1
|
Li J, Geng Y, Luo Y, Sun X, Guo Y, Dong Z. Pathological roles of NETs-platelet synergy in thrombotic diseases: From molecular mechanisms to therapeutic targeting. Int Immunopharmacol 2025; 159:114934. [PMID: 40418882 DOI: 10.1016/j.intimp.2025.114934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/10/2025] [Accepted: 05/20/2025] [Indexed: 05/28/2025]
Abstract
The formation of neutrophil extracellular traps (NETs) is a novel way for neutrophils to perform organismal protective functions essential for protecting the host against infections. Nevertheless, an increasing amount of data shows that uncontrolled or excessive formation of NETs in the body leads to inflammation and thrombosis. Many serious human diseases, such as sepsis, stroke, cancer, and autoimmune diseases, are associated with thrombosis, and inhibiting its formation is essential to prevent the development of many inflammatory and thrombotic diseases. With deeper research, it has been found that there is a complex interaction between NETs and platelets: platelets activate neutrophils to form NETs, while NET components enhance platelet aggregation and activation. This self-perpetuating vicious cycle between them mediates pathological processes such as inflammation, coagulation, and thrombosis. A deeper comprehension of the underlying molecular mechanisms between them promises to be a new target for thrombotic diseases. In this review, we concentrate on a summary of NET formation and its mechanisms of action. Providing a thorough summary of how neutrophils are activated by platelets to form NETs, how NETs cause platelet activation, and how this close interaction during inflammatory events affects the course of the disease, with the aim of providing fresh targets and ideas for thrombotic disease clinical prevention and therapy.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
| | - Yifei Geng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Neuro-Innovative Drug Research and Development of Traditional Chinese Medicine (Natural Medicines), No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Neuro-Innovative Drug Research and Development of Traditional Chinese Medicine (Natural Medicines), No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Neuro-Innovative Drug Research and Development of Traditional Chinese Medicine (Natural Medicines), No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Neuro-Innovative Drug Research and Development of Traditional Chinese Medicine (Natural Medicines), No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
2
|
Tejerina-Miranda S, Carral-Ibarra E, Gamella M, Montero-Calle A, Pedrero M, Pingarrón JM, Barderas R, Campuzano S. Determining and characterizing circulating nucleosomes in advanced cancer with electrochemical biosensors assisted by magnetic supports and proteomic technologies. Biosens Bioelectron 2025; 286:117582. [PMID: 40408894 DOI: 10.1016/j.bios.2025.117582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/26/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025]
Abstract
Measuring and monitoring plasma nucleosomes (small fragments of chromosomes released into the blood during cell death), and their proteomic profiles is a promising approach for improved early detection, diagnosis, and prognosis of cancer diseases as well as for disease and therapy follow-up, contributing to more personalized and effective cancer care. Early detection is imperative in colorectal cancer (CRC), as it has been proven to significantly improve patient outcomes. Indeed, in CRC, blood circulating nucleosome levels and their histone alterations have been correlated with tumor stage and the presence of metastasis. Moreover, they constitute promising markers for CRC monitoring and prognosis in a minimally invasive way. The current technologies used for their detection suffer from notable drawbacks such as non-selective identification and quantification of unknown cancer-relevant proteomic trademarks, expensive procedures, and variable results related to staff experience. Taking advantage of the sensitive, fast, cost-effective, and reliable methodologies that electroanalytical technologies offer for the determination of multilevel biomarkers in liquid biopsies, we report in this paper the first electrochemical immunoplatform for the isolation and determination of circulating nucleosomes in plasma using an anti-H3.1 histone variant, integrated with proteomics insights to confirm nucleosomes isolation and identify associated proteins with potential as CRC biomarkers. The developed bioplatform was used to analyze 0.5 μg of nuclear extracts from CRC cells with different metastatic potential as well as 1/5 diluted plasma samples, demonstrating the suitability to effectively discriminate CRC patients in advanced stages from healthy individuals through liquid biopsy.
Collapse
Affiliation(s)
- Sandra Tejerina-Miranda
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - Elisa Carral-Ibarra
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain
| | - Maria Gamella
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
| |
Collapse
|
3
|
Katayama H. Neutrophil Extracellular Traps Capturing SARS-CoV-2 in the Lung Tissue (Alveoli and Parenchyma) Cause Microthrombi - A Strategy to Eliminate SARS-CoV-2 From the Circulation as Degraded Fibrin Clots. Circ Rep 2025; 7:379-382. [PMID: 40352121 PMCID: PMC12061506 DOI: 10.1253/circrep.cr-24-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 05/14/2025] Open
Abstract
Background It has been thought that neutrophil extracellular traps (NETs) and thrombosis exacerbate COVID-19, but, on the other hand, NETs are an important player in innate immunity. The precise roles of NETs and thrombosis in the course of COVID-19 have not been fully elucidated. Methods and Results The roles were investigated in the literature and a new theory was formulated. When neutrophils encounter SARS-CoV-2 in the lung tissue, they undergo NETosis and capture the virus. This capture is triggered by electrostatic interaction between histones in NETs and SARS-CoV-2; histones are highly positively charged, and viruses, including SARS-CoV-2, have a net negative charge under physiological pH. NETs that capture SARS-CoV-2 fall into alveolar capillaries through the collapsed endothelium to spare the lung tissue from the toxicity of NETs. NETs in the microvessels cause microthrombosis; positively charged histones induce the aggregation of negatively charged platelets, which leads to microthrombi. Microthrombi engulfing SARS-CoV-2 are consolidated into fibrin clots, which are eventually degraded by increased fibrinolysis and eliminated from the circulation. Conclusions This novel theory suggests that NETosis and microthrombosis are phenomena inevitably elicited in COVID-19, and in combination they are a system newly termed "NETombosis". Undegraded fibrin clots remaining in the microcirculation may be the cause of the sequelae, because they cause long-lasting circulatory failure in various organs.
Collapse
|
4
|
Bekbossynova M, Mukarov M, Kanabekova P, Shaktybek Z, Sugralimova M, Batpen A, Kozhakhmetova A, Sholdanova Z, Zhanbolat A. Biochemical markers of myocardial contusion after blunt chest trauma. Eur J Trauma Emerg Surg 2025; 51:189. [PMID: 40298997 PMCID: PMC12041082 DOI: 10.1007/s00068-025-02866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/13/2025] [Indexed: 04/30/2025]
Abstract
One of the most common manifestations of cardiac injury because of trauma is myocardial contusion. Today, the blurred definition and wide range of nonspecific clinical presentations led to absence in consensus of diagnostic pathways and criteria. Currently, the marker of cardiac injury measured at clinical level is troponin and instrumental diagnostic tool is ECG. The patients with elevated troponin level after the chest trauma should be suspected to have myocardial contusion as cardiogenic shock or arrhythmia might take place as a complication. The release of DAMPs after the trauma has been observed as a part of inflammatory response to it. HMGB1 protein and histone levels were found to be elevated in patients with trauma and associated to recruit the inflammation. In this review the potential of these molecules to be used as diagnostic markers of myocardial contusion is discussed. Moreover, the obstacles for implementing DAMPS to clinical protocols and future research directions are included.
Collapse
Affiliation(s)
| | | | | | | | | | - Arman Batpen
- National Scientific Center of Traumatology and Orthopedics Named After Academician N.D. Batpenov, Astana, Kazakhstan
| | - Anar Kozhakhmetova
- National Scientific Center of Traumatology and Orthopedics Named After Academician N.D. Batpenov, Astana, Kazakhstan
| | | | | |
Collapse
|
5
|
Land WG, Linkermann A. Regulated cell death and DAMPs as biomarkers and therapeutic targets in normothermic perfusion of transplant organs. Part 2: implementation strategies. FRONTIERS IN TRANSPLANTATION 2025; 4:1575703. [PMID: 40343200 PMCID: PMC12060191 DOI: 10.3389/frtra.2025.1575703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025]
Abstract
This Part 2 of a bipartite review commences with the delineation of a conceptual model outlining the fundamental role of injury-induced regulated cell death (RCD) in the release of DAMPs that drive innate immune responses involved in early inflammation-related allograft dysfunction and alloimmune-mediated allograft rejection. In relation to this topic, the focus is on the divergent role of donor and recipient dendritic cells (DCs), which become immunogenic in the presence of DAMPs to regulate alloimmunity, but in the absence of DAMPs acquire tolerogenic properties to promote allotolerance. With respect to this scenario, proposals are then made for leveraging RCD and DAMPs as biomarkers during normothermic regional perfusion (NRP) and normothermic machine perfusion (NMP) of transplant organs from DCD donors, a strategy poised to significantly enhance current policies for assessing donor organ quality. The focus is then on the ambitious goal to target RCD and DAMPs therapeutically during NRP and NMP, aiming to profoundly suppress subsequently early allograft inflammation and alloimmunity in the recipient. This strategic approach seeks to prevent the activation of intragraft innate immune cells including DCs during donor organ reperfusion in the recipient, which is driven by ischemia/reperfusion injury-induced DAMPs. In this context, available inhibitors of various types of RCD, as well as scavengers and inhibitors of DAMPs are highlighted for their promising therapeutic potential in NRP and NMP settings, building on their proven efficacy in other experimental disease models. If successful, this kind of therapeutic intervention should also be considered for application to organs from DBD donors. Finally, drawing on current global insights into the critical role of RCD and DAMPs in driving innate inflammatory and (allo)immune responses, targeting their inhibition and/or prevention during normothermic perfusion of transplant organs from DCD donors - and potentially DBD donors - holds the transformative potential to not only alleviate transplant dysfunction and suppress allograft rejection but also foster allograft tolerance.
Collapse
Affiliation(s)
- Walter G. Land
- German Academy for Transplantation Medicine, Munich, Germany
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France
- Department of Integrated Medical Sciences, Medical Science Faculty, State University of Rio De Janeiro, Cabo Frio, Brazil
| | - Andreas Linkermann
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
6
|
Li X, Yang L, Kang X, Wang G, Yuan Y, Yang H, Yang T, Wang Z. TAK-242 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TLR4/NF-κB pathway in rat experimental autoimmune neuritis. Int Immunopharmacol 2025; 153:114429. [PMID: 40112603 DOI: 10.1016/j.intimp.2025.114429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/10/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
The inhibition of the TLR4 receptor has been shown to protect neural structure and improve neurological functions in peripheral nervous system (PNS) diseases. There is a scarcity of research regarding the effect of inflammasomes during the process of neuroinflammation in immune related PNS disorders, such as, Guillain-Barré syndrome (GBS), even though it is an essential part for pathophysiology from immunological diseases that impact central nervous system (CNS). In this investigation, we found that TLR4 expression and formation and activation of the NLRP3 inflammasome were increased in the sciatic nerve of experimental autoimmune neuritis (EAN). Further intraperitoneal injection of the selective TLR4 receptor inhibitor TAK-242 (Resatorvid) showed that TAK-242 not only stopped the advancement of EAN to a certain extent, but also alleviated peripheral nerve injury brought on by EAN, as evidenced by improvements in body weight loss, neurological function scores, and nerve conduction deficits. More importantly, TAK-242 effectively inhibited neuroinflammation in EAN rats, mitigated myelin loss and helped the regeneration and repair of EAN peripheral nerve injury, mainly through suppressing TLR4/NF-κB signaling pathway and decreasing NLRP3 inflammasome activation. Based on these findings, administration of TAK-242 can be used as a potential therapy approach for GBS.
Collapse
Affiliation(s)
- Xiaocong Li
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Liping Yang
- Ningxia Medical University, Yinchuan 750004, China
| | - Xue Kang
- Ningxia Medical University, Yinchuan 750004, China
| | - Guowei Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanping Yuan
- Ningxia Medical University, Yinchuan 750004, China
| | - Huan Yang
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Tingting Yang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, China; Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia, Yinchuan 750004, China
| | - Zhenhai Wang
- General Hospital of Ningxia Medical University, Yinchuan 750004, China; Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, China; Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia, Yinchuan 750004, China.
| |
Collapse
|
7
|
Tian Q, Guo H, Zhang M, Jiang K, Hu F, Xu Y, Wan L, Zhou X, Pan Y, Liu W, Jiang CY. NETs activate the GAS6-AXL-NLRP3 axis in macrophages to drive morphine tolerance. Cell Commun Signal 2025; 23:181. [PMID: 40217343 PMCID: PMC11992818 DOI: 10.1186/s12964-025-02181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The development of morphine tolerance presents a major clinical challenge in the effective management of severe pain. This study aims to explore the mechanisms underlying morphine tolerance from a novel perspective, with the ultimate goal of uncovering new insights and identifying promising therapeutic targets for its treatment. METHODS C57BL/6J mice were used in the tail-flick test to evaluate morphine tolerance. Neutrophils derived from mouse bone marrow were employed to investigate the mechanisms underlying morphine-induced NETs formation. Bone marrow-derived macrophages (BMDMs) were harvested from the femur and tibia to study the role of NETs-induced inflammation in analgesic tolerance. Proinflammatory cytokines were measured using Western blotting and real-time PCR. The levels of NETs and the TLR7/9-NLRP3-related signaling pathway were assessed through Western blotting, real-time PCR, and ELISA. Confocal laser scanning microscopy was utilized to visualize NETs in the dorsal root ganglion (DRG) and in cells. RESULTS Our experiments demonstrated that the levels of NETs in the plasma of patients using morphine for analgesia, as well as in morphine-tolerant animals, were significantly elevated. Genetic elimination of Pad4, neutrophil depletion, and treatment with DNase 1 and RNase A to disrupt NETs formation all effectively alleviated morphine tolerance. These findings indicate that NETs play a critical role in the development of morphine tolerance. Mechanistically, we discovered that morphine-induced NETs can be engulfed by macrophages through the GAS6-AXL axis, which subsequently triggers the activation of the TLR7/TLR9-mediated NLRP3 inflammasome, leading to significantly increased levels of IL-1β and IL-18, and ultimately contributing to tolerance. Deletion of Axl, Gas6, or Nlrp3 each significantly improved morphine tolerance. Furthermore, in the murine model, treatment with the IL-1 receptor antagonist anakinra and the IL-18 decoy receptor IL-18BP prevented the development of morphine tolerance. CONCLUSIONS This study identifies morphine-induced NETs as a key contributor to morphine tolerance, with the GAS6-AXL-TLR7/9 axis emerging as a potential therapeutic target. Strategies focused on disrupting NETs and modulating this axis may offer a promising approach to combat morphine tolerance.
Collapse
Affiliation(s)
- Qingyan Tian
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Haiyue Guo
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Mengyao Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Kunmao Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Fan Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yan Xu
- Department of Pain, The First People's Hospital of Changzhou, Soochow University, Changzhou, Jiangsu, China
| | - Li Wan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaokai Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangning District, Nanjing, Jiangsu, 210029, China
| | - Yinbing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangning District, Nanjing, Jiangsu, 210029, China.
| | - Wentao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Chun-Yi Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
8
|
Skjølberg C, Degani L, Sileikaite-Morvaközi I, Hawkins CL. Oxidative modification of extracellular histones by hypochlorous acid modulates their ability to induce β-cell dysfunction. Free Radic Biol Med 2025; 230:209-221. [PMID: 39956473 DOI: 10.1016/j.freeradbiomed.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
Histones are nuclear proteins that play a key role in chromatin assembly and regulation of gene expression by their ability to bind to DNA. Histones can also be released from cells owing to necrosis or extracellular trap release from neutrophils (NETs) and other immune cells. The presence of histones in the extracellular environment has implications for many pathologies, including diabetes mellitus, owing to the cytotoxic nature of these proteins, and their ability to promote inflammation. NETs also contain myeloperoxidase, a defensive enzyme that produces hypochlorous acid (HOCl), to kill pathogens, but also readily damages host proteins. In this study, we examined the reactivity of histones with and without HOCl modification, with a pancreatic β-cell model. Exposure of β-cells to histones resulted in a loss of metabolic activity and cell death by a combination of apoptosis and necrosis. This toxicity was increased on pretreatment of the β-cells with tumour necrosis factor α and interleukin 1β. Histones upregulated endoplasmic reticulum (ER) stress genes, including the pro-apoptotic transcription factor CHOP. There was also evidence for alterations to the cellular redox environment and upregulation of antioxidant gene expression. However, downregulation of insulin-associated genes and insulin was observed. Interestingly, modification of the histones with HOCl reduced their toxicity and altered the patterns of gene expression observed, and a further decrease in the expression of insulin-associated genes was observed. These findings could be relevant to the development of Type 2 diabetes, where low-grade inflammation favours NET release, resulting in elevated histones in the circulation.
Collapse
Affiliation(s)
- Clara Skjølberg
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Laura Degani
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Inga Sileikaite-Morvaközi
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
9
|
Zalghout S, Martinod K. Therapeutic potential of DNases in immunothrombosis: promising succor or uncertain future? J Thromb Haemost 2025; 23:760-778. [PMID: 39667687 DOI: 10.1016/j.jtha.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Sepsis, a life-threatening condition characterized by systemic inflammation and multiorgan dysfunction, is closely associated with the excessive formation of neutrophil extracellular traps (NETs) and the release of cell-free DNA. Both play a central role in sepsis progression, acting as major contributors to immunothrombosis and associated complications. Endogenous DNases play a pivotal role in degrading NETs and cell-free DNA, yet their activity is often dysregulated during thrombotic disease. Although exogenous DNase1 administration has shown potential in reducing NET burden and mitigating the detrimental effects of immunothrombosis, its therapeutic efficacy upon intravenous administration remains uncertain. The development of engineered DNase formulations and combination therapies may further enhance its therapeutic effectiveness by modifying its pharmacodynamic properties and avoiding the adverse effects associated with NET degradation, respectively. Although NETs are well-established targets of DNase1, it remains uncertain whether the positive effects of DNase1 on immunothrombosis are exclusively related to it's targeting of NETs or if other components contributing to immunothrombosis are also affected. This review examines the endogenous regulation of NETs in circulation and the therapeutic potential of DNases in immunothrombosis, underscoring the necessity for further investigation to optimize their clinical application.
Collapse
Affiliation(s)
- Sara Zalghout
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
10
|
Xia B, Shaheen N, Chen H, Zhao J, Guo P, Zhao Y. RNA aptamer-mediated RNA nanotechnology for potential treatment of cardiopulmonary diseases. Pharmacol Res 2025; 213:107659. [PMID: 39978660 DOI: 10.1016/j.phrs.2025.107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/14/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Ribonucleic acid (RNA) aptamers are single-stranded RNAs that bind to target proteins or other molecules with high specificity and affinity, modulating biological functions through distinct mechanisms. These aptamers can act n as antagonists to block pathological interactions, agonists to activate signaling pathways, or delivery vehicles for therapeutic cargos such as siRNAs and miRNAs. The advances in RNA nanotechnology further enhances the versatility of RNA aptamers, offering scalable platforms for engineering. In this review, we have summarized recent developments in RNA aptamer-mediated RNA nanotechnology and provide an overview of its potential in treating cardiovascular and respiratory disorders, including atherosclerosis, acute coronary syndromes, heart failure, lung cancer, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), acute lung injury, viral respiratory infections, and pulmonary fibrosis. By integrating aptamer technologies with innovative delivery systems, RNA aptamers hold the potential to revolutionize the treatment landscape for cardiopulmonary diseases.
Collapse
Affiliation(s)
- Boyu Xia
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Nargis Shaheen
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Huilong Chen
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Zhang S, Wen Q, Su S, Wang Y, Wang J, Xie N, Zhu W, Wen X, Di L, Lu Y, Xu M, Wang M, Chen H, Duo J, Huang Y, Wan D, Tao Z, Zhao S, Chai G, Hao J, Da Y. Peripheral immune profiling highlights a dynamic role of low-density granulocytes in myasthenia gravis. J Autoimmun 2025; 152:103395. [PMID: 40043622 DOI: 10.1016/j.jaut.2025.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune neuromuscular disease marked by dysregulation of several immune cell populations. Here we explored peripheral immune landscape, particularly the role of low-density granulocytes (LDGs). METHODS Single-cell and bulk RNA sequencing analyzed peripheral immune cells from MG patients pre- (n = 4) and after treatment (n = 2), as well as healthy controls (n = 3). Flow cytometry was employed for validating LDG subsets, and various functional assays were conducted to assess their impact on T cell proliferation and differentiation, NET formation, and ROS production. RESULTS Single-cell analysis highlighted a shift towards inflammatory Th1/Th17/Tfh subsets, an intense interferon-mediated immune response, and an expansion of immature myeloid subsets in MG. Flow cytometry showed increased LDGs correlated with disease severity. Unlike myeloid-derived suppressor cells, MG LDGs do not restrict T cell proliferation but induce a pro-inflammatory Th1/Th17 response. They also display enhanced spontaneous neutrophil extracellular traps (NETs) formation and basal reactive oxygen species (ROS) production. LDGs decreased after intravenous immunoglobulin and increased after prolonged immunotherapy in minimal manifestation status (MM), with reduced pro-inflammatory activity. Bulk RNA sequencing revealed significant transcriptional differences in LDGs, especially in cell cycle and granule protein genes. CONCLUSION Peripheral immune profiling sheds light on the intricate role of LDGs in MG. These cells, as a distinct subtype of neutrophils with a proinflammatory phenotype, are notable increased in MG, exacerbating chronic inflammation. Furthermore, immunotherapy expanded LDGs but reduced their proinflammatory capacities. The complex interplay of LDGs in MG underscores their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shengyao Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaye Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingsi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Nairong Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Di
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hai Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianying Duo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongshan Wan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Tao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shufang Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guoliang Chai
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Manikanta K, NaveenKumar SK, Hemshekhar M, Thushara RM, Mugesh G, Kemparaju K, Girish KS. Quercetin inhibits platelet activation and ER-stress mediated autophagy in response to extracellular histone. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156386. [PMID: 39842372 DOI: 10.1016/j.phymed.2025.156386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Cellular histones are DNA-binding nuclear proteins involved in chromatin remodelling and regulation of gene expression. However, extracellular histones act as damage-associated molecular patterns (DAMPs) and contribute to multiorgan damage in conditions with sepsis and diseases with acute critical illnesses. Alongside, histones are associated with thrombocytopenia due to dysfunctional platelets that regulate hemostasis and thrombosis. There is no drug available to prevent histone-induced platelet toxicity. Therefore, we for the first time examined quercetin (QUE) as a novel therapeutic to protect histone-induced platelet toxicity. PURPOSE To delineate how histones induce platelet toxicity and investigate the protective efficacy of quercetin (QUE), a natural dietary phytochemical. STUDY DESIGN/METHOD Histone-treated platelets were evaluated for platelet aggregation/activation markers, various autophagy-related signaling proteins, and cytotoxicity in vitro. For the inhibition study, QUE and other standard inhibitors were pre-treated before stimulation with histones. Further, we injected histones into mice in the presence or absence of QUE and evaluated the tail bleeding, lung toxicity, and circulatory platelet stress markers. Additionally, QUE-treated mice were challenged for histone-primed Collagen-epinephrine-induced pulmonary thromboembolism. RESULT Extracellular histones induce platelet activation and aggregation by interacting with sialic acid in TLR1/2 or TLR4. Also, we have demonstrated for the first time that histones induce ER stress-mediated autophagy in platelets. QUE inhibited histone-induced platelet activation, aggregation, and ER-stress-mediated autophagy in response to histone treatment. Ex vivo experiments indicate that oral administration of QUE can safeguard platelets while concurrently mitigating their response to histone stimulation. In addition, quercetin increased the survival rates of histone-primed, collagen-epinephrine-induced acute pulmonary thromboembolism in mice. CONCLUSION In summary, this study demonstrated the beneficial effect of QUE in protecting platelets with possible implications for addressing histone-accelerated pathologies.
Collapse
Affiliation(s)
- Kurnegala Manikanta
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Somanathapura K NaveenKumar
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India; Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Mahadevappa Hemshekhar
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Ram M Thushara
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Kesturu S Girish
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572103, India.
| |
Collapse
|
13
|
Cao W, Huang L, Yu H, Qian Y, Liu L, Xu M, Li S, Zhou H, Li F. Calycosin extracted from Astragali Radix reduces NETs formation to improve renal fibrosis via TLR4/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119391. [PMID: 39855434 DOI: 10.1016/j.jep.2025.119391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/20/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragali Radix (A. Radix) is the dry root of the leguminous plants Astragalus membranaceus (Fisch) Beg. var. mongholicus (Beg) Hsiao, and Astragalus membranaceus (Fisch) Bge., being used as a medicinal and edible resource. AR is used in traditional Chinese medicine prescriptions to treat chronic nephritis. Calycosin (CA), the primary active compound derived from Astragali Radix, shows significant antifibrotic effects in multiple organs, but the anti-renal fibrosis effect of CA is rarely reported, and the associated mechanism of action is still need to be elucidated. AIM OF THE STUDY The objective of this study was to investigate the protective effects of CA on the kidney against renal fibrosis and the underlying molecular mechanisms. Evaluation of the effects of CA on renal fibrosis using unilateral ureteral obstruction (UUO) mice and transforming growth factor β1 (TGF β1)-induced cell fibrosis. The mechanism of action supporting the investigated anti-renal fibrosis effects were studied by a series of biochemical experiments. RESULTS Our research demonstrated that CA reduced kidney cell fibrosis in mice with UUO and in TGF-β1-stimulated NRK-52E cells. Additionally, CA mitigated renal fibrosis via toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) and had a synergistic effect with resatorvid (TAK-242). Our findings revealed an unobserved impact of CA in inhibiting neutrophil extracellular traps (NETs) formation in UUO mice and neutrophils activated by phorbol 12-myristate 13-acetate. CONCLUSIONS Our findings revealed that calycosin reduces NETs production to alleviate renal fibrosis via TLR4 and NF-κB, supporting its potential as a strategy for treating renal fibrosis.
Collapse
Affiliation(s)
- Wenjie Cao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Linsheng Huang
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Shiyan, 442000, China
| | - Huifan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China; Institute of Biomedicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Yongshuai Qian
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Li Liu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Mao Xu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Siyi Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Fei Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
14
|
Henao MA, Cortes I, Isaza JP. In Silico Discovery of Antigenic-Secreted Proteins to Diagnostic Human Toxocariasis. Acta Parasitol 2025; 70:54. [PMID: 39918631 PMCID: PMC11805878 DOI: 10.1007/s11686-024-00966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND Human toxocariasis is a helminthic zoonosis caused by infection of Toxocara canis or T. cati. Humans can be infected by through ingestion of embryonated eggs from contaminated water, food or soil. Diagnosis is challenging, immunodiagnosis tests are commonly implemented with major pitfalls in the cross-reactivity with other pathogens, particularly in endemic areas. METHODS With the aim of identify species-specific genes encoding for highly expressed antigenic proteins, a list of parasites that may infect humans and that might present similar clinical symptoms to T. canis infections was built. Only organisms whose genomes were completely sequenced and the proteome predicted were included. First, orthologous proteins were detected and the subcellular localization of T. canis proteins was predicted. In order to identify differentially expressed genes encoding proteins in larvae L3, pair-wise comparisons among transcriptomes from body parts and genders were performed. Finally, all secreted proteins classified as species-specific of T. canis, whose genes were upregulated in larvae L3 were included in an antigenic prediction. RESULTS Twenty-eight parasites were included in the analyses, proteins of T. canis were clustered in 11,399 groups, however, 279 were species-specific groups which represent 816 proteins. Three hundred and twenty-two proteins were predicted to be secreted and upregulated in larvae L3, however, after filtering these proteins by their orthology inference, only three proteins met all the features included in this study (species-specific, upregulated, secreted, and antigenic potential). To conclude, our strategy in the study is a rational approach for discovering antigenic proteins to be used in diagnosis.
Collapse
Affiliation(s)
- María A Henao
- Facultad de Medicina, Grupo Biología de Sistema, Universidad Pontificia Bolivariana, Circular 1a 70-01, Build 11C - 417, Medellín, Colombia
| | - Isabella Cortes
- Facultad de Medicina, Grupo Biología de Sistema, Universidad Pontificia Bolivariana, Circular 1a 70-01, Build 11C - 417, Medellín, Colombia
| | - Juan P Isaza
- Facultad de Medicina, Grupo Biología de Sistema, Universidad Pontificia Bolivariana, Circular 1a 70-01, Build 11C - 417, Medellín, Colombia.
| |
Collapse
|
15
|
Retter A, Singer M, Annane D. "The NET effect": Neutrophil extracellular traps-a potential key component of the dysregulated host immune response in sepsis. Crit Care 2025; 29:59. [PMID: 39905519 PMCID: PMC11796136 DOI: 10.1186/s13054-025-05283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
Neutrophils release neutrophil extracellular traps (NETs) as part of a healthy host immune response. NETs physically trap and kill pathogens as well as activating and facilitating crosstalk between immune cells and complement. Excessive or inadequately resolved NETs are implicated in the underlying pathophysiology of sepsis and other inflammatory diseases, including amplification of the inflammatory response and inducing thrombotic complications. Here, we review the growing evidence implicating neutrophils and NETs as central players in the dysregulated host immune response. We discuss potential strategies for modifying NETs to improve patient outcomes and the need for careful patient selection.
Collapse
Affiliation(s)
- Andrew Retter
- Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK.
- School of Immunology and Microbial Sciences, King's College, London, UK.
- Volition, London, UK.
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Djillali Annane
- Department of Intensive Care, Raymond Poincaré Hospital, APHP University Versailles Saint Quentin-University Paris Saclay, INSERM, Garches, France
- IHU PROMETHEUS, Comprehensive Sepsis Center, Garches, France
- University Versailles Saint Quentin-University Paris Saclay, INSERM, Garches, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), Garches, France
| |
Collapse
|
16
|
Singh B, Fredriksson Sundbom M, Muthukrishnan U, Natarajan B, Stransky S, Görgens A, Nordin JZ, Wiklander OPB, Sandblad L, Sidoli S, El Andaloussi S, Haney M, Gilthorpe JD. Extracellular Histones as Exosome Membrane Proteins Regulated by Cell Stress. J Extracell Vesicles 2025; 14:e70042. [PMID: 39976275 PMCID: PMC11840699 DOI: 10.1002/jev2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/03/2024] [Accepted: 01/06/2025] [Indexed: 02/21/2025] Open
Abstract
Histones are conserved nuclear proteins that function as part of the nucleosome in the regulation of chromatin structure and gene expression. Interestingly, extracellular histones populate biofluids from healthy individuals, and when elevated, may contribute to various acute and chronic diseases. It is generally assumed that most extracellular histones exist as nucleosomes, as components of extracellular chromatin. We analysed cell culture models under normal and stressed conditions to identify pathways of histone secretion. We report that core and linker histones localize to extracellular vesicles (EVs) and are secreted via the multivesicular body/exosome pathway. Upregulation of EV histone secretion occurs in response to cellular stress, with enhanced vesicle secretion and a shift towards a population of smaller EVs. Most histones were membrane associated with the outer surface of EVs. Degradation of EV-DNA did not impact significantly on EV-histone association. Individual histones and histone octamers bound strongly to liposomes and EVs, but nucleosomes did not, showing histones do not require DNA for EV binding. Histones colocalized to tetraspanin positive EVs but using genetic or pharmacological intervention, we found that all known pathways of exosome biogenesis acted positively on histone secretion. Inhibition of autophagy and lysosomal degradation had a strong positive effect on EV histone release. Unexpectedly, EV-associated histones lacked the extensive post-translational modification of their nuclear counterparts, suggesting loss of PTMs may be involved in their trafficking or secretion. Our data does not support a significant role for EV-histones existing as nucleosomes. We show for the first time that histones are secreted from cells as membrane proteins via EVs/exosomes. This fundamental discovery provides support for further investigation of the biological activity of exosome associated histones and their role in disease.
Collapse
Affiliation(s)
- Birendra Singh
- Department of Diagnostics and Intervention, Anaesthesiology and Intensive CareUmeå UniversityUmeåSweden
| | | | - Uma Muthukrishnan
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
| | | | - Stephanie Stransky
- Department of BiochemistryAlbert Einstein College of MedicineBronxNew YorkUSA
| | - André Görgens
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstituteStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Joel Z. Nordin
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstituteStockholmSweden
| | - Oscar P. B. Wiklander
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstituteStockholmSweden
| | | | - Simone Sidoli
- Department of BiochemistryAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Samir El Andaloussi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstituteStockholmSweden
| | - Michael Haney
- Department of Diagnostics and Intervention, Anaesthesiology and Intensive CareUmeå UniversityUmeåSweden
| | | |
Collapse
|
17
|
Sun Y, Pu Z, Zhao H, Deng Y, Zhang J, Li S, Jiang Y, Sun M, Zhu J, Alam A, Ma D, Han R. Vitamin D can mitigate sepsis-associated neurodegeneration by inhibiting exogenous histone-induced pyroptosis and ferroptosis: Implications for brain protection and cognitive preservation. Brain Behav Immun 2025; 124:40-54. [PMID: 39566666 DOI: 10.1016/j.bbi.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Sepsis-induced neurodegeneration and cognitive dysfunction remain critical challenges worldwide. Vitamin D was reported to reduce neuronal injury and neurotoxicity and its deficiency was associated with neurocognitive disorders. This study investigates the mechanisms by which vitamin D exerts neuroprotective potential against damage-associated molecular patterns (DAMPs), specifically extracellular histones, in sepsis-related brain dysfunction. METHODS The cultured mouse hippocampal neuronal HT22 cells were exposed to 20 µg/ml exogenous histone for 24 h to induce pyroptosis and ferroptosis in the presence or absence of the active form of vitamin D, calcitriol (1 nM). A cecal ligation and puncture mouse sepsis model was used to evaluate histone release and pyroptosis/ferroptosis biomarkers in the brain together with neurobehavioral performance with or without calcitriol treatment (1 µg/kg, i.p. injection) at 24 h or 1 week after sepsis onset. RESULTS In vitro, histone exposure triggered both pyroptosis and ferroptosis in neuronal cells, which was significantly suppressed by calcitriol treatment with the reduced expression of caspase-1 by 38 %, GSDMD by 30 %, ACSL4 by 33 %, and the increased expression of GPX4 by 35 % (n = 6, P < 0.05). Similarly, in vivo, calcitriol treatment inhibited both neuronal pyroptosis and ferroptosis by reducing expression of pyroptosis marker, GSDMD/NeuN (11.6 ± 1.2 % vs. 19.4 ± 1.1 %) and increasing expression of ferroptosis marker, GPX4/NeuN (21.4 ± 1.7 % vs. 13.5 ± 1.1 %), in the brain of septic mice (n = 6, P < 0.01). In addition, calcitriol increased survival rate (72 % vs. 41 %) and ameliorated cognitive dysfunction of septic mice (n = 8-13, P < 0.05). CONCLUSIONS This study demonstrates that vitamin D exerts a neuroprotective effect against sepsis by attenuating histone-induced pyroptosis and ferroptosis. These findings highlight the potential therapeutic role of vitamin D supplementation in mitigating brain dysfunction associated with sepsis which needs for further investigation.
Collapse
Affiliation(s)
- Yibing Sun
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhuonan Pu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Yuxuan Deng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Jing Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Shiwei Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yingying Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Ming Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Jinpiao Zhu
- Perioperative and Systems Medicine Laboratory, Department of Anesthesiology and Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, PR China
| | - Azeem Alam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK; Perioperative and Systems Medicine Laboratory, Department of Anesthesiology and Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, PR China.
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
18
|
Wilton ZER, Jamus AN, Core SB, Frietze KM. Pathogenic and Protective Roles of Neutrophils in Chlamydia trachomatis Infection. Pathogens 2025; 14:112. [PMID: 40005489 PMCID: PMC11858174 DOI: 10.3390/pathogens14020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Chlamydia trachomatis (Ct) is an obligate intracellular pathogen that causes the most commonly diagnosed bacterial sexually transmitted infection (STI) and is a leading cause of preventable blindness globally. Ct infections can generate a strong pro-inflammatory immune response, leading to immune-mediated pathology in infected tissues. Neutrophils play an important role in mediating both pathology and protection during infection. Excessive neutrophil activation, migration, and survival are associated with host tissue damage during Chlamydia infections. In contrast, neutrophils also perform phagocytic killing of Chlamydia in the presence of IFN-γ and anti-Chlamydia antibodies. Neutrophil extracellular traps (NETs) and many neutrophil degranulation products have also demonstrated strong anti-Chlamydia functions. To counteract this neutrophil-mediated protection, Chlamydia has developed several evasion strategies. Various Chlamydia proteins can limit potentially protective neutrophil responses by directly targeting receptors present on the surface of neutrophils or neutrophil degranulation products. In this review, we provide a survey of current knowledge regarding the role of neutrophils in pathogenesis and protection, including the ways that Chlamydia circumvents neutrophil functions, and we propose critical areas for future research.
Collapse
Affiliation(s)
| | | | | | - Kathryn M. Frietze
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA
| |
Collapse
|
19
|
Grinat J, Shriever NP, Christophorou MA. Fantastic proteins and where to find them - histones, in the nucleus and beyond. J Cell Sci 2024; 137:jcs262071. [PMID: 39704565 PMCID: PMC11827605 DOI: 10.1242/jcs.262071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Animal genomes are packaged into chromatin, a highly dynamic macromolecular structure of DNA and histone proteins organised into nucleosomes. This accommodates packaging of lengthy genomic sequences within the physical confines of the nucleus while also enabling precise regulation of access to genetic information. However, histones existed before chromatin and have lesser-known functions beyond genome regulation. Most notably, histones are potent antimicrobial agents, and the release of chromatin to the extracellular space is a defence mechanism nearly as ancient and widespread as chromatin itself. Histone sequences have changed very little throughout evolution, suggesting the possibility that some of their 'non-canonical' functions are at play in parallel or in concert with their genome regulatory functions. In this Review, we take an evolutionary perspective of histone, nuclear chromatin and extracellular chromatin biology and describe the known extranuclear and extracellular functions of histones. We detail molecular mechanisms of chromatin release and extracellular chromatin sensing, and we discuss their roles in physiology and disease. Finally, we present evidence and give a perspective on the potential of extracellular histones to act as bioactive, cell modulatory factors.
Collapse
|
20
|
Jorge-Rosas F, Díaz-Godínez C, García-Aguirre S, Martínez-Calvillo S, Carrero JC. Entamoeba histolytica-induced NETs are highly cytotoxic on hepatic and colonic cells due to serine proteases and myeloperoxidase activities. Front Immunol 2024; 15:1493946. [PMID: 39687618 PMCID: PMC11646992 DOI: 10.3389/fimmu.2024.1493946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
During intestinal and liver invasion by the protozoan parasite Entamoeba histolytica, extensive tissue destruction linked to large neutrophil infiltrates is observed. It has been proposed that microbicidal components of neutrophils are responsible for the damage, however, the mechanism by which they are released and act in the extracellular space remains unknown. In previous studies, we have shown that E. histolytica trophozoites induce NET formation, leading to the release of neutrophil granule content into extruded DNA. In this work, we evaluate the possible participation of NETs in the development of amoeba-associated pathology and analyze the contribution of anti-microbial components of the associated granules. E. histolytica-induced NETs were isolated and their effect on the viability and integrity of HCT 116 colonic and Hep G2 liver cultures were evaluated. The results showed that simple incubation of cell monolayers with purified NETs for 24 h resulted in cell detachment and death in a dose-dependent manner. The effect was thermolabile and correlated with the amount of DNA and protein present in NETs. Pretreatment of NETs with specific inhibitors of some microbicidal components suggested that serine proteases, are mostly responsible for the damage caused by NETs on HCT 116 cells, while the MPO activity was the most related to Hep G2 cells damage. Our study also points to a very important role of DNA as a scaffold for the activity of these proteins. We show evidence of the development of NETs in amoebic liver abscesses in hamsters as a preamble to evaluate their participation in tissue damage. In conclusion, these studies demonstrate that amoebic-induced NETs have potent cytotoxic effects on target cells and, therefore, may be responsible for the intense damage associated with tissue invasion by this parasite.
Collapse
Affiliation(s)
- Fabian Jorge-Rosas
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - César Díaz-Godínez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Samuel García-Aguirre
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, EM, Mexico
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
21
|
Al-Aqtash R, Collier DM. Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism. Channels (Austin) 2024; 18:2355150. [PMID: 38762911 PMCID: PMC11110710 DOI: 10.1080/19336950.2024.2355150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.
Collapse
Affiliation(s)
- Rua’a Al-Aqtash
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel M. Collier
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
22
|
Dutta S, Zhu Y, Almuntashiri S, Somanath PR, Islam S, Zhi W, Ramírez G, Regino N, Leyva‐Zilli MJ, Muñoz‐Guido V, Jiménez‐Alvarez L, Cruz‐Lagunas A, Rodriguez‐Reyna TS, Zuñiga J, Wang X, Zhang D. The impact of circulating nucleosomes on inflammation in acute lung injury. FASEB J 2024; 38:e70214. [PMID: 39612188 PMCID: PMC11606509 DOI: 10.1096/fj.202401571rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Extracellular histones are released in two major forms: free histones and nucleosomes (DNA-bound histones). However, little distinction has been made between these two forms of circulating extracellular histones. Our study detected increased circulating nucleosomes in acute lung injury patients. Further, our group identified nucleosomes as the leading form of extracellular histones compared to free histones in the plasma of COVID-19 patients, underscoring the necessity to reassess the forms of circulating histones and nucleosome contributions to immunopathology. Functionally, nucleosomes activated macrophages and induced inflammation in different organs. Mechanistically, we observed nucleosomes activating the NF-κB signaling, while inhibition of NF-κB by sulfasalazine attenuated nucleosome-induced macrophage activation. Taken together, our study indicates that extracellular histones are predominantly released as nucleosomes, playing a critical role in the inflammation of the lungs and other organs.
Collapse
Affiliation(s)
- Saugata Dutta
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
| | - Shaheen Islam
- Division of Pulmonary, Critical Care & Sleep Medicine, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Gustavo Ramírez
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Nora Regino
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Tecnologico de MonterreySchool of Medicine and Health SciencesMexico CityMexico
| | - María Jose Leyva‐Zilli
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Tecnologico de MonterreySchool of Medicine and Health SciencesMexico CityMexico
| | - Victoria Muñoz‐Guido
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Tecnologico de MonterreySchool of Medicine and Health SciencesMexico CityMexico
| | - Luis Jiménez‐Alvarez
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Alfredo Cruz‐Lagunas
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Tatiana S. Rodriguez‐Reyna
- Department of Immunology and RheumatologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Joaquin Zuñiga
- Laboratory of Immunobiology and Genetics and Intensive Care UnitInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Tecnologico de MonterreySchool of Medicine and Health SciencesMexico CityMexico
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGeorgiaUSA
- Division of Pulmonary, Critical Care & Sleep Medicine, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| |
Collapse
|
23
|
Baryła M, Skrzycki M, Danielewicz R, Kosieradzki M, Struga M. Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review). Int J Mol Med 2024; 54:107. [PMID: 39370783 PMCID: PMC11448562 DOI: 10.3892/ijmm.2024.5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/31/2024] [Indexed: 10/08/2024] Open
Abstract
To meet the demand for kidney transplants (KTx), organs are frequently retrieved not only from standard criteria donors (SCD; a donor who is aged <50 years and suffered brain death from any number of causes, such as traumatic injuries or a stroke) but also from expanded criteria donors (any donor aged >60 years or donors aged >50 years with two of the following: A history of high blood pressure, a creatinine serum level ≥1.5 mg/dl or death resulting from a stroke). This comes at the cost of a higher risk of primary non‑function (the permanent hyperkalemia, hyperuremia and fluid overload that result in the need for continuous dialysis after KTx), delayed graft function (the need for dialysis session at least once during the first week after KTx), earlier graft loss and urinary complications (vesico‑ureteral reflux, obstruction of the vesico‑ureteral anastomosis, urine leakage). At present, there are no commercially available diagnostic tools for assessing kidney quality prior to KTx. Currently available predictive models based on clinical data, such as the Kidney Donor Profile Index, are insufficient. One promising option is the application of perfusion solutions for protein biomarkers of kidney quality and predictors of short‑ and long‑term outcomes. However, to date, protein markers that can be detected with ELISA, western blotting and cytotoxic assays have not been identified to be a beneficial predictors of kidney quality. These include lactate dehydrogenases, glutathione S‑transferases, fatty acid binding proteins, extracellular histones, IL‑18, neutrophil gelatinase‑associated lipocalin, MMPs and kidney injury molecule‑1. However, novel methods, including liquid chromatography‑mass spectrometry (LC‑MS) and microarrays, allow the analysis of all renal proteins suspended/dissolved in the acellular preservation solution used for kidney storage before KTx (including hypothermic machine perfusion as one of kidney storage methods) e.g. Belzer University of Wisconsin. Recent proteomic studies utilizing LC‑MS have identified complement pathway elements (C3, C1QB, C4BPA, C1S, C1R and C1RL), desmoplakin, blood coagulation pathway elements and immunoglobulin heavy variable 2‑26 to be novel predictors of kidney quality before transplantation. This was because they were found to correlate with estimated glomerular filtration rate at 3 and 12 months after kidney transplantation. However, further proteomic studies focusing on distinct markers obtained from hypothermic and normothermic machine perfusion are needed to confirm their predictive value and to improve kidney storage methods. Therefore, the present literature review from PubMed, Scopus, Embase and Web of Science was performed with the aims of summarizing the current knowledge on the most frequently studied single protein biomarkers. In addition, novel analytical methods and insights into organ injury during preservation were documented, where future directions in assessing organ quality before kidney transplantation were also discussed.
Collapse
Affiliation(s)
- Maksymilian Baryła
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Michał Skrzycki
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Roman Danielewicz
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Maciej Kosieradzki
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Marta Struga
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
24
|
Wu Y, Shen J. Unraveling the intricacies of neutrophil extracellular traps in inflammatory bowel disease: Pathways, biomarkers, and promising therapies. Cytokine Growth Factor Rev 2024; 80:156-167. [PMID: 39438227 DOI: 10.1016/j.cytogfr.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
The development of inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, involves various factors and is characterized by persistent inflammation of the mucosal lining. However, the role of neutrophils in this process remains controversial. Neutrophil extracellular traps (NETs), which consist of chromatin, antimicrobial proteins, and oxidative enzymes, are released by neutrophils to trap pathogens. They are also involved in various immune-mediated and vascular diseases. NETs act as a vital defense mechanisms at the gut-mucosal interface and are frequently exposed to bacterial, viral, and fungal threats. However, they can also contribute to inflammation and worsen imbalances in the gut bacteria. Recent studies have suggested that NETs have a significant impact on IBD development. Previous studies have shown increased levels of NETs in tissue and blood samples from patients with IBD, as well as in experimental colitis mouse models. Therefore, this review discusses how NETs are formed and their role in the pathophysiology of IBD. It discusses how NETs may lead to tissue damage and contribute to IBD-associated complications. Moreover, non-invasive biomarkers are needed to replace invasive procedures such as endoscopy to better evaluate the disease status. Given the crucial role of NETs in IBD progression, this review focuses on potential NET biomarkers that can help predict the evolution of IBD. Furthermore, this review identifies potential therapeutic targets for regulating NET production, which could expand the range of available treatment options for IBD.
Collapse
Affiliation(s)
- Yilin Wu
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai 200127, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China; Shanghai Institute of Digestive Disease, No.160 PuJian Road, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai 200127, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China; Shanghai Institute of Digestive Disease, No.160 PuJian Road, China.
| |
Collapse
|
25
|
Beauvieux A, Bourjea J, Fromentin JM, Jean C, Ciccione S, Ballorain K, Romero D, Dbouk Z, Hirschler A, Bertile F, Schull Q. Tracing troubles: Unveiling the hidden impact of inorganic contamination on juvenile green sea turtle. MARINE POLLUTION BULLETIN 2024; 208:117048. [PMID: 39368147 DOI: 10.1016/j.marpolbul.2024.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Human activities and climate change have negatively affected the world's oceans, leading to a decline of 30 to 60 % in coastal ecosystems' biodiversity and habitats. The projected increase in the human population to 9.7 billion by 2050 raises concerns about the sustainability of marine ecosystem conservation and exploitation. Marine turtles, as sentinel species, accumulate contaminants, including trace elements, due to their extensive migration and long-life span. However, there is a lack of data on the degree of contamination and their effects on marine turtles' health. This study focuses on assessing in-situ inorganic contamination in juvenile green sea turtles from La Réunion Island and its short-term impact on individual health, using conventional biomarkers and proteomics. The goals include examining contamination patterns in different tissues and identifying potential new biomarkers for long-term monitoring and conservation efforts. The study identified differential metal contamination between blood and scute samples, which could help illuminate temporal exposure to trace elements in turtle individuals. We also found that some conventional biomarkers were related to trace element exposure, while the proteome responded differently to various contaminant mixtures. Immune processes, cellular organization, and metabolism were impacted, indicating that contaminant mixtures in the wild would have an effect on turtle's health. Fifteen biomarker candidates associated with strong molecular responses of sea turtle to trace element contamination are proposed for future long-term monitoring. The findings emphasize the importance of using proteomic approaches to detect subtle physiological responses to contaminants in the wild and support the need for non-targeted analysis of trace elements in the biomonitoring of sea turtle health.
Collapse
Affiliation(s)
| | - Jérôme Bourjea
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | | | - Claire Jean
- Centre d'Etude et de Découverte des Tortues Marines (CEDTM) Saint-Leu, Reunion Island, France
| | - Stéphane Ciccione
- Centre d'Etude et de Découverte des Tortues Marines (CEDTM) Saint-Leu, Reunion Island, France
| | - Katia Ballorain
- Kélonia, The Marine Turtle Observatory of Reunion Island, 46 rue du Gal de Gaulle, Saint-Leu, Reunion Island, France
| | - Diego Romero
- Toxicology Department, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain
| | - Zahraa Dbouk
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, 67037, Strasbourg Cedex 2, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Aurélie Hirschler
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, 67037, Strasbourg Cedex 2, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, 67037, Strasbourg Cedex 2, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Quentin Schull
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| |
Collapse
|
26
|
Liang W, Bai Y, Zhang H, Mo Y, Li X, Huang J, Lei Y, Gao F, Dong M, Li S, Liang J. Identification and Analysis of Potential Biomarkers Associated with Neutrophil Extracellular Traps in Cervicitis. Biochem Genet 2024:10.1007/s10528-024-10919-x. [PMID: 39419909 DOI: 10.1007/s10528-024-10919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/14/2024] [Indexed: 10/19/2024]
Abstract
Early diagnosis of cervicitis is important. Previous studies have found that neutrophil extracellular traps (NETs) play pro-inflammatory and anti-inflammatory roles in many diseases, suggesting that they may be involved in the inflammation of the uterine cervix and NETs-related genes may serve as biomarkers of cervicitis. However, what NETs-related genes are associated with cervicitis remains to be determined. Transcriptome analysis was performed using samples of exfoliated cervical cells from 15 patients with cervicitis and 15 patients without cervicitis as the control group. First, the intersection of differentially expressed genes (DEGs) and neutrophil extracellular trap-related genes (NETRGs) were taken to obtain genes, followed by functional enrichment analysis. We obtained hub genes through two machine learning algorithms. We then performed Artificial Neural Network (ANN) and nomogram construction, confusion matrix, receiver operating characteristic (ROC), gene set enrichment analysis (GSEA), and immune cell infiltration analysis. Moreover, we constructed ceRNA network, mRNA-transcription factor (TF) network, and hub genes-drug network. We obtained 19 intersecting genes by intersecting 1398 DEGs and 136 NETRGs. 5 hub genes were obtained through 2 machine learning algorithms, namely PKM, ATG7, CTSG, RIPK3, and ENO1. Confusion matrix and ROC curve evaluation ANN model showed high accuracy and stability. A nomogram containing the 5 hub genes was established to assess the disease rate in patients. The correlation analysis revealed that the expression of ATG7 was synergistic with RIPK3. The GSEA showed that most of the hub genes were related to ECM receptor interactions. It was predicted that the ceRNA network contained 2 hub genes, 3 targeted miRNAs, and 27 targeted lnRNAs, and that 5 mRNAs were regulated by 28 TFs. In addition, 36 small molecule drugs that target hub genes may improve the treatment of cervicitis. In this study, five hub genes (PKM, ATG7, CTSG, RIPK3, ENO1) provided new directions for the diagnosis and treatment of patients with cervicitis.
Collapse
Affiliation(s)
- Wantao Liang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yanyuan Bai
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi, China
| | - Hua Zhang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yan Mo
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Xiufang Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Junming Huang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yangliu Lei
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Fangping Gao
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Mengmeng Dong
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Shan Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Juan Liang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China.
| |
Collapse
|
27
|
Bülow Anderberg S, Huckriede J, Hultström M, Larsson A, de Vries F, Lipcsey M, Nicolaes GAF, Frithiof R. Association of corticosteroid therapy with reduced acute kidney injury and lower NET markers in severe COVID-19: an observational study. Intensive Care Med Exp 2024; 12:85. [PMID: 39340756 PMCID: PMC11438749 DOI: 10.1186/s40635-024-00670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is common in critical cases of coronavirus disease 2019 (COVID-19) and associated with worse outcome. Dysregulated neutrophil extracellular trap (NET) formation is one of several suggested pathophysiological mechanisms involved in the development of COVID-19 associated AKI. The corticosteroid dexamethasone was implemented as a standard treatment for severe COVID-19 as of June 2020. A sub-analysis of a prospective observational single center study was performed to evaluate the effect of corticosteroid treatment on AKI development and NET markers in critical cases of COVID-19. RESULTS Two hundred and ten adult patients admitted to intensive care at a tertiary level hospital due to respiratory failure or shock secondary to SARS-CoV-2-infection between March 13th 2020 and January 14th 2021 were included in the study. Ninety-seven of those did not receive corticosteroids. One hundred and thirteen patients were treated with corticosteroids [dexamethasone (n = 98) or equivalent treatment (n = 15)], but the incidence of AKI was assessed only in patients that received corticosteroids before any registered renal dysfunction (n = 63). Corticosteroids were associated with a lower incidence of AKI (19% vs 55.8%, p < 0.001). Fewer patients demonstrated detectable concentrations of extracellular histones in plasma when treated with corticosteroids (8.7% vs 43.1%; p < 0.001). Extracellular histones and in particular non-proteolyzed histones were observed more frequently with increasing AKI severity (p < 0.001). MPO-DNA was found in lower concentrations in patients that received corticosteroids before established renal dysfunction (p = 0.03) and was found in higher concentrations in patients with AKI stage 3 (p = 0.03). Corticosteroids did not ameliorate established AKI during the first week of treatment. CONCLUSION Corticosteroid treatment in severe COVID-19 is associated with a lower incidence of AKI and reduced concentrations of NET markers in plasma.
Collapse
Affiliation(s)
- Sara Bülow Anderberg
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, 751 85, Uppsala, Sweden.
| | - Joram Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Michael Hultström
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, 751 85, Uppsala, Sweden
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Femke de Vries
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Miklos Lipcsey
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, 751 85, Uppsala, Sweden
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, 751 85, Uppsala, Sweden
- Uppsala Centre for Paediatric Anesthesia and Intensive Care Research, Uppsala, Sweden
| |
Collapse
|
28
|
Wu X, Li L, Jinhabure, Xiaofeng, Eerdunchaolu. Radix Sophorae Flavescentis of Sophora flavescens Aiton inhibits LPS-induced macrophage pro-inflammatory response via regulating CFHR2 expression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118210. [PMID: 38641074 DOI: 10.1016/j.jep.2024.118210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Long-term chronic inflammation often leads to chronic diseases. Although Sophora flavescens has been shown to have anti-inflammatory properties, its detailed molecular mechanism is still unknown. AIM OF STUDY This study investigated the effect of Radix Sophorae Flavescentis on the LPS-induced inflammatory response in macrophages. MATERIALS AND METHODS LPS was used to induce the peritoneal macrophages to simulate the inflammatory environment in vitro. Different concentrations of Radix Sophorae Flavescentis-containing (medicated) serum were used for intervention. The peritoneal macrophages were identified by using hematoxylin-eosin and immunofluorescence staining. ELISA was used to measure the TNF-α and IL-6 expression to determine the concentration of LPS. ELISA and Western blot (WB) were used to detect the PGE2 and CFHR2 expression in each group, respectively. The lentiviral vector for interference and overexpression of the CFHR2 gene was constructed, packaged, and transfected into LPS-induced macrophages. The transfection efficiency was verified by WB. Then, ELISA was used to detect the TNF-α, PGE2, and IL-6 expression. WB was used to detect the CFHR2, iNOS, COX-2, TLR2, TLR4, IFN-γ, STAT1, and p-STAT1 expression. RESULTS The primary isolated cells were identified as macrophages. The LPS-treated macrophages exhibited significantly higher expression of PGE2 and CFHR2, and the inflammatory factors TNF-α and IL-6, as well as iNOS, COX-2, TLR2, TLR4, IFN-γ, STAT1, and p-STAT1 expression compared with the control group (P < 0.05). The TNF-α, PGE2, and IL-6 levels, as well as CFHR2, iNOS, COX-2, TLR2, TLR4, IFN-γ, STAT1, and p-STAT1 expression were considerably lower in the LPS-induced+10% medicated-serum group, LPS-induced+20% medicated-serum group, and shCFHR interference group compared with the LPS group (P < 0.05). CONCLUSION Radix Sophorae Flavescentis might mediate CFHR2 expression and play an important role in inhibiting the LPS-induced pro-inflammatory response of macrophages. Radix Sophorae Flavescentis could be a potential treatment for LPS-induced related inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoying Wu
- Mongolian Medical College, Inner Mongolia Minzu University, Tongliao City, 028000, Inner Mongolia, PR China; Department of Mongolian Medicine, Liaoning Province Mongolian Medicine Hospital, Fuxin City, 123199, Liaoning, PR China.
| | - Li Li
- Second Department of Encephalopathy, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao City, 028007, Inner Mongolia, PR China.
| | - Jinhabure
- Medicated Bath Department, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao City, 028007, Inner Mongolia, PR China.
| | - Xiaofeng
- First Department of Encephalopathy, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao City, 028007, Inner Mongolia, PR China.
| | - Eerdunchaolu
- Mongolian Medical College, Inner Mongolia Minzu University, Tongliao City, 028000, Inner Mongolia, PR China.
| |
Collapse
|
29
|
Xv Y, Feng Y, Lin J. CXCR1 and CXCR2 are potential neutrophil extracellular trap-related treatment targets in ulcerative colitis: insights from Mendelian randomization, colocalization and transcriptomic analysis. Front Immunol 2024; 15:1425363. [PMID: 39328405 PMCID: PMC11424450 DOI: 10.3389/fimmu.2024.1425363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Objectives There is already substantial evidence indicating that neutrophil extracellular trap (NET) formation contributes to the inflammatory cascade in ulcerative colitis (UC). However, the precise regulatory mechanisms governing this process remain elusive. This study aimed to determine the role of NET-related genes in UC and reveal possible mechanisms. Methods Employing a two-sample MR methodology, we investigated the correlations between NET-associated genes (NRGs) and UC with summary data derived from a genome-wide association study (12,366 cases vs. 33,609 controls) and FinnGen (8,279 cases vs. 261,098 controls). The main analysis employed the inverse variance weighted method, supplemented by the MR-Egger method and weighted median method. Sensitivity analysis was conducted to rule out the interference of heterogeneity and pleiotropy among utilized instrument variables. The colocalization analysis was used to determine whether the identified NRGs and UC shared casual variants. Cross-tissue expression analysis was performed to characterize the expression patterns of target NRGs, while multi-gene correlation analysis and GSEA analysis were conducted to explore the mechanisms by which target NRGs promote UC and NET formation. Immunohistochemistry was used to validate the protein expression of target NRGs in the colon tissue of UC patients. Results After the validation of two datasets, seven NRGs were associated with the risk of UC. The higher expression of ITGB2 was associated with increased UC risk, while the expression of CXCR1, CXCR2, IRAK4, MAPK3, SIGLEC14, and SLC22A4 were inversely associated with UC risk. Colocalization analysis supported the correlation between CXCR1/2 and UC risk. Expression analysis indicated that CXCR1/2 were down-regulated in peripheral blood, but up-regulated in colon tissue. GSEA analysis and correlation analysis indicated that CXCR1/2 promoted UC and NET formation through neutrophil chemotaxis and PAD4-mediated pathways, separately. Immunohistochemical results confirmed the high expression of CXCR1/2 in colon tissues of UC patients. Conclusions Our study identified CXCR1/2 as candidate targets in UC among all NRGs through multi-method argumentation, providing new insights of the regulation mechanisms of NET formation in the pathogenesis of UC.
Collapse
Affiliation(s)
- Yichuan Xv
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyi Feng
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiang Lin
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Li Y, Sun Y, Zhang X, Wang D, Yang X, Wei H, Wang C, Shi Z, Li X, Zhang F, Sun W, Yang Z, Song Y, Qing G. Selective Clearance of Circulating Histones Based on Dodecapeptide-Grafted Copolymer Material for Sepsis Blood Purification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47110-47123. [PMID: 39189050 DOI: 10.1021/acsami.4c07494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Research indicates that circulating histones, as pathogenic factors, may represent a therapeutic target for sepsis. However, effectively clearing circulating histones poses a challenge due to their structural similarity to normal blood proteins, their low abundance in the bloodstream, and serious interference from other blood biomacromolecules. Here we design a dodecapeptide-based functional polymer that can selectively adsorb circulating histones from the blood. The peptide, named P1 (HNHHQLALVESY), was discovered through phage display screening and demonstrated a strong affinity for circulating histones while exhibiting negligible affinities for common proteins in the blood, such as human serum albumin (HSA), immunoglobulin G (IgG), and transferrin (TRF). Furthermore, the P1 peptide was incorporated into a functional polymer design, poly(PEGMA-co-P1), which was immobilized onto a silica gel surface through reversible addition-fragmentation chain transfer polymerization. The resulting material was characterized using solid nuclear magnetic resonance, thermogravimetric analysis, and X-ray photoelectron spectroscopy. This material demonstrated the ability to selectively and efficiently capture circulating histones from both model solutions and whole blood samples while also exhibiting satisfactory blood compatibility, good antifouling properties, and resistance to interference. Satisfactory binding affinity and efficient capture capacity toward histone were also observed for the other screened peptide P2 (QMSMDLFGSNFV)-grafted polymer, validating phage display as a reliable ligand screening strategy. These findings present an approach for the specific clearance of circulating histones and hold promise for future clinical applications in blood purification toward sepsis.
Collapse
Affiliation(s)
- Yan Li
- College of Pharmaceutical and Bioengineering, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yue Sun
- College of Pharmaceutical and Bioengineering, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaoyu Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dongdong Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xindi Yang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Haijie Wei
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Cunli Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zhenqiang Shi
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaonan Li
- Department of Spine Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P. R. China
| | - Fenglin Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Department of Spine Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P. R. China
| | - Wenjing Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zhiying Yang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanling Song
- College of Pharmaceutical and Bioengineering, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
31
|
Keulen GM, Huckriede J, Wichapong K, Nicolaes GAF. Histon activities in the extracellular environment: regulation and prothrombotic implications. Curr Opin Hematol 2024; 31:230-237. [PMID: 39087372 PMCID: PMC11296287 DOI: 10.1097/moh.0000000000000827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
PURPOSE OF REVIEW Thromboembolic complications are a major contributor to global mortality. The relationship between inflammation and coagulation pathways has become an emerging research topic where the role of the innate immune response, and specifically neutrophils in "immunothrombosis" are receiving much attention. This review aims to dissect the intricate interplay between histones (from neutrophils or cellular damage) and the haemostatic pathway, and to explore mechanisms that may counteract the potentially procoagulant effects of those histones that have escaped their nuclear localization. RECENT FINDINGS Extracellular histones exert procoagulant effects via endothelial damage, platelet activation, and direct interaction with coagulation proteins. Neutralization of histone activities can be achieved by complexation with physiological molecules, through pharmacological compounds, or via proteolytic degradation. Details of neutralization of extracellular histones are still being studied. SUMMARY Leveraging the understanding of extracellular histone neutralization will pave the way for development of novel pharmacological interventions to treat and prevent complications, including thromboembolism, in patients in whom extracellular histones contribute to their overall clinical status.
Collapse
Affiliation(s)
- Gwen M Keulen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
32
|
Yang T, Peng J, Zhang Z, Chen Y, Liu Z, Jiang L, Jin L, Han M, Su B, Li Y. Emerging therapeutic strategies targeting extracellular histones for critical and inflammatory diseases: an updated narrative review. Front Immunol 2024; 15:1438984. [PMID: 39206200 PMCID: PMC11349558 DOI: 10.3389/fimmu.2024.1438984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Extracellular histones are crucial damage-associated molecular patterns involved in the development and progression of multiple critical and inflammatory diseases, such as sepsis, pancreatitis, trauma, acute liver failure, acute respiratory distress syndrome, vasculitis and arthritis. During the past decade, the physiopathologic mechanisms of histone-mediated hyperinflammation, endothelial dysfunction, coagulation activation, neuroimmune injury and organ dysfunction in diseases have been systematically elucidated. Emerging preclinical evidence further shows that anti-histone strategies with either their neutralizers (heparin, heparinoids, nature plasma proteins, small anion molecules and nanomedicines, etc.) or extracorporeal blood purification techniques can significantly alleviate histone-induced deleterious effects, and thus improve the outcomes of histone-related critical and inflammatory animal models. However, a systemic evaluation of the efficacy and safety of these histone-targeting therapeutic strategies is currently lacking. In this review, we first update our latest understanding of the underlying molecular mechanisms of histone-induced hyperinflammation, endothelial dysfunction, coagulopathy, and organ dysfunction. Then, we summarize the latest advances in histone-targeting therapy strategies with heparin, anti-histone antibodies, histone-binding proteins or molecules, and histone-affinity hemoadsorption in pre-clinical studies. Finally, challenges and future perspectives for improving the clinical translation of histone-targeting therapeutic strategies are also discussed to promote better management of patients with histone-related diseases.
Collapse
Affiliation(s)
- Tinghang Yang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Peng
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Zhuyun Zhang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Chen
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Zhihui Liu
- Department of Rheumatology and Immunology, West China Hospital of Sichuan University, Chengdu, China
| | - Luojia Jiang
- Jiujiang City Key Laboratory of Cell Therapy, Department of Nephrology, Jiujiang No. 1 People’s Hospital, Jiujiang, China
| | - Lunqiang Jin
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Mei Han
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Baihai Su
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
- Med+ Biomaterial Institute of West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
- Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Yupei Li
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Shan Q, Wang X, Yang H, Zhu Y, Wang J, Yang G. Bacillus cereus CwpFM induces colonic tissue damage and inflammatory responses through oxidative stress and the NLRP3/NF-κB pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173079. [PMID: 38735331 DOI: 10.1016/j.scitotenv.2024.173079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/30/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Bacillus cereus (B. cereus) from cow milk poses a threat to public health, causing food poisoning and gastrointestinal disorders in humans. We identified CwpFM, an enterotoxin from B. cereus, caused oxidative stress and inflammatory responses in mouse colon and colonic epithelial cells. Colon proteomics revealed that CwpFM elevated proteins associated with inflammation and oxidative stress. Notably, CwpFM induced activation of the NLRP3/NF-κB signaling, but suppressed antioxidant NFE2L2/HO-1 expression in the intestine and epithelial cells. Consistently, CwpFM exposure led to cytotoxicity and ROS accumulation in Caco-2 cells in a dose-dependent manner. Further, NAC (ROS inhibitor) treatment abolished NLRP3/NF-κB activation due to CwpFM. Moreover, overexpression of Nfe2l2 or activation of NFE2L2 by NK-252 reduced ROS production and inhibited activation of the NLRP3/NF-κB pathway. Inhibition of NF-κB by ADPC and/or suppression of NLRP3 by MCC950 attenuated CwpFM-induced inflammatory responses in Caco-2 cells. Collectively, CwpFM induced oxidative stress and NLRP3/NF-κB activation by inhibiting the NFE2L2/HO-1 signaling and ROS accumulation, leading to the development of intestinal inflammation. Our data elucidate the role of oxidative stress and innate immunity in CwpFM enterotoxicity and contribute to developing diagnostic and therapeutic products for B. cereus-related food safety issues.
Collapse
Affiliation(s)
- Qiang Shan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Xue Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Hao Yang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Yaohong Zhu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jiufeng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China.
| | - Guiyan Yang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
34
|
Bezu L, Akçal Öksüz D, Bell M, Buggy D, Diaz-Cambronero O, Enlund M, Forget P, Gupta A, Hollmann MW, Ionescu D, Kirac I, Ma D, Mokini Z, Piegeler T, Pranzitelli G, Smith L, The EuroPeriscope Group. Perioperative Immunosuppressive Factors during Cancer Surgery: An Updated Review. Cancers (Basel) 2024; 16:2304. [PMID: 39001366 PMCID: PMC11240822 DOI: 10.3390/cancers16132304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Surgical excision of the primary tumor represents the most frequent and curative procedure for solid malignancies. Compelling evidence suggests that, despite its beneficial effects, surgery may impair immunosurveillance by triggering an immunosuppressive inflammatory stress response and favor recurrence by stimulating minimal residual disease. In addition, many factors interfere with the immune effectors before and after cancer procedures, such as malnutrition, anemia, or subsequent transfusion. Thus, the perioperative period plays a key role in determining oncological outcomes and represents a short phase to circumvent anesthetic and surgical deleterious factors by supporting the immune system through the use of synergistic pharmacological and non-pharmacological approaches. In line with this, accumulating studies indicate that anesthetic agents could drive both protumor or antitumor signaling pathways during or after cancer surgery. While preclinical investigations focusing on anesthetics' impact on the behavior of cancer cells are quite convincing, limited clinical trials studying the consequences on survival and recurrences remain inconclusive. Herein, we highlight the main factors occurring during the perioperative period of cancer surgery and their potential impact on immunomodulation and cancer progression. We also discuss patient management prior to and during surgery, taking into consideration the latest advances in the literature.
Collapse
Affiliation(s)
- Lucillia Bezu
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Département d'Anesthésie, Chirurgie et Interventionnel, Gustave Roussy, 94805 Villejuif, France
- U1138 Metabolism, Cancer and Immunity, Gustave Roussy, 94805 Villejuif, France
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Dilara Akçal Öksüz
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Clinic for Anesthesiology, Intensive Care, Emergency Medicine, Pain Therapy and Palliative Medicine, Marienhaus Klinikum Hetzelstift, 67434 Neustadt an der Weinstrasse, Germany
- ESAIC Mentorship Program, BE-1000 Brussels, Belgium
| | - Max Bell
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Perioperative Medicine and Intensive Care (PMI), Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17176 Stockholm, Sweden
| | - Donal Buggy
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Division of Anaesthesiology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland
- School of Medicine, University College, D04 V1W8 Dublin, Ireland
| | - Oscar Diaz-Cambronero
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology, Hospital Universitario y Politécnico la Fe, 46026 Valencia, Spain
- Perioperative Medicine Research, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
- Faculty of Medicine, Department of Surgery, University of Valencia, 46010 Valencia, Spain
| | - Mats Enlund
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Center for Clinical Research, Uppsala University, SE-72189 Västerås, Sweden
- Department of Anesthesia & Intensive Care, Västmanland Hospital, SE-72189 Västerås, Sweden
| | - Patrice Forget
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Aberdeen Centre for Arthritis and Musculoskeletal Health (Epidemiology Group), Institute of Applied Health Sciences, Epidemiology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZN, UK
- Department of Anaesthesia, NHS Grampian, University of Aberdeen, Aberdeen AB25 2ZN, UK
- Pain and Opioids after Surgery (PANDOS) ESAIC Research Group, European Society of Anaesthesiology and Intensive Care, 1000 Brussels, Belgium
- IMAGINE UR UM 103, Anesthesia Critical Care, Emergency and Pain Medicine Division, Nîmes University Hospital, Montpellier University, 30900 Nîmes, France
| | - Anil Gupta
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Physiology and Pharmacology, Karolinska Institute, 17176 Stockholm, Sweden
| | - Markus W Hollmann
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands
| | - Daniela Ionescu
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesia and Intensive Care, University of Medicine and Pharmacy "Iuliu Hatieganu", 400012 Cluj-Napoca, Romania
- Outcome Research Consortium, Cleveland, OH 44195, USA
| | - Iva Kirac
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Genetic Counselling Unit, University Hospital for Tumors, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Daqing Ma
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW10 9NH, UK
- Department of Anesthesiology, Perioperative and Systems Medicine Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zhirajr Mokini
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- ESAIC Mentorship Program, BE-1000 Brussels, Belgium
- Clinique du Pays de Seine, 77590 Bois le Roi, France
| | - Tobias Piegeler
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, 04275 Leipzig, Germany
| | - Giuseppe Pranzitelli
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, San Timoteo Hospital, 86039 Termoli, Italy
| | - Laura Smith
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anaesthesia, NHS Grampian, University of Aberdeen, Aberdeen AB25 2ZN, UK
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZN, UK
| | | |
Collapse
|
35
|
Su F, Moreau A, Savi M, Salvagno M, Annoni F, Zhao L, Xie K, Vincent JL, Taccone FS. Circulating Nucleosomes as a Novel Biomarker for Sepsis: A Scoping Review. Biomedicines 2024; 12:1385. [PMID: 39061959 PMCID: PMC11273886 DOI: 10.3390/biomedicines12071385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Circulating nucleosome levels are commonly elevated in physiological and pathological conditions. Their potential as biomarkers for diagnosing and prognosticating sepsis remains uncertain due, in part, to technical limitations in existing detection methods. This scoping review explores the possible role of nucleosome concentrations in the diagnosis, prognosis, and therapeutic management of sepsis. A comprehensive literature search of the Cochrane and Medline libraries from 1996 to 1 February 2024 identified 110 potentially eligible studies, of which 19 met the inclusion criteria, encompassing a total of 39 SIRS patients, 893 sepsis patients, 280 septic shock patients, 117 other ICU control patients, and 345 healthy volunteers. The enzyme-linked immunosorbent assay [ELISA] was the primary method of nucleosome measurement. Studies consistently reported significant correlations between nucleosome levels and other NET biomarkers. Nucleosome levels were higher in patients with sepsis than in healthy volunteers and associated with disease severity, as indicated by SOFA and APACHE II scores. Non-survivors had higher nucleosome levels than survivors. Circulating nucleosome levels, therefore, show promise as early markers of NETosis in sepsis, with moderate diagnostic accuracy and strong correlations with disease severity and prognosis. However, the available evidence is drawn mainly from single-center, observational studies with small sample sizes and varied detection methods, warranting further investigation.
Collapse
Affiliation(s)
- Fuhong Su
- Laboratoire de Recherche Experimentale des Soins Intensifs, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, 1070 Brussels, Belgium; (A.M.); (F.A.); (J.-L.V.); (F.S.T.)
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.S.); (M.S.)
| | - Anthony Moreau
- Laboratoire de Recherche Experimentale des Soins Intensifs, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, 1070 Brussels, Belgium; (A.M.); (F.A.); (J.-L.V.); (F.S.T.)
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.S.); (M.S.)
| | - Marzia Savi
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.S.); (M.S.)
- Department of Anesthesiology and Intensive Care, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.S.); (M.S.)
| | - Filippo Annoni
- Laboratoire de Recherche Experimentale des Soins Intensifs, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, 1070 Brussels, Belgium; (A.M.); (F.A.); (J.-L.V.); (F.S.T.)
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.S.); (M.S.)
| | - Lina Zhao
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China; (L.Z.); (K.X.)
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China; (L.Z.); (K.X.)
| | - Jean-Louis Vincent
- Laboratoire de Recherche Experimentale des Soins Intensifs, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, 1070 Brussels, Belgium; (A.M.); (F.A.); (J.-L.V.); (F.S.T.)
| | - Fabio Silvio Taccone
- Laboratoire de Recherche Experimentale des Soins Intensifs, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, 1070 Brussels, Belgium; (A.M.); (F.A.); (J.-L.V.); (F.S.T.)
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.S.); (M.S.)
| |
Collapse
|
36
|
Rivera-Concha R, León M, Prado-Sanhueza A, Sánchez R, Taubert A, Hermosilla C, Uribe P, Zambrano F. Cytotoxic Oxidative Stress Effects of Neutrophil Extracellular Traps' Components on Cattle Spermatozoa. Antioxidants (Basel) 2024; 13:733. [PMID: 38929172 PMCID: PMC11200964 DOI: 10.3390/antiox13060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bovine spermatozoa are highly susceptible to oxidative stress (OS), and it is known to affect their cellular functions. The main leukocyte producers of reactive oxygen species (ROS) in mammalian semen are polymorphonuclear neutrophils (PMN). PMN activation can result in the formation of neutrophil extracellular traps (NETs), which have been shown to affect the motility and function of spermatozoa. However, OS effects on bull spermatozoa derived from individual NETs components have not been investigated. The hypothesis of this study was that specific NETs components might generate OS on bull spermatozoa. Bovine sperm cells were incubated with five NETs-associated molecules, including 30 μg/mL histone 2A (H2A), neutrophil elastase (NE), 1 μg/mL myeloperoxidase (MPO), cathepsin G (Cat-G), and cathelicidin LL37 (LL-37), for a time course ranging from 15 to 240 min. Fluorescence microscopy was used to evaluate the coincubation of bovine PMN and sperm cells. Within 15 min, H2A, NE, and LL-37 caused membrane disruption, while MPO and Cat-G caused OS on bull spermatozoa after 1 h of coincubation. NET formation was observed within 15 min of coincubation in co-cultures of bovine PMN/sperm cells. This study is the first to report on the role of cytotoxic OS effects caused by NETs-derived components in bovine sperm in vitro.
Collapse
Affiliation(s)
- Rodrigo Rivera-Concha
- Center of Excellence in Translational Medicine—Scientific and Technological Bioresource Nucleus (CEMT—BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.R.-C.); (M.L.); (A.P.-S.); (R.S.); (P.U.)
- Ph.D. Program in Medical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marion León
- Center of Excellence in Translational Medicine—Scientific and Technological Bioresource Nucleus (CEMT—BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.R.-C.); (M.L.); (A.P.-S.); (R.S.); (P.U.)
| | - Aurora Prado-Sanhueza
- Center of Excellence in Translational Medicine—Scientific and Technological Bioresource Nucleus (CEMT—BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.R.-C.); (M.L.); (A.P.-S.); (R.S.); (P.U.)
- Ph.D. Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Raúl Sánchez
- Center of Excellence in Translational Medicine—Scientific and Technological Bioresource Nucleus (CEMT—BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.R.-C.); (M.L.); (A.P.-S.); (R.S.); (P.U.)
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (A.T.); (C.H.)
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (A.T.); (C.H.)
| | - Pamela Uribe
- Center of Excellence in Translational Medicine—Scientific and Technological Bioresource Nucleus (CEMT—BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.R.-C.); (M.L.); (A.P.-S.); (R.S.); (P.U.)
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Fabiola Zambrano
- Center of Excellence in Translational Medicine—Scientific and Technological Bioresource Nucleus (CEMT—BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.R.-C.); (M.L.); (A.P.-S.); (R.S.); (P.U.)
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
37
|
Saravanan PB, Kalivarathan J, McClintock K, Mohammed S, Burch E, Morecock C, Liu J, Khan A, Levy MF, Kanak MA. Inflammatory and hypoxic stress-induced islet exosomes released during isolation are associated with poor transplant outcomes in islet autotransplantation. Am J Transplant 2024; 24:967-982. [PMID: 38364959 DOI: 10.1016/j.ajt.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/03/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Islets experience enormous stress during the isolation process, leading to suboptimal endocrine function after total pancreatectomy with islet autotransplantation (TPIAT). Our investigation focused on inducing isolation stress in islets ex vivo, where proinflammatory cytokines and hypoxia prompted the release of stress exosomes (exoS) sized between 50 and 200 nm. Mass spectrometry analysis revealed 3 distinct subgroups of immunogenic proteins within these exoS: damage-associated molecular patterns (DAMPs), chaperones, and autoantigens. The involvement of endosomal-sorting complex required for transport proteins including ras-associated binding proteins7A, ras-associated binding protein GGTA, vacuolar protein sorting associated protein 45, vacuolar protein sorting associated protein 26B, and the tetraspanins CD9 and CD63, in exoS biogenesis was confirmed through immunoblotting. Next, we isolated similar exoS from the islet infusion bags of TPIAT recipients (N = 20). The exosomes from infusion bags exhibited higher DAMP (heat shock protein family A [Hsp70] member 1B and histone H2B) levels, particularly in the insulin-dependent TPIAT group. Additionally, elevated DAMP protein levels in islet infusion bag exosomes correlated with increased insulin requirements (P = .010) and higher hemoglobin A1c levels 1-year posttransplant. A deeper exploration into exoS functionality revealed their potential to activate monocytes via the toll-like receptor 3/7: DAMP axis. This stimulation resulted in the induction of inflammatory phenotypes marked by increased levels of CD68, CD80, inducible nitric oxide synthase, and cyclooxygenase-2. This activation mechanism may impact the successful engraftment of transplanted islets.
Collapse
Affiliation(s)
- Prathab Balaji Saravanan
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA.
| | - Jagan Kalivarathan
- VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Kaeden McClintock
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA
| | | | - Elijah Burch
- VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Christiane Morecock
- Department of Biostatistics, School of Medicine, VCU, Richmond, Virginia, USA
| | - Jinze Liu
- Department of Biostatistics, School of Medicine, VCU, Richmond, Virginia, USA
| | - Aamir Khan
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Marlon F Levy
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Mazhar A Kanak
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| |
Collapse
|
38
|
Aslanian-Kalkhoran L, Mehdizadeh A, Aghebati-Maleki L, Danaii S, Shahmohammadi-Farid S, Yousefi M. The role of neutrophils and neutrophil extracellular traps (NETs) in stages, outcomes and pregnancy complications. J Reprod Immunol 2024; 163:104237. [PMID: 38503075 DOI: 10.1016/j.jri.2024.104237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Neutrophils are the main components of innate immunity to eliminate infectious pathogens. Neutrophils play a role in several stages of the reproductive cycle, and their presence in the female reproductive system is highly regulated, so their function may change during pregnancy. Emerging evidence suggests that neutrophils are important at all stages of pregnancy, from implantation, placentation, and connective tissue regeneration to birth, as well as birth itself. Neutrophil extracellular traps (NETs) are defined as extracellular strands of unfolded DNA together with histone complexes and neutrophil granule proteins. NET formation is a new mechanism of these cells for their defense function. These strands containing DNA and antimicrobial peptides were initially recognized as one of the defense mechanisms of neutrophils, but later it was explained that they are involved in a variety of non-infectious diseases. Since the source of inflammation and tissue damage is the irregular activity of neutrophils, it is not surprising that NETosis are associated with a number of inflammatory conditions and diseases. The overexpression of NET components or non-principled NET clearance is associated with the risk of production and activation of autoantibodies, which results in participation in autoinflammatory and autoimmune disorders (SLE, RA), fibrosis, sepsis and other disorders such as vascular diseases, for example, thrombosis and atherosclerosis. Recent published articles have shown the role of neutrophils and extracellular traps (NETs) in pregnancy, childbirth and pregnancy-related diseases. The aim of this study was to identify and investigate the role of neutrophils and neutrophil extracellular traps (NETs) in the stages of pregnancy, as well as the complications caused by these cells.
Collapse
Affiliation(s)
- Lida Aslanian-Kalkhoran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Centre, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Zhong T, Chen S, Deng K, Guan J, Zhang J, Lu F, Shichen M, Lv R, Liu Z, Liu Y, Chang P, Liu Z. Magnesium alleviates extracellular histone-induced apoptosis and defective bacterial phagocytosis in macrophages by regulating intracellular calcium signal. Int Immunopharmacol 2024; 132:111870. [PMID: 38547771 DOI: 10.1016/j.intimp.2024.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/18/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
Extracellular histones have been determined as important mediators of sepsis, which induce excessive inflammatory responses in macrophages and impair innate immunity. Magnesium (Mg2+), one of the essential nutrients of the human body, contributes to the proper regulation of immune function. However, no reports indicate whether extracellular histones affect survival and bacterial phagocytosis in macrophages and whether Mg2+ is protective against histone-induced macrophage damage. Our clinical data revealed a negative correlation between circulating histone and monocyte levels in septic patients, and in vitro experiments confirmed that histones induced mitochondria-associated apoptosis and defective bacterial phagocytosis in macrophages. Interestingly, our clinical data also indicated an association between lower serum Mg2+ levels and reduced monocyte levels in septic patients. Moreover, in vitro experiments demonstrated that Mg2+ attenuated histone-induced apoptosis and defective bacterial phagocytosis in macrophages through the PLC/IP3R/STIM-mediated calcium signaling pathway. Importantly, further animal experiments proved that Mg2+ significantly improved survival and attenuated histone-mediated lung injury and macrophage damage in histone-stimulated mice. Additionally, in a cecal ligation and puncture (CLP) + histone-induced injury mouse model, Mg2+ inhibited histone-mediated apoptosis and defective phagocytosis in macrophages and further reduced bacterial load. Overall, these results suggest that Mg2+ supplementation may be a promising treatment for extracellular histone-mediated macrophage damage in sepsis.
Collapse
Affiliation(s)
- Tao Zhong
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sainan Chen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Deng
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianbin Guan
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Zhang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Furong Lu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Maoyou Shichen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ronggui Lv
- Department of Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhifeng Liu
- Department of Medicine Intensive Care Units, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, China.
| | - Yong Liu
- Department of Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| | - Ping Chang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhanguo Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
40
|
Abbas SH, Ceresa CDL, Pollok JM. Steatotic Donor Transplant Livers: Preservation Strategies to Mitigate against Ischaemia-Reperfusion Injury. Int J Mol Sci 2024; 25:4648. [PMID: 38731866 PMCID: PMC11083584 DOI: 10.3390/ijms25094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Liver transplantation (LT) is the only definitive treatment for end-stage liver disease, yet the UK has seen a 400% increase in liver disease-related deaths since 1970, constrained further by a critical shortage of donor organs. This shortfall has necessitated the use of extended criteria donor organs, including those with evidence of steatosis. The impact of hepatic steatosis (HS) on graft viability remains a concern, particularly for donor livers with moderate to severe steatosis which are highly sensitive to the process of ischaemia-reperfusion injury (IRI) and static cold storage (SCS) leading to poor post-transplantation outcomes. This review explores the pathophysiological predisposition of steatotic livers to IRI, the limitations of SCS, and alternative preservation strategies, including novel organ preservation solutions (OPS) and normothermic machine perfusion (NMP), to mitigate IRI and improve outcomes for steatotic donor livers. By addressing these challenges, the liver transplant community can enhance the utilisation of steatotic donor livers which is crucial in the context of the global obesity crisis and the growing need to expand the donor pool.
Collapse
Affiliation(s)
- Syed Hussain Abbas
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK;
| | - Carlo Domenico Lorenzo Ceresa
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
| | - Joerg-Matthias Pollok
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
- Division of Surgery & Interventional Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
41
|
Roos J, Zinngrebe J, Huber-Lang M, Lupu L, Schmidt MA, Strobel H, Westhoff MA, Stifel U, Gebhard F, Wabitsch M, Mollnes TE, Debatin KM, Halbgebauer R, Fischer-Posovszky P. Trauma-associated extracellular histones mediate inflammation via a MYD88-IRAK1-ERK signaling axis and induce lytic cell death in human adipocytes. Cell Death Dis 2024; 15:285. [PMID: 38653969 PMCID: PMC11039744 DOI: 10.1038/s41419-024-06676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Despite advances in the treatment and care of severe physical injuries, trauma remains one of the main reasons for disability-adjusted life years worldwide. Trauma patients often suffer from disturbances in energy utilization and metabolic dysfunction, including hyperglycemia and increased insulin resistance. White adipose tissue plays an essential role in the regulation of energy homeostasis and is frequently implicated in traumatic injury due to its ubiquitous body distribution but remains poorly studied. Initial triggers of the trauma response are mainly damage-associated molecular patterns (DAMPs) such as histones. We hypothesized that DAMP-induced adipose tissue inflammation contributes to metabolic dysfunction in trauma patients. Therefore, we investigated whether histone release during traumatic injury affects adipose tissue. Making use of a murine polytrauma model with hemorrhagic shock, we found increased serum levels of histones accompanied by an inflammatory response in white adipose tissue. In vitro, extracellular histones induced an inflammatory response in human adipocytes. On the molecular level, this inflammatory response was mediated via a MYD88-IRAK1-ERK signaling axis as demonstrated by pharmacological and genetic inhibition. Histones also induced lytic cell death executed independently of caspases and RIPK1 activity. Importantly, we detected increased histone levels in the bloodstream of patients after polytrauma. Such patients might benefit from a therapy consisting of activated protein C and the FDA-approved ERK inhibitor trametinib, as this combination effectively prevented histone-mediated effects on both, inflammatory gene activation and cell death in adipocytes. Preventing adipose tissue inflammation and adipocyte death in patients with polytrauma could help minimize posttraumatic metabolic dysfunction.
Collapse
Affiliation(s)
- Julian Roos
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Julia Zinngrebe
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Medical Center, Ulm, Germany
| | - Ludmila Lupu
- Institute of Clinical and Experimental Trauma Immunology, University Medical Center, Ulm, Germany
| | - Miriam A Schmidt
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Ulrich Stifel
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Florian Gebhard
- Department of Orthopedic Trauma, Hand, and Reconstructive Surgery, University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital Trust, Bodo, Norway
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Medical Center, Ulm, Germany
| | | |
Collapse
|
42
|
Yang X, Zheng E, Sun X, Reynolds A, Gonzalez M, Villamil JH, Pando BD, Smith DJ, Yuan SY, Wu MH. C-TYPE LECTIN-2D RECEPTOR CONTRIBUTES TO HISTONE-INDUCED VASCULAR BARRIER DYSFUNCTION DURING BURN INJURY. Shock 2024; 61:592-600. [PMID: 37878490 PMCID: PMC10997737 DOI: 10.1097/shk.0000000000002237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Severe burns are associated with massive tissue destruction and cell death where nucleus histones and other damage-associated molecular patterns are released into the circulation and contribute to the pathogenesis of multiple-organ dysfunction. Currently, there is limited information regarding the pathophysiology of extracellular histones after burns, and the mechanisms underlying histone-induced vascular injury are not fully understood. In this study, by comparing the blood samples from healthy donors and burn patients, we confirmed that burn injury promoted the release of extracellular histones into the circulation, evidenced by increased plasma levels of histones correlating with injury severity. The direct effects of extracellular histones on human endothelial monolayers were examined, and the results showed that histones caused cell-cell adherens junction discontinuity and barrier dysfunction in a dose-related manner. Like burn patients, mice subjected to a scald burn covering 25% total body surface area also displayed significantly increased plasma histones. Intravital microscopic analysis of mouse mesenteric microcirculation indicated that treatment with a histone antibody greatly attenuated burn-induced plasma leakage in postcapillary venules, supporting the pathogenic role of extracellular histones in the development of microvascular barrier dysfunction during burns. At the molecular level, intrigued by the recent discovery of C-type lectin domain family 2 member D (Clec2d) as a novel receptor of histones, we tested its potential involvement in the histone interaction with endothelial cells. Indeed, we identified abundant expression of Clec2d in vascular endothelial cells. Further proximity ligation assay demonstrated a close association between extracellular histones and endothelial expressing Clec2d. Functionally, in vivo administration of an anti-Clec2d antibody attenuated burn-induced plasma leakage across mesenteric microvessels. Consistently, Clec2d knockdown in endothelial cells partially inhibited histone-induced endothelial barrier dysfunction. Together, our data suggest that burn injury-induced increases in circulating histones contribute to microvascular leakage and endothelial barrier dysfunction via a mechanism involving the endothelial Clec2d receptor.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Xiaoqi Sun
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Amanda Reynolds
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Monica Gonzalez
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Juan Hernandez Villamil
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Briana D. Pando
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - David J. Smith
- Department of Plastic Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Sarah Y. Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mack H. Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
- James A Haley Veterans’ Hospital, Tampa, Florida
| |
Collapse
|
43
|
Wang H, Wang Y, Zhang D, Li P. Circulating nucleosomes as potential biomarkers for cancer diagnosis and treatment monitoring. Int J Biol Macromol 2024; 262:130005. [PMID: 38331061 DOI: 10.1016/j.ijbiomac.2024.130005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes play a crucial role in regulating gene expression through their composition and post-translational modifications. When cells die, intracellular endonucleases are activated and cleave chromatin into oligo- and mono-nucleosomes, which are then released into the body fluids. Studies have shown that the levels of nucleosomes are increased in serum and plasma in various cancer types, suggesting that analysis of circulating nucleosomes can provide an initial assessment of carcinogenesis. However, it should be noted that elevated serum nucleosome levels may not accurately diagnose certain tumor types, as increased cell death may occur in different pathological conditions. Nevertheless, detection of circulating nucleosomes and their histone modifications, along with specific tumor markers, can help diagnose certain types of cancer. Furthermore, monitoring changes in circulating nucleosome levels during chemotherapy or radiotherapy in patients with malignancies can provide valuable insights into clinical outcomes and therapeutic efficacy. The utilization of circulating nucleosomes as biomarkers is an exciting and emerging area of research, with the potential for early detection of various diseases and monitoring of treatment response. Integrating nucleosome-based biomarkers with existing ones may improve the specificity and sensitivity of current assays, offering the possibility of personalized precision medical treatment for patients.
Collapse
Affiliation(s)
- Huawei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
44
|
Gando S, Levi M, Toh CH. Trauma-induced innate immune activation and disseminated intravascular coagulation. J Thromb Haemost 2024; 22:337-351. [PMID: 37816463 DOI: 10.1016/j.jtha.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023]
Abstract
Dysregulated innate immunity participates in the pathomechanisms of disseminated intravascular coagulation (DIC) in trauma-induced coagulopathy. Accidental and regulated cell deaths and neutrophil extracellular traps release damage-associated molecular patterns (DAMPs), such as histones, nuclear and mitochondrial DNA, and high-mobility group box 1, into circulation immediately after trauma. DAMP-induced inflammation activation releases tissue factor-bearing procoagulant extracellular vesicles through gasdermin D-mediated pore formation and plasma membrane rupture by regulated cell death. DAMPs also evoke systemic inflammation, platelet, coagulation activation, and impaired fibrinolysis associated with endothelial injury, leading to the dysfunction of anticoagulation systems, which are the main pathophysiological mechanisms of DIC. All these processes induce systemic thrombin generation in vivo, not restricted to the injury sites immediately after trauma. Thrombin generation at the site of injury stops bleeding and maintains homeostasis. However, DIC associated with endothelial injury generates massive thrombin, enhancing protease-activated, receptor-mediated bidirectional interplays between inflammation and coagulation, aggravating the diverse actions of thrombin and disturbing homeostasis. Insufficiently regulated thrombin causes disseminated microvascular thrombosis, resulting in tissue hypoxia due to reduced oxygen delivery, and mitochondrial dysfunction due to DAMPs causes tissue dysoxia. In addition, DAMP-induced calcium influx and overload, as well as neutrophil activation, play a role in endothelial cell injury. Tissue hypoxia and cytotoxicity result in multiple organ dysfunction in DIC after trauma. Controls against dysregulated innate immunity evoking systemic inflammation, thrombin generation, and cytotoxicity are key issues in improving the prognosis of DIC in trauma-induced coagulopathy.
Collapse
Affiliation(s)
- Satoshi Gando
- Department of Acute and Critical Care Medicine, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan; Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan.
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Department of Medicine, University College London Hospitals NHS Foundation Trust, and Cardio-Metabolic Program - NIHR UCLH/UCL BRC London, London, United Kingdom
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
45
|
Li Y, Li H, Tang Y, Rong Y. Extracellular histones exacerbate heat stroke-induced liver injury by triggering hepatocyte pyroptosis and liver injury via the TLR9-NLRP3 pathway. Int Immunopharmacol 2024; 126:111305. [PMID: 38043264 DOI: 10.1016/j.intimp.2023.111305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Severe heat stroke is often complicated by multiple organ failure, including liver injury. Recent evidence indicates that the underlying mechanism constitutes sterile inflammation triggered by cell damage, in which hepatocyte NOD-like receptor family pyrin domain-containing 3 inflammasome activation and pyroptosis play key roles. As extracellular histones act as damage-associated molecular patterns and mediate tissue toxicity and inflammation, we aimed to investigate whether extracellular histones contribute to inducing hepatocyte pyroptosis following heat stroke, promoting the development of liver inflammation and injury, and elucidate the potential underlying mechanisms. METHODS Exogenous histones were administered to AML-12 murine hepatocytes or male aged 8-12 week mice following hyperthermic treatment (at 39 °C in a chamber with 60 % relative humidity). Prior to heat exposure, endogenous histones were neutralized using neutralizing antibodies, inflammasomes were inhibited by RNA silencing, and Toll-like receptor 9 was modulated using a pharmacological agonist or antagonist. Inflammasome assembly, caspase-1 activation, histological changes, and liver enzyme levels were measured. Statistical comparison of more than two groups was performed using one-way ANOVA with Tukey's post-hoc testing. The correlations were analyzed using Pearson's correlation test. All experiments were repeated thrice. A p-value < 0.05 was considered significant. RESULTS Heat stroke induced histone release into the extracellular space at levels correlating with liver injury. Moreover, extracellular histones augmented heat stroke-induced liver injury both in vitro and in vivo in a dose- and time-dependent manner, whereas neutralizing histones conferred protection following heat stroke. Histones mediated NOD-like receptor family pyrin domain-containing 3 inflammasome activation through the Toll-like receptor 9 signaling pathway, which resulted in hepatocyte pyroptosis and liver inflammation. CONCLUSIONS Our findings show that histones are critical mediators of hepatocyte pyroptosis that aggravate liver injury in a heat stroke setting. Therefore, we suggest extracellular histones as potential therapeutic targets to limit heat stroke-induced cell death and liver injury.
Collapse
Affiliation(s)
- Yue Li
- Department of Emergency Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510310, China; Department of Intensive Care Unit, Jiangmen People's Hospital, Southern Medical University, Jiangmen, Guangdong 529020, China; General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong 510010, China
| | - Huan Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of ICU, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Youqing Tang
- Department of Emergency Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510310, China.
| | - Yongzhang Rong
- Department of Intensive Care Unit, Jiangmen People's Hospital, Southern Medical University, Jiangmen, Guangdong 529020, China.
| |
Collapse
|
46
|
Huckriede JB, Beurskens DMH, Wildhagen KCCA, Reutelingsperger CPM, Wichapong K, Nicolaes GAF. Design and characterization of novel activated protein C variants for the proteolysis of cytotoxic extracellular histone H3. J Thromb Haemost 2023; 21:3557-3567. [PMID: 37657561 DOI: 10.1016/j.jtha.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Extracellular histone H3 is implicated in several pathologies including inflammation, cell death, and organ failure. Neutralization of histone H3 is a strategy that was shown beneficial in various diseases, such as rheumatoid arthritis, myocardial infarction, and sepsis. It was shown that activated protein C (APC) can cleave histone H3, which reduces histone cytotoxicity. However, due to the anticoagulant properties of APC, the use of APC is not optimal for the treatment of histone-mediated cytotoxicity, in view of its associated bleeding side effects. OBJECTIVES This study aimed to investigate the detailed molecular interactions between human APC and human histone H3, and subsequently use molecular docking and molecular dynamics simulation methods to identify key interacting residues that mediate the interaction between APC and histone H3 and to generate novel optimized APC variants. METHODS After molecular simulations, the designed APC variants 3D2D-APC (Lys37-39Asp and Lys62-63Asp) and 3D2D2A-APC (Lys37-39Asp, Lys62-63Asp, and Arg74-75Ala) were recombinantly expressed and their abilities to function as anticoagulant, to bind histones, and to cleave histones were tested and correlated with their cytoprotective properties. RESULTS Compared with wild type-APC, both the 3D2D-APC and 3D2D2A-APC variants showed a significantly decreased anticoagulant activity, increased binding to histone H3, and similar ability to proteolyze histone H3. CONCLUSIONS Our data show that it is possible to rationally design APC variants that may be further developed into therapeutic biologicals to treat histone-mediated disease, by proteolytic reduction of histone-associated cytotoxic properties that do not induce an increased bleeding risk.
Collapse
Affiliation(s)
- Joram B Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Daniëlle M H Beurskens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Karin C C A Wildhagen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Chris P M Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
47
|
Garcia B, Su F, Dewachter L, Wang Y, Li N, Remmelink M, Eycken MV, Khaldi A, Favory R, Herpain A, Moreau A, Moiroux-Sahraoui A, Manicone F, Annoni F, Shi L, Vincent JL, Creteur J, Taccone FS. Neutralization of extracellular histones by sodium-Β-O-methyl cellobioside sulfate in septic shock. Crit Care 2023; 27:458. [PMID: 38001494 PMCID: PMC10675855 DOI: 10.1186/s13054-023-04741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Extracellular histones have been associated with severity and outcome in sepsis. The aim of the present study was to assess the effects of sodium-β-O-Methyl cellobioside sulfate (mCBS), a histone-neutralizing polyanion, on the severity and outcome of sepsis in an experimental model. METHODS This randomized placebo-controlled experimental study was performed in 24 mechanically ventilated female sheep. Sepsis was induced by fecal peritonitis. Animals were randomized to three groups: control, early treatment, and late treatment (n = 8 each). mCBS was given as a bolus (1 mg/kg) followed by a continuous infusion (1 mg/kg/h) just after sepsis induction in the early treatment group, and 4 h later in the late treatment group. Fluid administration and antimicrobial therapy were initiated 4 h T4 after feces injection, peritoneal lavage performed, and a norepinephrine infusion titrated to maintain mean arterial pressure (MAP) between 65-75 mmHg. The experiment was blinded and lasted maximum 24 h. RESULTS During the first 4 h, MAP remained > 65 mmHg in the early treatment group but decreased significantly in the others (p < 0.01 for interaction, median value at T4: (79 [70-90] mmHg for early treatment, 57 [70-90] mmHg for late treatment, and 55 [49-60] mmHg for the control group). mCBS-treated animals required significantly less norepinephrine to maintain MAP than controls (p < 0.01 for interaction) and had lower creatinine (p < 0.01), lactate (p < 0.01), and interleukin-6 (p < 0.01) levels, associated with reduced changes in H3.1 nucleosome levels (p = 0.02). Early treatment was associated with lower norepinephrine requirements than later treatment. Two control animals died; all the mCBS-treated animals survived. CONCLUSIONS Neutralization of extracellular histones with mCBS was associated with reduced norepinephrine requirements, improved tissue perfusion, less renal dysfunction, and lower circulating IL-6 in experimental septic shock and may represent a new therapeutic approach to be tested in clinical trials.
Collapse
Affiliation(s)
- Bruno Garcia
- Experimental Laboratory of the Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070, Brussels, Belgium
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Fuhong Su
- Experimental Laboratory of the Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Brussels, Belgium
| | - Yong Wang
- Grand Pharma (China) Co., Ltd, Wuhan, China
| | - Ning Li
- Grand Pharma (China) Co., Ltd, Wuhan, China
| | - Myriam Remmelink
- Pathology Laboratory, Erasme Hospital, Hôpitaux Universitaires de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie Van Eycken
- Pathology Laboratory, Erasme Hospital, Hôpitaux Universitaires de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Amina Khaldi
- Experimental Laboratory of the Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Raphaël Favory
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Antoine Herpain
- Experimental Laboratory of the Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Anthony Moreau
- Experimental Laboratory of the Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070, Brussels, Belgium
- Department of Intensive Care, Erasme Hospital, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexander Moiroux-Sahraoui
- Experimental Laboratory of the Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Francesca Manicone
- Experimental Laboratory of the Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Filippo Annoni
- Experimental Laboratory of the Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070, Brussels, Belgium
- Department of Intensive Care, Erasme Hospital, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Lin Shi
- Grand Pharma (China) Co., Ltd, Wuhan, China
| | - Jean-Louis Vincent
- Experimental Laboratory of the Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070, Brussels, Belgium.
| | - Jacques Creteur
- Experimental Laboratory of the Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Fabio S Taccone
- Experimental Laboratory of the Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070, Brussels, Belgium
- Department of Intensive Care, Erasme Hospital, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
48
|
Huang Y, Ding Y, Wang B, Ji Q, Peng C, Tan Q. Neutrophils extracellular traps and ferroptosis in diabetic wounds. Int Wound J 2023; 20:3840-3854. [PMID: 37199077 PMCID: PMC10588347 DOI: 10.1111/iwj.14231] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Wound healing is an extremely complex process involving multiple levels of cells and tissues. It is mainly completed through four stages: haemostasis, inflammation, proliferation, and remodelling. When any one of these stages is impaired, it may lead to delayed healing or even transformation into chronic refractory wounds. Diabetes is a kind of common metabolic disease that affects approximately 500 million people worldwide, 25% of whom develop skin ulcers that break down repeatedly and are difficult to heal, making it a growing public health problem. Neutrophils extracellular traps and ferroptosis are new types of programmed cell death identified in recent years and have been found to interact with diabetic wounds. In this paper, the normal wound healing and interfering factors of the diabetic refractory wound were outlined. The mechanism of two kinds of programmed cell death was also described, and the interaction mechanism between different types of programmed cell death and diabetic refractory wounds was discussed.
Collapse
Affiliation(s)
- Yumeng Huang
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
| | - Youjun Ding
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Department of Emergency SurgeryThe Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Fourth People's Hospital)ZhenjiangChina
| | - Beizhi Wang
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Qian Ji
- Department of OncologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Chen Peng
- Department of OncologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Qian Tan
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Department of Burns and Plastic Surgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Burns and Plastic SurgeryAnqing Shihua Hospital of Nanjing Drum Tower Hospital GroupAnqingChina
| |
Collapse
|
49
|
Rivera-Concha R, Moya C, León M, Uribe P, Schulz M, Prado A, Taubert A, Hermosilla C, Sánchez R, Zambrano F. Effect of different sperm populations on neutrophils extracellular traps (NETs) formation in cattle. Res Vet Sci 2023; 164:105028. [PMID: 37804665 DOI: 10.1016/j.rvsc.2023.105028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
In cattle, clinical and subclinical inflammation in the bovine female reproductive tract (FRT) significantly reduces fertility. PMN participate in this FRT-associated inflammation by eliminating pathogens by eliciting various defense mechanisms, with the release of neutrophil extracellular traps NETs) being the latest process discovered. Consistently, human-, bovine- and porcine-derived spermatozoa induce release of NETs in exposed PMN of the same species origin, and thereby decreasing sperm motility through NETs-mediated entrapment. The release of NETs in the presence of different sperm sub-populations is evaluated in this work. Cryopreserved bovine sperm were selected and different sperm populations were used: viable sperm, sperm with oxidative stress, capacitated sperm, and sperm with loss of viability. Isolated PMN of dairy cows were co-incubated with these sperm populations for 4 h. Neutrophil elastase (NE) and DNA were detected by fluorescence microscopy analysis. It was noted that exposed bovine PMN released NETs in the presence of sperm. Moreover, sperm-triggered NETosis resulted different phenotypes of NETs, i. e. spread NETs (sprNETs), diffused NETs (diffNETs) and aggregated NETs (aggNETs). Viable/motile spermatozoa induced a higher proportion of NETotic cells at 15, 60 and 120 min in comparison to controls. In conclusion, all bovine sperm populations in co-culture with PMN generated NETs extrusion while viable sperm activated NETotic cells to a greater extent. With this being an early event in the activation of bovine PMN.
Collapse
Affiliation(s)
- Rodrigo Rivera-Concha
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Ph.D. Program in Medical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Claudia Moya
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Marion León
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Pamela Uribe
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Mabel Schulz
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Aurora Prado
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Raúl Sánchez
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Fabiola Zambrano
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| |
Collapse
|
50
|
Li P, Liang S, Wang L, Guan X, Wang J, Gong P. PREDICTIVE VALUE OF NEUTROPHIL EXTRACELLULAR TRAP COMPONENTS FOR 28-DAY ALL-CAUSE MORTALITY IN PATIENTS WITH CARDIAC ARREST: A PILOT OBSERVATIONAL STUDY. Shock 2023; 60:664-670. [PMID: 37695643 DOI: 10.1097/shk.0000000000002225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
ABSTRACT Background: Ischemia-reperfusion after cardiac arrest (CA) activates peptidyl arginine deiminase and citrullinated histone H3 (CitH3), which leads to the formation of neutrophil extracellular traps (NETs). This study attempted to determine the alterations in NET components in post-CA patients as well as analyze the association of NETs with 28-day all-cause mortality. Methods : In this study, 95 patients with restoration of spontaneous circulation (ROSC) after CA were included. They were categorized into the survivor group (n = 32) and the nonsurvivor group (n = 63) according to their 28-day survival statuses. The control group comprised 20 healthy individuals. The blood samples were collected from the patients on days 1, 3, and 7 after ROSC and from the control subjects at the time of enrollment. The serum cell-free DNA (cfDNA) level was determined using the fluorescent labeling method, and the serum concentrations of NET components, including CitH3, myeloperoxidase, neutrophil elastase, and nucleosomes, were estimated using the enzyme-linked immunosorbent assay. Results : Compared with the control group, the serum NET components were significantly increased in the patients 1 week after ROSC (all P < 0.05). These components were significantly higher in the nonsurvivor group than in the survivor group (all P < 0.05). Spearman correlational analysis revealed that the components were positively correlated with Acute Physiology and Chronic Health Evaluation II scores (both P < 0.05). Binary logistic regression analysis indicated that serum cfDNA, CitH3, and nucleosomes on days 1 and 3 after ROSC were independent predictors of 28-day all-cause mortality. Furthermore, these parameters on day 1 after ROSC had the biggest areas under the receiver operating characteristic curves (0.876, 0.862, and 0.861, respectively). Conclusions: Elevated serum levels of cfDNA, CitH3, myeloperoxidase, neutrophil elastase, and nucleosomes were positively correlated with disease severity after ROSC. However, only serum CitH3, cfDNA, and nucleosomes on day 1 after ROSC showed a good predictive value for 28-day all-cause mortality.
Collapse
Affiliation(s)
- Peijuan Li
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning, China
| | - Shuangshuang Liang
- Department of Emergency, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan, China
| | - Ling Wang
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning, China
| | - Xiaolan Guan
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning, China
| | - Jin Wang
- Department of Emergency, Shenzhen People's Hospital (Second Clinical Medical College, Jinan University; First Affiliated Hospital, Southern University of Science and Technology), Shenzhen City, Guangdong, China
| | | |
Collapse
|