1
|
Hu CM, Tien SC, Lo YC, Huang CH, Ko YL, Wu DN, Lee JH, Wu YT, Yu HM, Lin KG, Zong-You L, Cheng WC. Innovative cyclic peptide disrupts IL-17RB-MLK4 interaction for targeted pancreatic cancer therapy. Biomed Pharmacother 2025; 184:117892. [PMID: 39913969 DOI: 10.1016/j.biopha.2025.117892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025] Open
Abstract
The IL-17B/IL-17RB oncogenic signaling axis promotes pancreatic cancer progression through interaction with mixed-lineage kinase 4 (MLK4). Here, we improved the effectiveness of a therapeutic peptide (TAT-IL17RB403-416, loop peptide) that disrupted IL-17RB/MLK4 interaction by converting its linear structure into a cyclic form. The modified cyclic peptide with higher uptake efficiency inhibited pancreatic cancer cell growth and metastasis, outperforming the original linear peptide both in vitro and in an orthotopic mouse model. At the molecular level, cysteine 408 in IL-17RB was important for mediating interactions with arginine 216 within MLK4 kinase domain. This interaction was fundamental to the efficacy of the cyclic peptide. Additionally, lysine 410 in IL-17RB was essential for maintaining the structural integrity of the cyclic peptide as a protein-protein disruptor These findings provide a deeper understanding of the IL-17RB-MLK4 interaction, offering insights for developing therapeutic agents targeting this pathway in pancreatic cancer.
Collapse
Affiliation(s)
- Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Sui-Chih Tien
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Yung-Chen Lo
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | | | - Yi-Ling Ko
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Dan-Ni Wu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; TIGP, Chemical Biology and Molecular Biophysics Program, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jiin Horng Lee
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Ta Wu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Ming Yu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Kuo-Ging Lin
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Lee Zong-You
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Hu H, Yi X, Xue L, Baell JB. A Collection of Useful Nuisance Compounds (CONS) for Interrogation of Bioassay Integrity. JACS AU 2024; 4:4883-4891. [PMID: 39735938 PMCID: PMC11672131 DOI: 10.1021/jacsau.4c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 12/31/2024]
Abstract
High-throughput screening (HTS) is a crucial technique for identifying potential hits to fuel drug discovery pipelines. However, this process naturally concentrates nuisance compounds that are not optimizable yet signal positively in a convincing manner. To be able to understand what types of nuisance compounds a particular assay is sensitive to, would be of great utility in being able to prioritize progressable over nonprogressable screening hits. In this study, we present a carefully compiled set of over 100 nuisance compounds that are known to interfere with assay readouts in either phenotypic or target-based screenings. Readily accessible in an assay-ready screening plate, we believe this nuisance compound set will be of great interest to the research community, helping to establish high-quality HTS assays and identify promising, optimizable hits.
Collapse
Affiliation(s)
- Huabin Hu
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, Uppsala SE-751 24, Sweden
| | - Xiangyan Yi
- Medicinal
Chemistry, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Lian Xue
- Medicinal
Chemistry, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jonathan B. Baell
- Medicinal
Chemistry, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
3
|
do Nascimento AM, Marques RB, Roldão AP, Rodrigues AM, Eslava RM, Dale CS, Reis EM, Schechtman D. Exploring protein-protein interactions for the development of new analgesics. Sci Signal 2024; 17:eadn4694. [PMID: 39378285 DOI: 10.1126/scisignal.adn4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The development of new analgesics has been challenging. Candidate drugs often have limited clinical utility due to side effects that arise because many drug targets are involved in signaling pathways other than pain transduction. Here, we explored the potential of targeting protein-protein interactions (PPIs) that mediate pain signaling as an approach to developing drugs to treat chronic pain. We reviewed the approaches used to identify small molecules and peptide modulators of PPIs and their ability to decrease pain-like behaviors in rodent animal models. We analyzed data from rodent and human sensory nerve tissues to build associated signaling networks and assessed both validated and potential interactions and the structures of the interacting domains that could inform the design of synthetic peptides and small molecules. This resource identifies PPIs that could be explored for the development of new analgesics, particularly between scaffolding proteins and receptors for various growth factors and neurotransmitters, as well as ion channels and other enzymes. Targeting the adaptor function of CBL by blocking interactions between its proline-rich carboxyl-terminal domain and its SH3-domain-containing protein partners, such as GRB2, could disrupt endosomal signaling induced by pain-associated growth factors. This approach would leave intact its E3-ligase functions, which are mediated by other domains and are critical for other cellular functions. This potential of PPI modulators to be more selective may mitigate side effects and improve the clinical management of pain.
Collapse
Affiliation(s)
- Alexandre Martins do Nascimento
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Rauni Borges Marques
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
- Interunit Graduate Program in Bioinformatics, University of São Paulo, SP 05508-000, Brazil
| | - Allan Pradelli Roldão
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Ana Maria Rodrigues
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Rodrigo Mendes Eslava
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Camila Squarzoni Dale
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | - Eduardo Moraes Reis
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Deborah Schechtman
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| |
Collapse
|
4
|
Krüger N, Kronenberger T, Xie H, Rocha C, Pöhlmann S, Su H, Xu Y, Laufer SA, Pillaiyar T. Discovery of Polyphenolic Natural Products as SARS-CoV-2 M pro Inhibitors for COVID-19. Pharmaceuticals (Basel) 2023; 16:190. [PMID: 37259339 PMCID: PMC9959258 DOI: 10.3390/ph16020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 09/27/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the development of direct-acting antiviral drugs due to the coronavirus disease 2019 (COVID-19) pandemic. The main protease of SARS-CoV-2 is a crucial enzyme that breaks down polyproteins synthesized from the viral RNA, making it a validated target for the development of SARS-CoV-2 therapeutics. New chemical phenotypes are frequently discovered in natural goods. In the current study, we used a fluorogenic assay to test a variety of natural products for their ability to inhibit SARS-CoV-2 Mpro. Several compounds were discovered to inhibit Mpro at low micromolar concentrations. It was possible to crystallize robinetin together with SARS-CoV-2 Mpro, and the X-ray structure revealed covalent interaction with the protease's catalytic Cys145 site. Selected potent molecules also exhibited antiviral properties without cytotoxicity. Some of these powerful inhibitors might be utilized as lead compounds for future COVID-19 research.
Collapse
Affiliation(s)
- Nadine Krüger
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research Göttingen, Kellnerweg 4, 37077 Göttingen, Germany
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided & Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Hang Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheila Rocha
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research Göttingen, Kellnerweg 4, 37077 Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research Göttingen, Kellnerweg 4, 37077 Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yechun Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Stefan A. Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided & Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Dong R, Yang H, Ai C, Duan G, Wang J, Guo F. DeepBLI: A Transferable Multichannel Model for Detecting β-Lactamase-Inhibitor Interaction. J Chem Inf Model 2022; 62:5830-5840. [PMID: 36245217 DOI: 10.1021/acs.jcim.2c01008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pathogens producing β-lactamase pose a great challenge to antibiotic-resistant infection treatment; thus, it is urgent to discover novel β-lactamase inhibitors for drug development. Conventional high-throughput screening is very costly, and structure-based virtual screening is limited with mechanisms. In this study, we construct a novel multichannel deep neural network (DeepBLI) for β-lactamase inhibitor screening, pretrained with a label reversal KIBA data set and fine-tuned on β-lactamase-inhibitor pairs from BindingDB. First, the pairs of encoders (Conv and Att) fuse the information spatially and sequentially for both enzymes and inhibitors. Then, a co-attention module creates the connection between the inhibitor and enzyme embeddings. Finally, multichannel outputs fuse with an element-wise product and then are fed into 3-layer fully connected networks to predict interactions. Comparing the state-of-the-art methods, DeepBLI yields an AUROC of 0.9240 and an AUPRC of 0.9715, which indicates that it can identify new β-lactamase-inhibitor interactions. To demonstrate its prediction ability, an application of DeepBLI is described to screen potential inhibitor compounds for metallo-β-lactamase AIM-1 and repurpose rottlerin for four classes of β-lactamase targets, showing the possibility of being a broad-spectrum inhibitor. DeepBLI provides an effective way for antibacterial drug development, contributing to antibiotic-resistant therapeutics.
Collapse
Affiliation(s)
- Ruihan Dong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Hongpeng Yang
- Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Chengwei Ai
- College of Intelligence and Computing, Tianjin University, Tianjin300350, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| |
Collapse
|
6
|
Sheridan R, Spelman K. Polyphenolic promiscuity, inflammation-coupled selectivity: Whether PAINs filters mask an antiviral asset. Front Pharmacol 2022; 13:909945. [PMID: 36339544 PMCID: PMC9634583 DOI: 10.3389/fphar.2022.909945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2023] Open
Abstract
The Covid-19 pandemic has elicited much laboratory and clinical research attention on vaccines, mAbs, and certain small-molecule antivirals against SARS-CoV-2 infection. By contrast, there has been comparatively little attention on plant-derived compounds, especially those that are understood to be safely ingested at common doses and are frequently consumed in the diet in herbs, spices, fruits and vegetables. Examining plant secondary metabolites, we review recent elucidations into the pharmacological activity of flavonoids and other polyphenolic compounds and also survey their putative frequent-hitter behavior. Polyphenols, like many drugs, are glucuronidated post-ingestion. In an inflammatory milieu such as infection, a reversion back to the active aglycone by the release of β-glucuronidase from neutrophils and macrophages allows cellular entry of the aglycone. In the context of viral infection, virions and intracellular virus particles may be exposed to promiscuous binding by the polyphenol aglycones resulting in viral inhibition. As the mechanism's scope would apply to the diverse range of virus species that elicit inflammation in infected hosts, we highlight pre-clinical studies of polyphenol aglycones, such as luteolin, isoginkgetin, quercetin, quercetagetin, baicalein, curcumin, fisetin and hesperetin that reduce virion replication spanning multiple distinct virus genera. It is hoped that greater awareness of the potential spatial selectivity of polyphenolic activation to sites of pathogenic infection will spur renewed research and clinical attention for natural products antiviral assaying and trialing over a wide array of infectious viral diseases.
Collapse
Affiliation(s)
| | - Kevin Spelman
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
- Health Education and Research, Driggs, ID, United States
| |
Collapse
|
7
|
From rational design to serendipity: Discovery of novel thiosemicarbazones as potent trypanocidal compounds. Eur J Med Chem 2022; 244:114876. [DOI: 10.1016/j.ejmech.2022.114876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/04/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
|
8
|
O'Donnell HR, Tummino TA, Bardine C, Craik CS, Shoichet BK. Colloidal Aggregators in Biochemical SARS-CoV-2 Repurposing Screens. J Med Chem 2021; 64:17530-17539. [PMID: 34812616 PMCID: PMC8665103 DOI: 10.1021/acs.jmedchem.1c01547] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To fight COVID-19, much effort has been directed toward in vitro drug repurposing. Here, we investigate the impact of colloidal aggregation, a common screening artifact, in these repurposing campaigns. We tested 56 drugs reported as active in biochemical assays for aggregation by dynamic light scattering and by detergent-based enzyme counter screening; 19 formed colloids at concentrations similar to their literature IC50's, and another 14 were problematic. From a common repurposing library, we further selected another 15 drugs that had physical properties resembling known aggregators, finding that six aggregated at micromolar concentrations. This study suggests not only that many of the drugs repurposed for SARS-CoV-2 in biochemical assays are artifacts but that, more generally, at screening-relevant concentrations, even drugs can act artifactually via colloidal aggregation. Rapid detection of these artifacts will allow the community to focus on those molecules that genuinely have potential for treating COVID-19.
Collapse
Affiliation(s)
- Henry R O'Donnell
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94158-2550, United States
| | - Tia A Tummino
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94158-2550, United States
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, California 94158-2550, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158-2550, United States
| | - Conner Bardine
- Graduate Program in Chemistry & Chemical Biology, UCSF, San Francisco, California 94158-2550, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94158-2550, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158-2550, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94158-2550, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158-2550, United States
| |
Collapse
|
9
|
Barbeya oleoides Leaves Extracts: In Vitro Carbohydrate Digestive Enzymes Inhibition and Phytochemical Characterization. Molecules 2021; 26:molecules26206229. [PMID: 34684810 PMCID: PMC8540058 DOI: 10.3390/molecules26206229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 01/06/2023] Open
Abstract
This study investigated the in vitro inhibitory potential of different solvent extracts of leaves of Barbeya oleoides on key enzymes related to type 2 diabetes mellitus (α-glucosidase and α-amylase) in combination with an aggregation assay (using 0.01% Triton X-100 detergent) to assess the specificity of action. The methanol extract was the most active in inhibiting α-glucosidase and α-amylase, with IC50 values of 6.67 ± 0.30 and 25.62 ± 4.12 µg/mL, respectively. However, these activities were significantly attenuated in the presence of 0.01% Triton X-100. The chemical analysis of the methanol extract was conducted utilizing a dereplication approach combing LC-ESI-MS/MS and database searching. The chemical analysis detected 27 major peaks in the negative ion mode, and 24 phenolic compounds, predominantly tannins and flavonol glycosides derivatives, were tentatively identified. Our data indicate that the enzyme inhibitory activity was probably due to aggregation-based inhibition, perhaps linked to polyphenols.
Collapse
|
10
|
Amaravathi A, Oblinger JL, Welling DB, Kinghorn AD, Chang LS. Neurofibromatosis: Molecular Pathogenesis and Natural Compounds as Potential Treatments. Front Oncol 2021; 11:698192. [PMID: 34604034 PMCID: PMC8485038 DOI: 10.3389/fonc.2021.698192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
The neurofibromatosis syndromes, including NF1, NF2, and schwannomatosis, are tumor suppressor syndromes characterized by multiple nervous system tumors, particularly Schwann cell neoplasms. NF-related tumors are mainly treated by surgery, and some of them have been treated by but are refractory to conventional chemotherapy. Recent advances in molecular genetics and genomics alongside the development of multiple animal models have provided a better understanding of NF tumor biology and facilitated target identification and therapeutic evaluation. Many targeted therapies have been evaluated in preclinical models and patients with limited success. One major advance is the FDA approval of the MEK inhibitor selumetinib for the treatment of NF1-associated plexiform neurofibroma. Due to their anti-neoplastic, antioxidant, and anti-inflammatory properties, selected natural compounds could be useful as a primary therapy or as an adjuvant therapy prior to or following surgery and/or radiation for patients with tumor predisposition syndromes, as patients often take them as dietary supplements and for health enhancement purposes. Here we review the natural compounds that have been evaluated in NF models. Some have demonstrated potent anti-tumor effects and may become viable treatments in the future.
Collapse
Affiliation(s)
- Anusha Amaravathi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Janet L Oblinger
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - D Bradley Welling
- Department of Otolaryngology Head & Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear, and Massachusetts General Hospital, Boston, MA, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, OH, United States
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States.,Department of Otolaryngology-Head & Neck Surgery, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
11
|
Bender BJ, Gahbauer S, Luttens A, Lyu J, Webb CM, Stein RM, Fink EA, Balius TE, Carlsson J, Irwin JJ, Shoichet BK. A practical guide to large-scale docking. Nat Protoc 2021; 16:4799-4832. [PMID: 34561691 PMCID: PMC8522653 DOI: 10.1038/s41596-021-00597-z] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Structure-based docking screens of large compound libraries have become common in early drug and probe discovery. As computer efficiency has improved and compound libraries have grown, the ability to screen hundreds of millions, and even billions, of compounds has become feasible for modest-sized computer clusters. This allows the rapid and cost-effective exploration and categorization of vast chemical space into a subset enriched with potential hits for a given target. To accomplish this goal at speed, approximations are used that result in undersampling of possible configurations and inaccurate predictions of absolute binding energies. Accordingly, it is important to establish controls, as are common in other fields, to enhance the likelihood of success in spite of these challenges. Here we outline best practices and control docking calculations that help evaluate docking parameters for a given target prior to undertaking a large-scale prospective screen, with exemplification in one particular target, the melatonin receptor, where following this procedure led to direct docking hits with activities in the subnanomolar range. Additional controls are suggested to ensure specific activity for experimentally validated hit compounds. These guidelines should be useful regardless of the docking software used. Docking software described in the outlined protocol (DOCK3.7) is made freely available for academic research to explore new hits for a range of targets.
Collapse
Affiliation(s)
- Brian J Bender
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Andreas Luttens
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Chase M Webb
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Reed M Stein
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Elissa A Fink
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Trent E Balius
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Oâ Donnell HR, Tummino TA, Bardine C, Craik CS, Shoichet BK. Colloidal aggregators in biochemical SARS-CoV-2 repurposing screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.31.458413. [PMID: 34494023 PMCID: PMC8423219 DOI: 10.1101/2021.08.31.458413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To fight the SARS-CoV-2 pandemic, much effort has been directed toward drug repurposing, testing investigational and approved drugs against several viral or human proteins in vitro . Here we investigate the impact of colloidal aggregation, a common artifact in early drug discovery, in these repurposing screens. We selected 56 drugs reported to be active in biochemical assays and tested them for aggregation by both dynamic light scattering and by enzyme counter screening with and without detergent; seventeen of these drugs formed colloids at concentrations similar to their literature reported IC 50 s. To investigate the occurrence of colloidal aggregators more generally in repurposing libraries, we further selected 15 drugs that had physical properties resembling known aggregators from a common repurposing library, and found that 6 of these aggregated at micromolar concentrations. An attraction of repurposing is that drugs active on one target are considered de-risked on another. This study suggests not only that many of the drugs repurposed for SARS-CoV-2 in biochemical assays are artifacts, but that, more generally, when screened at relevant concentrations, drugs can act artifactually via colloidal aggregation. Understanding the role of aggregation, and detecting its effects rapidly, will allow the community to focus on those drugs and leads that genuinely have potential for treating COVID-19. ABSTRACT FIGURE
Collapse
|
13
|
RNase P Inhibitors Identified as Aggregators. Antimicrob Agents Chemother 2021; 65:e0030021. [PMID: 33972249 DOI: 10.1128/aac.00300-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNase P is an essential enzyme responsible for tRNA 5'-end maturation. In most bacteria, the enzyme is a ribonucleoprotein consisting of a catalytic RNA subunit and a small protein cofactor termed RnpA. Several studies have reported small-molecule inhibitors directed against bacterial RNase P that were identified by high-throughput screenings. Using the bacterial RNase P enzymes from Thermotoga maritima, Bacillus subtilis, and Staphylococcus aureus as model systems, we found that such compounds, including RNPA2000 (and its derivatives), iriginol hexaacetate, and purpurin, induce the formation of insoluble aggregates of RnpA rather than acting as specific inhibitors. In the case of RNPA2000, aggregation was induced by Mg2+ ions. These findings were deduced from solubility analyses by microscopy and high-performance liquid chromatography (HPLC), RnpA-inhibitor co-pulldown experiments, detergent addition, and RnpA titrations in enzyme activity assays. Finally, we used a B. subtilis RNase P depletion strain, whose lethal phenotype could be rescued by a protein-only RNase P of plant origin, for inhibition zone analyses on agar plates. These cell-based experiments argued against RNase P-specific inhibition of bacterial growth by RNPA2000. We were also unable to confirm the previously reported nonspecific RNase activity of S. aureus RnpA itself. Our results indicate that high-throughput screenings searching for bacterial RNase P inhibitors are prone to the identification of "false positives" that are also termed pan-assay interference compounds (PAINS).
Collapse
|
14
|
Mohareb RM, Milad YR, Mostafa BM, El-Ansary RA. New Approaches for the Synthesis of Heterocyclic Compounds Corporating Benzo[d]imidazole as Anticancer Agents, Tyrosine, Pim-1 Kinases Inhibitions and their PAINS Evaluations. Anticancer Agents Med Chem 2021; 21:327-342. [PMID: 32698742 DOI: 10.2174/1871520620666200721111230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzo[d]imidazoles are highly biologically active, in addition, they are considered as a class of heterocyclic compounds with many pharmaceutical applications. OBJECTIVE We are aiming in this work to synthesize target molecules that possess not only anti-tumor activities but also kinase inhibitors. The target molecules were obtained starting from the benzo[d]imidazole derivatives followed by their heterocyclization reactions to produce anticancer target molecules. METHODS The 1-(1H-benzo[d]imidazol-2-yl)propan-2-one (3) and the ethyl 2-(1H-benzo[d]imidazol-2- yl)acetate (16) were used as the key starting material which reacted with salicylaldehyde to give the corresponding benzo[4,5]imidazo[1,2-a]quinoline derivatives. On the other hand, both of them were reacted with different reagents to give thiophene, pyran and benzo[4,5]imidazo[1,2-c]pyrimidine derivatives. The synthesized compounds were evaluated against the six cancer cell lines A549, HT-29, MKN-45, U87MG, SMMC-7721, and H460 together with inhibitions toward tyrosine kinases, c-Met kinase and prostate cancer cell line PC-3 using the standard MTT assay in vitro, with foretinib as the positive control. RESULTS Most of the synthesized compounds exhibited high inhibitions toward the tested cancer cell lines. In addition, tyrosine and Pim-1 kinases inhibitions were performed for the most active compounds where the variation of substituent through the aryl ring and heterocyclic ring afforded compounds with high activities. Our analysis showed that there is a strong correlation between the structure of the compound and the substituents of target molecules. CONCLUSION Our present research proved that the synthesized heterocyclic compounds with varieties of substituents have a strong impact on the activity of compounds. The evaluations through different cell lines and tyrosine kinases indicated that the compounds were the excellent candidates as anticancer agents. This could encourage doing further research within this field for the building of compounds with high inhibitions.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Yara R Milad
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Egypt
| | - Bahaa M Mostafa
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Reem A El-Ansary
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Orro A, Uggeri M, Rusnati M, Urbinati C, Pedemonte N, Pesce E, Moscatelli M, Padoan R, Cichero E, Fossa P, D'Ursi P. In silico drug repositioning on F508del-CFTR: A proof-of-concept study on the AIFA library. Eur J Med Chem 2021; 213:113186. [PMID: 33472120 DOI: 10.1016/j.ejmech.2021.113186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Computational drug repositioning is of growing interest to academia and industry, for its ability to rapidly screen a huge number of candidates in silico (exploiting comprehensive drug datasets) together with reduced development cost and time. The potential of drug repositioning has not been fully evaluated yet for cystic fibrosis (CF), a disease mainly caused by deletion of Phe 508 (F508del) of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. F508del-CFTR is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. CF is still a fatal disease. Nowadays, it is treatable by some CFTR-rescuing drugs, but new-generation drugs with stronger therapeutic benefits and fewer side effects are still awaited. In this manuscript we report about the results of a pilot computational drug repositioning screening in search of F508del-CFTR-targeted drugs performed on AIFA library by means of a dedicated computational pipeline and surface plasmon resonance binding assay to experimentally validate the computational findings.
Collapse
Affiliation(s)
- Alessandro Orro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy
| | - Matteo Uggeri
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy; Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Urbinati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marco Moscatelli
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy
| | - Rita Padoan
- Department of Pediatrics, Regional Support Centre for Cystic Fibrosis, Children's Hospital-ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Pasqualina D'Ursi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy.
| |
Collapse
|
16
|
Brear P, Ball D, Stott K, D'Arcy S, Hyvönen M. Proposed Allosteric Inhibitors Bind to the ATP Site of CK2α. J Med Chem 2020; 63:12786-12798. [PMID: 33119282 DOI: 10.1021/acs.jmedchem.0c01173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CK2α is a ubiquitous, well-studied kinase that is a target for small-molecule inhibition, for treatment of cancers. While many different classes of adenosine 5'-triphosphate (ATP)-competitive inhibitors have been described for CK2α, they tend to suffer from significant off-target activity and new approaches are needed. A series of inhibitors of CK2α has recently been described as allosteric, acting at a previously unidentified binding site. Given the similarity of these inhibitors to known ATP-competitive inhibitors, we have investigated them further. In our thorough structural and biophysical analyses, we have found no evidence that these inhibitors bind to the proposed allosteric site. Rather, we report crystal structures, competitive isothermal titration calorimetry (ITC) and NMR, hydrogen-deuterium exchange (HDX) mass spectrometry, and chemoinformatic analyses that all point to these compounds binding in the ATP pocket. Comparisons of our results and experimental approach with the data presented in the original report suggest that the primary reason for the disparity is nonspecific inhibition by aggregation.
Collapse
Affiliation(s)
- Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Darby Ball
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| |
Collapse
|
17
|
de Matos AM, Blázquez-Sánchez MT, Bento-Oliveira A, de Almeida RFM, Nunes R, Lopes PEM, Machuqueiro M, Cristóvão JS, Gomes CM, Souza CS, El Idrissi IG, Colabufo NA, Diniz A, Marcelo F, Oliveira MC, López Ó, Fernandez-Bolaños JG, Dätwyler P, Ernst B, Ning K, Garwood C, Chen B, Rauter AP. Glucosylpolyphenols as Inhibitors of Aβ-Induced Fyn Kinase Activation and Tau Phosphorylation: Synthesis, Membrane Permeability, and Exploratory Target Assessment within the Scope of Type 2 Diabetes and Alzheimer's Disease. J Med Chem 2020; 63:11663-11690. [PMID: 32959649 DOI: 10.1021/acs.jmedchem.0c00841] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite the rapidly increasing number of patients suffering from type 2 diabetes, Alzheimer's disease, and diabetes-induced dementia, there are no disease-modifying therapies that are able to prevent or block disease progress. In this work, we investigate the potential of nature-inspired glucosylpolyphenols against relevant targets, including islet amyloid polypeptide, glucosidases, and cholinesterases. Moreover, with the premise of Fyn kinase as a paradigm-shifting target in Alzheimer's drug discovery, we explore glucosylpolyphenols as blockers of Aβ-induced Fyn kinase activation while looking into downstream effects leading to Tau hyperphosphorylation. Several compounds inhibit Aβ-induced Fyn kinase activation and decrease pTau levels at 10 μM concentration, particularly the per-O-methylated glucosylacetophloroglucinol and the 4-glucosylcatechol dibenzoate, the latter inhibiting also butyrylcholinesterase and β-glucosidase. Both compounds are nontoxic with ideal pharmacokinetic properties for further development. This work ultimately highlights the multitarget nature, fine structural tuning capacity, and valuable therapeutic significance of glucosylpolyphenols in the context of these metabolic and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ana M de Matos
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - M Teresa Blázquez-Sánchez
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Andreia Bento-Oliveira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Rafael Nunes
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal.,Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Pedro E M Lopes
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Miguel Machuqueiro
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Joana S Cristóvão
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Cláudio M Gomes
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Cleide S Souza
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Imane G El Idrissi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Nicola A Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Ana Diniz
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Filipa Marcelo
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - M Conceição Oliveira
- Mass Spectrometry Facility at CQE, Insituto Superior Técnico, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, Sevilla E-41071, Spain
| | - José G Fernandez-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, Sevilla E-41071, Spain
| | - Philipp Dätwyler
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel CH-4056, Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel CH-4056, Switzerland
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Claire Garwood
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Beining Chen
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Amélia P Rauter
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| |
Collapse
|
18
|
Szabó K, Hámori C, Gyémánt G. Gallotannins are non-specific inhibitors of α-amylase: Aggregates are the active species taking part in inhibition. Chem Biol Drug Des 2020; 97:349-357. [PMID: 32889761 DOI: 10.1111/cbdd.13787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/11/2020] [Accepted: 08/24/2020] [Indexed: 11/28/2022]
Abstract
The versatile biological activity of gallotannins has been investigated for a long time, including their use as α-amylase inhibitors for the treatment of diabetes and its complications. The effectiveness of gallotannins on a wide range of enzymes refers to promiscuity. We proved that gallotannins are non-specific promiscuous α-amylase inhibitors, which exert their effect through their aggregates. A gallotannin of Aleppo oak origin fulfilled all the criteria for aggregators; significant changes could be observed in the IC50 values in the presence of Triton™ X-100 detergent (from 2.3 to 110 μg/ml) and after enzyme-inhibitor preincubation (from 2.3 to 0.65 μg/ml). Increasing the enzyme concentration also led to the moderation of the inhibition by gallotannin. In addition, we observed that gallotannin molecules are those, which are involved in aggregation, and discrete protein molecules are adsorbed to the aggregates. This was revealed by the increasing particle size of gallotannin, which became three orders of magnitude higher after 150 min, whereas the size of α-amylase remained unchanged. Consequently, gallotannins should be used as anti-diabetic drugs only if the necessity of higher dose due to their promiscuity is taken into account. Aggregation propensity should not be ignored in case of in vivo applications.
Collapse
Affiliation(s)
- Kármen Szabó
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Csaba Hámori
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gyöngyi Gyémánt
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
19
|
Mohareb RM, Wardakhan WW, Abbas NS. Synthesis of Tetrahydrobenzo[ b]thiophene-3-carbohydrazide Derivatives as Potential Anti-cancer Agents and Pim-1 Kinase Inhibitors. Anticancer Agents Med Chem 2020; 19:1737-1753. [PMID: 30947678 DOI: 10.2174/1871520619666190402153429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/22/2018] [Accepted: 03/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tetrahydrobenzo[b]thiophene derivatives are well known to be biologically active compounds and many of them occupy a wide range of anticancer agent drugs. OBJECTIVE One of the main aim of this work was to synthesize target molecules not only possessing anti-tumor activities but also kinase inhibitors. To achieve this goal, our strategy was to synthesize a series of 4,5,6,7- tetrahydrobenzo[b]thiophene-3-carbohydrazide derivatives using cyclohexan-1,4-dione and cyanoacetylhydrazine to give the 2-amino-6-oxo-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbohydrazide (3) as the key starting material for many heterocyclization reactions. METHODS Compound 3 was reacted with some aryldiazonium salts and the products were cyclised when reacted with either malononitrile or ethyl cyanoacetate. Thiazole derivatives were also obtained through the reaction of compound 3 with phenylisothiocyanate followed by heterocyclization with α-halocarbonyl derivatives. Pyrazole, triazole and pyran derivatives were also obtained. RESULTS The compounds obtained in this work were evaluated for their in-vitro cytotoxic activity against c-Met kinase, and the six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721). The results of anti-proliferative evaluations and c-Met kinase, Pim-1 kinse inhibitions revealed that some compounds showed high activities. CONCLUSION The most promising compounds 5b, 5c, 7c, 7d, 11b, 14a, 16b, 18b, 19, 21a, 23c, 23d and 23i against c-Met kinase were further investigated against the five tyrosin kinases (c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR). Compounds 5b, 5c, 7d, 7e, 11b, 11c, 16c, 16d, 18c, 19, 23e, 23k and 23m were selected to examine their Pim-1 kinase inhibitions activity where compounds 7d, 7e, 11b, 11c, 16d, 18c and 23e showed high activities. All of the synthesized compounds have no impaired effect toward the VERO normal cell line.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Chemistry Department, Faculty of Science Cairo University, New Cairo, A.R, Egypt
| | - Wagnat W Wardakhan
- National Organization for Drug Control & Research, P.O. Box 29, Cairo, A.R, Egypt
| | - Nermeen S Abbas
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, A.R, Egypt.,Department of Chemistry, Faculty of Science, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
20
|
Chen X, Dong Y, Wang J. The Practical Total Synthesis of Rottlerin and Rottlerone. ChemistrySelect 2020. [DOI: 10.1002/slct.202002245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xu‐Ling Chen
- Chengdu Institute of Organic ChemistryChinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Yu Dong
- Chengdu Institute of Organic ChemistryChinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Ji‐Yu Wang
- Chengdu Institute of Organic ChemistryChinese Academy of Sciences Chengdu China
| |
Collapse
|
21
|
Abbhi V, Piplani P. Rho-kinase (ROCK) Inhibitors - A Neuroprotective Therapeutic Paradigm with a Focus on Ocular Utility. Curr Med Chem 2020; 27:2222-2256. [PMID: 30378487 DOI: 10.2174/0929867325666181031102829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glaucoma is a progressive optic neuropathy causing visual impairment and Retinal Ganglionic Cells (RGCs) death gradually posing a need for neuroprotective strategies to minimize the loss of RGCs and visual field. It is recognized as a multifactorial disease, Intraocular Pressure (IOP) being the foremost risk factor. ROCK inhibitors have been probed for various possible indications, such as myocardial ischemia, hypertension, kidney diseases. Their role in neuroprotection and neuronal regeneration has been suggested to be of value in the treatment of neurological diseases, like spinal-cord injury, Alzheimer's disease and multiple sclerosis but recently Rho-associated Kinase inhibitors have been recognized as potential antiglaucoma agents. EVIDENCE SYNTHESIS Rho-Kinase is a serine/threonine kinase with a kinase domain which is constitutively active and is involved in the regulation of smooth muscle contraction and stress fibre formation. Two isoforms of Rho-Kinase, ROCK-I (ROCK β) and ROCK-II (ROCK α) have been identified. ROCK II plays a pathophysiological role in glaucoma and hence the inhibitors of ROCK may be beneficial to ameliorate the vision loss. These inhibitors decrease the intraocular pressure in the glaucomatous eye by increasing the aqueous humour outflow through the trabecular meshwork pathway. They also act as anti-scarring agents and hence prevent post-operative scarring after the glaucoma filtration surgery. Their major role involves axon regeneration by increasing the optic nerve blood flow which may be useful in treating the damaged optic neurons. These drugs act directly on the neurons in the central visual pathway, interrupting the RGC apoptosis and therefore serve as a novel pharmacological approach for glaucoma neuroprotection. CONCLUSION Based on the results of high-throughput screening, several Rho kinase inhibitors have been designed and developed comprising of diverse scaffolds exhibiting Rho kinase inhibitory activity from micromolar to subnanomolar ranges. This diversity in the scaffolds with inhibitory potential against the kinase and their SAR development will be intricated in the present review. Ripasudil is the only Rho kinase inhibitor marketed to date for the treatment of glaucoma. Another ROCK inhibitor AR-13324 has recently passed the clinical trials whereas AMA0076, K115, PG324, Y39983 and RKI-983 are still under trials. In view of this, a detailed and updated account of ROCK II inhibitors as the next generation therapeutic agents for glaucoma will be discussed in this review.
Collapse
Affiliation(s)
- Vasudha Abbhi
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| | - Poonam Piplani
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| |
Collapse
|
22
|
Mohareb RM, Manhi FM, Mahmoud MAA, Abdelwahab A. Uses of dimedone to synthesis pyrazole, isoxazole and thiophene derivatives with antiproliferative, tyrosine kinase and Pim-1 kinase inhibitions. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02579-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Megally Abdo NY, Samir EM, Mohareb RM. Synthesis and evaluation of novel 4
H
‐pyrazole and thiophene derivatives derived from chalcone as potential anti‐proliferative agents, Pim‐1 kinase inhibitors, and PAINS. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nadia Y. Megally Abdo
- Chemistry Department, Faculty of EducationAlexandria University Alexandria A. R. Egypt
| | - Eman M. Samir
- Department of Organic Chemistry, National Organization for Drug Control & Research (NODCAR), P.O. 29 Cairo A. R. Egypt
| | - Rafat M. Mohareb
- Department of Chemistry, Faculty of ScienceCairo University Cairo A. R. Egypt
| |
Collapse
|
24
|
Mohareb RM, Megally Abdo NY, Gamaan MS. Uses of cyclohexan‐1,3‐dione for the synthesis of tetrahydrochromeno[3,4‐
c
]chromen derivatives with anti‐tumor activities. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rafat M. Mohareb
- Department of Chemistry, Faculty of ScienceCairo University Giza Egypt
| | | | - Marwa S. Gamaan
- Department of Chemistry, Faculty of ScienceCairo University Giza Egypt
| |
Collapse
|
25
|
Mohareb RM, Alwan ES. Heterocyclization of 2-(2-phenylhydrazono)cyclohexane-1,3-dione to Synthesis Thiophene, Pyrazole and 1,2,4-triazine Derivatives with Anti-Tumor and Tyrosine Kinase Inhibitions. Anticancer Agents Med Chem 2020; 20:1209-1220. [PMID: 32156245 DOI: 10.2174/1871520620666200310093911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/04/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recently tetrahydrobenzo[b]thiazole derivatives acquired a special attention due to their wide range of pharmacological activities especially the therapeutic activities. Through the market it was found that many pharmacological drugs containing the thiazole nucleus were known. OBJECTIVE This work aimed to synthesize target molecules not only possess anti-tumor activities but also kinase inhibitors. The target molecules were obtained starting from the arylhydrazonocyclohexan-1,3-dione followed by their heterocyclization reactions to produce anticancer target molecules. METHODS The arylhydrazone derivatives 3a-c underwent different heterocyclization reactions to produce thiophene, thiazole, pyrazole and 1,2,4-triazine derivatives. The anti-proliferative activity of twenty six compounds among the synthesized compounds toward the six cancer cell lines namely A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721 was studied. RESULTS Anti-proliferative evaluations, tyrosine and Pim-1 kinase inhibitions were perform for most of the synthesized compounds where the varieties of substituent through the aryl ring and the thiophene moiety afforded compounds with high activities. CONCLUSION The compounds with high anti-proliferative activity towards the cancer cell lines showed that compounds 3b, 3c, 5e, 5f, 8c, 9c, 11c, 12c, 14e, 14f and 16c were the most cytotoxic compounds. Further tests of the latter compounds toward the five tyrosine kinases c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR and Pim-1 kinase showed that compounds 3c, 5e, 5f, 8c, 9c, 12c, 14e, 14f and 16c were the most potent of the tested compounds toward the five tyrosine kinases and compounds 6d, 11a, 20b and 21e were of the highest inhibitions towards Pim-1 kinase. Pan Assay Interference Compounds (PAINS) for the most cytotoxic compounds showed zero PAINS alert and can be used as lead compounds.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ensaf S Alwan
- Department of Quality Assurance, Yemen Drug Company for Industry and Commerce, (YEDCO), Sana'a, Yemen
| |
Collapse
|
26
|
Ganesh AN, Aman A, Logie J, Barthel BL, Cogan P, Al-awar R, Koch TH, Shoichet BK, Shoichet MS. Colloidal Drug Aggregate Stability in High Serum Conditions and Pharmacokinetic Consequence. ACS Chem Biol 2019; 14:751-757. [PMID: 30840432 PMCID: PMC6474797 DOI: 10.1021/acschembio.9b00032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Colloidal drug aggregates have been a nuisance in drug screening, yet, because they inherently comprise drug-rich particles, they may be useful in vivo if issues of stability can be addressed. As the first step toward answering this question, we optimized colloidal drug aggregate formulations using a fluorescence-based assay to study fulvestrant colloidal formation and stability in high (90%) serum conditions in vitro. We show, for the first time, that the critical aggregation concentration of fulvestrant depends on media composition and increases with serum concentration. Excipients, such as polysorbate 80, stabilize fulvestrant colloids in 90% serum in vitro for over 48 h. Using fulvestrant and an investigational pro-drug, pentyloxycarbonyl-( p-aminobenzyl) doxazolidinylcarbamate (PPD), as proof-of-concept colloidal formulations, we demonstrate that the in vivo plasma half-life for stabilized colloids is greater than their respective monomeric forms. These studies demonstrate the potential of turning the nuisance of colloidal drug aggregation into an opportunity for drug-rich formulations.
Collapse
Affiliation(s)
- Ahil N. Ganesh
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario M5G 0A3, Canada
| | - Jennifer Logie
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Ben L. Barthel
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario M5G 0A3, Canada
| | - Peter Cogan
- School of Pharmacy, Regis University, 3333 Regis Boulevard, Denver, Colorado 80221-1099, United States
| | - Rima Al-awar
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Tad H. Koch
- Drug Discovery Program, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario M5G 0A3, Canada
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry and Quantitative Biology Institute, University of California, San Francisco, 1700 Fourth Street, Mail Box 2550, San Francisco, California 94143, United States
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
27
|
Reker D, Bernardes GJL, Rodrigues T. Computational advances in combating colloidal aggregation in drug discovery. Nat Chem 2019; 11:402-418. [PMID: 30988417 DOI: 10.1038/s41557-019-0234-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
Small molecule effectors are essential for drug discovery. Specific molecular recognition, reversible binding and dose-dependency are usually key requirements to ensure utility of a novel chemical entity. However, artefactual frequent-hitter and assay interference compounds may divert lead optimization and screening programmes towards attrition-prone chemical matter. Colloidal aggregates are the prime source of false positive readouts, either through protein sequestration or protein-scaffold mimicry. Nevertheless, assessment of colloidal aggregation remains somewhat overlooked and under-appreciated. In this Review, we discuss the impact of aggregation in drug discovery by analysing select examples from the literature and publicly-available datasets. We also examine and comment on technologies used to experimentally identify these potentially problematic entities. We focus on evidence-based computational filters and machine learning algorithms that may be swiftly deployed to flag chemical matter and mitigate the impact of aggregates in discovery programmes. We highlight the tools that can be used to scrutinize libraries, and identify and eliminate these problematic compounds.
Collapse
Affiliation(s)
- Daniel Reker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,MIT-IBM Watson AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Tiago Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
28
|
Computer-Aided Discovery of Small Molecules Targeting the RNA Splicing Activity of hnRNP A1 in Castration-Resistant Prostate Cancer. Molecules 2019; 24:molecules24040763. [PMID: 30791548 PMCID: PMC6413181 DOI: 10.3390/molecules24040763] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/08/2019] [Accepted: 02/16/2019] [Indexed: 12/28/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a versatile RNA-binding protein playing a critical role in alternative pre-mRNA splicing regulation in cancer. Emerging data have implicated hnRNP A1 as a central player in a splicing regulatory circuit involving its direct transcriptional control by c-Myc oncoprotein and the production of the constitutively active ligand-independent alternative splice variant of androgen receptor, AR-V7, which promotes castration-resistant prostate cancer (CRPC). As there is an urgent need for effective CRPC drugs, targeting hnRNP A1 could, therefore, serve a dual purpose of preventing AR-V7 generation as well as reducing c-Myc transcriptional output. Herein, we report compound VPC-80051 as the first small molecule inhibitor of hnRNP A1 splicing activity discovered to date by using a computer-aided drug discovery approach. The inhibitor was developed to target the RNA-binding domain (RBD) of hnRNP A1. Further experimental evaluation demonstrated that VPC-80051 interacts directly with hnRNP A1 RBD and reduces AR-V7 messenger levels in 22Rv1 CRPC cell line. This study lays the groundwork for future structure-based development of more potent and selective small molecule inhibitors of hnRNP A1–RNA interactions aimed at altering the production of cancer-specific alternative splice isoforms.
Collapse
|
29
|
Jarhad DB, Mashelkar KK, Kim HR, Noh M, Jeong LS. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) Inhibitors as Potential Therapeutics. J Med Chem 2018; 61:9791-9810. [PMID: 29985601 DOI: 10.1021/acs.jmedchem.8b00185] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a member of an evolutionarily conserved family of protein kinases that belongs to the CMGC group of kinases. DYRK1A, encoded by a gene located in the human chromosome 21q22.2 region, has attracted attention due to its association with both neuropathological phenotypes and cancer susceptibility in patients with Down syndrome (DS). Inhibition of DYRK1A attenuates cognitive dysfunctions in animal models for both DS and Alzheimer's disease (AD). Furthermore, DYRK1A has been studied as a potential cancer therapeutic target because of its role in the regulation of cell cycle progression by affecting both tumor suppressors and oncogenes. Consequently, selective synthetic inhibitors have been developed to determine the role of DYRK1A in various human diseases. Our perspective includes a comprehensive review of potent and selective DYRK1A inhibitors and their forthcoming therapeutic applications.
Collapse
Affiliation(s)
- Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Karishma K Mashelkar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Hong-Rae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Minsoo Noh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| |
Collapse
|
30
|
Development of a high-content imaging assay for screening compound aggregation. Anal Biochem 2018; 559:30-33. [PMID: 30142329 DOI: 10.1016/j.ab.2018.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Aggregated compounds can promiscuously and nonspecifically associate with proteins resulting in either false inhibition or activation of many different protein target classes. We developed a high-content imaging assay in a 384-well format using fluorescently labeled target proteins and an Operetta cell imager to screen for compound aggregates that interact with target proteins. The high-throughput assay can not only directly detect the interaction between compound aggregators and the target of interest, but also determine the critical aggregation concentration (CAC) of a given promiscuous small molecule.
Collapse
|
31
|
Chohan TA, Qayyum A, Rehman K, Tariq M, Akash MSH. An insight into the emerging role of cyclin-dependent kinase inhibitors as potential therapeutic agents for the treatment of advanced cancers. Biomed Pharmacother 2018; 107:1326-1341. [PMID: 30257348 DOI: 10.1016/j.biopha.2018.08.116] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 01/16/2023] Open
Abstract
Cancer denotes a pathological manifestation that is characterized by hyperproliferation of cells. It has anticipated that a better understanding of disease pathogenesis and the role of cell-cycle regulators may provide an opportunity to develop an effective cancer therapeutic agents. Specifically, the cyclin-dependent kinases (CDKs) which regulate the transition of cell-cycle through different phases; have been identified as fundamental targets for therapeutic advances. It is an evident from experimental studies that several events leading to tumor growth occur by exacerbation of CDK4/CDK6 in G1-phase of cell division cycle. Additionally, the characteristics of S- and G2/M-phase regulated by CDK1/CDK2 are pivotal events that may lead to abrupt the cell division. Although, previously reported CDK inhibitors have shown remarkable results in pre-clinical studies, but have not yielded appreciable clinical results yet. Therefore, the development of clinically potent CDK inhibitors has remained to be a challenging task. However, continuous efforts has led to the development of some novel CDKs inhibitors that have emerged as a potent strategy for the treatment of advanced cancers. In this article, we have summarized the role of CDKs in cell-cycle regulation and tumorigenesis and recent advances in the development of CDKs inhibitors as a promising therapy for the treatment of advanced cancer. In addition, we have also performed a comparison of crystallographic studies to get valuable insight into the interaction mode differences of inhibitors, binding to CDK isoforms with apparently similar binding sites. The knowledge of ligand-specific recognition towards a particular CDK isoform may be applied as a key tool in future for the designing of isoform-specific inhibitors.
Collapse
Affiliation(s)
- Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Aisha Qayyum
- Department of Paediatrics Medicine, Sabzazar Hospital, Lahore, Pakistan
| | - Kanwal Rehman
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Tariq
- Faculty of Pharmacy & Alternative Medicine, The Islamia University of Bahawalpur, Pakistan
| | | |
Collapse
|
32
|
Be Aware of Aggregators in the Search for Potential Human ecto-5'-Nucleotidase Inhibitors. Molecules 2018; 23:molecules23081876. [PMID: 30060466 PMCID: PMC6222861 DOI: 10.3390/molecules23081876] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 01/09/2023] Open
Abstract
Promiscuous inhibition due to aggregate formation has been recognized as a major concern in drug discovery campaigns. Here, we report some aggregators identified in a virtual screening (VS) protocol to search for inhibitors of human ecto-5′-nucleotidase (ecto-5′-NT/CD73), a promising target for several diseases and pathophysiological events, including cancer, inflammation and autoimmune diseases. Four compounds (A, B, C and D), selected from the ZINC-11 database, showed IC50 values in the micromolar range, being at the same time computationally predicted as potential aggregators. To confirm if they inhibit human ecto-5′-NT via promiscuous mechanism, forming aggregates, enzymatic assays were done in the presence of 0.01% (v/v) Triton X-100 and an increase in the enzyme concentration by 10-fold. Under both experimental conditions, these four compounds showed a significant decrease in their inhibitory activities. To corroborate these findings, turbidimetric assays were performed, confirming that they form aggregate species. Additionally, aggregation kinetic studies were done by dynamic light scattering (DLS) for compound C. None of the identified aggregators has been previously reported in the literature. For the first time, aggregation and promiscuous inhibition issues were systematically studied and evaluated for compounds selected by VS as potential inhibitors for human ecto-5′-NT. Together, our results reinforce the importance of accounting for potential false-positive hits acting by aggregation in drug discovery campaigns to avoid misleading assay results.
Collapse
|
33
|
Ganesh AN, Donders EN, Shoichet BK, Shoichet MS. Colloidal aggregation: from screening nuisance to formulation nuance. NANO TODAY 2018; 19:188-200. [PMID: 30250495 PMCID: PMC6150470 DOI: 10.1016/j.nantod.2018.02.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is well known that small molecule colloidal aggregation is a leading cause of false positives in early drug discovery. Colloid-formers are diverse and well represented among corporate and academic screening decks, and even among approved drugs. Less appreciated is how colloid formation by drug-like compounds fits into the wider understanding of colloid physical chemistry. Here we introduce the impact that colloidal aggregation has had on early drug discovery, and then turn to the physical and thermodynamic driving forces for small molecule colloidal aggregation, including the particulate nature of the colloids, their critical aggregation concentration-governed formation, their mechanism of protein adsorption and subsequent inhibition, and their sensitivity to detergent. We describe methods that have been used extensively to both identify aggregate-formers and to study and control their physical chemistry. While colloidal aggregation is widely recognized as a problem in early drug discovery, we highlight the opportunities for exploiting this phenomenon in biological milieus and for drug formulation.
Collapse
Affiliation(s)
- Ahil N. Ganesh
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON,Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
| | - Eric N. Donders
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON,Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California – San Francisco, CA, USA
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON,Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
- Department of Chemistry, University of Toronto, ON, Canada
- To whom correspondence should be addressed: Molly S. Shoichet, University of Toronto, 160 College Street, Room 514, Toronto, ON, Canada M5S 3E1,
| |
Collapse
|
34
|
Azad I, Nasibullah M, Khan T, Hassan F, Akhter Y. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents. J Mol Graph Model 2018; 81:211-228. [PMID: 29609141 DOI: 10.1016/j.jmgm.2018.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 12/22/2022]
Abstract
This paper deals with in silico evaluation of newly proposed heterocyclic derivatives in search of potential anticancer activity. Best possible drug candidates have been proposed using a rational approach employing a pipeline of computational techniques namely MetaPrint2D prediction, molinspiration, cheminformatics, Osiris Data warrior, AutoDock and iGEMDOCK. Lazar toxicity prediction, AdmetSAR predictions, and targeted docking studies were also performed. 27 heterocyclic derivatives were selected for bioactivity prediction and drug likeness score on the basis of Lipinski's rule, Viber rule, Ghose filter, leadlikeness and Pan Assay Interference Compounds (PAINS) rule. Bufuralol, Sunitinib, and Doxorubicin were selected as reference standard drug for the comparison of molecular descriptors and docking. Bufuralol is a known non-selective adreno-receptor blocking agent. Studies showed that beta blockers are also used against different types of cancers. Sunitinib is well known Food and Drug administration (FDA) approved pyrrole containing tyrosine kinase inhibitor and our proposed molecules possess similarities with both drug and doxorubicin is another moiety having anticancer activity. All heterocyclic derivatives were found to obey the drug filters except standard drug Doxorubicin. Bioactivity score of the compounds was predicted for drug targets including enzymes, nuclear receptors, kinase inhibitors, G protein-coupled receptor (GPCR) ligands and ion channel modulators. Absorption, distribution, metabolism and toxicity (ADMET) prediction of all proposed compound showed good Blood-brain barrier (BBB) penetration, Human intestinal absorption (HIA), Caco-2 cell permeability except compound-11 and was found to have no AdmetSAR toxicity as well as carcinogenic effect. Compounds 1-9 were slightly mutagenic while compound 2, 11, 20 and 21 showed carcinogenic effect according to Lazar toxicity prediction. Rests of the compounds were predicted to have no side effect. Molecular docking was performed with vascular endothelial growth factor receptor-2(VEGFR2) and glutathione S-transferase-1 (GSTP1) because both are common cancer causing proteins. Sunitinib and Doxorubicin possess great affinity to inhibit these cancers causing protein. Self-organizing map (SOM) was used to depict data in a simple 2D presentation. Our studies justify that good oral bioavailability and therapeutic efficacy of 10, 12-19 and 22-27 compounds can be considered as potential anticancer agents.
Collapse
Affiliation(s)
- Iqbal Azad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India.
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India; Department of Chemistry, Isabella Thoburn College, University of Lucknow, Lucknow 226007, UP, India
| | - Firoj Hassan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raebareli Road, Lucknow, UP 2260025, India
| |
Collapse
|
35
|
A printable hydrogel microarray for drug screening avoids false positives associated with promiscuous aggregating inhibitors. Nat Commun 2018; 9:602. [PMID: 29426913 PMCID: PMC5807445 DOI: 10.1038/s41467-018-02956-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
A significant problem in high-throughput drug screening is the disproportionate number of false hits associated with drug candidates that form colloidal aggregates. Such molecules, referred to as promiscuous inhibitors, nonspecifically inhibit multiple enzymes and are thus not useful as potential drugs. Here, we report a printable hydrogel-based drug-screening platform capable of non-ambiguously differentiating true enzyme inhibitors from promiscuous aggregating inhibitors, critical for accelerating the drug discovery process. The printed hydrogels can both immobilize as well as support the activity of entrapped enzymes against drying or treatment with a protease or chemical denaturant. Furthermore, the printed hydrogel can be applied in a high-throughput microarray-based screening platform (consistent with current practice) to rapidly ( <25 min) and inexpensively identify only clinically promising lead compounds with true inhibitory potential as well as to accurately quantify the dose–response relationships of those inhibitors, all while using 95% less sample than required for a solution assay. False positive results significantly slow down the drug discovery process. Here, the authors developed a gel serving as a screening platform in which enzymes can be stored, stabilized, and protected from most of the compounds that typically cause these misleading results.
Collapse
|
36
|
Haymond A, Dowdy T, Johny C, Johnson C, Ball H, Dailey A, Schweibenz B, Villarroel K, Young R, Mantooth CJ, Patel T, Bases J, Dowd CS, Couch RD. A high-throughput screening campaign to identify inhibitors of DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD). Anal Biochem 2018; 542:63-75. [PMID: 29180070 PMCID: PMC5817008 DOI: 10.1016/j.ab.2017.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 11/17/2022]
Abstract
The rise of antibacterial resistance among human pathogens represents a problem that could change the landscape of healthcare unless new antibiotics are developed. The methyl erythritol phosphate (MEP) pathway represents an attractive series of targets for novel antibiotic design, considering each enzyme of the pathway is both essential and has no human homologs. Here we describe a pilot scale high-throughput screening (HTS) campaign against the first and second committed steps in the pathway, catalyzed by DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD), using compounds present in the commercially available LOPAC1280 library as well as in an in-house natural product extract library. Hit compounds were characterized to deduce their mechanism of inhibition; most function through aggregation. The HTS workflow outlined here is useful for quickly screening a chemical library, while effectively identifying false positive compounds associated with assay constraints and aggregation.
Collapse
Affiliation(s)
- Amanda Haymond
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Tyrone Dowdy
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Chinchu Johny
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Claire Johnson
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Haley Ball
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Allyson Dailey
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Brandon Schweibenz
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Karen Villarroel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Richard Young
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Clark J Mantooth
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Trishal Patel
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Jessica Bases
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington DC 20052, USA.
| | - Robin D Couch
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
37
|
A multifaceted approach to identify non-specific enzyme inhibition: Application to Mycobacterium tuberculosis shikimate kinase. Bioorg Med Chem Lett 2017; 28:802-808. [PMID: 29366649 DOI: 10.1016/j.bmcl.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022]
Abstract
Single dose high-throughput screening (HTS) followed by dose-response evaluations is a common strategy for the identification of initial hits for further development. Early identification and exclusion of false positives is a cost-saving and essential step in early drug discovery. One of the mechanisms of false positive compounds is the formation of aggregates in assays. This study evaluates the mechanism(s) of inhibition of a set of 14 compounds identified previously as actives in Mycobacterium tuberculosis (Mt) cell culture screening and in vitro actives in Mt shikimate kinase (MtSK) assay. Aggregation of hit compounds was characterized using multiple experimental methods, LC-MS, 1HNMR, dynamic light scattering (DLS), transmission electron microscopy (TEM), and visual inspection after centrifugation for orthogonal confirmation. Our results suggest that the investigated compounds containing oxadiazole-amide and aminobenzothiazole moieties are false positive hits and non-specific inhibitors of MtSK through aggregate formation.
Collapse
|
38
|
Holdgate GA, Meek TD, Grimley RL. Mechanistic enzymology in drug discovery: a fresh perspective. Nat Rev Drug Discov 2017; 17:115-132. [PMID: 29192286 DOI: 10.1038/nrd.2017.219] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Given the therapeutic and commercial success of small-molecule enzyme inhibitors, as exemplified by kinase inhibitors in oncology, a major focus of current drug-discovery and development efforts is on enzyme targets. Understanding the course of an enzyme-catalysed reaction can help to conceptualize different types of inhibitor and to inform the design of screens to identify desired mechanisms. Exploiting this information allows the thorough evaluation of diverse compounds, providing the knowledge required to efficiently optimize leads towards differentiated candidate drugs. This review highlights the rationale for conducting high-quality mechanistic enzymology studies and considers the added value in combining such studies with orthogonal biophysical methods.
Collapse
Affiliation(s)
- Geoffrey A Holdgate
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Thomas D Meek
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Rachel L Grimley
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| |
Collapse
|
39
|
Jalouli M, Mokas S, Turgeon CA, Lamalice L, Richard DE. Selective HIF-1 Regulation under Nonhypoxic Conditions by the p42/p44 MAP Kinase Inhibitor PD184161. Mol Pharmacol 2017; 92:510-518. [PMID: 28814529 DOI: 10.1124/mol.117.108654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/02/2017] [Indexed: 02/14/2025] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key gene regulator for cellular adaptation to low oxygen. In addition to hypoxia, several nonhypoxic stimuli, including hormones and growth factors, are essential for cell-specific HIF-1 regulation. Our studies have highlighted angiotensin II (AngII), a vasoactive hormone, as a potent HIF-1 activator in vascular smooth muscle cells (VSMC). AngII increases HIF-1 transcriptional activity by modulating specific signaling pathways. In VSMC, p42/p44 mitogen-activated protein kinase (MAPK) pathway activation is essential for HIF-1-mediated transcription during AngII treatment. The present study shows that PD184161, a potent MEK1/2 inhibitor, is an HIF-1 blocker in Ang II-treated VSMC. Unlike PD98059, a widely-used MEK1/2 inhibitor, we found that PD184161 blocked AngII-driven HIF-1α protein induction in a dose-dependent manner. Interestingly, the effect of PD184161 was specific to nonhypoxic activators, since HIF-1α induction by hypoxia (1% O2) was unaffected under similar conditions. VSMC treatment with MG132, a proteasome inhibitor, indicated that PD184161 influenced HIF-1α protein stability. PD184161 also increased HIF-1α binding to von Hippel-Lindau tumor suppressor protein, an E3 ligase component and an indication of HIF-1α hydroxylation. Finally, we show that PD184161 blocked mitochondrial ROS (mtROS) production and cellular ATP levels, at the same time enhancing ascorbate availability in AngII-treated VSMC. Taken together, our study indicates that, independently of p42/p44 MAPK activation, PD184161 blocks mtROS generation by AngII, leading to re-establishment of cellular ascorbate levels, increased VHL binding, and decreased HIF-1α stability. Therefore, this study reveals a previously unsuspected role for PD184161 as an HIF-1 inhibitor in VSMC under nonhypoxic conditions.
Collapse
Affiliation(s)
- Maroua Jalouli
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Sophie Mokas
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Catherine A Turgeon
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Laurent Lamalice
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| | - Darren E Richard
- Centre de recherche du CHU de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
40
|
Naik R, Ban HS, Jang K, Kim I, Xu X, Harmalkar D, Shin SA, Kim M, Kim BK, Park J, Ku B, Oh S, Won M, Lee K. Methyl 3-(3-(4-(2,4,4-Trimethylpentan-2-yl)phenoxy)-propanamido)benzoate as a Novel and Dual Malate Dehydrogenase (MDH) 1/2 Inhibitor Targeting Cancer Metabolism. J Med Chem 2017; 60:8631-8646. [DOI: 10.1021/acs.jmedchem.7b01231] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ravi Naik
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Hyun Seung Ban
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
| | - Kyusic Jang
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Inhyub Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Xuezhen Xu
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | | | - Seong-Ah Shin
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jaehyung Park
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sujin Oh
- New Drug Development Center, Asan Medical Center, Seoul 05505, Korea
| | - Misun Won
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| |
Collapse
|
41
|
Protein Kinases C-Mediated Regulations of Drug Transporter Activity, Localization and Expression. Int J Mol Sci 2017; 18:ijms18040764. [PMID: 28375174 PMCID: PMC5412348 DOI: 10.3390/ijms18040764] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/05/2023] Open
Abstract
Drug transporters are now recognized as major actors in pharmacokinetics, involved notably in drug–drug interactions and drug adverse effects. Factors that govern their activity, localization and expression are therefore important to consider. In the present review, the implications of protein kinases C (PKCs) in transporter regulations are summarized and discussed. Both solute carrier (SLC) and ATP-binding cassette (ABC) drug transporters can be regulated by PKCs-related signaling pathways. PKCs thus target activity, membrane localization and/or expression level of major influx and efflux drug transporters, in various normal and pathological types of cells and tissues, often in a PKC isoform-specific manner. PKCs are notably implicated in membrane insertion of bile acid transporters in liver and, in this way, are thought to contribute to cholestatic or choleretic effects of endogenous compounds or drugs. The exact clinical relevance of PKCs-related regulation of drug transporters in terms of drug resistance, pharmacokinetics, drug–drug interactions and drug toxicity remains however to be precisely determined. This issue is likely important to consider in the context of the development of new drugs targeting PKCs-mediated signaling pathways, for treating notably cancers, diabetes or psychiatric disorders.
Collapse
|
42
|
ITC-derived binding affinity may be biased due to titrant (nano)-aggregation. Binding of halogenated benzotriazoles to the catalytic domain of human protein kinase CK2. PLoS One 2017; 12:e0173260. [PMID: 28273138 PMCID: PMC5342230 DOI: 10.1371/journal.pone.0173260] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/17/2017] [Indexed: 12/13/2022] Open
Abstract
The binding of four bromobenzotriazoles to the catalytic subunit of human protein kinase CK2 was assessed by two complementary methods: Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC). New algorithm proposed for the global analysis of MST pseudo-titration data enabled reliable determination of binding affinities for two distinct sites, a relatively strong one with the Kd of the order of 100 nM and a substantially weaker one (Kd > 1 μM). The affinities for the strong binding site determined for the same protein-ligand systems using ITC were in most cases approximately 10-fold underestimated. The discrepancy was assigned directly to the kinetics of ligand nano-aggregates decay occurring upon injection of the concentrated ligand solution to the protein sample. The binding affinities determined in the reverse ITC experiment, in which ligands were titrated with a concentrated protein solution, agreed with the MST-derived data. Our analysis suggests that some ITC-derived Kd values, routinely reported together with PDB structures of protein-ligand complexes, may be biased due to the uncontrolled ligand (nano)-aggregation, which may occur even substantially below the solubility limit.
Collapse
|
43
|
Duan D, Torosyan H, Elnatan D, McLaughlin CK, Logie J, Shoichet MS, Agard DA, Shoichet BK. Internal Structure and Preferential Protein Binding of Colloidal Aggregates. ACS Chem Biol 2017; 12:282-290. [PMID: 27983786 DOI: 10.1021/acschembio.6b00791] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colloidal aggregates of small molecules are the most common artifact in early drug discovery, sequestering and inhibiting target proteins without specificity. Understanding their structure and mechanism has been crucial to developing tools to control for, and occasionally even exploit, these particles. Unfortunately, their polydispersity and transient stability have prevented exploration of certain elementary properties, such as how they pack. Dye-stabilized colloidal aggregates exhibit enhanced homogeneity and stability when compared to conventional colloidal aggregates, enabling investigation of some of these properties. By small-angle X-ray scattering and multiangle light scattering, pair distance distribution functions suggest that the dye-stabilized colloids are filled, not hollow, spheres. Stability of the coformulated colloids enabled investigation of their preference for binding DNA, peptides, or folded proteins, and their ability to purify one from the other. The coformulated colloids showed little ability to bind DNA. Correspondingly, the colloids preferentially sequestered protein from even a 1600-fold excess of peptides that are themselves the result of a digest of the same protein. This may reflect the avidity advantage that a protein has in a surface-to-surface interaction with the colloids. For the first time, colloids could be shown to have preferences of up to 90-fold for particular proteins over others. Loaded onto the colloids, bound enzyme could be spun down, resuspended, and released back into buffer, regaining most of its activity. Implications of these observations for colloid mechanisms and utility will be considered.
Collapse
Affiliation(s)
- Da Duan
- Department of Pharmaceutical Chemistry & Quantitative Biology Institute, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94158-2550, United States
| | - Hayarpi Torosyan
- Department of Pharmaceutical Chemistry & Quantitative Biology Institute, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94158-2550, United States
| | - Daniel Elnatan
- Howard
Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, United States
| | - Christopher K. McLaughlin
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - Jennifer Logie
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - Molly S. Shoichet
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - David A. Agard
- Howard
Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, United States
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry & Quantitative Biology Institute, University of California, San Francisco, 1700 Fourth Street, San Francisco, California 94158-2550, United States
| |
Collapse
|
44
|
Tomek P, Palmer BD, Flanagan JU, Sun C, Raven EL, Ching LM. Discovery and evaluation of inhibitors to the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1): Probing the active site-inhibitor interactions. Eur J Med Chem 2016; 126:983-996. [PMID: 28011425 DOI: 10.1016/j.ejmech.2016.12.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 01/21/2023]
Abstract
High expression of the immunosuppressive enzyme, indoleamine 2,3-dioxygenase 1 (IDO1) for a broad range of malignancies is associated with poor patient prognosis, and the enzyme is a validated target for cancer intervention. To identify novel IDO1 inhibitors suitable for drug development, 1597 compounds in the National Cancer Institute Diversity Set III library were tested for inhibitory activity against recombinant human IDO1. We retrieved 35 hits that inhibited IDO1 activity >50% at 20 μM. Five structural filters and the PubChem Bioassay database were used to guide the selection of five inhibitors with IC50 between 3 and 12 μM for subsequent experimental evaluation. A pyrimidinone scaffold emerged as being the most promising. It showed excellent cell penetration, negligible cytotoxicity and passed four out of the five structural filters applied. To evaluate the importance of Ser167 and Cys129 residues in the IDO1 active site for inhibitor binding, the entire NCI library was subsequently screened against alanine-replacement mutant enzymes of these two residues. The results established that Ser167 but not Cys129 is important for inhibitory activity of a broad range of IDO1 inhibitors. Structure-activity-relationship studies proposed substituents interacting with Ser167 on four investigated IDO1 inhibitors. Three of these four Ser167 interactions associated with an increased IDO1 inhibition and were correctly predicted by molecular docking supporting Ser167 as an important mediator of potency for IDO1 inhibitors.
Collapse
Affiliation(s)
- Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand, Private Bag 92019, Victoria Street West, Auckland, New Zealand
| | - Brian D Palmer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand, Private Bag 92019, Victoria Street West, Auckland, New Zealand
| | - Jack U Flanagan
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand, Private Bag 92019, Victoria Street West, Auckland, New Zealand
| | - Chuanwen Sun
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand, Private Bag 92019, Victoria Street West, Auckland, New Zealand
| | - Emma L Raven
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand, Private Bag 92019, Victoria Street West, Auckland, New Zealand.
| |
Collapse
|
45
|
Antimicrobial mechanism of theaflavins: They target 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the key enzyme of the MEP terpenoid biosynthetic pathway. Sci Rep 2016; 6:38945. [PMID: 27941853 PMCID: PMC5150241 DOI: 10.1038/srep38945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) is the first committed enzyme in the 2-methyl-D-erythritol 4-phosphate (MEP) terpenoid biosynthetic pathway and is also a validated antimicrobial target. Theaflavins, which are polyphenolic compounds isolated from fermented tea, possess a wide range of pharmacological activities, especially an antibacterial effect, but little has been reported on their modes of antimicrobial action. To uncover the antibacterial mechanism of theaflavins and to seek new DXR inhibitors from natural sources, the DXR inhibitory activity of theaflavins were investigated in this study. The results show that all four theaflavin compounds could specifically suppress the activity of DXR, with theaflavin displaying the lowest effect against DXR (IC50 162.1 μM) and theaflavin-3,3′-digallate exhibiting the highest (IC50 14.9 μM). Moreover, determination of inhibition kinetics of the theaflavins demonstrates that they are non-competitive inhibitors of DXR against 1-deoxy-D-xylulose 5-phosphate (DXP) and un-competitive inhibitors with respect to NADPH. The possible interactions between DXR and the theaflavins were simulated via docking experiments.
Collapse
|
46
|
Integrated Computational Approach for Virtual Hit Identification against Ebola Viral Proteins VP35 and VP40. Int J Mol Sci 2016; 17:ijms17111748. [PMID: 27792169 PMCID: PMC5133775 DOI: 10.3390/ijms17111748] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/18/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022] Open
Abstract
The Ebola virus (EBOV) has been recognised for nearly 40 years, with the most recent EBOV outbreak being in West Africa, where it created a humanitarian crisis. Mortalities reported up to 30 March 2016 totalled 11,307. However, up until now, EBOV drugs have been far from achieving regulatory (FDA) approval. It is therefore essential to identify parent compounds that have the potential to be developed into effective drugs. Studies on Ebola viral proteins have shown that some can elicit an immunological response in mice, and these are now considered essential components of a vaccine designed to protect against Ebola haemorrhagic fever. The current study focuses on chemoinformatic approaches to identify virtual hits against Ebola viral proteins (VP35 and VP40), including protein binding site prediction, drug-likeness, pharmacokinetic and pharmacodynamic properties, metabolic site prediction, and molecular docking. Retrospective validation was performed using a database of non-active compounds, and early enrichment of EBOV actives at different false positive rates was calculated. Homology modelling and subsequent superimposition of binding site residues on other strains of EBOV were carried out to check residual conformations, and hence to confirm the efficacy of potential compounds. As a mechanism for artefactual inhibition of proteins through non-specific compounds, virtual hits were assessed for their aggregator potential compared with previously reported aggregators. These systematic studies have indicated that a few compounds may be effective inhibitors of EBOV replication and therefore might have the potential to be developed as anti-EBOV drugs after subsequent testing and validation in experiments in vivo.
Collapse
|
47
|
Malik EM, Müller CE. Anthraquinones As Pharmacological Tools and Drugs. Med Res Rev 2016; 36:705-48. [PMID: 27111664 DOI: 10.1002/med.21391] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/09/2016] [Accepted: 02/27/2016] [Indexed: 12/11/2022]
Abstract
Anthraquinones (9,10-dioxoanthracenes) constitute an important class of natural and synthetic compounds with a wide range of applications. Besides their utilization as colorants, anthraquinone derivatives have been used since centuries for medical applications, for example, as laxatives and antimicrobial and antiinflammatory agents. Current therapeutic indications include constipation, arthritis, multiple sclerosis, and cancer. Moreover, biologically active anthraquinones derived from Reactive Blue 2 have been utilized as valuable tool compounds for biochemical and pharmacological studies. They may serve as lead structures for the development of future drugs. However, the presence of the quinone moiety in the structure of anthraquinones raises safety concerns, and anthraquinone laxatives have therefore been under critical reassessment. This review article provides an overview of the chemistry, biology, and toxicology of anthraquinones focusing on their application as drugs.
Collapse
Affiliation(s)
- Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| |
Collapse
|
48
|
Abstract
It is now plausible to dock libraries of 10 million molecules against targets over several days or weeks. When the molecules screened are commercially available, they may be rapidly tested to find new leads. Although docking retains important liabilities (it cannot calculate affinities accurately nor even reliably rank order high-scoring molecules), it can often can distinguish likely from unlikely ligands, often with hit rates above 10%. Here we summarize the improvements in libraries, target quality, and methods that have supported these advances, and the open access resources that make docking accessible. Recent docking screens for new ligands are sketched, as are the binding, crystallographic, and in vivo assays that support them. Like any technique, controls are crucial, and key experimental ones are reviewed. With such controls, docking campaigns can find ligands with new chemotypes, often revealing the new biology that may be docking's greatest impact over the next few years.
Collapse
Affiliation(s)
- John J Irwin
- Department of Pharmaceutical Chemistry and QB3 Institute, University of California-San Francisco , San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry and QB3 Institute, University of California-San Francisco , San Francisco, California 94158, United States
| |
Collapse
|
49
|
Clark AM, Dole K, Ekins S. Open Source Bayesian Models. 3. Composite Models for Prediction of Binned Responses. J Chem Inf Model 2016; 56:275-85. [PMID: 26750305 PMCID: PMC4764945 DOI: 10.1021/acs.jcim.5b00555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Bayesian models constructed from
structure-derived fingerprints
have been a popular and useful method for drug discovery research
when applied to bioactivity measurements that can be effectively classified
as active or inactive. The results can be used to rank candidate structures
according to their probability of activity, and this ranking benefits
from the high degree of interpretability when structure-based fingerprints
are used, making the results chemically intuitive. Besides selecting
an activity threshold, building a Bayesian model is fast and requires
few or no parameters or user intervention. The method also does not
suffer from such acute overtraining problems as quantitative structure–activity
relationships or quantitative structure–property relationships
(QSAR/QSPR). This makes it an approach highly suitable for automated
workflows that are independent of user expertise or prior knowledge
of the training data. We now describe a new method for creating a
composite group of Bayesian models to extend the method to work with
multiple states, rather than just binary. Incoming activities are
divided into bins, each covering a mutually exclusive range of activities.
For each of these bins, a Bayesian model is created to model whether
or not the compound belongs in the bin. Analyzing putative molecules
using the composite model involves making a prediction for each bin
and examining the relative likelihood for each assignment, for example,
highest value wins. The method has been evaluated on a collection
of hundreds of data sets extracted from ChEMBL v20 and validated data
sets for ADME/Tox and bioactivity.
Collapse
Affiliation(s)
- Alex M Clark
- Molecular Materials Informatics, Inc. , 1900 St. Jacques #302, Montreal H3J 2S1, Quebec, Canada
| | - Krishna Dole
- Collaborative Drug Discovery, Inc. , 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States
| | - Sean Ekins
- Collaborative Drug Discovery, Inc. , 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States.,Collaborations in Chemistry , 5616 Hilltop Needmore Road, Fuquay-Varina, North Carolina 27526, United States
| |
Collapse
|
50
|
Hanson SM, Ekins S, Chodera JD. Modeling error in experimental assays using the bootstrap principle: understanding discrepancies between assays using different dispensing technologies. J Comput Aided Mol Des 2015; 29:1073-86. [PMID: 26678597 DOI: 10.1007/s10822-015-9888-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/07/2015] [Indexed: 11/26/2022]
Abstract
All experimental assay data contains error, but the magnitude, type, and primary origin of this error is often not obvious. Here, we describe a simple set of assay modeling techniques based on the bootstrap principle that allow sources of error and bias to be simulated and propagated into assay results. We demonstrate how deceptively simple operations--such as the creation of a dilution series with a robotic liquid handler--can significantly amplify imprecision and even contribute substantially to bias. To illustrate these techniques, we review an example of how the choice of dispensing technology can impact assay measurements, and show how large contributions to discrepancies between assays can be easily understood and potentially corrected for. These simple modeling techniques--illustrated with an accompanying IPython notebook--can allow modelers to understand the expected error and bias in experimental datasets, and even help experimentalists design assays to more effectively reach accuracy and imprecision goals.
Collapse
Affiliation(s)
- Sonya M Hanson
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, NC, 27526, USA
| | - John D Chodera
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|