
Affiliation(s)
- Uyory Choe
- Department of Food and Nutrition, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
24
|
Li J, Liu Z, Zhang G, Yin X, Yuan X, Xie W, Ding X. Uncovering the heterogeneity of NK cells on the prognosis of HCC by integrating bulk and single-cell RNA-seq data. Front Oncol 2025; 15:1570647. [PMID: 40171266 PMCID: PMC11959017 DOI: 10.3389/fonc.2025.1570647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/04/2025] [Indexed: 04/03/2025] Open
Abstract
Background The tumor microenvironment (TME) plays a critical role in the development, progression, and clinical outcomes of hepatocellular carcinoma (HCC). Despite the critical role of natural killer (NK) cells in tumor immunity, there is limited research on their status within the tumor microenvironment of HCC. In this study, single-cell RNA sequencing (scRNA-seq) analysis of HCC datasets was performed to identify potential biomarkers and investigate the involvement of natural killer (NK) cells in the TME. Methods Single-cell RNA sequencing (scRNA-seq) data were extracted from the GSE149614 dataset and processed for quality control using the "Seurat" package. HCC subtypes from the TCGA dataset were classified through consensus clustering based on differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) was employed to construct co-expression networks. Furthermore, univariate and multivariate Cox regression analyses were conducted to identify variables linked to overall survival. The single-sample gene set enrichment analysis (ssGSEA) was used to analyze immune cells and the screened genes. Result A total of 715 DEGs from GSE149614 and 864 DEGs from TCGA were identified, with 25 overlapping DEGs found between the two datasets. A prognostic risk score model based on two genes was then established. Significant differences in immune cell infiltration were observed between high-risk and low-risk groups. Immunohistochemistry showed that HRG expression was decreased in HCC compared to normal tissues, whereas TUBA1B expression was elevated in HCC. Conclusion Our study identified a two-gene prognostic signature based on NK cell markers and highlighted their role in the TME, which may offer novel insights in immunotherapy strategies. Additionally, we developed an accurate and reliable prognostic model, combining clinical factors to aid clinicians in decision-making.
Collapse
Affiliation(s)
- Jiashuo Li
- National Center for Infectious Diseases, Beijing Di’tan Hospital, Capital Medical University, Beijing, China
| | - Zhenyi Liu
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Gongming Zhang
- Department of General Surgery, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Xue Yin
- Cancer Center, Beijing Di’tan Hospital, Capital Medical University, Beijing, China
| | - Xiaoxue Yuan
- National Center for Infectious Diseases, Beijing Di’tan Hospital, Capital Medical University, Beijing, China
| | - Wen Xie
- National Center for Infectious Diseases, Beijing Di’tan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Ding
- Cancer Center, Beijing Di’tan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Jiang Y, Long G, Huang X, Wang W, Cheng B, Pan W. Single-cell transcriptomic analysis reveals dynamic changes in the liver microenvironment during colorectal cancer metastatic progression. J Transl Med 2025; 23:336. [PMID: 40091048 PMCID: PMC11910851 DOI: 10.1186/s12967-025-06351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Metastasis is a leading cause of cancer-related deaths, with the liver being the most frequent site of metastasis in colorectal cancer. Previous studies have predominantly focused on the influence of the primary tumor itself on metastasis, with relatively limited research examining the changes within target organs. METHODS Using an orthotopic mouse model of colorectal cancer, single-cell sequencing was employed to profile the transcriptomic landscape of pre-metastatic and metastatic livers. The analysis focused on identifying cellular and molecular changes within the hepatic microenvironment, with particular emphasis on inflammatory pathways and immune cell populations. RESULTS A neutrophil subpopulation with high Prok2 expression was identified, showing elevated levels in the pre-metastatic and metastatic liver. Increased infiltration of Prok2⁺ neutrophils correlated with poor prognosis in liver metastatic colorectal cancer patients. In the liver metastatic niche (MN), these neutrophils showed high App and Cd274 (PD-L1) expression, suppressing macrophage phagocytosis and promoting T-cell exhaustion. CONCLUSION A Prok2⁺ neutrophil subpopulation infiltrated both pre-metastatic and macro-metastatic liver environments, potentially driving immunosuppression through macrophage inhibition and T-cell exhaustion. Targeting Prok2⁺ neutrophils could represent a novel therapeutic strategy for preventing liver metastasis in colorectal cancer patients.
Collapse
Affiliation(s)
- Yue Jiang
- Department of General Surgery (Department of Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
| | - Guojie Long
- Department of General Surgery (Department of Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
| | - Xiaoming Huang
- Department of General Surgery (Department of Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
| | - Wenyu Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China.
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
| | - Bing Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China.
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
| | - Weidong Pan
- Department of General Surgery (Department of Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China.
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
26
|
Han JW, Shin EC. Investigating Human Liver Tissue-Resident Memory T Cells from the Perspectives of Gastroenterologists and Hepatologists. Gut Liver 2025; 19:161-170. [PMID: 40058791 PMCID: PMC11907256 DOI: 10.5009/gnl240366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 03/15/2025] Open
Abstract
Liver tissue-resident memory T (TRM) cells play a pivotal role in hepatic immune responses. Their unique residence within liver sinusoids allow continuous antigen surveillance. In this review, we highlight the role of liver TRM cells in protective immunity and disease pathology. Comparisons between human and murine liver TRM cells reveal species-specific characteristics, suggesting the need for human-focused studies. One key finding is the involvement of liver TRM cells in viral hepatitis, where they can both control infection and contribute to liver damage. Liver TRM cells also exhibit dual roles in metabolic-associated steatotic liver disease, promoting inflammation and fibrosis while also contributing to fibrosis resolution. In autoimmune liver diseases, such as autoimmune hepatitis and primary sclerosing cholangitis, the presence of liver TRM cells correlates with disease severity. In this review, we underscore the importance of liver TRM cells in vaccine development, particularly vaccines against malaria. Future research should focus on the mechanisms governing TRM-cell formation, maintenance, and function, with the aim of supporting their protective roles while mitigating detrimental effects. Advancing our understanding of liver TRM cells will enhance our knowledge of liver immunology and inform novel therapeutic strategies for liver disease management.
Collapse
Affiliation(s)
- Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Korea
| |
Collapse
|
27
|
Zheng H, Xu B, Fan Y, Tuekprakhon A, Stamataki Z, Wang F. The role of immune regulation in HBV infection and hepatocellular carcinogenesis. Front Immunol 2025; 16:1506526. [PMID: 40160817 PMCID: PMC11949809 DOI: 10.3389/fimmu.2025.1506526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatitis B virus (HBV) infection is a well-documented independent risk factor for developing hepatocellular carcinoma (HCC). Consequently, extensive research has focused on elucidating the mechanisms by which HBV induces hepatocarcinogenesis. The majority of studies are dedicated to understanding how HBV DNA integration into the host genome, viral RNA expression, and the resulting protein transcripts affect cellular processes and promote the malignant transformation of hepatocytes. However, considering that most acute HBV infections are curable, immune suppression potentially contributes to the critical challenges in the treatment of chronic infections. Regulatory T cells (Tregs) are crucial in immune tolerance. Understanding the interplay of Tregs within the liver microenvironment following HBV infection could offer novel therapeutic approaches for treating HBV infections and preventing HBV-related HCC. Two viewpoints to targeting Tregs in the liver microenvironment include means of reducing their inhibitory function and decreasing Treg frequency. As these strategies may disrupt the immune balance and lead to autoimmune responses, careful and comprehensive profiling of the patient's immunological status and genetic factors is required to successfully employ this promising therapeutic approach.
Collapse
Affiliation(s)
- Hailong Zheng
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Bingchen Xu
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yiyu Fan
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Aekkachai Tuekprakhon
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Fei Wang
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
28
|
Ran R, Uslu M, Siddiqui MF, Brubaker DK, Trapecar M. Single-Cell Analysis Reveals Tissue-Specific T Cell Adaptation and Clonal Distribution Across the Human Gut-Liver-Blood Axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642626. [PMID: 40161783 PMCID: PMC11952442 DOI: 10.1101/2025.03.11.642626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Understanding T cell clonal relationships and tissue-specific adaptations is crucial for deciphering human immune responses, particularly within the gut-liver axis. We performed paired single-cell RNA and T cell receptor sequencing on matched colon (epithelium, lamina propria), liver, and blood T cells from the same human donors. This approach tracked clones across sites and assessed microenvironmental impacts on T cell phenotype. While some clones were shared between blood and tissues, colonic intraepithelial lymphocytes (IELs) exhibited limited overlap with lamina propria T cells, suggesting a largely resident population. Furthermore, tissue-resident memory T cells (TRM) in the colon and liver displayed distinct transcriptional profiles. Notably, our analysis suggested that factors enriched in the liver microenvironment may influence the phenotype of colon lamina propria TRM. This integrated single-cell analysis maps T cell clonal distribution and adaptation across the gut-liver-blood axis, highlighting a potential liver role in shaping colonic immunity.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Merve Uslu
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Mohd Farhan Siddiqui
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Douglas K. Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
29
|
Chen M, He Y, Jia Y, Wu L, Zhao R. Liver transcriptome response to avian pathogenic Escherichia coli infection in broilers with corticosterone treatment. Poult Sci 2025; 104:105020. [PMID: 40088534 PMCID: PMC11937665 DOI: 10.1016/j.psj.2025.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
Avian pathogenic Escherichia coli (APEC) infection has high morbidity and mortality, and multiple stressors encountered during rearing place poultry in a state of stress. However, research on how poultry cope with APEC infection under stress situation is still limited. In this study, we established a broiler stress model by corticosterone (CORT) administration subcutaneously for 7 consecutive days, followed by APEC challenge intramuscularly. CORT treatment significantly reduced body weight (BW) and average daily gain (ADG) while increasing feed conversion ratio (FCR) (P < 0.01). APEC infection significantly decreased ADG (P < 0.01). CORT treatment and APEC infection elevated plasma corticosterone and heterophil to lymphocyte (H/L) ratio (P < 0.05). Additionally, plasma aspartate aminotransferase (AST), AST to alanine aminotransferase (AST/ALT) ratio, and lactate dehydrogenase (LDH) levels increased significantly (P < 0.01). Histopathological analysis revealed structural damage of liver, indicating that CORT treatment and APEC infection induced liver injury. However, CORT pretreatment broilers exhibited a milder histopathological lesions and significantly lower AST, ALT, and LDH levels (P < 0.05) compared to APEC infection alone. CORT treatment and APEC infection increased plasma levels of lysozyme (LZM), total protein (TP), and globulin (GLOB) (P < 0.05), while CORT pretreatment further elevating their concentrations compared to APEC infection alone, suggesting an enhanced innate immune response. Liver transcriptomic analysis identified 768, 335, and 567 differentially expressed genes (DEGs) following CORT, APEC, or both treatments, respectively, enriched in cytokine-cytokine receptor interaction, PPAR signaling pathway, Toll-like receptor signaling pathway, MAPK signaling pathway, steroid hormone biosynthesis pathway, arachidonic acid metabolism, and phagosome pathway, etc., indicating that CORT treatment regulates lipid metabolism and immunity, while APEC infection induces inflammation and disrupts lipid metabolism. Notably, CORT pretreatment may mitigate APEC induced liver injury by enhancing phagosome function. Moreover, glucocorticoid receptor (GR) may regulate DEGs expressions, thus affected broilers response to CORT, APEC, or both treatments. These results suggest that CORT treatment, APEC infection, or both significantly affect the growth performance, immune response and liver function of broilers, while lipid metabolism may play a crucial role.
Collapse
Affiliation(s)
- Mengru Chen
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yifei He
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Lei Wu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
30
|
Koelsch N, Mirshahi F, Aqbi HF, Seneshaw M, Idowu MO, Olex AL, Sanyal AJ, Manjili MH. Anti-tumor immunity relies on targeting tissue homeostasis through monocyte-driven responses rather than direct tumor cytotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.12.598563. [PMID: 38903113 PMCID: PMC11188117 DOI: 10.1101/2024.06.12.598563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Background Metabolic dysfunction-associated fatty liver disease (MAFLD) can progress to hepatocellular carcinoma (HCC), yet the immune mechanisms driving this transition remain unclear. Methods In a chronic Western diet (WD) mouse model, we performed single-nuclei RNA sequencing to track MAFLD progression into HCC and subsequent tumor inhibition upon dietary correction. Results Carcinogenesis begins during MAFLD, with tumor cells entering dormancy when HCC is mitigated. Rather than purely tolerogenic, the liver actively engages immune responses targeting myofibroblasts, fibroblasts and hepatocytes to maintain tissue homeostasis. Cytotoxic cells contribute to turnover of liver cells but do not primarily target the tumor. NKT cells predominate under chronic WD, while monocytes join them in HCC progression on a WD. Upon dietary correction, monocyte-driven immunity confers protection against HCC through targeting tissue homeostatic pathways and antioxidant mechanisms. Crucially, liver tissue response-not merely immune activation-dictates whether tumors grow or regress, emphasizing the importance of restoring liver tissue integrity. Also, protection against HCC is linked to a distinct immunological pattern, differing from healthy controls, underscoring the need for immune reprogramming. Conclusion These findings reveal the dual roles of similar pathways, where immune patterns targeting different cells shape distinct outcomes. Restoring tissue homeostasis and regeneration creates a tumor-hostile microenvironment, whereas tumor-directed approaches fail to remodel the TME. This underscores the need for tissue remodeling strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Nicholas Koelsch
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Faridoddin Mirshahi
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Richmond, VA 23298
| | - Hussein F. Aqbi
- College of Science, Mustansiriyah University, Baghdad, P.O. Box 14022, Iraq
| | - Mulugeta Seneshaw
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Richmond, VA 23298
| | - Michael O. Idowu
- Department of Pathology, VCU School of Medicine, Richmond, VA 23298, USA
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Amy L. Olex
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine
| | - Arun J. Sanyal
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Richmond, VA 23298
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Masoud H. Manjili
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
- VCU Institute of Molecular Medicine, Richmond VA 23298
| |
Collapse
|
31
|
Di Marco L, Romanzi A, Pivetti A, De Maria N, Ravaioli F, Salati M, Villa E, Di Benedetto F, Magistri P, Dominici M, Colecchia A, Di Sandro S, Spallanzani A. Suppressing, stimulating and/or inhibiting: The evolving management of HCC patient after liver transplantation. Crit Rev Oncol Hematol 2025; 207:104607. [PMID: 39725094 DOI: 10.1016/j.critrevonc.2024.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024] Open
Abstract
Liver transplantation (LT) is a curative strategy for hepatocellular carcinoma (HCC), but the risk of HCC recurrence remains a challenging problem. In patients with HCC recurrence after LT (HCC-R_LT), the locoregional and surgical approaches are complex, and the guidelines do not report evidence-based strategies for the management of immunosuppression. In recent years, immunotherapy has become an effective option for patients with advanced HCC in pre-transplant settings. However, due to the risk of potentially fatal allograft rejection, the use of immunotherapy is avoided in post-transplant settings. Combining immunosuppressants with immunotherapy in transplant patients is also challenging due to the complex tumor microenvironment and immunoreactivity. The fear of acute liver rejection and the lack of predictive factors hinder the successful clinical application of immunotherapy for post-liver transplantation HCC recurrence. This review aims to comprehensively summarize the risk of HCC-R_LT, the available evidence for the efficacy of immunotherapy in patients with HCC-R_LT, and the clinical issues regarding the innovative management of this patient population.
Collapse
Affiliation(s)
- Lorenza Di Marco
- Department of Oncology and Hematology, Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41124, Italy; Department of Biomedical, Metabolic and Neural Sciences, Clinical and Experimental Medicine Program, University of Modena and Reggio Emilia, Modena 41124, Italy.
| | - Adriana Romanzi
- Chimomo Department, Gastroenterology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Alessandra Pivetti
- Chimomo Department, Gastroenterology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Nicola De Maria
- Chimomo Department, Gastroenterology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna 40138, Italy.
| | - Massimiliano Salati
- Department of Oncology and Hematology, Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41124, Italy.
| | - Erica Villa
- Chimomo Department, Gastroenterology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy; National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte 70013, Italy.
| | - Fabrizio Di Benedetto
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Paolo Magistri
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Massimo Dominici
- Department of Oncology and Hematology, Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41124, Italy.
| | - Antonio Colecchia
- Chimomo Department, Gastroenterology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Stefano Di Sandro
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41125, Italy.
| | - Andrea Spallanzani
- Department of Oncology and Hematology, Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena 41124, Italy.
| |
Collapse
|
32
|
Raju C, Sankaranarayanan K. Insights on post-translational modifications in fatty liver and fibrosis progression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167659. [PMID: 39788217 DOI: 10.1016/j.bbadis.2025.167659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease [MASLD] is a pervasive multifactorial health burden. Post-translational modifications [PTMs] of amino acid residues in protein domains demonstrate pivotal roles for imparting dynamic alterations in the cellular micro milieu. The crux of identifying novel druggable targets relies on comprehensively studying the etiology of metabolic disorders. This review article presents how different chemical moieties of various PTMs like phosphorylation, methylation, ubiquitination, glutathionylation, neddylation, acetylation, SUMOylation, lactylation, crotonylation, hydroxylation, glycosylation, citrullination, S-sulfhydration and succinylation presents the cause-effect contribution towards the MASLD spectra. Additionally, the therapeutic prospects in the management of liver steatosis and hepatic fibrosis via targeting PTMs and regulatory enzymes are also encapsulated. This review seeks to understand the function of protein modifications in progression and promote the markers discovery of diagnostic, prognostic and drug targets towards MASLD management which could also halt the progression of a catalogue of related diseases.
Collapse
Affiliation(s)
- Chithra Raju
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India
| | - Kavitha Sankaranarayanan
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India.
| |
Collapse
|
33
|
Winichakoon P, Solera Rallo JT, Albasata H, Poutanen SM, Hosseini-Moghaddam SM. Critical Insights: Severe Outcomes of Pneumocystis Pneumonia: A 10-year Retrospective Cohort Study. Transpl Infect Dis 2025; 27:e14417. [PMID: 39692600 DOI: 10.1111/tid.14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/02/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND A considerable knowledge gap exists in predicting severe Pneumocystis pneumonia (PCP) outcomes following PCP diagnosis. METHODS In this retrospective cohort, we studied immunocompromised patients with PCP admitted to 5 University Health Network centers in Canada (2011-2022). The study outcome included severe PCP, a composite of 21-day ICU admission or 28-day all-cause mortality. Adjusted odds ratios (aOR) estimated the association between severe PCP and comorbidities as well as clinical and laboratory variables at diagnosis. RESULTS A total of 44 out of 182 (24.2%) immunocompromised patients (19 [10.4%] HIV-infected, 55 [30.2%] hematologic malignancies, 32 [17.6%] hematopoietic stem cell transplants, 32 [17.6% solid tumors, 26 solid organ transplants [14.3%], 12 (6.6%) autoimmune diseases, and 6 (3.3%) other immunosuppressive conditions) developed composite outcomes (40 ICU admissions [21.9%], 18 deaths [9.9%]). Patients with composite outcomes more often had acute-onset PCP (< 7 days) (18/34 [52.9%] vs. 38/126 [30.1%], p = 0.013), shortness of breath (39/44 [88.6%] vs. 96/136 [70.6%], p = 0.002), chronic liver disease (15/44 [34.1%] vs. 9/138 [6.5%], p < 0.001), hypoalbuminemia (median [IQR] albumin (g/L): 27 [25-31] vs. 32 [29-35], p < 0.001), elevated lactate dehydrogenase (median [IQR] LDH (U/L): 537 [324-809] vs. 340 [237-475], p < 0.001), lymphopenia (median [IQR] absolute lymphocyte count [(10*9/L),]: 0.4 [0.2-0.6] vs. 0.7 [0.3-1.2], p < 0.001), or required supplemental oxygen (39/44 [88.6%] vs. 60/136 [44.1%], p < 0.001) than those without composite outcomes. In multivariable analysis, chronic liver disease (aOR: 11.6, 95% CI: 2.2-61.3) and requiring supplemental oxygen on admission (aOR: 19.7, 95% CI: 3.0-128.5) were significantly associated with severe PCP. CONCLUSIONS Alongside hypoxemia upon admission, chronic liver disease appears to significantly predict severe PCP in immunocompromised patients. This biologically plausible finding warrants further investigation.
Collapse
Affiliation(s)
- Poramed Winichakoon
- Transplant Infectious Diseases and Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Canada
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Javier Tomas Solera Rallo
- Transplant Infectious Diseases and Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Canada
- Infectious Diseases Unit, Quirónsalud University Hospital, Pozuelo de Alarcón, Madrid, Spain
| | - Hanan Albasata
- Transplant Infectious Diseases and Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Canada
- Infectious Diseases Department, Rashid Hospital, Dubai Academic Health Corporation, Dubai, UAE
| | - Susan Marie Poutanen
- Departments of Microbiology and Medicine, University Health Network and Sinai Health, University of Toronto, Toronto, Canada
| | - Seyed M Hosseini-Moghaddam
- Transplant Infectious Diseases and Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
34
|
Shrestha S, Jeon JH, Hong CW. Neutrophils in MASLD and MASH. BMB Rep 2025; 58:116-123. [PMID: 39757200 PMCID: PMC11955729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 01/07/2025] Open
Abstract
Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) and its progressive form, Metabolic Dysfunction Associated Steatohepatitis (MASH), represent significant health concerns associated with the metabolic syndrome. These conditions are characterized by excessive hepatic fat accumulation, inflammation, and potential progression to cirrhosis and hepatocellular carcinoma. Neutrophils are innate immune cells that play a pivotal role in the development of MASLD and MASH. They can infiltrate the hepatic microenvironment in response to inflammatory cytokines and damage associated molecular patterns (DAMPs) derived from the liver and exacerbate tissue damage by releasing of reactive oxygen species (ROS), cytokines, and neutrophil extracellular traps (NETs). Moreover, neutrophils can disrupt the metabolism of hepatocytes through key factors such as neutrophil elastase (NE) and human neutrophil peptides-1 (HNP-1), leading to inflammation and fibrosis, while myeloperoxidase (MPO) and lipocalin (LCN2) are involved in inflammatory and fibrotic processes. In contrast, neutrophils contribute to liver protection and repair through mechanisms involving microRNA-223 and matrix metalloproteinase 9 (MMP9). This dual role of neutrophils highlights their significance in the pathogenesis of MASLD and MASH. This review summarizes current understanding from recent studies on the involvement of neutrophils in MASLD and MASH. Understanding complex roles of neutrophils within the liver's unique microenvironment offers insights into novel therapeutic strategies, emphasizing the need for further research to explore neutrophil-targeted interventions for managing MASLD and MASH. [BMB Reports 2025; 58(3): 116-123].
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41404, Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
35
|
Shang X, Che X, Ma K, Guo W, Wang S, Sun ZP, Xu W, Zhang Y. Chronic Cr(VI) exposure-induced biotoxicity involved in liver microbiota-gut axis disruption in Phoxinus lagowskii Dybowski based on multi-omics technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125759. [PMID: 39880355 DOI: 10.1016/j.envpol.2025.125759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/16/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Cr(VI) is widely used in industry and has high toxicity, making it one of the most common environmental pollutants. Long-term exposure to Cr(VI) can cause metabolic disorders and tissue damage. However, the effects of Cr(VI) on liver and gut microbes in fish have rarely been reported. In this study, 240 fish were randomly divided into 3 groups: the control group, low-dose Cr(VI) group (0.5 mg/L), and high-dose Cr(VI) group (2 mg/L). The mechanism by which Cr(VI) affects the enterohepatic axis of common carp was elucidated via multiomic analysis, serology, histomorphology, and physiological and biochemical indices. The results revealed that Cr(VI) stress led to hepatocyte damage, nuclear lysis, inflammatory cell infiltration, and vacuolated degeneration. The structure of the intestinal villi was severely damaged, and the length and width of the intestinal villi were significantly reduced. We also found that the accumulation of Cr(VI) in tissues increased in a concentration-dependent manner, and the content of Cr(VI) in each tissue increased in the order of gut > gill > liver > muscle. Multiple omics studies have revealed that chronic Cr(VI) stress leads to disturbances in the intestinal flora, with a significant reduction in the abundance of the beneficial bacterium Akkermansia and a significant increase in the abundance of the harmful bacterium Escherichia/Shigella. Intestinal injury and dysbiosis lead to an increase in blood LPS levels, further inducing metabolic disorders in the liver. The metabolites in the liver, including geniposide, leucine, C17 sphingosine, and 9,10-DiHODE, were significantly increased, whereas the beneficial metabolites, such as carnitine propionate and palmitoyl ethanolamide, were significantly reduced. In conclusion, our results suggest that chronic Cr(VI) stress leads to disturbances in gut microbial homeostasis and disturbed fatty acid and amino acid metabolism in the liver. LPS released into the bloodstream reaches the liver through the portal circulation, further exacerbating Cr(VI) stress-induced hepatotoxicity. This study revealed the mechanism of Cr(VI) toxicity to the liver-microbiota-gut axis of common carp. Our study provides new insights into the effects of Cr(VI) on the liver-microbiota-gut axis.
Collapse
Affiliation(s)
- Xinchi Shang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China; College of Life Science, Northeast Agricultural University, Harbin, 150036, China
| | - Xinghua Che
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Kai Ma
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Wenxue Guo
- Rongcheng Oceanic Economy Development Center, Rongcheng, 264300, China
| | - Shanshan Wang
- Heilongjiang Aquatic Animal Resource Conservation Center, China
| | - Zhi Peng Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Wei Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Yongquan Zhang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| |
Collapse
|
36
|
Young DJ, Edwards AJ, Quiroz Caceda KG, Liberzon E, Barrientos J, Hong SG, Turner J, Choyke PL, Arlauckas S, Lazorchak AS, Morgan RA, Sato N, Dunbar CE. In vivo tracking of ex-vivo-generated 89Zr-oxine-labeled plasma cells by PET in a non-human primate model. Mol Ther 2025; 33:580-594. [PMID: 39741408 PMCID: PMC11852699 DOI: 10.1016/j.ymthe.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
B cells are an attractive platform for engineering to produce protein-based biologics absent in genetic disorders, and potentially for the treatment of metabolic diseases and cancer. As part of pre-clinical development of B cell medicines, we demonstrate a method to collect, ex vivo expand, differentiate, radioactively label, and track adoptively transferred non-human primate (NHP) B cells. These cells underwent 10- to 15-fold expansion, initiated IgG class switching, and differentiated into antibody-secreting cells. Zirconium-89-oxine-labeled cells were infused into autologous donors without any preconditioning and tracked by PET/CT imaging. Within 24 h of infusion, 20% of the initial dose homed to the bone marrow and spleen and distributed stably and equally between the two. Interestingly, approximately half of the dose homed to the liver. Image analysis of the bone marrow demonstrated inhomogeneous distribution of the cells. The subjects experienced no clinically significant side effects or laboratory abnormalities. A second infusion of B cells into one of the subjects resulted in an almost identical distribution of cells, suggesting possibly a non-limiting engraftment niche and feasibility of repeated infusions. This work supports the NHP as a valuable model to assess the potential of B cell medicines as potential treatment for human diseases.
Collapse
Affiliation(s)
- David J Young
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | - Kevin G Quiroz Caceda
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - So Gun Hong
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Peter L Choyke
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | - Noriko Sato
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia E Dunbar
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Xiong L, Beyer D, Liu N, Lehmann T, Neugebauer S, Schaeuble S, Sommerfeld O, Ernst P, Svensson CM, Nietzsche S, Scholl S, Bruns T, Gaßler N, Gräler MH, Figge MT, Panagiotou G, Bauer M, Press AT. Targeting protein kinase C-α prolongs survival and restores liver function in sepsis: Evidence from preclinical models. Pharmacol Res 2025; 212:107581. [PMID: 39761839 DOI: 10.1016/j.phrs.2025.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/26/2025]
Abstract
Sepsis is a life-threatening organ failure resulting from a poorly regulated infection response. Organ dysfunction includes hepatic involvement, weakening the immune system due to excretory liver failure, and metabolic dysfunction, increasing the death risk. Although experimental studies correlated excretory liver functionality with immune performance and survival rates in sepsis, the proteins and pathways involved remain unclear. This study identified protein kinase C-α (PKCα) as a novel target for managing excretory liver function during sepsis. Using a preclinical murine sepsis model, we found that both PKCα knockout and the use of a PKCα-inhibitor midostaurin successfully restored liver function without hindering the host's response or ability to clear the pathogen, highlighting PKCα's vital role in excretory liver failure. In septic animals, both approaches significantly boosted survival rates. Midostaurin is the clinically approved active pharmaceutical ingredient in Rydapt, approved for the adjuvant treatment of FTL3-mutated AML. Here, it reduced plasma bile acids and related inflammation in those patients, opening a translational avenue for therapeutics in sepsis. Conclusively, our research underscores the significance of PKCα in controlling excretory liver function during inflammation. This suggests that targeting this protein could restore liver function without compromising the immune system, thereby decreasing sepsis mortality and supporting the recent paradigm that the liver is a hub for the host response to infection that might, in the future, result in novel host-directed therapies supporting the current state-of-the-art intensive care medicine in patients with sepsis-associated liver failure.
Collapse
Affiliation(s)
- Ling Xiong
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University Jena, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany
| | - Dustin Beyer
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University Jena, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany
| | - Na Liu
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University Jena, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany
| | - Tina Lehmann
- Jena University Hospital, Electron Microscopy Center, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sophie Neugebauer
- Jena University Hospital, Institute of Clinical Chemistry and Laboratory Diagnostics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sascha Schaeuble
- Department of Microbiome Dynamics at Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Oliver Sommerfeld
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University Jena, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany
| | - Philipp Ernst
- Jena University Hospital, Clinic for Internal Medicine II, Department of Hematology and Internal Oncology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Carl-Magnus Svensson
- Research Group Applied Systems Biology at Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Sandor Nietzsche
- Jena University Hospital, Electron Microscopy Center, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sebastian Scholl
- Jena University Hospital, Clinic for Internal Medicine II, Department of Hematology and Internal Oncology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Tony Bruns
- University Hospital RWTH Aachen, Department of Medicine III, Aachen, Germany
| | - Nikolaus Gaßler
- Jena University Hospital, Section of Pathology, Institute of Forensic Medicine, Friedrich-Schiller-University Jena, Jena, Germany
| | - Markus H Gräler
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University Jena, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany
| | - Marc Thilo Figge
- Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany; Research Group Applied Systems Biology at Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Jena, Germany; Friedrich-Schiller-University Jena, Institute of Microbiology, Faculty of Biological Sciences, Jena, Germany; Friedrich-Schiller-University Jena, Cluster of Excellence Balance of the Microverse, Jena, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics at Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Jena, Germany; Friedrich-Schiller-University Jena, Institute of Microbiology, Faculty of Biological Sciences, Jena, Germany; Friedrich-Schiller-University Jena, Cluster of Excellence Balance of the Microverse, Jena, Germany
| | - Michael Bauer
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University Jena, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany
| | - Adrian T Press
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University Jena, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany; Friedrich-Schiller-University Jena, Faculty of Medicine, Jena, Germany.
| |
Collapse
|
38
|
Ulrich H, Glaser T, Thomas AP. Purinergic signaling in liver disease: calcium signaling and induction of inflammation. Purinergic Signal 2025; 21:69-81. [PMID: 39320433 PMCID: PMC11958897 DOI: 10.1007/s11302-024-10044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
Purinergic signaling regulates many metabolic functions and is implicated in liver physiology and pathophysiology. Liver functionality is modulated by ionotropic P2X and metabotropic P2Y receptors, specifically P2Y1, P2Y2, and P2Y6 subtypes, which physiologically exert their influence through calcium signaling, a key second messenger controlling glucose and fat metabolism in hepatocytes. Purinergic receptors, acting through calcium signaling, play an important role in a range of liver diseases. Ionotropic P2X receptors, such as the P2X7 subtype, and certain metabotropic P2Y receptors can induce aberrant intracellular calcium transients that impact normal hepatocyte function and initiate the activation of other liver cell types, including Kupffer and stellate cells. These P2Y- and P2X-dependent intracellular calcium increases are particularly relevant in hepatic disease states, where stellate and Kupffer cells respond with innate immune reactions to challenges, such as excess fat accumulation, chronic alcohol abuse, or infections, and can eventually lead to liver fibrosis. This review explores the consequences of excessive extracellular ATP accumulation, triggering calcium influx through P2X4 and P2X7 receptors, inflammasome activation, and programmed cell death. In addition, P2Y2 receptors contribute to hepatic steatosis and insulin resistance, while inhibiting the expression of P2Y6 receptors can alleviate alcoholic liver steatosis. Adenosine receptors may also contribute to fibrosis through extracellular matrix production by fibroblasts. Thus, pharmacological modulation of P1 and P2 receptors and downstream calcium signaling may open novel therapeutic avenues.
Collapse
Affiliation(s)
- Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
39
|
Wishna-Kadawarage RN, Połtowicz K, Hickey RM, Siwek M. Modulation of gene expression in immune-related organs by in ovo stimulation with probiotics and prophybiotics in broiler chickens. J Appl Genet 2025; 66:195-205. [PMID: 38987456 PMCID: PMC11761985 DOI: 10.1007/s13353-024-00891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
In ovo stimulation has been studied intensively as an alternative to antibiotic use in poultry production. We investigated the potential use of a probiotic in combination with a phytobiotic as a prophybiotic for in ovo stimulation and reported its beneficial effects on the gut microbiome of broiler chickens. The current study further investigates the gene expression in the immune-related organs of these chickens to understand the tissue-specific immunomodulatory effects of the treatments. The selected prophybiotic (Leuconostoc mesenteroides with garlic aqueous extract) and its probiotic component alone were injected into ROSS308 chicken eggs on the 12th day of incubation, and gene expression in cecal tonsils, spleen, and liver at 35 days of age was determined using qPCR method. The relative expression of each treatment was compared to the positive control, chickens injected with physiological saline in ovo. The results displayed a downregulation of pro- and anti-inflammatory cytokines in the cecal tonsils of the probiotic group and the liver of the prophybiotic group. The spleen displayed upregulated AVBD1 in both groups and upregulated IL1-β in the probiotic group. The probiotic group displayed increased expression of genes related to metabolism of energy (COX16), protein (mTOR), and lipids (CYP46A1) whereas the prophybiotic group displayed reduced expression of genes related to cholesterol synthesis (SREBP1) and glucose transportation (SLC2A2) in the liver. In conclusion, Leuconostoc mesenteroides differentially modulated gene expression in chickens when administered in ovo in combination with garlic aqueous extract. Further in ovo studies with different prophybiotic combinations are required to optimize the benefits in broiler chickens.
Collapse
Affiliation(s)
- Ramesha N Wishna-Kadawarage
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland.
| | - Katarzyna Połtowicz
- Department of Poultry Breeding, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, P61 C996, Fermoy, Co. Cork, Ireland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| |
Collapse
|
40
|
Fujimoto T, Goto H, Hida M, Tsuboi K, Suzuki T, Iida H, Fukada A, Shimizu S, Ebata Y, Nikai K, Ishii J, Takeda M, Ishiyama A, Shibuya S, Yazaki Y, Nakazawa-Tanaka N, Miyano G, Okazaki T, Yanai T, Urao M, Suzuki M, Koga H, Lane GJ, Yamataka A, Suda K. Liver Mitochondrial Morphology and Gene Expression as Markers of Liver Reserve: Prognostic Implications for Native Liver Survival in Biliary Atresia. J Pediatr Surg 2025; 60:161648. [PMID: 39187420 DOI: 10.1016/j.jpedsurg.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE Hepatocyte mitochondrial morphology and gene expression were compared between biliary atresia (BA), infantile cholestasis (IC), and normal liver (NL) as prognostic indicators. METHODS Specimens of liver at portoenterostomy (PE) for BA, from intrahepatic bile duct paucity patients for IC, and from choledochal cyst or hepatoblastoma patients for NL were collected prospectively (P) beginning in 2021 (P-BA = 11, P-IC = 9, P-NL = 7) and retrospectively (R) from paraffin-embedded tissue going back to 1981 (R-BA = 25, R-IC = 9, R-NL = 4). The P-cohort had transmission electron microscopy (TEM) to image mitochondria, immunoblotting for heat shock protein 60 (HSP60), and quantitative PCR (qPCR) for HSP60 and mitochondrial functional genes. Both cohorts had immunofluorescence for HSP60 quantified as a ratio to albumin-positive hepatocytes (ALB) with HSP60/ALB<1.0 as a cutoff limit using ImageJ. RESULTS HSP60 was significantly lower in BA/IC than NL on qPCR (BA: p < 0.01, IC: p < 0.05) and lower in BA than IC/NL on immunoblotting (p < 0.05). HSP60/ALB was significantly lower in BA than NL/IC (p < 0.001). Despite BA subjects being matched for types of BA and ages at PE, HSP60/ALB did not correlate with jaundice clearance (JC; T-Bil<1.2 mg/dL) but was significantly higher in native liver survivors (NLS) after PE compared with liver transplant (LTx) cases (p < 0.05) and significantly lower in LTx cases achieving JC than NLS achieving JC (p < 0.05). TEM showed BA had significantly more mitochondrial inclusion bodies (p < 0.05) and significantly larger cristae (p < 0.01) than IC/NL. qPCR in BA showed significant repression of mitochondrial functional genes for mRNA stabilization and energy facilitation. CONCLUSION HSP60/ALB correlates with NLS after PE for BA. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Takashi Fujimoto
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroki Goto
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Masataka Hida
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Koichi Tsuboi
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Takamasa Suzuki
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hisae Iida
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Ayaka Fukada
- Department of Pediatric Surgery, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Sakika Shimizu
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yu Ebata
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Koki Nikai
- Department of Pediatric Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Junya Ishii
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Masahiro Takeda
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Asuka Ishiyama
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Soichi Shibuya
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuta Yazaki
- Department of Pediatric Surgery, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Nana Nakazawa-Tanaka
- Department of Pediatric Surgery, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Go Miyano
- Department of Pediatric Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Tadaharu Okazaki
- Department of Pediatric Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Toshihiro Yanai
- Department of Pediatric Surgery, Ibaraki Children's Hospital, Ibaraki, Japan
| | - Masahiko Urao
- Department of Pediatric Surgery, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyuki Koga
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Geoffrey J Lane
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuto Suda
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
41
|
Li YM, Yan MM, Luo T, Zhu W, Jiang JG. Comparative hepatoprotective effects of flavonoids-rich fractions from flowers and leaves of Penthorum chinense Pursh in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118960. [PMID: 39426574 DOI: 10.1016/j.jep.2024.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penthorum chinense Pursh is a traditional Miao ethnomedicine rich in bioactive components, widely recognized for its hepatoprotective properties. However, the hepatoprotective effects of its flowers and leaves have not been individually elucidated. AIMS OF THE STUDY The objective of this study was to isolate and purify flavonoids-rich fractions from the flowers (PFF) and leaves (PLF) of P. chinense, and to assess their potential protective effects against oxidative, alcohol-induced, and free fatty acid (FFA) induced injury in hepatic cells. MATERIALS AND METHODS The P. chinense flowers and leaves flavonoids-rich fractions were extracted by the method optimized by response surface methodology, and the extracts were subsequently purified using petroleum ether and microporous column. The physical characteristics and component composition of PFF and PLF were analyzed by FT-IR and UPLC-MS/MS. The hepatoprotective activities of PFF and PLF were evaluated by the alcohol, H2O2, and FFA-induced hepatocyte injury cellular model in vitro. The protective effects of PFF and PLF on the hepatic cells were evaluated by assessing cell apoptosis rate, enzymes activities, mitochondrial membrane potential, and mRNA expression in relevant signaling pathways. RESULTS The results revealed that PFF was mainly composed of pinocembrin, quercitrin and quercetin, while PLF was predominantly composed of quercetin, pinocembrin, and kaempferol and their derivatives. PFF and PLF exhibited distinct effects on increasing the cell proliferation rate, regulating the MDA, GOT and GPT levels, and modulating the mRNA expression in apoptosis and antioxidant pathways in alcohol damaged LO2 cells. PFF exhibited superior efficacy in reducing cell apoptosis in alcohol-damage cells compared to PLF. Both PFF and PLF alleviated mitochondrial stress in H2O2-induced LO2 cells. Additionally, the PFF and PLF attenuated lipid accumulation and activated mRNA expressions in PPARα/ACOX1/CPT-1 lipid metabolism pathways, as well as Nrf2/ARE oxidative stress pathways. CONCLUSION This study compared the hepatoprotective activities of flavonoids-rich fractions purified from the flowers and leaves of P. chinense. The results contribute to the enhanced development and utilization of various parts of P. chinense aimed at medical and health food applications.
Collapse
Affiliation(s)
- Yi-Meng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Dermatology Hospital of Southern Medical University, Guangzhou, 510091, China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Mao-Mao Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ting Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wei Zhu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, China.
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
42
|
Wang B, Wu X, Cheng J, Ye J, Zhu H, Liu X. Regulatory role of S1P and its receptors in sepsis-induced liver injury. Front Immunol 2025; 16:1489015. [PMID: 39935473 PMCID: PMC11811114 DOI: 10.3389/fimmu.2025.1489015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
As an immune and metabolic organ, the liver affects the progression and prognosis of sepsis. Despite the severe adverse effects of sepsis liver injury on the body, treatment options remain limited. Sphingosine-1-phosphate (S1P) is a widely distributed lipid signaling molecule that binds to five sphingosine-1-phosphate receptors (S1PR) to regulate downstream signaling pathways involved in the pathophysiological processes of sepsis, including endothelial permeability, cytokine release, and vascular tone. This review summarizes current research on the role of S1P in normal liver biology and describes the mechanisms by which changes in S1P/S1PR affect the development of liver-related diseases. At the same time, the pathological processes underlying liver injury, as evidenced by clinical manifestations during sepsis, were comprehensively reviewed. This paper focused on the mechanistic pathways through which S1P and its receptors modulate immunity, bile acid metabolism, and liver-intestinal circulation in septic liver injury. Finally, the relationships between S1P and its receptors with liver inflammation and metabolism and the use of related drugs for the treatment of liver injury were examined. By elucidating the role of S1P and its receptor in the pathogenesis of sepsis liver injury, this review established a molecular targeting framework, providing novel insights into clinical and drug development.
Collapse
Affiliation(s)
- Bin Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyu Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiangfeng Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Hongquan Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Liu
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
43
|
Dhayanithy G, Radhakrishnan S, Ann Martin C, Caroline Martin J, Hakeem AR, Jothimani D, Kalkura SN, Rela M. Understanding immunological insights of liver transplantation: a practice for attaining operational tolerance. Clin Exp Immunol 2025; 219:uxae125. [PMID: 39973343 PMCID: PMC11878573 DOI: 10.1093/cei/uxae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/15/2024] [Accepted: 02/19/2025] [Indexed: 02/21/2025] Open
Abstract
Liver transplantation has been at the forefront of medical research, with efforts concentrated on understanding the intricate cellular and molecular dynamics involved this complex procedure. This body of work has chronicled critical clinical advancements, identified challenges, and highlighted progressive improvements in surgical practices. These concerted efforts have significantly contributed to the evolution and enhancement of liver transplantation, elevating it to its current level of sophistication. A successful liver transplant now demands an integrated, multidisciplinary approach that includes not only expanding the donor pool from deceased to living donors but also embracing advances in surgical methods, efficiently managing post-transplant complications, and, importantly, achieving operational tolerance. The latter, operational tolerance, is a state wherein the recipient's immune system is coaxed into accepting the transplanted organ without the long-term use of immunosuppressive drugs, thereby minimizing potential side effects, and improving quality of life. Understanding the critical immune mechanisms that aim to prevent graft rejection is essential from an immunological perspective. This review aims to highlight the crucial areas of host versus graft immune responses, making a clear distinction between organs received from living and deceased donors. It examines how these immune responses, both innate and adaptive, are initiated and proposes the exploration of molecular docking sites as a strategy to curb unwanted immune reactions. Additionally, this review explores the promising potential of biomarkers in predicting graft rejection, and emphasizes the importance of achieving tolerance and the continuous quest for innovative strategies to enhance the success and longevity of liver transplants.
Collapse
Affiliation(s)
| | | | | | - Josette Caroline Martin
- Department of Pathology, Sri Venkateshwara Medical College Hospital and Research Institute, Pondicherry, India
| | | | - Dinesh Jothimani
- Dr. Rela Institute and Medical Centre, Chromepet, Chennai, India
| | - Subbaraya Narayana Kalkura
- Crystal Growth Centre, Anna University, Guindy, Chennai, India
- National Foundation for Liver Research, Chromepet, Chennai, India
| | - Mohamed Rela
- National Foundation for Liver Research, Chromepet, Chennai, India
- Dr. Rela Institute and Medical Centre, Chromepet, Chennai, India
| |
Collapse
|
44
|
Šestan M, Raposo B, Rendas M, Brea D, Pirzgalska R, Rasteiro A, Aliseychik M, Godinho I, Ribeiro H, Carvalho T, Wueest S, Konrad D, Veiga-Fernandes H. Neuronal-ILC2 interactions regulate pancreatic glucagon and glucose homeostasis. Science 2025; 387:eadi3624. [PMID: 39818880 DOI: 10.1126/science.adi3624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/02/2024] [Accepted: 11/08/2024] [Indexed: 01/19/2025]
Abstract
The immune system shapes body metabolism, while interactions between peripheral neurons and immune cells control tissue homeostasis and immunity. However, whether peripheral neuroimmune interactions orchestrate endocrine system functions remains unexplored. After fasting, mice lacking type 2 innate lymphoid cells (ILC2s) displayed disrupted glucose homeostasis, impaired pancreatic glucagon secretion, and inefficient hepatic gluconeogenesis. Additionally, intestinal ILC2s were found in the pancreas, which was dependent on their expression of the adrenergic beta 2 receptor. Targeted activation of catecholaminergic intestinal neurons promoted the accumulation of ILC2s in the pancreas. Our work provides evidence that immune cells can be regulated by neuronal signals in response to fasting, activating an inter-organ communication route that promotes pancreatic endocrine function and regulation of blood glucose levels.
Collapse
Affiliation(s)
- Marko Šestan
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Bruno Raposo
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Miguel Rendas
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - David Brea
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Roksana Pirzgalska
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Ana Rasteiro
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Maria Aliseychik
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Inês Godinho
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Hélder Ribeiro
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Tania Carvalho
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Henrique Veiga-Fernandes
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| |
Collapse
|
45
|
Liao W, Wang C, Wang R, Wu M, Li L, Chao P, Hu J, Chen WH. An activatable "AIE + ESIPT" fluorescent probe for dual-imaging of lipid droplets and hydrogen peroxide in drug-induced liver injury model. Anal Chim Acta 2025; 1335:343442. [PMID: 39643298 DOI: 10.1016/j.aca.2024.343442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Drug-induced liver injury (DILI) is one of the most common liver diseases. The crucial role of lipid droplets (LDs) and hydrogen peroxide (H2O2), two important biomarkers in the pathophysiology of DILI, has spurred considerable efforts to accurately visualize H2O2 and LDs for elucidating their functions in the progression of DILI. However, construction of a single fluorescent probe that is able to simultaneously image H2O2 and LDs dynamics remains to be a challenging task. Therefore, it is of great demand to develop a novel fluorescent probe for tracking the LDs status and H2O2 fluctuation in drug-induced liver injury. RESULTS We developed an "AIE + ESIPT" fluorescent probe TPEHBT for dual-imaging of LDs and H2O2 during DILI process. TPEHBT displayed greatly enhanced fluorescent response to H2O2 by generating an excited state intramolecular proton transfer (ESIPT) fluorophore TPEHBT-OH with aggregation induced emission (AIE) properties. TPEHBT exhibits high selectivity, sensitivity (LOD = 4.73 nM) and large Stokes shift (320 nm) to H2O2. Interestingly, TPEHBT can light up LDs with high specificity. The probe was favorably applied in the detection of endogenous and exogenous H2O2 in living cells, and notably in the simultaneous real-time visualization of H2O2 generation and LDs accumulation during DILI process. Moreover, TPEHBT was able to image H2O2 generation in zebrafish animal model with APAP-induced liver injury. SIGNIFICANCE For the first time, probe TPEHBT was applied in the dual-imaging of H2O2 fluctuation and LDs status in APAP-induced liver injury model in vitro and in vivo. The present findings strongly suggest that TPEHBT is a promising tool for monitoring H2O2 and LDs dynamics in DILI progression.
Collapse
Affiliation(s)
- Wantao Liao
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Chunzheng Wang
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Ruiya Wang
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Mengzhao Wu
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Lanqing Li
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China.
| | - Pengjie Chao
- School of Applied Physics and Materials, Wuyi University, 529020, Jiangmen, PR China
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China.
| |
Collapse
|
46
|
Chen H, Li T, Cai M, Huang Z, Gao J, Ding H, Li M, Guan W, Chen J, Wang W, Li C, Shi J. Study on gene expression in the liver at various developmental stages of human embryos. Front Cell Dev Biol 2025; 12:1515524. [PMID: 39845086 PMCID: PMC11751009 DOI: 10.3389/fcell.2024.1515524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Background The normal development of the liver during human embryonic stages is critical for the functionality of the adult liver. Despite this, the essential genes, biological processes, and signal pathways that drive liver development in human embryos remain poorly understood. Methods In this study, liver samples were collected from human embryos at progressive developmental stages, ranging from 2-month-old to 7-month-old. Highly expressed genes and their associated enrichment processes at various developmental stages of the liver were identified through transcriptomic sequencing. Results The findings indicated that genes associated with humoral immune responses and B-cell-mediated immunity were highly expressed during the early developmental stages. Concurrently, numerous genes related to vitamin response, brown adipocyte differentiation, T cell differentiation, hormone secretion, hemostasis, peptide hormone response, steroid metabolism, and hematopoietic regulation exhibited increased expression aligned with liver development. Our results suggest that the liver may possess multiple functions during embryonic stages, beyond serving hematopoietic roles. Moreover, this study elucidated the complex regulatory interactions among genes involved in lymphocyte differentiation, the regulation of hemopoiesis, and liver development. Consequently, the development of human embryonic liver necessitates the synergistic regulation of numerous genes. Notably, alongside conventionally recognized genes, numerous previously uncharacterized genes involved in liver development and function were also identified. Conclusion These findings establish a critical foundation for future research on liver development and diseases arising from fetal liver abnormalities.
Collapse
Affiliation(s)
- Hanqing Chen
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Tingting Li
- Department of Critical Care Medicine, Nantong Third People’s Hospital, Nantong, Jiangsu, China
| | - Ming Cai
- Department of Thyroid and Breast Surgery, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Zhiqi Huang
- Department of Thyroid and Breast Surgery, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Jianjun Gao
- Department of Critical Care Medicine, Nantong Second People’s Hospital, Nantong, Jiangsu, China
| | - Hongping Ding
- Department of Endocrinology, Third People’s Hospital of Rugao, Nantong, Jiangsu, China
| | - Minmin Li
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Weiyu Guan
- Department of General Surgery, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Jinpeng Chen
- Department of Thyroid and Breast Surgery, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Wenran Wang
- Department of Endocrinology, Third People’s Hospital of Rugao, Nantong, Jiangsu, China
| | - Chunhong Li
- Department of Endocrinology, Third People’s Hospital of Rugao, Nantong, Jiangsu, China
| | - Jianwu Shi
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
47
|
Arellano‐García LI, Milton‐Laskibar I, Martínez JA, Arán‐González M, Portillo MP. Comparative effects of viable Lactobacillus rhamnosus GG and its heat-inactivated paraprobiotic in the prevention of high-fat high-fructose diet-induced non-alcoholic fatty liver disease in rats. Biofactors 2025; 51:e2116. [PMID: 39135211 PMCID: PMC11680974 DOI: 10.1002/biof.2116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 12/29/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver alterations worldwide, being gut microbiota dysbiosis one of the contributing factors to its development. The aim of this research is to compare the potential effects of a viable probiotic (Lactobacillus rhamnosus GG) with those exerted by its heat-inactivated paraprobiotic counterpart in a dietary rodent model of NAFLD. The probiotic administration effectively prevented the hepatic lipid accumulation induced by a high-fat high-fructose diet feeding, as demonstrated by chemical (lower TG content) and histological (lower steatosis grade and lobular inflammation) analyses. This effect was mainly mediated by the downregulation of lipid uptake (FATP2 protein expression) and upregulating liver TG release to bloodstream (MTTP activity) in rats receiving the probiotic. By contrast, the effect of the paraprobiotic preventing diet-induced liver lipid accumulation was milder, and mainly derived from the downregulation of hepatic de novo lipogenesis (SREBP-1c protein expression and FAS activity) and TG assembly (DGAT2 and AQP9 protein expression). The obtained results demonstrate that under these experimental conditions, the effects induced by the administration of viable L. rhamnosus GG preventing liver lipid accumulation in rats fed a diet rich in saturated fat and fructose differ from those induced by its heat-inactivated paraprobiotic counterpart.
Collapse
Affiliation(s)
- Laura Isabel Arellano‐García
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research CentreUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
| | - Iñaki Milton‐Laskibar
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research CentreUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
- BIOARABA Health Research InstituteVitoria‐GasteizSpain
| | - J. Alfredo Martínez
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research CouncilMadridSpain
| | - Miguel Arán‐González
- Unidad de Gestión Clínica de Anatomía Patológica de GuipúzcoaHospital Universitario DonostiaSan SebastiánSpain
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research CentreUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
- BIOARABA Health Research InstituteVitoria‐GasteizSpain
| |
Collapse
|
48
|
Shirini K, Meier RPH. Systematic Review and Comparative Outcomes Analysis of NHP Liver Allotransplants and Xenotransplants. Xenotransplantation 2025; 32:e70017. [PMID: 39960351 PMCID: PMC11832012 DOI: 10.1111/xen.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025]
Abstract
Patients with fulminant liver failure ineligible for transplantation have a high mortality rate. With recent progress in genetic modifications and clinical achievements, using pig livers as a bridge-to-transplant has regained popularity. Preclinical testing has been done in small cohorts of nonhuman primates (NHP), and maximum survival is limited to 1-month. We conducted a systematic review and comparative outcomes analysis of NHP-liver xenotransplantation and gathered 203 pig-to-NHP and NHP-to-NHP transplants reported in 23 studies. Overall, NHP survival after pig-liver xenotransplantation was limited (1, 3, 4 weeks: 18.0%, 5.6%, 1.1%), compared to NHPs after allotransplantation (1, 3, 4 weeks: 60.6%, 47.4%, 45.4%). A focus on pigs with genetic modifications evidenced some short-term survival benefits (1, 3, 4 weeks: 29.1%, 9.1%, 1.8%). The use of the auxiliary transplant technique was also associated with better short-term results (1, 3, 4 weeks: 40.9%, 9.1%, 4.5%). Causes of graft and animal loss were mostly rejection and liver failure in allotransplants, while bleeding, liver, and respiratory failure predominated in xenotransplants. Notably, the 1-month survival rate for NHP-allotransplants was significantly lower than the national > 98% rate for human liver transplants. This data confirms the short-term improvements brought by genetic modifications and auxiliary implantation in the NHP model, which remains imperfect.
Collapse
Affiliation(s)
- Kasra Shirini
- Division of Transplant SurgeryDepartment of SurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Raphael P. H. Meier
- Division of Transplant SurgeryDepartment of SurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
49
|
Deng L, Yu J, Li H, Zhang H. Brucella as a cause of severe sepsis: Case series and brief review. Am J Med Sci 2025; 369:116-121. [PMID: 39084524 DOI: 10.1016/j.amjms.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Brucellosis is a serious public health problem worldwide and can affect any organ system. Due to brucellosis's variable clinical presentation, ranging from subclinical to fully symptomatic, and limited available information, it poses a diagnostic challenge. In this study, we reported a case series of patients with diverse presentations. In addition, we briefly described the pathophysiology and mechanisms of Brucella in the body. These case presentations will be valuable in increasing the awareness of physicians. A prompt diagnosis is crucial, as detecting some clues of the infection in its early stages can help avoid misdiagnoses.
Collapse
Affiliation(s)
- Linlin Deng
- Department of Clinical Laboratory, Nanchong Central Hospital, Sichuan, China.
| | - Jiazhen Yu
- Department of Clinical Laboratory, Nanchong Central Hospital, Sichuan, China
| | - Hongyan Li
- Department of Clinical Laboratory, Nanchong Central Hospital, Sichuan, China
| | - Hong Zhang
- Department of Clinical Laboratory, Nanchong Central Hospital, Sichuan, China
| |
Collapse
|
50
|
Saraswat I, Goel A. Herbal Remedies for Hepatic Inflammation: Unravelling Pathways and Mechanisms for Therapeutic Intervention. Curr Pharm Des 2025; 31:128-139. [PMID: 39350422 DOI: 10.2174/0113816128348771240925100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/16/2024] [Indexed: 02/18/2025]
Abstract
Inflammation is a universal response of mammalian tissue to harm, comprising reactions to injuries, pathogens, and foreign particles. Liver inflammation is commonly associated with hepatocyte necrosis and apoptosis. These forms of liver cell injury initiate a sequence of events independent of the etiological basis for the inflammation and can result in hepatic disorders. It is also common for liver cancer. This review fundamentally focuses on the molecular pathways involved in hepatic inflammation. This review aims to explore the molecular pathways involved in hepatic inflammation, focusing on arachidonic acid, NF-κB, MAPK, PI3K/Akt, and JAK/STAT pathways. It investigates active compounds in herbal plants and their pharmacological characteristics. The review proposes a unique therapeutic blueprint for managing hepatic inflammation and diseases by modifying these pathways with herbal remedies.
Collapse
Affiliation(s)
- Istuti Saraswat
- Department of Biotechnology, GLA University, 17 km Stone, NH-2 Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, India
| | - Anjana Goel
- Department of Biotechnology, GLA University, 17 km Stone, NH-2 Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, India
| |
Collapse
|