1
|
Soman SS, Samad SA, Venugopalan P, Kumawat N, Kumar S. Microfluidic paper analytic device (μPAD) technology for food safety applications. BIOMICROFLUIDICS 2024; 18:031501. [PMID: 38706979 PMCID: PMC11068414 DOI: 10.1063/5.0192295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Foodborne pathogens, food adulterants, allergens, and toxic chemicals in food can cause major health hazards to humans and animals. Stringent quality control measures at all stages of food processing are required to ensure food safety. There is, therefore, a global need for affordable, reliable, and rapid tests that can be conducted at different process steps and processing sites, spanning the range from the sourcing of food to the end-product acquired by the consumer. Current laboratory-based food quality control tests are well established, but many are not suitable for rapid on-site investigations and are costly. Microfluidic paper analytical devices (μPADs) are a fast-growing field in medical diagnostics that can fill these gaps. In this review, we describe the latest developments in the applications of microfluidic paper analytic device (μPAD) technology in the food safety sector. State-of-the-art μPAD designs and fabrication methods, microfluidic assay principles, and various types of μPAD devices with food-specific applications are discussed. We have identified the prominent research and development trends and future directions for maximizing the value of microfluidic technology in the food sector and have highlighted key areas for improvement. We conclude that the μPAD technology is promising in food safety applications by using novel materials and improved methods to enhance the sensitivity and specificity of the assays, with low cost.
Collapse
Affiliation(s)
- Soja Saghar Soman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | - Shafeek Abdul Samad
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | | | - Nityanand Kumawat
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | | |
Collapse
|
2
|
Roller RM, Rea A, Lieberman M. The air-gap PAD: a roll-to-roll-compatible fabrication method for paper microfluidics. LAB ON A CHIP 2023; 23:1918-1925. [PMID: 36883463 DOI: 10.1039/d2lc01164f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Paper-based analytical devices (PADs) offer a low-cost, user-friendly platform for rapid point-of-use testing. Without scalable fabrication methods, however, few PADs make it out of the academic laboratory and into the hands of end users. Previously, wax printing was considered an ideal PAD fabrication method, but given that wax printers are no longer commercially available, alternatives are needed. Here, we present one such alternative: the air-gap PAD. Air-gap PADs consist of hydrophilic paper test zones, separated by "air gaps" and affixed to a hydrophobic backing with double-sided adhesive. The primary appeal of this design is its compatibility with roll-to-roll equipment for large-scale manufacturing. In this study, we examine design considerations for air-gap PADs, compare the performance of wax-printed and air-gap PADs, and report on a pilot-scale roll-to-roll production run of air-gap PADs in partnership with a commercial test-strip manufacturer. Air-gap devices performed comparably to their wax-printed counterparts in Washburn flow experiments, a paper-based titration, and a 12-lane pharmaceutical screening device. Using roll-to-roll manufacturing, we produced 2700 feet of air-gap PADs for as little as $0.03 per PAD.
Collapse
Affiliation(s)
- Rachel M Roller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Angela Rea
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Marya Lieberman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
3
|
Dahake RV, Bansiwal A. Disposable Sensors for Heavy Metals Detection: A Review of Carbon and Non‐Noble Metal‐Based Receptors. ChemistrySelect 2022. [DOI: 10.1002/slct.202202824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rashmi V. Dahake
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh
| | - Amit Bansiwal
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
| |
Collapse
|
4
|
Chen L, Jiang H, Zheng M, Li Z, Li N, Zhao S, Liu X. Fly-antennae-inspired biomass-based fluorescent platform for NH 3 quantitative detection and visual real-time monitoring of seafood spoilage. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128868. [PMID: 35413518 DOI: 10.1016/j.jhazmat.2022.128868] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Traditional strategies for quantitative detection of NH3 and monitoring of seafood spoilage still have some pervasive issues of cumbersome operation, time-consuming, high-cost, and inefficient real-time monitoring, and visualization. Integration of biomass-based materials and aggregation-induced emission (AIE) fluorescence probes exhibit conceivable potential in seafood detection and environmental monitoring. Herein, a fly-antennae-inspired biomass-based solid-state fluorescent platform (PAA-FP) with effective, easy-to-use, reusable, low-cost and highly sensitive characteristics is nanoengineered for NH3 quantitative detection (detection limit = 0.5 ppm) and visual real-time monitoring of seafood spoilage using smartphones. The PAA-FP possesses an anticipative "fly-antennae-like" microstructure and offers selective recognition of NH3 by naked eyes in daylight with excellent solid-state fluorescence properties. Moreover, PAA-FP is simply reused at least 5 times after AcOH fumigation. Comprehensive application experiments substantiate that PAA-FP successfully achieves quantitative detection of NH3 and realizes the visual real-time daylight monitoring of food spoilage using a simple color recognizing smartphone software. The present study demonstrates an effective fabrication strategy to explore various multifunctional biomass-based materials for sensing hazardous and noxious substances.
Collapse
Affiliation(s)
- Lijuan Chen
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Huie Jiang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Manhui Zheng
- Institute of Biomass & Functional Maerials, Shaanxi University of Science &Technology, Xi'an 710021, PR China
| | - Zhijian Li
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Nihao Li
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Suqiu Zhao
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xinhua Liu
- Institute of Biomass & Functional Maerials, Shaanxi University of Science &Technology, Xi'an 710021, PR China.
| |
Collapse
|
5
|
Zhang H, Xia C, Feng G, Fang J. Hospitals and Laboratories on Paper-Based Sensors: A Mini Review. SENSORS 2021; 21:s21185998. [PMID: 34577205 PMCID: PMC8472957 DOI: 10.3390/s21185998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
With characters of low cost, portability, easy disposal, and high accuracy, as well as bulky reduced laboratory equipment, paper-based sensors are getting increasing attention for reliable indoor/outdoor onsite detection with nonexpert operation. They have become powerful analysis tools in trace detection with ultra-low detection limits and extremely high accuracy, resulting in their great popularity in medical detection, environmental inspection, and other applications. Herein, we summarize and generalize the recently reported paper-based sensors based on their application for mechanics, biomolecules, food safety, and environmental inspection. Based on the biological, physical, and chemical analytes-sensitive electrical or optical signals, extensive detections of a large number of factors such as humidity, pressure, nucleic acid, protein, sugar, biomarkers, metal ions, and organic/inorganic chemical substances have been reported via paper-based sensors. Challenges faced by the current paper-based sensors from the fundamental problems and practical applications are subsequently analyzed; thus, the future directions of paper-based sensors are specified for their rapid handheld testing.
Collapse
|
6
|
Recent Advances in Porphyrin-Based Materials for Metal Ions Detection. Int J Mol Sci 2020; 21:ijms21165839. [PMID: 32823943 PMCID: PMC7461582 DOI: 10.3390/ijms21165839] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Porphyrins have planar and conjugated structures, good optical properties, and other special functional properties. Owing to these excellent properties, in recent years, porphyrins and their analogues have emerged as a multifunctional platform for chemical sensors. The rich chemistry of these molecules offers many possibilities for metal ions detection. This review mainly discusses two types of molecular porphyrin and porphyrin composite sensors for metal ions detection, because porphyrins can be functionalized to improve their functional properties, which can introduce more chemical and functional sites. According to the different application materials, the section of porphyrin composite sensors is divided into five sub-categories: (1) porphyrin film, (2) porphyrin metal complex, (3) metal–organic frameworks, (4) graphene materials, and (5) other materials, respectively.
Collapse
|
7
|
|
8
|
Bliese S, O’Donnell D, Weaver AA, Lieberman M. Paper Millifluidics Lab: Using a Library of Color Tests to Find Adulterated Antibiotics. JOURNAL OF CHEMICAL EDUCATION 2020; 97:786-792. [PMID: 32174646 PMCID: PMC7066646 DOI: 10.1021/acs.jchemed.9b00433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/23/2020] [Indexed: 06/10/2023]
Abstract
A two to three period analytical chemistry experiment has been developed which allows second year students to explore chemical color tests used to detect adulterated pharmaceuticals. Students prepare several paper analytical devices (PADs) to generate positive and negative controls antibiotics, along with cutting agents such as starch and chalk. These PADs are used to identify the active ingredients and excipients in mystery tablets prepared by their classmates. In the second part of the lab, the students select an individual color test and design an experiment to quantify their mystery pill's active pharmaceutical ingredient (API). Nearly all of the student groups were able to successfully identify adulterants present in their mystery tablets. The quantification of the mystery tablets was also successful with all but one group calculating the correct concentration within 6%. In a postlab assessment, the students identified their largest gains in their ability to analyze data and other information, skill in science writing, and learning of laboratory techniques.
Collapse
Affiliation(s)
- Sarah
L. Bliese
- Chemistry
and Biochemistry Department, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Deanna O’Donnell
- Chemistry
Department, Hamline University, St. Paul, Minnesota 55104, United States
| | - Abigail A. Weaver
- Civil
& Environmental Engineering & Earth Sciences Department, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Marya Lieberman
- Chemistry
and Biochemistry Department, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Fu LM, Wang YN. Detection methods and applications of microfluidic paper-based analytical devices. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.018] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Prabphal J, Vilaivan T, Praneenararat T. Fabrication of a Paper‐Based Turn‐Off Fluorescence Sensor for Cu
2+
Ion from a Pyridinium Porphyrin. ChemistrySelect 2018. [DOI: 10.1002/slct.201702382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jutamat Prabphal
- The Chemical Approaches for Food Applications Research GroupFaculty of ScienceChulalongkorn University Phayathai Rd., Pathumwan Bangkok 10330 Thailand
- Department of ChemistryFaculty of ScienceChulalongkorn University Phayathai Rd., Pathumwan Bangkok 10330 Thailand
| | - Tirayut Vilaivan
- Department of ChemistryFaculty of ScienceChulalongkorn University Phayathai Rd., Pathumwan Bangkok 10330 Thailand
| | - Thanit Praneenararat
- The Chemical Approaches for Food Applications Research GroupFaculty of ScienceChulalongkorn University Phayathai Rd., Pathumwan Bangkok 10330 Thailand
- Department of ChemistryFaculty of ScienceChulalongkorn University Phayathai Rd., Pathumwan Bangkok 10330 Thailand
| |
Collapse
|