1
|
Tavakoli S, Zhu S, Matsudaira P. Cell clusters containing intestinal stem cells line, the zebrafish intestine intervillus pocket. iScience 2022; 25:104280. [PMID: 35586068 PMCID: PMC9108511 DOI: 10.1016/j.isci.2022.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/12/2021] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
In the mammalian intestine, stem cells (ISCs) replicate in basal crypts, translocate along the villus, and undergo cell death. This pattern of renewal occurs in the zebrafish intestine in which villi are elongated into villar ridges (VR) separated by intervillus pockets (IVP) but lack the infolded crypts. To understand how epithelial dynamics is maintained without crypts, we investigated the origin of epithelial lineage patterns derived from ISCs in the IVP of chimeric and zebrabow recombinant intestines. We found that the VR epithelium and IVP express the same recombinant colors when expression is under the control of ISC marker promoter prmt1. The expression originates from cell clusters that line the IVP and contain epithelial cells including Prmt1-labeled cells. Our data suggest that Prmt1 is a zebrafish ISC marker and the ISCs reside within basal cell clusters that are functionally analogous to crypts.
Prmt1 is an intestinal stem cell marker in zebrafish Zebrafish intestinal stem cells reside within cell clusters lining the intervillus pocket Stripes of newly reproduced epithelial cells originate from the cell clusters
Collapse
Affiliation(s)
- Sahar Tavakoli
- Center for BioImaging Sciences, Department of Biological Sciences, Mechanobiology Institute, National University of Singapore, Singapore 119077, Singapore
| | - Shiwen Zhu
- Center for BioImaging Sciences, Department of Biological Sciences, Mechanobiology Institute, National University of Singapore, Singapore 119077, Singapore
| | - Paul Matsudaira
- Center for BioImaging Sciences, Department of Biological Sciences, Mechanobiology Institute, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
2
|
Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol 2020; 22:39-53. [PMID: 32958874 DOI: 10.1038/s41580-020-0278-0] [Citation(s) in RCA: 378] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 01/08/2023]
Abstract
Intestinal stem cells at the bottom of crypts fuel the rapid renewal of the different cell types that constitute a multitasking tissue. The intestinal epithelium facilitates selective uptake of nutrients while acting as a barrier for hostile luminal contents. Recent discoveries have revealed that the lineage plasticity of committed cells - combined with redundant sources of niche signals - enables the epithelium to efficiently repair tissue damage. New approaches such as single-cell transcriptomics and the use of organoid models have led to the identification of the signals that guide fate specification of stem cell progeny into the six intestinal cell lineages. These cell types display context-dependent functionality and can adapt to different requirements over their lifetime, as dictated by their microenvironment. These new insights into stem cell regulation and fate specification could aid the development of therapies that exploit the regenerative capacity and functionality of the gut.
Collapse
|
3
|
Abstract
Regenerative processes that maintain the function of the gastrointestinal (GI) epithelium are critical for health and survival of multicellular organisms. In insects and vertebrates, intestinal stem cells (ISCs) regenerate the GI epithelium. ISC function is regulated by intrinsic, local, and systemic stimuli to adjust regeneration to tissue demands. These control mechanisms decline with age, resulting in significant perturbation of intestinal homeostasis. Processes that lead to this decline have been explored intensively in Drosophila melanogaster in recent years and are now starting to be characterized in mammalian models. This review presents a model for age-related regenerative decline in the fly intestine and discusses recent findings that start to establish molecular mechanisms of age-related decline of mammalian ISC function.
Collapse
Affiliation(s)
- Heinrich Jasper
- Immunology Discovery, Genentech, Inc., South San Francisco, California 94080, USA;
| |
Collapse
|
4
|
Andersen MS, Hannezo E, Ulyanchenko S, Estrach S, Antoku Y, Pisano S, Boonekamp KE, Sendrup S, Maimets M, Pedersen MT, Johansen JV, Clement DL, Feral CC, Simons BD, Jensen KB. Tracing the cellular dynamics of sebaceous gland development in normal and perturbed states. Nat Cell Biol 2019; 21:924-932. [PMID: 31358966 PMCID: PMC6978139 DOI: 10.1038/s41556-019-0362-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
Abstract
The sebaceous gland (SG) is an essential component of the skin, and SG dysfunction is debilitating1,2. Yet, the cellular bases for its origin, development and subsequent maintenance remain poorly understood. Here, we apply large-scale quantitative fate mapping to define the patterns of cell fate behaviour during SG development and maintenance. We show that the SG develops from a defined number of lineage-restricted progenitors that undergo a programme of independent and stochastic cell fate decisions. Following an expansion phase, equipotent progenitors transition into a phase of homeostatic turnover, which is correlated with changes in the mechanical properties of the stroma and spatial restrictions on gland size. Expression of the oncogene KrasG12D results in a release from these constraints and unbridled gland expansion. Quantitative clonal fate analysis reveals that, during this phase, the primary effect of the Kras oncogene is to drive a constant fate bias with little effect on cell division rates. These findings provide insight into the developmental programme of the SG, as well as the mechanisms that drive tumour progression and gland dysfunction.
Collapse
Affiliation(s)
- Marianne Stemann Andersen
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Edouard Hannezo
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- The Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Svetlana Ulyanchenko
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Soline Estrach
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Centre National de la Recherche Scientifique UMR 7284, Université Cote d'Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Yasuko Antoku
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Sabrina Pisano
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Centre National de la Recherche Scientifique UMR 7284, Université Cote d'Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Kim E Boonekamp
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Sendrup
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Martti Maimets
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Terndrup Pedersen
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens V Johansen
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Ditte L Clement
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chloe C Feral
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Centre National de la Recherche Scientifique UMR 7284, Université Cote d'Azur, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- The Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Kim B Jensen
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Allele-specific RNA imaging shows that allelic imbalances can arise in tissues through transcriptional bursting. PLoS Genet 2019; 15:e1007874. [PMID: 30625149 PMCID: PMC6342324 DOI: 10.1371/journal.pgen.1007874] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/22/2019] [Accepted: 12/04/2018] [Indexed: 12/03/2022] Open
Abstract
Extensive cell-to-cell variation exists even among putatively identical cells, and there is great interest in understanding how the properties of transcription relate to this heterogeneity. Differential expression from the two gene copies in diploid cells could potentially contribute, yet our ability to measure from which gene copy individual RNAs originated remains limited, particularly in the context of tissues. Here, we demonstrate quantitative, single molecule allele-specific RNA FISH adapted for use on tissue sections, allowing us to determine the chromosome of origin of individual RNA molecules in formaldehyde-fixed tissues. We used this method to visualize the allele-specific expression of Xist and multiple autosomal genes in mouse kidney. By combining these data with mathematical modeling, we evaluated models for allele-specific heterogeneity, in particular demonstrating that apparent expression from only one of the alleles in single cells can arise as a consequence of low-level mRNA abundance and transcriptional bursting. In mammals, most cells of the body contain two genetic datasets: one from the mother and one from the father, and—in theory—these two sets of information could contribute equally to produce the molecules in a given cell. In practice, however, this is not always the case, which can have dramatic implications for many traits, including visible features (such as fur color) and even disease outcomes. However, it remains difficult to measure the parental origin of individual molecules in a given cell and thus to assess what processes lead to an imbalance of the maternal and paternal contribution. We adapted a microscopy technique—called allele-specific single molecule RNA FISH—that uses a combination of fluorescent tags to specifically label one type of molecule, RNA, depending on its origin, for use in mouse kidney sections. Focusing on RNAs that were previously reported to show imbalance, we performed measurements and combined these with mathematical modeling to quantify imbalance in tissues and explain how these can arise. We found that we could recapitulate the observed imbalances using models that only take into account the random processes that produce RNA, without the need to invoke special regulatory mechanisms to create unequal contributions.
Collapse
|
6
|
Barry L, McFadden DW. Gastrointestinal Carcinoid Tumors. SHACKELFORD'S SURGERY OF THE ALIMENTARY TRACT, 2 VOLUME SET 2019:939-950. [DOI: 10.1016/b978-0-323-40232-3.00080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Adriaenssens AE, Reimann F, Gribble FM. Distribution and Stimulus Secretion Coupling of Enteroendocrine Cells along the Intestinal Tract. Compr Physiol 2018; 8:1603-1638. [DOI: 10.1002/cphy.c170047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
West JD, Mort RL, Hill RE, Morley SD, Collinson JM. Computer simulation of neutral drift among limbal epithelial stem cells of mosaic mice. Stem Cell Res 2018; 30:1-11. [PMID: 29777801 PMCID: PMC6049397 DOI: 10.1016/j.scr.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 02/08/2023] Open
Abstract
The use of mice that are mosaic for reporter gene expression underlies many lineage-tracing studies in stem cell biology. For example, using mosaic LacZ reporter mice, it was shown that limbal epithelial stem cells (LESCs) around the periphery of the cornea maintain radial sectors of the corneal epithelium and that radial stripe numbers declined with age. Originally, the corneal results were interpreted as progressive, age-related loss or irreversible inactivation of some LESC clones. In this study we used computer simulations to show that these results could also be explained by stochastic replacement of LESCs by neighbouring LESCs, leading to neutral drift of LESC populations. This was shown to reduce the number of coherent clones of LESCs and hence would coarsen the mosaic pattern in the corneal epithelium without reducing the absolute number of LESCs. Simulations also showed that corrected stripe numbers declined more slowly when LESCs were grouped non-randomly and that mosaicism was rarely lost unless simulated LESC numbers were unrealistically low. Possible reasons why age-related changes differ between mosaic corneal epithelia and other systems, such as adrenal cortices and intestinal crypts, are discussed.
Age-related reduction of corneal stripes in mosaic mice was simulated. Stem cell loss and/or stem cell replacement reduced simulated stripe numbers. Stem cell replacement, without reducing stem cell numbers, caused neutral drift. Clumping of stem cells into larger groups caused slower decline in stripe numbers. Replacement rarely caused loss of mosaicism unless there were few stem cells.
Collapse
Affiliation(s)
- John D West
- Centre for Integrative Physiology, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | - Richard L Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, Lancaster LA1 4YG, UK
| | - Robert E Hill
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Steven D Morley
- Division of Health Sciences, University of Edinburgh Medical School, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - J Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
9
|
Ueno H. Identification of normal and neoplastic stem cells by the multicolor lineage tracing methods. Pathol Int 2016; 66:423-30. [PMID: 27345364 DOI: 10.1111/pin.12425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 01/13/2023]
Abstract
Adult stem cells and embryonic (ES) and induced pluripotent stem (iPS) cells are two major focus areas of stem cell research. Studies on adult stem cells are important not only as sources for regenerative medicine but for analyzing the mechanisms of tissue homeostasis, tissue repair after injury, cancinogenesis, and aging. On the other hand, ES and iPS cells are mainly important for regenerative medicine. However, many adult stem cells, especially those in low-turnover tissues, have remained unidentified. We have been working on the development of methods using multiple fluorescent markers, to improve the accuracy of lineage-tracing analyses of adult stem cells and their fetal progenitors. With this method, we were able to identify lingual epithelial stem cells (LESCs). By using the same strategy, we could potentially identify candidate cancer stem cells. In this review, we would like to introduce how the multicolor lineage tracing method could be used in various stem cell studies.
Collapse
Affiliation(s)
- Hiroo Ueno
- Department of Stem Cell Pathology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
10
|
Keighren MA, Flockhart JH, West JD. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras. Biol Open 2016; 5:596-610. [PMID: 27103217 PMCID: PMC4874354 DOI: 10.1242/bio.017111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/22/2016] [Indexed: 01/22/2023] Open
Abstract
The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues.
Collapse
Affiliation(s)
- Margaret A Keighren
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Jean H Flockhart
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - John D West
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
11
|
Li H, Jasper H. Gastrointestinal stem cells in health and disease: from flies to humans. Dis Model Mech 2016; 9:487-99. [PMID: 27112333 PMCID: PMC4892664 DOI: 10.1242/dmm.024232] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The gastrointestinal tract of complex metazoans is highly compartmentalized. It is lined by a series of specialized epithelia that are regenerated by specific populations of stem cells. To maintain tissue homeostasis, the proliferative activity of stem and/or progenitor cells has to be carefully controlled and coordinated with regionally distinct programs of differentiation. Metaplasias and dysplasias, precancerous lesions that commonly occur in the human gastrointestinal tract, are often associated with the aberrant proliferation and differentiation of stem and/or progenitor cells. The increasingly sophisticated characterization of stem cells in the gastrointestinal tract of mammals and of the fruit fly Drosophila has provided important new insights into these processes and into the mechanisms that drive epithelial dysfunction. In this Review, we discuss recent advances in our understanding of the establishment, maintenance and regulation of diverse intestinal stem cell lineages in the gastrointestinal tract of Drosophila and mice. We also discuss the field's current understanding of the pathogenesis of epithelial dysfunctions.
Collapse
Affiliation(s)
- Hongjie Li
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| |
Collapse
|
12
|
Henning SJ, von Furstenberg RJ. GI stem cells - new insights into roles in physiology and pathophysiology. J Physiol 2016; 594:4769-79. [PMID: 27107928 DOI: 10.1113/jp271663] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022] Open
Abstract
This overview gives a brief historical summary of key discoveries regarding stem cells of the small intestine. The current concept is that there are two pools of intestinal stem cells (ISCs): an actively cycling pool that is marked by Lgr5, is relatively homogeneous and is responsible for daily turnover of the epithelium; and a slowly cycling or quiescent pool that functions as reserve ISCs. The latter pool appears to be quite heterogeneous and may include partially differentiated epithelial lineages that can reacquire stem cell characteristics following injury to the intestine. Markers and methods of isolation for active and quiescent ISC populations are described as well as the numerous important advances that have been made in approaches to the in vitro culture of ISCs and crypts. Factors regulating ISC biology are briefly summarized and both known and unknown aspects of the ISC niche are discussed. Although most of our current knowledge regarding ISC physiology and pathophysiology has come from studies with mice, recent work with human tissue highlights the potential translational applications arising from this field of research. Many of these topics are further elaborated in the following articles.
Collapse
Affiliation(s)
- Susan J Henning
- Department of Medicine - Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7555, USA
| | | |
Collapse
|
13
|
Dunn SJ, Osborne JM, Appleton PL, Näthke I. Combined changes in Wnt signaling response and contact inhibition induce altered proliferation in radiation-treated intestinal crypts. Mol Biol Cell 2016; 27:1863-74. [PMID: 27053661 PMCID: PMC4884076 DOI: 10.1091/mbc.e15-12-0854] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/30/2016] [Indexed: 12/15/2022] Open
Abstract
Wnt concentration gradients operate in many tissues. Modeling of proliferation in control and irradiated intestinal crypts shows that the Wnt concentrations that cells experience when they are born set their proliferative fate and cell cycle duration. The simulations also predict the initial proportion of cells damaged by tumor-promoting radiation. Curative intervention is possible if colorectal cancer is identified early, underscoring the need to detect the earliest stages of malignant transformation. A candidate biomarker is the expanded proliferative zone observed in crypts before adenoma formation, also found in irradiated crypts. However, the underlying driving mechanism for this is not known. Wnt signaling is a key regulator of proliferation, and elevated Wnt signaling is implicated in cancer. Nonetheless, how cells differentiate Wnt signals of varying strengths is not understood. We use computational modeling to compare alternative hypotheses about how Wnt signaling and contact inhibition affect proliferation. Direct comparison of simulations with published experimental data revealed that the model that best reproduces proliferation patterns in normal crypts stipulates that proliferative fate and cell cycle duration are set by the Wnt stimulus experienced at birth. The model also showed that the broadened proliferation zone induced by tumorigenic radiation can be attributed to cells responding to lower Wnt concentrations and dividing at smaller volumes. Application of the model to data from irradiated crypts after an extended recovery period permitted deductions about the extent of the initial insult. Application of computational modeling to experimental data revealed how mechanisms that control cell dynamics are altered at the earliest stages of carcinogenesis.
Collapse
Affiliation(s)
- S-J Dunn
- Microsoft Research, Cambridge CB1 3LS, United Kingdom
| | - J M Osborne
- School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - P L Appleton
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - I Näthke
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
14
|
Guiu J, Jensen KB. From Definitive Endoderm to Gut-a Process of Growth and Maturation. Stem Cells Dev 2015; 24:1972-83. [PMID: 26134088 DOI: 10.1089/scd.2015.0017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intestine and colon carries out vital functions, and their lifelong maintenance is of the upmost importance. Research over the past decades has carefully addressed bowel function, how it is maintained and begun to unravel how disorders such as cancer and inflammatory bowel disease form. In contrast, very little is known about the molecular mechanisms that trigger tissue maturation during development. With this review, our aim is to carefully provide a critical appraisal of the literature to give a state-of-the-art view of intestinal development. Starting from definitive endoderm at gastrulation to the emergence of a structure with mature properties, the tissue undergoes complex morphogenetic processes that rely on both biophysical changes and secreted signaling molecules. We will also discuss how new and exciting developments using in vitro models are likely to provide new insights into this process and potential therapeutic strategies for gastrointestinal disorders.
Collapse
Affiliation(s)
- Jordi Guiu
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen , Copenhagen N, Denmark
| | - Kim B Jensen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen , Copenhagen N, Denmark
| |
Collapse
|
15
|
Nandan MO, Ghaleb AM, Bialkowska AB, Yang VW. Krüppel-like factor 5 is essential for proliferation and survival of mouse intestinal epithelial stem cells. Stem Cell Res 2014; 14:10-9. [PMID: 25460247 DOI: 10.1016/j.scr.2014.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/29/2014] [Accepted: 10/29/2014] [Indexed: 01/17/2023] Open
Abstract
Krüppel-like factor 5 (KLF5) is a pro-proliferative transcription factor that is expressed in dividing epithelial cells of the intestinal crypt. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) has been identified as a stem cell marker in both small intestinal and colonic epithelial cells. To determine whether KLF5 regulates proliferation of intestinal stem cells, we investigated the effects of Klf5 deletion specifically from the intestinal stem cells in adult mice. Mice with inducible intestinal stem cell-specific deletion of Klf5 (Lgr5-Klf5(fl/fl)) were injected with tamoxifen for 5 consecutive days to induce Lgr5-driven Cre expression. Intestinal and colonic tissues were examined by immunohistochemistry at various time points up to 112days following start of tamoxifen treatment. Klf5 is co-localized in the crypt-based columnar (CBC) cells that express Lgr5. By 11days following the start of tamoxifen treatment, Lgr5-positive crypts from which Klf5 was deleted exhibited a loss of proliferation that was accompanied by an increase in apoptosis. Beginning at 14days following the start of tamoxifen treatment, both Klf5 expression and proliferation were re-established in the transit-amplifying epithelial cells but not in the Lgr5-positive CBC cells. By 112days post-treatment, up to 90% of the Lgr5-positive cells from which Klf5 was deleted were lost from the intestinal crypts. These results indicate a critical role for KLF5 in the survival and maintenance of intestinal stem cells.
Collapse
Affiliation(s)
- Mandayam O Nandan
- Department of Medicine, Stony Brook University School of Medicine, HSC-T16 Room 020, Stony Brook, NY 11794, United States
| | - Amr M Ghaleb
- Department of Medicine, Stony Brook University School of Medicine, HSC-T16 Room 020, Stony Brook, NY 11794, United States
| | - Agnieszka B Bialkowska
- Department of Medicine, Stony Brook University School of Medicine, HSC-T16 Room 020, Stony Brook, NY 11794, United States
| | - Vincent W Yang
- Department of Medicine, Stony Brook University School of Medicine, HSC-T16 Room 020, Stony Brook, NY 11794, United States.
| |
Collapse
|
16
|
Abstract
Intestinal stem cells (ISCs) and colorectal cancer (CRC) biology are tightly linked in many aspects. It is generally thought that ISCs are the cells of origin for a large proportion of CRCs and crucial ISC-associated signalling pathways are often affected in CRCs. Moreover, CRCs are thought to retain a cellular hierarchy that is reminiscent of the intestinal epithelium. Recent studies offer quantitative insights into the dynamics of ISC behaviour that govern homeostasis and thereby provide the necessary baseline parameters to begin to apply these analyses during the various stages of tumour development.
Collapse
Affiliation(s)
- Louis Vermeulen
- 1] Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. [2] Cancer Research UK - Cambridge Institute, University of Cambridge, Robinson Way, CB2 0RE, Cambridge, UK
| | - Hugo J Snippert
- Molecular Cancer Research and Cancer Genomics Netherlands, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
17
|
Blanpain C, Fuchs E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science 2014; 344:1242281. [PMID: 24926024 DOI: 10.1126/science.1242281] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tissues rely upon stem cells for homeostasis and repair. Recent studies show that the fate and multilineage potential of epithelial stem cells can change depending on whether a stem cell exists within its resident niche and responds to normal tissue homeostasis, whether it is mobilized to repair a wound, or whether it is taken from its niche and challenged to de novo tissue morphogenesis after transplantation. In this Review, we discuss how different populations of naturally lineage-restricted stem cells and committed progenitors can display remarkable plasticity and reversibility and reacquire long-term self-renewing capacities and multilineage differentiation potential during physiological and regenerative conditions. We also discuss the implications of cellular plasticity for regenerative medicine and for cancer.
Collapse
Affiliation(s)
- Cédric Blanpain
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels B-1070, Belgium. Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université Libre de Bruxelles (ULB), Brussels B-1070, Belgium.
| | - Elaine Fuchs
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
18
|
Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 2013; 15:19-33. [PMID: 24326621 DOI: 10.1038/nrm3721] [Citation(s) in RCA: 911] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Small populations of adult stem cells are responsible for the remarkable ability of the epithelial lining of the intestine to be efficiently renewed and repaired throughout life. The recent discovery of specific markers for these stem cells, together with the development of new technologies to track endogenous stem cell activity in vivo and to exploit their ability to generate new epithelia ex vivo, has greatly improved our understanding of stem cell-driven homeostasis, regeneration and cancer in the intestine. These exciting new insights into the biology of intestinal stem cells have the potential to accelerate the development of stem cell-based therapies and ameliorate cancer treatments.
Collapse
|
19
|
Blanpain C, Simons BD. Unravelling stem cell dynamics by lineage tracing. Nat Rev Mol Cell Biol 2013; 14:489-502. [PMID: 23860235 DOI: 10.1038/nrm3625] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During embryonic and postnatal development, the different cells types that form adult tissues must be generated and specified in a precise temporal manner. During adult life, most tissues undergo constant renewal to maintain homeostasis. Lineage-tracing and genetic labelling technologies are beginning to shed light on the mechanisms and dynamics of stem and progenitor cell fate determination during development, tissue maintenance and repair, as well as their dysregulation in tumour formation. Statistical approaches, based on proliferation assays and clonal fate analyses, provide quantitative insights into cell kinetics and fate behaviour. These are powerful techniques to address new questions and paradigms in transgenic mouse models and other model systems.
Collapse
Affiliation(s)
- Cédric Blanpain
- Université Libre de Bruxelles, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium.
| | | |
Collapse
|
20
|
Random chromosome segregation in mouse intestinal epithelial stem cells. Chromosome Res 2013; 21:213-24. [PMID: 23681655 DOI: 10.1007/s10577-013-9351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mammalian intestinal epithelium is endowed with a high cell turnover sustained by a few stem cells located in the bottoms of millions of crypts. Until recently, it was generally assumed that the extreme sensitivity to DNA damaging agents leading to cell death and the asymmetric mode of chromosome segregation of intestinal epithelial stem cells prevented the illicit survival of mutated stem cells and guarded against mistakes leading to aneuploidy and neoplastic transformation. Recent evidence points instead to a pool of mutipotent self-renewing stem cells capable of repairing DNA by homologous recombination significantly more efficiently than other crypt cells. Furthermore, the equilibrium between cell division and differentiation is achieved at the level of the cell population obeying to a random mode of chromosome segregation and a predominantly symmetric mode of cell division. This review summarizes the experimental findings on the mode of cell division adopted by intestinal epithelial stem cells.
Collapse
|
21
|
Abstract
The generation of chimeras, which is now a standard technology for producing gene modified mutant mice, was originally developed as a tool for developmental biology. However, the application of conventional single marker chimeric mice for developmental study was initially limited. This situation has been dramatically changed by development of multicolor chimeric mice using various kinds of fluorescent proteins. Now using our technology, up to ten different clones could be distinguished by their colors, which enable us to perform more accurate statistical analyses and lineage tracing experiments than by conventional methods. This method could be applied to visualize not only cell turnover of normal stem cells but also cancer development of live tissues in vivo. In the present review, we will discuss how these methods have been developed and what questions they are now answering by mainly focusing on intestinal stem cells and intestinal tumors.
Collapse
|
22
|
Ohtsuka M, Miura H, Gurumurthy CB, Kimura M, Inoko H, Yoshimura S, Sato M. Fluorescent transgenic mice suitable for multi-color aggregation chimera studies. Cell Tissue Res 2012; 350:251-60. [PMID: 22868913 DOI: 10.1007/s00441-012-1470-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/21/2012] [Indexed: 12/24/2022]
Abstract
We recently reported a novel method of mouse transgenesis called Pronuclear Injection-based Targeted Transgenisis (PITT) using which a series of fluorescent transgenic (Tg) mice lines were generated. These lines, unlike those generated using conventional random integration methods, express the transgenes faithfully and reproducibly generation after generation. Because of this superior nature, these lines are ideal for the generation of multi-colored aggregation chimeras that can be used to study cell-cell interactions and lineage analyses in living embryos/organs, where the transgenes can be detected and the clonal origin of a given cell population easily traced by its distinct fluorescence. In this study, to verify if Tg fluorescent mice generated through PITT were suitable for such applications, we sought to generate chimeric blastocysts and chimeric-Tg mice by aggregating two- or three-colored 8-cell embryos. Our analyses using these models led to the following observations. First, we noticed that cell mixing was infrequent during the stages of morula to early blastocyst. Second, chimeric fetuses obtained after aggregation of the two-colored 8-cell embryos exhibited uniform cell mixing. And third, in the organs of adult chimeric mice, the mode of cell distribution could be either clonal or polyclonal, as previously pointed out by others. Implications of our novel and improved Tg-chimeric mice approach for clonal cell lineage and developmental studies are discussed.
Collapse
Affiliation(s)
- Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Ryu JY, Siswanto A, Harimoto K, Tagawa YI. Chimeric analysis of EGFP and DsRed2 transgenic mice demonstrates polyclonal maintenance of pancreatic acini. Transgenic Res 2012; 22:549-56. [DOI: 10.1007/s11248-012-9661-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
|
24
|
Rosewell IR, Giangreco A. Murine aggregation chimeras and wholemount imaging in airway stem cell biology. Methods Mol Biol 2012; 916:263-74. [PMID: 22914947 DOI: 10.1007/978-1-61779-980-8_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Local tissue stem cells are known to exist in mammalian lungs but their role in epithelial maintenance remains unclear. We therefore developed murine aggregation chimera and wholemount imaging techniques to assess the contribution of these cells to lung homeostasis and repair. In this chapter we provide further details regarding the generation of murine aggregation chimera mice and their subsequent use in wholemount lung imaging. We also describe methods related to the interpretation of this data that allows for quantitative assessment of airway stem cell activation versus quiescence. Using these techniques, it is possible to compare the growth and differentiation capacity of various lung epithelial cells in normal, repairing, and diseased states.
Collapse
Affiliation(s)
- Ian R Rosewell
- Centre for Respiratory Research, University College London, London, UK
| | | |
Collapse
|
25
|
|
26
|
VOOIJS MARC, LIU ZHENYI, KOPAN RAPHAEL. Notch: architect, landscaper, and guardian of the intestine. Gastroenterology 2011; 141:448-59. [PMID: 21689653 PMCID: PMC4050496 DOI: 10.1053/j.gastro.2011.06.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 06/08/2011] [Accepted: 06/08/2011] [Indexed: 12/12/2022]
Abstract
In the past decade, enormous progress has been made in understanding the role of stem cells in physiologic tissue renewal and in pathologic processes such as cancer. These findings have shed light on the identity and biological properties of such cells and the intrinsic and extrinsic signals that balance stem cell self-renewal with differentiation. With its astonishing self-renewal capacity, the intestinal epithelium has provided a unique model to study stem cell biology, lineage specification, and cancer. Here we review the role of Notch signaling in physiologic cell renewal and differentiation in the intestine as well as during its malignant transformation.
Collapse
Affiliation(s)
- MARC VOOIJS
- Department of Radiotherapy, Maastricht Radiation Oncology (MAASTRO)/GROW School for Developmental Biology and Oncology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - ZHENYI LIU
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri
| | - RAPHAEL KOPAN
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
27
|
Múnera J, Ceceña G, Jedlicka P, Wankell M, Oshima RG. Ets2 regulates colonic stem cells and sensitivity to tumorigenesis. STEM CELLS (DAYTON, OHIO) 2011. [PMID: 21425406 DOI: 10.1002/stem.599.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ets2 has both tumor repressive and supportive functions for different types of cancer. We have investigated the role of Ets2 within intestinal epithelial cells in postnatal mouse colon development and tumorigenesis. Conditional inactivation of Ets2 within intestinal epithelial cells results in over representation of Ets2-deficient colon crypts within young and adult animals. This preferential representation is associated with an increased number of proliferative cells within the stem cell region and an increased rate of crypt fission in young mice that result in larger patches of Ets2-deficient crypts. These effects are consistent with a selective advantage of Ets2-deficient intestinal stem cells in colonizing colonic crypts and driving crypt fission. Ets2-deficient colon crypts have an increased mucosal thickness, an increased number of goblet cells, and an increased density. Mice with Ets2-deficient intestinal cells develop more colon tumors in response to treatment with azoxymethane and dextran sulfate sodium. The selective population of colon crypts, the altered differentiation state and increased sensitivity to carcinogen-induced tumors all indicate that Ets2 deficiency alters colon stem cell number or behavior. Ets2-dependent, epithelial cell-autonomous repression of intestinal tumors may contribute to protection from colon cancer of persons with increased dosage of chromosome 21.
Collapse
Affiliation(s)
- Jorge Múnera
- Tumor Development Program, Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
28
|
Múnera J, Ceceña G, Jedlicka P, Wankell M, Oshima RG. Ets2 regulates colonic stem cells and sensitivity to tumorigenesis. Stem Cells 2011; 29:430-9. [PMID: 21425406 DOI: 10.1002/stem.599] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ets2 has both tumor repressive and supportive functions for different types of cancer. We have investigated the role of Ets2 within intestinal epithelial cells in postnatal mouse colon development and tumorigenesis. Conditional inactivation of Ets2 within intestinal epithelial cells results in over representation of Ets2-deficient colon crypts within young and adult animals. This preferential representation is associated with an increased number of proliferative cells within the stem cell region and an increased rate of crypt fission in young mice that result in larger patches of Ets2-deficient crypts. These effects are consistent with a selective advantage of Ets2-deficient intestinal stem cells in colonizing colonic crypts and driving crypt fission. Ets2-deficient colon crypts have an increased mucosal thickness, an increased number of goblet cells, and an increased density. Mice with Ets2-deficient intestinal cells develop more colon tumors in response to treatment with azoxymethane and dextran sulfate sodium. The selective population of colon crypts, the altered differentiation state and increased sensitivity to carcinogen-induced tumors all indicate that Ets2 deficiency alters colon stem cell number or behavior. Ets2-dependent, epithelial cell-autonomous repression of intestinal tumors may contribute to protection from colon cancer of persons with increased dosage of chromosome 21.
Collapse
Affiliation(s)
- Jorge Múnera
- Tumor Development Program, Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
29
|
Eckardt S, McLaughlin KJ, Willenbring H. Mouse chimeras as a system to investigate development, cell and tissue function, disease mechanisms and organ regeneration. Cell Cycle 2011; 10:2091-9. [PMID: 21606677 DOI: 10.4161/cc.10.13.16360] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chimeras are organisms composed of at least two genetically distinct cell lineages originating from different zygotes. In the laboratory, mouse chimeras can be produced experimentally; various techniques allow combining different early stage mouse embryos with each other or with pluripotent stem cells. Identification of the progeny of the different lineages in chimeras permits to follow cell fate and function, enabling correlation of genotype with phenotype. Mouse chimeras have become a tool to investigate critical developmental processes, including cell specification, differentiation, patterning, and the function of specific genes. In addition, chimeras can also be generated to address biological processes in the adult, including mechanisms underlying diseases or tissue repair and regeneration. This review summarizes the different types of chimeras and how they have been generated and provides examples of how mouse chimeras offer a unique and powerful system to investigate questions pertaining to cell and tissue function in the developing and adult organism.
Collapse
Affiliation(s)
- Sigrid Eckardt
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | | | | |
Collapse
|
30
|
Abstract
The identification of intestinal stem cells as well as their malignant counterparts, colon cancer stem cells, has undergone rapid development in recent years. Under physiological conditions, intestinal homeostasis is a carefully balanced and efficient interplay between stem cells, their progeny and the microenvironment. These interactions regulate the astonishingly rapid renewal of the intestinal epithelial layer, which consequently puts us at serious risk of developing cancer. Here we highlight the microenvironment-derived signals that regulate stem-cell fate and epithelial differentiation. As our understanding of normal intestinal crypt homeostasis grows, these developments may point towards new insights into the origin of cancer and the maintenance and regulation of cancer stem cells.
Collapse
|
31
|
Davies EJ, Marsh V, Clarke AR. Origin and maintenance of the intestinal cancer stem cell. Mol Carcinog 2011; 50:254-63. [PMID: 21465575 DOI: 10.1002/mc.20631] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Colorectal cancer is one of the most common cancers in the western world and its incidence is steadily increasing. Understanding the basic biology of both the normal intestine and of intestinal tumorigenesis is vital for developing appropriate and effective cancer therapies. However, relatively little is known about the normal intestinal stem cell or the hypothetical intestinal cancer stem cell, and there is much debate surrounding these areas. This review briefly describes our current understanding of the properties of both the intestinal stem cell and the intestinal cancer stem cell. We also discuss recent theories regarding the origin of the intestinal cancer stem cell, and the signals required for its maintenance and proliferation. Finally, we place the relevance of cancer stem cell research into context by discussing potential clinical applications of targeting the intestinal cancer stem cell.
Collapse
Affiliation(s)
- Emma J Davies
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | | | | |
Collapse
|
32
|
Abstract
Adenomatous polyposis coli (APC) gene mutations have been implicated in familial and sporadic gastrointestinal (GI) cancers. APC mutations are associated with autosomal dominant inheritance of disease in humans. Similarly, mice that contain a single mutant APC gene encoding a protein truncated at residue 716 (ApcΔ716) develop multiple polyps throughout the GI tract as early as 4 weeks after birth. Inactivation of another tumor suppressor gene, Hypermethylated in Cancer 1 (HIC1), often occurs in human colon cancers, among others, via CpG island hypermethylation. Homozygous deletion of Hic1 in mice results in major developmental defects and embryonic lethality. Hic1 heterozygotes have previously been shown to develop tumors of a variety of tissue types. We now report that loss of a single Hic1 allele can promote crypt hyperplasia and neoplasia of the GI tract, and Hic1+/−, Apc+/Δ716 double heterozygotes (DH) develop increased numbers of polyps throughout the GI tract at 60 days. Hic1 expression is absent in polyps from DH mice, with concomitant increased expression of two transcriptional repression targets of Hic1, Sirt1 and Sox9. Together, our data suggest that loss of a gene frequently silenced via epigenetic mechanisms, Hic1, can cooperate with loss of a gene mutated in GI cancer, Apc, to promote tumorigenesis in an in vivo model of multiple intestinal neoplasia.
Collapse
|
33
|
Abstract
The colonic crypt is home to several multipotent stem cells. These stem cells reside in a niche at the base of the crypt, which controls their behavior and maintains the stem cell's homeostasis through a variety of signaling pathways and interactions. Several attempts have been made to define markers that can identify colonic stem cells, the most useful of which is Lgr5, a Wnt target gene. Although the crypt base contains several stem cells, each colonic crypt comprises a single clone of cells. Investigators have attempted to reconcile these apparently contradictory observations by conducting research into stem cell division. The propagation of stem-cell-acquired mutations through a crypt results in a monocryptal adenoma that, through crypt fission, develops into a microadenoma. Some early adenomas become polyclonal through an as yet unknown mechanism. The discovery of subpopulations of cancer cells that can initiate tumors when implanted into mice has renewed interest in the existence of cancer stem cells, especially with regard to their implications for the use of chemotherapy. Various potential markers of cancer stem cells have been investigated, particularly CD133, but the cancer stem cell theory still has some limitations.
Collapse
|
34
|
Hou NY, Yang K, Chen T, Chen XZ, Zhang B, Mo XM, Hu JK. CD133+ CD44+ subgroups may be human small intestinal stem cells. Mol Biol Rep 2011; 38:997-1004. [PMID: 20526812 DOI: 10.1007/s11033-010-0195-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 05/22/2010] [Indexed: 02/05/2023]
Abstract
The identification and separation of small intestinal epithelial stem cells are still on the preliminary stage. In this study, we planned to utilize immunohistochemistry, fluorescence-activated cell sorting (FACS) and RT-PCR to investigate the possibility of CD133 and CD44 as markers of human small intestinal epithelial stem cells. The expressions of CD133, CD44 and Lgr5 were studied by immunohistochemistry. Four subgroups of CD133(+)CD44(+), CD133(+)CD44(-), CD133(-)CD44(+), CD133(-)CD44(-) were sorted out through FACS and the expression level of Lgr5 gene was measured by RT-PCR and polyacrylamide gel electrophoresis (PAGE) with silver stained. Ten cases of samples were available for analyzing. By immunohistochemical staining, few cells with positive expressions of CD133, CD44 and Lgr5 were distributed in the bottom of crypts with the expression locations somewhat overlapped. The average percentage of CD133(+)CD44(+) cells was 0.0580 ± 0.0403%, while the corresponding contents of CD133(+)CD44(-) cells, CD133(-)CD44(+) cells and CD133(-)CD44(-) cells were 0.4000 ± 0.1225%, 0.7000 ± 0.2646% and 76.5600 ± 3.5529% respectively. Ten times of positive expressions of Lgr5 were detected in the CD133(+)CD44(+) groups, while 9/10, 8/10 and 4/10 times for CD133(+)CD44(-), CD133(-)CD44(+) and CD133(-)CD44(-) subgroups respectively. With the help of Quantityone 4.62 software, the densities of corresponding place to Lgr5 and reference gene were obtained. The density ratios of corresponding place to Lgr5 to reference gene were significant difference between subgroups (P < 0.001). By means of LSD method, the density ratios in CD133(+)CD44(+) subgroups had statistical differences from the other subgroups (P < 0.05). We concluded CD133(+)CD44(+) cells may be human small intestinal epithelial stem cells, which need further researches to confirm.
Collapse
Affiliation(s)
- Neng-Yi Hou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Spence JR, Lauf R, Shroyer NF. Vertebrate intestinal endoderm development. Dev Dyn 2011; 240:501-20. [PMID: 21246663 DOI: 10.1002/dvdy.22540] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2010] [Indexed: 12/12/2022] Open
Abstract
The endoderm gives rise to the lining of the esophagus, stomach and intestines, as well as associated organs. To generate a functional intestine, a series of highly orchestrated developmental processes must occur. In this review, we attempt to cover major events during intestinal development from gastrulation to birth, including endoderm formation, gut tube growth and patterning, intestinal morphogenesis, epithelial reorganization, villus emergence, as well as proliferation and cytodifferentiation. Our discussion includes morphological and anatomical changes during intestinal development as well as molecular mechanisms regulating these processes.
Collapse
|
36
|
Abstract
Knowledge of stem cell biology in the intestine is increasing exponentially and it is one of the current hot topics 'of the day'. Yet it is only recently that molecules such as Lgr5 and Bmi1 have been shown to reliably mark stem cells and have revealed the stem cell location throughout the murine gastrointestinal tract. However, there is a scarcity of meaningful work within their human counterpart. Nevertheless, recent studies have demonstrated the processes of niche succession, where one stem cell takes over the entire population of stem cells within a crypt; and monoclonal conversion, whereby the entire crypt becomes a clonal population of cells, are present in the human crypt. This work has also shown how crypts themselves divide and expand in the human colon.
Collapse
Affiliation(s)
- Adam Humphries
- Histopathology Unit, London Research Institute, Cancer Research UK, London, UK
| | | | | |
Collapse
|
37
|
|
38
|
Todaro M, Francipane MG, Medema JP, Stassi G. Colon cancer stem cells: promise of targeted therapy. Gastroenterology 2010; 138:2151-62. [PMID: 20420952 DOI: 10.1053/j.gastro.2009.12.063] [Citation(s) in RCA: 354] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/28/2009] [Accepted: 12/15/2009] [Indexed: 12/12/2022]
Abstract
First developed for hematologic disorders, the concept of cancer stem cells (CSCs) was expanded to solid tumors, including colorectal cancer (CRC). The traditional model of colon carcinogenesis includes several steps that occur via mutational activation of oncogenes and inactivation of tumor suppressor genes. Intestinal epithelial cells exist for a shorter amount of time than that required to accumulate tumor-inducing genetic changes, so researchers have investigated the concept that CRC arises from the long-lived stem cells, rather than from the differentiated epithelial cells. Colon CSCs were originally identified through the expression of the CD133 glycoprotein using an antibody directed to its epitope AC133. It is not clear if CD133 is a marker of colon CSCs-other cell surface markers, such as epithelial-specific antigen, CD44, CD166, Musashi-1, CD29, CD24, leucine-rich repeat-containing G-protein-coupled receptor 5, and aldehyde dehydrogenase 1, have been proposed. In addition to initiating and sustaining tumor growth, CSCs are believed to mediate cancer relapse after chemotherapy. How can we identify and analyze colon CSCs and what agents are being designed to kill this chemotherapy-refractory population?
Collapse
Affiliation(s)
- Matilde Todaro
- Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Laboratory, Palermo, Italy
| | | | | | | |
Collapse
|
39
|
Abstract
Cancer stem cells (CSCs) are the subpopulation of cells within a tumor that can self-renew, differentiate into multiple lineages, and drive tumor growth. Here we describe a two-pronged approach for the identification and characterization of CSCs from colorectal cancer cell lines, using a Matrigel-based differentiation assay, and cell surface markers CD44 and CD24. About 20 to 30% of cells from the SW1222 cell line form megacolonies in Matrigel that have complex 3D structures resembling colonic crypts. The megacolonies' capacity to self-renew in vitro is direct evidence that they contain the CSCs. Furthermore, just 200 cells from SW1222 megacolonies initiate tumors in NOD/SCID mice. We also showed that CD44(+)CD24(+) cells enriched for colorectal CSCs in the HT29 and SW1222 cell lines, which can self-renew and reform all four CD44/CD24 subpopulations, are the most clonogenic in vitro and can initiate tumors in vivo. A single SW1222 CD44(+)CD24(+) CSC, when grown in Matrigel, can form large megacolonies that differentiate into enterocyte, enteroendocrine, and goblet cell lineages. The HCT116 line does not differentiate or express CDX1, nor does it contain subpopulations of cells with greater tumor-forming capacity, suggesting that HCT116 contains mainly CSCs. However, forced expression of CDX1 in HCT116 leads to reduced clonogenicity and production of differentiating crypt-containing colonies, which can explain the selection for reduced CDX1 expression in many colorectal cancers. In summary, colorectal cancer cell lines contain subpopulations of CSCs, characterized by their cell surface markers and colony morphology, which can self-renew and differentiate into multiple lineages.
Collapse
|
40
|
Abstract
Colon cancer closely follows the paradigm of a single "gatekeeper gene." Mutations inactivating the APC (adenomatous polyposis coli) gene are found in approximately 80% of all human colon tumors and heterozygosity for such mutations produces an autosomal dominant colon cancer predisposition in humans and in murine models. However, this tight association between a single genotype and phenotype belies a complex association of genetic and epigenetic factors that together generate the broad phenotypic spectrum ofboth familial and sporadic colon cancers. In this Chapter, we give a general overview of the structure, function and outstanding issues concerning the role of Apc in human and experimental colon cancer. The availability of increasingly close models for human colon cancer in genetically tractable animal species enables the discovery and eventual molecular identification of genetic modifiers of the Apc-mutant phenotypes, connecting the central role of Apc in colon carcinogenesis to the myriad factors that ultimately determine the course of the disease.
Collapse
|
41
|
Potten CS, Gandara R, Mahida YR, Loeffler M, Wright NA. The stem cells of small intestinal crypts: where are they? Cell Prolif 2009; 42:731-50. [PMID: 19788585 PMCID: PMC6496740 DOI: 10.1111/j.1365-2184.2009.00642.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 05/27/2009] [Indexed: 12/11/2022] Open
Abstract
Recently, there has been resurgence of interest in the question of small intestinal stem cells, their precise location and numbers in the crypts. In this article, we attempt to re-assess the data, including historical information often omitted in recent studies on the subject. The conclusion we draw is that the evidence supports the concept that active murine small intestinal stem cells in steady state are few in number and are proliferative. There are two evolving, but divergent views on their location (which may be more related to scope of capability and reversibility than to location) several lineage labelling and stem cell self-renewing studies (based on Lgr5 expression) suggest a location intercalated between the Paneth cells (crypt base columnar cells (CBCCs)), or classical cell kinetic, label-retention and radiobiological evidence plus other recent studies, pointing to a location four cell positions luminally from the base of the crypt The latter is supported by recent lineage labelling of Bmi-1-expressing cells and by studies on expression of Wip-1 phosphatase. The situation in the human small intestine remains unclear, but recent mtDNA mutation studies suggest that the stem cells in humans are also located above the Paneth cell zone. There could be a distinct and as yet undiscovered relationship between these observed traits, with stem cell properties both in cells of the crypt base and those at cell position 4.
Collapse
|
42
|
Abstract
The epithelial cell lining of the gastrointestinal tract is the most rapidly proliferating tissue in the body. The constant state of renewal of differentiated epithelial cells is sustained by a continual supply of progeny from multipotent progenitors that originate from stem cells located within the intestinal crypts. In addition to supporting normal epithelial homeostasis, intestinal stem cells (ISC) are thought to play an important role in the rapid expansion of the gut during development, tissue regeneration following injury or surgical loss, and malignancy. Because of the lack of specific ISC markers required to isolate and characterize these cells, our current knowledge of the biology of ISC results largely from indirect measures of their behavior published during the past 40 years. The recent description of several potential ISC markers and the use of transgenic mice, both as a tool to lineage trace and to isolate specific cells expressing these markers, have provided a tremendous advancement to our current understanding of these cells. This brief review provides a general historical overview of our understanding of ISC and the tools available to study their behavior in the context of normal and pathological conditions, as well as potential future clinical applications that may result from this exciting area of research.
Collapse
|
43
|
Stem cells are dispensable for lung homeostasis but restore airways after injury. Proc Natl Acad Sci U S A 2009; 106:9286-91. [PMID: 19478060 DOI: 10.1073/pnas.0900668106] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Local tissue stem cells have been described in airways of the lung but their contribution to normal epithelial maintenance is currently unknown. We therefore developed aggregation chimera mice and a whole-lung imaging method to determine the relative contributions of progenitor (Clara) and bronchiolar stem cells to epithelial maintenance and repair. In normal and moderately injured airways chimeric patches were small in size and not associated with previously described stem cell niches. This finding suggested that single, randomly distributed progenitor cells maintain normal epithelial homeostasis. In contrast we found that repair following severe lung injury resulted in the generation of rare, large clonal cell patches that were associated with stem cell niches. This study provides evidence that epithelial stem cells are dispensable for normal airway homeostasis. We also demonstrate that stem cell activation and robust clonal cellular expansion occur only during repair from severe lung injury.
Collapse
|
44
|
Swenson ES, Xanthopoulos J, Nottoli T, McGrath J, Theise ND, Krause DS. Chimeric mice reveal clonal development of pancreatic acini, but not islets. Biochem Biophys Res Commun 2008; 379:526-31. [PMID: 19116141 DOI: 10.1016/j.bbrc.2008.12.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 12/17/2008] [Indexed: 11/16/2022]
Abstract
Intestinal crypt stem cells establish clonal descendants. To determine whether the pancreas is patterned by a similar process, we used embryonic stem (ES) cell chimeric mice, in which male ES cells were injected into female blastocysts. Fluorescence in situ hybridization for the Y chromosome (Y-FISH) revealed clonal patterning of ES-derived cells in the adult mouse small intestine and pancreas. Intestinal crypts were entirely male or entirely female. Villi contained columns of male or female epithelial cells, consistent with upward migration of cells from the crypts which surround them. Within the exocrine pancreas, acini were entirely male or entirely female, consistent with patterning from a single stem/progenitor cell. Pancreatic islets contained a mixture of male and female cells, consistent with patterning from multiple progenitors. Male-female chimeric mice demonstrate that the adult mouse exocrine pancreatic acinus is patterned from a single stem/progenitor cell, while the endocrine pancreas arises from multiple progenitors.
Collapse
Affiliation(s)
- E Scott Swenson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 330 Cedar St, LMP 1080, New Haven, CT 06520-8019, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Gutierrez-Gonzalez L, Deheragoda M, Elia G, Leedham SJ, Shankar A, Imber C, Jankowski JA, Turnbull DM, Novelli M, Wright NA, McDonald SAC. Analysis of the clonal architecture of the human small intestinal epithelium establishes a common stem cell for all lineages and reveals a mechanism for the fixation and spread of mutations. J Pathol 2008; 217:489-96. [DOI: 10.1002/path.2502] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Abstract
An appreciation of colonic crypt organization has become essential to any understanding of tumorigenesis in the colon. Intestinal crypts house tissue-specific, multipotential stem cells, which are located in the niche at the base of the intestinal crypt and are capable of regenerating all intestinal cell types. Recent advances in our understanding of crypt biology, including how mutations in stem cells become fixed and expand within the epithelium, has led to new theories on the origins of colonic adenomas and cancers.
Collapse
Affiliation(s)
- Adam Humphries
- Histopathology Lab, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Cancer is thought to be an evolutionary process. Modern studies of evolution increasingly rely on genome comparisons, and similar molecular phylogeny approaches could be translated to somatic cell genomes to reconstruct colorectal cancer progression. The purpose of this review is to outline how human somatic cell ancestral trees can organize many old and new observations. RECENT FINDINGS A somatic cell tree starts from the zygote and ends with present day normal or neoplastic cells. In between are ancestors and dead ends, which functionally correspond to stem and nonstem cells. Cancer genome projects illustrate that mutations are relatively infrequent, and consistent with normal mutation rates, particularly if mutations begin to accumulate from birth. Therefore, some mutations eventually found in cancers may first occur in normal appearing crypts, which are maintained by niches that allow for stem cell clonal evolution and selection. Although mutations occur too infrequently to function as somatic cell molecular clocks, potentially more labile epigenetic changes in CpG methylation may also record somatic cell ancestry. SUMMARY Somatic cell evolution can occur throughout life, and potentially at least some of this unseen past may be reconstructed by 'reading' the lifetime changes that accumulate within our genomes.
Collapse
|
48
|
Abstract
Most epithelial tissues self-renew throughout adult life due to the presence of multipotent stem cells and/or unipotent progenitor cells. Epithelial stem cells are specified during development and are controlled by epithelial-mesenchymal interactions. Despite morphological and functional differences among epithelia, common signaling pathways appear to control epithelial stem cell maintenance, activation, lineage determination, and differentiation. Additionally, deregulation of these pathways can lead to human disorders including cancer. Understanding epithelial stem cell biology has major clinical implications for the diagnosis, prevention, and treatment of human diseases, as well as for regenerative medicine.
Collapse
Affiliation(s)
- Cédric Blanpain
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
49
|
Liu Z, Dong Z, Yang Z, Chen Q, Pan Y, Yang Y, Cui P, Zhang X, Zhang JT. Role of eIF3a (eIF3 p170) in intestinal cell differentiation and its association with early development. Differentiation 2007; 75:652-61. [PMID: 17381544 DOI: 10.1111/j.1432-0436.2007.00165.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eukaryotic initiation factor 3a (eIF3a) has been suggested to play a regulatory role in mRNA translation. Decreased eIF3a expression has been observed in differentiated cells while higher levels have been observed in cancer cells. However, whether eIF3a plays any role in differentiation and development is currently unknown. Here, we investigated eIF3a expression during mouse development and its role in differentiation of colon epithelial cells. We found that eIF3a expression was higher in fetal tissues compared with postnatal ones. Its expression in intestine, stomach, and lung abruptly stopped on the 18th day in gestation but persisted in liver, kidney, and heart throughout the postnatal stage at decreased levels. Similarly, eIF3a expression in colon cancer cell lines, HT-29 and Caco-2, drastically decreased prior to differentiation. Enforced eIF3a expression inhibited while knocking it down using small interference RNA promoted Caco-2 differentiation. Thus, eIF3a may play some roles in development and differentiation and that the decreased eIF3a expression may be a pre-requisite of intestinal epithelial cell differentiation.
Collapse
Affiliation(s)
- Zhaoqian Liu
- Department of Pharmacology and Toxicology, Walther Oncology Center, Walther Cancer Institute, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The gastrointestinal tract represents the largest mucosal membrane surface in the human body. The immune system in the gut is the first line of host defense against mucosal microbial pathogens and it plays a crucial role in maintaining mucosal homeostasis. Membranous or microfold cells, commonly referred to as microfold cells, are specialized epithelial cells of the gut-associated lymphoid tissues (GALT) and they play a sentinel role for the intestinal immune system by delivering luminal antigens through the follicle-associated epithelium to the underlying immune cells. M cells sample and uptake antigens at their apical membrane, encase them in vesicles to transport them to the basolateral membrane of M cells, and from there deliver antigens to the nearby lymphocytes. On the flip side, some intestinal pathogens exploit M cells as their portal of entry to invade the host and cause infections. In this article, we briefly review our current knowledge on the morphology, development, and function of M cells, with an emphasis on their dual role in the pathogenesis of gut infection and in the development of host mucosal immunity.
Collapse
|