1
|
Schmutz C, Plaza C, Steiger F, Stoirer N, Gufler J, Pahlke G, Will F, Berger W, Marko D. Anthocyanin-Rich Berry Extracts Affect SN-38-Induced Response: A Comparison of Non-Tumorigenic HCEC-1CT and HCT116 Colon Carcinoma Cells. Antioxidants (Basel) 2024; 13:846. [PMID: 39061915 PMCID: PMC11273996 DOI: 10.3390/antiox13070846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Chemotherapy with irinotecan (CPT-11), the pro-drug of the highly cytotoxic SN-38, is among the standard-of-care treatments for colorectal cancer. To counteract undesired toxic side effects on healthy tissue such as the intestinal epithelium, the use of preparations rich in polyphenols with anti-oxidative and anti-inflammatory properties such as anthocyanins has been proposed. In the present study, the question of whether non-tumorigenic human epithelium cells (HCEC-1CT) can be protected against the cytotoxic impact of SN-38 by anthocyanin-rich polyphenol extracts without compromising the desired therapeutic effect against tumor cells (HCT-116) was addressed. Hence, single and combinatory effects of anthocyanin-rich polyphenol extracts of elderberry (EB), bilberry (Bil), blackberry (BB) and black currant (BC) with the chemotherapeutic drug SN-38 were investigated. Out of the extracts, BB showed the most potent concentration-dependent cytotoxicity alone and in combination with SN-38, with even stronger effects in non-tumorigenic HCEC-1CT cells. In cytotoxic concentrations, BB decreased the level of DNA/topoisomerase I covalent complexes in HCEC-1CT cells below base level but without concomitant reduction in SN-38-induced DNA strand breaks. The herein reported data argue towards an interference of anthocyanins with successful treatment of cancer cells and a lack of protective properties in healthy cells.
Collapse
Affiliation(s)
- Cornelia Schmutz
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstraße 38-40, 1090 Vienna, Austria; (C.S.); (G.P.)
- Doctoral School in Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
| | - Crepelle Plaza
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstraße 38-40, 1090 Vienna, Austria; (C.S.); (G.P.)
| | - Franziska Steiger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstraße 38-40, 1090 Vienna, Austria; (C.S.); (G.P.)
| | - Natascha Stoirer
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstraße 38-40, 1090 Vienna, Austria; (C.S.); (G.P.)
| | - Judith Gufler
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstraße 38-40, 1090 Vienna, Austria; (C.S.); (G.P.)
- Doctoral School in Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
| | - Gudrun Pahlke
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstraße 38-40, 1090 Vienna, Austria; (C.S.); (G.P.)
| | - Frank Will
- Department of Beverage Research, Hochschule Geisenheim University, P.O. Box 1154, 65366 Geisenheim, Germany;
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria;
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstraße 38-40, 1090 Vienna, Austria; (C.S.); (G.P.)
| |
Collapse
|
2
|
Speciale A, Molonia MS, Muscarà C, Cristani M, Salamone FL, Saija A, Cimino F. An overview on the cellular mechanisms of anthocyanins in maintaining intestinal integrity and function. Fitoterapia 2024; 175:105953. [PMID: 38588905 DOI: 10.1016/j.fitote.2024.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Structural and functional changes of the intestinal barrier, as a consequence of a number of (epi)genetic and environmental causes, have a main role in penetrations of pathogens and toxic agents, and lead to the development of inflammation-related pathological conditions, not only at the level of the GI tract but also in other extra-digestive tissues and organs. Anthocyanins (ACNs), a subclass of polyphenols belonging to the flavonoid group, are well known for their health-promoting properties and are widely distributed in the human diet. There is large evidence about the correlation between the human intake of ACN-rich products and a reduction of intestinal inflammation and dysfunction. Our review describes the more recent advances in the knowledge of cellular and molecular mechanisms through which ACNs can modulate the main mechanisms involved in intestinal dysfunction and inflammation, in particular the inhibition of the NF-κB, JNK, MAPK, STAT3, and TLR4 proinflammatory pathways, the upregulation of the Nrf2 transcription factor and the expression of tight junction proteins and mucins.
Collapse
Affiliation(s)
- Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy; "Prof. Antonio Imbesi" Foundation, University of Messina, Messina 98100, Italy.
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| |
Collapse
|
3
|
Saxena A, Prabhudesai KS, Damle A, Ramakrishnan S, Durairaj P, Kalankariyan S, Vijayalakshmi AB, Venkatesh KV. A systems biology-based mathematical model demonstrates the potential anti-stress effectiveness of a multi-nutrient botanical formulation. Sci Rep 2024; 14:9582. [PMID: 38671040 PMCID: PMC11053000 DOI: 10.1038/s41598-024-60112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Stress is an adaptive response to the stressors that adversely affects physiological and psychological health. Stress elicits HPA axis activation, resulting in cortisol release, ultimately contributing to oxidative, inflammatory, physiological and mental stress. Nutritional supplementations with antioxidant, anti-inflammatory, and stress-relieving properties are among widely preferred complementary approaches for the stress management. However, there is limited research on the potential combined impact of vitamins, minerals and natural ingredients on stress. In the present study, we have investigated the effect of a multi-nutrient botanical formulation, Nutrilite® Daily Plus, on clinical stress parameters. The stress-modulatory effects were quantified at population level using a customized sub-clinical inflammation mathematical model. The model suggested that combined intervention of botanical and micronutrients lead to significant decline in physical stress (75% decline), mental stress (70% decline), oxidative stress (55% decline) and inflammatory stress (75% decline) as evident from reduction in key stress parameters such as ROS, TNF-α, blood pressure, cortisol levels and PSS scores at both individual and population levels. Further, at the population level, the intervention relieved stress in 85% of individuals who moved towards a healthy state. The in silico studies strongly predicts the use of Gotukola based Nutrilite® Daily Plus as promising anti-stress formulation.
Collapse
Affiliation(s)
- Abha Saxena
- MetFlux Research Private Limited, Bengaluru, India
| | | | - Aparna Damle
- Amway Global Services India Pvt. Ltd., Gurugram, India
| | | | | | | | | | - K V Venkatesh
- MetFlux Research Private Limited, Bengaluru, India.
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
4
|
Ejaz A, Waliat S, Afzaal M, Saeed F, Ahmad A, Din A, Ateeq H, Asghar A, Shah YA, Rafi A, Khan MR. Biological activities, therapeutic potential, and pharmacological aspects of blackcurrants ( Ribes nigrum L): A comprehensive review. Food Sci Nutr 2023; 11:5799-5817. [PMID: 37823094 PMCID: PMC10563683 DOI: 10.1002/fsn3.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 10/13/2023] Open
Abstract
Blackcurrant possesses various health-endorsing attributes owing to its polyphenol profile. Recent studies have demonstrated its therapeutic potential against various health disorders. Various bioactives present in blackcurrants have different functional and pharmacological aspects including anti-inflammatory, antioxidant, and antimicrobial properties. The most dominant and important bioactive include anthocyanins, flavonols, phenolic acids, and polyunsaturated fatty acids. Food formats derived from blackcurrants comprise pomace, juice, powder, and extracts. All these food formats have industrial, prebiotic, and pharmacological benefits. In the current article, the nutritional composition, industrial applications, and therapeutic potential are discussed in the recent literature. Moreover, novel extraction techniques for the extraction of bioactive compounds present in blackcurrants and their safety concerns have been elaborated.
Collapse
Affiliation(s)
- Afaf Ejaz
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Sadaf Waliat
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmad
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Ahmad Din
- National Institute of Food Science & TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Asma Asghar
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Yasir Abbas Shah
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Ahmad Rafi
- National Institute of Food Science & TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
5
|
Wei J, Zhao J, Su T, Li S, Sheng W, Feng L, Bi Y. Flavonoid Extract from Seed Residues of Hippophae rhamnoides ssp. sinensis Protects against Alcohol-Induced Intestinal Barrier Dysfunction by Regulating the Nrf2 Pathway. Antioxidants (Basel) 2023; 12:antiox12030562. [PMID: 36978810 PMCID: PMC10044812 DOI: 10.3390/antiox12030562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Alcohol has been demonstrated to disrupt intestinal barrier integrity. Some flavonoid compounds that exert antioxidant activity have a protective effect on intestinal barrier function. As an important medicinal and edible plant, sea buckthorn (Hippophae) seeds are rich in flavonoids, but their protective effect on the intestinal barrier has not been reported. In our research, 76 kinds of flavonoids were identified in Hippophae rhamnoides ssp. sinensis seed residue flavonoids (HRSF) by ultra-performance liquid chromatography-tandem mass spectrometry. Kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, kaempferol-3-O-robinoside-7-O-rhamnoside, isorhamnetin-3-O-2G-rhamnosylrutinoside, quercetin-3-O-rutinoside, (-)-epigallocatechin, and B type of procyanidin were the most abundant substances, accounting for 15.276%, 15.128%, 18.328%, 10.904%, 4.596%, 5.082%, and 10.079% of all identified flavonoids, respectively. Meanwhile, pre-treatment with HRSF was able to prevent alcohol-induced disruption of intestinal barrier integrity through elevating the transepithelial monolayer resistance value, inhibiting the flux of fluorescein isothiocyanate-dextran, and upregulating the mRNA and protein level of TJs (occludin and ZO-1). Furthermore, it was also able to reverse alcohol-induced oxidative stress through suppressing the accumulation of reactive oxygen species and malondialdehyde, improving the glutathione level and superoxide dismutase activity. Finally, the results showed that HRSF pre-treatment effectively elevated the erythroid-related factor 2 mRNA and protein level compared with the alcohol-alone treatment group. Our research was the first to demonstrate that HRSF could prevent alcohol-induced intestinal barrier dysfunction through regulating the Nrf2-mediated pathway in order to attenuate oxidative stress and enhance TJ expression.
Collapse
Affiliation(s)
- Juan Wei
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinmei Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingting Su
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Sha Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenjun Sheng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Lidan Feng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Carullo G, Spizzirri UG, Montopoli M, Cocetta V, Armentano B, Tinazzi M, Sciubba F, Giorgi G, Enrica Di Cocco M, Bohn T, Aiello F, Restuccia D. Milk kefir enriched with inulin‐grafted seed extract from white wine pomace: chemical characterisation, antioxidant profile and
in vitro
gastrointestinal digestion. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018‐2022 University of Siena Via Aldo Moro 2 53100 Siena Italy
| | - Umile Gianfranco Spizzirri
- Department of Pharmacy, Health and Nutritional Sciences, DoE 2018‐2022 University of Calabria Edificio Polifunzionale 87036 Rende Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences University of Padova Largo Meneghetti 2 35131 Padova Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences University of Padova Largo Meneghetti 2 35131 Padova Italy
| | - Biagio Armentano
- Società Agricola Campotenese Contrada Campotenese 64 87016 Morano Calabro Italy
| | - Mattia Tinazzi
- Department of Pharmaceutical and Pharmacological Sciences University of Padova Largo Meneghetti 2 35131 Padova Italy
| | - Fabio Sciubba
- Department of Environmental Biology University of Rome “La Sapienza” Piazzale Aldo Moro 5 00185 Rome Italy
- NMR‐Based Metabolomics Laboratory Sapienza University of Rome Piazzale Aldo Moro 5 00185 Rome Italy
| | - Gianluca Giorgi
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018‐2022 University of Siena Via Aldo Moro 2 53100 Siena Italy
| | - Maria Enrica Di Cocco
- NMR‐Based Metabolomics Laboratory Sapienza University of Rome Piazzale Aldo Moro 5 00185 Rome Italy
- Department of Chemistry University of Rome “La Sapienza” Piazzale Aldo Moro 5 00185 Rome Italy
| | - Torsten Bohn
- Nutrition and Health Research Group Department of Population Health Luxembourg Institute of Health 1A‐B, rue Thomas Edison L‐1445 Strassen Luxembourg
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, DoE 2018‐2022 University of Calabria Edificio Polifunzionale 87036 Rende Italy
| | - Donatella Restuccia
- Department of Pharmacy, Health and Nutritional Sciences, DoE 2018‐2022 University of Calabria Edificio Polifunzionale 87036 Rende Italy
| |
Collapse
|
7
|
Guo F, Tsao R, Li C, Wang X, Zhang H, Jiang L, Sun Y, Xiong H. Polyphenol Content of Green Pea ( Pisum sativum L.) Hull under In Vitro Digestion and Effects of Digestive Products on Anti-Inflammatory Activity and Intestinal Barrier in the Caco-2/Raw264.7 Coculture Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3477-3488. [PMID: 35262351 DOI: 10.1021/acs.jafc.2c00102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Green pea hulls are a byproduct of the processing of green pea and are rich in phenolic substances. In the present study, in vitro digestion, human colonic adenocarcinoma cell line (Caco-2) monolayer, and the Caco-2/macrophage cell lines of the murine origin (Raw264.7) coculture model were established to investigate the release of polyphenols, absorption, and transport of digestive products and their effects on inflammation and intestinal barrier. During the digestive process, polyphenols were constantly released from the pea hulls, reaching the maximum amount in the small intestine (total phenolic content (TPC): 5.41 ± 0.04 mg gallic acid (GAE)/g dry weight (DW)), and the digestive products (800 μg/mL) could reduce the secretion of NO (50.9%), IL-6 (50.6%), and TNF-α (24.6%) and inhibit the mRNA expression of cyclooxygenase-2 (COX-2) (37.2%) and inducible nitric oxide synthase (iNOS) (91.1%) compared with the lipopolysaccharide (LPS) group. A total of 12 phenolic components were quantified by ultraperformance liquid chromatography-linear ion trap orbitrap tandem mass spectrometry (UHPLC-LTQ-OrbiTrap-MS) technology. Kaempferol trihexoside in digestive products could be absorbed and transported (1.25 ± 0.13 ng quercetin/mL). The digestive products could promote the expression of claudin-1 (210.8%), occludin (64.9%), and zonulin occludin-1 (ZO-1) (52.0%) compared with the LPS group and exert anti-inflammatory effects after being absorbed. The results indicated that pea hull polyphenols could be continuously released and absorbed to play a positive role in protecting the intestinal barrier and anti-inflammatory activity.
Collapse
Affiliation(s)
- Fanghua Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Chuyao Li
- Nanchang Inspection and Testing Center, Nanchang 330029, Jiangxi, China
| | - Xiaoya Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hua Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
8
|
Zongo AWS, Zogona D, Youssef M, Ye S, Zhan F, Li J, Li B. Senegalia macrostachya seed polysaccharides attenuate inflammation-induced intestinal epithelial barrier dysfunction in a Caco-2 and RAW264.7 macrophage co-culture model by inhibiting the NF-κB/MLCK pathway. Food Funct 2022; 13:11676-11689. [DOI: 10.1039/d2fo02377f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Senegalia macrostachya seed polysaccharides improved the Caco-2 cell monolayer integrity from the inflammatory insult. SMSP2 treatment lowered the inflammatory cytokine release, increased TJ proteins, and downregulated the NF-κB/MLCK pathway.
Collapse
Affiliation(s)
- Abel Wend-Soo Zongo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
- Center for Research in Biological Sciences, Food and Nutrition, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021 Ouagadougou 03, Burkina Faso
| | - Daniel Zogona
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
- Center for Research in Biological Sciences, Food and Nutrition, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021 Ouagadougou 03, Burkina Faso
| | - Mahmoud Youssef
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Shuxin Ye
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| |
Collapse
|
9
|
Xu X, Zhao W, Ye Y, Cui W, Dong L, Yao Y, Li K, Han J, Liu W. Novel Nanoliposome Codelivered DHA and Anthocyanidin: Characterization, In Vitro Infant Digestibility, and Improved Cell Uptake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9395-9406. [PMID: 34344151 DOI: 10.1021/acs.jafc.1c02817] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There are still many challenges in understanding the absorption and transport mechanism of liposomes in the gastrointestinal tract of infants, especially for liposome-coentrapped two or more substances. In this study, novel docosahexaenoic acid (DHA)-anthocyanidin-codelivery liposomes (DA-LPs) were fabricated and characterized, and their digestive and absorptive behaviors were evaluated using the in vitro infant digestive method combined with the Caco-2 cell model. The liposomal bilayer structure remained intact with the particles aggregated in simulated infant gastric fluid, while their phospholipid membrane underwent enzymatic lipolysis under simulated intestinal conditions. Compared to single substance-loaded liposomes (DHA- or anthocyanidin-loaded liposomes), the digested DA-LPs showed better cell viability, higher cellular uptake and membrane fluidity, and lower reactive oxygen species (ROS). It can be concluded that DA-LPs are promising carriers for simultaneously transporting hydrophobic and hydrophilic molecules and may be beneficial for improving nutrient absorption and alleviating intestinal stress oxidation.
Collapse
Affiliation(s)
- Xiankang Xu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weixue Zhao
- Meitek Company Limited, Qingdao 266400, China
| | - Yiru Ye
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weining Cui
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lu Dong
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yixin Yao
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kexuan Li
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weilin Liu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
10
|
Sun Q, Wang N, Xu W, Zhou H. Genus Ribes Linn. (Grossulariaceae): A comprehensive review of traditional uses, phytochemistry, pharmacology and clinical applications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114166. [PMID: 33940086 DOI: 10.1016/j.jep.2021.114166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Ribes Linn., which belongs to the Grossulariaceae family, contains 160 species distributed mainly in temperate and cold regions of the Northern Hemisphere. There are 59 species in southwest, northwest and northeast China. Some species of Ribes have been used as traditional and local medicines for the treatment of glaucoma, cardiovascular disease, stomachache, hepatitis, hyperlipidemia, hypertension and other ailments. However, the data provided in recent years have not been collated and compared. AIM OF THE STUDY This review aims to summarize the current status of ethnopharmacological uses, phytochemistry, pharmacology, clinical applications, and pharmacokinetics of the genus Ribes to better understand the therapeutic potential of the genus Ribes in the future and hope to provide a relatively novel perspective for further clinical application on the genus. MATERIALS AND METHODS The literature on Ribes was collected through a series of scientific search engines including Elsevier, ACS, Springer, Web of Science, PubMed, Google Scholar, Baidu Scholar, Wiley, China National Knowledge Infrastructure (CNKI) and books. RESULTS Ribes species have been used for detoxification, glaucoma, cardiovascular disease, stomachache, hepatitis, hyperlipidemia, hypertension and other ailments. These plants mainly contain phenolic glycosides, flavonoids, proanthocyanidins, polysaccharides, etc. Most traditional uses are related to biological activity and have been confirmed by modern research. Pharmacological studies in vitro and in vivo revealed that the extracts and pure compounds possessed significant hypolipidemic, antioxidant, anti-inflammatory, antitumor, antibacterial, and antiviral activity, eyesight protection and other effects. CONCLUSIONS The traditional uses, phytochemistry, pharmacology, pharmacokinetics, and clinical applications described in this article explained that the Ribes species has numerous activities, and these findings will promote further action in the area of mechanism research. However, very few preclinical and clinical studies have focused on the toxicology and pharmacokinetics of crude extracts and pure compounds from the genus Ribes. Moreover, several clinical evidence to support the health benefits of Ribes plants. The development of new medicines based on Ribes species as ingredients may be restricted. The pharmacological activity, clinical efficacy and safety of Ribes species need to be verified by systematic and comprehensive preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Qing Sun
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhua Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
| | - Huakun Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Xining, Qinghai, 810008, China
| |
Collapse
|
11
|
Tarko T, Duda-Chodak A, Soszka A. Changes in Phenolic Compounds and Antioxidant Activity of Fruit Musts and Fruit Wines during Simulated Digestion. Molecules 2020; 25:molecules25235574. [PMID: 33260996 PMCID: PMC7730555 DOI: 10.3390/molecules25235574] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
The content of polyphenols (total phenolic content (TPC)) and the antioxidant activity (AOX) of food products depend on the raw materials used and the technological processes in operation, but transformations of these compounds in the digestive tract are very important. The aim of this study was to determine the TPC, profile of polyphenols, and AOX of apple and blackcurrant musts and wines in order to evaluate the changes occurring in a simulated human digestive system. The research material consisted of apples and blackcurrant, from which musts and fruit wines were obtained. All samples were subjected to three-stage digestion in a simulated human digestive system and then analyzed for the following: TPC (Folin–Ciocalteu method) and profile (HPLC), AOX (method with 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic) acid (ABTS) radical), and for the wines also total extract, volatile acidity (International Organization of Vine and Wine (OIV) method), and sugar profile (HPLC). The antioxidant activity of fruit wines is directly related to the total polyphenol content. Phenolic compounds were transformed during all digestive stages, which led to the formation of compounds with higher antioxidant capacity. The largest increase in polyphenols was observed after the digestive stage in the small intestine. Transformations of phenolic compounds at each digestive stage resulted in the formation of derivatives with higher antioxidant potential.
Collapse
|
12
|
Structural elucidation, anti-inflammatory activity and intestinal barrier protection of longan pulp polysaccharide LPIIa. Carbohydr Polym 2020; 246:116532. [DOI: 10.1016/j.carbpol.2020.116532] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
|
13
|
Yao Y, Xu F, Ju X, Li Z, Wang L. Lipid-Lowering Effects and Intestinal Transport of Polyphenol Extract from Digested Buckwheat in Caco-2/HepG2 Coculture Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4205-4214. [PMID: 32141744 DOI: 10.1021/acs.jafc.0c00321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyphenol extracts derived from gastrointestinal digestates of buckwheat (Fagopyrum Mill) were studied for their intestinal transport and lipid-lowering effects in Caco-2/HepG2 coculture models. The relative amounts of all phenolic compounds throughout the digestion and intestinal absorption process were determined by UHPLC-Q-Orbitrap mass spectrometry. The digestible and easily transported phenolic compounds in buckwheat extract were identified. Herein, four main phenolic compounds and their metabolites were found on both the apical and basolateral sides of the Caco-2 cell transwell model. The transepithelial transport rates in the Caco-2 cell monolayer were scoparone (0.97) > hydroxycinnamic acid (0.40) > rutin (0.23) > quercetin (0.20). The main metabolism of hydroxycinnamic acid, quercetin, and scoparone in transepithelial transport was found to be methylation. Furthermore, results indicated that triglyceride, low-density lipoprotein cholesterol, total cholesterol, aspartate aminotransferase, and alanine aminotransferase levels in HepG2 cells on the basolateral side of coculture models can be suppressed by 53.64, 23.44, 36.49, 27.98, and 77.42% compared to the oleic acid-induced group (p < 0.05). In addition, the mRNA expression of Fabp4 relative to the control was found to be significantly upregulated (85.82 ± 10.64 to 355.18 ± 65.83%) by the easily transported buckwheat polyphenol components in HepG2 cells (p < 0.01).
Collapse
Affiliation(s)
- Yijun Yao
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Feiran Xu
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Xingrong Ju
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Zhifang Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
14
|
Xu YW, Xing RX, Zhang WH, Li L, Wu Y, Hu J, Wang C, Luo QL, Shen JL, Chen X. Toxoplasma ROP16 I/III ameliorated inflammatory bowel diseases via inducing M2 phenotype of macrophages. World J Gastroenterol 2019; 25:6634-6652. [PMID: 31832003 PMCID: PMC6906210 DOI: 10.3748/wjg.v25.i45.6634] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by chronic and non-specific inflammation of the intestinal mucosa and mainly includes ulcerative colitis and Crohn's disease.
AIM To explore the beneficial effect of ToxoROP16I/III-induced M2 phynotype macrophages in homeostasis of IBDs through downregulation of M1 inflammatory cells.
METHODS RAW264.7 macrophages stimulated by lipopolysaccharide (LPS) (M1 cells) were co-cultured with Caco-2 cells as an inflammatory model of IBD in vitro. The expression of ToxoROP16I/III was observed in RAW264.7 macrophages that were transfected with pEGFP-rop16I/III. The phenotypes of M2 and M1 macrophage cells were assessed by quantitative real-time reverse transcriptase polymerase chain reaction and the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1, IL-10, inducible nitric oxide synthase (iNOS), and arginase-1 (Arg-1) was detected. The expression of iNOS, Arg-1, signal transducer and activator of transcription 3 (Stat3), p-Stat3, Stat6, p-Stat6, programmed death ligand-2 (PD-L2), caspase-3, -8, and -9 was analyzed by Western blotting, and Griess assays were performed to detect nitric oxide (NO). TNF-α, IL-1β, IL-6, TGF-β1, and IL-10 expression in the supernatants was detected by enzyme-linked immunosorbent assay, and Caco-2 cell apoptosis was determined by flow cytometry after mixing M1 cells with M2 cells in a Caco-2 cell co-culture system.
RESULTS M1 cells exhibited significantly increased production of iNOS, NO, TNF-α, IL-1β, and IL-6, while ToxoROP16I/III induced macrophage bias to M2 cells in vitro, showing increased expression of Arg-1, IL-10 and TGF-β1 and elevated production of p-Stat3 and p-Stat6. The mixed M1 and M2 cell culture induced by ToxoROP16I/III exhibited decreased production of NO and iNOS and upregulated expression of Arg-1 and PD-L2. Accordingly, Caco-2 cells became apoptotic, and apoptosis-associated proteins such as caspase-3, -8 and -9 were dampened during co-culture of M1 and M2 cells. Flow cytometry analysis showed that co-culture of M1 cells with Caco-2 cells facilitated the apoptosis of Caco-2 cells, but co-culture of M1 and M2 cells alleviated Caco-2 cell apoptosis.
CONCLUSION ToxoROP16I/III-induced M2 macrophages inhibited apoptosis of Caco-2 cells caused by M1 macrophages. This finding may help gain a better understanding of the underlying mechanism and represent a promising therapeutic strategy for IBDs.
Collapse
Affiliation(s)
- Yong-Wei Xu
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Rui-Xin Xing
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Wen-Hui Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Lu Li
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yi Wu
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Jing Hu
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Cong Wang
- Department of Pathogen Biology, Provincial Laboratory of Pathogen Biology and Zoonoses Anhui, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Qing-Li Luo
- Department of Pathogen Biology, Provincial Laboratory of Pathogen Biology and Zoonoses Anhui, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Ji-Long Shen
- Department of Pathogen Biology, Provincial Laboratory of Pathogen Biology and Zoonoses Anhui, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Xi Chen
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
15
|
Duan S, Zhao M, Wu B, Wang S, Yang Y, Xu Y, Wang L. Preparation, characteristics, and antioxidant activities of carboxymethylated polysaccharides from blackcurrant fruits. Int J Biol Macromol 2019; 155:1114-1122. [PMID: 31715234 DOI: 10.1016/j.ijbiomac.2019.11.078] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/10/2019] [Accepted: 11/07/2019] [Indexed: 01/14/2023]
Abstract
In the present study, the native polysaccharide (RNP) extracted from blackcurrant fruits was carboxymethylated. Physicochemical characteristics and antioxidant activities in vitro of RNP and three carboxymethylated polysaccharides (CRNPs) were determined. GC analysis proved that RNP and CRNPs were composed of the same six monosaccharides (galacturonic acid, rhamnose, arabinose, mannose, glucose and galactose), but the molar ratios of monosaccharides were different. HPLC demonstrated that the molecular weights of CRNPs were improved. The assays of the antioxidant properties indicated that CRNPs possessed stronger scavenging activities on radicals (hydroxyl and superoxide radicals) and better anti-lipid peroxidation activities, as well as better protection effects on erythrocyte hemolyses in vitro compared with RNP. The activities of CRNPs were significantly enhanced with the increase of the degree of substitution (DS). These results proved that the carboxymethylation could effectively increase the antioxidant activities of the polysaccharide.
Collapse
Affiliation(s)
- Suyang Duan
- College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Meimei Zhao
- College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Baoyu Wu
- College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shijie Wang
- College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yu Yang
- College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yaqin Xu
- College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Libo Wang
- College of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
16
|
Bai Y, Huang F, Zhang R, Dong L, Jia X, Liu L, Yi Y, Zhang M. Longan pulp polysaccharides relieve intestinal injury in vivo and in vitro by promoting tight junction expression. Carbohydr Polym 2019; 229:115475. [PMID: 31826430 DOI: 10.1016/j.carbpol.2019.115475] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023]
Abstract
The integrity of the intestinal mucosal barrier is important for the health of the host. In this study, longan pulp polysaccharides (LP) prevented the intestinal mucosal injury by increasing the expression of mucin 2, tight junction proteins zonulae occludens-1 (ZO-1), claudin-1, claudin-4, and adherens junction E-cadherin in cyclophosphamide-treated mice. To further identify the principle bioactive component of LP, four acidic polysaccharides (LPIa, LPIIa, LPIIIa, and LPIVa) were purified, and their intestinal protection activity in vitro was compared. LPIa, LPIIa, and LPIIIa displayed an ability to increase mRNA expression of ZO-1, claudin-1, occludin, and E-cadherin in differentiated Caco-2 cells, especially LPIa. LPIa has specific structure characteristics: porous surface structure, a high molecular weight (1.47 × 105 Da), and two specific glycosidic linkages of α-Araf-(1→ and →5)-α-Araf-(1→. These structure characteristics might primarily contribute to greater intestinal barrier protective effect of LPIa.
Collapse
Affiliation(s)
- Yajuan Bai
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Lei Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
17
|
Burgos-Edwards A, Martín-Pérez L, Jiménez-Aspee F, Theoduloz C, Schmeda-Hirschmann G, Larrosa M. Anti-inflammatory effect of polyphenols from Chilean currants (Ribes magellanicum and R. punctatum) after in vitro gastrointestinal digestion on Caco-2 cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
18
|
Mu K, Yu S, Kitts DD. The Role of Nitric Oxide in Regulating Intestinal Redox Status and Intestinal Epithelial Cell Functionality. Int J Mol Sci 2019; 20:E1755. [PMID: 30970667 PMCID: PMC6479862 DOI: 10.3390/ijms20071755] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Important functions of intestinal epithelial cells (IECs) include enabling nutrient absorption to occur passively and acting as a defense barrier against potential xenobiotic components and pathogens. A compromise to IEC function can result in the translocation of bacteria, toxins, and allergens that lead to the onset of disease. Thus, the maintenance and optimal function of IECs are critically important to ensure health. Endogenous biosynthesis of nitric oxide (NO) regulates IEC functionality both directly, through free radical activity, and indirectly through cell signaling mechanisms that impact tight junction protein expression. In this paper, we review the current knowledge on factors that regulate inducible nitric oxide synthase (iNOS) and the subsequent roles that NO has on maintaining IECs' intestinal epithelial barrier structure, functions, and associated mechanisms of action. We also summarize important findings on the effects of bioactive dietary food components that interact with NO production and affect downstream intestinal epithelium integrity.
Collapse
Affiliation(s)
- Kaiwen Mu
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Shengwu Yu
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - David D Kitts
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
19
|
De Santiago E, Gill CIR, Carafa I, Tuohy KM, De Peña MP, Cid C. Digestion and Colonic Fermentation of Raw and Cooked Opuntia ficus-indica Cladodes Impacts Bioaccessibility and Bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2490-2499. [PMID: 30757900 DOI: 10.1021/acs.jafc.8b06480] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The bioactivity of (poly)phenols from a food is an interplay between the cooking methods applied and the interaction of the food with the gastrointestinal tract. The (poly)phenolic profile and biological activity of raw and cooked cactus ( Opuntia ficus-indica Mill.) cladodes following in vitro digestion and colonic fermentation were evaluated. Twenty-seven (poly)phenols were identified and quantified by HPLC-ESI-MS, with piscidic acid being the most abundant. Throughout the colonic fermentation, flavonoids showed more degradation than phenolic acids, and eucomic acid remained the most relevant after 24 h. The catabolite 3-(4-hydroxyphenyl)propionic acid was generated after 24 h of fermentation. Cytotoxicity, genotoxicity, and cell cycle analyses were performed in HT29 cells. Cactus colonic fermentates showed higher cell viability (≥80%) in comparison to the control fermentation with no cactus and significantly ( p < 0.05) reduced H2O2-induced DNA damage in HT29 cells. Results suggest that, although phenolic compounds were degraded during the colonic fermentation, the biological activity is retained in colon cells.
Collapse
Affiliation(s)
- Elsy De Santiago
- Universidad de Navarra , Facultad de Farmacia y Nutrición, Departamento de Ciencias de la Alimentación y Fisiología , C/Irunlarrea 1 , E-31008 Pamplona , Spain
- IdiSNA, Navarra Institute for Health Research , Pamplona , Spain
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health, Centre for Molecular Biosciences , University of Ulster , Cromore Road , Coleraine , Northern Ireland BT52 1SA , United Kingdom
| | - Ilaria Carafa
- Nutrition & Nutrigenomics Unit, Department of Food Quality and Nutrition, Research and Innovation Centre , Fondazione Edmund Mach (FEM) , Via E. Mach 1 , 38010 , San Michele all'Adige, Trento , Italy
| | - Kieran M Tuohy
- Nutrition & Nutrigenomics Unit, Department of Food Quality and Nutrition, Research and Innovation Centre , Fondazione Edmund Mach (FEM) , Via E. Mach 1 , 38010 , San Michele all'Adige, Trento , Italy
| | - María-Paz De Peña
- Universidad de Navarra , Facultad de Farmacia y Nutrición, Departamento de Ciencias de la Alimentación y Fisiología , C/Irunlarrea 1 , E-31008 Pamplona , Spain
- IdiSNA, Navarra Institute for Health Research , Pamplona , Spain
| | - Concepción Cid
- Universidad de Navarra , Facultad de Farmacia y Nutrición, Departamento de Ciencias de la Alimentación y Fisiología , C/Irunlarrea 1 , E-31008 Pamplona , Spain
- IdiSNA, Navarra Institute for Health Research , Pamplona , Spain
| |
Collapse
|
20
|
Kim MS, Kim JY. Cinnamon subcritical water extract attenuates intestinal inflammation and enhances intestinal tight junction in a Caco-2 and RAW264.7 co-culture model. Food Funct 2019; 10:4350-4360. [DOI: 10.1039/c9fo00302a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cinnamon is known to have several physiological effects; the effects of Cinnamomum japonicum Sieb. on anti-inflammation and tight junctions were investigated using the cellular intestinal inflammation model.
Collapse
Affiliation(s)
- Min Seo Kim
- Department of Food Science and Technology
- Seoul National University of Science and Technology
- Seoul 01811
- Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology
- Seoul National University of Science and Technology
- Seoul 01811
- Republic of Korea
| |
Collapse
|
21
|
Serrano A, Ros G, Nieto G. Bioactive Compounds and Extracts from Traditional Herbs and Their Potential Anti-Inflammatory Health Effects. MEDICINES 2018; 5:medicines5030076. [PMID: 30012980 PMCID: PMC6164612 DOI: 10.3390/medicines5030076] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 01/08/2023]
Abstract
The inflammatory processes associated with several chronic illnesses like cardiovascular disease and cancer have been the focus of mechanistic studies of the pathogenicity of these diseases and of the use of different pharmacological and natural methods to prevent them. In this study we review the current evidence regarding the effectiveness of natural extracts from as-yet little-studied traditional botanical species in alleviating the inflammation process associated with several chronic diseases. Additionally, the intention is to expose the known pathways of action and the potential synergistic effects of the constituent compounds of the discussed extracts. It is noted that the here-studied extracts, which include black garlic rich in S-allylcystein, polyphenols from cat’s claw (Uncaria tomentosa), devil’s claw (Harpagophytum procumbens), camu-camu (Myrciaria dubia), and blackcurrant (Ribes nigrum), and citrus fruit extracts rich in hesperidin, have similar or greater effects than other, more extensively studied extracts such as tea and cocoa. The combined use of all of these extracts can give rise to synergetic effects with greater biological relevance at lower doses.
Collapse
Affiliation(s)
- Antonio Serrano
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus de Espinardo, Espinardo, 30100 Murcia, Spain.
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus de Espinardo, Espinardo, 30100 Murcia, Spain.
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus de Espinardo, Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
22
|
Characterization, antioxidant and hypoglycemic activities of degraded polysaccharides from blackcurrant ( Ribes nigrum L.) fruits. Food Chem 2018; 243:26-35. [DOI: 10.1016/j.foodchem.2017.09.107] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/23/2017] [Accepted: 09/20/2017] [Indexed: 11/20/2022]
|
23
|
Olejnik A, Kaczmarek M, Olkowicz M, Kowalska K, Juzwa W, Dembczyński R. ROS-modulating anticancer effects of gastrointestinally digested Ribes nigrum L. fruit extract in human colon cancer cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
24
|
Burgos-Edwards A, Jiménez-Aspee F, Thomas-Valdés S, Schmeda-Hirschmann G, Theoduloz C. Qualitative and quantitative changes in polyphenol composition and bioactivity of Ribes magellanicum and R. punctatum after in vitro gastrointestinal digestion. Food Chem 2017; 237:1073-1082. [PMID: 28763953 DOI: 10.1016/j.foodchem.2017.06.060] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 12/23/2022]
Abstract
The wild Chilean currants Ribes magellanicum and R. punctatum are a good source of polyphenolic compounds. The effect of simulated gastrointestinal digestion (GID) on phenolic content, composition and antioxidant capacity was determined. The inhibitory activity of the non-digested and digested samples towards metabolic syndrome-associated enzymes (α-amylase, α-glucosidase and lipase) was evaluated. The total phenolic (TP) and flavonoid contents (TF) decreased by about 50% at the end of the in vitro GID. Main anthocyanins and hydroxycinnamic acids were strongly affected by this process, with a loss of about 80%. A decrease in the antioxidant activity was observed throughout the digestion steps, which was correlated with the reduction in the TP and TF content. After the in vitro GID of the samples, only the inhibition of α-glucosidase was preserved. Our results show that the simulated GID modified the health-promoting properties of the studied currants.
Collapse
Affiliation(s)
- Alberto Burgos-Edwards
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, 3460000 Talca, Chile
| | - Felipe Jiménez-Aspee
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud & Núcleo Científico Multidisciplinario, Dirección de Investigación, Universidad de Talca, 3460000 Talca, Chile; Laboratorio de Cultivo Celular, Facultad de Ciencias de la Salud, Universidad de Talca, 3460000 Talca, Chile.
| | - Samanta Thomas-Valdés
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, 3460000 Talca, Chile
| | - Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, 3460000 Talca, Chile
| | - Cristina Theoduloz
- Laboratorio de Cultivo Celular, Facultad de Ciencias de la Salud, Universidad de Talca, 3460000 Talca, Chile.
| |
Collapse
|