1
|
Uwangue O, Glerup J, Dunge A, Bjelcic M, Wehlander G, Brändén G. Microcrystallization and room-temperature serial crystallography structure of human cytochrome P450 3A4. Arch Biochem Biophys 2025; 769:110419. [PMID: 40209873 DOI: 10.1016/j.abb.2025.110419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
The cytochrome P450 family of enzymes are key players in the metabolism of foreign substances in the body, including pharmaceutical compounds, and therefore important to take into consideration during drug development. The main human isoform is CYP3A4, a highly flexible protein that can act on a diverse set of substances and that is inhibited by compounds varying greatly in size. To accompany the different ligands, substantial conformational changes occur that transform the active-site binding pocket between a collapsed form and various open states. A large body of biophysical data including high-resolution structures are available but there is still a lack of understanding of the dynamic properties of CYP3A4. Here, we present the first room-temperature structure of CYP3A4 solved by serial crystallography. The structure is overall very similar to structures solved at cryo-temperature of the un-bound form of the enzyme including the conformation of the active-site lid. We observe that loops are better defined at room-temperature despite the lower resolution of this structure. Based on an internal distance matrix analysis of a large set of CYP3A4 structures, we conclude that the crystal form rather than temperature is determining for how the structures cluster. Finally, a workflow for generating microcrystals suitable for fixed-target serial crystallography data collection is described. This work lays the foundation for future studies of ligand-induced dynamics and structural transitions during the catalytic reaction of CYP3A4.
Collapse
Affiliation(s)
- Owens Uwangue
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Johan Glerup
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Andreas Dunge
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden; Protein Sciences, Structure and Biophysics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparredsleden 1, SE-43183 Mölndal, Sweden
| | - Monika Bjelcic
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden; MAX IV Laboratory, Lund University, P.O. Box 118, SE-22100, Lund, Sweden
| | - Gabrielle Wehlander
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden.
| |
Collapse
|
2
|
Ngan DK, Sakamuru S, Zhao J, Xia M, Ferguson SS, Reif DM, Simeonov A, Huang R. Application of cytochrome P450 enzyme assays to predict p53 inducers and AChE inhibitors that require metabolic activation. Toxicol Appl Pharmacol 2025; 499:117315. [PMID: 40180188 PMCID: PMC12065653 DOI: 10.1016/j.taap.2025.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Metabolically active compounds can cause toxicity which would otherwise be undetected using traditional in vitro assays with limited proficiency for xenobiotic metabolism. Introduction of liver microsomes to assay systems enables enhanced identification of compounds that require biotransformation to induce toxicity. Previously, metabolically active compounds from the Tox21 10 K compound library were identified using assays probing two targets, p53 and acetylcholinesterase (AChE), in the presence and absence of human or rat liver microsomes, due to the established roles of cytochrome P450 (CYP) enzymes in human drug metabolism. To further explore the role of metabolic activation, the activities of the identified metabolically active compounds were evaluated against five CYP enzymes: CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. CYP bioactivities were found to be highly predictive (>80 % accuracy) of compounds that required metabolic activation in these assays. Chemical features significantly enriched in metabolically active compounds, as well as chemical features that were specific for each of the five CYPs, were identified. Product use exposures of the metabolically active compounds were examined in this study, with "pesticides" appearing to be the largest category that may produce harmful metabolites. Additionally, the compound interactions with different CYPs were assessed and frequencies for both classes of compounds, drugs and environmental chemicals, were found to be proportionally similar across the five CYP isoforms.
Collapse
Affiliation(s)
- Deborah K Ngan
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Srilatha Sakamuru
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Jinghua Zhao
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Menghang Xia
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Stephen S Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - David M Reif
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - Anton Simeonov
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA.
| |
Collapse
|
3
|
Vieira CSP, Segundo MA, Araújo AN. Cytochrome P450 electrochemical biosensors transforming in vitro metabolism testing - Opportunities and challenges. Bioelectrochemistry 2025; 163:108913. [PMID: 39854934 DOI: 10.1016/j.bioelechem.2025.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The ability of the living world to flourish in the face of constant exposure to dangerous chemicals depends on the management ability of a widespread group of enzymes known as heme-thiolate monooxygenases or cytochrome P450 superfamily. About three-quarters of all reactions determining the metabolism of endogenous compounds, of those carried in foods, of taken drugs, or even of synthetic chemicals discarded into the environment depend on their catalytic performance. The chromatographic and (photo)luminometric methods routinely used as predictive and analytical tools in laboratories have significant drawbacks ranging from limited shelf-life of reagents, use of synthetic substrates, laborious and tedious procedures for highly sensitive detection. In this review, alternative electrochemical biosensors using the cytochrome P450 enzymes as bio-element are emphasized in their main aspects as well regarding their implementation and usefulness. Despite the various schemes proposed for the implementation, reports on real applications are scant for several reasons, including low reaction rates, broad substrate specificity, uncoupling reactions occurrence, and the need for expensive electron transfer partners to promote electron transfer. Finally, the prospect for future developments is introduced, focusing on integrating miniaturized systems with electrochemical techniques, alongside optimizing enzyme immobilization methods and electrode modifications to improve enzymatic stability and enhance sensor reliability. This progress represents a crucial step towards the creation of portable biosensors that mimic human physiological responses, supporting the precision medicine approach.
Collapse
Affiliation(s)
- Carina S P Vieira
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marcela A Segundo
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Alberto N Araújo
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
4
|
Yan J, Hirao H. QM/MM Study of the Metabolic Oxidation of 6',7'-Dihydroxybergamottin Catalyzed by Human CYP3A4: Preferential Formation of the γ-Ketoenal Product in Mechanism-Based Inactivation. J Chem Inf Model 2025; 65:4620-4629. [PMID: 40249700 DOI: 10.1021/acs.jcim.5c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
6',7'-Dihydroxybergamottin (DHB), a natural furanocoumarin found in grapefruit, is known to cause mechanism-based inactivation (MBI) of several cytochrome P450 enzymes (P450s) in humans, including CYP3A4. Despite its pharmacological significance, the precise microscopic mechanisms underlying the P450 MBI induced by DHB remain unclear. To address this, we employed molecular docking and molecular dynamics simulations to identify a plausible catalytic binding pose of DHB within CYP3A4. Subsequent quantum mechanics/molecular mechanics (QM/MM) calculations explored two possible reaction pathways (A and B). Path A involves the attack by compound I (Cpd I) at the C5 position of the furan moiety, leading to γ-ketoenal formation, while Path B targets the C4 position, yielding an epoxide. Path A exhibits a much lower activation energy barrier, indicating a strong kinetic preference. Additionally, the γ-ketoenal is thermodynamically more stable than the epoxide. Thus, even if the epoxide forms initially, it is likely to rearrange into the γ-ketoenal, either within the enzyme or in aqueous solution. Collectively, these findings suggest that the γ-ketoenal is the sole ultimate product of DHB oxidation by CYP3A4. This study provides valuable insights into CYP3A4 inactivation by grapefruit constituents and advances our understanding of food-drug interactions.
Collapse
Affiliation(s)
- Junfang Yan
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
5
|
Schulz C, Stegen S, Jung F, Küpper JH. Mono-CYP CHO Model: A Recombinant Chinese Hamster Ovary Cell Platform for Investigating CYP-Specific Tamoxifen Metabolism. Int J Mol Sci 2025; 26:3992. [PMID: 40362231 PMCID: PMC12071759 DOI: 10.3390/ijms26093992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
The metabolism of drugs and foreign substances in humans typically involves multiple enzymatic steps, particularly in phase-1 biotransformation in the liver, where various cytochrome P450 monooxygenases (CYPs) play crucial roles. This complexity can lead to a wide range of metabolites. Understanding the contributions of individual CYPs and their interactions within these intricate enzyme cascades can be challenging. We recently developed an in vitro biotransformation platform employing various Chinese Hamster Ovarian (CHO) cell clones. These clones express human cytochrome P450 oxidoreductase (CPR), and each is defined by a specific human CYP enzyme expression, thus exhibiting no detectable endogenous CYP enzyme activity (mono-CYP CHO platform). In this study, we investigated whether the mono-CYP CHO platform is a suitable tool for modeling complex drug metabolization reactions in vitro. Tamoxifen (TAM) was selected as a model substance due to its role as a prodrug widely used in breast cancer therapy, where its main active metabolite, endoxifen, arises from a two-step metabolism primarily involving the CYP system. Specifically, the combined activity of CYP3A4 and CYP2D6 is believed to be essential for efficient endoxifen production. However, the physiological metabolization pathway of TAM is more complex and interconnected, and the reasons for TAM's therapeutic success and variability among patients are not yet fully understood. Analogous to our recently introduced mono-CYP3A4 CHO cells, we generated a CHO cell line expressing human CPR and CYP2D6, including analysis of CYP2D6 expression and specific activity. Comparative studies on the metabolization of TAM were performed with both mono-CYP CHO models individually and in co-culture with intact cells as well as with isolated microsomes. Supernatants were analyzed by HPLC to calculate individual CYP activity for each metabolite. All the picked mono-CYP2D6 clones expressed similar CYP2D6 protein amounts but showed different enzyme activities. Mono-CYP2D6 clone 18 was selected as the most suitable for TAM metabolization based on microsomal activity assays. TAM conversion with mono-CYP2D6 and -3A4 clones, as well as the combination of both, resulted in the formation of the expected main metabolites. Mono-CYP2D6 cells and microsomes produced the highest detected amounts of 4-hydroxytamoxifen and endoxifen, along with N-desmethyltamoxifen and small amounts of N,N-didesmethyltamoxifen. N-desmethyltamoxifen was the only TAM metabolite detected in notable quantities in mono-CYP3A4, while 4-hydroxytamoxifen and endoxifen were present only in trace amounts. In CYP2D6/3A4 co-culture and equal mixtures of both CYP microsomes, all metabolites were detected at concentrations around 50% of those in individual clones, indicating no significant synergistic effects. In conclusion, our mono-CYP CHO model confirmed the essential role of CYP2D6 in synthesizing the active TAM metabolite endoxifen and indicated that CYP2D6 is also involved in producing the by-metabolite N,N-didesmethyltamoxifen. The differences in metabolite spectra between the two mono-CYP models highlight the CYP specificity and sensitivity of our in vitro system.
Collapse
Affiliation(s)
- Christian Schulz
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Site Lausitz (IZI-BB-L), 01968 Senftenberg, Germany;
| | - Sarah Stegen
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Site Lausitz (IZI-BB-L), 01968 Senftenberg, Germany;
| | - Friedrich Jung
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany; (F.J.); (J.-H.K.)
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany; (F.J.); (J.-H.K.)
| |
Collapse
|
6
|
Mwaniki RM, Veldman W, Sanyanga A, Chamboko CR, Tastan Bishop Ö. Decoding Allosteric Effects of Missense Variations in Drug Metabolism: Afrocentric CYP3A4 Alleles Explored. J Mol Biol 2025:169160. [PMID: 40252954 DOI: 10.1016/j.jmb.2025.169160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
There is growing research on the allosteric behaviour of proteins, including studies on allosteric mutations that contribute to human diseases and the development of allosteric drugs. Allostery also plays a key role in drug metabolism, an essential factor in drug development. However, population specific variations, particularly in 3D protein structures, remain understudied. This study focuses on CYP3A4, a key enzyme responsible for metabolizing over 50% of FDA-approved drugs and often linked to adverse drug reactions. Given the vast genetic diversity of Africa, we investigated 13 CYP3A4 alleles from African populations using post-molecular dynamics analyses, with 12 being single variations and one containing a double variation. Except for one, all allele variations were located away from the active site, suggesting allosteric effects. Our comparative analyses of reference and variant structures, through hydrogen bond interactions, dynamic residue network analysis and substrate channel dynamics, revealed notable differences at both global and residue levels. The *32-I335T variant showed the largest changes compared to the reference structure, while *3-M445T (near normal metabolizer) exhibited the least change, with other variants falling in between. The *32-I335T variant showed a distorted conformation in the radius of gyration, a distinct kink in the I helix with specific hydrogen bonds and altered channel patterns. The *12-L373F variant, associated with reduced metabolism of midazolam and quinine, showed increased rigidity in its vicinity, potentially interfering with catalytic activity. Our findings align with clinical and wet lab data, suggesting that our approaches could be applied to analyse variants without clinical evidence.
Collapse
Affiliation(s)
- Rehema Mukami Mwaniki
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, South Africa
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, South Africa
| | - Allan Sanyanga
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, South Africa
| | - Chiratidzo R Chamboko
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, South Africa; National Institute for Theoretical and Computational Sciences (NITheCS), South Africa.
| |
Collapse
|
7
|
Wang J, Nithianantham S, Chai SC, Jung YH, Yang L, Ong HW, Li Y, Zhang Y, Miller DJ, Chen T. Decoding the selective chemical modulation of CYP3A4. Nat Commun 2025; 16:3423. [PMID: 40210880 PMCID: PMC11985932 DOI: 10.1038/s41467-025-58749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Drug-drug interactions associate with concurrent uses of multiple medications. Cytochrome P450 (CYP) 3A4 metabolizes a large portion of marketed drugs. To maintain the efficacy of drugs metabolized by CYP3A4, pan-CYP3A inhibitors such as ritonavir are often co-administered. Although selective CYP3A4 inhibitors have greater therapeutic benefits as they avoid inhibiting unintended CYPs and undesirable clinical consequences, the high homology between CYP3A4 and CYP3A5 has hampered the development of such selective inhibitors. Here, we report a series of selective CYP3A4 inhibitors with scaffolds identified by high-throughput screening. Structural, functional, and computational analyses reveal that the differential C-terminal loop conformations and two distinct ligand binding surfaces disfavor the binding of selective CYP3A4 inhibitors to CYP3A5. Structure-guided design of compounds validates the model and yields analogs that are selective for CYP3A4 versus other major CYPs. These findings demonstrate the feasibility to selectively inhibit CYP3A4 and provide guidance for designing better CYP3A4 selective inhibitors.
Collapse
Affiliation(s)
- Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Nithianantham
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Young-Hwan Jung
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Han Wee Ong
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yong Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yifan Zhang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
8
|
Bathaei P, Imenshahidi M, Vahdati-Mashhadian N, Hosseinzadeh H. Effects of Crocus sativus and its active constituents on cytochrome P450: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03525-6. [PMID: 40167627 DOI: 10.1007/s00210-024-03525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 04/02/2025]
Abstract
Cytochrome P450 (CYP) enzymes play an important role in the biotransformation of drugs and endogenous substances. Clinical medications and herbal remedies can either enhance or inhibit the activity of CYP enzymes, leading to potential drug interactions between herbal supplements and prescribed medications. Such interactions can lead to serious consequences, especially for drugs with a narrow therapeutic index, such as digoxin, warfarin, and cyclosporine A. In this review article, we provide an updated review of the impact of saffron, and its active constituents, safranal and crocin, on the 12 major human CYP enzymes and possible drug interactions between saffron and prescription drugs. The available evidence indicates that saffron and its active constituents affect the expression or activity of some CYP isoforms, including the CYP1A1/2, CYP3A4, and CYP2E1 subfamily. Considering the important role of these CYPs in the biotransformation of frequently prescribed medications and the activation of procarcinogen into carcinogenic metabolites, it can be expected that the consumption of saffron and its active constituents may influence the pharmacokinetics and toxicity of several substances. In particular, given the critical role of CYP3A4 in drug metabolism, and saffron's inhibitory impact on this CYP enzyme, it appears that saffron's most significant interaction is linked to its inhibition of CYP3A4. In addition, the inhibitory effect of saffron on CYP1A1/2, and CYP2E1 expression can play a role in the chemopreventive effect of this herbal medicine. Additional research is crucial for evaluating the clinical significance of these interactions in patients who consume saffron along with prescription drugs and determining the dose that can lead to drug interactions.
Collapse
Affiliation(s)
- Pooneh Bathaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran
| | - Nasser Vahdati-Mashhadian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran.
| |
Collapse
|
9
|
Zakhari S, Neuman M, Seitz HK. The role of cytochrome P4502E1 in ethanol mediated diseases: a narrative update. Alcohol Alcohol 2025; 60:agaf014. [PMID: 40192654 DOI: 10.1093/alcalc/agaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/21/2025] [Accepted: 03/08/2025] [Indexed: 05/17/2025] Open
Abstract
Cytochrome P450 (CYPs) superfamily of enzymes metabolize thousands of endogenous and exogenous substrates including ethanol. Results: Cytochrome P4502E1 (CYP2E1) is involved in ethanol metabolism as part of the so-called microsomal ethanol metabolizing system, in the metabolism of fatty acids and some drugs such as acetaminophen and isoniazid, and in the activation of a variety of procarcinogens (PCs). Chronic ethanol consumption induces CYP2E1 which may result in an enhanced metabolism of these drugs to their toxic intermediates, and in the generation of carcinogens. In addition, ethanol oxidation increases and is associated with the generation of reactive oxygen species (ROS). This oxidative stress is an important driver for the development of alcohol-associated liver disease (AALD) and alcohol-mediated cancer (AMC). ROS may bind directly to proteins and to DNA. ROS may also lead to lipid peroxidation (LPO) with the generation of LPO products. These LPO products may bind to DNA forming etheno-DNA adducts. Cell culture studies as well as animal experiments have shown that CYP2E1 knock-out animals or the inhibition of CYP2E1 by chemicals results in a significant improvement of liver histology. CYP2E1 is also involved in pathogenesis of hepatic steatosis and fibrosis. More recent studies in patients with AALD have demonstrated an improvement of serum transaminase activities when CYP2E1 was inhibited by clomethiazole. In addition to its role in the generation of ROS, CYP2E1 also enhances the activation of PCs and decreases the level of retinol and retinoic acid in the liver. Conclusion: Inhibition of CYP2E1 may improve AALD and may inhibit AMC.
Collapse
Affiliation(s)
- Samir Zakhari
- Independent Researcher, Washington, DC, University Park, 20782, USA
| | - Manuela Neuman
- In Vitro Drug Safety and Biotechnology, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Helmut K Seitz
- Centre of Liver and Alcohol Diseases, Ethianum Clinic, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Wang H, Xin L, Hou P, Sun S, Zheng J, Wang W. Evidence for the metabolic activation of higenamine to quinone methide and ortho-quinone metabolites in vitro and in vivo using liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2025; 255:116634. [PMID: 39675300 DOI: 10.1016/j.jpba.2024.116634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Higenamine (HG), a naturally occurring benzyltetrahydroisoquinoline alkaloid, has been revealed a variety of biological activities and is extensively utilized in dietary supplements. Currently, HG is under investigation in phase I clinical trials, however, the liver metabolism of HG has so far not been fully elucidated. The present study aimed to identify reactive metabolites of HG using ultrahigh-performance liquid chromatography-tandem mass spectrometry. Four glutathione (GSH) conjugates (M1-M4) and four cysteine conjugates (M5-M8) derived from reactive metabolites of HG were detected in GSH/cysteine-fortified mouse/human microsomal incubations. The cysteine conjugates were chemically synthesized for structural elucidation using manganese dioxide as the oxidizing agent. The reactive metabolites of HG were identified as quinone methide, hydroxyquinone methide, and ortho-quinone based on the fragmentation patterns of cysteine conjugates. Multiple CYP450 enzymes including CYP2D6, CYP3A4, and CYP2E1 were mediated in the formation of quinone methide, with the major role assigned to CYP2D6. While the oxidation of catechol to ortho-quinone metabolite and the subsequent isomerization into hydroxyquinone methide were independent of CYP450 isoforms. In addition, these electrophilic metabolites were found to react with biliary GSH and cysteine residues of hepatic protein in HG-treated mice. The in vitro and in vivo evidence of the metabolic activation of HG to quinone methide and ortho-quinone metabolites raised health concerns regarding the consumption of HG-containing supplements.
Collapse
Affiliation(s)
- Hui Wang
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, PR China
| | - Lihua Xin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Pengyi Hou
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd, Beijing 100015, PR China
| | - Shiwei Sun
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, PR China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Wei Wang
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, PR China.
| |
Collapse
|
11
|
Durairaj P, Liu ZL. Brain Cytochrome P450: Navigating Neurological Health and Metabolic Regulation. J Xenobiot 2025; 15:44. [PMID: 40126262 PMCID: PMC11932283 DOI: 10.3390/jox15020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Human cytochrome P450 (CYP) enzymes in the brain represent a crucial frontier in neuroscience, with far-reaching implications for drug detoxification, cellular metabolism, and the progression of neurodegenerative diseases. The brain's complex architecture, composed of interconnected cell types and receptors, drives unique neuronal signaling pathways, modulates enzyme functions, and leads to distinct CYP gene expression and regulation patterns compared to the liver. Despite their relatively low levels of expression, brain CYPs exert significant influence on drug responses, neurotoxin susceptibility, behavior, and neurological disease risk. These enzymes are essential for maintaining brain homeostasis, mediating cholesterol turnover, and synthesizing and metabolizing neurochemicals, neurosteroids, and neurotransmitters. Moreover, they are key participants in oxidative stress responses, neuroprotection, and the regulation of inflammation. In addition to their roles in metabolizing psychotropic drugs, substances of abuse, and endogenous compounds, brain CYPs impact drug efficacy, safety, and resistance, underscoring their importance beyond traditional drug metabolism. Their involvement in critical physiological processes also links them to neuroprotection, with significant implications for the onset and progression of neurodegenerative diseases. Understanding the roles of cerebral CYP enzymes is vital for advancing neuroprotective strategies, personalizing treatments for brain disorders, and developing CNS-targeting therapeutics. This review explores the emerging roles of CYP enzymes, particularly those within the CYP1-3 and CYP46 families, highlighting their functional diversity and the pathological consequences of their dysregulation on neurological health. It also examines the potential of cerebral CYP-based biomarkers to improve the diagnosis and treatment of neurodegenerative disorders, offering new avenues for therapeutic innovation.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemical and Biomedical Engineering, Florida A&M University, Tallahassee, FL 32310, USA
| | - Zixiang Leonardo Liu
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemical and Biomedical Engineering, Florida A&M University, Tallahassee, FL 32310, USA
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
12
|
Lenich AK, Nilles J, Scherer V, Li F, Ruez S. Assessing granisetron as a specific CYP1A1 substrate in primary human hepatocytes: A comprehensive evaluation for drug development studies. Drug Metab Dispos 2025; 53:100064. [PMID: 40286384 DOI: 10.1016/j.dmd.2025.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/14/2025] [Accepted: 03/05/2025] [Indexed: 04/29/2025] Open
Abstract
Cytochrome P450 (CYP) enzymes are essential in metabolic pathways and drug-drug interactions, making their investigation highly relevant during drug development. These studies are typically conducted in liver systems, where primary human hepatocytes (PHH) are considered the gold standard. Current regulatory guidelines focus primarily on CYP1A2 for drug interaction studies, neglecting CYP1A1, which is highly inducible and particularly relevant in populations exposed to pollutants like polycyclic aromatic hydrocarbons, commonly found in tobacco smoke. This study applied granisetron as a specific substrate for CYP1A1 in drug interaction research, establishing assay parameters for its use in PHH, with the aim of providing clear recommendations for measuring CYP1A1 enzyme activity in industry applications. It was confirmed that 7-OH-granisetron is representative of CYP1A1 enzyme activity in PHH. Furthermore, enzyme kinetics indicated biphasic Michaelis-Menten kinetics for granisetron-7-hydroxylation, with Vmax = 0.3 pmol/(min× million cells) and Km = 5.5 μM. Optimal incubation conditions for measurements under Vmax conditions were determined to be 30-40 μM granisetron, with a minimum incubation time of 90 minutes. These conditions were validated in a CYP1A induction experiment, confirming the effectiveness of the parameters. CYP1A1 exhibited high inducibility, which is relevant in clinical settings for patients exposed to CYP1A1 inducers. In conclusion, this study developed an assay to investigate CYP1A1 enzyme activity in PHH during drug interaction studies such as enzyme induction or enzyme inhibition. This work highlights granisetron-7-hydroxylation as a marker reaction to uncover specific CYP1A1 reactions in vitro and enhance the understanding of metabolic variations in systems involving CYP1A1 induction. SIGNIFICANCE STATEMENT: This study applied granisetron as a specific substrate for CYP1A1 in drug interaction studies and determined the assay parameters for the use of granisetron in primary human hepatocytes. This work contributes to the field by yielding clear recommendations for the application of granisetron in primary human hepatocytes for enzymatic activity measurements under Vmax conditions, providing guidance for industry applications on measuring specific CYP1A1 enzyme activity in induction studies.
Collapse
Affiliation(s)
- Ann-Kathrin Lenich
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Julie Nilles
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Vanessa Scherer
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Fangjie Li
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Stephanie Ruez
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
| |
Collapse
|
13
|
Jiang W, Sang R, Zhang C, Yin R, Ouyang Z, Wei Y. Application of small interfering RNA technology in cytochrome P450 gene modulation. Drug Metab Dispos 2025; 53:100040. [PMID: 40010050 DOI: 10.1016/j.dmd.2025.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/28/2025] Open
Abstract
Cytochrome P450 plays key roles in the biotransformation of endogenous and exogenous chemicals including drugs and environmental pollutants. The inhibition and downregulation of P450s can have therapeutic effects, and/or modulate drug metabolism. P450s are largely inhibited by small molecules; however, this strategy is often hampered by intrinsic toxicity and drug-drug interactions. Furthermore, it is challenging for small molecules to exhibit high selectivity and inhibitory efficiencies. Recently, small interfering RNA (siRNA) technology has demonstrated the potential for P450 modulation. Examples of recent applications of siRNAs in P450 gene modulation, in vitro and in vivo, are highlighted in this review. The necessity of siRNA techniques and their advantages as P450 modulators are discussed, along with a review of current obstacles and a perspective on future advancements. SIGNIFICANCE STATEMENT: This article reviews studies on the application of small interfering RNA technology to cytochrome P450 gene modulation. The necessity of siRNA methods and the benefits of their use as P450 modulators have been suggested by comparison with small-molecule drugs. Additionally, the challenges that presently limit the broader implementation of this topic are examined, and a perspective for future developments is proposed.
Collapse
Affiliation(s)
- Wenzhao Jiang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Ruoyao Sang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Cai Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
14
|
Liu J, Zhang D. Cytochrome P450-mediated carbon-carbon bond formation in drug metabolism. Drug Metab Rev 2025; 57:51-66. [PMID: 39906921 DOI: 10.1080/03602532.2025.2451847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025]
Abstract
Cytochrome P450 (CYPs) enzymes are essential for the metabolism of numerous drug compounds and are capable of catalyzing many types of biotransformation reactions. One of the more unusual reactions catalyzed by CYPs is carbon-carbon (C-C) bond formation, which is critical in organic synthesis but found less commonly in nature. This review focuses on examples of C-C bond formation that occur during drug metabolism and highlights the mechanism for the formation of novel drug metabolites that result from these reactions. The different roles that mammalian CYPs can play in C-C bond formations are also discussed in detail. Ultimately, an understanding of the range of xenobiotics that undergo C-C bond formation and the mechanisms by which they do so can further facilitate metabolite identification and drug design efforts.
Collapse
Affiliation(s)
- Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
15
|
Wang T, Chen X, Gao Q, Huang C, Wang K, Qiu F. Herb-drug interaction potential of Astragali Radix: a metabolic perspective. Drug Metab Rev 2025; 57:9-25. [PMID: 39692050 DOI: 10.1080/03602532.2024.2441235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Astragali Radix (AR) is one of the most widely used herbs in Asia and has a wide range of biological activities. These activities are attributed to its various compounds like flavonoids, saponins, and polysaccharides. AR and its major components are often used in combination with other drugs for the treatment of diseases such as cancer and cerebral ischemia. With the expanding range of AR combinations, the potential for herb-drug interaction (HDI) has been raised. Key targets in HDI studies include drug-metabolizing enzymes (DMEs) and transporters. Existing studies have shown that AR and its major components have various regulatory effects on these targets, notably CYP2C9, CYP3A4, UGT1A6, and P-gp. AR may contribute to HDI when it is taken with substrates of these biomolecules, such as tolbutamide, midazolam, and digoxin. However, there are also different views in the current study, such as the effect of AR on CYP3A4. To better understand the interactions of AR with drugs, we review the metabolic pathways and pharmacokinetic parameters of the main components of AR. Meanwhile, the regulatory effects and mechanisms of AR on DMEs and transporters are summarized to provide a theoretical and technical basis for the rational use of AR in clinical practice.
Collapse
Affiliation(s)
- Tianwang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- State Key Laboratory of Component based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Xiaofei Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- State Key Laboratory of Component based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Chonggang Huang
- Chongqing Academy of Chinese Materia Medica, Chongqing, P.R. China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- State Key Laboratory of Component based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
16
|
Fashe MM, Miner TA, Collazo VL, Grieco JT, Fallon JK, Jackson KD, Lee CR. Impact of sex and pregnancy on hepatic CYP3A4 expression and activity in a humanized mouse model. Drug Metab Dispos 2025; 53:100025. [PMID: 40023573 DOI: 10.1016/j.dmd.2024.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 03/04/2025] Open
Abstract
Cytochrome P450 (CYP) 3A4 is an essential drug-metabolizing enzyme in humans, which shows substantial interindividual variation in response to various intrinsic and extrinsic factors such as sex and pregnancy. In humans, higher CYP3A4 metabolism has been observed in females compared with that in males and in pregnant compared with that in nonpregnant individuals, which has been linked to increased CYP3A4 expression in liver. However, sex differences and pregnancy-mediated changes in hepatic CYP3A4 expression and activity in vivo are not fully understood. In this study, we investigated the utility of a genetically engineered humanized mouse model that carries human CYP3A4/7, pregnane X receptor (PXR) and constitutive androstane receptor (CAR) (huPXR/CAR/CYP3A4/7) to recapitulate sex-associated and pregnancy-associated differences in the hepatic CYP3A4 expression and metabolism observed in humans. We found that female huPXR/CAR/CYP3A4/7 mice exhibited higher basal CYP3A4 mRNA levels and CYP3A4 absolute protein concentrations in liver, and higher 1-hydroxymidazolam formation in liver microsomes, compared with male humanized mice. In contrast, pregnant huPXR/CAR/CYP3A4/7 mice exhibited lower CYP3A4 mRNA levels, CYP3A4 absolute protein concentrations, and 1-hydroxymidazolam formation compared with nonpregnant and postpartum humanized mice. Expression of CAR and Cyp2b10 (a CAR responsive gene) were also higher in females and decreased during pregnancy and were positively correlated with hepatic CYP3A4 mRNA levels. Overall, the huPXR/CAR/CYP3A4/7 mouse model demonstrated utility to study higher basal hepatic CYP3A4 metabolism in females compared with that in males in vivo; however, this humanized mouse model did not demonstrate utility to study pregnancy-mediated increases in CYP3A4 drug substrate metabolism and clearance observed in humans. SIGNIFICANCE STATEMENT: This study assessed the impact of sex and pregnancy on hepatic CYP3A4 protein concentrations and metabolism in humanized PXR/CAR/CYP3A4 mice. Consistent with humans, female mice demonstrated higher hepatic CYP3A4 expression and activity than male mice. In contrast, pregnant mice showed decreased CYP3A4 expression and metabolism compared with nonpregnant mice. The humanized mouse model appeared useful to evaluate sex differences in basal hepatic CYP3A4 metabolism in vivo, but not to study the pregnancy-mediated increase in CYP3A4 metabolism observed during human pregnancy.
Collapse
Affiliation(s)
- Muluneh M Fashe
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Taryn A Miner
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Valeria Laboy Collazo
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joseph T Grieco
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Craig R Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
17
|
Bhardwaj R, Morris B, Matschke KT, Bertz R, Croop R, Liu J. Characterization of rimegepant drug-drug interactions using the cytochrome P450 probe drugs, itraconazole, rifampin, fluconazole, and midazolam. Headache 2025; 65:291-302. [PMID: 39364583 PMCID: PMC11794968 DOI: 10.1111/head.14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 10/05/2024]
Abstract
OBJECTIVE Reported here are the results of four rimegepant phase I studies, in healthy participants, aimed at determining the in vivo potential of rimegepant (75 mg) for cytochrome P450 (CYP) 3A4-related drug-drug interactions (DDIs). BACKGROUND Rimegepant orally disintegrating tablet (Pfizer Inc., New York, NY, USA) is a calcitonin gene-related peptide receptor antagonist approved for acute treatment of migraine and preventive treatment of episodic migraine. People with migraine commonly use multiple drug treatments, with the potential for DDIs. METHODS Each study was an open-label, single-arm, single-sequence, crossover study. Rimegepant was tested as a victim drug by separate co-administration of itraconazole (a strong CYP3A4 inhibitor and P-glycoprotein inhibitor) in Study 1, rifampin (a strong CYP3A4 inducer and moderate CYP2C9 inducer) in Study 2, and fluconazole (a strong CYP2C9 inhibitor and moderate CYP3A4 inhibitor) in Study 3, and as a perpetrator drug by co-administration with midazolam (a CYP3A4 substrate) in Study 4. RESULTS Mean values of single-dose rimegepant maximum concentration (Cmax) and area under the curve from time 0 to infinity (AUC0-inf) increased with itraconazole co-administration (n = 22) by 1.42-fold (90% confidence interval [CI] 1.25-1.61) and by 4.14-fold (90% CI 3.87-4.44), respectively, and decreased with rifampin co-administration (n = 21) to 36% (90% CI 31.2-41.4%) and to 19% (90% CI 16.3-21.4%), respectively. Co-administration with fluconazole (n = 23) increased rimegepant mean AUC0-inf by 1.80-fold (90% CI 1.68-1.93), with no impact on Cmax (1.04-fold; 90% CI 0.94-1.15). Co-administration of rimegepant single dose (300 mg; n = 14) or multiple doses (150 mg/day; n = 14) increased the mean Cmax of midazolam by 1.38-fold (90% CI 1.13-1.67) and 1.53-fold (90% CI 1.32-1.78), respectively, and the AUC0-inf of midazolam by 1.86-fold (90% CI 1.58-2.19) and 1.91-fold (90% CI 1.63-2.25), respectively. CONCLUSIONS Based on the magnitude of DDIs, these studies indicate the following: co-administration of rimegepant with a strong CYP3A4 inhibitor should be avoided; during co-administration with a moderate CYP3A4 inhibitor, another dose of rimegepant within 48 h should be avoided; co-administration of rimegepant with a strong or moderate CYP3A4 inducer should be avoided; CYP2C9 does not play a meaningful role in rimegepant metabolism; and there is no clinically meaningful CYP3A4 inhibition by rimegepant.
Collapse
Affiliation(s)
| | - Beth Morris
- Biohaven Pharmaceuticals, IncNew HavenConnecticutUSA
| | | | - Richard Bertz
- Biohaven Pharmaceuticals, IncNew HavenConnecticutUSA
| | - Robert Croop
- Biohaven Pharmaceuticals, IncNew HavenConnecticutUSA
| | | |
Collapse
|
18
|
Halman A, Conyers R, Moore C, Khatri D, Sarris J, Perkins D. Harnessing Pharmacogenomics in Clinical Research on Psychedelic-Assisted Therapy. Clin Pharmacol Ther 2025; 117:106-115. [PMID: 39345195 DOI: 10.1002/cpt.3459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Psychedelics have recently re-emerged as potential treatments for various psychiatric conditions that impose major public health costs and for which current treatment options have limited efficacy. At the same time, personalized medicine is increasingly being implemented in psychiatry to provide individualized drug dosing recommendations based on genetics. This review brings together these topics to explore the utility of pharmacogenomics (a key component of personalized medicine) in psychedelic-assisted therapies. We summarized the literature and explored the potential implications of genetic variability on the pharmacodynamics and pharmacokinetics of psychedelic drugs including lysergic acid diethylamide (LSD), psilocybin, N,N-dimethyltryptamine (DMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), ibogaine and 3,4-methylenedioxymethamphetamine (MDMA). Although existing evidence is limited, particularly concerning pharmacodynamics, studies investigating pharmacokinetics indicate that genetic variants in drug-metabolizing enzymes, such as cytochrome P450, impact the intensity of acute psychedelic effects for LSD and ibogaine, and that a dose reduction for CYP2D6 poor metabolizers may be appropriate. Furthermore, based on the preclinical evidence, it can be hypothesized that CYP2D6 metabolizer status might contribute to altered acute psychedelic experiences with 5-MeO-DMT and psilocybin when combined with monoamine oxidase inhibitors. In conclusion, considering early evidence that genetic factors can influence the effects of certain psychedelics, we suggest that pharmacogenomic testing should be further investigated in clinical research. This is necessary to evaluate its utility in improving the safety and therapeutic profile of psychedelic therapies and a potential future role in personalizing psychedelic-assisted therapies, should these treatments become available.
Collapse
Affiliation(s)
- Andreas Halman
- Psychae Therapeutics, Melbourne, Victoria, Australia
- Cancer Therapies, Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel Conyers
- Cancer Therapies, Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Claire Moore
- Cancer Therapies, Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dhrita Khatri
- Cancer Therapies, Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jerome Sarris
- Psychae Therapeutics, Melbourne, Victoria, Australia
- Centre for Mental Health, Swinburne University, Melbourne, Victoria, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales, Australia
- The Florey Institute of Neuroscience and Mental Health & The Department of Psychiatry, Melbourne University, Melbourne, Victoria, Australia
| | - Daniel Perkins
- Psychae Therapeutics, Melbourne, Victoria, Australia
- School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Mental Health, Swinburne University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
S Gomes AA, Costa MGS, Louet M, Floquet N, Bisch PM, Perahia D. Extended Sampling of Macromolecular Conformations from Uniformly Distributed Points on Multidimensional Normal Mode Hyperspheres. J Chem Theory Comput 2024; 20:10770-10786. [PMID: 39663763 DOI: 10.1021/acs.jctc.4c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Proteins are dynamic entities that adopt diverse conformations, which play a pivotal role in their function. Understanding these conformations is essential, and protein collective motions, particularly those captured by normal mode (NM) and their linear combinations, provide a robust means for conformational sampling. This work introduces a novel approach to obtaining a uniformly oriented set of a given number of lowest frequency NM combined vectors and generating harmonically equidistant restrained structures along them. They are all thus uniformly located on concentric hyperspheres, systematically covering the defined NM space fully. The generated structures are further relaxed with standard molecular dynamics (MD) simulations to explore the conformational space. The efficiency of the approach we termed "distributed points Molecular Dynamics using Normal Modes" (dpMDNM) was assessed by applying it to hen egg-white lysozyme and human cytochrome P450 3A4 (CYP3A4). To this purpose, we compared our new approach with other methods and analyzed the sampling of existing experimental structures. Our results demonstrate the efficacy of dpMDNM in extensive conformational sampling, particularly as more NMs are considered. Ensembles generated by dpMDNM exhibited a broad coverage of the experimental structures, providing valuable insights into the functional aspects of lysozyme and CYP3A4. Furthermore, dpMDNM also covered lysozyme structures with relatively elevated energies corresponding to transient states not easily obtained by standard MD simulations, in conformity with nuclear magnetic resonance structural indications. This method offers an efficient and rational framework for comprehensive protein conformational sampling, contributing significantly to our understanding of protein dynamics and function.
Collapse
Affiliation(s)
- Antoniel A S Gomes
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR 8113, CNRS, École Normale Supérieure Paris-Saclay, Gif-sur-Yvette 91190, France
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier Cedex 05 34095, France
| | - Mauricio G S Costa
- Programa de Computação Científica, Vice-Presidência de Educação Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Maxime Louet
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier Cedex 05 34095, France
| | - Nicolas Floquet
- Institut des Biomolecules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier Cedex 05 34095, France
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR 8113, CNRS, École Normale Supérieure Paris-Saclay, Gif-sur-Yvette 91190, France
| |
Collapse
|
20
|
Li Y, Xu QW, Jian GL, Zhang XL, Wang H. Improved and Interpretable Prediction of Cytochrome P450-Mediated Metabolism by Molecule-Level Graph Modeling and Subgraph Information Bottlenecks. J Chem Inf Model 2024; 64:9487-9500. [PMID: 39602328 DOI: 10.1021/acs.jcim.4c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Accurately identifying sites of metabolism (SoM) mediated by cytochrome P450 (CYP) enzymes, which are responsible for drug metabolism in the body, is critical in the early stage of drug discovery and development. Current computational methods for CYP-mediated SoM prediction face several challenges, including limitations to traditional machine learning models at the atomic level, heavy reliance on complex feature engineering, and the lack of interpretability relevant to medicinal chemistry. Here, we propose GraphCySoM, a novel molecule-level modeling approach based on graph neural networks, utilizing lightweight features and interpretable annotations on substructures, to effectively and interpretably predict CYP-mediated SoM. Unlike computationally expensive atomic descriptors derived from resource-intensive chemistry or even quantum chemistry calculations, we emphasize that graph-based molecular modeling initialized solely with lightweight features enables the adaptive learning of molecular topology through message-passing mechanisms combined with various aggregation kernels. Extensive ablation experiments demonstrate that GraphCySoM significantly outperforms baseline models and achieves superior performance compared with competing methods while exhibiting advantages in computational efficiency. Moreover, the attention mechanism and subgraph information bottlenecks are incorporated to analyze node importance and feature significance, resulting in mining substructures associated with the SoM. To the best of our knowledge, this is the first comprehensive study of CYP-mediated SoM using molecule-level modeling and interpretable technology. Our method achieves new state-of-the-art performance and provides potential insights into the molecular and pharmacological mechanisms underlying drug metabolism catalyzed by CYP enzymes. All source files and trained models are freely available at https://github.com/liyigerry/GraphCySoM.
Collapse
Affiliation(s)
- Yi Li
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Qin-Wei Xu
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Guo-Lei Jian
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Xiao-Ling Zhang
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Hua Wang
- College of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650031, China
| |
Collapse
|
21
|
Horiuchi S, Koda N, Ikeda Y, Tanaka Y, Masuo Y, Kato Y, Yamazaki D. Examination of common culture medium for human hepatocytes and engineered heart tissue: Towards an evaluation of cardiotoxicity associated with hepatic drug metabolism in vitro. PLoS One 2024; 19:e0315997. [PMID: 39715174 DOI: 10.1371/journal.pone.0315997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiotoxicity associated with hepatic metabolism and drug-drug interactions is a serious concern. Predicting drug toxicity using animals remains challenging due to species and ethical concerns, necessitating the need to develop alternative approaches. Drug cardiotoxicity associated with hepatic metabolism cannot be detected using a cardiomyocyte-only evaluation system. Therefore, we aimed to establish a system for evaluating cardiotoxicity via hepatic metabolism by co-culturing cryopreserved human hepatocytes (cryoheps) and human iPS cell-derived engineered heart tissues (hiPSC-EHTs) using a stirrer-based microphysiological system. We investigated candidate media to identify a medium that can be used commonly for hepatocytes and cardiomyocytes. We found that the contraction length was significantly greater in the HM Dex (-) medium, the medium used for cryohep culture without dexamethasone, than that in the EHT medium used for hiPSC-EHT culture. Additionally, the beating rate, contraction length, contraction speed, and relaxation speed of hiPSC-EHT cultured in the HM Dex (-) medium were stable throughout the culture period. Among the major CYPs, the expression of CYP3A4 alone was low in cryoheps cultured in the HM Dex (-) medium. However, improved oxygenation using the InnoCell plate increased CYP3A4 expression to levels comparable to those found in the human liver. In addition, CYP3A4 activity was also increased by the improved oxygenation. Furthermore, expression levels of hepatic function-related gene and nuclear receptors in cryoheps cultured in HM Dex (-) medium were comparable to those in the human liver. These results suggest that the HM Dex (-) medium can be applied to co-culture and may allow the evaluation of cardiotoxicity via hepatic metabolism. Moreover, CYP induction by typical inducers was confirmed in cryoheps cultured in the HM Dex (-) medium, suggesting that drug-drug interactions could also be evaluated using this medium. Our findings may facilitate the evaluation of cardiotoxicity via hepatic metabolism, potentially reducing animal testing, lowering costs, and expediting drug development.
Collapse
Affiliation(s)
- Shinichiro Horiuchi
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Nanae Koda
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Yui Ikeda
- Faculty of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuto Tanaka
- Faculty of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Daiju Yamazaki
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
22
|
Wei Y, Palazzolo L, Ben Mariem O, Bianchi D, Laurenzi T, Guerrini U, Eberini I. Investigation of in silico studies for cytochrome P450 isoforms specificity. Comput Struct Biotechnol J 2024; 23:3090-3103. [PMID: 39188968 PMCID: PMC11347072 DOI: 10.1016/j.csbj.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
Cytochrome P450 (CYP450) enzymes comprise a highly diverse superfamily of heme-thiolate proteins that responsible for catalyzing over 90 % of enzymatic reactions associated with xenobiotic metabolism in humans. Accurately predicting whether chemicals are substrates or inhibitors of different CYP450 isoforms can aid in pre-selecting hit compounds for the drug discovery process, chemical toxicology studies, and patients treatment planning. In this work, we investigated in silico studies on CYP450s specificity over past twenty years, categorizing these studies into structure-based and ligand-based approaches. Subsequently, we utilized 100 of the most frequently prescribed drugs to test eleven machine learning-based prediction models which were published between 2015 and 2024. We analyzed various aspects of the evaluated models, such as their datasets, algorithms, and performance. This will give readers with a comprehensive overview of these prediction models and help them choose the most suitable one to do prediction. We also provide our insights for future research trend in both structure-based and ligand-based approaches in this field.
Collapse
Affiliation(s)
- Yao Wei
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, 20133 Milano, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, 20133 Milano, Italy
| | - Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, 20133 Milano, Italy
| | - Davide Bianchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, 20133 Milano, Italy
| | - Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, 20133 Milano, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, 20133 Milano, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
23
|
Li M, Wang Y, Chen Y, Dong L, Liu J, Dong Y, Yang Q, Cai W, Li Q, Peng B, Li Y, Weng X, Wang Y, Zhu X, Gong Z, Chen Y. A comprehensive review on pharmacokinetic mechanism of herb-herb/drug interactions in Chinese herbal formula. Pharmacol Ther 2024; 264:108728. [PMID: 39389315 DOI: 10.1016/j.pharmthera.2024.108728] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Oral administration of Chinese Herbal Medicine (CHM) faces various challenges in reaching the target organs including absorption and conversion in the gastrointestinal tract, hepatic metabolism via the portal vein, and eventual systemic circulation. During this process, factors such as gut microbes, physical or chemical barriers, metabolic enzymes, and transporters play crucial roles. Particularly, interactions between different herbs in CHM have been observed both in vitro and in vivo. In vitro, interactions typically manifest as detectable physical or chemical changes, such as facilitating solubilization or producing precipitates when decoctions of multiple herbs are administered. In vivo, such interactions cause alterations in the ADME (absorption, distribution, metabolism, and excretion) profile on metabolic enzymes or transporters in the body, leading to competition, antagonism, inhibition, or activation. These interactions ultimately contribute to differences in the therapeutic and pharmacological effects of multi-herb formulas in CHM. Over the past two thousand years, China has cultivated profound expertise and solid theoretical frameworks over the scientific use of herbs. The combination of multiple herbs in one decoction has been frequently employed to synergistically enhance therapeutic efficacy or mitigate toxic and side effects in clinical settings. Additionally combining herbs with increased toxicity or decreased effect is also regarded as a remedy, a practice that should be approached with caution according to Traditional Chinese Medicine (TCM) physicians. Such historical records and practices serve as a foundation for predicting favorable multi-herb combinations and their potential risks. However, systematic data that are available to support the clinical practice and the exploration of novel herbal formulas remain limited. Therefore, this review aims to summarize the pharmacokinetic interactions and mechanisms of herb-herb or herb-drug combinations from existing works, and to offer guidance as well as evidence for optimizing CHM and developing new medicines with CHM characteristics.
Collapse
Affiliation(s)
- Mengting Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Lijinchuan Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jieyuan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Dong
- Guang'an men hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
24
|
Huang S, Yao B, Guo Y, Chen X, Xu Y, Huang J, Liu J, Liang C, Zhang Y, Wang X. Construction of cytochrome P450 3A and P-glycoprotein knockout rats with application in rivaroxaban-verapamil interactions. Biochem Pharmacol 2024; 230:116566. [PMID: 39368750 DOI: 10.1016/j.bcp.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Cytochrome P450 3A (CYP3A) and P-glycoprotein (P-gp), as important metabolic enzymes and transporters, participate in the biological transformation and transport of many substances in the body. CYP3A and P-gp are closely related, with very high substrate overlap and regulation similarity, making it particularly difficult to investigate the function of one or the other individually in vivo. Rivaroxaban and verapamil are commonly used together to treat nonvalvular atrial fibrillation in clinical practice. However, this combination therapy can increase systemic exposure to rivaroxaban and the risk of major bleeding and intracranial hemorrhage. In this study, Cyp3a1/2 and Mdr1a/b quadruple gene knockout (qKO) rat model was generated and characterized for the first time. CYP3A1/2 and P-gp are completely absent in this novel rat model. Then, the qKO rat model was applied for the evaluation of the drug-drug interactions (DDI) between rivaroxaban and verapamil. The results demonstrated that CYP3A and P-gp were jointly and selectively involved in the pharmacokinetic interactions between rivaroxaban and verapamil. This study may provide useful information for understanding the role of CYP3A and P-gp in rivaroxaban-verapamil therapy and predicting the potential interaction between CYP3A and P-gp.
Collapse
Affiliation(s)
- Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xi Chen
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuan Xu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Junze Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
25
|
Mohamed AA, Armanious M, Bedair RW, Amin NS, El Tayebi HM. When less is more: The association between the expression of polymorphic CYPs and AFB1-induced HCC. Eur J Clin Invest 2024; 54:e14297. [PMID: 39099542 DOI: 10.1111/eci.14297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND An individual's genetic fingerprint is emerging as a pivotal predictor of numerous disease- and treatment-related factors. Single nucleotide polymorphisms (SNPs) in drug-metabolizing enzymes play key roles in an individual's exposure to a malignancy-associated risk, such as Aflatoxin B1 (AFB1)-induced hepatocellular carcinoma (HCC). AIM This study aimed at reviewing literature on the polymorphisms that exist in CYP enzymes and their possible link with susceptibility to AFB1-induced HCC. MATERIALS & METHODS A set of keywords associated with the study subject of interest was used to search the Google Scholar and the PubMed database. The last ten years' worth of research projects were included in the results filter. The research involved HCC patients and any connection between polymorphic forms of CYP enzymes and their susceptibility to AFB1-induced HCC, including older but significant data. RESULTS Variations in CYP1A2 and CYP3A4 were reported to impact the rate and magnitude of AFB1 bio-activation, thus influencing an individual's vulnerability to develop HCC. In HCC patients, the activity of CYP isoforms varies, where increased activity has been reported with CYP2C9, CYP2D6, and CYP2E1, while CYP1A2, CYP2C8, and CYP2C19 exhibit decreased activity. CYP2D6*10 frequency has been discovered to differ considerably in HCC patients. Rs2740574 (an upstream polymorphism in CYP3A4 as detected in CYP3A4*1B) and rs776746 (which affects CYP3A5 RNA splicing), both of which influence CYP3A expression, thus impacting the variability of AFB1-epoxide adducts in HCC patients. DISCUSSION CYP1A2 is the primary enzyme accountable for the formation of harmful AFBO globally. CYP3A4, CYP3A5, CYP3A7, CYP2B7, and CYP3A3 are also implicated in the bio-activation of AFB1 to mutagenic metabolites. It is thought that CYP3A4 is the protein that interacts with AFB1 metabolism the most. CONCLUSION Polymorphic variants of CYP enzymes have a functional impact on the susceptibility to AFB1-induced HCC. Outlining such variation and their implications may provide deeper insights into approaching HCC in a more personalized manner for guiding future risk-assessment, diagnosis, and treatment.
Collapse
Affiliation(s)
- Asmaa Ashraf Mohamed
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Monica Armanious
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rana W Bedair
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Nada Sherif Amin
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Hend M El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
26
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Human Cytochrome P450 Cancer-Related Metabolic Activities and Gene Polymorphisms: A Review. Cells 2024; 13:1958. [PMID: 39682707 PMCID: PMC11639897 DOI: 10.3390/cells13231958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. FINDINGS In our review article, we discuss recent data evidencing that the same CYP isoform can be involved in both bioactivation and detoxification reactions and convert the same substrate to different products. Conversely, different CYP isoforms can convert the same substrate, xenobiotic or procarcinogen, into either a more or less toxic product. These phenomena depend on the type of catalyzed reaction, substrate, tissue type, and biological species. Since the CYPs involved in bioactivation (CYP3A4, CYP1A1, CYP2D6, and CYP2C8) are primarily expressed in the liver, their metabolites can induce hepatotoxicity and hepatocarcinogenesis. Additionally, we discuss the role of drugs as CYP substrates, inducers, and inhibitors as well as the implication of nuclear receptors, efflux transporters, and drug-drug interactions in anticancer drug resistance. We highlight the molecular mechanisms underlying the development of hormone-sensitive cancers, including breast, ovarian, endometrial, and prostate cancers. Key players in these mechanisms are the 2,3- and 3,4-catechols of estrogens, which are formed by CYP1A1, CYP1A2, and CYP1B1. The catechols can also produce quinones, leading to the formation of toxic protein and DNA adducts that contribute to cancer progression. However, 2-hydroxy- and 4-hydroxy-estrogens and their O-methylated derivatives along with conjugated metabolites play cancer-protective roles. CYP17A1 and CYP11A1, which are involved in the biosynthesis of testosterone precursors, contribute to prostate cancer, whereas conversion of testosterone to 5α-dihydrotestosterone as well as sustained activation and mutation of the androgen receptor are implicated in metastatic castration-resistant prostate cancer (CRPC). CYP enzymatic activities are influenced by CYP gene polymorphisms, although a significant portion of them have no effects. However, CYP polymorphisms can determine poor, intermediate, rapid, and ultrarapid metabolizer genotypes, which can affect cancer and drug susceptibility. Despite limited statistically significant data, associations between CYP polymorphisms and cancer risk, tumor size, and metastatic status among various populations have been demonstrated. CONCLUSIONS The metabolic diversity and dual character of biological effects of CYPs underlie their implications in, preliminarily, hormone-sensitive cancers. Variations in CYP activities and CYP gene polymorphisms are implicated in the interindividual variability in cancer and drug susceptibility. The development of CYP inhibitors provides options for personalized anticancer therapy.
Collapse
Affiliation(s)
| | - Dmitry V. Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Alexander A. Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | | |
Collapse
|
27
|
Cashman JR. Practical Aspects of Flavin-Containing Monooxygenase-Mediated Metabolism. Chem Res Toxicol 2024; 37:1776-1793. [PMID: 39485380 DOI: 10.1021/acs.chemrestox.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Hepatic flavin-containing monooxygenase 3 (FMO3) is arguably the most important FMO in humans from the standpoint of drug metabolism. Recently, adult hepatic FMO3 has been linked to several conditions including cardiometabolic diseases, aging, obesity, and atherosclerosis in small animals. Despite the importance of FMO3 in drug and chemical metabolism, relative to cytochrome P-450 (CYP), fewer studies have been published describing drug and chemical metabolism. This may be due to the properties of human hepatic FMO3. For example, FMO3 is thermally labile, and often methods reported in the study of human hepatic FMO3 are not optimal. Herein, I describe some practical aspects for studying human hepatic FMO3 and other FMOs.
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute. 6351 Nancy Ridge Road, Suite B, San Diego, California 92121, United States
| |
Collapse
|
28
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
29
|
Rude CI, Wilson LB, La Du J, Lalli PM, Colby SM, Schultz KJ, Smith JN, Waters KM, Tanguay RL. Aryl hydrocarbon receptor-dependent toxicity by retene requires metabolic competence. Toxicol Sci 2024; 202:50-68. [PMID: 39107868 PMCID: PMC11514837 DOI: 10.1093/toxsci/kfae098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds frequently detected in the environment with widely varying toxicities. Many PAHs activate the aryl hydrocarbon receptor (AHR), inducing the expression of a battery of genes, including xenobiotic metabolizing enzymes like cytochrome P450s (CYPs); however, not all PAHs act via this mechanism. We screened several parent and substituted PAHs in in vitro AHR activation assays to classify their unique activity. Retene (1-methyl-7-isopropylphenanthrene) displays Ahr2-dependent teratogenicity in zebrafish, but did not activate human AHR or zebrafish Ahr2, suggesting a retene metabolite activates Ahr2 in zebrafish to induce developmental toxicity. To investigate the role of metabolism in retene toxicity, studies were performed to determine the functional role of cyp1a, cyp1b1, and the microbiome in retene toxicity, identify the zebrafish window of susceptibility, and measure retene uptake, loss, and metabolite formation in vivo. Cyp1a-null fish were generated using CRISPR-Cas9. Cyp1a-null fish showed increased sensitivity to retene toxicity, whereas Cyp1b1-null fish were less susceptible, and microbiome elimination had no significant effect. Zebrafish required exposure to retene between 24 and 48 hours post fertilization (hpf) to exhibit toxicity. After static exposure, retene concentrations in zebrafish embryos increased until 24 hpf, peaked between 24 and 36 hpf, and decreased rapidly thereafter. We detected retene metabolites at 36 and 48 hpf, indicating metabolic onset preceding toxicity. This study highlights the value of combining molecular and systems biology approaches with mechanistic and predictive toxicology to interrogate the role of biotransformation in AHR-dependent toxicity.
Collapse
Affiliation(s)
- Christian I Rude
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Lindsay B Wilson
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Jane La Du
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Priscila M Lalli
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Sean M Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Katherine J Schultz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Jordan N Smith
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Katrina M Waters
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Robyn L Tanguay
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| |
Collapse
|
30
|
Bonasser LSS, Silva CMDS, Fratelli CF, Gontijo BR, Seixas JMA, Barreto LCLDS, da Silva ICR. CYP2C19 Genetic Variants and Major Depressive Disorder: A Systematic Review. Pharmaceuticals (Basel) 2024; 17:1461. [PMID: 39598373 PMCID: PMC11597809 DOI: 10.3390/ph17111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Major depressive disorder (MDD) affects over 300 million people globally and has a multifactorial etiology. The CYP2C19 enzyme, involved in metabolizing certain antidepressants, can influence treatment response. Following the PRISMA protocol and PECOS strategy, this systematic review assessed the variation in common CYP2C19 gene variants' frequencies across populations with MDD, evaluating their impact on clinical characteristics and treatment response. We comprehensively searched five databases, identifying 240 articles, of which only nine within the last decade met our inclusion criteria. Except for one study that achieved 74.28% of STROPS items, the rest met at least 75% of GRIPS and STROPS guidelines for quality and bias risk assessment. The CYP2C19's *1 allele, the *1/*1 genotype, and the NM phenotype, considered as references, were generally more frequent. Other CYP2C19 polymorphism frequencies exhibit significant variability across different populations. Some studies associated variants with MDD development, a more extended history of depression, prolonged depressive episodes, and symptom severity, while others reported no such association. Some studies confirmed variants' effects on escitalopram and citalopram metabolism but not that of other drugs, such as sertraline, venlafaxine, and bupropion. Treatment tolerability and symptom improvement also varied between studies. Despite some common findings, inconsistencies highlight the need for further research to clarify the role of these polymorphisms in MDD and optimize treatment strategies.
Collapse
Affiliation(s)
- Larissa Sousa Silva Bonasser
- Postgraduate Program in Health Sciences, University Campus Darcy Ribeiro, University of Brasília (UnB), Brasília-Federal District (DF), Brasília 70910-900, Brazil;
| | - Calliandra Maria de Souza Silva
- Clinical Analysis Laboratory, Molecular Pathology Sector, Pharmacy Department, Faculty of Ceilândia, University of Brasília (UnB), Brasília-Federal District (DF), Brasília 72220-900, Brazil;
| | - Caroline Ferreira Fratelli
- Postgraduate Program in Health Sciences and Technologies, Faculty of Ceilândia, University of Brasília (UnB), Brasília-Federal District (DF), Brasília 72220-900, Brazil; (C.F.F.); (B.R.G.); (J.M.A.S.)
| | - Bruna Rodrigues Gontijo
- Postgraduate Program in Health Sciences and Technologies, Faculty of Ceilândia, University of Brasília (UnB), Brasília-Federal District (DF), Brasília 72220-900, Brazil; (C.F.F.); (B.R.G.); (J.M.A.S.)
| | - Juliana Moura Alves Seixas
- Postgraduate Program in Health Sciences and Technologies, Faculty of Ceilândia, University of Brasília (UnB), Brasília-Federal District (DF), Brasília 72220-900, Brazil; (C.F.F.); (B.R.G.); (J.M.A.S.)
| | | | - Izabel Cristina Rodrigues da Silva
- Clinical Analysis Laboratory, Molecular Pathology Sector, Pharmacy Department, Faculty of Ceilândia, University of Brasília (UnB), Brasília-Federal District (DF), Brasília 72220-900, Brazil;
| |
Collapse
|
31
|
Kuvek T, Marcher C, Berteotti A, Lopez Carrillo V, Schleifer KJ, Oostenbrink C. A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites. Int J Mol Sci 2024; 25:11381. [PMID: 39518933 PMCID: PMC11545509 DOI: 10.3390/ijms252111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Binding site flexibility and dynamics strongly affect the ability of proteins to accommodate substrates and inhibitors. The significance of these properties is particularly pronounced for proteins that are inherently flexible, such as cytochrome P450 enzymes (CYPs). While the research on human CYPs provides detailed knowledge on both structural and functional level, such analyses are still lacking for their plant counterparts. This study aims to bridge this gap. We developed a novel computational pipeline consisting of two steps. Firstly, we use molecular dynamics (MD) simulations to capture the full conformational ensemble for a certain plant CYP. Subsequently, we developed and applied a comprehensive methodology to analyze a number of binding site properties-size, flexibility, shape, hydrophobicity, and accessibility-using the fpocket and mdpocket packages on MD-generated trajectories. The workflow was validated on human CYPs 1A2, 2A6, and 3A4, as their binding site characteristics are well known. Not only could we confirm known binding site properties, but we also identified and named previously unseen binding site channels for CYPs 1A2 and 2A6. The pipeline was then applied to plant CYPs, leading to the first categorization of 15 chosen plant CYPs based on their binding site's (dis)similarities. This study provides a foundation for the largely uncharted fields of plant CYP substrate specificity and facilitates a more precise understanding of their largely unknown specific biological functions. It offers new insights into the structural and functional dynamics of plant CYPs, which may facilitate a more accurate understanding of the fate of agrochemicals or the biotechnological design and exploitation of enzymes with specific functions. Additionally, it serves as a reference for future structural-functional analyses of CYP enzymes across various biological kingdoms.
Collapse
Affiliation(s)
- Tea Kuvek
- Institute for Molecular Modeling and Simulation, BOKU University, Muthgasse 18, 1190 Vienna, Austria; (T.K.)
- Christian Doppler Laboratory for Molecular Informatics in the Biosciences, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Claudia Marcher
- Institute for Molecular Modeling and Simulation, BOKU University, Muthgasse 18, 1190 Vienna, Austria; (T.K.)
| | - Anna Berteotti
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | | | | | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, BOKU University, Muthgasse 18, 1190 Vienna, Austria; (T.K.)
- Christian Doppler Laboratory for Molecular Informatics in the Biosciences, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
32
|
Zhang Y, Chen Z, Xiao Y, Wu T, Yang H, Liu Y, Zhou R, Xiong Y, Xiong Y, Yang X, Zhou J, Zhou H, Zhang W, Shu Y, Li X, Guo F, Yin J, Liao S, Li Q, Zhu P. Effects of Compound Probiotics on Pharmacokinetics of Cytochrome 450 Probe Drugs in Rats. Drug Metab Dispos 2024; 52:1297-1312. [PMID: 39214665 DOI: 10.1124/dmd.124.001837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Compound probiotics have been widely used and commonly coadministered with other drugs for treating various chronic illnesses, yet their effects on drug pharmacokinetics remain underexplored. This study elucidated the impact of VSL#3 on the metabolism of probe drugs for cytochrome P450 enzymes (P450s), specifically omeprazole, tolbutamide, midazolam, metoprolol, phenacetin, and chlorzoxazone. Male Wistar rats were administered drinking water containing VSL#3 or not for 14 days and then intragastrically administered a P450 probe cocktail; this was done to investigate the host P450's metabolic phenotype. Stool, liver/jejunum, and serum samples were collected for 16S ribosomal RNA sequencing, RNA sequencing, and bile acid profiling. The results indicated significant differences in both α and β diversity of intestinal microbial composition between the probiotic and vehicle groups in rats. In the probiotic group, the bioavailability of omeprazole increased by 269.9%, whereas those of tolbutamide and chlorpropamide decreased by 28.1% and 27.4%, respectively. The liver and jejunum exhibited 1417 and 4004 differentially expressed genes, respectively, between the two groups. In the probiotic group, most of P450 genes were upregulated in the liver but downregulated in the jejunum. The expression of genes encoding metabolic enzymes and drug transporters also changed. The serum-conjugated bile acids in the probiotic group were significantly reduced. Shorter duodenal villi and longer ileal villi were found in the probiotic group. In summary, VSL#3 administration altered the gut microbiota, host drug-processing gene expression, and intestinal structure in rats, which could be reasons for pharmacokinetic changes. SIGNIFICANCE STATEMENT: This study focused on the effects of the probiotic VSL#3 on the pharmacokinetic profile of cytochrome P450 probe drugs and the expression of host drug metabolism genes. Compared with previous studies, the present study provides a comprehensive explanation for the host drug metabolism profile modified by probiotics, combined here with the bile acid profile and histopathological analysis.
Collapse
Affiliation(s)
- Yanjuan Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Zhi Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yayi Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Tianyuan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Haijun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Rong Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yalan Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yanling Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Xuechun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Jian Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yan Shu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Xiong Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Fugang Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Jianhui Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Shang Liao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Peng Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| |
Collapse
|
33
|
Uno Y, Shimizu M, Yamazaki H. A variety of cytochrome P450 enzymes and flavin-containing monooxygenases in dogs and pigs commonly used as preclinical animal models. Biochem Pharmacol 2024; 228:116124. [PMID: 38490520 DOI: 10.1016/j.bcp.2024.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Drug oxygenation is mainly mediated by cytochromes P450 (P450s, CYPs) and flavin-containing monooxygenases (FMOs). Polymorphic variants of P450s and FMOs are known to influence drug metabolism. Species differences exist in terms of drug metabolism and can be important when determining the contributions of individual enzymes. The success of research into drug-metabolizing enzymes and their impacts on drug discovery and development has been remarkable. Dogs and pigs are often used as preclinical animal models. This research update provides information on P450 and FMO enzymes in dogs and pigs and makes comparisons with their human enzymes. Newly identified dog CYP3A98, a testosterone 6β- and estradiol 16α-hydroxylase, is abundantly expressed in small intestine and is likely the major CYP3A enzyme in small intestine, whereas dog CYP3A12 is the major CYP3A enzyme in liver. The roles of recently identified dog CYP2J2 and pig CYP2J33/34/35 were investigated. FMOs have been characterized in humans and several other species including dogs and pigs. P450 and FMO family members have been characterized also in cynomolgus macaques and common marmosets. P450s have industrial applications and have been the focus of attention of many pharmaceutical companies. The techniques used to investigate the roles of P450/FMO enzymes in drug oxidation and clinical treatments have not yet reached maturity and require further development. The findings summarized here provide a foundation for understanding individual pharmacokinetic and toxicological results in dogs and pigs as preclinical models and will help to further support understanding of the molecular mechanisms of human P450/FMO functionality.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
34
|
Ramos-Torres K, Sun Y, Takahashi K, Zhou YP, Brugarolas P. Common anesthetic used in preclinical PET imaging inhibits metabolism of the PET tracer [ 18F]3F4AP. J Neurochem 2024; 168:2577-2586. [PMID: 38690718 PMCID: PMC11482445 DOI: 10.1111/jnc.16118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
Positron emission tomography (PET) imaging studies in laboratory animals are almost always performed under isoflurane anesthesia to ensure that the subject stays still during the image acquisition. Isoflurane is effective, safe, and easy to use, and it is generally assumed to not have an impact on the imaging results. Motivated by marked differences observed in the brain uptake and metabolism of the PET tracer 3-[18F]fluoro-4-aminopyridine [(18F]3F4AP) between human and nonhuman primate studies, this study investigates the possible effect of isoflurane on this process. Mice received [18F]3F4AP injection while awake or under anesthesia and the tracer brain uptake and metabolism was compared between groups. A separate group of mice received the known cytochrome P450 2E1 inhibitor disulfiram prior to tracer administration. Isoflurane was found to largely abolish tracer metabolism in mice (74.8 ± 1.6 vs. 17.7 ± 1.7% plasma parent fraction, % PF) resulting in a 4.0-fold higher brain uptake in anesthetized mice at 35 min post-radiotracer administration. Similar to anesthetized mice, animals that received disulfiram showed reduced metabolism (50.0 ± 6.9% PF) and a 2.2-fold higher brain signal than control mice. The higher brain uptake and lower metabolism of [18F]3F4AP observed in anesthetized mice compared to awake mice are attributed to isoflurane's interference in the CYP2E1-mediated breakdown of the tracer, which was confirmed by reproducing the effect upon treatment with the known CYP2E1 inhibitor disulfiram. These findings underscore the critical need to examine the effect of isoflurane in PET imaging studies before translating tracers to humans that will be scanned without anesthesia.
Collapse
Affiliation(s)
- Karla Ramos-Torres
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yang Sun
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kazue Takahashi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yu-Peng Zhou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
35
|
Disner GR, Fernandes TADM, Nishiyama-Jr MY, Lima C, Wincent E, Lopes-Ferreira M. TnP and AHR-CYP1A1 Signaling Crosstalk in an Injury-Induced Zebrafish Inflammation Model. Pharmaceuticals (Basel) 2024; 17:1155. [PMID: 39338318 PMCID: PMC11435205 DOI: 10.3390/ph17091155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Aryl Hydrocarbon Receptor (AHR) signaling is crucial for regulating the biotransformation of xenobiotics and physiological processes like inflammation and immunity. Meanwhile, Thalassophryne nattereri Peptide (TnP), a promising anti-inflammatory candidate from toadfish venom, demonstrates therapeutic effects through immunomodulation. However, its influence on AHR signaling remains unexplored. This study aimed to elucidate TnP's molecular mechanisms on the AHR-cytochrome P450, family 1 (CYP1) pathway upon injury-induced inflammation in wild-type (WT) and Ahr2-knockdown (KD) zebrafish larvae through transcriptomic analysis and Cyp1a reporters. TnP, while unable to directly activate AHR, potentiated AHR activation by the high-affinity ligand 6-Formylindolo [3,2-b]carbazole (FICZ), implying a role as a CYP1A inhibitor, confirmed by in vitro studies. This interplay suggests TnP's ability to modulate the AHR-CYP1 complex, prompting investigations into its influence on biotransformation pathways and injury-induced inflammation. Here, the inflammation model alone resulted in a significant response on the transcriptome, with most differentially expressed genes (DEGs) being upregulated across the groups. Ahr2-KD resulted in an overall greater number of DEGs, as did treatment with the higher dose of TnP in both WT and KD embryos. Genes related to oxidative stress and inflammatory response were the most apparent under inflamed conditions for both WT and KD groups, e.g., Tnfrsf1a, Irf1b, and Mmp9. TnP, specifically, induces the expression of Hspa5, Hsp90aa1.2, Cxcr3.3, and Mpeg1.2. Overall, this study suggests an interplay between TnP and the AHR-CYP1 pathway, stressing the inflammatory modulation through AHR-dependent mechanisms. Altogether, these results may offer new avenues in novel therapeutic strategies, such as based on natural bioactive molecules, harnessing AHR modulation for targeted and sustained drug effects in inflammatory conditions.
Collapse
Affiliation(s)
- Geonildo Rodrigo Disner
- Immunoregulation Unit, Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo 05585-000, Brazil
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Solna, Sweden
| | - Thales Alves de Melo Fernandes
- Nucleus of Bioinformatics and Computational Biology, Laboratory of Applied Toxinology, Butantan Institute, São Paulo 05585-000, Brazil
| | - Milton Yutaka Nishiyama-Jr
- Nucleus of Bioinformatics and Computational Biology, Laboratory of Applied Toxinology, Butantan Institute, São Paulo 05585-000, Brazil
| | - Carla Lima
- Immunoregulation Unit, Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo 05585-000, Brazil
| | - Emma Wincent
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Solna, Sweden
| | - Monica Lopes-Ferreira
- Immunoregulation Unit, Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo 05585-000, Brazil
| |
Collapse
|
36
|
Guengerich FP, Tateishi Y, McCarty KD, Yoshimoto FK. Updates on Mechanisms of Cytochrome P450 Catalysis of Complex Steroid Oxidations. Int J Mol Sci 2024; 25:9020. [PMID: 39201706 PMCID: PMC11354347 DOI: 10.3390/ijms25169020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Cytochrome P450 (P450) enzymes dominate steroid metabolism. In general, the simple C-hydroxylation reactions are mechanistically straightforward and are generally agreed to involve a perferryl oxygen species (formally FeO3+). Several of the steroid transformations are more complex and involve C-C bond scission. We initiated mechanistic studies with several of these (i.e., 11A1, 17A1, 19A1, and 51A1) and have now established that the dominant modes of catalysis for P450s 19A1 and 51A1 involve a ferric peroxide anion (i.e., Fe3+O2¯) instead of a perferryl ion complex (FeO3+), as demonstrated with 18O incorporation studies. P450 17A1 is less clear. The indicated P450 reactions all involve sequential oxidations, and we have explored the processivity of these multi-step reactions. P450 19A1 is distributive, i.e., intermediate products dissociate and reassociate, but P450s 11A1 and 51A1 are highly processive. P450 17A1 shows intermediate processivity, as expected from the release of 17-hydroxysteroids for the biosynthesis of key molecules, and P450 19A1 is very distributive. P450 11B2 catalyzes a processive multi-step oxidation process with the complexity of a chemical closure of an intermediate to a locked lactol form.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Kevin D. McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Francis K. Yoshimoto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| |
Collapse
|
37
|
Becker D, Bharatam PV, Gohlke H. Molecular Mechanisms Underlying Single Nucleotide Polymorphism-Induced Reactivity Decrease in CYP2D6. J Chem Inf Model 2024; 64:6026-6040. [PMID: 38994927 DOI: 10.1021/acs.jcim.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Cytochrome P450 2D6 (CYP2D6) is one of the most important enzymes involved in drug metabolism. Genetic polymorphism can influence drug metabolism by CYP2D6 such that a therapy is seriously affected by under- or overdosing of drugs. However, a general explanation at the atomistic level for poor activity is missing so far. Here we show for the 20 most common single nucleotide polymorphisms (SNPs) of CYP2D6 that poor metabolism is driven by four mechanisms. We found in extensive all-atom molecular dynamics simulations that the rigidity of the I-helix (central helix), distance between central phenylalanines (stabilizing bound substrate), availability of basic residues on the surface of CYP2D6 (binding of cytochrome P450 reductase), and position of arginine 132 (electron transfer to heme) are essential for an extensive function of the enzyme. These results were applied to SNPs with unknown effects, and potential SNPs that may lead to poor drug metabolism were identified. The revealed molecular mechanisms might be important for other drug-metabolizing cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Daniel Becker
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Mohali, Punjab 160 062, India
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
38
|
Song Z, Yu X, Zhu M, Wu Z, Fu Z, Chen J. Distinct Species-Specific and Toxigenic Metabolic Profiles for 6PPD and 6PPD Quinone by P450 Enzymes: Insights from In Vitro and In Silico Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39120070 DOI: 10.1021/acs.est.4c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The tire rubber antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its quinone product (6PPDQ) are prevalent emerging contaminants, yet their biotransformation profiles remain poorly understood, hampering the assessment of environmental and health risks. This study investigated the phase-I metabolism of 6PPD and 6PPDQ across aquatic and mammalian species through in vitro liver microsome (LM) incubations and in silico simulations. A total of 40 metabolites from seven pathways were identified using the highly sensitive nano-electrospray ionization mass spectrometry. Notably, 6PPDQ was consistently detected as a 6PPD metabolite with an approximate 2% yield, highlighting biotransformation as a neglected indirect exposure pathway for 6PPDQ in organisms. 6PPDQ was calculated to form through a facile two-step phenyl hydroxylation of 6PPD, catalyzed by cytochrome P450 enzymes. Distinct species-specific metabolic kinetics were observed, with fish LM demonstrating retarded biotransformation rates for 6PPD and 6PPDQ compared to mammalian LM, suggesting the vulnerability of aquatic vertebrates to these contaminants. Intriguingly, two novel coupled metabolites were identified for 6PPD, which were predicted to exhibit elevated toxicity compared to 6PPDQ and result from C-N oxidative coupling by P450s. These unveiled metabolic profiles offer valuable insights for the risk assessment of 6PPD and 6PPDQ, which may inform future studies and regulatory actions.
Collapse
Affiliation(s)
- Zehua Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaomei Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Minghua Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zimeng Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
39
|
Adapa SR, Meshram P, Sami A, Jiang RHY. Harnessing Porphyrin Accumulation in Liver Cancer: Combining Genomic Data and Drug Targeting. Biomolecules 2024; 14:959. [PMID: 39199347 PMCID: PMC11352895 DOI: 10.3390/biom14080959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
The liver, a pivotal organ in human metabolism, serves as a primary site for heme biosynthesis, alongside bone marrow. Maintaining precise control over heme production is paramount in healthy livers to meet high metabolic demands while averting potential toxicity from intermediate metabolites, notably protoporphyrin IX. Intriguingly, our recent research uncovers a disrupted heme biosynthesis process termed 'porphyrin overdrive' in cancers that fosters the accumulation of heme intermediates, potentially bolstering tumor survival. Here, we investigate heme and porphyrin metabolism in both healthy and oncogenic human livers, utilizing primary human liver transcriptomics and single-cell RNA sequencing (scRNAseq). Our investigations unveil robust gene expression patterns in heme biosynthesis in healthy livers, supporting electron transport chain (ETC) and cytochrome P450 function without intermediate accumulation. Conversely, liver cancers exhibit rewired heme biosynthesis and a massive downregulation of cytochrome P450 gene expression. Notably, despite diminished drug metabolism, gene expression analysis shows that heme supply to the ETC remains largely unaltered or even elevated with patient cancer progression, suggesting a metabolic priority shift. Liver cancers selectively accumulate intermediates, which are absent in normal tissues, implicating their role in disease advancement as inferred by expression analysis. Furthermore, our findings in genomics establish a link between the aberrant gene expression of porphyrin metabolism and inferior overall survival in aggressive cancers, indicating potential targets for clinical therapy development. We provide in vitro proof-of-concept data on targeting porphyrin overdrive with a drug synergy strategy.
Collapse
Affiliation(s)
- Swamy R. Adapa
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Pravin Meshram
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Abdus Sami
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Rays H. Y. Jiang
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
40
|
Brascher TC, de Bortoli L, Toledo-Silva G, Zacchi FL, Razzera G. In silico structural features of the CgNR5A: CgDAX complex and its role in regulating gene expression of CYP target genes in Crassostrea gigas. CHEMOSPHERE 2024; 361:142443. [PMID: 38815811 DOI: 10.1016/j.chemosphere.2024.142443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Contamination of aquatic environments has been steadily increasing due to human activities. The Pacific oyster Crassostrea gigas has been used as a key species in studies assessing the impacts of contaminants on human health and the aquatic biome. In this context, cytochrome P450 (CYPs) play a crucial role in xenobiotic metabolism. In vertebrates many of these CYPs are regulated by nuclear receptors (NRs) and little is known about the NRs role in C. gigas. Particularly, the CgNR5A represents a homologue of SF1 and LRH-1 found in vertebrates. Members of this group can regulate genes of CYPs involved in lipid/steroid metabolism, with their activity regulated by other NR, called as DAX-1, generating a NR complex on DNA response elements (REs). As C. gigas does not exhibit steroid biosynthesis pathways, CgNR5A may play other physiological roles. To clarify this issue, we conducted an in silico investigation of the interaction between CgNR5A and DNA to identify potential C. gigas CYP target genes. Using molecular docking and dynamics simulations of the CgNR5A on DNA molecules, we identified a monomeric interaction with extended REs. This RE was found in the promoter region of 30 CYP genes and also the NR CgDAX. When the upstream regulatory region was analyzed, CYP2C39, CYP3A11, CYP4C21, CYP7A1, CYP17A1, and CYP27C1 were mapped as the main genes regulated by CgNR5A. These identified CYPs belong to families known for their involvement in xenobiotic and lipid/steroid metabolism. Furthermore, we reconstructed a trimeric complex, previously proposed for vertebrates, with CgNR5A:CgDAX and subjected it to molecular dynamics simulations analysis. Heterotrimeric complex remained stable during the simulations, suggesting that CgDAX may modulate CgNR5A transcriptional activity. This study provides insights into the potential physiological processes involving these NRs in the regulation of CYPs associated with xenobiotic and steroid/lipid metabolism.
Collapse
Affiliation(s)
- Theo Cardozo Brascher
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Leonardo de Bortoli
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Genômica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Guilherme Toledo-Silva
- Laboratório de Genômica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Flávia Lucena Zacchi
- Laboratório de Moluscos Marinhos, Universidade Federal de Santa Catarina, Florianópolis, SC, 88061-600, Brazil
| | - Guilherme Razzera
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
41
|
Hackett JC, Krueger S, Urban VS, Zárate-Pérez F. Small angle scattering reveals the orientation of cytochrome P450 19A1 in lipoprotein nanodiscs. J Inorg Biochem 2024; 257:112579. [PMID: 38703512 DOI: 10.1016/j.jinorgbio.2024.112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Human aromatase (CYP19A1), the cytochrome P450 enzyme responsible for conversion of androgens to estrogens, was incorporated into lipoprotein nanodiscs (NDs) and interrogated by small angle X-ray and neutron scattering (SAXS/SANS). CYP19A1 was associated with the surface and centered at the edge of the long axis of the ND membrane. In the absence of the N-terminal anchor, the amphipathic A'- and G'-helices were predominately buried in the lipid head groups, with the possibly that their hydrophobic side chains protrude into the hydrophobic, aliphatic tails. The prediction is like that for CYP3A4 based on SAXS employing a similar modeling approach. The orientation of CYP19A1 in a ND is consistent with our previous predictions based on molecular dynamics simulations and lends additional credibility to the notion that CYP19A1 captures substrates from the membrane.
Collapse
Affiliation(s)
- John C Hackett
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States.
| | - Susan Krueger
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD 20899, United States; Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, United States
| | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Francisco Zárate-Pérez
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
42
|
Kao LT, Chen AC, Wang HJ, Wen YL, Lu CK, Liaw CC, Tsai KC, Ueng YF. Xin-yi-san contains potent human CYP1A2 inhibitors and its combined use with theophylline in treatment increases adverse risks in patients. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155760. [PMID: 38797029 DOI: 10.1016/j.phymed.2024.155760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/01/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND The Xin-yi-san herbal decoction (XYS) is commonly used to treat patients with allergic rhinitis in Taiwan. Theophylline is primarily oxidized with high affinity by human cytochrome P450 (CYP)1A2, and has a narrow therapeutic index. PURPOSE This study aimed to investigate the inhibition of human CYP1A2-catalyzed theophylline oxidation (THO) by XYS and its adverse effects in patients. METHODS Human CYPs were studied in recombinant enzyme systems. The influence of concurrent XYS usage in theophylline-treated patients was retrospectively analyzed. RESULTS Among the major human hepatic and respiratory CYPs, XYS inhibitors preferentially inhibited CYP1A2 activity, which determined the elimination and side effects of theophylline. Among the herbal components of XYS decoction, Angelicae Dahuricae Radix contained potent THO inhibitors. Furanocoumarin imperatorin was abundant in XYS and Angelicae Dahuricae Radix decoctions, and non-competitively inhibited THO activity with Ki values of 77‒84 nM, higher than those (20‒52 nM) of fluvoxamine, which clinically interacted with theophylline. Compared with imperatorin, the intestinal bacterial metabolite xanthotoxol caused weaker THO inhibition. Consistent with the potency of the inhibitory effects, the docking analysis generated Gold fitness values in the order-fluvoxamine > imperatorin > xanthotoxol. During 2017‒2018, 2.6 % of 201,093 theophylline users consumed XYS. After inverse probability weighting, XYS users had a higher occurrence of undesired effects than non-XYS users; in particular, there was an approximately two-fold higher occurrence of headaches (odds ratio (OR), 2.14; 95 % confidence interval (CI), 1.99‒2.30; p < 0.001) and tachycardia (OR, 1.83; 95 % CI, 1.21‒2.77; p < 0.05). The incidence of irregular heartbeats increased (OR, 1.36; 95 % CI, 1.07‒1.72; p < 0.05) only in the theophylline users who took a high cumulative dose (≥ 24 g) of XYS. However, the mortality in theophylline users concurrently taking XYS was lower than that in non-XYS users (OR, 0.24; 95 % CI, 0.14‒0.40; p < 0.001). CONCLUSION XYS contains human CYP1A2 inhibitors, and undesirable effects were observed in patients receiving both theophylline and XYS. Further human studies are essential to reduce mortality and to adjust the dosage of theophylline in XYS users.
Collapse
Affiliation(s)
- Li-Ting Kao
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan
| | - An-Chi Chen
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hong-Jaan Wang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Liang Wen
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan
| | - Chung-Kuang Lu
- Division of Chinese Medicinal Chemistry, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Chia-Ching Liaw
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Keng-Chang Tsai
- Division of Chinese Medicinal Chemistry, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yune-Fang Ueng
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
43
|
Guvench O. Effect of Lipid Bilayer Anchoring on the Conformational Properties of the Cytochrome P450 2D6 Binding Site. J Phys Chem B 2024; 128:7188-7198. [PMID: 39016537 DOI: 10.1021/acs.jpcb.4c03097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Human cytochrome P450 (CYP) proteins metabolize 75% of small-molecule pharmaceuticals, which makes structure-based modeling of CYP metabolism and inhibition, bolstered by the current availability of X-ray crystal structures of CYP globular catalytic domains, an attractive prospect. Accounting for this broad metabolic capacity is a combination of the existence of multiple different CYP proteins and the capacity of a single CYP protein to metabolize multiple different small molecules. It is thought that structural plasticity and flexibility contribute to this latter property; therefore, incorporating diverse conformational states of a particular CYP is likely an important consideration in structure-based CYP metabolism and inhibition modeling. While all-atom explicit-solvent molecular dynamics simulations can be used to generate conformational ensembles under biologically relevant conditions, existing CYP crystal structures are of the globular domain only, whereas human CYPs contain N-terminal transmembrane and linker peptides that anchor the globular catalytic domain to the endoplasmic reticulum. To determine whether this can cause significant differences in the sampled binding site conformations, microsecond scale all-atom explicit-solvent molecular dynamics simulations of the CYP2D6 globular domain in an aqueous environment were compared with those of the full-length protein anchored in a POPC lipid bilayer. While bilayer-anchoring damped some structural fluctuations in the globular domain relative to the aqueous simulations, none of the affected residues included binding site pocket residues. Furthermore, clustering of molecular dynamics snapshots based on either pairwise binding site pocket RMSD or volume differences demonstrated a lack of separation of snapshots from the two simulation conditions into different clusters. These results suggest the substantially simpler and computationally cheaper aqueous simulation approach can be used to generate a relevant conformational ensemble of the CYP2D6 binding site for structure-based metabolism and inhibition modeling.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences and Administration, School of Pharmacy, Westbrook College of Health Professions, University of New England, 716 Stevens Ave, Portland, Maine 04103, United States
| |
Collapse
|
44
|
Li H, Zhao P, Li S, Guo J, Hao D. Trial and error: New insights into recombinant expression of membrane-bound insect cytochromes P450 in Escherichia coli systems. Int J Biol Macromol 2024; 273:133183. [PMID: 38897522 DOI: 10.1016/j.ijbiomac.2024.133183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Insect cytochromes P450 (CYP450s) are key enzymes responsible for a wide array of oxidative transformations of both endogenous and exogenous substrates. However, there is currently no a universal guideline established for heterologous expression of membrane-bound CYP450s, which hampers their downstream biochemical and structural studies. In this study, we conducted large-scale screening of protein overexpression in Escherichia coli using 71 insect CYP450 sequences and optimized the expression of a difficult-to-express CYP450 (CYP6HX3) using eight different optimizations, including selection of host strains and expression vectors, alternative of leader signal peptides, and N-terminal modifications. We confirmed that 1) Only insect CYP450s belonging to the CYP347 family could be expressed with N-terminal fusion of ompA2+ signal peptide in E. coli expression system. 2) E. coli Lemo 21 (DE3) effectively improved the expression of CYP6HX3 in the plasma membrane. 3) A brick-red appearance occurred frequently in the expressed thallus or membrane proteins, but this phenomenon could not necessarily indicate successful overexpression of target CYP450s. These findings provide new insights into the recombinant expression of insect CYP450s in E. coli systems and will facilitate the theoretical approaches for functional expression and production of eukaryotic CYP450s.
Collapse
Affiliation(s)
- Hui Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Peiyuan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shouyin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jinyan Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
45
|
van der Heijden LT, Opdam FL, Beijnen JH, Huitema ADR. The Use of Microdosing for In vivo Phenotyping of Cytochrome P450 Enzymes: Where Do We Stand? A Narrative Review. Eur J Drug Metab Pharmacokinet 2024; 49:407-418. [PMID: 38689161 PMCID: PMC11199305 DOI: 10.1007/s13318-024-00896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Cytochrome P450 (CYP) enzymes play a central role in the elimination of approximately 80% of all clinically used drugs. Differences in CYP enzyme activity between individuals can contribute to interindividual variability in exposure and, therefore, treatment outcome. In vivo CYP enzyme activity could be determined with phenotyping. Currently, (sub)therapeutic doses are used for in vivo phenotyping, which can lead to side effects. The use of microdoses (100 µg) for in vivo phenotyping for CYP enzymes could overcome the limitations associated with the use of (sub)therapeutic doses of substrates. The aim of this review is to provide a critical overview of the application of microdosing for in vivo phenotyping of CYP enzymes. A literature search was performed to find drug-drug interaction studies of CYP enzyme substrates that used microdoses of the respective substrates. A substrate was deemed sensitive to changes in CYP enzyme activity when the pharmacokinetics of the substrate significantly changed during inhibition and induction of the enzyme. On the basis of the currently available evidence, the use of microdosing for in vivo phenotyping for subtypes CYP1A2, CYP2C9, CYP2D6, and CYP2E1 is not recommended. Microdosing can be used for the in vivo phenotyping of CYP2C19 and CYP3A. The recommended microdose phenotyping test for CYP2C19 is measuring the omeprazole area-under-the-concentration-time curve over 24 h (AUC0-24) after administration of a single 100 µg dose. CYP3A activity could be best determined with a 0.1-75 µg dose of midazolam, and subsequently measuring AUC extrapolated to infinity (AUC∞) or clearance. Moreover, there are two metrics available for midazolam using a limited sampling strategy: AUC over 10 h (AUC0-10) and AUC from 2 to 4 h (AUC2-4).
Collapse
Affiliation(s)
- Lisa T van der Heijden
- Department of Pharmacology and Pharmacy, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Division of Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Clinical Pharmacy, OLVG Hospital, Amsterdam, The Netherlands.
| | - Frans L Opdam
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacology and Pharmacy, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmaco-Epidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacology and Pharmacy, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pharmacology, Princess Maxima Center, Utrecht, The Netherlands
| |
Collapse
|
46
|
Rahman MK, Umashankar B, Choucair H, Bourget K, Rawling T, Murray M. The inositol-requiring enzyme 1 (IRE1) endoplasmic reticulum stress pathway promotes MDA-MB-231 cell survival and renewal in response to the aryl-ureido fatty acid CTU. Int J Biochem Cell Biol 2024; 171:106571. [PMID: 38608921 DOI: 10.1016/j.biocel.2024.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Current treatment options for triple-negative breast cancer (TNBC) are limited to toxic drug combinations of low efficacy. We recently identified an aryl-substituted fatty acid analogue, termed CTU, that effectively killed TNBC cells in vitro and in mouse xenograft models in vivo without producing toxicity. However, there was a residual cell population that survived treatment. The present study evaluated the mechanisms that underlie survival and renewal in CTU-treated MDA-MB-231 TNBC cells. RNA-seq profiling identified several pro-inflammatory signaling pathways that were activated in treated cells. Increased expression of cyclooxygenase-2 and the cytokines IL-6, IL-8 and GM-CSF was confirmed by real-time RT-PCR, ELISA and Western blot analysis. Increased self-renewal was confirmed using the non-adherent, in vitro colony-forming mammosphere assay. Neutralizing antibodies to IL-6, IL-8 and GM-CSF, as well as cyclooxygenase-2 inhibition suppressed the self-renewal of MDA-MB-231 cells post-CTU treatment. IPA network analysis identified major NF-κB and XBP1 gene networks that were activated by CTU; chemical inhibitors of these pathways and esiRNA knock-down decreased the production of pro-inflammatory mediators. NF-κB and XBP1 signaling was in turn activated by the endoplasmic reticulum (ER)-stress sensor inositol-requiring enzyme 1 (IRE1), which mediates the unfolded protein response. Co-treatment with an inhibitor of IRE1 kinase and RNase activities, decreased phospho-NF-κB and XBP1s expression and the production of pro-inflammatory mediators. Further, IRE1 inhibition also enhanced apoptotic cell death and prevented the activation of self-renewal by CTU. Taken together, the present findings indicate that the IRE1 ER-stress pathway is activated by the anti-cancer lipid analogue CTU, which then activates secondary self-renewal in TNBC cells.
Collapse
Affiliation(s)
- Md Khalilur Rahman
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Balasubrahmanyam Umashankar
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Hassan Choucair
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Kirsi Bourget
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
47
|
Wang Z, Zhang R, Li Y, Zhang Q, Wang W, Wang Q. Computational study on the endocrine-disrupting metabolic activation of Benzophenone-3 catalyzed by cytochrome P450 1A1: A QM/MM approach. CHEMOSPHERE 2024; 358:142238. [PMID: 38705413 DOI: 10.1016/j.chemosphere.2024.142238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/17/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Predicting the metabolic activation mechanism and potential hazardous metabolites of environmental endocrine-disruptors is a challenging and significant task in risk assessment. Here the metabolic activation mechanism of benzophenone-3 catalyzed by P450 1A1 was investigated by using Molecular Dynamics, Quantum Mechanics/Molecular Mechanics and Density Functional Theory approaches. Two elementary reactions involved in the metabolic activation of BP-3 with P450 1A1: electrophilic addition and hydrogen abstraction reactions were both discussed. Further conversion reactions of epoxidation products, ketone products and the formaldehyde formation reaction were investigated in the non-enzymatic environment based on previous experimental reports. Binding affinities analysis of benzophenone-3 and its metabolites to sex hormone binding globulin indirectly demonstrates that they all exhibit endocrine-disrupting property. Toxic analysis shows that the eco-toxicity and bioaccumulation values of the benzophenone-3 metabolites are much lower than those of benzophenone-3. However, the metabolites are found to have skin-sensitization effects. The present study provides a deep insight into the biotransformation process of benzophenone-3 catalyzed by P450 1A1 and alerts us to pay attention to the adverse effects of benzophenone-3 and its metabolites in human livers.
Collapse
Affiliation(s)
- Zijian Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Ruiming Zhang
- College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao, 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Qiao Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
48
|
Rendic SP, Guengerich FP. Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes. Arch Toxicol 2024; 98:1581-1628. [PMID: 38520539 PMCID: PMC11539061 DOI: 10.1007/s00204-024-03710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19) to the extent of 16%, together catalyzing 43% of the reactions, followed by P450 Subfamily 1A (P450 1A1 and P450 1A2) with 15%. The P450 2D6 enzyme participated in an extent of 8%, P450 2E1 in 10%, and P450 2B6 in 6% of the reactions. All other enzymes participate to the extent of 14%. The data show that, of the human enzymes analyzed, P450 enzymes were dominant in catalyzing potential toxication reactions of drugs and their metabolites, with the major role assigned to the P450 Subfamily 3A and significant participation of the P450 Subfamilies 2C and 1A, plus the 2D6, 2E1 and 2B6 enzymes contributing. Selected examples of drugs that are activated or proposed to form toxic species are discussed.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
49
|
Carrera-Pacheco SE, Mueller A, Puente-Pineda JA, Zúñiga-Miranda J, Guamán LP. Designing cytochrome P450 enzymes for use in cancer gene therapy. Front Bioeng Biotechnol 2024; 12:1405466. [PMID: 38860140 PMCID: PMC11164052 DOI: 10.3389/fbioe.2024.1405466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Cancer is a significant global socioeconomic burden, as millions of new cases and deaths occur annually. In 2020, almost 10 million cancer deaths were recorded worldwide. Advancements in cancer gene therapy have revolutionized the landscape of cancer treatment. An approach with promising potential for cancer gene therapy is introducing genes to cancer cells that encode for chemotherapy prodrug metabolizing enzymes, such as Cytochrome P450 (CYP) enzymes, which can contribute to the effective elimination of cancer cells. This can be achieved through gene-directed enzyme prodrug therapy (GDEPT). CYP enzymes can be genetically engineered to improve anticancer prodrug conversion to its active metabolites and to minimize chemotherapy side effects by reducing the prodrug dosage. Rational design, directed evolution, and phylogenetic methods are some approaches to developing tailored CYP enzymes for cancer therapy. Here, we provide a compilation of genetic modifications performed on CYP enzymes aiming to build highly efficient therapeutic genes capable of bio-activating different chemotherapeutic prodrugs. Additionally, this review summarizes promising preclinical and clinical trials highlighting engineered CYP enzymes' potential in GDEPT. Finally, the challenges, limitations, and future directions of using CYP enzymes for GDEPT in cancer gene therapy are discussed.
Collapse
Affiliation(s)
- Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | | | | |
Collapse
|
50
|
Guengerich FP. Cytochrome P450 Enzymes as Drug Targets in Human Disease. Drug Metab Dispos 2024; 52:493-497. [PMID: 37793784 PMCID: PMC11114603 DOI: 10.1124/dmd.123.001431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023] Open
Abstract
Although the mention of cytochrome P450 (P450) inhibition usually brings to mind unwanted variability in pharmacokinetics, in several cases P450s are good targets for inhibition. These P450s are essential, but in certain disease states, it is desirable to reduce the concentrations of their products. Most of the attention to date has been with human P450s 5A1, 11A1, 11B1, 11B2, 17A1, 19A1, and 51A1. In some of those cases, there are multiple drugs in use, e.g., exemestane, letrozole, and anastrozole with P450 19A1, the steroid aromatase target in breast cancer. There are also several targets that are less developed, e.g., P450s 2A6, 8B1, 4A11, 24A1, 26A1, and 26B1. SIGNIFICANCE STATEMENT: The selective inhibition of certain cytochrome P450s that have major physiological functions has been shown to be very efficacious in certain human diseases. In several cases, the search for better drugs continues.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|