1
|
Meyer LK, Keenan C, Nichols KE. Clinical Characteristics and Treatment of Familial Hemophagocytic Lymphohistiocytosis. Hematol Oncol Clin North Am 2025; 39:553-575. [PMID: 40133142 DOI: 10.1016/j.hoc.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Familial hemophagocytic lymphohistiocytosis (fHLH) comprises a group of autosomal recessive disorders characterized by germline loss-of-function variants that negatively impact lymphocyte cytotoxicity. These disorders exhibit variable clinical presentations, most often in association with severe hyperinflammation. fHLH is diagnosed through clinical and laboratory assessments as well as genetic testing and immunologic assays. In the absence of therapy to control the hyperactive immune system, fHLH is generally fatal. Treatment has historically taken the form of cytotoxic chemotherapy and/or immunosuppressive therapy, although targeted inhibitors of inflammatory cytokines and their downstream signaling are increasingly being utilized. Definitive treatment requires allogeneic hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Lauren K Meyer
- Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, MB.8.643, Seattle, WA 98105, USA
| | - Camille Keenan
- Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, MB.8.643, Seattle, WA 98105, USA
| | - Kim E Nichols
- Division of Cancer Predisposition, Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1170, Memphis, TN 38105, USA.
| |
Collapse
|
2
|
Zhang K, Meyer LK, Machowicz R, Coniglio ML, Sieni E, Nichols KE. Genetics of Familial Hemophagocytic Lymphohistiocytosis (HLH). Hematol Oncol Clin North Am 2025; 39:531-551. [PMID: 40199664 DOI: 10.1016/j.hoc.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Familial hemophagocytic lymphohistiocytosis (fHLH) represents a group of rare, inherited immune system disorders characterized by uncontrolled inflammatory responses. fHLH results from genetic mutations that impair CD8 T cell and natural killer cell cytotoxicity. Without treatment, fHLH is commonly fatal, but early diagnosis and treatment, including immunosuppressive therapy, and in many cases, an allogeneic hematopoietic stem cell transplant (HSCT), can improve overall outcomes. Genetic testing is critical for confirming the diagnosis, identifying specific gene mutations, assessing family members for carrier status or disease risk, and informing donor selection for HSCT.
Collapse
Affiliation(s)
- Kejian Zhang
- GoBroad Hospital, GoBroad Healthcare Group, Beijing, China.
| | - Lauren K Meyer
- Department of Pediatric Hematology-Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Rafal Machowicz
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Poland
| | - Maria Luisa Coniglio
- Department of Pediatric Hematology-Oncology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Elena Sieni
- Department of Pediatric Hematology-Oncology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Kim E Nichols
- Division of Cancer Predisposition, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
3
|
Adnani L, Meehan B, Kim M, Choi D, Rudd CE, Riazalhosseini Y, Rak J. Immune cell infiltration into brain tumor microenvironment is mediated by Rab27-regulated vascular wall integrity. SCIENCE ADVANCES 2025; 11:eadr6940. [PMID: 40408475 PMCID: PMC12101492 DOI: 10.1126/sciadv.adr6940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 04/22/2025] [Indexed: 05/25/2025]
Abstract
Aggressive brain tumors often exhibit immunologically 'cold' microenvironment, where the vascular barrier impedes effective immunotherapy in poorly understood ways. Tumor vasculature also plays a pivotal role in immunoregulation and antitumor immunity. Here, we show that small GTPase Rab27 controls the vascular morphogenesis and permeability for blood content and immune effectors. Thus, in Rab27a/b double knock out (Rab27-dKO) mice, the brain vasculature is abnormally scarce, while the blood vessels become dysmorphic and hyperpermeable in the context of brain tumors, including syngeneic glioblastoma. These defects are reflected in rearrangements of endothelial cell subpopulations with underlying diminution of venous endothelial subtype along with changes in gene and protein expression. Notably, Rab27-dKO brain endothelial cells exhibit deficient tight junctions, whereby they enable large-scale extravasation of cytotoxic T cells into the tumor mass. We show that Rab27-regulated vascular T cell infiltration can be exploited to enhance adoptive T cell therapy in syngeneic brain tumors.
Collapse
Affiliation(s)
- Lata Adnani
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Brian Meehan
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Minjun Kim
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University. McGill University Department of Human Genetics, Montreal, QC, Canada
| | - Dongsic Choi
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31151, Republic of Korea
| | - Christopher E. Rudd
- Division of Immunology-Oncology Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
- Département de Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Centre for Translational Research in Cancer, McGill University, Montreal, QC, Canada
| | - Yasser Riazalhosseini
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University. McGill University Department of Human Genetics, Montreal, QC, Canada
| | - Janusz Rak
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
4
|
Tanaka M, Nakamura T. Role of the RAB27/SYTL Axis in Tumor Microenvironment Construction. Cancer Sci 2025. [PMID: 40319893 DOI: 10.1111/cas.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/12/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
Crosstalk between cancer cells and the tumor microenvironment (TME) is a key event in malignant progression and metastasis. The secretion of bioactive substances by cancer cells remodels the TME, affecting the activities of its components, including blood vessels, mesenchymal cells, and immune cells. These substances are effectively delivered through intracellular trafficking and exocytosis of cytoplasmic vesicles. The small guanosine triphosphatase (GTPase) RAB27 and its effectors, synaptotagmin-like (SYTL) family proteins, play essential roles in vesicle trafficking. Our recent research demonstrates the upregulation of RAB27A/B and SYTL1/2 in alveolar soft part sarcoma and acute myeloid leukemia. This enhanced trafficking promotes angiogenesis and the occupation of leukemia cells in the bone marrow niche. This review focuses on the role of the RAB27/SYTL axis in various cancer types associated with TME modifications, with a discussion on its importance as a therapeutic target.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takuro Nakamura
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
5
|
Öztürk G, Yeşilipek MA, Akçay A, Uygun V, Özek G, Karasu G, Yılmaz E, Demir Yenigürbüz F, Öztürkmen S, Aksoylar S, Ok Bozkaya İ, Yalçın K, Adaklı Aksoy B, Ünal E, Akıncı B, Daloğlu H, Karagün BŞ, Kansoy S, Özbek N, İnce E, Demir HA, Gündoğdu M, Malbora B, Karakükçü M, Elli M, Akyay A, Güneş AM, Akbayram S, Sarper N, Del Castello BE, Hazar V, Antmen B. Effect of genetic mutations on outcomes of stem cell transplantation in children with hemophagocytic lymphohistiocytosis. Bone Marrow Transplant 2025:10.1038/s41409-025-02592-4. [PMID: 40263637 DOI: 10.1038/s41409-025-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/03/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Primary hemophagocytic lymphohistiocytosis (p-HLH) can be cured with allogeneic haematopoietic stem cell transplantation (allo-HSCT). It remains unclear whether HSCT outcomes are affected by the presence of different genetic mutations. We used data obtained from children who underwent allo-HSCT for HLH to examine the effects of genetic mutations on HSCT outcomes. Data from 153 paediatric patients in 18 paediatric stem cell centres were retrospectively evaluated. Patients were divided into four groups: 1) with PRF1 mutation (n = 46), 2) with UNC13D mutation (n = 38), 3) with STX11/STXBP2 mutation (n = 25) and 4) with Griscelli syndrome type 2/ Chediak-Higashi syndrome (GS2/CHS) diagnosis (n = 44). Statistical analysis showed no difference between the subgroups in terms of engraftment, VOD, acute GVHD, chronic GVHD, TRM, OS and EFS rates. The most important factor affecting OS and EFS in all genetic subgroups was remission status before HSCT. The 5-year EFS values for children with mutations in PRF1, UNC13D, STX11/STXBP2 and GS2/CHS were 71%, 66.6%, 74% and 66.7, respectively (log-rank >0.05). However, with prospective studies covering more patients, and creating different genetic subgroups by performing more detailed genetic analyses, special approaches for different genetic subgroups can be revealed in the future.
Collapse
Affiliation(s)
- Gülyüz Öztürk
- Pediatric BMT Unit, Acıbadem Altunizade Hospital, Acıbadem University Faculty of Medicine, Istanbul, Turkey
| | | | - Arzu Akçay
- Pediatric BMT Unit, Acıbadem Altunizade Hospital, Acıbadem University Faculty of Medicine, Istanbul, Turkey.
| | - Vedat Uygun
- Pediatric BMT Unit, Medical Park Antalya Hospital, Istinye University Faculty of Medicine, Antalya, Turkey
| | - Gülcihan Özek
- Pediatric BMT Unit, Ege University Faculty of Medicine, Izmir, Turkey
| | - Gülsün Karasu
- Pediatric BMT Unit, Medical Park Göztepe Hospital, Istanbul, Turkey
| | - Ebru Yılmaz
- Pediatric BMT Unit, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Fatma Demir Yenigürbüz
- Pediatric BMT Unit, Acıbadem Altunizade Hospital, Acıbadem University Faculty of Medicine, Istanbul, Turkey
| | - Seda Öztürkmen
- Pediatric BMT Unit, Medical Park Antalya Hospital, Istinye University Faculty of Medicine, Antalya, Turkey
| | - Serap Aksoylar
- Pediatric BMT Unit, Ege University Faculty of Medicine, Izmir, Turkey
| | - İkbal Ok Bozkaya
- Pediatric BMT Unit, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Turkey
| | - Koray Yalçın
- Pediatric BMT Unit, Medical Park Göztepe Hospital, Istanbul, Turkey
| | - Başak Adaklı Aksoy
- Pediatric BMT Unit, Bahçelievler Medical Park Hospital, Altınbaş University Faculty of Medicine, İstanbul, Turkey
| | - Ekrem Ünal
- Pediatric BMT Unit, Erciyes University Faculty of Medicine, Kayseri, Turkey
- Pediatric Hematology and Oncology Clinic, Medical Point Hospital, School of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Burcu Akıncı
- Pediatric BMT Unit, Acıbadem Altunizade Hospital, Acıbadem University Faculty of Medicine, Istanbul, Turkey
| | - Hayriye Daloğlu
- Pediatric BMT Unit, Medical Park Antalya Hospital, Istinye University Faculty of Medicine, Antalya, Turkey
- Faculty of Health Sciences, Antalya Bilim Univercity, Antalya, Turkey
| | | | - Savaş Kansoy
- Pediatric BMT Unit, Ege University Faculty of Medicine, Izmir, Turkey
| | - Namık Özbek
- Pediatric BMT Unit, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Turkey
| | - Elif İnce
- Pediatric BMT Unit, Ankara University Faculty of Medicine, Ankara, Turkey
| | | | - Müge Gündoğdu
- Pediatric BMT Unit, Memorial Bahçelievler Hospital, Istanbul, Turkey
| | - Barış Malbora
- Pediatric BMT Unit, GOP Hospital, Yüzüncü Yıl University Faculty of Medicine, Istanbul, Turkey
| | - Musa Karakükçü
- Pediatric BMT Unit, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Murat Elli
- Pediatric BMT Unit, İstanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| | - Arzu Akyay
- Pediatric BMT Unit, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Adalet Meral Güneş
- Pediatric BMT Unit, Uludağ University Faculty of Medicine, Bursa, Turkey
| | - Sinan Akbayram
- Pediatric BMT Unit, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Nazan Sarper
- Pediatric BMT Unit, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | | | - Volkan Hazar
- Pediatric Pediatric Hematology and Oncology Clinic, Medstar Yıldız Hospital, Antalya, Turkey
| | - Bülent Antmen
- Pediatric BMT Unit, Acibadem Adana Hospital, Adana, Turkey
| |
Collapse
|
6
|
Animalu C, Singh N, Guice KC, Maner K. Febrile Pancytopenia and Hemophagocytosis From Disseminated Histoplasmosis in HIV/AIDS Patients: Two Cases and a Review of Combined Antifungal and Steroid Therapy. Case Rep Infect Dis 2025; 2025:2623694. [PMID: 40276474 PMCID: PMC12021483 DOI: 10.1155/crdi/2623694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 01/16/2025] [Accepted: 02/21/2025] [Indexed: 04/26/2025] Open
Abstract
Hemophagocytosis is a clinical condition characterized by the engulfment of bone marrow cellular elements, including erythrocytes, leukocytes, platelets, and their precursors, by activated macrophages. It has been associated with several infectious organisms, including the Epstein-Barr virus (EBV) and histoplasmosis. Human immunodeficiency virus (HIV) has been known to trigger hemophagocytosis in the presence or absence of other infections. Disseminated histoplasmosis is a common opportunistic infection in advanced patients with acquired immunodeficiency syndrome (AIDS) in endemic areas; however, the best treatment for histoplasmosis associated with hemophagocytosis is uncertain. This article presents two cases of patients with AIDS secondary to uncontrolled HIV who were admitted with fever, malaise, low CD4 + counts, and a history of noncompliance with antiretroviral therapy (ART). Both patients had pancytopenia, markedly elevated serum ferritin, and elevated liver transaminases. The diagnosis of histoplasmosis was confirmed by positive fungal blood cultures, buffy coat smears showing intracellular fungal organisms, and positive urine Histoplasma antigen. Bone marrow biopsies revealed Histoplasma capsulatum (H. capsulatum) in Grocott methenamine silver (GMS) stains and fungal cultures, histiocytes with intracellular red blood cells, and precursors of granulocytes, consistent with hemophagocytosis. Both patients received amphotericin B but remained febrile and pancytopenic, eventually requiring corticosteroid therapy. We present our experience with these patients and discuss the management of hemophagocytosis in patients with AIDS with disseminated histoplasmosis. We also completed a literature review and created a list of all known cases of disseminated histoplasmosis complicated by HIV/AIDS and hemophagocytosis and listed previous treatments.
Collapse
Affiliation(s)
- Chinelo Animalu
- Division of Infectious Diseases, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Nupur Singh
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kenneth Cory Guice
- Department of Pulmonology, University of Alabama, Birmingham, Alabama, USA
| | - Kase Maner
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
7
|
Hanna MG, Rodriguez Cruz HO, Fujise K, Wu Y, Xu CS, Pang S, Li Z, Monetti M, De Camilli P. BLTP3A is associated with membranes of the late endocytic pathway and is an effector of CASM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.28.615015. [PMID: 39386594 PMCID: PMC11463362 DOI: 10.1101/2024.09.28.615015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Recent studies have identified a family of rod-shaped proteins thought to mediate lipid transfer at intracellular membrane contacts by a bridge-like mechanism. We show one such protein, bridge-like lipid transfer protein 3A (BLTP3A)/UHRF1BP1 binds VAMP7 vesicles via its C-terminal region and anchors them to lysosomes via its chorein domain containing N-terminal region to Rab7. Upon lysosome damage, BLTP3A-positive vesicles rapidly (within minutes) dissociate from lysosomes. Lysosome damage is known to activate the CASM (Conjugation of ATG8 to Single Membranes) pathway leading to lipidation and recruitment to lysosomes of mammalian ATG8 (mATG8) proteins. We find that this process drives the reassociation of BLTP3A with damaged lysosomes via an interaction of its LIR motif with mATG8 which coincides with a dissociation from the vesicles. Our findings reveal that BLTP3A is an effector of CASM, potentially as part of a mechanism to help repair or minimize lysosome damage.
Collapse
Affiliation(s)
- Michael G. Hanna
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Hely O. Rodriguez Cruz
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Kenshiro Fujise
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Yumei Wu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - C. Shan Xu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - Song Pang
- Yale University School of Medicine, New Haven, CT
| | - Zhuonging Li
- Proteomics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mara Monetti
- Proteomics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
8
|
Blanchard G, Atallah I, Blanchard M, Fehrenbacher B, Schaller M, Riccio O, Ballerini C, Candotti F, Guenova E. Primary cutaneous T-cell lymphoma not otherwise specified reveals a novel RAB27A variant in Griscelli syndrome type 2. Br J Dermatol 2025; 192:542-544. [PMID: 39432530 DOI: 10.1093/bjd/ljae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Griscelli syndrome type 2 (GS2) is a rare, autosomal recessive disorder that typically emerges during childhood. It manifests with partial albinism, silvery hair, immunodeficiency and haemophagocytic lymphohistiocytosis predisposition (HLH). Our findings suggest that lymphoproliferative disorders, including cutaneous lymphomas, should be considered part of the dermatological spectrum of GS2. While GS2 has previously been diagnosed in adults presenting with HLH, our observations indicate that HLH is not an inevitable outcome, even in patients who survive into their fifth decade of life.
Collapse
Affiliation(s)
- Gabriela Blanchard
- Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| | - Isis Atallah
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Maël Blanchard
- Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| | | | - Martin Schaller
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Orbicia Riccio
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Claudia Ballerini
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Emmanuella Guenova
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- University Institute and Clinic for Immunodermatology, Medical Faculty, Johannes Kepler University, Linz, Austria
| |
Collapse
|
9
|
Yao HHY, Kahr WHA. Molecular basis of platelet granule defects. J Thromb Haemost 2025; 23:381-393. [PMID: 39617187 DOI: 10.1016/j.jtha.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/02/2025]
Abstract
Platelets are small, discoid, anucleate blood cells that play key roles in clotting and other functions involved in health and disease. Platelets are derived from bone marrow-resident megakaryocytes, which undergo a complex developmental process where they increase dramatically in size and produce an abundance of organelles destined for platelets. These organelles include mitochondria, lysosomes, peroxisomes, and 2 unique types of secretory organelles: α- and dense (δ-) granules. δ-Granules contain small molecules, including adenosine triphosphate, adenosine diphosphate, serotonin, and ions, such as calcium and zinc (Ca2+ and Zn2+). α-Granules contain a variety of cargo proteins, which, when secreted by activated platelets, are involved in processes such as hemostasis (eg, fibrinogen and von Willebrand factor), angiogenesis, inflammation, and wound healing. Investigations of patients with inherited conditions resulting in decreased/abnormal platelet secretory granules have led to the identification of proteins, protein complexes, and cellular processes involved in their production by megakaryocytes. Notably, studies of ARPC1B deficiency, Hermansky-Pudlak, and Chediak-Higashi syndromes have linked several genes/proteins to δ-granule biogenesis. Studies of multisystemic arthrogryposis, renal dysfunction, and cholestasis syndrome revealed the requirement of 2 proteins, VPS33B and VPS16B, in α-granule formation. Identification of the genetic cause of gray platelet syndrome established that NBEAL2 is an additional protein needed for α-granule cargo retention. These discoveries enabled studies using animal models, cell culture, and molecular analysis to gain insights into the roles of proteins and cellular processes involved in platelet secretory granule production, which are discussed in this review.
Collapse
Affiliation(s)
- Helen H Y Yao
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Hata R, Sugawara A, Fukuda M. Rab10 function in tubular endosome formation requires the N-terminal K3 residue and is disrupted by N-terminal tagging. J Cell Sci 2025; 138:JCS263649. [PMID: 39783278 DOI: 10.1242/jcs.263649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Various N-terminal tags have often been used to identify the functions and localization of Rab small GTPases, but their impact on Rab proteins themselves has been poorly investigated. Here, we used a knockout (KO)-rescue approach to systematically evaluate the effect of N-terminal tagging of two Rabs, Rab10 and Rab27A, on RAB10-KO HeLa cells and Rab27A-deficient melanocytes (melan-ash cells), respectively. The results showed that all of the N-terminal-tagged Rab27A proteins mediated actin-based melanosome transport in the melan-ash cells, but none of the N-terminal-tagged Rab10 proteins fully rescued the defect in tubular endosome formation in RAB10-KO cells. Although the N-terminal-tagged Rab10 proteins had the ability to localize tubular endosomes in wild-type HeLa cells, they sometimes exhibited a dominant-negative effect on tubular endosome formation. We also found that a conserved lysine residue at amino acid position 3 (K3) in the Rab10 proteins of different species is required for tubular endosome formation. Thus, it will be important to determine whether other Rab isoforms with N-terminal tags behave similarly to their corresponding untagged isoforms by performing appropriate KO-rescue experiments in future studies.
Collapse
Affiliation(s)
- Rinka Hata
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Akira Sugawara
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
11
|
Fogsgaard SF, Jensen JMB, Glerup M, Thim SB, Holm M, Olesen C, Hasle H, Rubak S. Pulmonary Failure as Presentation of Griscelli Syndrome Type 2. Pediatr Pulmonol 2025; 60:e27437. [PMID: 39641223 DOI: 10.1002/ppul.27437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Affiliation(s)
| | - Jens Magnus Bernth Jensen
- Department of Clinical Immunology, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Molecular Medicine, AUH, Aarhus, Denmark
| | - Mia Glerup
- Department of Paediatrics and Adolescent Medicine, Aarhus, Denmark
| | - Signe Bødker Thim
- Department of Pediatrics and Adolescents Medicine, AUH, Danish Center of Pediatric Pulmonology and Allergology, Aarhus, Denmark
| | - Mette Holm
- Department of Paediatrics and Adolescent Medicine, Aarhus, Denmark
| | - Charlotte Olesen
- Hammel Neurorehabilitation Centre and University Research Clinic, Hammel, Denmark
| | - Henrik Hasle
- Pediatrics and Adolescent Health, AUH, Aarhus, Denmark
| | - Sune Rubak
- Department of Pediatrics and Adolescents Medicine, AUH, Danish Center of Pediatric Pulmonology and Allergology, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Henter JI, Sieni E, Eriksson J, Bergsten E, Hed Myrberg I, Canna SW, Coniglio ML, Cron RQ, Kernan KF, Kumar AR, Lehmberg K, Minoia F, Naqvi A, Ravelli A, Tang YM, Bottai M, Bryceson YT, Horne A, Jordan MB, Histiocyte Society. Diagnostic guidelines for familial hemophagocytic lymphohistiocytosis revisited. Blood 2024; 144:2308-2318. [PMID: 39046779 PMCID: PMC11619794 DOI: 10.1182/blood.2024025077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
ABSTRACT Current hemophagocytic lymphohistiocytosis 2004 (HLH-2004)-based diagnostic criteria for familial hemophagocytic lymphohistiocytosis (FHL) are based on expert opinion. Here, we performed a case-control study to test and possibly improve these criteria. We also developed 2 complementary expert opinion-based diagnostic strategies for FHL in patients with signs/symptoms suggestive of HLH, based on genetic and cellular cytotoxicity assays. The cases (N = 366) were children aged <16 years with verified familial and/or genetic FHL (n = 341) or Griscelli syndrome type 2 (n = 25); 276 from the HLH-94/HLH-2004 databases and 90 from the Italian HLH Registry. All fulfilled the HLH-94/HLH-2004 patient inclusion criteria. Controls were 374 children with systemic-onset juvenile idiopathic arthritis (sJIA) and 329 + 361 children in 2 cohorts with febrile infections that could be confused with HLH and sepsis, respectively. To provide complete data sets, multiple imputations were performed. The optimal model, based on 17 variables studied, revealed almost similar diagnostic thresholds as the existing criteria, with accuracy 99.1% (sensitivity 97.1%; specificity 99.5%); the original HLH-2004 criteria had accuracy 97.4% (sensitivity 99.0%; specificity 97.1%). Because cellular cytotoxicity assays here constitute a separate diagnostic strategy, HLH-2004 criteria without natural killer (NK)-cell function was also studied, which showed accuracy 99.0% (sensitivity, 96.2%; specificity, 99.5%). Thus, we conclude that the HLH-2004 criteria (without NK-cell function) have significant validity in their current form when tested against severe infections or sJIA. It is important to exclude underlying malignancies and atypical infections. In addition, complementary cellular and genetic diagnostic guidelines can facilitate necessary confirmation of clinical diagnosis.
Collapse
Affiliation(s)
- Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Elena Sieni
- Pediatric Hematology/Oncology Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Julia Eriksson
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Bergsten
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Ida Hed Myrberg
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Scott W. Canna
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Maria Luisa Coniglio
- Pediatric Hematology/Oncology Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Randy Q. Cron
- Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham Heersink School of Medicine, Children's of Alabama, Birmingham, AL
| | - Kate F. Kernan
- Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
| | - Ashish R. Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, Germany
| | - Francesca Minoia
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ahmed Naqvi
- Division of Hematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Angelo Ravelli
- IRCCS Istituto Giannina Gaslini, Genoa, and Università degli Studi di Genova, Genoa, Italy
| | - Yong-Min Tang
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Matteo Bottai
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yenan T. Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - AnnaCarin Horne
- Department of Pediatrics, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Division of Clinical Pediatrics, Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
| | - Michael B. Jordan
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Histiocyte Society
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Pediatric Hematology/Oncology Department, Meyer Children's Hospital IRCCS, Florence, Italy
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham Heersink School of Medicine, Children's of Alabama, Birmingham, AL
- Division of Pediatric Critical Care Medicine, Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, Germany
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Division of Hematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- IRCCS Istituto Giannina Gaslini, Genoa, and Università degli Studi di Genova, Genoa, Italy
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Clinical Pediatrics, Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
13
|
Maimaris J, Roa-Bautista A, Sohail M, Booth C, Cugno C, Chenchara L, Omran TB, Hacohen Y, Lim M, Gilmour K, Griffiths G, Rao K, Elfeky R, Kusters M. Griscelli Syndrome Type 2: Comprehensive Analysis of 149 New and Previously Described Patients with RAB27A Deficiency. J Clin Immunol 2024; 45:50. [PMID: 39607447 PMCID: PMC11604824 DOI: 10.1007/s10875-024-01842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Griscelli syndrome type 2 (GS2) is a rare, life-threatening immunodysregulatory disorder characterised by impaired cytotoxic activity leading to susceptibility to haemophagocytic lymphohistiocytosis (HLH) and hypopigmentation. We completed a literature review and analysis of clinical data of 149 patients with GS2 including 8 new patients.We identified three founder mutations which show diverse phenotypic profiles (RAB27A c.244 C > T, p.R82C, c.514_518delCAAGC, p.Q172NfsX2, c.550 C > T, p.R184X). The most common presentation was HLH (119/149, 80%), with high proportion of central nervous system involvement (68/149, 46%). Features of partial albinism were present in 105 of 149 cases (70%). Hypopigmentation can be absent in GS2 and should not exclude the diagnosis. Patients with biallelic protein truncating variants (PTV) were more likely to have systemic HLH (44/56, 79%) and partial albinism (45/56, 80%), in comparison to hypomorphic variants (9/41, 22%; 20/41, 49%). Patients with hypomorphic variants presented later (5.4 years cf. 0.4 years, p = < 0.0001) and were more likely to have isolated CNS HLH (2% cf. 42%, p = 0.001).Mortality was high in the cohort (50/149, 34%). Survival of cases post-HLH who underwent transplantation is superior to un-transplanted patients, suggesting adequate HLH control followed by early HSCT is highly beneficial. Mortality was reduced in HSCT recipients versus the un-transplanted group where follow-up data was available (14% compared to 58%).Asymptomatic cases identified through family history/genetic screening may benefit from pre-emptive HSCT, but access and development of robust functional testing are required. High mortality related to HLH remains concerning and emphasises the need for improved molecular characterisation and clinical prognostic factors to guide management decisions.
Collapse
Affiliation(s)
- Jesmeen Maimaris
- University College London UCL Institute of Immunity and Transplantation, London, UK.
- Paediatric Immunology Department, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, UK.
| | - Adriel Roa-Bautista
- Immunology department, Manchester University Hospital National Health Service (NHS) Foundation Trust, Manchester, UK
| | - Mahreen Sohail
- Paediatric department, Barts Hospital National Health Service (NHS) Foundation Trust, London, UK
| | - Claire Booth
- Paediatric Immunology Department, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Chiara Cugno
- Advanced Cell Therapy Core, Research Department, Sidra Medicine, Doha, Qatar
- Pediatric Oncology, Haematology and Bone Marrow Transplantation Unit, Sidra Medicine, Doha, Qatar
| | - Lenka Chenchara
- Pediatric Oncology, Haematology and Bone Marrow Transplantation Unit, Sidra Medicine, Doha, Qatar
| | - Tawfeg Ben Omran
- Genetics and Genomic Medicine Department, Sidra Medicine, Doha, Qatar
| | - Yael Hacohen
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, UK
| | - Ming Lim
- Children's Neurosciences, Evelina London Children's Hospital Neurosciences Department, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kimberly Gilmour
- Paediatric Immunology Department, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Gillian Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Kanchan Rao
- UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Reem Elfeky
- Paediatric Immunology Department, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maaike Kusters
- Paediatric Immunology Department, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
14
|
Yamazaki R, Ohno N. Myosin superfamily members during myelin formation and regeneration. J Neurochem 2024; 168:2264-2274. [PMID: 39136255 DOI: 10.1111/jnc.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 10/04/2024]
Abstract
Myelin is an insulator that forms around axons that enhance the conduction velocity of nerve fibers. Oligodendrocytes dramatically change cell morphology to produce myelin throughout the central nervous system (CNS). Cytoskeletal alterations are critical for the morphogenesis of oligodendrocytes, and actin is involved in cell differentiation and myelin wrapping via polymerization and depolymerization, respectively. Various protein members of the myosin superfamily are known to be major binding partners of actin filaments and have been intensively researched because of their involvement in various cellular functions, including differentiation, cell movement, membrane trafficking, organelle transport, signal transduction, and morphogenesis. Some members of the myosin superfamily have been found to play important roles in the differentiation of oligodendrocytes and in CNS myelination. Interestingly, each member of the myosin superfamily expressed in oligodendrocyte lineage cells also shows specific spatial and temporal expression patterns and different distributions. In this review, we summarize previous findings related to the myosin superfamily and discuss how these molecules contribute to myelin formation and regeneration by oligodendrocytes.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
15
|
Yu J, Meneses-Salas E, Johnson JL, Manenti S, Kbaich MA, Chen D, Askari K, He J, Shukla A, Shaji B, Gonzalez-Quintial R, Croker BA, Zhang J, Hoffman H, Kiosses WB, Hedrick C, Pestonjamasp K, Wineinger N, Baccala R, Catz SD. Defective endomembrane dynamics in Rab27a deficiency impairs nucleic acid sensing and cytokine secretion in immune cells. Cell Rep 2024; 43:114598. [PMID: 39126651 DOI: 10.1016/j.celrep.2024.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Endosomal Toll-like receptors (eTLRs) are essential for the sensing of non-self through RNA and DNA detection. Here, using spatiotemporal analysis of vesicular dynamics, super-resolution microscopy studies, and functional assays, we show that endomembrane defects associated with the deficiency of the small GTPase Rab27a cause delayed eTLR ligand recognition, defective early signaling, and impaired cytokine secretion. Rab27a-deficient neutrophils show retention of eTLRs in amphisomes and impaired ligand internalization. Extracellular signal-regulated kinase (ERK) signaling and β2-integrin upregulation, early responses to TLR7 and TLR9 ligands, are defective in Rab27a deficiency. CpG-stimulated Rab27a-deficient neutrophils present increased tumor necrosis factor alpha (TNF-α) secretion and decreased secretion of a selected group of mediators, including interleukin (IL)-10. In vivo, CpG-challenged Rab27a-null mice show decreased production of type I interferons (IFNs) and IFN-γ, and the IFN-α secretion defect is confirmed in Rab27a-null plasmacytoid dendritic cells. Our findings have significant implications for immunodeficiency, inflammation, and CpG adjuvant vaccination.
Collapse
Affiliation(s)
- Juan Yu
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elsa Meneses-Salas
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jennifer L Johnson
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Susanna Manenti
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mouad Ait Kbaich
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Danni Chen
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kasra Askari
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jing He
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aparna Shukla
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Binchu Shaji
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rosana Gonzalez-Quintial
- Department of Autoimmunity & Viral Immunopathology, San Diego BioMed Institute, San Diego, CA 92121, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - Jinzhong Zhang
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hal Hoffman
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - William B Kiosses
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Catherine Hedrick
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Kersi Pestonjamasp
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Wineinger
- Scripps Research Translational Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roberto Baccala
- Department of Autoimmunity & Viral Immunopathology, San Diego BioMed Institute, San Diego, CA 92121, USA
| | - Sergio D Catz
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Chiang SCC, Covill LE, Tesi B, Campbell TM, Schlums H, Nejati-Zendegani J, Mördrup K, Wood S, Theorell J, Sekine T, Al-Herz W, Akar HH, Belen FB, Chan MY, Devecioglu O, Aksu T, Ifversen M, Malinowska I, Sabel M, Unal E, Unal S, Introne WJ, Krzewski K, Gilmour KC, Ehl S, Ljunggren HG, Nordenskjöld M, Horne A, Henter JI, Meeths M, Bryceson YT. Efficacy of T-cell assays for the diagnosis of primary defects in cytotoxic lymphocyte exocytosis. Blood 2024; 144:873-887. [PMID: 38958468 PMCID: PMC11375501 DOI: 10.1182/blood.2024024499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
ABSTRACT Primary hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disorder associated with autosomal recessive variants in genes required for perforin-mediated lymphocyte cytotoxicity. A rapid diagnosis is crucial for successful treatment. Although defective cytotoxic T lymphocyte (CTL) function causes pathogenesis, quantification of natural killer (NK)-cell exocytosis triggered by K562 target cells currently represents a standard diagnostic procedure for primary HLH. We have prospectively evaluated different lymphocyte exocytosis assays in 213 patients referred for evaluation for suspected HLH and related hyperinflammatory syndromes. A total of 138 patients received a molecular diagnosis consistent with primary HLH. Assessment of Fc receptor-triggered NK-cell and T-cell receptor (TCR)-triggered CTL exocytosis displayed higher sensitivity and improved specificity for the diagnosis of primary HLH than routine K562 cell-based assays, with these assays combined providing a sensitivity of 100% and specificity of 98.3%. By comparison, NK-cell exocytosis after K562 target cell stimulation displayed a higher interindividual variability, in part explained by differences in NK-cell differentiation or large functional reductions after shipment. We thus recommend combined analysis of TCR-triggered CTL and Fc receptor-triggered NK-cell exocytosis for the diagnosis of patients with suspected familial HLH or atypical manifestations of congenital defects in lymphocyte exocytosis.
Collapse
MESH Headings
- Humans
- Exocytosis
- T-Lymphocytes, Cytotoxic/immunology
- Lymphohistiocytosis, Hemophagocytic/diagnosis
- Lymphohistiocytosis, Hemophagocytic/immunology
- Lymphohistiocytosis, Hemophagocytic/genetics
- Lymphohistiocytosis, Hemophagocytic/pathology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Adolescent
- Child
- Adult
- Female
- K562 Cells
- Male
- Child, Preschool
- Middle Aged
- Infant
- Young Adult
- Aged
- Sensitivity and Specificity
- Prospective Studies
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Samuel C. C. Chiang
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Laura E. Covill
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Tessa M. Campbell
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Heinrich Schlums
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jelve Nejati-Zendegani
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Karina Mördrup
- Unit of Pediatric Rheumatology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie Wood
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jakob Theorell
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Takuya Sekine
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Himmet Haluk Akar
- Department of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fatma Burcu Belen
- Department of Pediatrics, Baskent University Medical Faculty, Ankara, Turkey
| | - Mei Yoke Chan
- Haematology/Oncology Service, Department of Paediatric Subspecialties, Kandang Kerbau Women’s and Children’s Hospital, Singapore, Singapore
| | - Omer Devecioglu
- Department of Pediatric Hematology-Oncology, Istanbul Medical School, Istanbul, Turkey
| | - Tekin Aksu
- Division of Pediatric Hematology, Hacettepe University, Ankara, Turkey
| | - Marianne Ifversen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Iwona Malinowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Magnus Sabel
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Queen Silvia Children’s Hospital, Gothenburg, Sweden
| | - Ekrem Unal
- Faculty of Health Sciences, Medical Point Hospital, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Sule Unal
- Division of Pediatric Hematology, Hacettepe University, Ankara, Turkey
| | - Wendy J. Introne
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Kimberly C. Gilmour
- Immunology, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Gustaf Ljunggren
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - AnnaCarin Horne
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Marie Meeths
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T. Bryceson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Parisi X, Bledsoe JR. Discerning clinicopathological features of congenital neutropenia syndromes: an approach to diagnostically challenging differential diagnoses. J Clin Pathol 2024; 77:586-604. [PMID: 38589208 DOI: 10.1136/jcp-2022-208686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The congenital neutropenia syndromes are rare haematological conditions defined by impaired myeloid precursor differentiation or function. Patients are prone to severe infections with high mortality rates in early life. While some patients benefit from granulocyte colony-stimulating factor treatment, they may still face an increased risk of bone marrow failure, myelodysplastic syndrome and acute leukaemia. Accurate diagnosis is crucial for improved outcomes; however, diagnosis depends on familiarity with a heterogeneous group of rare disorders that remain incompletely characterised. The clinical and pathological overlap between reactive conditions, primary and congenital neutropenias, bone marrow failure, and myelodysplastic syndromes further clouds diagnostic clarity.We review the diagnostically useful clinicopathological and morphological features of reactive causes of neutropenia and the most common primary neutropenia disorders: constitutional/benign ethnic neutropenia, chronic idiopathic neutropenia, cyclic neutropenia, severe congenital neutropenia (due to mutations in ELANE, GFI1, HAX1, G6PC3, VPS45, JAGN1, CSF3R, SRP54, CLPB and WAS), GATA2 deficiency, Warts, hypogammaglobulinaemia, infections and myelokathexis syndrome, Shwachman-Diamond Syndrome, the lysosomal storage disorders with neutropenia: Chediak-Higashi, Hermansky-Pudlak, and Griscelli syndromes, Cohen, and Barth syndromes. We also detail characteristic cytogenetic and molecular factors at diagnosis and in progression to myelodysplastic syndrome/leukaemia.
Collapse
Affiliation(s)
- Xenia Parisi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jacob R Bledsoe
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Kögl T, Chang HF, Staniek J, Chiang SC, Thoulass G, Lao J, Weißert K, Dettmer-Monaco V, Geiger K, Manna PT, Beziat V, Momenilandi M, Tu SM, Keppler SJ, Pattu V, Wolf P, Kupferschmid L, Tholen S, Covill LE, Ebert K, Straub T, Groß M, Gather R, Engel H, Salzer U, Schell C, Maier S, Lehmberg K, Cornu TI, Pircher H, Shahrooei M, Parvaneh N, Elling R, Rizzi M, Bryceson YT, Ehl S, Aichele P, Ammann S. Patients and mice with deficiency in the SNARE protein SYNTAXIN-11 have a secondary B cell defect. J Exp Med 2024; 221:e20221122. [PMID: 38722309 PMCID: PMC11082451 DOI: 10.1084/jem.20221122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
SYNTAXIN-11 (STX11) is a SNARE protein that mediates the fusion of cytotoxic granules with the plasma membrane at the immunological synapses of CD8 T or NK cells. Autosomal recessive inheritance of deleterious STX11 variants impairs cytotoxic granule exocytosis, causing familial hemophagocytic lymphohistiocytosis type 4 (FHL-4). In several FHL-4 patients, we also observed hypogammaglobulinemia, elevated frequencies of naive B cells, and increased double-negative DN2:DN1 B cell ratios, indicating a hitherto unrecognized role of STX11 in humoral immunity. Detailed analysis of Stx11-deficient mice revealed impaired CD4 T cell help for B cells, associated with disrupted germinal center formation, reduced isotype class switching, and low antibody avidity. Mechanistically, Stx11-/- CD4 T cells exhibit impaired membrane fusion leading to reduced CD107a and CD40L surface mobilization and diminished IL-2 and IL-10 secretion. Our findings highlight a critical role of STX11 in SNARE-mediated membrane trafficking and vesicle exocytosis in CD4 T cells, important for successful CD4 T cell-B cell interactions. Deficiency in STX11 impairs CD4 T cell-dependent B cell differentiation and humoral responses.
Collapse
Affiliation(s)
- Tamara Kögl
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Hsin-Fang Chang
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Julian Staniek
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center— University of Freiburg, Freiburg, Germany
| | - Samuel C.C. Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, and Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
- Department of Medicine, Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gudrun Thoulass
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Jessica Lao
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Kristoffer Weißert
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Viviane Dettmer-Monaco
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Transfusion Medicine and Gene Therapy—University of Freiburg, Freiburg, Germany
| | - Kerstin Geiger
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Transfusion Medicine and Gene Therapy—University of Freiburg, Freiburg, Germany
| | - Paul T. Manna
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Vivien Beziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Szu-Min Tu
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Selina J. Keppler
- Division of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Varsha Pattu
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Philipp Wolf
- Department of Urology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Laurence Kupferschmid
- Institute of Medical Microbiology and Hygiene, University Medical Center, Freiburg, Germany
| | - Stefan Tholen
- Department of Pathology, Institute of Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Laura E. Covill
- Department of Medicine, Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Karolina Ebert
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Tobias Straub
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Miriam Groß
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Ruth Gather
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Helena Engel
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Ulrich Salzer
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center— University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Department of Pathology, Institute of Surgical Pathology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Sarah Maier
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana I. Cornu
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute for Transfusion Medicine and Gene Therapy—University of Freiburg, Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, Center for Microbiology and Hygiene, Medical Center—University of Freiburg, Freiburg, Germany
| | - Mohammad Shahrooei
- Department of Microbiology, Immunology, and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
- Dr. Shahrooei Laboratory, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Roland Elling
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty for Medicine, Center for Pediatrics and Adolescent Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center— University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Clinical Immunology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Yenan T. Bryceson
- Department of Medicine, Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Stephan Ehl
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Peter Aichele
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Sandra Ammann
- Faculty of Medicine, Institute for Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Soucy A, Potts C, Kaija A, Harrington A, McGilvrey M, Sutphin GL, Korstanje R, Tero B, Seeker J, Pinz I, Vary C, Ryzhova L, Liaw L. Effects of a Global Rab27a Null Mutation on Murine PVAT and Cardiovascular Function. Arterioscler Thromb Vasc Biol 2024; 44:1601-1616. [PMID: 38660803 PMCID: PMC11209784 DOI: 10.1161/atvbaha.124.320969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND RAB27A is a member of the RAS oncogene superfamily of GTPases and regulates cell secretory function. It, is expressed within blood vessels and perivascular adipose tissue. We hypothesized that loss of RAB27A would alter cardiovascular function. METHODS Body weight of Rab27aash mice was measured from 2 to 18 months of age, along with glucose resorption at 6 and 12 months of age and glucose sensitivity at 18 months of age. Body weight and cellular and molecular features of perivascular adipose tissue and aortic tissue were examined in a novel C57BL/6J Rab27a null strain. Analyses included morphometric quantification and proteomic analyses. Wire myography measured vasoreactivity, and echocardiography measured cardiac function. Comparisons across ages and genotypes were evaluated via 2-way ANOVA with multiple comparison testing. Significance for myography was determined via 4-parameter nonlinear regression testing. RESULTS Genome-wide association data linked rare human RAB27A variants with body mass index and glucose handling. Changes in glucose tolerance were observed in Rab27aash male mice at 18 months of age. In WT (wild-type) and Rab27a null male mice, body weight, adipocyte lipid area, and aortic area increased with age. In female mice, only body weight increased with age, independent of RAB27A presence. Protein signatures from male Rab27a null mice suggested greater associations with cardiovascular and metabolic phenotypes compared with female tissues. Wire myography results showed Rab27a null males exhibited increased vasoconstriction and reduced vasodilation at 8 weeks of age. Rab27a null females exhibited increased vasoconstriction and vasodilation at 20 weeks of age. Consistent with these vascular changes, male Rab27a null mice experienced age-related cardiomyopathy, with severe differences observed by 21 weeks of age. CONCLUSIONS Global RAB27A loss impacted perivascular adipose tissue and thoracic aorta proteomic signatures, altered vasocontractile responses, and decreased left ventricular ejection fraction in mice.
Collapse
Affiliation(s)
- Ashley Soucy
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| | - Christian Potts
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Abigail Kaija
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Anne Harrington
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Marissa McGilvrey
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| | - George L. Sutphin
- The Jackson Laboratory, Bar Harbor, ME
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ (current affiliation)
| | - Ron Korstanje
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
- The Jackson Laboratory, Bar Harbor, ME
| | - Benjamin Tero
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Jacob Seeker
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Ilka Pinz
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| | - Calvin Vary
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| | - Larisa Ryzhova
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Lucy Liaw
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| |
Collapse
|
20
|
Elgaali E, Mezzavilla M, Ahmed I, Elanbari M, Ali A, Abdelaziz G, Fakhro KA, Saleh A, Ben-Omran T, Almulla N, Cugno C. Genetic background of primary and familial HLH in Qatar: registry data and population study. Front Pediatr 2024; 12:1326489. [PMID: 38808104 PMCID: PMC11130942 DOI: 10.3389/fped.2024.1326489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
Background Familial hemophagocytic lymphohistiocytosis (FHLH) is an inherited life-threatening disease. Five types are identified, with the addition of congenital immunodeficiency syndromes in which HLH is a typical manifestation. The literature on this disease is very scarce in the Middle East, with only a few scattered reports. Methods We report detailed demographic, clinical, and genomic data from 28 patients diagnosed with primary and familial HLH over the last decade in Qatar. An evaluation was performed of allele frequencies of deleterious variants from 12 primary and familial HLH causative genes on the Qatar Genome Programme (QGP) cohort of 14,669 Qatari individuals. Results The genetic diagnosis was obtained in 15 patients, and four novel mutations in Perforin 1 (PRF1), UNC13D, LYST, and RAB27A genes were found. We identified 22,945 low/high/moderate/modifier impact variants significantly enriched in the QGP in those 12 genes. The variants rs1271079313 in PRF1 and rs753966933 in RAB27A found in our patient cohort were significantly more prevalent in the QGP compared to the Genome Aggregation Database (gnomAD) database, with a high carrier frequency in the Qatari population. Conclusions We established the first primary and familial HLH Registry in the Gulf Region and identified novel possibly pathogenic variants present at higher frequency in the Qatari population, which could be used for screening purposes. Raising awareness about primary and familial HLH and implementing screening activities in the Qatari highly inbred population could stem into more comprehensive premarital and prenatal evaluations and faster diagnosis.
Collapse
Affiliation(s)
- Elkhansa Elgaali
- Pediatric Hematology and Oncology Department, Sidra Medicine, Doha, Qatar
| | | | - Ikhlak Ahmed
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Aesha Ali
- Research Department, Sidra Medicine, Doha, Qatar
| | | | | | - Ayman Saleh
- Pediatric Hematology and Oncology Department, Sidra Medicine, Doha, Qatar
| | - Tawfeg Ben-Omran
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar
| | - Naima Almulla
- Pediatric Hematology and Oncology Department, Sidra Medicine, Doha, Qatar
| | - Chiara Cugno
- Pediatric Hematology and Oncology Department, Sidra Medicine, Doha, Qatar
- Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
21
|
Xu S, Cao B, Xuan G, Xu S, An Z, Zhu C, Li L, Tang C. Function and regulation of Rab GTPases in cancers. Cell Biol Toxicol 2024; 40:28. [PMID: 38695990 PMCID: PMC11065922 DOI: 10.1007/s10565-024-09866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The Rab small GTPases are characterized by the distinct intracellular localization and modulate various endocytic, transcytic and exocytic transport pathways. Rab proteins function as scaffolds that connect signaling pathways and intracellular membrane trafficking processes through the recruitment of effectors, such as tethering factors, phosphatases, motors and kinases. In different cancers, Rabs play as either an onco-protein or a tumor suppressor role, highly dependending on the context. The molecular mechanistic research has revealed that Rab proteins are involved in cancer progression through influences on migration, invasion, metabolism, exosome secretion, autophagy, and drug resistance of cancer cells. Therefore, targeting Rab GTPases to recover the dysregulated vesicle transport systems may provide potential strategy to restrain cancer progression. In this review, we discuss the regulation of Rab protein level and activity in modulating pathways involved in tumor progression, and propose that Rab proteins may serve as a prognostic factor in different cancers.
Collapse
Affiliation(s)
- Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ge Xuan
- Department of Gynaecology, Ningbo Women and Children's Hospital, No.339 Liuting Road, Ningbo, 315012, China
| | - Shu Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zihao An
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chongying Zhu
- The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lin Li
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China.
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
22
|
Medlyn MJ, Maeder E, Bradley C, Phatarpekar P, Ham H, Billadeau DD. MADD regulates natural killer cell degranulation through Rab27a activation. J Cell Sci 2024; 137:jcs261582. [PMID: 38506245 PMCID: PMC11058345 DOI: 10.1242/jcs.261582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Natural killer (NK) cells have the ability to lyse other cells through the release of lytic granules (LGs). This is in part mediated by the small GTPase Rab27a, which was first identified to play a crucial role in degranulation through the study of individuals harboring mutations in the gene encoding Rab27a. However, the guanine nucleotide exchange factor (GEF) regulating the activation of Rab27a in cytotoxic lymphocytes was unknown. Here, we show that knockout of MADD significantly decreased the levels of GTP-bound Rab27a in both resting and stimulated NK cells, and MADD-deficient NK cells and CD8+ T cells displayed severely reduced degranulation and cytolytic ability, similar to that seen with Rab27a deficiency. Although MADD colocalized with Rab27a on LGs and was enriched at the cytolytic synapse, the loss of MADD did not impact Rab27a association with LGs nor their recruitment to the cytolytic synapse. Together, our results demonstrate an important role for MADD in cytotoxic lymphocyte killing.
Collapse
Affiliation(s)
- Michael J. Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Easton Maeder
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Claire Bradley
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel D. Billadeau
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
23
|
Erol ÖD, Şenocak Ş, Aerts-Kaya F. The Role of Rab GTPases in the development of genetic and malignant diseases. Mol Cell Biochem 2024; 479:255-281. [PMID: 37060515 DOI: 10.1007/s11010-023-04727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Small GTPases have been shown to play an important role in several cellular functions, including cytoskeletal remodeling, cell polarity, intracellular trafficking, cell-cycle, progression and lipid transformation. The Ras-associated binding (Rab) family of GTPases constitutes the largest family of GTPases and consists of almost 70 known members of small GTPases in humans, which are known to play an important role in the regulation of intracellular membrane trafficking, membrane identity, vesicle budding, uncoating, motility and fusion of membranes. Mutations in Rab genes can cause a wide range of inherited genetic diseases, ranging from neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD) to immune dysregulation/deficiency syndromes, like Griscelli Syndrome Type II (GS-II) and hemophagocytic lymphohistiocytosis (HLH), as well as a variety of cancers. Here, we provide an extended overview of human Rabs, discussing their function and diseases related to Rabs and Rab effectors, as well as focusing on effects of (aberrant) Rab expression. We aim to underline their importance in health and the development of genetic and malignant diseases by assessing their role in cellular structure, regulation, function and biology and discuss the possible use of stem cell gene therapy, as well as targeting of Rabs in order to treat malignancies, but also to monitor recurrence of cancer and metastasis through the use of Rabs as biomarkers. Future research should shed further light on the roles of Rabs in the development of multifactorial diseases, such as diabetes and assess Rabs as a possible treatment target.
Collapse
Affiliation(s)
- Özgür Doğuş Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Şimal Şenocak
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey.
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey.
| |
Collapse
|
24
|
Marsh RA. Salvage Therapy and Allogeneic Hematopoietic Cell Transplantation for the Severe Cytokine Storm Syndrome of Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:611-622. [PMID: 39117843 DOI: 10.1007/978-3-031-59815-9_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) can be considered as a severe cytokine storm syndrome disorder. HLH typically manifests as a life-threatening inflammatory syndrome characterized by fevers, cytopenias, hepatosplenomegaly, and various other accompanying manifestations such as coagulopathy, hepatitis or liver failure, seizures or altered mental status, and even multi-organ failure. Standard up-front treatments do not always bring HLH into remission or maintain adequate response, and salvage or alternative therapies are often needed. For patients with genetic diseases that cause HLH, curative allogeneic hematopoietic cell transplantation is usually offered to prevent future episodes of life-threatening HLH. Here, we will discuss the options and approaches for salvage therapy and hematopoietic cell transplantation for patients with HLH.
Collapse
Affiliation(s)
- Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
25
|
Sekine T, Galgano D, Casoni GP, Meeths M, Cron RQ, Bryceson YT. CD8 + T Cell Biology in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:129-144. [PMID: 39117812 DOI: 10.1007/978-3-031-59815-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8+ T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8+ T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8+ T cells may contribute to or drive disease, at least in part through release of IFN-γ. Intriguingly, CD8+ T cells and NK cells may act differentially in severe hyperinflammatory diseases such as HLH. We also discuss how CD8+ T cells may promote or drive pathology in other cytokine release syndromes (CSS). Moreover, we review the molecular mechanisms underpinning CD8+ T cell-mediated lymphocyte cytotoxicity, key to the development of familial HLH. Together, recent insights to the pathophysiology of CSS in general and HLH in particular are providing promising new therapeutic targets.
Collapse
Affiliation(s)
- Takuya Sekine
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Donatella Galgano
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giovanna P Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Randy Q Cron
- Division of Pediatric Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
26
|
Reid W, Romberg N. Inborn Errors of Immunity and Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:185-207. [PMID: 39117816 DOI: 10.1007/978-3-031-59815-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Inborn errors of immunity (IEI) are a diverse and growing category of more than 430 chronic disorders that share susceptibilities to infections. Whether the result of a genetic lesion that causes defective granule-dependent cytotoxicity, excessive lymphoproliferation, or an overwhelming infection represents a unique antigenic challenge, IEIs can display a proclivity for cytokine storm syndrome (CSS) development. This chapter provides an overview of CSS pathophysiology as it relates to IEIs. For each IEI, the immunologic defect and how it promotes or discourages CSS phenomena are reviewed. The IEI-associated molecular defects in pathways that are postulated to be critical to CSS physiology (i.e., toll-like receptors, T regulatory cells, the IL-12/IFNγ axis, IL-6) and, whenever possible, review strategies for treating CSS in IEI patients with molecularly directed therapies are highlighted.
Collapse
Affiliation(s)
- Whitney Reid
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Romberg
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Karageorgos S, Platt AS, Bassiri H. Genetics of Primary Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:75-101. [PMID: 39117809 DOI: 10.1007/978-3-031-59815-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) constitutes a rare, potentially life-threatening hyperinflammatory immune dysregulation syndrome that can present with a variety of clinical signs and symptoms, including fever, hepatosplenomegaly, and abnormal laboratory and immunological findings such as cytopenias, hyperferritinemia, hypofibrinogenemia, hypertriglyceridemia, elevated blood levels of soluble CD25 (interleukin (IL)-2 receptor α-chain), or diminished natural killer (NK)-cell cytotoxicity (reviewed in detail in Chapter 11 of this book). While HLH can be triggered by an inciting event (e.g., infections), certain monogenic causes have been associated with a significantly elevated risk of development of HLH, or recurrence of HLH in patients who have recovered from their disease episode. These monogenic predisposition syndromes are variably referred to as "familial" (FHL) or "primary" HLH (henceforth referred to as "pHLH") and are the focus of this chapter. Conversely, secondary HLH (sHLH) often occurs in the absence of monogenic etiologies that are commonly associated with pHLH and can be triggered by infections, malignancies, or rheumatological diseases; these triggers and the genetics associated with sHLH are discussed in more detail in other chapters in this book.
Collapse
Affiliation(s)
- Spyridon Karageorgos
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna S Platt
- Roberts Individualized Medical Genetics Center and Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hamid Bassiri
- Immune Dysregulation Program and Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Grom AA. Genetics of Macrophage Activation Syndrome in Systemic Juvenile Idiopathic Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:121-126. [PMID: 39117811 DOI: 10.1007/978-3-031-59815-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Macrophage activation syndrome (MAS) is a life-threatening episode of hyperinflammation driven by excessive activation and expansion of T cells (mainly CD8) and hemophagocytic macrophages producing proinflammatory cytokines. MAS has been reported in association with almost every rheumatic disease, but it is by far most common in systemic juvenile idiopathic arthritis (SJIA). Clinically, MAS is similar to familial or primary hemophagocytic lymphohistiocytosis (pHLH), a group of rare autosomal recessive disorders linked to various genetic defects all affecting the perforin-mediated cytolytic pathway employed by NK cells and cytotoxic CD8 T lymphocytes. Decreased cytolytic activity in pHLH patients leads to prolonged survival of target cells associated with increased production of proinflammatory cytokines that overstimulate macrophages. The resulting cytokine storm is believed to be responsible for the frequently fatal multiorgan system failure seen in MAS. Whole exome sequencing as well as targeted sequencing of pHLH-associated genes in patients with SJIA-associated MAS demonstrated increased "burden" of rare protein-altering variants affecting the cytolytic pathway compared to healthy controls, suggesting that as in pHLH, genetic variability in the cytolytic pathway contributes to MAS predisposition. Functional studies of some of the novel variants have shown that even in a heterozygous state, their presence partially reduces cytolytic activity that may lead to increased cytokine production.
Collapse
Affiliation(s)
- Alexei A Grom
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
29
|
Henter JI, von Bahr Greenwood T. Etoposide Therapy of Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:525-551. [PMID: 39117837 DOI: 10.1007/978-3-031-59815-9_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Etoposide has revolutionized the treatment of primary as well as secondary hemophagocytic lymphohistiocytosis (HLH), and it is, together with corticosteroids, the most widely used therapy for HLH. In the early 1980s, long-term survival in primary HLH was <5% but with the etoposide-/dexamethasone-based protocols HLH-94 and HLH-2004, in combination with stem cell transplantation, 5-year survival increased dramatically to around 60% in primary HLH, and based on analyses from the HLH-2004 study, there is likely room for further improvement. Biologically, etoposide administration results in potent selective deletion of activated T cells as well as efficient suppression of inflammatory cytokine production. Moreover, etoposide has also been reported to promote programmed cell death (apoptosis) rather than proinflammatory lytic cell death (pyroptosis), conceivably ameliorating subsequent systemic inflammation, i.e., a treatment very suitable for cytokine storm syndromes (CSS). The combination of etoposide and corticosteroids may also be beneficial in cases of severe or refractory secondary HLH (sHLH) with imminent organ failure, such as infection-associated HLH caused by Epstein-Barr virus (EBV) or malignancy-triggered HLH. In CSS associated with rheumatic diseases (macrophage activation syndrome, MAS or MAS-HLH), etoposide is currently used as second- or third-line therapy. Recent studies suggest that etoposide perhaps should be part of an aggressive therapeutic intervention for patients with severe refractory or relapsing MAS, in particular if there is CNS involvement. Importantly, awareness of sHLH must be further increased since treatment of sHLH is often delayed, thereby missing the window of opportunity for a timely, effective, and potentially life-saving HLH-directed treatment.
Collapse
Affiliation(s)
- Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Astrid Lindgren Children's Hospital, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Tatiana von Bahr Greenwood
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Astrid Lindgren Children's Hospital, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
30
|
Bloch C, Jais JP, Gil M, Boubaya M, Lepelletier Y, Bader-Meunier B, Mahlaoui N, Garcelon N, Lambotte O, Launay D, Larroche C, Lazaro E, Liffermann F, Lortholary O, Michel M, Michot JM, Morel P, Cheminant M, Suarez F, Terriou L, Urbanski G, Viallard JF, Alcais A, Fischer A, de Saint Basile G, Hermine O. Severe adult hemophagocytic lymphohistiocytosis (HLHa) correlates with HLH-related gene variants. J Allergy Clin Immunol 2024; 153:256-264. [PMID: 37678575 DOI: 10.1016/j.jaci.2023.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The contribution of genetic factors to the severity of adult hemophagocytic lymphohistiocytosis (HLHa) remains unclear. OBJECTIVE We sought to assess a potential link between HLHa outcomes and HLH-related gene variants. METHODS Clinical characteristics of 130 HLHa patients (age ≥ 18 years and HScore ≥ 169) and genotype of 8 HLH-related genes (LYST, PRF1, UNC13-D, STX11, STXBP2, RAB27A, XIAP, and SAP) were collected. A total of 34 variants found in only 6 genes were selected on the basis of their frequency and criteria predicted to impair protein function. Severity was defined by refractory disease to HLH treatment, death, or transfer to an intensive care unit. RESULTS HLHa-associated diseases (ADs) were neoplasia (n = 49 [37.7%]), autoimmune/inflammatory disease (n = 33 [25.4%]), or idiopathic when no AD was identified (n = 48 [36.9%]). Infectious events occurred in 76 (58.5%) patients and were equally distributed in all ADs. Severe and refractory HLHa were observed in 80 (61.5%) and 64 (49.2%) patients, respectively. HScore, age, sex ratio, AD, and infectious events showed no significant association with HLHa severity. Variants were identified in 71 alleles and were present in 56 (43.1%) patients. They were distributed as follows: 44 (34.4%), 9 (6.9%), and 3 (2.3%) patients carrying 1, 2, and 3 variant alleles, respectively. In a logistic regression model, only the number of variants was significantly associated with HLHa severity (1 vs 0: 3.86 [1.73-9.14], P = .0008; 2-3 vs 0: 29.4 [3.62-3810], P = .0002) and refractoriness (1 vs 0: 2.47 [1.17-5.34], P = .018; 2-3 vs 0: 13.2 [2.91-126.8], P = .0003). CONCLUSIONS HLH-related gene variants may be key components to the severity and refractoriness of HLHa.
Collapse
Affiliation(s)
- Coralie Bloch
- Clinical Research Unit, Avicenne University Hospital, AP-HP, Bobigny, France; Paris 13 University, Sorbonne Paris Cité, Paris, France; Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France.
| | - Jean Philippe Jais
- Imagine Institute, Université Paris Cité, Paris, France; Biostatistic Unit, Necker University Hospital, AP-HP, Paris, France; Human Genetics of Infectious Diseases: Complex Predisposition, INSERM UMR1163, Paris, France
| | - Marine Gil
- Imagine Institute, Université Paris Cité, Paris, France
| | - Marouane Boubaya
- Clinical Research Unit, Avicenne University Hospital, AP-HP, Bobigny, France
| | - Yves Lepelletier
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; Imagine Institute, Université Paris Cité, Paris, France
| | - Brigitte Bader-Meunier
- Imagine Institute, Université Paris Cité, Paris, France; Department of Pediatric Immunology and Rheumatology, Necker University Hospital, AP-HP, Paris, France
| | - Nizar Mahlaoui
- French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Department of Pediatric Immunology and Rheumatology, Necker University Hospital, AP-HP, Paris, France
| | | | - Olivier Lambotte
- University Paris Saclay, AP-HP, Hôpital Bicêtre, IMVAHB UMR1184, INSERM, CEA, Le Kremlin Bicêtre, France
| | - David Launay
- Université de Lille, CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France, Lille, France; INSERM INFINITE U1286, Lille, France
| | - Claire Larroche
- Internal Medicine Unit, Avicenne Hospital, AP-HP, Bobigny, France
| | - Estibaliz Lazaro
- Internal Medicine Department, Bordeaux Hospital University, Bordeaux, France; CNRS-UMR 5164 Immuno ConcEpT, Bordeaux, France
| | - Francois Liffermann
- Service de medecine interne-hematologie, Centre hospitalier de Dax, Dax, France
| | - Olivier Lortholary
- French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Service de Maladies Infectieuses et Tropicales, Centre d'Infectiologie Necker Pasteur, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Marc Michel
- Department of Internal Medicine, Centre de Référence maladies rares sur les Cytopénies Auto-Immunes de l'adulte, Hôpitaux Universitaires Henri Mondor, AP-HP, Université Paris-Est Créteil, Créteil, France
| | - Jean-Marie Michot
- Gustave Roussy, University Paris Saclay, Drug Development Department, Villejuif, France
| | - Pierre Morel
- Service d'Hématologie Clinique, Hôpital Schaffner de Lens, Lens Cedex, France
| | - Morgane Cheminant
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Clinical Hematology, Necker University Hospital, AP-HP, Paris, France
| | - Felipe Suarez
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Clinical Hematology, Necker University Hospital, AP-HP, Paris, France
| | - Louis Terriou
- Université de Lille, CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France, Lille, France; INSERM INFINITE U1286, Lille, France
| | - Geoffrey Urbanski
- Department of Internal Medicine and Clinical Immunology, University Hospital, Angers, France; MitoLab Team, MITOVASC Institute, UMR CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | | | - Alexandre Alcais
- Imagine Institute, Université Paris Cité, Paris, France; Biostatistic Unit, Necker University Hospital, AP-HP, Paris, France; Human Genetics of Infectious Diseases: Complex Predisposition, INSERM UMR1163, Paris, France
| | - Alain Fischer
- French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Department of Pediatric Immunology and Rheumatology, Necker University Hospital, AP-HP, Paris, France; Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM UMR1163, Paris, France; Necker University Hospital, AP-HP, Paris, France; College de France, Paris, France
| | - Geneviève de Saint Basile
- French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM UMR1163, Paris, France
| | - Olivier Hermine
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, INSERM UMR1163/CNRS URL 8254, Paris, France; French National Center for Primary Immunodeficiencies, Necker University Hospital, AP-HP, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; Clinical Hematology, Necker University Hospital, AP-HP, Paris, France.
| |
Collapse
|
31
|
Tsilifis C, Slatter MA, Gennery AR. Too much of a good thing: a review of primary immune regulatory disorders. Front Immunol 2023; 14:1279201. [PMID: 38022498 PMCID: PMC10645063 DOI: 10.3389/fimmu.2023.1279201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Primary immune regulatory disorders (PIRDs) are inborn errors of immunity caused by a loss in the regulatory mechanism of the inflammatory or immune response, leading to impaired immunological tolerance or an exuberant inflammatory response to various stimuli due to loss or gain of function mutations. Whilst PIRDs may feature susceptibility to recurrent, severe, or opportunistic infection in their phenotype, this group of syndromes has broadened the spectrum of disease caused by defects in immunity-related genes to include autoimmunity, autoinflammation, lymphoproliferation, malignancy, and allergy; increasing focus on PIRDs has thus redefined the classical 'primary immunodeficiency' as one aspect of an overarching group of inborn errors of immunity. The growing number of genetic defects associated with PIRDs has expanded our understanding of immune tolerance mechanisms and prompted identification of molecular targets for therapy. However, PIRDs remain difficult to recognize due to incomplete penetrance of their diverse phenotype, which may cross organ systems and present to multiple clinical specialists prior to review by an immunologist. Control of immune dysregulation with immunosuppressive therapies must be balanced against the enhanced infective risk posed by the underlying defect and accumulated end-organ damage, posing a challenge to clinicians. Whilst allogeneic hematopoietic stem cell transplantation may correct the underlying immune defect, identification of appropriate patients and timing of transplant is difficult. The relatively recent description of many PIRDs and rarity of individual genetic entities that comprise this group means data on natural history, clinical progression, and treatment are limited, and so international collaboration will be needed to better delineate phenotypes and the impact of existing and potential therapies. This review explores pathophysiology, clinical features, current therapeutic strategies for PIRDs including cellular platforms, and future directions for research.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary A. Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R. Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
32
|
Lederer I, Shahid B, Dao U, Brogdon A, Byrtus H, Delva M, Deva O, Hatfield P, Hertz M, Justice J, Mavor S, Pilbeam E, Rice Z, Simpson A, Temar H, Wynn R, Xhangolli J, Graves C, Seidel H. A frameshift variant in the melanophilin gene is associated with loss of pigment from shed skin in ball pythons ( Python regius ). MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000896. [PMID: 37637270 PMCID: PMC10448248 DOI: 10.17912/micropub.biology.000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
Melanophilin is a myosin adaptor required for transporting the pigment melanin within cells. Loss of melanophilin in fish, birds, and mammals causes pigmentation defects, but little is known about the role of melanophilin in non-avian reptiles. Here we show that a frameshift in the melanophilin gene in ball python ( P. regius ) is associated with loss of pigment from shed skin. This variant is predicted to remove the myosin-binding domain of melanophilin and thereby impair transport of melanin-containing organelles. Our study represents the first description of a melanophilin variant in a non-avian reptile and confirms the role of melanophilin across vertebrates.
Collapse
|
33
|
Ekal L, Alqahtani AMS, Schuldiner M, Zalckvar E, Hettema EH, Ayscough KR. Spindle Position Checkpoint Kinase Kin4 Regulates Organelle Transport in Saccharomyces cerevisiae. Biomolecules 2023; 13:1098. [PMID: 37509134 PMCID: PMC10377308 DOI: 10.3390/biom13071098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Membrane-bound organelles play important, frequently essential, roles in cellular metabolism in eukaryotes. Hence, cells have evolved molecular mechanisms to closely monitor organelle dynamics and maintenance. The actin cytoskeleton plays a vital role in organelle transport and positioning across all eukaryotes. Studies in the budding yeast Saccharomyces cerevisiae (S. cerevisiae) revealed that a block in actomyosin-dependent transport affects organelle inheritance to daughter cells. Indeed, class V Myosins, Myo2, and Myo4, and many of their organelle receptors, have been identified as key factors in organelle inheritance. However, the spatiotemporal regulation of yeast organelle transport remains poorly understood. Using peroxisome inheritance as a proxy to study actomyosin-based organelle transport, we performed an automated genome-wide genetic screen in S. cerevisiae. We report that the spindle position checkpoint (SPOC) kinase Kin4 and, to a lesser extent, its paralog Frk1, regulates peroxisome transport, independent of their role in the SPOC. We show that Kin4 requires its kinase activity to function and that both Kin4 and Frk1 protect Inp2, the peroxisomal Myo2 receptor, from degradation in mother cells. In addition, vacuole inheritance is also affected in kin4/frk1-deficient cells, suggesting a common regulatory mechanism for actin-based transport for these two organelles in yeast. More broadly our findings have implications for understanding actomyosin-based transport in cells.
Collapse
Affiliation(s)
- Lakhan Ekal
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Abdulaziz M S Alqahtani
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ewald H Hettema
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | |
Collapse
|
34
|
Chinnici A, Beneforti L, Pegoraro F, Trambusti I, Tondo A, Favre C, Coniglio ML, Sieni E. Approaching hemophagocytic lymphohistiocytosis. Front Immunol 2023; 14:1210041. [PMID: 37426667 PMCID: PMC10324660 DOI: 10.3389/fimmu.2023.1210041] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Hemophagocytic Lymphohistiocytosis (HLH) is a rare clinical condition characterized by sustained but ineffective immune system activation, leading to severe and systemic hyperinflammation. It may occur as a genetic or sporadic condition, often triggered by an infection. The multifaceted pathogenesis results in a wide range of non-specific signs and symptoms, hampering early recognition. Despite a great improvement in terms of survival in the last decades, a considerable proportion of patients with HLH still die from progressive disease. Thus, prompt diagnosis and treatment are crucial for survival. Faced with the complexity and the heterogeneity of syndrome, expert consultation is recommended to correctly interpret clinical, functional and genetic findings and address therapeutic decisions. Cytofluorimetric and genetic analysis should be performed in reference laboratories. Genetic analysis is mandatory to confirm familial hemophagocytic lymphohistiocytosis (FHL) and Next Generation Sequencing is increasingly adopted to extend the spectrum of genetic predisposition to HLH, though its results should be critically discussed with specialists. In this review, we critically revise the reported laboratory tools for the diagnosis of HLH, in order to outline a comprehensive and widely available workup that allows to reduce the time between the clinical suspicion of HLH and its final diagnosis.
Collapse
Affiliation(s)
- Aurora Chinnici
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Linda Beneforti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Francesco Pegoraro
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Irene Trambusti
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Claudio Favre
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Maria Luisa Coniglio
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Elena Sieni
- Department of Pediatric Hematology Oncology, Meyer Children’s Hospital IRCCS, Florence, Italy
| |
Collapse
|
35
|
Brauer N, Maruta Y, Lisci M, Strege K, Oschlies I, Nakamura H, Böhm S, Lehmberg K, Brandhoff L, Ehl S, Parvaneh N, Klapper W, Fukuda M, Griffiths GM, Hennies HC, Niehues T, Ammann S. Immunodeficiency with susceptibility to lymphoma with complex genotype affecting energy metabolism ( FBP1, ACAD9) and vesicle trafficking (RAB27A). Front Immunol 2023; 14:1151166. [PMID: 37388727 PMCID: PMC10303925 DOI: 10.3389/fimmu.2023.1151166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction Inborn errors of immunity (IEI) are characterized by a dysfunction of the immune system leading to increased susceptibility to infections, impaired immune regulation and cancer. We present a unique consanguineous family with a history of Hodgkin lymphoma, impaired EBV control and a late onset hemophagocytic lymphohistiocytosis (HLH). Methods and results Overall, family members presented with variable impairment of NK cell and cytotoxic T cell degranulation and cytotoxicity. Exome sequencing identified homozygous variants in RAB27A, FBP1 (Fructose-1,6-bisphosphatase 1) and ACAD9 (Acyl-CoA dehydrogenase family member 9). Variants in RAB27A lead to Griscelli syndrome type 2, hypopigmentation and HLH predisposition. Discussion Lymphoma is frequently seen in patients with hypomorphic mutations of genes predisposing to HLH. We hypothesize that the variants in FBP1 and ACAD9 might aggravate the clinical and immune phenotype, influence serial killing and lytic granule polarization by CD8 T cells. Understanding of the interplay between the multiple variants identified by whole exome sequencing (WES) is essential for correct interpretation of the immune phenotype and important for critical treatment decisions.
Collapse
Affiliation(s)
- Nina Brauer
- Department of Pediatrics, Helios Klinikum, Krefeld, Germany
| | - Yuto Maruta
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Miriam Lisci
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Katharina Strege
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Ilske Oschlies
- Department of Pathology, Haematopathology Section and Lymph Node Registry, University Hospitals Schleswig-Holstein, Christian-Albrecht University, Kiel, Germany
| | - Hikari Nakamura
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Svea Böhm
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Leon Brandhoff
- Cologne Center for Genomics, University Hospital Cologne, Cologne, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Wolfram Klapper
- Department of Pathology, Haematopathology Section and Lymph Node Registry, University Hospitals Schleswig-Holstein, Christian-Albrecht University, Kiel, Germany
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Gillian M. Griffiths
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Hans Christian Hennies
- Cologne Center for Genomics, University Hospital Cologne, Cologne, Germany
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Tim Niehues
- Department of Pediatrics, Helios Klinikum, Krefeld, Germany
| | - Sandra Ammann
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
37
|
Chang HF, Schirra C, Pattu V, Krause E, Becherer U. Lytic granule exocytosis at immune synapses: lessons from neuronal synapses. Front Immunol 2023; 14:1177670. [PMID: 37275872 PMCID: PMC10233144 DOI: 10.3389/fimmu.2023.1177670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Regulated exocytosis is a central mechanism of cellular communication. It is not only the basis for neurotransmission and hormone release, but also plays an important role in the immune system for the release of cytokines and cytotoxic molecules. In cytotoxic T lymphocytes (CTLs), the formation of the immunological synapse is required for the delivery of the cytotoxic substances such as granzymes and perforin, which are stored in lytic granules and released via exocytosis. The molecular mechanisms of their fusion with the plasma membrane are only partially understood. In this review, we discuss the molecular players involved in the regulated exocytosis of CTL, highlighting the parallels and differences to neuronal synaptic transmission. Additionally, we examine the strengths and weaknesses of both systems to study exocytosis.
Collapse
|
38
|
Khorram E, Tabatabaiefar MA, Yaghini O, Khorrami M, Yazdani V, Fakhr F, Amini M, Kheirollahi M. Griscelli syndrome type 1: a novel pathogenic variant, and review of literature. Mol Genet Genomics 2023; 298:485-493. [PMID: 36651988 DOI: 10.1007/s00438-022-01971-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/28/2022] [Indexed: 01/19/2023]
Abstract
Griscelli syndrome type 1 (GS1) is a rare inherited autosomal recessive disease caused by a deleterious variant in the MYO5A gene and characterized by general hypopigmentation, neurological symptoms, motor disability, hypotonia, and vision abnormality. Only nine pathogenic variants in the MYO5A gene have been confirmed in association with the GS1. All of the reported pathogenic variants are truncating. Herein, two siblings from a consanguineous Iranian family with abnormal pigmentation and neurological symptoms were referred for genetic counseling. Whole-exome sequencing (WES) revealed a novel homozygous truncating variant c.1633_1634delAA (p.Asn545Glnfs*10) in the MYO5A gene, which was completely co-segregated with the phenotype in all affected and unaffected family members. Computational analysis and protein modeling demonstrated the deleterious effects of this variant on the structure and function of the protein. The variant, according to ACMG guidelines, was classified as pathogenic. Besides the novelty of the identified variant, our patients manifested more severe clinical symptoms and presented distal hyperlaxity in all four limbs, which was a new finding. In conclusion, we expanded the mutational and phenotypic spectrum of the GS1. Moreover, by studying clinical manifestations in all molecularly confirmed reported cases, provided a comprehensive overview of clinical presentation, and attempted to find a genotype-phenotype correlation.
Collapse
Affiliation(s)
- Erfan Khorram
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Yaghini
- Department of Pediatrics, School of Medicine, Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Khorrami
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Yazdani
- Department of Biology, Islamic Azad University, East Tehran Branch, Tehran, Iran
| | - Fatemeh Fakhr
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoomeh Amini
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Kheirollahi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
39
|
Zieger B, Boeckelmann D. Inherited Platelet Disorders: A Short Introduction. Hamostaseologie 2023; 43:52-59. [PMID: 36807820 DOI: 10.1055/a-1987-3310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Platelets play an important role regarding coagulation by contributing to thrombus formation by platelet adhesion, aggregation, and α-/δ-granule secretion. Inherited platelet disorders (IPDs) are a very heterogeneous group of disorders that are phenotypically and biochemically diverse. Platelet dysfunction (thrombocytopathy) can be accompanied by a reduction in the number of thrombocytes (thrombocytopenia). The extent of the bleeding tendency can vary greatly. Symptoms comprise mucocutaneous bleeding (petechiae, gastrointestinal bleeding and/or menorrhagia, epistaxis) and increased hematoma tendency. Life-threatening bleeding can occur after trauma or surgery. In the last years, next-generation sequencing had a great impact on unrevealing the underlying genetic cause of individual IPDs. Because IPDs are so diverse, a comprehensive analysis of platelet function and genetic testing is indispensable.
Collapse
Affiliation(s)
- Barbara Zieger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Doris Boeckelmann
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
40
|
"A Dangerous Black Box:" Idiopathic Hemophagocytic Lymphohistiocytosis in Adult Patients-A Case Report and Review of the Literature. Case Rep Hematol 2022; 2022:5867129. [PMID: 36510501 PMCID: PMC9741541 DOI: 10.1155/2022/5867129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare potentially life-threatening condition characterized by aberrant inflammation that can be related to genetic or sporadic forms. In both forms, triggering factors may be involved. Early detection of the underlying cause is crucial for therapeutic decision, while early intervention might be associated with better outcomes. The largest descriptions in the literature on HLH refer to pediatric cases. Adolescents and adults may also be affected, but there is scarce evidence regarding their diagnosis and management. We describe here the case of a 68-year-old Swiss woman with HLH, in whom an extensive search for underlying causes was performed, but neither trigger nor pathogenic variant was found. An early intervention first with dexamethasone and later with cyclosporine was performed. The patient showed a favorable response and did not require further hospitalization; however, one year after diagnosis, it was not possible to suspend cyclosporine due to recurrence of laboratory inflammation signs by drug tapering. The occurrence of HLH idiopathic forms represents a challenge; failure to identify the underlying triggering cause generates uncertainty, endless diagnostic investigations, and consequently additional delays in the treatment. This manuscript addresses the difficulties on this issue.
Collapse
|
41
|
Overlapping Machinery in Lysosome-Related Organelle Trafficking: A Lesson from Rare Multisystem Disorders. Cells 2022; 11:cells11223702. [PMID: 36429129 PMCID: PMC9688865 DOI: 10.3390/cells11223702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Lysosome-related organelles (LROs) are a group of functionally diverse, cell type-specific compartments. LROs include melanosomes, alpha and dense granules, lytic granules, lamellar bodies and other compartments with distinct morphologies and functions allowing specialised and unique functions of their host cells. The formation, maturation and secretion of specific LROs are compromised in a number of hereditary rare multisystem disorders, including Hermansky-Pudlak syndromes, Griscelli syndrome and the Arthrogryposis, Renal dysfunction and Cholestasis syndrome. Each of these disorders impacts the function of several LROs, resulting in a variety of clinical features affecting systems such as immunity, neurophysiology and pigmentation. This has demonstrated the close relationship between LROs and led to the identification of conserved components required for LRO biogenesis and function. Here, we discuss aspects of this conserved machinery among LROs in relation to the heritable multisystem disorders they associate with, and present our current understanding of how dysfunctions in the proteins affected in the disease impact the formation, motility and ultimate secretion of LROs. Moreover, we have analysed the expression of the members of the CHEVI complex affected in Arthrogryposis, Renal dysfunction and Cholestasis syndrome, in different cell types, by collecting single cell RNA expression data from the human protein atlas. We propose a hypothesis describing how transcriptional regulation could constitute a mechanism that regulates the pleiotropic functions of proteins and their interacting partners in different LROs.
Collapse
|
42
|
Ali RS, Sen M, Tan IJ. Pulmonary Aspergillosis Complicated by Hemophagocytic Lymphohistiocytosis: A Case Report and Literature Review. Cureus 2022; 14:e30908. [DOI: 10.7759/cureus.30908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 11/05/2022] Open
|
43
|
Paolino J, Berliner N, Degar B. Hemophagocytic lymphohistiocytosis as an etiology of bone marrow failure. Front Oncol 2022; 12:1016318. [PMID: 36387094 PMCID: PMC9647152 DOI: 10.3389/fonc.2022.1016318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of multiorgan system dysfunction that is caused by hypercytokinemia and persistent activation of cytotoxic T lymphocytes and macrophages. A nearly ubiquitous finding and a diagnostic criterion of HLH is the presence of cytopenias in ≥ 2 cell lines. The mechanism of cytopenias in HLH is multifactorial but appears to be predominantly driven by suppression of hematopoiesis by pro-inflammatory cytokines and, to some extent, by consumptive hemophagocytosis. Recognition of cytopenias as a manifestation of HLH is an important consideration for patients with bone marrow failure of unclear etiology.
Collapse
Affiliation(s)
- Jonathan Paolino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Nancy Berliner
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Degar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,*Correspondence: Barbara Degar,
| |
Collapse
|
44
|
Bauer KM, Nelson MC, Tang WW, Chiaro TR, Brown DG, Ghazaryan A, Lee SH, Weis AM, Hill JH, Klag KA, Tran VB, Thompson JW, Ramstead AG, Monts JK, Marvin JE, Alexander M, Voth WP, Stephens WZ, Ward DM, Petrey AC, Round JL, O'Connell RM. CD11c+ myeloid cell exosomes reduce intestinal inflammation during colitis. JCI Insight 2022; 7:159469. [PMID: 36214220 PMCID: PMC9675566 DOI: 10.1172/jci.insight.159469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023] Open
Abstract
Intercellular communication is critical for homeostasis in mammalian systems, including the gastrointestinal (GI) tract. Exosomes are nanoscale lipid extracellular vesicles that mediate communication between many cell types. Notably, the roles of immune cell exosomes in regulating GI homeostasis and inflammation are largely uncharacterized. By generating mouse strains deficient in cell-specific exosome production, we demonstrate deletion of the small GTPase Rab27A in CD11c+ cells exacerbated murine colitis, which was reversible through administration of DC-derived exosomes. Profiling RNAs within colon exosomes revealed a distinct subset of miRNAs carried by colon- and DC-derived exosomes. Among antiinflammatory exosomal miRNAs, miR-146a was transferred from gut immune cells to myeloid and T cells through a Rab27-dependent mechanism, targeting Traf6, IRAK-1, and NLRP3 in macrophages. Further, we have identified a potentially novel mode of exosome-mediated DC and macrophage crosstalk that is capable of skewing gut macrophages toward an antiinflammatory phenotype. Assessing clinical samples, RAB27A, select miRNAs, and RNA-binding proteins that load exosomal miRNAs were dysregulated in ulcerative colitis patient samples, consistent with our preclinical mouse model findings. Together, our work reveals an exosome-mediated regulatory mechanism underlying gut inflammation and paves the way for potential use of miRNA-containing exosomes as a novel therapeutic for inflammatory bowel disease.
Collapse
Affiliation(s)
- Kaylyn M Bauer
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - Morgan C Nelson
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - William W Tang
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - Tyson R Chiaro
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - D Garrett Brown
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - Arevik Ghazaryan
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - Soh-Hyun Lee
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - Allison M Weis
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - Jennifer H Hill
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - Kendra A Klag
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - Van B Tran
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - Jacob W Thompson
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - Andrew G Ramstead
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - Josh K Monts
- University of Utah Flow Cytometry Core, Salt Lake City, Utah, USA
| | - James E Marvin
- University of Utah Flow Cytometry Core, Salt Lake City, Utah, USA
| | - Margaret Alexander
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - Warren P Voth
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - W Zac Stephens
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - Diane M Ward
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| | - Aaron C Petrey
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA.,Department of Internal Medicine, Division of Gastroenterology, and
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA.,Hunstman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Ryan M O'Connell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA.,Hunstman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
45
|
Kimura S, Hatakeyama T, Koutaka T, Kubo K, Morita S, Eguchi K, Saitoh K, Yamauchi K, Imai S, Kashimura A, Inenaga T, Matsumoto H. PMEL p.Leu18del dilutes coat color of Kumamoto sub-breed of Japanese Brown cattle. BMC Genomics 2022; 23:694. [PMID: 36207673 PMCID: PMC9541072 DOI: 10.1186/s12864-022-08916-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background Coat color is important for registration and maintenance of livestock. Standard coat color of Kumamoto sub-breed of Japanese Brown cattle is solid brown, but individuals with diluted coat color have been observed recently. In this study, we attempted to identify polymorphism(s) responsible for coat color dilution by whole genome analysis. Results One of the diluted cattle possessed 7302 exonic polymorphisms which could affect genes’ function. Among them, 14 polymorphisms in 10 coat color-related genes were assumed to be specific for the diluted cattle. Subsequent genotyping with three diluted cattle and 74 standard cattle elucidated that PMEL p.Leu18del was the causative polymorphism for coat color dilution in this sub-breed. Individuals with del/del type of this polymorphism showed diluted coat color, but coat color of heterozygotes were intermediate with various dilution rates. Conclusions Coat color dilution of Kumamoto sub-breed was caused by PMEL p.Leu18del. The causative del allele has been detected in several genetically distant cattle breeds, suggesting that PMEL p.Leu18del can be used as a DNA marker to control cattle coat color. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08916-8.
Collapse
Affiliation(s)
- Satoshi Kimura
- Course of Agricultural Science, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Touko Hatakeyama
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Takashi Koutaka
- Kumamoto Office, Phoenix College, Tokai University, Kumamoto, Japan
| | - Kazuhiro Kubo
- Kumamoto Office, Phoenix College, Tokai University, Kumamoto, Japan
| | - Satoru Morita
- Kumamoto Prefectural Agricultural University, Kumamoto, Japan
| | - Keiko Eguchi
- Kumamoto Prefectural Agricultural Research Center, Kumamoto, Japan
| | - Kohji Saitoh
- Kumamoto Prefectural Agricultural Research Center, Kumamoto, Japan
| | - Kenji Yamauchi
- Kumamoto Station, National Livestock Breeding Center, Kumamoto, Japan
| | - Saki Imai
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Atsushi Kashimura
- Course of Agricultural Science, Graduate School of Agriculture, Tokai University, Kumamoto, Japan.,Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Toshiaki Inenaga
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Hirokazu Matsumoto
- Course of Agricultural Science, Graduate School of Agriculture, Tokai University, Kumamoto, Japan. .,Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan.
| |
Collapse
|
46
|
Clinical, immunological, molecular and therapeutic findings in monogenic immune dysregulation diseases: Middle East and North Africa registry. Clin Immunol 2022; 244:109131. [PMID: 36179983 DOI: 10.1016/j.clim.2022.109131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022]
Abstract
Monogenic immune dysregulation diseases (MIDD) are caused by defective immunotolerance. This study was designed to increase knowledge on the prevalence and spectrum of MIDDs, genetic patterns, and outcomes in Middle East and North Africa (MENA). MIDD patients from 11 MENA countries (Iran, Turkey, Kuwait, Oman, Algeria, Egypt, United Arab Emirates, Tunisia, Jordan, Qatar, and Azerbaijan) were retrospectively evaluated. 343 MIDD patients (58% males and 42% female) at a median (IQR) age of 101 (42-192) months were enrolled. The most common defective genes were LRBA (23.9%), LYST (8.2%), and RAB27A (7.9%). The most prevalent initial and overall manifestations were infections (32.2% and 75.1%), autoimmunity (18.6% and 41%), and organomegaly (13.3% and 53.8%), respectively. Treatments included immunoglobulin replacement therapy (53%), hematopoietic stem cell transplantation (HSCT) (14.3%), immunosuppressives (36.7%), and surgery (3.5%). Twenty-nine (59.2%) patients survived HSCT. Along with infectious complications, autoimmunity and organomegaly may be the initial or predominant manifestations of MIDD.
Collapse
|
47
|
Sankar J, Arora S, Joshi G, Kumar R. Pore-forming proteins and their role in cancer and inflammation: Mechanistic insights and plausible druggable targets. Chem Biol Interact 2022; 366:110127. [DOI: 10.1016/j.cbi.2022.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/03/2022]
|
48
|
Novel RAB27A Variant Associated with Late-Onset Hemophagocytic Lymphohistiocytosis Alters Effector Protein Binding. J Clin Immunol 2022; 42:1685-1695. [DOI: 10.1007/s10875-022-01315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
Abstract
Autosomal recessive mutations in RAB27A are associated with Griscelli syndrome type 2 (GS2), characterized by hypopigmentation and development of early-onset, potentially fatal hemophagocytic lymphohistiocytosis (HLH). We describe a 35-year old male who presented with recurrent fever, was diagnosed with Epstein-Barr virus-driven chronic lymphoproliferation, fulfilled clinical HLH criteria, and who carried a novel homozygous RAB27A c.551G > A p.(R184Q) variant. We aimed to evaluate the contribution of the identified RAB27A variant in regard to the clinical phenotype as well as cellular and biochemical function. The patient displayed normal pigmentation as well as RAB27A expression in blood-derived cells. However, patient NK and CD8+ T cell exocytosis was low. Ectopic expression of the RAB27A p.R184Q variant rescued melanosome distribution in mouse Rab27a-deficient melanocytes, but failed to increase exocytosis upon reconstitution of human RAB27A-deficient CD8+ T cells. Mechanistically, the RAB27A p.R184Q variant displayed reduced binding to SLP2A but augmented binding to MUNC13-4, two key effector proteins in immune cells. MUNC13-4 binding was particularly strong to an inactive RAB27A p.T23N/p.R184Q double mutant. RAB27A p.R184Q was expressed and could facilitate melanosome trafficking, but did not support lymphocyte exocytosis. The HLH-associated RAB27A variant increased Munc13-4 binding, potentially representing a novel mode of impairing RAB27A function selectively in hematopoietic cells.
Collapse
|
49
|
Xu C, Liang T, Liu J, Fu Y. RAB39B as a Chemosensitivity-Related Biomarker for Diffuse Large B-Cell Lymphoma. Front Pharmacol 2022; 13:931501. [PMID: 35910358 PMCID: PMC9336119 DOI: 10.3389/fphar.2022.931501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive lymphoma with an increased tendency to relapse or refractoriness. RAB39B, a member of the Ras-oncogene superfamily, is associated with a variety of tumors. Nevertheless, the role of RAB39B in DLBCL is still unknown. This study aimed to identify the role of RAB39B in DLBCL using integrated bioinformatics analysis. Methods: RAB39B expression data were examined using TIMER, UCSC, and GEO databases. The LinkedOmics database was used to study the genes and signaling pathways related to RAB39B expression. A Protein–protein interaction network was performed in STRING. TIMER was used to analyze the correlation between RAB39B and infiltrating immune cells. The correlation between RAB39B and m6A-related genes in DLBCL was analyzed using TCGA data. The RAB39B ceRNA network was constructed based on starBase and miRNet2.0 databases. Drug sensitivity information was obtained from the GSCA database. Results: RAB39B was highly expressed in multiple tumors including DLBCL. The protein–protein interaction network showed enrichment of autophagy and RAS family proteins. Functional enrichment analysis of RAB39B co-expression genes revealed that RAB39B was closely related to DNA replication, protein synthesis, cytokine–cytokine receptor interaction, JAK-STAT signaling pathway, NF-kappa B signaling pathway, and autophagy. Immune infiltrate analysis showed that the amount of RAB39B was negatively correlated with iDC, Tem, and CD8 T-cell infiltration. CD4+ T cell and DC were negatively correlated with CNV of RAB39B. DLBCL cohort analysis found that RAB39B expression was related to 14 m6A modifier genes, including YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, RBMX, ZC3H13, METTL14, METTL3, RBM15, RBM15B, VIRMA, FTO, and ALKBH5. We constructed 14 possible ceRNA networks of RAB39B in DLBCL. The RAB39B expression was associated with decreased sensitivity of chemotherapy drugs such as dexamethasone, doxorubicin, etoposide, vincristine, and cytarabine and poor overall survival in DLBCL. In vitro experiments showed that RAB39B was associated with proliferation, apoptosis, and drug sensitivity of DLBCL cells. Conclusion: RAB39B is abnormally elevated and related to drug resistance and poor OS in DLBCL, which may be due to its involvement in immune infiltration, m6A modification, and regulation by multiple non-coding RNAs. RAB39B may be used as an effective biomarker for the diagnosis and treatment of DLBCL.
Collapse
Affiliation(s)
- Cong Xu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Ting Liang
- Department of Blood Transfusion, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yunfeng Fu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Yunfeng Fu,
| |
Collapse
|
50
|
Ham H, Medlyn M, Billadeau DD. Locked and Loaded: Mechanisms Regulating Natural Killer Cell Lytic Granule Biogenesis and Release. Front Immunol 2022; 13:871106. [PMID: 35558071 PMCID: PMC9088006 DOI: 10.3389/fimmu.2022.871106] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
NK cell-mediated cytotoxicity is a critical element of our immune system required for protection from microbial infections and cancer. NK cells bind to and eliminate infected or cancerous cells via direct secretion of cytotoxic molecules toward the bound target cells. In this review, we summarize the current understanding of the molecular regulations of NK cell cytotoxicity, focusing on lytic granule development and degranulation processes. NK cells synthesize apoptosis-inducing proteins and package them into specialized organelles known as lytic granules (LGs). Upon activation of NK cells, LGs converge with the microtubule organizing center through dynein-dependent movement along microtubules, ultimately polarizing to the cytotoxic synapse where they subsequently fuse with the NK plasma membrane. From LGs biogenesis to degranulation, NK cells utilize several strategies to protect themselves from their own cytotoxic molecules. Additionally, molecular pathways that enable NK cells to perform serial killing are beginning to be elucidated. These advances in the understanding of the molecular pathways behind NK cell cytotoxicity will be important to not only improve current NK cell-based anti-cancer therapies but also to support the discovery of additional therapeutic opportunities.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Michael Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Billadeau
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States.,Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|